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1 Adjoint functors

We assume the reader is familiar with categories, functors, and natural transformations.
As David Spivak writes in his book Category Theory for Scientists [4] (which was
published today, coincidentally!)

...adjoint functors are like dictionaries that translate back and forth be-
tween different categories

I’ll begin with the definition. Then I’ll discuss a few examples, and then I’ll discuss
the concept of a free group by way of introducing how universal properties give rise to
adjunctions, an idea elaborated upon in an appendix. Then, the compact-open topology
is discussed first in the context of an adjunction, and then later in detail (following
Hatcher’s book [1], pages 529-533.)

Definition 1. Let C and D be categories. An adjunction between C and D is a pair of
functors F : C → D and U : D → C together with an isomorphism

φX,Y : homD(FX, Y )
'−→ homC(X,UY )

for each objectsX in C and each Y inD that is natural in both components. The functor
F is called the left adjoint and the functor U is called the right adjoint. The adjunction
is often denoted succinctly by

F : C � D :U.

To say what it means for φ to be “natural in both components”, one should first
recognize that for each object X in C there are two functors D → Set

homD(FX,−) and homC(X,U−)

and for each object Y in D there are two functors Cop → Set

homD(F−, Y ),homC(−, UY ).

To say that the isomorphism

φXY : homC(FX, Y )
'−→ homD(X,UY ).

is “natural in both coordinates” means that the isomorphism φXY arises from natural
transformations of functors

homD(FX,−)
'−→ homC(X,U−) and homD(F−, Y )

'−→ homC(−, UY ).
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2 Example: Product-Hom adjunction in Set

For any sets X,Y , and Z, there is a natural bijection between the set of functions
{X × Z → Y } and {Z → Y X}.

Given a function of two variables f : X × Z → Y , one gets a function of the first
variable only by fixing a value for the second variable. That is, for each z ∈ Z, define
fz : X → Y by fz(x) := f(x, z). In this way, one obtains the function f̂ : Z → Y X

by f̂(z) := fz .

Y X×Z →
(
Y X
)Z

f 7→ f̂

On the other hand, given g : Z → Y X , one can define a function ḡ : X × Z → Y

by ḡ(x, z) = g(z)(x). Clearly ¯̂
f = f and ˆ̄g = g so both compositions

Y X×Z
ˆ→
(
Y X
)Z ¯→ Y X×Z and

(
Y X
)Z ¯→ Y X×Z

ˆ→
(
Y X
)Z

are the identity, proving (with a little overkill, perhaps) that Y X×Z '−→
(
Y X
)Z
.

This isomorphism of sets Y X×Z '−→
(
Y X
)Z

, arises from an adjunction where
X ×− : Set→ Set is a left adjoint of the functor hom(X,−) : Set→ Set. To see
it clearly, fix a set X and define two functors

F = X ×− : Set→ Set and U = hom(X,−) : Set→ Set.

Then
homSet(FZ, Y ) = Y X×Z '

(
Y X
)Z

= homSet(Z,UY )

The setup F : Set � Set :U is an adjunction.

3 Example: The Stone-Čech compactification

Definition 2. A compactification of a topological space is an embedding of the space
as a dense subspace of a compact Hausdorff space.

Note that a compactification of a space X is an embedding i : X → Y of X as a
dense subspace of a compact Hausdorff space Y . In May’s notes (Definition 5.14 in [2])
he says “inclusion” instead of “embedding”. So, a compactification of X is a compact
Hausdorff space Y and a continuous injection i : X → Y with X ' i(X) ⊂ Y

and X = Y . Requiring that a compactification be an embedding means that examples
such as the identity map of [0, 1] with the discrete topology into [0, 1] with the ordinary
topology is not a compactification.

There’s the “Alexandroff” one-point compactification of a Hausdorff space (Con-
struction 5.15 and Proposition 5.16 in [2]). There is another compactification you
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should be aware of that has better categorical behavior. It can be summarized as fol-
lows:

Let Top′ be the category with objects consisting of compact Hausdorff spaces and
morphisms being continuous functions. There is an obvious functor U : Top′ → Top,
which is just the inclusion of compact Hausdorff spaces as a subcategory of topological
spaces; the functor U is just the identity on objects and morphisms. There is a functor
β : Top → Top′ that is a left adjoint to U called the “Stone-Čech compactification.”
The construction is outlined as Construction 6.11 in [2] (and there are more details in
Section 38 of [3]) but let’s unwind this functorial description and see what it means.
To say that β is a left adjoint of U means that for every topological space X and every
compact Hausdorff space Y , we have a bijection

hom(β(X), Y ) ' hom(X,Y )

This says that for every continuous function f : X → Y there exists a continuous
function f̂ : β(X) → Y where β(X) is a compact Hausdorff space associated to X .
This universal property is stated and proved as Proposition 6.12 in [2].

Notice that the one point compactification, call it X∗, of a locally compact Haus-
dorff space X , while convenient to define, doesn’t have good properties with respect to
morphisms. It doesn’t come close to satisfying the condition that

hom(X∗, Y ) ' hom(X,Y ).

For a simple example, consider the inclusion i : (0, 1) → [0, 1] which cannot be
extended to a continuous function from (0, 1)∗ ' S1: there’s no way to define i(∗)
since if there were i(∗) = limx→0+ x = 0 and i(∗) = limx→1− x = 1.

4 The unit and counit of an adjunction

Suppose F : C � D :U is an adjunction with adjunction isomorphism

φX,Y : homD(FX, Y )
'−→ homC(X,UY )

By setting Y = FX , we have an isomorphism

homD(FX,FX)
'−→ homC(X,UFX).

Via the adjunction isomorphism, the morphism idFX in the category D corresponds to
a morphism X → UFX in the category C, which defines a natural transformation

η : idC → UF

called the unit of the adjunction.
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Similarly, for X = UY , under the isomorphism

φUY,Y : homD(FUY, Y )
'−→ homC(UY,UY )

the morphism idUY in C corresponds to a morphism FUY → Y which defines a
natural transformation

ε : FU → idD

called the counit of the adjunction.

4.1 The unit of the Stone-Čech compactification

The unit of the Stone-Čech compactification adjunction

β : Top′ � Top :U

determines a morphism e := Uβ(idX) : X → UβX , and in Top, UβX = βX .
The left adjoint of U doesn’t just produce a compact Hausdorff space β(X) from any
topological space X , it also produces a continuous function e : Uβ(idX) : X →
β(X). In good cases (i.e., X is completely regular) the map e : X → βX will be
a compactification of X; that is, e : X → β(X) is an embedding and X = β(X).
Furthermore, the fact that e : X → β(X) is a compactification of X determines the
functor β in the sense that if β′ is any other left adjoint to U for which Uβ′(idX) :

X → β′(X) is a compactification for every completely regular X , then β(X) and
β′(X) are naturally homeomorphic.

Problem 1. Describe the unit and counit of X ×−: Set � Set :hom(X,−).

5 Free-Forgetful adjunction

Often, a free group on a set S is defined as follows by the following universal property

A free group on a set S is a groupF(S) together with a map of sets i : S →
F(S) satisfying the property that for any group G and any map of sets
f : S → G there exists a unique group homomorphism φ : F(S)→ G so
that iφ = f .

It’s difficult to understand the definition the first time. The picture helps:

F(S)

S G

i

f

g
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But the picture is also confusing. After all, some objects in the picture are sets, some
are groups, some arrows are set maps, some are group homomorphisms. One gets quite
a bit of of clarification by observing that there is a forgetful functor U : Group →
Set. Then one may define a free group on a set S to be a group F(G) and a map
i : S → UFS with the property that for all groups G and maps f : S → UG there
exists a unique map φ : F(S)→ UG so that f = U(φ)i. The right picture is in Set:

UF(S)

S UG

i

f

Uφ

Notice that the “there exists” part of the definition of a free group says that for every
group G, the map hom(S,UG) → hom(FS,G) is surjective. The “unique” part of
the definition says that hom(S,UG)→ hom(FS,G) is injective. The fact that

hom(S,UG) ' hom(FS,G)

means that “free” and “forgetful” form an adjoint pair, the unit of which defines the
inclusion i : S → UFS.

Remark 1. The universal property defining a free group is best discussed within the
context of set maps S → UG for all groups G. So, one could make a category out of
this context. Let’s call this category US . An object in US is a group G and a set map

f : S → UG. A morphism between two objects S
f→ UG and S

f ′→ UG′ is a group
homomorphism φ : G→ G′ so that Uφf = f ′. That is

S

UG UG′

f f ′

Uφ

Then,

A free group on a set S is an initial object in the category US .

The context for the universal property is put into a category US that is built out of the
undisguised material involved: the set S and the functor U : Group→ Set. Then the
universal object is a familiar notion (an initial object) from category theory.
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6 The compact open topology: bird’s eye view

If X and Y are topological spaces, the product topology makes Y X into a topological
space, but it does not use the topology on X . The first thing to do is to restrict attention
to the subspace hom(X,Y ) ⊂ Y X , this involves using the topology on X to look
at a particular subset of Y X . The next thing to do is to use the topology on X to
put another topology, called the compact-open topology, on hom(X,Y ) that has good
functorial properties. A guiding principle for how to do it is to promote the Product-
Hom adjunction from the category Set to the category Top. That is, we’d like to put
a topology on hom(X,Y ) so that the functor

hom(X,−) : Top→ Top

is a left adjoint to the functor

X ×− : Top→ Top.

With the compact-open topology, if X is locally compact and Hausdorff, we obtain a
bijection of sets

hom(X × Y,Z) ' hom(X,hom(Y, Z)).

I prove this later in these notes (see Theorem 4).
Now, once we’ve put the compact-open topology on the sets hom(X,Y ), the cate-

gory Top has more structure than an ordinary category. The sets of morphisms aren’t
just sets, they’re topological spaces. With this fact in mind, it’s possible (as long as Z
is Hausdorff) to promote the bijection of sets

hom(X × Y,Z) ' hom(X,hom(Y, Z)).

to a homeomorphism of topological spaces. I prove this later in these notes also (see
Theorem 6).

That’s the bird’s eye-view of compact open topology. Now, some preliminaries
before we move on to the frog’s eye view.

7 Some useful facts about compact sets

Here are a few lemmas about compact sets. First, we note that compact sets in Haus-
dorff spaces are especially nice:

Lemma 1. Let X be Hausdorff. For any point x ∈ X and any compact set K ⊂ X

not containing x, there exist open sets U and V with x ∈ U and K ⊂ V .

Proof. Let x ∈ X and let K ⊂ X be compact. For each y ∈ K, there are open sets
Uy and Vy with x ∈ Uy and y ∈ Vy . The collection {Vy} is an open cover of K, hence
there is a finite subcover {V1, . . . , Vn}. Let U = U1∩ · · ·∩Un and V = V1∪ · · ·∪Vn.
Then U and V are disjoint open sets with x ∈ U and K ⊂ V .
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Definition 3. A topological space X is called normal if and only if X is T1 and for
every pair of disjoint closed set C and D there exist disjoint open sets U and V with
C ⊂ U and D ⊂ V .

Problem 2. Prove that every compact Hausdorff space is normal.

Lemma 2. LetX be normal and U ⊂ X be open. For every closed set C with C ⊂ U ,
there exists an open set V with C ⊂ V ⊂ V ⊂ U .

Proof. For any closed C ⊂ U , the sets C and X \ U are closed so there exist disjoint
open sets V and W with C ⊂ V and X \ U ⊂ W . Then, C ⊂ V ⊂ D ⊂ U where
D = X \W . Since V is the smallest closed set containing V , we have V ⊂ D ⊂ U ,
giving the result.

Problem 3. Let X be normal and suppose that {U1, . . . , Un} is an open cover of X .
Then there exists a shrinking of this cover. That is, there exists another open cover
{V1, . . . , Vn} of X with Vi ⊂ Vi ⊂ Ui.

Consider the product of two spaces X × Y . By the definition of the topology on
X × Y , if U ⊂ X × Y is an open set and (x, y) ∈ U , then there are open sets V ⊂ X
and W ⊂ Y with (x, y) ⊂ V ×W ⊂ U . Observe, however, that if we replace (x, y)

with A× {y} for a set A ⊂ X , there need not be open sets V and W with A ⊂ V and
y ∈W with A× {y} ⊂ V ×W ⊂ U .

Example 1. Take for example the open set

U := {(x, y) ⊂ R2 : 0 < x < 1, 0 < y < x}.

Here U is just the interior of the triangle with corners (0, 0), (1, 0), and (1, 1). Consider
the set A ×

{
1
2

}
where A is the interval A =

(
1
2 , 1
)
. Then A ×

(
1
2 − ε,

1
2 + ε

)
is not

contained in U for any ε > 0. But if A were compact,...

Lemma 3. For any open set U ⊂ X × Y and any set K × {y} ⊂ U with K ⊂ X

compact, there exist open sets V ⊂ X and W ⊂ Y with K × {y} ⊂ V ×W ⊂ U.

Proof. For each point (x, y) ∈ K × {y}, there is are open sets Vx ⊂ X and Wx ⊂ Y

with (x, y) ⊂ Vx × Wx ⊂ U. Then, {Vx}x∈K is an open cover of K; take a finite
subcover {V1, . . . , Vn}. Then V = V1 ∪ · · · ∪ Vn and W = W1 ∩ · · · ∩Wn are open
sets with K × {y} ⊂ V ×W ⊂ U .

Consider a metric space X and an open subset U . If x ∈ U , then there is an ε > 0

so that B(x, ε) ⊂ U . This implies that for every y ∈ X \ U , d(x, y) ≥ ε. Now, if
A ⊂ U , there may not exist an ε > 0 so that d(x, y) ≥ ε for every x ∈ A and every
y ∈ X \ U . The set A ×

{
1
2

}
⊂ U in Example 1 does not have distance greater than

any epsilon from R2 \ U . But if A were compact,...

Lemma 4. Let X be a metric space and let U be open. For every compact set K ⊂ U ,
there is an ε > 0 so that for any x ∈ K and any y ∈ X \ U , d(x, y) > ε

Proof. Exercise.
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8 The compact open topology: frog’s eye view

Here’s the definition

Definition 4. Let X and Y be topological spaces. For each compact set K ⊂ X and
each open set U ⊂ Y , define S(K,U) = {f ∈ hom(X,Y ) : f(K) ⊂ U}. The
sets S(K,U) form a sub-basis for a topology on hom(X,Y ) called the compact-open
topology.

As a matter of convention, unless declared otherwise, the topology on Y X is the
product topology, whereas the topology on hom(X,Y ) is the compact-open topology.

Here’s an idea of the difference between the product topology and the compact-
open topology. Recall that a sequence of functions {fn} in hom([0, 1], [0, 1]) converges
to a limiting function f in the product topology if and only if {fn} → f pointwise. The
sequence {fn} converges to f in the compact-open if and only if {fn} → f uniformly.
This will be clear after considering the following, more general situation.

Suppose that X is compact and Y is a metric space. Then hom(X,Y ) becomes a
metric space (check this!) with the metric defined by

d(f, g) = sup
x∈X

d(f(x), g(x)).

Two functions f, g ∈ hom(X,Y ) are close in this metric if their values f(x) and g(x)

are close for all points x ∈ X . Note that a sequence {fn} in hom(X,Y ) converges to
f in this metric topoplogy if and only if for all ε > 0 there exists an n ∈ N so that
for all k > n and for all x ∈ X , d(fk(x), gk(x)) < ε. Now, we have the following
theorem:

Theorem 1. Let X be compact and Y be a metric space. The compact-open topology
on hom(X,Y ) is the same as the metric topology.

Proof. Let f hom(X,Y ), ε > 0, and consider B(f, ε). We’ll find an set O, open
in the compact open topology, with f ∈ O ⊂ B(f, ε). This will show that B(f, ε)

is open in the compact open topology, and prove that the compact open topology is
finer than the metric topology. Since X is compact, f(X) is compact. The collection{
B
(
y, ε3

)}
y∈f(X)

is an open cover of f(X), hence has a finite subcover{
B
(
f(x1),

ε

3

)
, . . . B

(
f(xn),

ε

3

)}
.

Define compact subsets {K1, . . . ,Kn} of X and open subsets U1, . . . , Un of Y by

Ki := f−1
(
B
(
f(xi),

ε

3

))
and Ui := B

(
f(xi),

ε

2

)
.

Since f is continuous, f(A) ⊂ f(A) for any set A. So,

f(Ki) ⊂ B
(
f(xi),

ε

3

)
⊂ B

(
f(xi),

ε

2

)
= Ui
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for each i = 1, . . . , n. Therefore, f is in the open set O where where

O := ∩ni=1S(Ki, Ui).

To see that O ⊂ B(f, ε), let g ∈ O. If x ∈ Ki for some i, we have f(x), g(x) ∈ Ui
since f, g ∈ S(Ki, Ui). Therefore,

d(f(x), g(x)) ≤ d(f(x), f(xi)) + d(f(xi), g(xi)) =
ε

2
+
ε

2
= ε.

Since the balls
{
B
(
f(xi),

ε
3

)}
cover f(X), the compact sets {Ki} cover X and every

point x ∈ Ki for some i. Therefore, d(f(x), g(x)) < ε for every x ∈ X and so
d(f, g) < ε in hom(X,Y ).

On the other hand, let K ⊂ X be compact, U ⊂ Y be open and consider f ∈
S(K,U). From Lemma 4, we know there exists a fixed ε > 0 so that for any y ∈ f(K)

and any y′ ∈ Y \ f(U), d(y, y′) ≥ ε. Then, if g ∈ B(f, ε), we have d(f(x), g(x)) < ε

for every x ∈ X . Therefore, if x ∈ K, g(x) ∈ U and we see that g(K) ⊂ U .
This proves B(f, ε) ⊂ S(K,U). If O = S(K1, U1) ∩ · · · ∩ S(Kn, Un) is any basic
open set in the compact-open topology, we have the open metric ball B(f, ε) ⊂ O

where ε = min{ε1, . . . , εn}. This proves that every basic open set in the compact-open
topology is open in the metric topology and hence the metric-topology is finer than the
compact-open topology.

Problem 4. Compact sets can be compared to finite sets—finite sets are always com-
pact and in many ways compact sets behave like finite sets. This idea provides a couple
of ways to compare the compact-open topology to the product topology.

(a) Show that a sub-basis for the product topology on Y X consists of sets S(F,U) =

{f : X → Y : f(F ) ⊂ U} where F ⊂ X is finite and U ⊂ Y is open. That is,
the product topology could be referred to as the “finite-open” topology.

(b) IfX is a set with the discrete topology and Y is any topological space then every
function f : X → Y is continuous. So as sets hom(X,Y ) = Y X . Prove or
disprove: if X is finite, then the compact-open topology on hom(X,Y ) and the
product topology on Y X are the same.

8.1 The product-hom adjunction in Top

To get started, we use a map

hom(X × Z, Y )→ hom(Z,hom(X,Y )) (1)

which, if it is defined, is simply the set-theoretic map f 7→ f̂ . The question is if we
start with a continuous f , is the function f̂ continuous in hom(Z,hom(X,Y )). The
answer, according to the next Theorem, is yes for any spaces X , Y , and Z.
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Theorem 2. For any topological spaces X,Y and Z, if f : X ×Z → Y is continuous
then the set-theoretic adjoint f̂ : Z → hom(X,Y ) is continuous.

Proof. Suppose f : X×Z → Y is continuous. To show that f̂ is continuous, consider
a sub-basic open set S(K,U) in hom(X,Y ). We need to show that f̂−1(S(K,U)) =

{z ∈ Z : f(K, z) ⊂ U} is open in Z. Let z ∈ f̂−1(S(K,U)). So, z ∈ Z and
f(K, z) ⊂ U . Since f is continuous, we know that f−1(U) = {(x, z) : f(x, z) ⊂ U}
is open in X × Z and contains K × {z}. Therefore, there are open sets V and W
with K ⊂ V and z ∈ W with K × {z} ⊂ V × W ⊂ f−1(U). Then, z ∈ W ⊂
f̂−1(S(K,U)) as needed.

Theorem 2 proves the function in (1) is defined. Set theoretically, this map is injec-
tive. It turns out that the map in (1) may not be surjective (there might be continuous
functions g : hom(Z)→ hom(X,Y ) for which the map ḡ : X×Z → Y is not contin-
uous. However, for locally compact Hausdorff spaces X this never happens. To prove
it, we use a lemma. First, note that for any setsX and Y , there is a natural set-theoretic
“evaluation function” ev : Y X ×X → Y defined by

Y X ×X → Y

(f, x) 7→ f(x)

When X is locally compact and Hausdorff, this set-theoretic evaluation map is contin-
uous.

Lemma 5. If X is locally compact and Hausdorff, then the evaluation map ev :

hom(X,Y )×X → Y is continuous.

Proof. Let (f, x) ∈ hom(X,Y ) × X and let U ⊂ Y be an open set containing
ev(f, x) = f(x). Then f−1(U) is an open set in X containing x. Since X is locally
compact and Hausdorff, there exists an open set V ⊂ X with K := V compact and
x ∈ V ⊂ K ⊂ f−1(U). This implies that f(x) ∈ f(K) ⊂ U. Then S(K,U)×V is an
open set in hom(X,Y )×X with (f, x) ∈ S(K,U)× V and ev(S(K,U)× V ) ⊂ U .
Thus the evaluation map ev is continuous at (f, x).

Now we can prove surjectivity of (1).

Theorem 3. Suppose that X is locally compact and Hausdorff and Y and Z are any
topological spaces. Then a function f : X × Z → Y is continuous only if the adjoint
f̂ : Z → hom(X,Y ) is continuous.

Proof. Consider the following diagram

X × Z X × hom(X,Y )

hom(X,Y )×X Y

-id×f̂

?

s

-ev
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Here s : X × hom(X,Y )→ hom(X,Y )×X is the simple homeomorphism defined
by (x, f) 7→ (f, x) and ev is the evaluation map, which is continuous if X is locally
compact and Hausdorff. Therefore, if f̂ is continuous, the composition f = ev ◦ s ◦
(id×f̂) is continuous.

Therefore

Theorem 4. If X is locally compact and Hausdorff, a function f : X × Z → Y is
continuous if and only if its adjoint f̂ : Z → Y X is continuous.

That is, if X is locally compact and Hausdorff and Y and Z are any topological
spaces, there is a bijection (of sets)

hom(X × Z, Y ) ' hom(Z,hom(X,Y ))

8.2 Implications in homotopy theory

Theorems 2, 3, and 4 are fundamental in homotopy theory. Recall that two continuous
function f, g : X → Y are homotopic provided there exists a continuous function
h : X × [0, 1] → Y with h(x, 0) = f(x) and h(x, 1) = g(x). Note I is locally
compact and Hausdorff. Theorem 2 says that the adjoint ĥ : [0, 1] → hom(X,Y )

is continuous. The function ĥ is therefore a path in the space of continuous functions
connecting f to g. So, if f and g are homotopic, there is a path in the space hom(X,Y )

connecting f and g. Theorem 3 says that if X is locally compact and Hausdorff, then
if there is a path from f to g in hom(X,Y ), then f and g are homotopic.

Corollary 1. If X is locally compact and Hausdorff, then two functions f, g : X → Y

are homotopic if and only if there is a path in hom(X,Y ) connecting f to g.

One might denote the functors−×I and hom(I,−) by C†l and P respectively. So
for a spaceX , C†l(X) is the cylinderX×I and P(X) is the “path space” hom(I,X),
the space of all paths in X . So, the cylinder-path adjunction C†l: Top � Top :P is
a special case of the product-hom adjunction in Top and says that hom(C†l(X), Y ) '
hom(X,P(Y )): the space of maps of the cylinder on X into a space Y is homeomor-
phic to the space of maps of X into the path space of Y .

Problem 5. Prove that the maps d0, d1 : X → X × I defined by d0(x) = (x, 0) and
d1(x) = (x, 1) and the projection s : X × I → X are homotopy equivalences.

Theorem 6 in the next section goes further and says that as topological spaces
hom(I, hom(X,Y )) and hom(X × I), Y ) are homeomorphic (when X is Hausdorff).
So, one can, for example, identify a path in the space of paths with a homotopy between
homotopies, etc...
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8.3 Suspension-Loop adjunction

There’s an important variation of the cylinder-path adjunction for pointed topological
spaces. Before we get to pointed spaces, you should know about cones and suspension
in Top. The cone and suspension are both quotients of the cylinder X × I . The
cone is obtained by identifying one end to a point, and the suspension is obtained by
identifying both ends to a point.

Definition 5. Let X be a topological space. The cone CX and suspension SX are
defined to be

CX := X × I/ ∼ where (x, 0) ∼ (x′, 0).

and
SX = X × I/ ∼ where (x, 0) ∼ (x′, 0) and (x, 1) ∼ (x′, 1).

Recall that the category of pointed topological spaces is the category Top∗ whose
objects are pairs (X,x) where X is a topological space and x ∈ X . A morphism
f ∈ hom((X,x), (Y, y)) is a continuous functions f : X → Y with f(x) = y.

Sometimes it’s convenient to drop the basepoint from the notation of a pointed space
(X,x) and refer to it simply as X and just understand that every space has a basepoint.
To emphasize that morphisms respect the basepoints, the notation hom∗(X,Y ), or
Maps∗(X,Y ), is commonly used.

Definition 6. The reduced cone CX and reduced suspension ΣX of a pointed topo-
logical space X are defined to be the quotient

ΣX = X × I/ ∼ where (x, 1) ∼ (x′, 1) and (x1, t) ∼ (x1, s)

ΣX = X × I/ ∼ where (x, 0) ∼ (x′, 0) and (x, 1) ∼ (x′, 1) and (x0, t) ∼ (x0, s)

where x0 is the basepoint of X and the new basepoints of CX and ΣX is the class
{x0} × I .

With the basepoint 0, the interval is a pointed space and with the basepoint 1 the
circle S1 is a pointed space. Two important mapping spaces are given names.

Definition 7. The mapping space PX = hom∗(I,X) is called the based path space
of X and ΩX = hom∗(S

1, X) is called the based loop space of X .

The assignments X 7→ CX , X 7→ ΣX , X 7→ PX , and X 7→ ΩX define functors
Top∗ → Top∗ (work this out—you have to determine what happens to morphisms).

Finally, we can state the suspension-loop adjunction

Theorem 5. The setup
Σ: Top∗ � Top∗ :Ω

is an adjunction. Moreover, passing to (basepoint preserving) homotopy classes of
morphisms, we obtain for every pair of pointed spaces X and Y .

[ΣX,Y ] ' [X,ΩY ].
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8.4 Enrich the adjunction

Thus, if X is locally compact and Hausdorff, for any topological spaces Y and Z, the
correspondence f ↔ f̂ induces a natural isomorphism of sets

hom(X × Z, Y ) ' hom(Z,hom(X,Y )) (2)

In other words, the bijection between set-theoretic functions in Y X×Z and (Y X)Z—
when X is locally compact and Hausdorff and we use the compact-open topology—
restricts to a bijection between the continuous functions X × Z → Y and their con-
tinuous adjoints Z → Y X . Now, it is natrual to ask whether the bijection of sets in
Equation (2) is compatible with the topologies on the two spaces. The answer to this
question is, If Z is Hausdorff, then the map hom(X × Z, Y )→ hom(Z,hom(X,Y ))

is a homeomorphism. To prove it, it will be convenient to use a smaller sub-basis for
the compact-open topology that is available when the domain of a mapping space is
Hausdorff—in this case, it turns out that the sets {S(K,U)} where U only ranges over
a sub-basis of the topology of the target space is still a sub-basis for the compact open
topology.

Lemma 6. If X is Hausdorff and S is a sub-basis for the topology on Y , then the sets
{S(K,U) : K ⊂ X is compact and U ∈ S} are a sub-basis for the compact-open
topology on hom(X,Y )

Proof. Let f ∈ S(K,U) for some open set U ⊂ Y . Write U = ∪Uα and each Uα as

Uα = Vα,1 ∩ · · · ∩ Vα,nα .

The collection {f−1(Uα)} is an open cover of K. Let {f−1(U1), . . . , f−1(Uk)} be
a finite subcover. Since K is compact and Hausdorff, it is normal. Therefore, (by
Problem 3) there is a shrinking of the cover. Call the shrinking {V1, . . . , Vk}. For each
i = 1, . . . , k let Ki := Vi. Then K1, . . . ,Kk is a cover of K by compact sets with the
property that Ki ⊂ f−1(Ui)⇒ f(Ki) ⊂ Ui. Then for each i = 1, . . . , k,

f ∈ S(Ki, Ui) = S
(
Ki,∩nij=1Vi,j

)
=

ni⋂
j=1

S(Ki, Vi,j)

hence f ∈
⋂
i,j S(Ki, Vi,j). This proves the lemma.

Theorem 6. If X is locally compact and Hausdorff and Z is Hausdorff, then for any
space X , the natural map

hom(X × Z, Y )→ hom(Z,hom(X,Y ))

is a homeomorphsim.
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Proof. First, we show that the collection

{S(A×B,U) : A ⊂ X,B ⊂ Z are compact and U ⊂ Y is open}

is a sub-basis for hom(X × Z, Y )). Let f ∈ S(K,U) for some compact set K ⊂
X × Z. Then K ⊂ f−1(U) and for each p = (x, z) ∈ K, we have open sets Vp ⊂ X

and Wp ⊂ Z with p ∈ V ×W ⊂ f−1(U). By compactness, K is covered by finitely
many {Vi×Wi}. Now, letK ′ = π1(K) andK ′′ = π2(K) be the projections ofK onto
X and Z respectively. Since K ′ and K ′′ are compact and Hausdorff, they’re normal.
So, there are shrinkings {V ′i } and {W ′i} that cover K ′ and K ′′ respectively. Then V ′i
and W ′i are compact sets in X and Z with K ⊂ ∪iV ′i ×W ′i ⊂ f−1(U). Therefore,
f ∈ ∩iS(V ′i ×W ′i , U).

Since S = {S(A,U)} is a sub-basis for the compact open topology on hom(X,Y )

and Z is assumed to be Hausdorff, Lemma 6 says that

{S(B,S(A,U)) : A ⊂ X,B ⊂ Z are compact and U ⊂ Y is open}

is a sub-basis for hom(Z,hom(X,Y )). Therefore, the theorem follows from observing
that the image of (S(A×B,U)) = S(B,S(A,U)).

9 The theorems of Ascoli and Arzela

Now we would like to take up the question of when a set of functions A ⊂ hom(X,Y )

is compact. It’s not hard to decide when a family of functions is compact using the
product topology:

Problem 6. Prove that if Y is Hausdorff, then a subset A ⊂ Y X is compact in the
product topology if and only ifA is closed in the product topology and for each x ∈ X ,
the set Ax = {f(x) ∈ Y : f ∈ A} has compact closure in Y .

If one can determine families of functions for which the product topology and the
compact-open topology coincide, then one has necessary and sufficient conditions for
such families to be compact in the compact open topology. The following definition is
important in making such a determination.

Definition 8. Let X be a topological space and (Y, d) be a metric space. A family
F ⊂ hom(X,Y ) is called equicontinuous at x ∈ X if and only if for every ε > 0,
there exists an open neighborhood U of x so that for every y ∈ U and for every f ∈ F ,
d(f(x), f(y)) < ε. If F is equicontinuous for every x ∈ X , the family F is simply
called equicontinuous.

The important property of equicontinuous families is that on equicontinuous fami-
lies, the compact-open topology agrees with the product topology.

Lemma 7. Let X be a topological space and (Y, d) be a metric space. If F ⊂
hom(X,Y ) is an equicontinuous family, then the compact-open topology agrees with
the product topology.
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Proof. It suffices to show that if {fα} is a net inF and fα → f pointwise, then fα → f

in the compact open topology. And this is a good exercise.

Now, another important property of equicontinuous families is that

Lemma 8. If F ⊂ hom(X,Y ) is equicontinuous, then the closure of F in Y X using
the product topology is also equicontinuous.

Proof. Let {fα} be a net in F that converges to a function f ... The rest is an exercise
in the definition of equicontinuous.

These two lemmas make it easy to prove Ascoli’s theorem.

Ascoli’s Theorem. LetX be locally compact and Hausdorff, and let (Y, d) be a metric
space. A family F ⊂ hom(X,Y ) has compact closure if and only if F is equicontinu-
ous and for every x ∈ X , the set Fx := {f(x) : f ∈ F} has compact closure.

Proof. Here we outline the proof. See section 47 of [3] for details. To prove the “if”
part, let G be the closure of F in Y X in the product topology. By Lemma 8, we know
that G is equicontinuous. Then one shows that G is compact in Y X with the product
topology, which by Lemma 7 implies it’s compact in the compact open topology. Then,
F is a closed set in the compact set G, hence is compact.

To prove the “only if” part, one lets G be any compact set in hom(X,Y ) containing
the family F . One can show that G (hence F) is equicontinuous and that the sets Gx
are compact (hence the sets Fx have compact closure).

Problem 7. Prove

Arzela’s Theorem. Let X be compact, (Y, d) be a metric space, and {fn} be a se-
quence of functions in hom(X,Y ). If {fn} is equicontinuous and for each x ∈ X , the
set {fn(x)} is bounded, then {fn} has a subsequence that converges uniformly.

A Universal properties and adjunctions (Optional)

A.1 Corepresentable functors

Set valued functors are important. In fact, they’re given a name: a functor C → Set

is called a co-presheaf on C and a functor Cop → Set is called a presheaf on C.
I think “co-presheaf” is a bit unwieldy with it’s two prefixes, so I tend to avoid the
terminology in these notes. But the sheaf terminology is common, so be aware of it.
Also, the discussion that follows could be made using “presheaves” and “representable
functors” instead of “co-presheaves” and “corepresentable functors.”

For any category C, and any objectX of C there’s a functor hom(X,−) : C → Set.
This functor has been used repeatedly already, here’s the definition:
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• The object Y maps to the set homC(X,Y )

• The morphism (Y
φ→ Z) maps to the set-function

(
homC(X,Y )

φ◦−→ homC(X,Z)
)

defined by “post compose-with” φ.

I think the notation homC(X,−) is the most descriptive and easiest to use notation for
this functor, but other notation is also used. Grothendieck, for one, denoted it hA.

Functors of the form homC(X,−) are particularly co-presheaves on C—after all,
they are determined entirely by a single object X . This is more true than you might
think: the Yoneda lemma says that the set of all natural transformations from any
set-valued functor F : C → Set to homC(X,−) corresponds naturally to the set
F (X). One might imagine, for example, that there are more natural tranformations
between the functors homC(X,−) and homC(Y,−) than those induced from (precom-
posing with) morphisms hom(Y,X), but there aren’t. Anyway, functors of the form
homC(X,−) are so nice, we have some terminology to describe when a set-valued
functor is equivalent to one of them.

Definition 9. A functor F : C → Set is corepresentable if and only if there exists an
object X ∈ C and a natural equivalence hom(X,−)

∼→ F(−).

Consider a representable functor F : C → Set. If there is a natural equivalence
hom(X,−)

∼→ F(−) for an object X ∈ C, then in particular we have

hom(X,X) ' F(X).

Since there’s a special morphism, namely idX , in the set hom(X,X) there’s a special
element x in the set F(X) that corresponds to it. What’s special about x ∈ F(X) is
that the entire natural equivalence hom(X,−)

∼→ F(−) can be reconstructed from
the element x. Here’s how: given a morphism φ ∈ homC(X,Y ), apply F(φ) ∈
hom(F(X),F(Y )) to x ∈ F(X) to obtain an element F(φ)(x) ∈ F(Y ). The as-
signment φ 7→ F(φ)(x) defines a function homC(X,Y ) → F(Y ) (check that it’s a
bijection!)

The terminology “a functor F : C → Set is corepresentable” involves the existence
of both an object X of C and a natural equivalence hom(X,−)

∼→ F(−). One might
say the pair X and the equivalence hom(X,−)

∼→ F(−) “corepresents” the functor
F. But, which we just argued the natural equivalence is determined by an element
x ∈ F(X), so its much more convenient to use the following terminology:

Definition 10. A pair (X,x) where X is an object of C and x ∈ F(X) corepresents
a functor F : C → Set if and only if for every φ ∈ homC(X,Y ), the assignment
φ 7→ F(φ)(x) defines a natural equivalence hom(X,−)

∼→ F(−).

A.2 Free groups again.

Let’s return to the context of set maps f : S → UG. For a fixed set S, one can
precompose the functor homSet(S,−) with the forgetful functor U : Group → Set
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to get a functor homSet(S,U−) : Group→ Set. And naturally, for any fixed group
H , there’s a functor homGroup(H,−) : Group→ Set.

Now, any set map h : S → UH , determines a natural transformation from the
functor homGroup(H,−) to the functor homSet(S,U−) by post-composition with h:

homGroup(H,−) homSet(S,U−)

H
φ→ G S

h→ UH
U(φ)→ UG

Let’s call the natural transformation η so we can refer to it

η : homGroup(H,−)−→ homSet(S,U−)

but remember that it depends on the map h : S → UH , and the whole setup depends
on a fixed set S and a fixed group H .

Consider what it means for η(G) to be surjective: it means that there exists a group
homomorphism φ : H → G so that U(φ) ◦ h = f . So η(G) is surjective for all groups
G if and only if the pair (H,h) satisfies the “there exists” part of the universal property
of a free group. Similarly, η(G) is for all groupsG if and only if the pair (H,h) satisfies
the “uniqueness” part of the universal property of a free group. Therefore,

The natural transformation η defines a natural equivalence if and only if
the pair (H,h) is a free group on S.

Or, in the terminology of the previous section,

The pair (H,h) corepresents the functor hom(S,U−) if and only if (H,h)

is a free group on S

Now, let us use the fact there is a construction for the free group on any set and consider
the free groups on all different sets S together. For each S in Set, we have a free group
(FS, i : S → UFS) corepresenting the functor homSet(S,U−) : Group → Set

establishing a bijection ηS : homGroup(FS,−)
∼→ homSet(S,U−). This means that

(F,U, η) is adjunction between Set and Group.

A.3 Universal properties and adjunctions

The discussion above suggests the following quite general picture of adjunctions aris-
ing from universal properties. Consider a functor C ← D : U . Suppose that for
each object X in C, the functor homC(X,U−) : D → Set is corepresented by a pair
(FX ∈ D, x ∈ hom(X,UFX)). This means that for every object Y ∈ D and every
morphism f : X → UY in C there exists a unique morphism g : FX → Y so that
U(g) ◦ x = f. This is a description of a universal property.
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Let φX denote the bijection φX : homD(FX,−)
∼→ homC(X,U−). Thus, we

have an adjunction
F : C � D :U,

assuming the assignment X → FX is naturally a functor so that

homD(F−,−)
φ−→ homC(−, U−)

is natural in both coordinates.
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