Problem Set 1: A Set-Theory diagnostic

Your name:

Due: Tuesday, February 9

Problem 1 (13). What goes in the \square to make the strongest possible true statement? Your choices are on the right.

(a)	$A \subset B$ and $B \subset C$	\square	$A \subset(B \cup C)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(b)	$A \subset B$ and $B \subset C$	\square	$A \subset(B \cap C)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(c)	$A \subset B$ or $B \subset C$	\square	$A \subset(B \cup C)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(d)	$A \subset B$ or $B \subset C$	\square	$A \subset(B \cap C)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(e)	$A \backslash(A \backslash B)$	\square	$A \backslash B$	\subset	$=$	None	
(f)	$A \backslash(B \backslash A)$	\square	\square	$=$	None		
(g)	$A \cap(B \backslash C)$	\square	$(A \cap B) \backslash(A \cap C)$	\subset	$=$	None	
(h)	$A \cup(B \backslash C)$	\square	$(A \cup B) \backslash(A \cup C)$	\subset	\supset	None	
(i)	$A \subset C$ and $B \subset D$	\square	$(A \times B) \subset(C \times D)$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(j)	$(A \times B) \cup(C \times D)$	\square	$(A \cup C) \times(B \cup D)$	\subset	\supset	$=$	None
(k)	$(A \times B) \cap(C \times D)$	\square	$(A \cap C) \times(B \cap D)$	\subset	$=$	None	
(l)	$A \times(B \backslash C)$	\square	$(A \times B) \backslash(A \times C)$	\subset	\supset	$=$	None
(m)	$(A \times B) \backslash(C \times D)$	\square	$(A \backslash C) \times(B \backslash D)$	\subset	\supset	$=$	None

Problem 2 (4). Complete the following as in the previous problem, assuming the collection \mathcal{A} is nonempty.

(n)	$x \in \bigcup_{A \in \mathcal{A}} A$	\square	$x \in A$ for at least one $A \in \mathcal{A}$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(o)	$x \in \bigcup_{A \in \mathcal{A}} A$	\square	$x \in A$ for every $A \in \mathcal{A}$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(p)	$x \in \bigcap_{A \in \mathcal{A}} A$	\square	$x \in A$ for at least one $A \in \mathcal{A}$	\Rightarrow	\Leftarrow	\Leftrightarrow	None
(q)	$x \in \bigcap_{A \in \mathcal{A}} A$	\square	$x \in A$ for every $A \in \mathcal{A}$	\Rightarrow	\Leftarrow	\Leftrightarrow	None

Problem 3 (6). Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Complete the following as in the previous problem. Note that "injective" has been abbreviated "inj." Similar abbreviations have been made for "surjective" and "bijective."

Problem 4 (24). Let A and B be sets.
a. Consider the maps

$$
\begin{aligned}
& p_{1}: A \times B \rightarrow A, \quad(a, b) \mapsto a \\
& p_{2}: A \times B \rightarrow B, \quad(a, b) \mapsto b
\end{aligned}
$$

Show that for any set C, the map

$$
(A \times B)^{C} \rightarrow A^{C} \times B^{C}, \quad f \mapsto\left(p_{1} \circ f, p_{2} \circ f\right)
$$

is a bijection. (Hint: Define the inverse map.) Informally speaking, giving a map to a product is "the same thing" as giving a map to each factor. This is called the universal property of the product.
b. Recall that $A \coprod B \equiv(A \times\{0\}) \cup(B \times\{1\})$. Consider the maps

$$
\begin{array}{ll}
i_{1}: A \rightarrow A \coprod B, & a \mapsto(a, 0) \\
i_{2}: B \rightarrow A \coprod B, & b \mapsto(b, 1)
\end{array}
$$

Show that for any set C, the map

$$
C^{A} \amalg^{B} \rightarrow C^{A} \times C^{B}, \quad f \mapsto\left(f \circ i_{1}, f \circ i_{2}\right)
$$

is a bijection. Informally speaking, giving a map from a sum is "the same thing" as giving a map from each factor. This is called the universal property of the sum.

Problem 5 (23). Let A and B be sets, and assume that $f: A \rightarrow B$ is injective, and $g: B \rightarrow A$ is injective. The goal of this problem is to show that this implies A and B are in bijection. For finite sets this may be intuitive (and if not, convince yourself as a warmup). This is a theorem which is commonly known as the Cantor-Schröder-Bernstein Theorem, named after a few mathematicians that contributed to its proof / dissemination.

Let $h: A \rightarrow A$ be the composite map $g \circ f$. Inductively define a sequence of subsets $C_{n} \subset A$ for $n \in \mathbb{N}$, as follows:

$$
C_{0}=A \backslash g(B), \quad C_{n+1}=h\left(C_{n}\right)
$$

Let C be the union of all the C_{n} s:

$$
C=\bigcup_{n \in \mathbb{N}} C_{n}
$$

a. Show that $C=C_{0} \cup h(C)$.
b. Show that $A \backslash C=g(B \backslash f(C))$.
c. Use (b) to define a bijection between A and B.
d. Let a and b be real numbers with $a<b$. Show that there exists a bijection between \mathbb{R} and the open interval $(a, b)=\{x \in \mathbb{R}: a<x<b\}$. (Hint: You may use trigonometry.)
e. Let U be any subset of \mathbb{R} containing an open interval. Use (c) and (d) to show that there exists a bijection between U and \mathbb{R}.

