Problem Set 4: Connectedness

Your name:

Due: Thursday, February 18

Problem 1 (8). Let X be a set, and \mathcal{T}_0 and \mathcal{T}_1 topologies on X. If $\mathcal{T}_0 \subset \mathcal{T}_1$, we say that \mathcal{T}_1 is *finer* than \mathcal{T}_0 (and that \mathcal{T}_0 is *coarser* than \mathcal{T}_1).

- a. Let Y be a set with topologies \mathcal{T}_0 and \mathcal{T}_1 , and suppose $\mathrm{id}_Y : (Y, \mathcal{T}_1) \to (Y, \mathcal{T}_0)$ is continuous. What is the relationship between \mathcal{T}_0 and \mathcal{T}_1 ? Justify your claim.
- b. Let Y be a set with topologies \mathcal{T}_0 and \mathcal{T}_1 and suppose that $\mathcal{T}_0 \subset \mathcal{T}_1$. What does connectedness in one topology imply about connectedness in the other?
- c. Let Y be a set with topologies \mathcal{T}_0 and \mathcal{T}_1 and suppose that $\mathcal{T}_0 \subset \mathcal{T}_1$. What does one topology being Hausdorff imply about the other?
- d. Let Y be a set with topologies \mathcal{T}_0 and \mathcal{T}_1 and suppose that $\mathcal{T}_0 \subset \mathcal{T}_1$. What does convergence of a sequence in one topology imply about convergence in the other?

Problem 2 (8). Given a space X, we define an equivalence relation on the elements of X as follows: for all $x, y \in X$,

 $x \sim y \iff$ there is a connected subset $A \subset X$ with $x, y \in A$.

The equivalence classes are called the *components* of X.

- a. (0) Prove to yourself that the components of X can also be described as connected subspaces A of X which are as large as possible, ie, connected subspaces $A \subset X$ that have the property that whenever $A \subset A'$ for A' a connected subset of X, A = A'.
- b. (4) Compute the connected components of \mathbb{Q} .
- c. (4) Let X be a Hausdorff topological space, and $f, g : \mathbb{R} \to X$ be continuous maps such that for every $x \in \mathbb{Q}$, f(x) = g(x). Show that f = g.

Problem 3 (9). Prove that no pair of the following subspaces of \mathbb{R} are homeomorphic:

(0,1), (0,1], [0,1].

Problem 4 (8). Let $(X_i)_{i \in I}$ be a family of topological spaces, and $(Y_i)_{i \in I}$ be a family of subsets $Y_i \subset X_i$. Note that the set $\prod_{i \in I} Y_i$ has two possible topologies:

- first give each Y_i the subspace topology, and then take the product topology on the product
- give the product the subspace topology as a subset of the product topology on ∏_{i∈I} X_i.

Are these two topologies the same? Prove or disprove using the universal properties of the subset and the product.

Problem 5 (12 - problem seminar). In this problem, we will investigate the notion of convergence in the product and box topologies on spaces of functions.

- a. Let X be a space and I be a set. Recall that the set of maps X^{I} is also the product $\prod_{i \in I} X$, and so has a natural topology (the product topology). Let $(f_{n})_{n \in \mathbb{N}}$ be a sequence of maps in X^{I} , and let $f \in X^{I}$. Show that $f_{n} \to f$ in X^{I} if and only if, for every $i, f_{n}(i) \to f(i)$ in X. For this reason, the product topology \mathcal{T}_{\prod} is also called the *topology of pointwise convergence*.
- b. Show that the topology of pointwise convergence on $\mathbb{R}^{\mathbb{R}}$ does not come from a metric.

The topology of uniform convergence \mathcal{T}_{∞} on $\mathbb{R}^{\mathbb{R}}$ is defined as follows: a subset $U \subset \mathbb{R}^{\mathbb{R}}$ belongs to \mathcal{T}_{∞} iff for every $f \in U$ there exists $\epsilon > 0$ such that

$$\left\{g: \mathbb{R} \to \mathbb{R}: \sup_{x \in \mathbb{R}} |f(x) - g(x)| < \epsilon \right\} \subset U.$$

Convince yourself that this is a topology. Justify to yourself the name of \mathcal{T}_{∞} (by figuring out what it means for a sequence to converge in \mathcal{T}_{∞}).

- c. Show that $\mathcal{T}_{\prod} \subset \mathcal{T}_{\infty} \subset \mathcal{T}_{\square}$
- d. Show that $\mathcal{T}_{\prod} \neq \mathcal{T}_{\infty}$.
- e. Show that the sequence of constant functions $x \mapsto \frac{1}{n+1}$ does not converge to 0 in the box topology. Conclude that $\mathcal{T}_{\infty} \neq \mathcal{T}_{\Box}$.
- f. Find a sequence of functions $f_n \in \mathbb{R}^{\mathbb{R}}$ such that $\sup_{x \in \mathbb{R}} |f(x)| \ge \frac{1}{n+1}$ and that converges to the constant function 0 in the box topology.