
Set Theory

Sets

A set is a collection of objects, called its elements. We write x ∈ A to mean
that x is an element of a set A, we also say that x belongs to A or that x is in
A.

If A and B are sets, we say that B is a subset of A if every element of B
is an element of A. In this case we also say that A contains B, and we write
B ⊂ A. Two sets are considered equal iff A ⊂ B and B ⊂ A.

Curly bracket notation

We often define sets by listing their elements, or pairing down sets we already
have by describing subsets via formulas.

• The symbol {x, y, z} describes the set whose elements are precisely x, y,
and z.

• The symbol {x : p(x)} describes the set of all x such that the sentence
p(x) is true.

• The symbol {x ∈ A : p(x)} describes the set of all x ∈ A such that the
sentence p(x) is true.

Warning. The notation {x : p(x)} is not always meaningful. For example,
assuming {sets A : A /∈ A} is a set leads to a logical contradiction (known
as Russel’s paradox). Axiomatic set theory has precise rules dictating when
{x : p(x)} is well-defined. If A is a set, the set {x ∈ A : p(x)} is always
well-defined (provided p(x) is).

Examples

• The symbol ∅ denotes the set with no elements, denoted {} in braces
notation. The set ∅ is called the empty set and it is characterized by the
property x /∈ ∅ for all x.

• The following sets of numbers might be familiar: N ⊂ Z ⊂ Q ⊂ R

– the set N = {0, 1, 2, . . .} of natural numbers,

1



– the set Z = {. . . ,−2,−1, 0, 1, 2, . . .} of integers,

– the set Q = {pq : p, q ∈ Z, q 6= 0} of rational numbers,

– the set R of real numbers.

Exercise 1. Why do you think I avoided describing R by curly brackets?
Can you think of a simple way to build R from Q, Z, or N?

Operations with sets

One good thing to do with a new mathematical object is to think of ways you
can produce new ones from old ones. What follows is a list of such constructions.
Let A and B be sets:

• union: A ∪B = {x : x ∈ A or x ∈ B}

• intersection: A ∩B = {x : x ∈ A and x ∈ B}

• More generally, if (Ai)ı∈I is a family of sets indexed by a set I, we can
define the union and intersection over I as follows⋃

i∈I
Ai = {x : x ∈ Ai for some i ∈ I}

⋂
i∈I

Ai = {x : x ∈ Ai for every i ∈ I}

• difference: A \B = {x ∈ A : x /∈ B}

• product: A×B = {(x, y) ∈ A : x ∈ A and y ∈ B}

• sum: A
∐
B = (A× {0}) ∪ (B × {1}) (this is also called disjoint union)

• power set: P(A) = {B : B ⊂ A}, the set of subsets of A.

Exercise 2. How might we generalize the product so that it can be indexed by
a set I? The sum?

Functions

Let A and B be sets. A map f from A to B is a subset f ⊂ A×B such that, for
every a ∈ A, there is a unique b ∈ B so that the pair (a, b) is in f ; this element
b is often denoted f(a). In other words, a map from A to B assigns to every
element a ∈ A an element f(a) ∈ B. A map is also called a function. The set
A is called the domain or source of f , and the set B is called the codomain or
target of f . We denote a map f from A to B by

f :A→ B

a 7→ f(a).
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Examples. The following functions are each given as assignments, some of
which have also been described as a subset.

• f : R→ R, x 7→ x2 is defined by the subset {(x, y) ∈ R× R : y = x2} ⊂
R× R, sometimes known as the graph of the function.

• f : {0, 1} → {a, b}, 0 7→ a, 1 7→ b is defined by the subset {(0, a), (1, b)} ⊂
{(0, a), (0, b), (1, a), (1, b)}

• For every set A, there is an identity map idA : A→ A, a 7→ a.

• More generally, if B ⊂ A, there is an inclusion map B → A, b 7→ b.

Exercise 3. How are the last two examples above described as subsets of the
product set?

The set of all maps from A to B is denoted by BA, and can be shown to be
a set by observing that BA ⊂ P(A×B).

Definition 1. Let f : A → B and g : B → C be maps. The composition of f
and g is the map

g ◦ f :A→ C

a 7→ g(f(a))

Definition 2. A map f : A→ B is

• injective if for all y ∈ B, there is at most one x ∈ A so that f(x) = y.
Another way to say this is if x, z ∈ A satisfy f(x) = f(z), then in fact
x = z.

• surjective if for all y ∈ B there exists at least one x ∈ A so that f(x) = y.

• bijective if it is injective and surjective.

Proposition 1. A map f : A→ B is bijective iff there exists a map g : B → A
such that

g ◦ f = idA andf ◦ g = idB

Proof. (⇒) Suppose that f is bijective. Define a subset g ⊂ B × A by pairing
each element y ∈ B with the unique element a ∈ A such that f(x) = y. The
subset g is a map because f is bijective, and by its very definition we see that
g ◦ f = idA and f ◦ g = idB .

(⇐) Suppose now that the map g exists. To see f is injective, assume that
f(x) = f(z) and apply the map g to obtain:

x = g(f(x)) = g(f(z)) = z.

To see that f is surjective, observe that any element y ∈ B satisfies f(g(y)) =
y.
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Remark. In this case, the function g is uniquely determined by the bijective
function f . It is called the inverse of f and denoted f−1 : B → A.

Definition 3. Let f : A→ B be a map.

• If U ⊂ A, the image of U by f is the set f(U) ≡ {y ∈ B : y =
f(x) for some x ∈ U}.

• If V ⊂ B, the preimage of V by f is the set f−1(V ) = {x ∈ A : f(x) ∈ V }.

Warning. We use the same notation for the preimage of a function f , which is
always defined, and the inverse of a function, which is defined in the case that f
is bijective. Notice that when f is bijective, we have the following relationship
between the preimage and the inverse of f for any element y ∈ B:

f−1({y}) = {f−1(y)}.

Remark. A map f : A→ B is surjective iff f(A) = B.

Definition 4. A set A is

• finite if there exists an n ∈ N and a bijection {1, 2, . . . , n} → A.

• countably infinite if there exists a bijection N→ A

• countable if it is finite or countably infinite

• uncountable if it is not countable.

Examples. The sets

• N,Z,Q are all countably infinite,

• R,P(N) are uncountable.

Theorem 1 (Least Number Principle). Every nonempty subset X ⊂ N has a
least element, ie, there is an x ∈ X such that x ≤ y for all y ∈ X.

Remark. As was pointed out in class, this theorem requires some version of
itself as an axiom. As such, we won’t try to prove it here.

Corollary 1 (Induction Principle). Let p(n) be a statement depending on a
natural number n. Suppose that p(0) is true, and that p(n)⇒ p(n+1) for every
n ∈ N. Then p(n) is true for all n ∈ N.

Proof. Consider the set X ≡ {n ∈ N : p(n)isfalse}. By assumption, 0 is not a
member of this set. If this set were nonempty, there would be a least element
x ∈ X (and it would be bigger than 0). Since x > 0, x − 1 is also a natural
number, and this pair would satisfy p(x − 1) is true (since x is a least element
of X), p(x) is false (since x ∈ X). Since we have assumed p(x− 1) ⇒ p(x), no
such element can exist, and X must be empty.
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Topological Spaces

Let X be a set. A topology τ on X is a collection of subsets of X, ie, τ ⊂ P(X)
such that

• ∅ ∈ τ and X ∈ τ

• If (Ui)i∈I is a family of elements of τ , then
⋃
i∈I Ui ∈ τ

• If U, V ∈ τ , then U ∩ V ∈ τ .

A topological space is a pair (X, τ) where X is a set and τ is a topology on X.
Elements of τ are called open subsets of X.

Examples. For every X, the set τ = {∅, X} is a topology on X, called the
coarse topology. For every set X, the set τ = P(X) is a topology on X called
the discrete topology.

In real analysis one often encounters metric spaces. These are sets with some
notion of distance satisfying certain properties. In what follows, we will show
that every metric space has a natural topology.

Definition 5. Let X be a set. A metric on X is a function d : X×X → [0,∞)
such that

• for every x, y ∈ X, d(x, y) = 0⇔ x = y

• for every x, y ∈ X, d(x, y) = d(y, x)

• for every x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

A metric space is a pair (X, d) where X is a set and d is a metric on X.

Examples.

• The standard metric on R : d(x, y) = |x− y| =
(
(x− y)2

) 1
2

• Some metrics on R2 (note that x = (x1, x2) and y = (y1, y2) ):

– standard metric: d(x, y) =
(
(x1 − y1)2 + (x2 − y2)2

) 1
2

– sup metric : d∞(x, y) = max(|x1 − y1|, |x2 − y2|)
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– taxicab metrix: d1(x, y) = |x1 − y1|+ |x2 − y2|

• Let L∞([a, b],R) = {f : [a, b] → R : sup
x∈[a,b]

|f(x)| < ∞} and consider the

function
d∞(f, g) = sup

x∈[a,b]

|f(x)− g(x)|

. Then (L∞([a, b],R), d∞) is a metric space.

Exercise 4. Let R([a, b],R) = {f : [a, b] → R :
∫

[a,b]

f(x)dx < ∞} and consider

the function d(f, g) =
∫

[a,b]

|f(x)− g(x)|dx. Is this function a metric?

Definition 6. Let X be a set with a map d : X × X → R. For any element
x ∈ X and any ε > 0, we define the set B(x, ε) ≡ {y ∈ X : d(x, y) < ε} ⊂ X,
and call it the ball of radius ε centered at x.

Proposition 2. Let X be a set and d : X×X → R be a map. Define τd ⊂ P(X)
as follows: U ∈ τd if and only if for all x ∈ U there exists an ε > 0 such that
B(x, ε) ⊂ U . Then τd is a topology on X.

Proof. We need to verify that τd ⊂ P(X) satisfies the axioms:

• To see ∅ ∈ τd note that there are no elements to check the condition on,
so it is satisfied vacuously. To see X ∈ τd, any ε will do.

• Let (Ui)i∈I be a family of elements of τd. Let x ∈
⋃
i∈I Ui. Then x ∈ Ui

for some i ∈ I, so there exists an ε > 0 such that B(x, ε) ⊂ Ui ⊂
⋃
i∈I Ui.

Hence
⋃
i∈I Ui ∈ τd.

• Let U, V ∈ τd. Let x ∈ U ∩ V . Then there exists ε, δ > 0 such that
B(x, ε) ⊂ U and B(x, δ) ⊂ V . Setting η = min(ε, δ), we see that B(x, η) ⊂
B(x, ε) ∩B(x, δ) ⊂ U ∩ V . Hence U ∩ V ∈ τd.

Exercise 5. Consider the examples of metrics on R2 above. Prove that τd =
τd1 = τd∞ . Hint: Draw a picture of B(x, ε) for each of the metrics.

Bases and neighborhoods

Definition 7. Let τ be a topology on a set X. A subset B ⊂ τ is a basis for τ
if every element U ∈ τ is a union of elements in B.

Examples.

If (X, d) is a metric space, then {B(x, ε) : x ∈ X, ε > 0} is a basis for τd.

The set {{x} : x ∈ X} is a basis for the discrete topology on the set X.

Proposition 3. Let X be a set and let B ⊂ P(X). Then B is a basis for a
topology on X iff:
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1. every x ∈ X belongs to some U ∈ B

2. for every U, V ∈ B and all x ∈ U ∩ V there exists W ∈ B such that
x ∈W ⊂ U ∩ V .

Proof. (⇒) Suppose B is a basis for a topology τ on X.

• Since X is an open set, it is a union of elements of B.

• Let U, V ∈ B. Since U ∩ V is open, U ∩ V =
⋃
i∈IWi where each Wi inB.

Hence there is some i so that x ∈Wi ⊂ U ∩ V .

(⇐) Define τB ⊂ P(X) as follows: U ∈ τB iff for all x ∈ U , there exists a V ∈ B
such that x ∈ V ⊂ U . If τB is a topology, then B is a basis for τB for the same
reason that open balls were a basis for the topology on a metric space. We must
verify that τB is a topology:

• ∅ ∈ τB because ∅ has no elements to verify; X ∈ τB follows from (1).

• Let (Ui)i∈I be a family of elements of τB, we wish to prove that
⋃
i∈I Ui is

in τB. In order to do that, we must show that for any element x ∈
⋃
i∈I Ui,

there is a basic open set W ∈ B such that x ∈ W ⊂
⋃
i∈I Ui. Given an

x ∈
⋃
i∈I Ui, there is an i so that x ∈ Ui. Since Ui ∈ τB, there is a basic

open set W with x ∈W ⊂ Ui, which implies x ∈W ⊂
⋃
i∈I Ui as required.

• Let U and V be elements of τB, we wish to prove that U ∩ V ∈ τB. Given
x ∈ U ∩V , we wish to find a basic open set around x in U ∩V . To do this,
we observe that x ∈ U implies there is a basic open set x ∈ W1 ⊂ U and
x ∈ V implies there is a basic open set x ∈ W2 ⊂ V . Then x ∈ W1 ∩W2

and property (2) of the basis B guarantees that there is a W with x ∈
W ⊂W1 ∩W2 which implies x ∈W ⊂ U ∩ V as required.

Examples. Let X and Y be topological spaces.

• The collection B∏ = {U×V ⊂ X×Y : U is open in X and V is open in Y }
is a basis for a topology on X × Y called the product topology.

• The collection B∐ = {U×{0} : U is open in X} ∪ {V×{1} : V is open in Y }
⊂ X × {0} ∪ Y × {1} is a basis for a topology on X

∐
Y called the sum

topology.

Definition 8. Let X be a topological space and let x ∈ X. A neighborhood of
x in X is a subset K ⊂ X such that there exists an open set U with

x ∈ U ⊂ K.

Warning. The definition in Munkres requires K itself to be open.

Proposition 4. The following are properties of neighborhoods:
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1. X is a neighborhood of every point. If K is a neighborhood of x and
K ⊂ L then L is a neighborhood of x.

2. If K and L are neighborhoods of x then K ∩ L is a neighborhood of x.

3. If K is a neighborhood of x there exists a neighborhood L of x such that
K is a neighborhood of every point of L.

4. A subset U ⊂ X is open iff it is a neighborhood of all of its points.

Exercise 6. Prove the above properties of neighborhoods.

Remark. There is an alternative axiomatization of topological spaces based on
neighborhoods. Given a set X and a collection of subsets called neighborhoods
satisfying (1)–(3), there is a unique topology on X which induces this notion of
neighborhood; the open sets are determined by (4).

Closed sets and limit points

Definition 9. Let X be a topological space. A subset C ⊂ X is closed if its
complement, X \ C, is open.

Proposition 5. Let X be a topological space. The following are properties of
the closed sets of X:

1. Both ∅ and X are closed.

2. If (Ui)i∈I is a family of closed sets in X, then
⋂
i∈I Ui is closed.

3. If U, V are closed, then U ∪ V is closed.

Remark. There is alternative axiomatization of topological spaces based on
closed sets. Given a set X and a collection of closed sets satisfying (1)–(3),
there is a unique topology on X that induces this collection of closed sets. The
open sets are the complements of the closed sets.

Definition 10. Let X be a topological space and let A ⊂ X be a subset. The
interior of A is the union of all open subsets contained in A:

A◦ =
⋃

U⊂X open,
U⊂A

U ⊂ A.

The closure of A is defined to be the intersection of all closed sets C containing
A:

Ā =
⋂

C⊂X closed,
A⊂C

C ⊃ A.

We also define the boundary of A to be the difference between the closure and
the interior:

∂A = Ā \A◦.
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Remark.

• A◦ is open in X and Ā is closed in X.

• The complement of the interior of A is the closure of the complement of
A: X \A◦ = X \A, and hence ∂A = Ā ∩X \A.

Proposition 6. Let X be a topological space and A ⊂, and let x ∈ X. Then
x ∈ Ā if and only if every neighborhood of x has nonempty intersection with A.

Proof. We will prove the equivalent statement:

x /∈ Ā iff there exists a nbhd U of x such that U ∩A = ∅.

(⇒) Recall that the complement of Ā is open, so that if x /∈ Ā then x ∈ X \ Ā
which is open and does not intersect A.
(⇐) Suppose there exists an open U ′ such that x ∈ U ′ ⊂ U with U ∩ A = ∅.
Then A ⊂ X \ U ⊂ X \ U ′. Since X \ U ′ is closed, Ā ⊂ X \ U ′ and x /∈ Ā.

Definition 11. A sequence in a set X is a map x : N → X. We usually write
xn for x(n) and sometimes (xn)n∈N for the map x.

Definition 12. Let X be a topological space and let x : N→ X be a sequence.
We say that x converges to L ∈ X, and write x→ L if for every neighborhood
U of L there exists a natural number N ∈ N such that for all n > N , xn ∈ U .

Remark. If B is a basis for a topology on X, to check that L is a limit of a
sequence x, it suffices to check the condition on the neighborhoods of L that
belong to B.

Exercise 7. Consider Rn with the standard topology. Show that a sequence
x converges to L ∈ Rn as above if and only if it converges to L in the familiar
sense from calculus (the ε-δ sense).

Warning. A sequence may have zero, one, or more limits. So we typically
avoid the notation lim

n→∞
xn.

Examples.

• Consider L∞([a, b],R) with the metric topology (using the sup metric
d∞(f, g) = sup

x∈[a,b]

|f(x) − g(x)|). Then a sequence (fn)n∈N → f iff fn

converges uniformly to the function f . (Later we will see there is another
topology whose limits correspond to point-wise convergence.)

• Let R ⊂ L∞([0, 1],R) be the subset of Riemann integrable functions, and

let d1(f, g) =
∫ 1

0
|f(x)− g(x)|dx for f, g ∈ R. Consider the sequence

fn : [0, 1]→ R, x 7→

{
n if x < 1

2n

0 otherwise
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Then (fn)n∈N converges to 0 in the topology determined by d1. In fact,

any f such that d1(f, 0) =
∫ 1

0
|f(x)|dx = 0 is a limit of this sequence. On

the other hand, this sequence has no limit in the uniform topology τd∞ .

Definition 13. A topological space (X, τ) is first countable if for every x ∈ X
there exists a countable set Nx of neighborhoods of x such that every neighbor-
hood of x contains a neighborhood which is an element of Nx. A space is called
second countable if there exists a countable basis B ⊂ τ .

Remark.

• Second countable implies first countable.

• Every metric space is first countable.

• The space L∞([a, b],R) with the metric d∞ is a metric space which is not
second countable.

Proposition 7. Let X be a topological space, A ⊂ X, and let L ∈ X. If there
exists x : N→ A such that xn → L in X then L ∈ Ā. The converse holds if X
is first countable.

Proof. (⇒) Suppose xn → L with xn ∈ A. Then for every neighborhood U
of L, by the definition of convergence, there is an element xk ∈ U (in fact,
infinitely many). Therefore, for every neighborhood U of L, xk ∈ U ∩ A 6= ∅,
so L ∈ Ā. (⇐): Suppose L ∈ Ā. Assuming that X is first countable means
we have a countable set of neighborhoods NL = {U0, U1, U2, . . .} such that
every neighborhood of L contains some Ui. We want a guarantee that the
neighborhoods in this list are in some sense “shrinking” toward L, so we define

U ′n = ∩ni Ui.

Then each U ′n is still a neighborhood of L, so Un ∩ A 6= ∅. For each n, choose
xn ∈ U ′ ∩ A. The claim is that xn → L. To see this, observe that given a
neighborhood U of L, there is some N so that UN ⊂ U , and then for all n > N :

xn ∈ U ′n ∩A ⊂ U ′n ⊂ UN ⊂ U

as required.

Definition 14. A topological space X is called Hausdorff (or T2 or separated)
if for every distinct pair of points x, y ∈ X there exists nbhds U of x and V of
y such that U ∩ V = ∅.

Proposition 8. Let X be a Hausdorff topological space. Then a sequence in
X has at most one limit.

Proof. Let L be a limit of x : N→ X and let L′ 6= L. We want to show that L′

is not a limit of x. Since X is Hausdorff, we can separate L and L′ by disjoint
neighborhoods: L ∈ U and L′ ∈ U ′, with U ∩ U ′ = ∅. Then because xn → L,
there is some N so that for every n > N , xn ∈ U . This means that xn /∈ U ′, so
L′ can’t be a limit of x.
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Proposition 9.

• Let (X, d) be a metric space. Then X is Hausdorff with the metric topol-
ogy.

• Let (X,<) be a totally ordered set. Then X is Hausdorff with the order
topology.
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Continuous maps

Theorem 2. Let f : X → Y be a map between topological spaces. The following
conditions are equivalent:

1. For every U ⊂ Y open, f−1(U) ⊂ X is open.

2. For every C ⊂ Y closed, f−1(C) ⊂ X is closed.

3. For every A ⊂ X, f(Ā) ⊂ f(A).

4. For every x ∈ X and every neighborhood V of f(x) there exists a neigh-
borhood U of x such that f(U) ⊂ V .

Definition 15. A map f : X → Y is continuous if it satisfies the equivalent
conditions of Theorem 2.

Proof. We’ll prove (1)⇒ (4)⇒ (3)⇒ (2)⇒ (1).

(1) ⇒ (4) : Let V be a neighborhood of f(x), so that f(x) ∈ V ′ ⊂ V for
some open V ′. Let U = f−1(U). By (1), U is open, so U is a neighborhood of
x, and f(U) = f(f−1(V ′)) ⊂ V ′ ⊂ V .

(4) ⇒ (3) : Let y ∈ f(Ā), so y = f(x) for some x ∈ Ā. Given a nbhd V
of y, by (4) there exists a neighborhood U of x such that f(U) ⊂ V . Since
x ∈ Ā, U ∩ A 6= ∅, hence ∅ 6= f(U ∩ A) ⊂ f(U) ∩ f(A) ⊂ V ∩ f(A), so that
y ∈ f(A).

(3) ⇒ (2) : Let C ⊂ Y be closed. Then f−1(C) ⊂ f−1(f(f−1(C)))
(3)
⊂

f−1(f(f−1(C))) ⊂ f−1(C) ⊂ f−1(C). Since by definition f−1(C) ⊂ f−1(C),
we have f−1(C) = f−1(C), ie, f−1(C) is closed.

(2)⇒ (1) : Let V ⊂ Y be open. Then f−1(Y \V ) is closed andX\(f−1(Y \V )) =
X \ (f−1(Y ) \ f−1(V )) = X \ (X \ f−1(V )) = f−1(V ) is open.

Proposition 10. Let (X, dX) and (Y, dY ) be metric spaces, and f : X → Y
a map. Then f is a continuous map on the metric topologies of X and Y if
and only if for every x ∈ X and every ε > 0 there exists a δ > 0 such that
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for every w ∈ X satisfying dX(x,w) < δ, the image of w under f satisfies
dY (f(x), f(w)) < ε.

Exercise 8. Prove the above proposition. (Hint : use characterization (4) of
continuity and the standard basis of a metric space.)

Examples.

• For every topological space X, the identity map idX : X → X is continu-
ous.

• By the above proposition, the continuous maps from R to R (with the
standard topology) are precisely those familiar from calculus.

Definition 16. A continuous map f : X → Y between topological spaces is a
homeomorphism (or isomorphism of topological spaces) iff there is a continuous
map g : Y → X such that

g ◦ f = idX and f ◦ g = idY .

Two topological spaces are called homeomorphic (or isomorphic topological spaces)
iff there exists a homeomorphism between them.

Remark. A continuous map f : X → Y is a homeomorphism if and only if it
is bijective and its inverse is also continuous.

Warning. A continuous bijection is not necessarily a homeomorphism. For
example, let S1 denote the subset of R2 of unit distance from the origin. Then
the map

[0, 2π)→ S1, θ 7→ (cos θ, sin θ)

is a continuous bijection whose inverse is not continuous. (Why not?)

Examples.

• f : [0, 1]→ [0, 2], x 7→ 2x is a homeomorphism

• tan : (−π2 ,
π
2 )→ R is a homeomorphism

• A circle is homeomorphic to a square.

• [0, 1] and [0, 1) and (0, 1) are not homeomorphic. This will be easy to
prove later.

• Rn is not homeomorphic to Rm when n 6= m. Why not?

Definition 17. A map f : X → Y between topological spaces is sequentially
continuous if for every sequence x : N → X and every limit L of x, f(L) is a
limit of f ◦ x : N→ Y .

Proposition 11. A continuous map f : X → Y is sequentially continuous.
The converse holds if X is first countable.
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Proof. We only prove the converse, assuming X is first countable, by proving
that f(Ā) ⊂ f(A) for every A ⊂ X. Let x ∈ Ā. Since X is first countable, there
is a sequence x : N → A such that xn → x. Then because f is sequentially
continuous, f(xn)→ f(x), so f(x) ∈ f(A) as required.

Proposition 12.

1. Any constant map f : X → Y is continuous.

2. If A ⊂ X is a subset with the subspace topology, the map i : A → X is
continuous.

3. If f : X → Y and g : Y → Z are continuous, then the composite g ◦ f :
X → Z is continuous.

4. If f : X → Y is continuous and A ⊂ X, then the map f |A : A → Y is
continuous (where A has the subspace topology).

5. If f : X → Y is continuous and f(X) ⊂ B ⊂ Y then f : X → B is
continuous.

Proof.

1. The inverse image under a constant map is either ∅ or X, and so is always
open.

2. Let U ∈ X be open. Then i−1(U) = A ∩ U is open in A by the definition
of the subspace topology.

3. (g ◦ f)−1(U) = g−1
(
f−1(U)

)
so that continuity of f and g guarantee that

the inverse image of open sets under g ◦ f is also open.

4. f |A = f ◦ i where i : A→ X is the inclusion map so this follows from (2)
and (3).

5. Let U ⊂ B be open. Then U = V ∩B for some V ⊂ Y open. Then f−1(V )
is open, and because f(X) ⊂ B, we know that f−1(V ) = f−1(V ∩ B) =
f−1(U) as required.

Proposition 13. Let X be a topological space, C ⊂ X a closed set, and A ⊂ C.
Then A is closed in C if and only if A is closed in X.

Proof. (⇐:) If A is closed in X, then then X \A is open in X, and (X \A)∩C =
C \ A so the complement of A is open in C. (⇒:) If A is closed in C, then
C \A = U ∩ C for some U ⊂ X open. This means that (X \ U) ∩ C = A, so A
is the intersection of two closed sets in X and therefore is itself closed.

The following theorem confirms out intuition about continuous functions:
that they are entirely determined “locally.” First we provide a notion of locality.
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Definition 18. Let X be a topological space. A collection of subsets of X,
(Ui)i∈I is called a cover if ∪i∈IUi = X. A cover is called open (closed) if each
Ui is open (resp. closed). It is called countable (finite) if the set I is a countable
(resp. finite) set.

Theorem 3. (Pasting lemma) Let f : X → Y be a map between topological
spaces.

1. Let (Ui)i∈I be an open cover of X. If f |Ui
: Ui → Y is continuous for all

i ∈ I then f is continuous.

2. Let (Ci)i∈I be a finite closed cover of X. If f |Ci
: Ci → Y is continuous

for all i ∈ I then f is continuous.

Proof.

1. Let x ∈ X and V be a nbhd of f(x). Then x ∈ Ui for some i ∈ I.
Since f |Ui

is continuous, there exists a neighborhood U of x in Ui so that
f(U) ⊂ V . Since Ui is open in X, U is also a neighborhood of x in X,
and f is continuous.

2. Let D ⊂ Y be closed. Then f−1(D) = ∪i∈If |−1
Ci

(D). Since each f |−1
Ci

(D)
is closed, and the set I is finite, the union is closed.
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