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1 Introduction

These notes are intended to supplement sections 1 and 2 of May’s An outline summary
of basic point set topology [4].

2 A little category theory

Category theory, now an essential framework for much of modern mathematics, was
born in topology in the 1940’s with work of Samuel Eilenberg and Saunders MacLane
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[1].

Definition 1. A category C consists of the following data:

• A class ob(C) called objects,

• For every two objects X,Y ∈ ob(C), there is a set mor(X,Y ) called mor-
phisms,

• For every three objectsX,Y, Z ∈ ob(C), there is an operation ◦ : mor(X,Y )×
mor(Y, Z)→mor(X,Z) called composition.

This data must satisfy the following two conditions:

• For every four objects X,Y, Z,W ∈ ob(C) and every h ∈ mor(X,Y ), g ∈
mor(Y, Z), and f ∈mor(Z,W ) we have f ◦ (g ◦ h) = (f ◦ g) ◦ h.

• For every X ∈ ob(C) there exists a morphism idX ∈ mod (X,X) so that for
all Y ∈ ob(C), and every f ∈mor(X,Y ) we have f ◦ idX = f = idY ◦f.

Example 1. Some examples of categories are

• Sets: the objects are sets, the morphisms are functions, composition is compo-
sition of functions.

• V ectk: the objects are vector spaces over a fixed field k, the morphisms are linear
transformations, composition is composition of linear transformations.

• RMod: Fix a ring R. The objects are R-modules, the morphisms are R-module
maps, and composition is composition of module maps.

• Groups: the objects are groups, the morphisms are group homomorphisms,
composition is composition of homomorphisms.

• Let G be a group. Define a category C with one object ∗ and with mor(∗, ∗) =

G with composition defined as in the group G.

• Sets∗: the objects are pointed sets (sets together with a distinguished element)
the morphisms are functions that respect the distinguished elements, composition
is composition of functions.

• Top: the objects are topological spaces, the morphisms are continuous functions
with composition being composition of functions.

• hTop. The objects are topological spaces, the morphisms are homotopy classes
of continuous functions. If you don’t know what homotopy is, don’t worry about
this example—it will be discussed in detail later.
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• The graph below defines a category whose objects are the nodes, the morphisms
are the arrows, and composition is defined in the only way it can be to satisfy the
axioms.

Now, there are a few things to check to verify that the examples do define cat-
egories. For example, in Sets, V ectk, RMod, Groups, Sets∗, and Top the asso-
ciativity of composition is automatic since composition is defined as composition of
functions, which is always associative. But, one needs to check that composition is
defined. For example, for V ect, one has to check that if f : V → W and g : W → U

are linear transformations between vector spaces, then g ◦ f : V → U , which a priori
is only a function, is in fact a linear transformation. One also needs to check that for
any vector space V , the identity function id : V → V is a linear transformation.

Problem 1. Prove that Top and hTop define categories.

Definition 2. Let X,Y be objects in any category. A morphism f ∈ mor(X,Y ) is
called an isomorphism, or an equivalence, if there exists a morphism g ∈ mor(Y,X)

with g ◦ f = idX and f ◦ g = idY .

The isomorphisms in the category Top are also called homeomorphisms. That is,
if (X, τX) and (Y, τY ) are topological spaces, a function f : X → Y is called a
homeomorphism if and only if f is continuous and f and has a continuous inverse
f−1 : Y → X . To have an inverse set theoretically means that f is bijective. In order
for the inverse to be a morphism in the category Top, f−1 must be continuous. So, the
definition of homeomorphism is often summarized as

Definition. f : X → Y is a homeomorphism iff f is continuous, f is bijective, and
f−1 is continuous.

But I emphasize that the definition of a homeomorphism is determined categori-
cally once the objects and morphisms in Top have been defined.

3 The subspace topology

The subspace topology is often defined as follows:

Definition 3. Let (X, τX) be a topological space and let Y be any subset of X . The
subspace topology on Y is defined by {U ∩ Y : U ∈ τX}.
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One checks that this definition does define a topology on Y . The properties that
characterize the subspace topology are more important than the definition above. I’ll
give two characterizations of the subspace topology. The first one characterizes the
subspace topology as the coarsest topology on Y for which the inclusion map i : Y →
X is continuous. The second one is a universal property that characterizes the subspace
topology on Y by characterizing which functions into Y are continuous. This is a good
place to start understanding and working with universal properties.

3.1 First characterization of the subspace topology

In order to describe the first characterization, let me first illustrate a general fact. Let
(X, τX) be a topological space and let S be any set whatsoever. Consider a function

f : S → X.

It makes no sense to ask if f is continuous unless S is equipped with a topology. There
do exist topologies on the set S that will make f is continuous, for instance the discrete
topology will make f continuous. If τf is the intersection of all topologies on S for
which f is continuous, then τf will be the coarsest (smallest) topology for which f is
continuous. Note that τf has a simple explicit description as τf = {f−1(U) : U ⊂
X is open}.

This leads to the following alternate definition of the subspace topology:

Alternate Definition. Let (X, τX) be a topological space and let Y be any subset of
X . The subspace topology on Y is defined to be the coarsest topology on Y for which
the canonical inclusion i : Y → X is continuous.

Since for any set A ⊂ X , i−1(A) = A ∩ Y , it is easy to see that this definition is
equivalent to the first definition.

Remark 1. Let (X, τX) be a topological space, let S be any set, and let f : S → X be
any function. Then the τf , the coursest topology on S that for which f is continuous,
may be called the subspace topology on S. This is a good definition, even though the
set S is not a subset of X . Here’s why: since f is injective, S is isomorphic as a
set to its image f(S) ⊂ X; and the set S with the subspace topology determined by
the injection f : S → X is homeomorphic to the set f(S) ⊂ X with the subspace
topology determined by the inclusion i : f(S) ⊂ X .

If f is not injective, then the topology τf is not referred to as the subspace topology.
Note that if f is not injective τf is quite different from the subspace topology on f(S),
for example, τf is never Hausdorff.

3.2 Second characterization of the subspace topology

There is a principle in mathematics that if you can understand the morphisms in a
category, then you can understand the objects. Without making this principle more
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precise now, let me give an illustration. Suppose that you want to understand a topo-
logical space (X, τX). One approach is to study continuous functions f : Z → X or
f : X → Z, where (Z, τZ) is another topological space. Now, the subspace topol-
ogy has an important universal property which characterizes precisely which functions
f : Z → Y are continuous for all topological spaces (Z, τZ). This property completely
determines the subspace topology on Y .

Theorem 1. Let (X, τX) be a topological space, let Y be a subset of X and let i :

Y → X be the natural inclusion. The subspace topology on Y is characterized by the
following property:

Universal property for the subspace topology. For every topological space (Z, τZ)

and every function f : Z → Y , f is continuous if and only if i ◦ f : Z → X is
continuous.

Here’s a picture

X

Z Y

i

f

i ◦ f

One should think of the universal property stated above as a property that may be
attributed to a topology on Y . At this point, you may think that some topologies have
this property and some do not. Theorem 1 means that the subspace topology on Y ,
as previously defined, does have this universal property. Furthermore, the subspace
topology is the only topology on Y with this property. Let’s prove it.

Proof. First, we prove that subspace topology on Y has the universal property. Then,
we show that if Y is equipped with any topology having the universal property, then
that topology must be the subspace topology.

Let τY be the subspace topology on Y . Let (Z, τZ) be any topological space and
let f : Z → Y . We have to prove that f : Z → Y is continuous if and only if
i ◦ f : Z → X is continuous. Suppose f is continuous, then i ◦ f : Z → X is
continuous since the composition of continuous functions is continuous. Now suppose
i ◦ f : Z → X is continuous. Let U be any open set in Y . Then U = i−1(V ) for
some open V ⊂ X . Since i ◦ f is continuous, the set (i ◦ f)−1(V ) ⊂ Z is open in
Z. Since (i ◦ f)−1(V ) = f−1(U), we conclude that f−1(U) is open. This proves that
f : Z → Y is continuous.

Now assume that τ ′ is a topology on Y and that τ ′ has the universal property. We
have to prove that this topology τ ′ equals the subspace topology τY . We are assuming
that when Y has the topology τ ′, then for every topological space (Z, τZ) and for any
function f : Z → Y , f is continuous if and only if i ◦ f is continuous. In particular, if
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we let (Z, τZ) be (Y, τY ) where τY is the subspace topology on Y , and let f : Y → Y

be the identity function, then we have the following picture

X

(Y, τY ) (Y, τ ′)

i

idY

i ◦ idY = i

Since we know the function i ◦ idY = i : Y → X is continuous when Y has the
subspace topology τ , the universal property implies that idY : (Y, τY ) → (Y, τ ′) is
continuous. This implies that the subspace topology τY is finer than τ ′; i.e. τ ′ ⊂ τY .
To show that τY ⊂ τ ′, let (Z, τZ) be (Y, τ ′) and let f = idY : (Y, τ ′) → (Y, τ ′). So
we have the following picture

X

(Y, τ ′) (Y, τ ′)

i

idY

i ◦ idY = i

Since idY is continuous, we must have i ◦ idY = i : Y → X continuous. That is, τ ′ is
a topology on Y for which the inclusion i : Y → X is continuous. Since the subspace
topology τY is the coarsest topology on Y for which i : Y → X is continuous, we
conclude that τY is coarser than τ ′; i.e., τY ⊂ τ ′. The conclusion is that τ ′ = τY .

Problem 2. Be sure to understand this argument.

4 The product topology

Let {Xα}α∈A be an arbitrary collection of topological spaces and let

X =
∏
α∈A

Xα.

Recall that as a set

X = {functions x : A→
⋃
α∈A

Xα satisfying xα := x(α) ∈ Xα for all α ∈ A}.

So far, X is just a set, but we will soon define a topology on X .
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Definition 4. Let {Xα}α∈A be an arbitrary collection of topological spaces and let
X =

∏
α∈AXα. The product topology on X is defined to be the topology generated

by the basis{∏
α∈A

Uα : Uα ⊂ Xα is open, and all but finitely many Uα = Xα

}
.

Now, I’d like to give two characterizations of this product topology. The first will
be as the coarsest topology for which the projection maps are continuous. The second
will be a universal property that characterizes the product topology in terms of which
functions from X are continuous.

4.1 First characterization of the product topology

Observe that for each α ∈ A, we have the natural projection

πα : X → Xα

x 7→ xα

Note that for an open set U ⊂ Xβ , π−1β (U) =
∏
α∈A Uα where Uα = Xα for

every α 6= β and Uβ = U. That is, π−1β (U) is just the product of all the Xα’s in every
place, except U is in the β place. First, note that each of these sets is open in the
product topology, therefore each projection πα : X → Xα is continuous. Second, note
that that basic open sets described in the definition of the product topology consist of
finite intersections of these sets {π−1α (U) : U ⊂ Xα is open }.

Now, consider the coarsest topology on X for which all of the projections are con-
tinuous, let’s call it τ. Then τ is the intersection of all topologies on X for which each
projection πα : X → Xα is continuous. Since the product topology is one such topol-
ogy, the product topology is finer than τ . On the other hand, in any topology for which
all of the projection maps are continuous, the sets {π−1α (U) : U ⊂ Xα is open } must
be open. Since the finite intersection of open sets must be open and the product topol-
ogy is generated by these intersections, the product topology must be coarser than τ.
Therefore, we arrive at the following alternate definition of the product topology

Alternate Definition. Let {Xα}α∈A be an arbitrary collection of topological spaces
and let X =

∏
α∈AXα. The product topology on X is defined to be the coarsest

topology on X for which all of the projections πα are continuous.

4.2 Second characterization of the product topology

Let {Xα}α∈A be an arbitrary collection of topological spaces and let X =
∏
α∈AXα.

Now, if (Z, τZ) is any topological space, one can ask which kinds of functions f : Z →
X are continuous. For example, if X = R3, one can write any function f : Z → X in
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terms of component functions f = (f1, f2, f3), where each fi : Z → R. Then, one can
check (you should do this—it’s a good analysis exercise) that f is continuous if and
only if each fi is continuous. This is the general situation with the product topology: A
function f : Z → X =

∏
α∈AXα is continuous if and only if the component functions

fα : Z → Xα defined by
fα := πα ◦ f

are all continuous. In fact, this situation describes a universal property that completely
determines the product topology on X and could be used to give a third alternative
definition of the product topology.

Theorem 2. Let {Xα}α∈A be an arbitrary collection of topological spaces and let
X =

∏
α∈AXα. Let πα : X → Xα denote the natural projection. The product

topology on X is characterized by the following property.

Universal property for the product topology. For every topological space (Z, τZ)

and every function f : Z → X , f is continuous if and only if for every α ∈ A, the
component fα : Z → Xα is continuous.

Here is the picture:

X

Z Xα

πα

fα

f

Problem 3. Prove Theorem 2. That is, prove that X =
∏
α∈AXα with the subspace

topology has this property. Then, prove that ifX is equipped with any topology having
this property, then that topology must be the product topology.

Problem 4. Are the subspace and product topologies are consistent with each other?
Let {Xα}α∈A be a collection of topological spaces and let {Yα} be a collection of
subsets; each Yα ⊂ Xα. There are two things you can do to put a topology on Y =∏
α∈A Yα:

1. You can take the subspace topology on each Yα, then form the product topology
on Y .

2. You can take the product topology on X , view Y as a subset of X and equip it
with the subspace topology.

Is the outcome the same either way?

8



5 The quotient topology

Definition 5. Let X be a topological space, let S be a set, and let π : X → S be
surjective. The quotient topology on S is defined to be the finest topology for which π
is continuous. Equivalently, a set U in S is open in the quotient topology if and only if
π−1(U) is open in X .

Remark 2. Set theoretically, if f : X → S is surjective then S is isomorphic to
X/ ∼ where ∼ is the equivalence relation defined by x ∼ y ⇔ π(x) = π(y). So,
one can think of the quotient topology as being defined on the quotient of the set X by
an equivalence relation. This situation of having a surjective f : X → S where the
quotient topology may be defined on the set S or on the quotient X/ ∼ is analagous to
that of an injection f : S → X where the subspace topology may be defined on the set
S, or on the subset f(S) ⊂ X .

Problem 5. Prove that the quotient topology on S is characterized by the following
property:

Universal property for the quotient topology. Let X be a topological space, let S
be a set, and let π : X → S be surjective. For every topological space Z and every
function f : S → Z, f is continuous if and only if f ◦ π : X → Z is continuous. Here
is the picture:

X

S Z

f ◦ π
π

f

6 More Problems

6.1 Problems of categorical interest

Problem 6. For your reference, we state a theorem about sets and a definition about
topological spaces. It’s stated and proved on page 28 of [2], in Section 3 of [3], etc...

The Cantor-Schroeder-Bernstein Theorem. LetX and Y be sets and let f : X → Y

be injective and let g : Y → X be injective. Then there exists a bijection h : X → Y .

Definition 6. Let (X, τX) and (Y, τY ) be topological spaces and let f : X → Y . We
call f an embedding if and only if f ′ : X → f(X) obtained by restricting the range of
f is a homeomorphism.

(a) Prove (or read the proof) of the Cantor-Schroeder-Bernstein theorem.
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(b) Show that there can be no such theorem for topological spaces. That is, give an
example of two, non homeomorphic topological spaces X and Y , an embedding
f : X → Y , and an embedding g : Y → X .

6.2 Problems about the product topology

Problem 7. Let X be a topological space.

(a) Prove that X is Hausdorff if and only if the diagonal

∆ = {(x, x) ∈ X ×X : x ∈ X}

is closed in X ×X .

(b) Prove or disprove: X is Hausdorff if and only if

{(x, x, x, x, x, . . .) ∈ XN : x ∈ X}

is closed in XN.

(c) Let Y be a topological space and let f : X → Y be continuous. Prove or
disprove: the graph of f

{(x, y) ∈ X × Y : f(x) = y}

is closed.

Problem 8. Let {Xα}α∈A be a family of topological spaces and let X =
∏
α∈AXα

with the product topology. Prove that a sequence {fn} in X converges to f ∈ X if and
only if for every α ∈ A, the sequence {fn(α)} converges to f(α).

6.3 Problems about the quotient topology

Problem 9. Consider R2 with the usual topology. Define an equivalence relation on
R2 by

(x, y) ∼ (x′, y′)⇔ xy = x′y′

and let Y := R2/ ∼ denote the set of equivalence classes.

(a) Prove that, as a set, Y is isomorphic to R.

(b) Now consider Y as a topological space by equipping it with the quotient topol-
ogy; i.e, the quotient topology induced by the natural projection

π : R2 → R2/ ∼ .

Is Y homeomorphic to R?
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Definition 7. Let X and Y be topological spaces. A function f : X → Y is called
open (or closed) if and only if f(U) is open (or closed) in Y whenever U is open (or
closed) in X .

Problem 10. Let (X, τX) and (Y, τY ) be topological spaces and suppose f : X → Y

is a continuous surjection.

(a) Give an example to show that f may be open but not closed.

(b) Give an example to show that f may be closed but not open.

(c) Prove that if f is either open or closed, then the topology τY on Y is equal to τf ,
the quotient topology on Y .

Problem 11. Consider the closed disk D and the two sphere S2:

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}
S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Consider the equivalence relation on D defined by identifying every point on the
bdry(D). So each point in the int(D) is a one point equivalence class, and the en-
tire bdry(D) is one equivalence class. Prove that the quotient D/ ∼ with the quotient
topology is homeomorphic to S2.
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