Zariski Topology

John Terilla

Fall 2014

1 The Zariski Topology

Let R be a ring (commutative, with 1). An ideal $p \subset R$ is called *prime* if $p \neq R$ and for all $xy \in p$, either $x \in p$ or $y \in p$. Let $\operatorname{spec}(R)$ denote the set of prime ideals of R. The Zariski topology on $\operatorname{spec}(R)$ is defining the sets

$$V(E) = \{ p \in \operatorname{spec}(R) : E \subset p \}$$

for any $E \subset R$ to be closed.

1.1 A proof that the collection of V(E) defines a topology

Let $E \subset R$ and let I be the ideal generated by E. Every ideal containing E contains I, therefore every prime ideal containing E contains I. So V(E) = V(I). Therefore,

$$\{V(E): E \subset p\} = \{V(I): I \text{ is an ideal in } p\}$$

So, we need only look at sets V(I) where I is an ideal in R. It's also helpful to observe that if $I \subset J$, then $V(J) \subset V(I)$.

The empty set and the entire space are closed. By definition, no prime ideal containes 1, so $V(1) = \emptyset$. Also, since 0 is in every ideal, $V(0) = \operatorname{spec}(R)$.

The union of two closed sets is closed. For any two ideals I and J, the product IJ is the ideal generated by products xy where $x \in I$ and $y \in J$. Note that $IJ \subset I$ and $IJ \subset J$, therefore $V(I) \cup V(J) \subset V(IJ)$.

Note also that $V(IJ) \subset V(I) \cup V(J)$, since if p is a prime ideal containing IJ, p contains either I or J (otherwise, you'd have an element $xy \in IJ \subset p$ with $x \notin p$ and $y \notin p$).

Thus $V(I) \cup V(J) = V(IJ)$, a closed set.

The intersection of closed sets is closed. For any collection of ideals I_{α} , there is a smallest ideal, denoted by $\sum I_{\alpha}$ containing all the I_{α} . (There's a construction of $\sum I_{\alpha}$ using sums, but it's not necessary to use the construction.)

Since $\sum I_{\alpha}$ contains each I_{α} , it follows that $V(\sum I_{\alpha}) \subset V(I_{\alpha})$ for all α , so $V(\sum I_{\alpha}) \subset \cap V(I_{\alpha})$. On the other hand, if p is a prime ideal containing all I_{α} , then p must contain $\sum I_{\alpha}$ since $\sum I_{\alpha}$ is the smallest ideal containing all the I_{α} . So $\cap V(I_{\alpha}) \subset V(\sum I_{\alpha})$.

The conclusion is that $\cap V(I_{\alpha}) = V(\sum I_{\alpha})$

1.2 Examples

A picture of spec(\mathbb{Z}). The prime ideals of \mathbb{Z} are the principal ideals (p) generated by prime numbers p together with the ideal $(0) = \{0\}$ (note that (0) is prime since \mathbb{Z} has no zero divisors). So, here are the points of spec(\mathbb{Z}):

$$\operatorname{spec}(\mathbb{Z}) = \{(0), (2), (3), (5), (7), (11), \ldots\}$$

To describe the topology on $\operatorname{spec}(\mathbb{Z})$ note that the closure of any point is the set of prime ideals containing that point. So, for each prime number p, the point $(p) \in$ $\operatorname{spec}(\mathbb{Z})$ is closed since (p) = V(p). The point (0), however, is not closed; in fact, $\overline{(0)} = \operatorname{spec}(\mathbb{Z})$.

The only infinite set that is closed is the whole space. To see this, consider a closed set V(E) with $E \subset \mathbb{Z}$ and suppose V(E) is infinite. If $n \in E$ then $n \in (p)$ for infinitely many primes p. If $n \neq 0$, this means that p|n for infinitely many primes, which is impossible. Therefore n = 0 and $V(E) = \operatorname{spec}(\mathbb{Z})$.

So, the topology described is similar to the cofinite topology on the set of prime numbers, except that $\operatorname{spec}(\mathbb{Z})$ has another point (0) whose closure is the whole space.

A picture of $\operatorname{spec}(\mathbb{C}[x])$. Since \mathbb{C} is a field, the ring $\mathbb{C}[x]$ is a principal ideal domain. So every ideal of $\mathbb{C}[x]$ is generated by a single polynomial. Because polynomials with complex coefficients factor into linear factors, one can see that if $\deg(f) \ge 2$ then (f) is not prime. So, if an ideal is prime, it has the form (f) where $\deg(f) \le 1$. Let's look at the case that the $\deg(f) = 0$. The zero ideal (0) is prime, since $\mathbb{C}[x]$ has no zero divisors but if $a \in \mathbb{C}$ is nonzero, $(a) = \mathbb{C}[x]$ isn't prime. If $\deg(f) = 1$, then (f) = (x - a) for some $a \in \mathbb{C}$, which is a maximal ideal (the quotient $\mathbb{C}[x]/(f)$ is a field) hence prime. Thus the points of $\operatorname{spec}(\mathbb{C}[x])$ are the ideals (x - a), where $a \in \mathbb{C}$, together with the zero ideal (0).

The picture of $\operatorname{spec}(\mathbb{C}[x])$ is similar to that of $\operatorname{spec}(\mathbb{Z})$. It looks like the cofinite topology on the complex numbers \mathbb{C} , together with a special point (0) (not to be confused with the point (x - 0)!) whose closure is the whole space.

A challenge. For an interesting challenge, describe a picture of $\operatorname{spec}(\mathbb{Z}[x])$. There's a famous picture of $\operatorname{spec}(\mathbb{Z}[x])$ in Mumford's "red book" [2] and an interesting discussion of his picture available

www.neverendingbooks.org/index.php/mumfords-treasure-map.html

References

- M. Atiyah and I. MacDonald. Introduction to Commutative Algebra. Addison-Wesley, 1969.
- [2] D. Mumford. The Red Book of Varieties and Schemes. Springer, 1999.