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Abstract
The bar spectral sequence for algebras over a spectral operad relates Koszul duality phe-
nomena in several contexts. In this thesis, we apply this classical tool to the Koszul dual pair
given by the (non-unital) E∞-operad and the spectral Lie operad over Fp. The bar spectral
sequence for E∞-algebras yields the structure of operations on mod p Topological André-
Quillen cohomology and the homotopy groups of spectral partition Lie algebras, building
on the work of Brantner-Mathew. In the colimit, the unary operations are Koszul dual to
the Dyer-Lashof algebra. On the other hand, the bar construction against certain spectral
Lie algebras models labeled configuration spaces by a theorem of Knudsen. The associated
bar spectral sequence yields new results on their mod p homology at low weights, as well
as interesting patterns of universal differentials. We also record an attempt with Andrew
Senger on detecting these differentials via deformation of the bar comonad.
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Chapter 1

Introduction

The study of Koszul duality in classical algebra dates back to Moore [Moo70] and Quillen

[Quui68], who examined adjunctions between the category of dg-Lie algebras and the cat-

egory of cocommutative coaugmented dg-coalgebras over Q via a certain bar construction.

Quillen further showed that this adjunction restricts to an equivalence of homotopy cate-

gories between the full subcategories of connected dg-Lie algebras and 1-connected co-

commutative coaugmented dg-coalgebras over Q. Later on, Ginzburg-Kapranov [GK94]

and Getzler-Jones [GJ94] observed that this adjunction of categories of algebras reflects the

Koszul duality of the quadratic operads Comm and Lie in the category of chain complexes

over Q via the bar construction. On the other hand, Priddy [Pri70] developed the notion of

Koszul duality for augmented quadratic algebras over a field k. For A a Koszul algebra, its

Koszul dual H∗(A) = Ext∗A(k,k) has a presentation with generators and relations the linear

dual of those of A.

The phenomenon of Koszul duality of operads in higher algebra was first studied by

Ching [Chi05] and later vastly generalized by Lurie in [Lur17]. For any non-unital aug-

mented operadO in a stable presentable symmetric monoidal ∞-category 𝒞 with geometric

realizations, its Koszul dual is the operad given by the Spanier Whitehead dual DB(O) of

the operadic bar construction B(O) := |Bar(1,O,1)|.

It is then natural to ask if the Koszul duality of operads gives rise to a Koszul duality of

algebras in higher algebra, i.e., if the bar construction yields an adjunction at the level of

algebras over operads. In [FG12], Francis and Gaistgory showed that the bar construction

13



|Bar•(id,O,−)| on O-algebras refines to a bar-cobar adjunction

AlgO(𝒞 ) coAlgd.p.
B(O)(𝒞 ) .

BarO

coBarB(O)

Here the superscript d.p. stands for divided power coalgebras, indicating that the B(O)-

coalgebras C in the image of the bar construction are equipped with structure maps that

factor through the norm maps

(B(O)(n)⊗C⊗n)hΣn → (B(O(n))⊗C⊗n)hΣn.

In the case where O is the non-unital E∞-operad, Francis-Gaitsfory [FG12], Ching-Harper

[CH19] and Brantner-Mathew [BM19] examined on which subcatogries do the bar-cobar

adjunction restricts to an equivalence in several contexts. Their results are subsumed by

the upcoming work of Heuts [Heu], who showed that if O(1)≃ 1, the monoidal unit of 𝒞 ,

the bar-cobar adjunction restricts to an equivalence of ∞-categories on the subcategory of

complete O-algebras and cocomplete B(O)-coalgebras with divided power structure. Fur-

thermore, these subcategories are the optimal for a general operad O. Here completeness

is with respect to the n-truncated operads τ≤n(O), and cocompleteness is defined dually.

The next natural question to one could ask is whether the Koszul duality of algebras

over operads is reflected in some form of duality between natural operations on the ho-

mology groups of algebras over operads. In this thesis, we use the bar spectral sequence

to investigate this question when the operad is Koszul dual pair given by the non-unital

E∞-operad and the spectral Lie operad over HFp. For O a non-unital augmented operad in

the ∞-category of HFp-module spectra and an O-algebra A, the bar spectral sequence

E2
s,t = πsπtBar•

(︁
id,O,A) = πs,tBar•

(︁
id, Ô,π∗(A)

)︁
⇒ πs+t |Bar•(id,O,A)|

is obtained by skeletal filtration of the geometric realization of the bar construction. Here

Ô is the monad on the 1-category of Fp-modules that parametrizes natural operations on

the homotopy groups of O-algebras.

14



1.1 The bar spectral sequence for non-unital E∞-HFp-algebras

Partition Lie algebras are the key objects in the emerging field of formal moduli problems in

characteristic p. Work of Brantner and Mathew [BM19] showed that there is an equivalence

of ∞-categories between spectral formal moduli problems over Fp and spectral partition Lie

algebras, generalizing the characteristic 0 phenomenon studied by Drinfeld [Dri], Pridham

[Pri10], Lurie [Lur11], and many others. A restricted version of this equivalence establishes

spectral partition Lie algebras over Fp as divided power algebras Koszul dual to non-unital

E∞-HFp-algebras, implementing the Koszul duality between the non-unital E∞-operad and

the spectral Lie operad.

Since spectral partition Lie algebras are algebras over a certain monad Lieπ
Fp,E∞

, the

homotopy groups of free spectral partition Lie algebras Lieπ
Fp,E∞

(Σi1HFp⊕·· ·⊕ΣikHFp)

parametrize all natural k-ary operations on the homotopy groups of spectral partition Lie al-

gebras as (i1, . . . , ik) varies. In [BM19], Brantner and Mathew obtained bases for homotopy

groups of free spectral partition Lie algebras. Nonetheless, their method did not provide

explicit descriptions of the nature of the operations, nor were the relations among the op-

erations clarified. On the other hand, spectral partition Lie algebras are closely related to

topological André-Quillen objects introduced by Kriz [Kri93] and Basterra [Bas99].

Definition 1.1.1. For any object R in the category of E∞-S-algebras with a map to HFp,

the topological André-Quillen object of R is given by

TAQ(R,S;HFp)≃ |Bar•(HFp⊗ (−),E∞,R)|.

The nth Fp-linear TAQ cohomology of an E∞-HFp-algebra R is given by

TAQn(R,HFp;HFp) = [Σ−n|Bar•(id,E∞⊗HFp,R)|,HFp]ModHFp
.

The Fp-linear TAQ cohomology TAQ∗(R,HFp;HFp) of E∞-HFp-algebras R has repre-

senting objects trivial square-zero extensions, and the reduced Fp-linear TAQ cohomology

groups of trivial algebras HFp⊕Σi1HFp⊕·· ·⊕ΣikHFp parametrize all natural k-ary oper-
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ations. By [BM19], there is an isomorphism

π∗(Lieπ
Fp,E∞

(Σi1HFp⊕·· ·⊕Σ
ikHFp))⊕Fp

∼= TAQ−∗(HFp⊕Σ
−i1HFp⊕·· ·⊕Σ

−ikHFp,HFp;HFp).

Hence natural operations on the homotopy groups of spectral partition Lie algebras agree

with cohomology operations on the (reduced) Fp-linear TAQ cohomology of E∞-HFp-

algebras. In unpublished work, Kriz computed the F2-linear TAQ cohomology on a gen-

erator in non-negative degree [Kri93]. Around the same time, Basterra and Mandell an-

nounced a computation of unary operations and their relations as the Koszul dual to Dyer-

Lashof operations on Fp-linear TAQ cohomology of connective objects for p > 2 and ob-

served a shifted restricted Lie algebra structure, but a proof never appeared.

In Chapter 3, we use the dual of the bar spectral sequence (2.2) withO=Enu
∞ ⊗HFp the

nonunital E∞-operad in ModHFp to identify the structure of the homotopy groups of spectral

partition Lie algebras and Fp-linear TAQ cohomology, noting that the spectral sequence

collapses on the E2-page when A is a trivial algebra. The unary operations are parametrized

by a power ring P (Definition 3.5.4), which is a collection of unstable Ext groups over the

Dyer-Lashof algebra, with composition product given by a sheared Yoneda product. The

verification of the law of composition makes use of a general result of Brantner [Bra17] that

demonstrates the compatibility of the algebraic Koszul duality on the E2-page of the (dual)

bar spectral sequence with the monadic Koszul duality that the E∞-page assembles to when

there are no higher differentials in the spectral sequence. As the degree of a homotopy class

gets arbitrarily large, the colimit of the algebra of additive unary operations on that class

is the Koszul dual algebra of the Dyer-Lashof algebra. Then we construct a shifted Lie

bracket on the homotopy groups of spectral partition Lie algebras, and used a homotopy

fixed points spectral sequence to detect a restriction map on the shifted Lie bracket.

Theorem 1.1.2. (Theorem 3.5.5 and 3.6.6)

1. The homotopy groups of a spectral partition Lie algebra over HF2, or the reduced

TAQ cohomology of an E∞-HF2-algebra, form a module over the power ring P of

additive unary operations.

16



2. The weight 2 additive operations are given by the collection Ri ∈ P j−i
j [1] for all

i, j ∈ Z satisfying i >− j+1, subject to the Adem relations

RaRb = ∑
a+b−c≥2c, c>− j+1

(︃
b− c−1

a−2c

)︃
Ra+b−cRc

in P j−a−b
j [2] for all a,b ∈ Z satisfying b− j < a < 2b and b >− j+1.

3. There is a nonadditive unary operation R−|x|+1(x) for any homotopy class x that

serves as the restriction x[2] on x. The restriction on a sum of classes x and y in

different degrees is given by

(x+ y)[2] = R−|x|+1(x)+R−|y|+1(y)+ [x,y].

The bracket is compatible with the unary operations in the sense that [y,α(x)] = 0

for any homotopy class x,y and unary operation α of weight greater than 1 that is

not an iteration of the restriction.

4. The operations Ri and the shifted restricted Lie bracket generate all natural opera-

tions under the above relations. A basis for unary operations on a degree j class is

given by the collection of all monomials Ri1Ri2 · · ·Ril such that il >− j and im≥ 2im+1

for 1≤ m < l.

Theorem 1.1.3. (Theorem 3.5.6 and 3.6.6)

1. The homotopy groups of a spectral partition Lie algebra over HFp, or the reduced

TAQ cohomology of any E∞-HFp-algebra, form a module over the power ring P .

2. The weight p unary operations are given by the collection β εRi ∈ P j−2(p−1)i−ε

j [1]

for ε = 0,1 and any 2i >− j, subject to the Adem relations

βRa
βRb = ∑

a+b−c>pc,2c>− j
(−1)a−c+1

(︃
(p−1)(b− c)−1

a− pc−1

)︃
βRa+b−c

βRc

in P j−2(p−1)(a+b)−2
j [2] for all a,b∈Z satisfying a≤ pb, 2b>− j, 2a> 2(p−1)b− j

17



,

Ra
βRb = ∑

a+b−c≥pc,2c>− j
(−1)a−c

(︃
(p−1)(b− c)

a− pc

)︃
βPa+b−cRc

− ∑
a+b−c>pc,2c>− j

(−1)a−c
(︃
(p−1)(b− c)−1

a− pc−1

)︃
Ra+b−c

βRc

in P j−2(p−1)(a+b)−1
j [2] for all a,b ∈ Z satisfying a≤ pb, 2b >− j, 2a > 2(p−1)b+

1− j ,

β
εRaRb = ∑

a+b−c≥pc,2c>− j
(−1)a−c

(︃
(p−1)(b− c)−1

a− pc

)︃
β

εRa+b−cRc

inP j−2(p−1)(a+b)−ε

j [2] for all a,b∈Z satisfying a< pb, 2b>− j, 2a> 2(p−1)b− j,

and ε ∈ {0,1}.

3. For all odd j and x a homotopy class in degree j, the restriction x[p] is the bottom

operation R(− j+1)/2(x) up to a unit λ j, i.e., [y,λ jR(− j+1)/2(x)] = [[· · · [[y,x],x] · · · ],x]

for any class y, where bracketing with x is iterated p times on the right hand side.

The restriction map on a sum of classes x and y in odd degrees j ̸= k is given by

(x+ y)[p] = λ jR(− j+1)/2(x)+λkR(−k+1)/2(y)+
p−1

∑
i=1

si

i
(x,y),

where si is the coefficient of t i−1 in the formal expression ad(tx+ y)p−1(x). Further-

more, [y,α(x)] = 0 for any homotopy class x,y and α a unary operation of weight

greater than 1, unless x is in odd degree and α an iteration of the restriction.

4. The operations β εRi and the shifted restricted Lie bracket generate all natural opera-

tions under the above relations. A basis for unary operations on a degree j class with

j odd is given by all monomials β ε1Ri1β ε2Ri2 · · ·β εl Ril such that 2il > − j and im ≥

pim+1+εm+1 for 1≤m < l. If j is even, a basis is given by β ε1Ri1β ε2Ri2 · · ·β εl Ril Bε

such that 2il >−(1+ ε) j− ε and im ≥ pim+1 + εm+1 for 1≤ m < l.

As an immediate application, we obtain a computation of natural operations and rela-
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tions on the mod p TAQ cohomology TAQ∗(R,S;HFp) of E∞-S-algebras R, which is based

on conversations with Tyler Lawson.

Since the functor TAQi(−,S;HFp) has representing object the trivial square-zero ex-

tension S⊕ΣiHFp for all i, operations and relations are again parametrized by the mod p

TAQ cohomology on the trivial square-zero extensions S⊕Σi1HFp⊕·· ·⊕ΣikHFp. Using

the base change formula

TAQ(−,S;HFp)⊗
S

HFp ≃ TAQ(−⊗
S

HFp,HFp;HFp),

we deduce immediately from Theorem 1.1.2 and 1.1.3 the structure of natural operations

on the mod p TAQ cohomology E∞-S-algebras.

Theorem 1.1.4. (Corollary 3.7.1, Proposition 3.7.2) For any tuple (i1, . . . ik) of integers,

the k-ary cohomology operations

k

∏
i=1

TAQil(−,S;HFp)→ TAQm(−,S;HFp).

are parametrized by the homological degree −m part of FreesLieρ

P (Σ−i1A⊕·· ·⊕Σ−ikA),

where A is the Steenrod algebra graded homologically. All operations vanish on the unit

except for scalar multiplication. The Steenrod operations commute with the bracket via the

Cartan formula and the Fp-linear TAQ cohomology operations via the Nishida relations

on cohomology of the second extended power:

1. For p = 2 we have

Sqa[x,y] = ∑
i
[Sqi(x),Sqa−i(y)],

SqaR−|x|+1(x) = ∑

(︃
|x|− c
a−2c

)︃
Ra+|x|+1−cSqc(x)+ ∑

l<k,l+k=a
[Sql(x),Sqk(x)],

SqaRb(x) = ∑

(︃
b−1− c

a−2c

)︃
Ra+b−cSqc(x), b >−|x|+1.
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2. For p > 2 we have

Pa[x,y] = ∑
i
[Pi(x),Pa−i(y)], βPa[x,y] = ∑

i
([βPi(x),Pa−i(y)]+ [Pi(x),βPa−i(y)]).

For any class x and all 2 j >−|x|+1, the Nishida relations are

Pn
βR j =(−1)n−i

∑
i

(︃
( j− i)(p−1)

n− pi

)︃
βRn+ j−iPi +(−1)n−i

∑
i

(︃
( j− i)(p−1)−1

n− pi−1

)︃
Rn+ j−i

βPi,

PnR j = (−1)n−i
∑

i

(︃
( j− i)(p−1)−1

n− pi

)︃
Rn+ j−iPi,

as well as

PnR j(x) =(−1)n−i
∑

i

(︃
( j− i)(p−1)−1

n− pi

)︃
Rn+ j−iPi(x)

+
1

λ|x|
∑

I,σ∈Σp,σ(1)=1
[[· · · [[Piσ(1)(x),Piσ(2)(x)],Piσ(3)(x)] · · · ],Piσ(p)(x)]

when the degree of x is odd and 2 j =−|x|+1, where the bracket term sums over all

nondecreasing sequences I = (0≤ i1 ≤ i2 ≤ . . .≤ ip) with i1 + i2 + · · ·+ ip = n, and

λ|x| is a fixed unit given in Theorem 1.1.3.(3).

1.2 The bar spectral sequence for spectral Lie algebras

Spectral Lie algebras are algebras over the spectral Lie operad sℒ , generalizing the no-

tion of Lie algebras over a field k to the (∞−)category of spectra. The homology operad

{H∗(∂n(Id);k)}n of the spectral Lie operad recovers the ordinary Lie operad over k up to a

shift [GK94][Fre00][Chi05].

In Chapter 4, we study the bar spectral sequence for spectral Lie algebras in ModHFp .

To compute the E2-page of the bar spectral sequence

E2
s,t = πsπtBar•

(︁
id,sℒ ,A⊗HFp)⇒ πs+t |Bar•(id,sℒ ,A)⊗HFp| (1.1)

for A a spectral Lie algebra, it is necessary to understand the structure of the mod p ho-
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mology of spectral Lie algebras. In [Beh12], Behrens constructed Dyer-Lashof-type unary

operations Q̄ j on the mod 2 homology of spectral Lie algebras and determined the relations

among these operations. Building on the work of Behrens, Antolín-Camarena [AC20]

showed that the structure of the mod 2 homology of spectral Lie algebras is parametrized

by a monad Lies
R̄. An algebra over Lies

R̄ is an unstable module over the algebra R̄ of

Behrens’ operations, along with a shifted Lie algebra structure such that brackets of op-

erations always vanish and the self-bracket on an element x is identified with the bottom

nonvanishing operation Q̄0 := Q̄|x| on x. Following the approach of Behrens and Antolín-

Camarena, Kjaer [Kja18] constructed Dyer-Lashof-type unary operations β εQ j on the mod

p homology of spectral Lie algebras for p > 2 and proved that brackets of operations al-

ways vanish. Recently, Konovalov [Kon23] completed the study of the structure of these

operations by computing the relations among the unary relations. Hence the E2-page of the

bar spectral sequence is given by the following algebraic object:

Definition 1.2.1. The Quillen homology of a Lies
R̄-algebra g is the total left derived functor

HQ
Lies
R̄∗,∗ (g) := H∗,∗LQ

Lies
R̄

ModF2
(g)≃ π∗,∗Bar•

(︁
id,Lies

R̄,g
)︁
.

The main challenge in computing the Quillen homology of Lies
R̄-algebras when p = 2

arises from the identification of the self-bracket with the bottom operation Q̄0, which pre-

cludes a factorization of the free Lies
R̄-algebra functor as a composition of the free Lies

F2
-

algebra functor followed by the free R̄-algebra functor. Furthermore, since the category of

Lies
F2

-algebras is nonabelian, we cannot resort to the usual Grothendieck spectral sequence

and the generalized Grothendieck spectral sequence becomes unwieldy very fast.

To get around these obstacles, we construct a May spectral sequence with respect

to a length filtration on R̄-module. The E1-page is bounded above by the Quillen ho-

mology of a variant of Lies
R̄-algebras whose the unary and binary operations are dis-

entangled, thus admitting a factorization as the homotopy group of the total complex

of a double complex. The homotopy groups of these total complexes can be computed

with the machinery of Koszul duality for additive Koszul algebras [Pri70] and Lie alge-

bras [BHK19][CE48][May66A][Pri70], as well as explicit understanding of the Bousfield-
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Cartan-Dwyer operations

γi : πh+r,t(Λ
h(V•))→ π2h+1+r+i,2t−1(Λ

2h+1(V•)),1≤ i≤ r

on the homotopy group of the free simplicial shifted graded exterior algebra Λ•(V•) on a

simplicial F2-module V• [Bou68][Dwy80a]. This allows us to obtain general upper bounds

for the Quillen homology of Lies
R̄-algebras and precise formulae in low weights.

Furthermore, we are able to provide a full computation of the Quillen homology of

Lies
R̄-algebras in universal cases. Denote by FreeModR̄

ModF2
the free allowable R̄-module func-

tor. The category ModR̄ is stable under the desuspension functor Σ−1 of F2-modules.

Then for 1≤ n≤∞, the R̄-module Σ−nFreeModR̄
ModF2

(Σn+kF2) is an Lies
R̄-algebra whose Lies-

structure is trivial. Note that when n = ∞, this is the trivial Lies
R̄-algebra

colimi→∞Σ
−nFreeModR̄

ModF2
(Σn+kF2)∼= Σ

kF2.

Theorem 1.2.2. [Zha21] (Theorem 4.2.27) The Quillen homology

HQ
Lies
R̄∗,∗ (ΩnFreeModR̄

ModF2
(Σn+kF2))∼= π∗,∗Bar•(id,Lies

R̄,Ω
nFreeModR̄

ModF2
(Σn+kF2))

of the Lies
R̄-algebra ΩnFreeModR̄

ModF2
(Σn+kF2),1 ≤ n ≤ ∞ is isomorphic as a bigraded vector

space to the shifted graded exterior algebra on generators γIQ̄J(xk) satisfying the following

conditions:

1. I = (i1, . . . , im) satisfies il ≥ 2il+1 for l < m, im ≥ 2, and i1− i2−·· ·− im ≤ r;

2. J = ( j1, . . . , jr) satisfies 0 ≤ jl ≤ jl+1 + 1 for l < r, 0 ≤ jr < n, and if j1 = 0 then

either r = 1 or im = 2.

Note in particular that in natural operations on a class of degree k in the Quillen homol-

ogy of Lies
R̄-algebras are given by the Quillen homology of the trivial Lies

R̄-algebras ΣkF2,

and the above theorem gives us a dimension count.
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1.2.1 Application to labeled configuration spaces

One application of the Quillen homology of Lies
R̄-algebras is the computation of the mod

p homology of labeled configuration spectrum

Bk(M,X) := Σ
∞
+Confk(M) ⊗

hΣk

X⊗k

of k points in a parallelizable manifold M with labels in a spectrum X . The study of labeled

configuration spaces dates back to as early as Segal [Seg73] and McDuff [McD75] as gen-

eralizations of the unordered configuration space Σ∞
+Bk(M) = Bk(M;S0) of k points in M.

The rational homology groups of labeled configuration spaces are well understood in cases

of interests via classical methods, see for instance [BC88][BCT89][Tot96]. Nonetheless,

the mod p homology groups have remained mostly intractable. Classically, the only known

cases are the following:

(1). M =R∞ with arbitrary labeling spectra by May [May72] and McClure [BMMS88,

IX], and M = Rn by F. Cohen [CLM76, III]. Then
⨁︁

k≥0 Bk(M;X) is the free En-algebra

on X . Its mod p homology is captured by Dyer-Lashof operations and Browder brackets as

a functor of H∗(X ;Fp).

(2). Arbitrary manifold M with labeling spectrum X = Σ∞Sr, where either p = 2 or

p > 2 and n+ r is odd [BCT89][ML88][BCM93]. In these cases, there is a homology

decomposition

H∗(
⨁︂
k≥0

Bk(M;Sr))∼=
⨂︂

i

H∗(ΩiSn+r)⊗ dimHi(M). (1.2)

In particular, the homology depends only on the Fp-module H∗(M;Fp).

The most recent developments in the computation of the homology of labeled configu-

ration spaces originate from a result of Knudsen [Knu18]. Using factorization homology,

he established an equivalence of spectra

⨁︂
k≥1

Bk(M;X)≃| Bar•(id,sℒ ,Freesℒ (ΣnX)M+
) | . (1.3)

Here M is a parallelizable n-manifold, sℒ is the monad associated to the free spectral Lie
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algebra functor Freesℒ , and (−)M+
the cotensor with the one-point compactification of M

in the ∞-category of spectral Lie algebras. Knudsen’s result opens up a path for extract-

ing information about the homology of labeled configuration spaces. In [Knu17], Knudsen

provided a general formula for the Betti numbers of unordered configuration spaces by

observing that the bar spectral sequence for the bar construction (1.3) with rational coef-

ficients, which we abbreviate as Knudsen’s spectral sequence, collapses at the E2-page.

Building on Knudsen’s work, Drummond-Cole and Knudsen [DCK17] computed the Betti

numbers of unordered configuration spaces of surfaces. In [BHK19], Brantner, Hahn, and

Knudsen studied Knudsen’s spectral sequence with coefficients in Morava E-theory at an

odd prime. They computed the weight p part of the labeled configuration spaces in Rn and

punctured genus g surfaces Σg,1 for g≥ 1 with coefficient in a sphere.

In the second half of Chapter 4, we adapt their approach to study the mod p homology

of Bk(M,X) for M a parallelizable n-manifold and X any spectrum by examining the mod

p Knudsen’s spectral sequence, i.e., the bar spectral sequence (1.1) with coefficients in Fp

applied to the bar construction (1.3).

When p = 2, our general understanding of the E2-page, i.e., the Quillen homology of

Lies
R̄-algebras, allows us to obtain an upper bound for H∗(Bk(M,X);F2) in Theorem 4.4.5

for arbitrary parallelizable manifold M and spectrum X . In the universal case M = R∞ and

X = Sr, the bar spectral sequence has E2-page given by Theorem 4.2.27. Comparing with

the computation of the homology of free E∞-algebras [Ade52, DL62, May70, BMMS88],

we see that there are infinitely many higher differentials and conjecture the following uni-

versal pattern, which can be verified in low weight by sparsity arguments:

Conjecture 1.2.3 (Conjecture 4.3.5). Each page of the spectral sequence

E2
s,t = HQ

Lies
R̄

s,t (ΣkF2)⇒ πs+tBar•(id,sℒ ,ΣkF2)

is an exterior algebra. The higher differentials act on the exterior generators of the E2-page

as follows, see Figure 4-1:
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1. For an exterior generator α = Q̄ j1 · · · Q̄ jm(xk) on the E2-page, we have

dr+1
γr+1(α) = Q̄r(α)

for r < m and r ≤ j1 +1.

2. For an exterior generator β = γn+1Q̄ j1 · · · Q̄ jm(xk) on the E2-page, we have

(a) dn+1(β ) = Q̄nQ̄ j1 · · · Q̄ jm(xk),

(b) dn+1γm+n+1(β ) = dn+1(β )⊗β ,

(c) γl−2dn+1(β ) = d2n+1γn+l+1(β ) for n+1 < l < m.

These generate all higher differentials under further applications of the γi operations in

accordance with (2).(b) and (2).(c), as well as the exterior product.

For an arbitrary M, sparsity arguments show that the weight k part of Knudsen’s spectral

sequence with F2 coefficients always collapses on the E2-page for small k. In particular,

we observe that the F2-module H∗(Bk(M;X)) depends on and only on the cohomology ring

H∗(M+;F2) when k = 2,3 and H∗(X ;F2) has at least two generators. This is in contrast

to the case when X = Sr, in that the equivalence (1.2) depends only on the F2-module

H∗(M;F2) [BCT89].

When p > 2, the weight k ≤ p part of the E2-page of Knudsen’s spectral sequence

with Fp coefficients can be described in terms of Lies
Fp

-algebra homology. In particular,

the spectral sequence collapses when k = 2 or k = 3 and p ≥ 5 (Corollary 4.5.9). As a

corollary, we deduce the following:

Corollary 1.2.4. (Remark 4.5.10) When X =Sr and k= 2,3, the Fp-module H∗(Bk(M;Sr);Fp)

depends on and only on the cohomology ring H∗(M+;Fp) when r+ l is even.

This is in contrast to the case when r+ l is odd in the equivalence (1.2) [BCT89].
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1.3 Work in progress: bar spectral sequence via deforma-

tion of comonads

In the universal case M = R∞ and X = Sk, Knudsen’s spectral sequence

E2
s,t = πs,tBar•

(︁
id,Lies

R̄,Σ
kF2)∼= HQ

Lies
R̄

s,t (ΣkF2)⇒ πs+t |Bar•(id,sℒ ,ΣkHF2)| (1.4)

has E2-page given by Theorem 4.2.27. Comparing with the homology of free E∞-algebras

[May66A, BMMS88], we see that there are infinitely many higher differentials and observe

the following pattern:

Conjecture 1.3.1. [Zha21] Each page of the spectral sequence (1.4) is an exterior algebra.

The higher differentials act on the exterior generators of the E2-page as follows:

1. dr+1γr+1(α) = Q̄r(α) for an exterior generator α = Q̄ j1 · · · Q̄ jm(xk) on the E2-page

with r < m and r ≤ j1 +1.

2. For an exterior generator β = γn+1Q̄ j1 · · · Q̄ jm(xk) on the E2-page, we have dn+1γm+n+1(β )=

dn+1(β )⊗β and γldn+1(β ) = d2n+1γn+l−1(β ) for n+2 < l ≤ m.

These generate all higher differentials under further applications of γi and the exterior

product.

While the pattern of universal differentials is similar to classical ones studied by Dwyer

[Dwy80b], the operations Q̄ j on coalgebras over the comonad π∗,∗Bar•(id,Lies
R̄,−) in-

crease filtration and hence cannot be constructed using classical methods. In joint work in

progress with Andrew Senger, we use a suitable deformation of the comonad associated

to the bar construction |Bar•(id,sℒ ,−)| on spectral Lie algebras in ModHF2 to propagate

weight two differentials to higher weights.

More generally, let k be a field and O a spectral operad. The comonad |Bar•(id,O,−)|

on ModHk arises from the adjunction cot ⊣ sqz : AlgO(ModHk)→ModHk, and admits a lift

to a comonad cot∗ ◦cot∗ on the ∞-category PΣ(Modff
Hk) of product-preserving presheaves

over the ∞-category of finite-free Hk-modules. We note that there is an equivalence Φ :
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PΣ(Modff
Hk)

≃−→ (ModFil
Hk)≥0, where the target is the ∞-category of Postnikov-connective

filtered Hk-modules. An object in (ModFil
Hk)≥0 is a diagram C• = · · · →C1→C0→C−1→

·· · in ModHk such that Cn is n-connective for all n.

There is a realization functor Re : ModFil
Hk →ModHk sending C• to colim

n
C−n and an

associated graded functor Gr sending C• to {Cn/Cn+1}n ∈ Fun(Zop,ModHk). The two are

related by a spectral sequence

E2
p,q = πp+qGr(C•)p⇒ πp+q(Re(C•)),

which recovers the spectral sequence associated to a filtered object [Lur17]. This allows

us to identify bar spectral sequences as coalgebras over the deformation cot∗ ◦cot∗ of the

comonad |Bar•(id,O,−)|:

Theorem 1.3.2 (Senger-Zhang). For A an O-algebra in the category of Hk-modules, the

bar spectral sequence

E2
s,t = πsπt(Bar•(id,O,A)⇒ πs+t |Bar•(id,O,A)|

is naturally isomorphic to the spectral sequence for π∗Re(Φ(cot∗ ◦ν(A))) ∈ (ModFil
k )≥0. If

A = sqz(X) with X a finite Hk-module, then the bar spectral sequence is isomorphic to the

spectral sequence for π∗Re(Φ(cot∗ ◦cot∗(ν(X))).

Here ν : Mod(ff)Hk → PΣ(Modff
Hk) is the (restricted) Yoneda embedding. Furthermore,

the weight decomposition cot◦sqz(X) =
⨁︁

i≥1 Bar(O)(i)⊗hΣi X⊗n lifts to a weight de-

composition of the deformed comonad cot∗ ◦cot∗(−) ≃
⨁︁

i≥1Di(−). In the case k = F2

and O = sℒ , the degeneration of the weight two part of the bar spectral sequence associ-

ated with the trivial algebra ΣkHF2 allows us to compute D2(X) for any X ∈ PΣ(Modff
HF2

).

This allows us to detect all differentials in weight two of the bar spectral sequence in the

universal case. Our hope is to use the structure map of the comonad cot∗ ◦cot∗(−) and

the computation of the E2-page (Theorem 4.2.27) to inductively propagate and pull back

universal differentials along the weight. This will be explored in future endeavors.
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1.3.1 Conventions

We assume that every object is graded and weighted whenever it makes sense. For instance,

ModFp stands for the ordinary category of weighted graded Fp-modules. A weighted

graded F2-module M• is an N-indexed collection of Z-graded Fp-modules {M(w)•}w∈N.

The weight grading of an element x ∈M(w)n is w, and the internal grading is |x|= n. Mor-

phisms are weight preserving morphisms of graded Fp-modules. The Day convolution ⊗

makes ModFp a symmetric monoidal category. The Koszul sign rule x⊗ y = (−1)|x||y|y⊗ x

for the symmetric monoidal product ⊗ depends only on the internal grading and not the

weight grading.

Similarly, a shifted Lie algebra L over Fp is a weighted graded Fp-module equipped

with a shifted Lie bracket [−,−] : Lm⊗Ln→ Lm+n−1 that adds weights, as well as satisfying

graded commutativity [x,y] = (−1)|x||y|[y,x] and the graded Jacobi identity

(−1)|x||z|[x, [y,z]]+ (−1)|y||x|[y, [z,x]]+ (−1)|z||y|[z, [x,y]] = 0.

When p = 3 we further require that [[x,x],x] = 0 for all x∈ L. Denote by Lies
Fp

the category

of shifted weighted graded Lie algebras over Fp, as well as the monad associated to the

free Lies
Fp

-algebra functor. When p = 2, we use the abbreviation Lies = Lies
F2

. We further

consider the category Lies,ti of totally-isotropic Lies-algebras, i.e., Lies-algebras that have

vanishing self-brackets. We use the notation ⟨−,−⟩ exclusively for Lies,ti brackets.

We mean by shifted graded exterior algebra over Fp a graded Fp-module M• together

with a graded commutative product Mm∧Mn→Mm+n−1 such that x∧x = 0 for all x ∈M•.

We will often omit the adjectives shifted graded for the exterior algebra.

We use πn(−) to denote the following functors: the functor taking the nth homotopy

group of a spectrum, an HFp-module spectrum, or a simplicial Fp-module, as well as the

functor taking the nth homology group of a chain complex over Fp.

We use π∗,∗(−) to denote the functor taking the bigraded homotopy group of a (weighted

graded) bisimplicial Fp-module, which is equivalent to taking the homology of the total

complex of the associated double complex via the generalized Eilenberg-Zilber theorem.

The bidegree (s, t) is given by the pair (simplicial degree, internal degree).
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Chapter 2

Preliminaries

2.1 The spectral Lie operad

The Koszul dual pair we are interested in involves the non-unital E∞-operad and the spec-

tral Lie operad, which we recall in this section.

Ching [Chi05] and Salvatore showed that the Goowillie derivatives ∂n(Id) of the iden-

tity functor Id : Top∗ → Top∗ form an operad sℒ := {∂n(Id)}n in Spectra. The nth-

derivative ∂n(Id) admits an explicit description due to Arone and Mahowald [AM99], fol-

lowing the work of Johnson [Joh95]. Let Pn be the poset of partitions of the set n =

{1,2, . . . ,n} ordered by refinements, equipped with a Σn-action induced from that on n.

Denote by 0̂ the discrete partition and 1̂ the partition {n}. Set Πn = Pn−{0̂, 1̂}. Regard-

ing a poset P as a category, we obtain via the nerve construction a simplicial set N•(P).

The partition complex Σ|Πn|⋄, the reduced-unreduced suspension of the realization |Πn|, is

modeled by the simplicial set

N•(Pn)/(N•(Pn− 0̂)∪N•(Pn− 1̂))

for n≥ 2 and the simplicial 0-circle S0 for n = 1. Then there is an equivalence

∂n(Id)≃ D(Σ|Πn|⋄)≃ DBar(1,Enu
∞ ,1)(n)
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of spectra with Σn-action, where D denotes the Spanier-Whitehead dual of a spectrum. This

identifies sℒ as the Koszul dual to the nonunital commutative operad Enu
∞ , i.e.,

sℒ ≃ DBar(1,Enu
∞ ,1).

For a description of the operadic bar construction and a proof of the compatibility of the op-

eradic structure on both sides, see [Chi05] for a topological model using trees and [Bra17,

Appendix D] for an ∞-categorical construction along with a comparison with the topologi-

cal model.

2.2 Theory of operations

Given an operad, or more generally a monad in ModHFp , one can ask for natural opera-

tions on the homotopy groups of algebras over the monad. The following is adapted from

Lawson’s excellent survey [Law20, section 1.4] on the theory of operations for algebras

over operads.

Given a monad T on ModHFp , we define an operation on T-algebras to be a natural

transformation πm(−)→ πn(−) of functors hAlgT(ModHFp)→ Sets for some m,n. Here

hAlgT(ModHFp) is the homotopy category of T-algebras over ModHFp . Let Op(m;n) be

the set of operations for fixed m,n. It follows from the universal property of free algebras

that for any T-algebra A,

πm(A)∼= MapAlgT(ModHFp)
(FreeT(ΣmHFp),A).

Hence FreeT(ΣmHFp) is the representing object for the functor πm(−) on hAlgT(ModHFp).

By the Yoneda Lemma, the set of operations Op(m;n), or equivalently natural transfor-

mations πm(−)→ πn(−) in hAlgT(ModHFp), is isomorphic to πn(FreeT(ΣmHFp)). Explic-

itly, given an operation α ∈ πn(FreeT(ΣmHFp)) and a class x ∈ πm(A) with A a T-algebra,

we obtain a class α(x) in πn(A) via the pullback

πm(A)∼=MapAlgT(ModHFp)
(FreeT(ΣmHFp),A)

α∗−→MapAlgT(ModHFp)
(FreeT(ΣnHFp),A)∼= πn(A).
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Therefore, to understand the unary operations on T-algebras and their relations, we

need to first compute π∗(FreeT(ΣmHFp)) as an algebra for all m. Then we need to under-

stand the composition product on unary operations

πn(FreeT(ΣmHFp))×πm(FreeT(ΣlHFp))→ πn(FreeT(ΣlHFp))

for all l,m,n, which corresponds to composing two natural transformations πl(−)→ πm(−)

and πm(−)→ πn(−) of functors on hAlgT(ModHFp). In general, natural k-ary operations

∏
k
l=1 πil(−)→ πn(−) are parametrized by the homotopy groups

πn(FreeT(Σi1HFp⊕·· ·⊕Σ
ikHFp))

for all k-tuples (i1, . . . , ik).

2.3 The bar spectral sequence

To investigate how Koszul duality of algebras manifest itself at the level of operations, we

make use of the bar spectral sequence. Given an operad O in ModHFp and an algebra A

over O, there is a spectral sequence

E2
s,t = πsπtBar•

(︁
id,O,A)⇒ πs+t |Bar•(id,O,A)| (2.1)

obtained by skeletal filtration of the geometric realization in the bar construction. Note that

O has an analytic approximation in the sense that there is a monad Ô on ModFp such that

π∗(FreeO(X)) = Ô(π∗(X)) for any X ∈ModHFp . (cf. [AC20, Proposition 2.1]) Hence we

can rewrite the E2-page as the bigraded homotopy group

E2
s,t = πs,tBar•

(︁
id, Ô,π∗(A))⇒ πs+t |Bar•(id,O,A)| (2.2)

Note that the E2-page is also the total left derived functor that takes the indecomposables

of the Ô-algebra structure, as we recall below.
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2.3.1 The derived indecomposable functor

We briefly record without proof the homotopy theory of monads on the category of weighted

graded Fp-modules and especially the two-sided bar construction for simplicial objects,

following closely Sections 3.1, 4.2 and 4.3 in [BHK19]. For the general theory, see for

instance Sections 3.1 and 3.2 of [JN14].

Let T be an augmented monad on the category ModFp of weighted graded Fp-modules.

Denote by AlgT(ModFp) the category of T-algebras. The forgetful functor U : AlgT(ModFp)→

ModFp admits a left adjoint, the free functor FreeT : ModFp → AlgT(ModFp).

Denote by sModFp the category of simplicial weighted graded Fp-modules. Levelwise

application of the adjunction FreeT ⊣U gives rise to an adjunction between the correspond-

ing categories of simplicial objects

FreeT ⊣U : AlgT(sModFp)→ sModFp,

as well as a monad T on sModFp . We equip sModFp with the standard cofibrantly generated

model structure. Suppose that the path objects of sModFp lifts to sAlgT, the category of

simplicial T-algebras. Then this adjunction induces a right transferred model structure on

the category of simplicial T-algebras, with weak equivalences and fibrations defined on the

underlying simplicial weighted graded Fp-modules by [JN14, Theorem 3.2, Remark 3.3].

In particular, this is true for all the monads that we will encounter in this thesis.

Denote by T T : ModFp = AlgId(ModFp)→ AlgT(ModFp) the inclusion of trivial T-

algebras, which is induced by the augmentation. It has a left adjoint QT : AlgT(ModFp)→

ModFp , the indecomposable functor with respect to the T-algebra structure. Applying this

adjunction levelwise to the corresponding categories of simplicial objects, we obtain a

Quillen adjunction

QT ⊣ T T : sAlgT→ sModFp.

The total left derived functor LQT of QT can be computed by the following standard recipe.

Construction 2.3.1. Given a right module R : ModFp →𝒟 over T, and a simplicial object

A in AlgT(ModFp), one can apply the two-sided bar construction Bar•(R,T,−) levelwise
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to A. The diagonal of the resulting bisimplicial complex is a simplicial object in 𝒟 , denoted

by Bar•(R,T,A).

In particular, if we regard a T-algebra A as the constant simplicial object on U(A)

equipped with a simplicial T-algebra structure, denoted also as A by abuse of notation,

then Bar•(R,T,A) agrees with the usual two-sided bar construction.

Since the free resolution Bar•(FreeT,T,A) is a cofibrant replacement of A in the cate-

gory of simplicial T-algebras, the left derived functor of a functor F can be computed by

applying F levelwise to a cofibrant replacement, so

LQT(A)≃ QTBar•(FreeT,T,A) = Bar•(id,T,A).

Now suppose that we have a composite monad L ◦R with distributive law the natural

transformation L◦R⇒R◦L in the sense of Beck [Bec69, Section 1]. Suppose in addition

that L,R and L ◦R are all compatibly augmented and each admit a cofibrant replacement

given by the free resolution. Let AlgL,AlgR,AlgL◦R be the respective categories of alge-

bras. Then an L◦R-algebra A is an R-algebra via the forgetful map UL◦R
R : AlgL◦R→AlgR

induced by the augmentation of L, and an L-algebra via the augmentation of R. Further-

more, we have adjunctions

ModFp AlgR AlgL◦R
T R

QR

T L◦R
R

QL◦R
R

,

Construction 2.3.2. For A an algebra over L◦R, the free resolution Bar•(FreeR,R,A) has

the structure of a simplicial L ◦R-algebra given as follows. Levelwise, the L ◦R-algebra

structure map is given by

L◦R◦R◦n(A)→ R◦L◦R◦(n−1)(A)→ ··· → R◦n ◦L◦ (R)(A)→ R◦n(A),

where the rightmost arrow is the L ◦R-algebra structure map on A and the other arrows

are induced from the distributive law L ◦R⇒ R ◦L. The face and degeneracy maps are

structure maps of the monad R and hence compatible with the levelwise L ◦R-algebra

structure maps by naturality of the distributive law.
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Levelwise application of QL◦R
R to Bar•(FreeR,R,A) yields a simplicial L-algebra struc-

ture on the bar construction Bar•(id,R,A) = QL◦R
R Bar•(FreeR,R,A).

We record the following result about the total left derived functor of the indecomposable

functor of a composite monad, which generalizes [BHK19, Proposition 4.19].

Lemma 2.3.3. Let A be an L ◦R-algebra. The homotopy group of Bar•(id,L ◦R,A) is

computed by the homotopy group of the bisimplicial object Bar•(id,L,Bar•(id,R,A)).

Recall that the homotopy group of a bisimplicial Fp-module can be computed via the

Eilenberg-Zilber theorem, i.e. by first taking associated chain complexes in both directions

and then forming the total complex of the double complex. See for instance [GJ09, Chapter

4].

Proof. The augmentation L◦R→ R induces a map of simplicial L◦R-algebras

Ψ : Bar•(FreeL◦R,L◦R,A)→ Bar•(FreeR,R,A),

where the simplicial L ◦R-algebra structure are the target is given by Construction 2.3.2.

This is an equivalence since both are free resolutions of A of L as an L ◦R-algebra and

an R-algebra respectively, and weak equivalences in sAlgL◦R are detected by the underly-

ing simplicial Fp-modules. We want to show that QL◦R
R preserves this weak equivalence.

Since UL preserves weak equivalences, it suffices to show that UL ◦QL◦R
R ◦Ψ is a weak

equivalence.

Note that there is an isomorphism

QR ◦UL◦R
R
∼=UL ◦QL◦R

R .

Hence UL ◦QL◦R
R ◦Ψ is the map

QR ◦UL◦R
R Bar•(FreeL◦R,L◦R,A)→ QR ◦UL◦R

R Bar•(FreeR,R,A) = QRBar•(FreeR,R,A).

Since both UL◦R
R Bar•(FreeL◦R,L◦R,A) and Bar•(FreeR,R,A) are free resolutions of A in

sAlgR and QR is a left Quillen functor, this is indeed a weak equivalence.
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Chapter 3

Spectral partition Lie algebras and TAQ

cohomology

3.1 Spectral partition Lie algebras

Motivated by the theory of classical operadic Koszul duality [GK94], the natural next step

is to formulate a Koszul duality theorem between suitable categories of algebras over the

Koszul dual pair Enu
∞ and ∂∗(Id). Partial progress was achieved by Ching and Harper in

[CH19], following a general conjecture by Francis and Gaitsgory [FG12]. Recent work of

Brantner and Mathew [BM19] on spectral partition Lie algebras completely resolved the

question over HFp, and we will give a very brief summary of their results.

Let Modft
HFp
⊂ModHFp be the subcategory spanned by HFp-modules of finite type, i.e.

HFp-modules with degree-wise finite homotopy groups. Denote by Modft
HFp,≤0 ⊂Modft

HFp

the subcategory spanned by coconnective objects. Let P be the nonunital commutative

operad in ModHFp . There is an adjunction

AlgP(ModHFp) ModHFp ,
cot

sqz

where the functor sqz sends an object M to the P-algebra M as a trivial square-zero ex-

tension. The restriction of this adjunction to the subcategory Modft
HFp,≤0 defines a sifted-

colimit-preserving monad (M ↦→ cot(sqz(M)∨)∨) on Modft
HFp,≤0.
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Definition 3.1.1. [BM19, Definition 5.32] The spectral partition Lie monad Lieπ
Fp,E∞

is the

unique sifted-colimit-preserving monad

Lieπ
Fp,E∞

: ModHFp →ModHFp

extending the monad (M ↦→ cot(sqz(M)∨)∨) on Modft
HFp,≤0,

Algebras over the monad Lieπ
Fp,E∞

are called spectral partition Lie algebras. The free

spectral partition Lie algebras on bounded above objects admit an explicit description.

Proposition 3.1.2. [BM19, Proposition 5.35] For V a bounded above HFp-module,

Lieπ
Fp,E∞

(V )≃ D|Bar•(id,P,V∨)| ≃
⨁︂
n≥1

(︁
(∂n(id)⊗HFp)⊗ (V )⊗n)︁hΣn.

The above formula makes it clear that spectral partition Lie algebras are not algebras

over the spectral Lie operad, as the structural map of an algebra L over the spectral Lie

operad in ModHFp is given by

Free∂∗(Id)⊗HFp(L)≃
⨁︂
n≥1

(︁
(∂n(id)⊗HFp)⊗ (L)⊗n)︁

hΣn
→ L.

Heuristically, spectral partition Lie algebras are the dual of divided power coalgebras over

the cooperad Bar(1,P,1), and hence candidates for the Koszul dual of Enu
∞ -HFp-algebras.

To formulate the precise Koszul duality statement, we need to introduce one more technical

condition.

Definition 3.1.3. An E∞-HFp-algebra A is complete local Noetherian if

(1). π0(A) is a complete local Noetherian ring;

(2). A is connective and πn(A) is a finitely-generated module over π0(A) for all n≥ 0.

Now we can state a restricted version of of the main results by Brantner and Mathew.

Theorem 3.1.4. [BM19, Theorem 1.19] There is an equivalence of ∞-categories between

complete local Noetherian E∞-HFp-algebras and the ∞-category of coconnective spectral

partition Lie algebras of finite type.
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3.1.1 Relation to TAQ cohomology

Spectral partition Lie algebras are closely related to the Fp-linear TAQ spectrum. Inspired

by the unpublished work of Kriz [Kri94], Basterra constructed the topological André-

Quillen homology object TAQ(R,A;B) for a fixed map of E∞-algebras A → B and any

object R in the category of E∞-algebras between A and B [Bas99]. For any object R in the

category of E∞-S-algebras with a map to HFp, we obtain the TAQ spectrum

TAQ(R,S;HFp)≃ |Bar•(HFp⊗ (−),E∞,R)|,

cf. [Bas99, section 5] and [Law20, Proposition 1.8.9]. There is a base change formula to

Fp-linear TAQ spectrum

TAQ(R,S;HFp)⊗
S

HFp ≃ TAQ(R⊗
S

HFp,HFp;HFp)

for R any E∞-S-algebra. The nth Fp-linear TAQ cohomology is defined to be

TAQn(R,HFp;HFp) = [Σ−nTAQ(R,HFp;HFp),HFp]ModHFp

for R any E∞-HFp-algebra.

In this paper we work with the nonunital Fp-linear version

TAQ(A)≃ |Bar•(id,P,A)|,

where P is the nonunital E∞-operad in ModHFp and A a P-algebra. We call this the reduced

mod p TAQ spectrum of A, since

TAQ(A)⊕HFp ≃ TAQ(HFp⊕A,HFp;HFp).

Thus the reduced mod p TAQ cohomology group TAQn
(A) := [Σ−nTAQ(A),HFp]ModHFp

differ from the Fp-linear TAQ cohomology group TAQn(A⊕HFp,HFp;HFp) only when

n = 0 by a copy of Fp. By Proposition 3.1.2, when A is a bounded above HFp-module of
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finite type considered as a trivial P-algebra, there is an equivalence

TAQn
(A∨)∼= π−n(D|Bar•(id,P,A∨)|)∼= π−n(Lieπ

Fp,E∞
(A)).

Going forward we will often omit Fp-linear and mod p when there is no ambiguity regard-

ing which version of TAQ cohomology is concerned.

3.2 Operations on spectral partition Lie algebras and TAQ

cohomology

Now we specialize the general theory of operations in 2.2 to the monad T = Lieπ
Fp,E∞

. The

decomposition of the free algebra over Lieπ
Fp,E∞

into homogeneous pieces in Proposition

3.1.2 allows us to impose a weight grading on the operations on the homotopy groups of

Lieπ
Fp,E∞

-algebras in the usual sense.

On the other hand, the mod p TAQ cohomology functor TAQ(−,HFp;HFp) on ModHFp

has as representing objects the trivial square-zero extensions [Law20, section 1.8]. There-

fore, for any m and tuple (i1, . . . , ik), the group of cohomology operations

k

∏
i=1

TAQil(−,HFp;HFp)→ TAQm(−,HFp;HFp)

is the given by TAQm(HFp⊕Σi1HFp⊕·· ·ΣikHFp,HFp;HFp).

Note that all operations vanish on the unit except for scalar multiplication. Since

TAQn
(A∨)∼= π−n(D|Bar•(id,P,A∨)|)∼= π−n(Lieπ

Fp,E∞
(A))

for all n when A is a bounded above HFp-module of finite type considered as a trivial

P-algebra, natural operations and their relations on the reduced mod p TAQ cohomology,

or equivalently, the mod p TAQ cohomology away from the unit, agree with those on the

homotopy group of spectral partition Lie algebras up to a change of grading conventions.
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Brantner and Mathew obtained bases of the homotopy groups of free spectral partition

Lie algebras on Σ jHFp via an isotropy spectral sequence as in [ADL13, Example 1.3].

Then they propagated the result to any direct sum of shifts of HFp using a Hilton-Milnor-

type decomposition of the partition complex and an EHP sequence developed in [AB21].

Definition 3.2.1. We say a word w in letters {x1, . . . ,xk} is a Lyndon word if it is smaller

than any of its cyclic rotations in the lexicographic order with x1 < · · ·< xk. Write B(n1, . . . ,nk)

for the set of Lyndon words in which the letter xi appears precisely ni times.

Note that the collection of all Lyndon words in letters x1, . . . ,xk produces a basis for the

free totally-isotropic Lie algebra over Fp on k generators, where totally-isotropic means

there are no non-vanishing self-brackets.

Theorem 3.2.2. [BM19, Theorem 1.20] The Fp-vector space π∗(Lieπ
Fp,E∞

(Σl1Fp⊕ ·· · ⊕

ΣlkFp)) has a basis indexed by sequences (i1, . . . , ik,e,w). Here w ∈ B(n1, . . . ,nm) is a

Lyndon word. We have e ∈ {0, ι}, where ι = 1 if p is odd and deg(w) := ∑i(li−1)ni +1 is

even. Otherwise, ι = 0. The integers i1, . . . , ik satisfy:

(1). Each i j is congruent to 0 or 1 modulo 2(p−1).

(2). For all 1≤ j < k, we have i j < pi j+1.

(3). We have ik ≤ (p−1)(1+ e)deg(w)− ι . The homological degree of (i1, . . . , ik,e,w)

is ((1+ e)deg(w)− e)+ i1 + . . .+ ik− k.

Nonetheless, their method does not yield explicit descriptions of the nature of the op-

erations, nor are the composition products or the relations among the operations clarified.

Here, we resolve the problem using the dual of the bar spectral sequence (2.2) to compute

the relations among the unary operations.

3.3 The dual bar spectral sequence for Enu
∞ -algebras

This section serves as a preliminary examination of the dual of the bar spectral sequence

(2.2) for a P-algebra A, where P is the Enu
∞ -operad in ModHFp . The dual bar spectral
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sequence is given by

E2
s,t = πs(πt(Bar•(id,P,A)∨))⇒ πs+t(D|Bar•(id,P,A)|).

When A= Σ− jHFp is a trivial P-algebra, the E∞-page records unary operations on a degree

j class in the homotopy group of any spectral partition Lie algebra and those on a degree

− j cohomology class in the reduced mod p TAQ cohomology. We begin by reviewing the

analytic approximation of P, which parametrizes operations on the homotopy groups of

P-algebras.

3.3.1 The Dyer-Lashof algebra

Dyer-Lashof operations are natural unary operations on the mod p homology of infinite

loop spaces and E∞-algebras in Spectra. These operations and their relations were com-

puted by Araki-Kudo [KA56], Dyer-Lashof [DL62], Cohen-Lada-May [CLM76], and Bruner-

May-McCLure-Steinberger [BMMS88]. Denote by R the non-unital mod p Dyer-Lashof

algebra.

Proposition 3.3.1. [Ade52, I.1], [BMMS88, III.1] At p = 2, the Dyer-Lashof algebra R̄ is

generated by operations Qi in degree i and weight 2 subject to the Adem relations

QrQs = ∑
r+s−i≤2i

(︃
i− s−1

2i− r

)︃
Qr+s−iQi

for r > 2s.

For p an odd prime, the mod p Dyer-Lashof algebra is generated by operations β εQi

in degree 2(p−1)i− ε and weight p for ε ∈ {0,1} and all i, subject to the Adem relations

QrQs = ∑
r+s−i≤pi

(−1)r+i
(︃
(p−1)(i− s)−1

pi− r

)︃
Qr+s−iQi,

βQrQs = ∑
r+s−i≤pi

(−1)r+i
(︃
(p−1)(i− s)−1

pi− r

)︃
βQr+s−iQi
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for r > ps and

Qr
βQs = ∑

r+s−i<pi
(−1)r+i

(︃
(p−1)(i− s)

pi− r

)︃
βQr+s−iQi

− ∑
r+s−i<pi

(−1)r+i
(︃
(p−1)(i− s)−1

pi− r−1

)︃
Qr+s−i

βQi,

βQr
βQs =− ∑

r+s−i<pi
(−1)r+i

(︃
(p−1)(i− s)−1

pi− r−1

)︃
βQr+s−i

βQi

for r ≥ ps.

We say that a modules M over the Dyer-Lashof algebra R̄ is unstable (or allowable) if

the following conditions holds:

1. When p = 2, for any nonempty sequence of operation QI = Qi1 · · ·Qik and x ∈M of

degree j, if il− il+1− . . .− ik < j for some 1≤ l ≤ k then QI(x) = 0.

2. When p > 2, for any x ∈ M of degree j and any nonempty sequence of operation

α = β ε1Qi1 · · ·β εkQik , if 2im−εm < j+2(p−1)im+1 + . . .2(p−1)ik−ε1−·· ·εk for some

1≤ m≤ k then α(x) = 0.

Denote by ModR the category of unstableR-modules.

Definition 3.3.2. A PolyR-algebra M is a (graded weighted) polynomial algebra over Fp

with an unstable R̄-module structure that is compatible with the commutative product⊗ in

the sense that

(1) The Cartan formula is satisfied: Qi(x⊗ y) = ∑ j Q j(x)⊗Qi− j(y);

(2) We further require that Q|x|/2(x) = x⊗p for all even degree x ∈M when p > 2, and

Q|x|(x) = x⊗2 when p = 2.

Let PolyR be the category of PolyR-algebras. A classical result by May and McClure

tells us that this is the target category for the mod p homology of non-unital E∞-HFp-

algebras.

Theorem 3.3.3. [May72, BMMS88] For any P-algebra X, there is an isomorphism

π∗(FreeP(X))∼= FreePolyR
ModFp

(π∗(X))
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of free PolyR-algebras.

The free PolyR-algebra on an Fp-module M can be obtained by taking the polynomial

algebra on FreeModR
ModFp

(M), identifying Q|x|/2(x) = x⊗p for all even x ∈M when p > 2 and

Q|x|(x) = x⊗2 when p= 2, and finally imposing the Cartan formula. Denote again by PolyR

the monad coming from the free-forgetful adjunction

ModFp PolyR .
FreePolyR

ModFp

UPolyR
ModFp

Hence the bar spectral sequence for a P-algebra A with M = π∗(A) can be rewritten as

˜︁E2
s,t = πs(Bar•(id,PolyR,M))t ⇒ πs+t(|Bar•(id,P,A)|) = TAQs+t(A).

Similarly, the dual bar spectral sequence takes the form

E2
s,t = πs(Bar•(id,PolyR,M)∨)t ⇒ πs+t(D|Bar•(id,P,A)|).

Since we will only be concerned with objects of finite type over HFp, we can switch freely

between the two version by taking linear dual when computing the second page. It is easier

to work with the bar construction, so we will focus on the bar spectral sequence.

Remark 3.3.4. Note that the E2-page of the bar spectral sequence

˜︁E2
s,t = πs(Bar•(id,PolyR,M)t = πs(LQPolyR

ModFp
(M))t

is the André-Quillen homology of M with respect to the monad PolyR.

3.3.2 A smaller complex for the E1-page

Our plan is to find a suitable factorization of the indecomposable functor QPolyR
ModFp

to sep-

arate the unary and binary structures of the monad PolyR. This will allow us to replace

the bar construction computing its total left derived functor by a smaller double complex
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that is amenable to Koszul-duality-type computations. The subtlety lies in the bottom non-

vanishing Dyer-Lashof operations, which appear in both the unary and binary structures of

PolyR. We disentangle the unary and binary structure by defining a structure that heuristi-

cally discard the bottom non-vanishing Dyer-Lashof operations on any element in a module

over the Dyer-Lashof algebra when p = 2 and on any even class when p > 2.

Let ModR′ be category of modules over the Dyer-Lashof algebra R̄ with unstability

conditions Qi(x) = 0 for i ≤ |x| when p = 2 and 2i ≤ |x| when p > 2. Then the indecom-

posables functor QPolyR
ModFp

factors as QModR′
ModFp

◦QPolyR
ModR′

sitting in the composite adjunction

with the inclusion functor:

ModFp ModR′ PolyR.
T ModR′

ModFp

QModR′
ModFp

T PolyR
ModR′

QPolyR
ModR′

In particular, there is an isomorphism

UModR′
ModFp

◦QPolyR
ModR′

∼= Q
PolyFp
ModFp

◦UPolyR
PolyFp

.

Denote by PolyFp
the monad corresponding to the free graded polynomial algebra func-

tor on ModFp . We want to use the factorization QPolyR
ModFp

∼= QModR′
ModFp

◦QPolyR
ModR′

to obtain a

double complex that is more computable than the bar complex Bar•(id,PolyR,M).

Lemma 3.3.5. There is a weak equivalence of simplicial R̄′-modules

LQPolyR
ModR′

(M)≃ Bar•(id,PolyFp
,M)

for any Fp-module M considered as a trivial PolyR-algebra.

Proof. There is a map of augmented monads PolyR→ PolyFp
→ id, the first of which kills

all Dyer-Lashof operations that are not the bottom operations Q|x|(x) = x⊗2 when p = 2

or the bottom operations Q/2(x) = x⊗p on even classes when p > 2. When M is an Fp-

module considered as a trivial PolyR-algebra, the map PolyR(M)→ PolyFp
(M)→M is a

map of PolyR-algebras if we regard PolyFp
(M) as a PolyR-algebra where all Dyer-Lashof
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operations vanish except for the bottom operations when p = 2 and the bottom operations

on even classes when p > 2. Therefore we obtain a map of free bar resolutions

Ψ : Bar•(FreePolyR
ModFp

,PolyR,M)→ Bar•(Free
PolyFp
ModFp

,PolyFp
,M),

which is a weak equivalence of simplicial PolyR-algebras.

Next we want to show that applying QPolyR
ModR′

preserves this weak equivalence, i.e.

LQPolyR
ModR′

(M)≃ QPolyR
ModR′

Bar•(FreePolyR
ModFp

,PolyR,M)→ QPolyR
ModR′

Bar•(Free
PolyFp
ModFp

,PolyFp
,M)

is a weak equivalence of simplicial R̄′-modules. This is equivalent to showing that the

underlying map of simplicial Fp-modules UModR′
ModFp

(Ψ) is a weak equivalence.

Using the isomorphism

UModR′
ModFp

◦QPolyR
ModR′

∼= Q
PolyFp
ModFp

◦UPolyR
PolyFp

,

we can rewrite UModR′
ModFp

(Ψ) as

UModR′
ModFp

◦QPolyR
ModR′

Bar•(FreeModR′
ModFp

,PolyR,M)≃ Q
PolyFp
ModFp

◦UPolyR
PolyFp

Bar•(FreePolyR
ModFp

,PolyR,M)

→UModR′
ModFp

◦QPolyR
ModR′

Bar•(Free
PolyFp
ModFp

,PolyFp
,M)

≃Q
PolyFp
ModFp

◦UPolyR
PolyFp

Bar•(Free
PolyFp
ModFp

,PolyFp
,M)≃ Bar•(id,PolyFp

,M).

This is indeed a weak equivalence since we are applying Q
PolyFp
ModFp

to a free simplicial PolyFp
-

algebra on both sides. Therefore we obtain a weak equivalence of simplicial R̄′-modules

LQPolyR
ModFp

(M))∼= Bar•(FreeModR′
ModFp

,PolyR,M)≃ Bar•(id,PolyFp
,M)

as desired.

LetAR′ be the additive monad associated to the free R̄′-module functor. Therefore the

André-Quillen homology of an algebra M over the monad PolyR, i.e. the E2-page of the
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bar spectral sequence

˜︁E2
∗,∗
∼= π∗(LQPolyR

ModFp
(M))∼= π∗

(︁
QModR′

ModFp
◦QPolyR

ModR′
Bar•(FreePolyR

ModFp
,PolyR,M)

)︁
∼= π∗

(︁
QModR′

ModFp
Bar•(FreeModR′

ModFp
,PolyR,M)

)︁
∼= π∗

(︁
LQModR′

ModFp
(Bar•(id,PolyFp

,M))
)︁
,

can be computed as the homotopy group of the double complex Bar•(id,AR′,Bar•(id,PolyFp
,M)).
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3.4 Computing the dual bar spectral sequence

In this section, we compute the E2-page of the (dual) bar spectral sequences in the universal

case, i.e., when A = Σi1HFp⊕·· ·⊕Σil HFp. Then a comparison with Theorem 3.2.2 allows

us to deduce the degeneration of the spectral sequence in these cases. There is a non trivial

distinction between the cases p = 2 and p > 2 regarding the restriction on shifted Lie

algebra structures and the notations are rather different, so we record them separately.

3.4.1 The E2-page at p = 2

We will utilize Priddy’s machinery on algebraic Koszul duality in [Pri70, Theorem 2.5].

Since the Dyer-Lashof algebra R̄ is a Koszul algebra, the Ext group

Ext∗,∗R (F2,F2) = π∗((Bar•(F2,R,F2))
∨)

is the Koszul dual algebra of R̄. The Koszul generators are given by the collection

(Qi)∗ := [(Qi)∨]1 ∈ Ext−1,∗
R (F2,F2)

with homological bidegree (−1,−i) and weight 2, with composition given by juxtaposition,

which corresponds to the Yoneda product on Ext groups, cf. [Pri70, p.42] and [McC01,

Theorem 9.8]. The quadratic relations among the generators are the Koszul dual of the

Adem relations, i.e.

(Qa)∗(Qb)∗ = ∑
a+b−c>2c

(︃
b− c−1

a−2c−1

)︃
(Qa+b−c)∗(Qc)∗ (3.1)

for a≤ 2b.

We are interested in the unstable Ext group

UnExt∗,∗R′ (F2,Σ
jF2) = π∗(Bar•(id,AR′,Σ− jF2)

∨),
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which is a variant of the Ext group

Ext∗,∗R (F2,F2) = π∗((Bar•(F2,R,F2))
∨)

obtained by regardding Σ− jF2 as an unstable trivial module over R̄ and imposing the unsta-

blitly conditions [Q j|α] = 0 for j ≤ |α| in the bar complex, cf. [BC70, §3]. To incorporate

the Koszul dual of the unstability conditions as well as the simplicial grading, we introduce

the following ringoid.

Definition 3.4.1. Let F be the ringoid with objects the Z≤0×Z and morphisms freely

generated over F2 under juxtaposition by the following elements: for any s≤ 0 and all i, j

satisfying i >− j, there is an element (Qi)∗ ∈F
(︁
(s, j),(s−1, j− i)

)︁
of weight 2. Let (R′)!

be the quotient of F by the ideal generated by the relations

(Qa)∗(Qb)∗ = ∑
a+b−c>2c,c>− j

(︃
b− c−1

a−2c−1

)︃
(Qa+b−c)∗(Qc)∗ (3.2)

for all a,b satisfying a≤ 2b, b >− j and a > b− j in F
(︁
(s, j),(s−2, j−a−b)

)︁
.

The first grading corresponds to the homological degree in Ext, or equivalently the

filtration degree in the dual bar spectral sequence. The second grading is the topological

degree.

Remark 3.4.2. There is an evident isomorphism (R′)!((s, i),(s′, j))∼= (R′)!((s−r, i),(s′−

r, j)) for any i, j,s,s′ and r such that s− r < 0. For any t > 0, there is an injection

suspt : (R′)!((s, i),(s′, j)) ↪→ (R′)!((s, i+ t),(s′, j+ t)),

since more operations are defined on classes with higher homological degree.

Remark 3.4.3. Note the relations are always well defined on both sides: if b ≥ − j + 1,

then a≥ b− j+1≥−2 j+2, so ⌊a+b
3 ⌋ ≥ − j+1 and the right hand side is never empty.

The unstable Ext group UnExt∗,∗R′ (F2,Σ
jF2) is thus the underlying bigraded F2-module

of the free (R′)!-module (R′)!((0, j),−). We grade the Ext groups homologicially.
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On the other hand, the Tor group Tor∗R′(F2,F2) is a coalgebra (R̄)∨ generated by

classes in

Tor1,∗
R′ (F2,F2) = F2{[Qi]1, i ∈ N}.

The unstable Tor group

UnTor∗,∗R′ (F2,Σ
jF2) = π∗(Bar•(id,AR′,Σ jF2))

is thus a coalgebra generated under juxtaposition by elements in

UnTor1,∗
R′ (F2,Σ

jF2) = {[Qi]1, i > j},

which is a comodule over the co-ringoid (R′)∨.

Back to computing the E2-page. Denote by coFree(R
′)∨ the functor that takes the cofree

(R′)∨-comodule. Similarly, Free(R
′)!

is the functor that takes the free (R′)!-module with

a simplicial grading, i.e. the class (Qi1)∗(Qi2)∗ · · ·(Qik)∗(x) ∈ Free(R
′)!
(M) has simplicial

degree −k for x ∈M.

SinceAR′ is an additive monad, there is no nontrivial simplicial operations on the total

left derived functor. Furthermore, the homological (vertical) and simplicial (horizontal)

differentials do not mix, i.e. the targets of the vertical differential never involve elements

from the inner bar complex and vice versa. Therefore we can deduce the following:

Lemma 3.4.4. Suppose that V• is a trivial simplicialR′-module. Then

π∗(Bar•(id,AR′,V•)) = coFree(R
′)∨(π∗(V•)).

In our case, we are interested in the trivial simplicialR′-module V•=Bar•(id,PolyF2
,M)

where M is a direct sum of shifts of F2 as trivial PolyF2
-modules.

Definition 3.4.5. (cf. [Jac41], [Fre00] for the unshifted version.) A shifted restricted Lie

algebra over F2, denoted as a sLieρ

F2
-algebra, is a graded F2-module L = L• with a shifted

Lie bracket Lm⊗Ln→ Lm+n−1 and a restriction map x ↦→ x[2] with x[2] ∈ L2|x|−1, satisfying

the following identities:
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1. ad(x[2]) = ad(x)2 for all x ∈ L;

2. For all x,y ∈ L, (x+ y)[p] = x[p]+ y[p]+[x,y].

Here ad(x) stands for the adjoint representation, i.e., the self-map y ↦→ [y,x] on L.

Let FreesLieρ

F2 be the associated free functor. Given an Fp-module M with basis {x1, . . . ,xk},

a basis for FreesLieρ

F2 (M) is given by

{u,u[2],(u[2])[2], . . .},

where u ranges over Lyndon words in letters x1, . . . ,xk. (See, for instance, [BKS05, section

2].)

Proposition 3.4.6. The dual bar spectral sequence converging to π∗(Lieπ
F2,E∞

(A∨))∼=TAQ∗(A)

has E2-page E2 ∼= Free(R
′)!

FreesLieρ

F2 (M∨) for A an HF2-module considered as a trivial P-

algebra and M = π∗(A).

Proof. Note that the monad PolyF2
is the monad associated with the free functor of the

commutative operad Comm in ModF2 . Denote by sLie the shifted Lie operad in ModF2 ,

so sLie(n) has internal degree 1− n. Recall from [Fre04, Section 5.2.3] that the shifted

Harrison complex of an algebra M over an operad Comm in ModF2 is defined as follows.

Let

K(Comm)n := ker(Barn(I,Comm, I)(n)→ Barn−1(I,Comm, I)(n)),

where Barr(I,Comm, I)(s) is the weight s part of the simplicial degree r piece of the bar

construction Bar•(I,Comm, I) in the category of symmetric sequences with I the unit. The

linear dual K(Comm)∨• forms an operad isomorphic to the shifted Lie operad {sLie(n)} in

graded F2-modules, i.e., equipped with the sign representation (cf. [Fre04, Fact 6.2]). The

Harrison complex of M is given by
⨁︁

n(K(Comm)n⊗M⊗n)Σn ≃
⨁︁

n(sLie(n)∨⊗M⊗n)Σn .

When M is an F2-module considered as a trivial algebra over Comm, the inclusion of

subcomplex induces a comparison morphism

⨁︂
n
(sLie(n)∨⊗M⊗n)Σn → Bar•(I,Comm, I)◦M ≃ Bar•(id,Comm,M)
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of the shifted Harrison complex and the bar construction of M (cf. [Fre04, 5.2.3, 6.6]).

This is an isomorphism on homotopy: any cycle on the right hand side is a sum of all

way to put n− 1 nested parenthesis on a fixed sequence x1, . . .xn of n classes in M, such

that each nesting represents taking the polynomial product with one more class on a dif-

ferent simplicial level and no nesting is trivial, and this cycle has preimage the bracket

[· · · [[x1,x2],x3] . . .],xn]. Taking linear dual, self-brackets become restrictions by [Fre00,

Theorem 0.1], so we have

π∗(Bar•(id,Comm,M)) = π∗(Bar•(id,PolyF2
,M))∼= coFreeco−sLieF2 (M),

π∗(Bar•(id,Comm,M)∨) =
⨁︂

n
(sLie(n)⊗ (M∨)⊗n)Σn ∼= FreesLieρ

F2 (M∨)

for any trivial algebra M over Comm. On the other hand, a shifted Lie coalgebra over F2

has a shifted Lie cobracket Lm+n+1→ Lm⊗Ln satisfying the co-Jacobi identity. The shift

reflects the simplicial degree in the (co)bar resolution. Similarly a co-sLieF2-algebra stands

for shifted coLie-algebra over F2.

3.4.2 The E∞-page for p = 2

In the case where A = Σ jHFp, the E∞-page records all unary operations on a degree − j

class in the homotopy groups of spectral partition Lie algebras. Since

π∗(DBar•(id,PolyF2
,π∗(Σ

jHFp))) = FreesLieρ

F2 (Σ− jF2)

has exactly one class x[2]
s ∈ πs of weight 2s for all s ≥ 0, the dual bar spectral sequence

simplifies to

E2
s,t = Free(R

′)!
(F2{x[2]

s
,s≥ 0})⇒ πs+t(D|Bar•(id,P,Σ jHFp)|)

Note that the E2-page is concentrated in weight 2k for k ∈ N, and the weight 2k part is

concentrated on a single line s =−k. Hence the spectral sequences collapses on the second

page and there are no extension problems. Therefore we have found all the unary operations
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on a degree j class for any j.

In particular, we see that the restriction x[2] is represented by the cycle (Q|x|)∗|x on the

E1-page Bar•(id,PolyR,Σ
jF2)

∨. On the other hand, the relations in (3.1) never involve

the bottom operation: on a class x of degree j, if c = − j then the coefficient
(︁ b+ j−1

a+2 j−1

)︁
of (Qa+b−c)∗(Qc)∗ is nonzero only if a+ 2 j− 1 ≤ b+ j− 1, which is impossible since

a > b− j.

Hence the ringoid (R′)! is the ringoid of additive operations. Now we define a new

ringoid that takes into account the restriction being an unary operation.

Definition 3.4.7. Let F be the ringoid with objects Z≤0×Z whose morphisms are freely

generated over F2 under juxtaposition by the following elements: for all i, j satisfying

i≥− j and s≤ 0, there is an element (Qi)∗ ∈ F
(︁
(s, j),(s−1, j− i)

)︁
of weight 2.

Let R̄! be the quotient of F by the ideal generated by the relations (Qa− j)∗(Qa)∗ = 0

for all j,s and (Qa)∗ ∈ F
(︁
(s, j),(s−1, j−a)

)︁
with a >− j, and the Adem relations

(Qa)∗(Qb)∗ = ∑
a+b−c>2c,c>− j

(︃
b− c−1

a−2c−1

)︃
(Qa+b−c)∗(Qc)∗ (3.3)

for all a,b satisfying a≤ 2b, b >− j and a > b− j in F
(︁
(s, j),(s−2, j−a−b)

)︁
.

The E2-page of the dual bar spectral sequence on one generator has the following struc-

ture.

Definition 3.4.8. An sLieρ

R̄!-algebra is an F2-module M with an R̄!-module structure and

a shifted Lie bracket

[ , ] : Ms,t⊗Ms′,t ′ →Ms+s′−1,t+t ′

with restriction (−)[2] satisfying the following conditions:

(1) The bottom operation (Q−|x|)∗(x) = x[2] is the restriction for any x;

(2) [x,α(y)] = 0 for any x,y and non-empty sequence α of (Qi)∗’s unless α is an itera-

tion of the restriction map.

Let Free
sLieρ

R̄! denote the functor that first takes the free sLieρ

F2
-algebra on a bigraded

F2-module M, then takes the free R̄!-module on the underlying graded F2-module of
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FreesLieρ

F2 (M), and finally identifies the restriction with the bottom operation x[2]=(Q−|x|)∗(x)

for all x ∈ FreesLieρ

F2 (M). Therefore we can deduce that:

Proposition 3.4.9. For A = Σ jHF2, the bar spectral sequence has E∞-page

˜︁E∞
∗,∗
∼= ˜︁E2

∗,∗
∼= coFree(R

′)!
coFreesLieρ

F2 (Σ jF2).

The dual bar spectral sequence for A has E∞-page

E∞
∗,∗
∼= E2

∗,∗
∼= Free

sLieρ

R̄! (Σ− jF2).

A basis is given by the monomials (Qi1)∗(Qi2)∗ · · ·(Qis)∗(x), where is ≥ |x| = − j and il >

2il+1 for all 1≤ l < s.

Now we can compute the E∞-page of the (dual) bar spectral sequences in the univer-

sal case, and deduce the set of k-ary natural operations of all k. A priori, knowing the

composition product and relations among operations on the André-Quillen cohomology

AQ∗PolyR
(−) does not imply knowledge of the relations on the homotopy groups of spectral

partition Lie algebra and mod 2 TAQ cohomology. The composition product on the later

differs from that on the former, as we will see in Theorem 3.5.5.

Proposition 3.4.10. Let A= Σ j1HF2⊕Σ j2HF2⊕·· ·⊕Σ jkHF2 be a trivial P-algebra. Then

the dual bar spectral sequence for π∗(Lieπ
F2,E∞

(A∨))∼= TAQ∗(A) has E∞-page

E∞
∗,∗
∼= E2

∗,∗
∼= Free

sLieρ

R̄! (Σ− j1F2⊕·· ·⊕Σ
− jkF2).

Proof. The dual bar spectral sequence simplifies to

E2
∗,∗ = Free

sLieρ

R̄! (Σ− j1F2⊕·· ·⊕Σ
− jkF2)⇒ πs+t(D|Bar•(id,P,A)|).

A priori we can’t deduce that the spectral sequence collapses using a sparsity argument

when k > 1, since the E2-page is concentrated on multiple lines at pm when m > 1. How-
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ever, the E∞-page of the dual bar spectral sequence is the homotopy group of

Lieπ
Fp,E∞

(A∨)≃ D|Bar•(id,P,A)|,

the free spectral partition Lie algebra on A∨. Comparing the basis of the E2-page with

Theorem 3.2.2, which is a basis of Lieπ
F2,E∞

(A∨), we deduce that E2 ∼= E∞, so the spectral

sequence collapses on the second page and there are no extension problems.

3.4.3 The dual bar spectral sequence for odd primes

In the section, we apply the same analysis to the odd primary case.

Again utilizing Priddy’s machinary on algebraic Koszul duality in [Pri70, Theorem

2.5], we deduce that ExtR(Fp,Fp) = π∗((Bar•(Fp,R′,Fp))
∨) is isomorphic as an algebra

to the Koszul dual (R′)! ofR′. The Koszul generators are given by the collection

(β εQi)∗ := [(β εQi)∨]1 ∈ Ext1R′(Fp,Fp),ε ∈ {0,1}, i ∈ N

where (β εQi)∗ has homological bidegree (−1,−2(p−1)i+ε) and weight p. Composition

is given by juxtaposition corresponding to the Yoneda product. The quadratic relations are

the Koszul dual of the Adem relations (Proposition ??), i.e.

(Qa)∗(Qb)∗+ ∑
a+b−c>pc

(−1)a−c
(︃
(p−1)(b− c)−1

a− pc−1

)︃
(Qa+b−c)∗(Qc)∗ = 0

for a≤ pb ,

(βQa)∗(Qb)∗− ∑
a+b−c≥pc

(−1)a−c
(︃
(p−1)(b− c)

a− pc

)︃
(Qa+b−c)∗(βQc)∗

+ ∑
a+b−c>pc

(−1)a−c
(︃
(p−1)(b− c)−1

a− pc−1

)︃
(βQa+b−c)∗(Qc)∗ = 0

for a≤ pb,

(β εQa)∗(βQb)∗− ∑
a+b−c≥pc

(−1)a−c
(︃
(p−1)(b− c)−1

a− pc

)︃
(β εQa+b−c)∗(βQc)∗ = 0
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for ε ∈ {0,1} and a < pb, cf. [KL83].

Analogous to the case p = 2, we dualize the unstability condition and record the sim-

plicial grading using a ringoid.

Definition 3.4.11. Let F be the ringoid with objects Z≤0×Z and morphisms freely gen-

erated over Fp under juxtaposition by the following elements: for 2i > − j and any s ≤ 0

there are elements (Qi)∗ ∈F
(︁
(s, j),(s−1, j−2(p−1)i)

)︁
and (βQi)∗ ∈F

(︁
(s, j),(s−1, j−

2(p−1)i+1)
)︁
. We suppress the first grading for ease of notation when there is no ambi-

guity.

Let (R′)! be the quotient of F by the ideal generated by the following quadratic rela-

tions for all s≤ 0:

(Qa)∗(Qb)∗ =− ∑
a+b−c>pc, 2c>−k

(−1)a−c
(︃
(p−1)(b− c)−1

a− pc−1

)︃
(Qa+b−c)∗(Qc)∗,

in F
(︁

j, j− 2(p− 1)a− 2(p− 1)b
)︁

for all a,b ∈ Z and satisfying a ≤ pb, 2b > − j, 2a >

2(p−1)b− j,

(βQa)∗(Qb)∗ = ∑
a+b−c≥pc,2c>−k

(−1)a−c
(︃
(p−1)(b− c)

a− pc

)︃
(Qa+b−c)∗(βQc)∗

− ∑
a+b−c>pc,2c>−k

(−1)a−c
(︃
(p−1)(b− c)−1

a− pc−1

)︃
(βQa+b−c)∗(Qc)∗ = 0

in F
(︁

j, j− 2(p− 1)a− 2(p− 1)b+ 1
)︁

for all a,b ∈ Z satisfying a ≤ pb, 2b > − j, 2a >

2(p−1)b− j, and

(β εQa)∗(βQb)∗ = ∑
a+b−c≥pc,2c>−k

(−1)a−c
(︃
(p−1)(b− c)−1

a− pc

)︃
(β εQa+b−c)∗(βQc)∗

in F
(︁

j, j− 2(p− 1)a− 2(p− 1)b+ ε + 1
)︁

for ε ∈ {0,1} and a,b ∈ Z satisfying a < pb,

2b >− j, 2a > 2(p−1)b− j.

A basis for (R′)!(︁(s, j),(s−k,−)
)︁

is given by sequences (β ε1Qi1)∗(β ε2Qi2)∗ · · ·(β εkQik)∗

where 2ik >− j and il > pil+1− ε for 1≤ l < k.
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Remark 3.4.12. Similar to the case p = 2, there is an isomorphism

(R′)!((s, i),(s′, j))∼= (R′)!((s− r, i),(s′− r, j))

for any i, j,s,s′ and r such that s− r < 0. For any t > 0, there is an injection

suspt : (R′)!((s, i),(s′, j)) ↪→ (R′)!((s, i+ t),(s′, j+ t)),

since more operations are defined on classes with higher homological degree.

For x in degree 2d + 1, the relations never involve the bottom operations on x, i.e. the

terms (β εQa+b+d)∗(βQ−d)∗: the coefficient is nonzero only if (p−1)(b+d)−1≥ a+ pd,

i.e., (p−1)b−d−1≥ a. But 2a≥ 2(p−1)b−2d by assumption.

Hence the unstable Ext group

UnExt∗,∗R (Fp,Σ
− jFp) = π∗(Bar•(id,AR′,Σ− jFp)

∨)

is the free (R′)!-module (R′)!((0, j),−). Whereas the Tor group Tor∗,∗R′ (Fp,Fp) ∼= (R!)
∨

is a coalgebra generated by classes in

Tor1,∗
R′ (Fp,Fp) = Fp{[β εQi]1, i ∈ N,ε = 0,1}.

The unstable Tor groups are cofree comodules over the co-ringoid ((R′)!)∨.

The functor Free(R
′)!

takes the free (R′)!-module with a dual simplicial grading that

counts the number of generators, i.e., the element (β ε1Qi1)∗(β ε2Qi2)∗ · · ·(β εkQik)∗(x) ∈

FreeR
!
(M) with x ∈ M has simplicial degree −k. Denote by coFree(R

′)∨ the functor that

takes the cofree (R′)∨-comodule. Hence π∗(Bar•(id,AR′,Σ− jFp)
∨) is the free R̄!-module

on a single generator x in degree j, and π∗(Bar•(id,AR′,Σ jFp)) is the free (R′)∨-comodule

on x.

SinceAR′ is an additive monad, there is no nontrivial simplicial operations on the total

left derived functor. Furthermore the vertical and horizontal differentials act strictly within
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their complexes, i.e., the targets of the vertical differential never involve elements from the

inner bar complex and vice versa. Therefore we can deduce the following:

Lemma 3.4.13. Suppose that V• is a trivial simplicialR′-module. Then

π∗(Bar•(id,AR′,V•)) = coFree((R
′)!)∨(π∗(V•)).

Now we run the spectral sequence for a trivial P-algebra A. First we look at the dual

bar spectral sequences for A = Σ jHFp, which parametrizes unary operations on a degree

− j class the homotopy groups of spectral partition Lie algebra.

Proposition 3.4.14. Let A=Σ jHFp. If j is odd, then π∗(Lieπ
Fp,E∞

(A∨))∼=Free(R
′)!
(Σ− jFp).

If j is even, then π∗(Lieπ
Fp,E∞

(A∨))∼= Free(R
′)!
(Σ− jFp⊕Σ−2 j−1Fp).

Proof. If A = Σ jHFp with j odd, then Bar•(id,PolyFp
,Σ jFp) is the constant simplicial

object on Σ jFp due to graded commutativity. The dual bar spectral sequence simplifies to

E2
∗,∗ = Free(R

′)!
(Σ− jFp)⇒ πs+t(D|Bar•(id,P,A)|)∼= πs+t(Lieπ

Fp,E∞
(A∨)).

Note that the E2-page is concentrated in weight pk for k ∈ N, and the weight pk part is

concentrated on a single line s =−k. Hence the spectral sequence collapses on the second

page and there are no extension problems.

If A = Σ jHFp with j even, then

π∗(Bar•(id,PolyFp
,Σ jFp)

∨)∼= Fp{x, [x,x]}

with a weight 1 class x ∈ π0 and a weight 2 class [x,x] ∈ π−1. On the E2-page of the dual

bar spectral sequence

E2
∗,∗ = Free(R

′)!
(Fp{x, [x,x]})⇒ πs+t(D|Bar•(id,P,A)|)

is concentrated in weights pk and 2pk, and at each k concentrated on the line s = −k at

weight pk and the line s =−k−1 at weight 2pk. Again there are no further differentials or

extension problems.
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Remark 3.4.15. (1) As in the case p = 2, knowing the relations among unary operations

on the André-Quillen cohomology AQ∗PolyR
(−) does not immediately yield knowledge of

the relations on the homotopy groups of spectral partition Lie algebra and mod p TAQ

cohomology. The composition product on the later differs from that on the former, as we

will see in Theorem 3.5.6.

(2) While we expect to see a shifted restricted Lie algebra, the restriction on an odd

class is not detected on the E2-page for filtration reasons, as we shall see in Lemma 3.6.5

in the next section.

In general, we have the odd primary counterpart of Proposition 3.4.10.

Proposition 3.4.16. Suppose that A = Σ j1HFp⊕ Σ j2HFp⊕ ·· · ⊕ Σ jl HFp is a trivial P-

algebra. Then the E∞-page of the dual bar spectral sequence for π∗(Lieπ
Fp,E∞

(A)) ∼=

TAQ−∗(A) has E∞-page

E∞
∗,∗
∼= E2

∗,∗
∼= Free(R

′)!
FreesLieFp

(Σ j1Fp⊕·· ·⊕Σ
jlFp).

Proof. The comparison morphism
⨁︁

n(sLie(n)∨⊗M)⊗n)Σn → Bar•(id,Comm,M) of the

shifted Harrison complex and the bar construction (cf. [Fre04, 5.2.3, 6.2]) is surjective

on homotopy when M is an Fp-module considered as a trivial algebra: any cycle on the

left-hand side is an alternating sum of all way to put n− 1 nested parenthesis on a fixed

sequence x1, . . .xn of n classes in M, such that each nesting represents taking the polynomial

product with one more class on a different simplicial level and no nesting is trivial, and this

cycle has preimage the bracket [· · · [[x1,x2],x3] . . .],xn]. The graded commutativity and the

vanishing of self-brackets on odd degree classes correspond to the graded commutativity of

the polynomial product. Since the restriction on odd classes are zero by Proposition 3.4.14,

taking linear dual yields

π∗(Bar•(id,Comm,M)∨)∼= FreesLieFp (M∨)

57



for any trivial algebra M over Comm and the dual bar spectral sequence simplifies to

E2
∗,∗ = Free(R

′)!
FreesLieFp (Σ j1Fp⊕·· ·⊕Σ

jlFp)⇒ πs+t(D|Bar•(id,P,A∨)|).

As in the case p = 2, a priori we can’t deduce that the spectral sequence collapses using

a sparsity argument when k > 1, since the E2-page is concentrated on multiple lines at pm

when m > 1. Nonetheless, comparing the basis of the E2-page with Theorem 3.2.2, we

deduce that E2 ∼= E∞, so the spectral sequence collapses on the second pages.

Now we proceed to construct all natural operations on the homotopy groups of spectral

partition Lie algebras and mod p TAQ (co)homology. It follows from a general result of

Brantner ([Bra17, Theorem 3.5.1 and 4.3.2]) that composition product of additive opera-

tions on the homotopy groups of spectral partition Lie algebras agrees, up to a shearing,

with the Yoneda product on the E2-page of the dual bar spectral sequence. This allows

us to deduce all relations among the unary operations in Theorem 3.5.5 and 3.5.6. Then

we construct a shifted Lie algebra structure and prove the existence of a restriction map in

Lemma 3.6.5 when p > 2. Finally we deduce all relations among unary operations and the

bracket in Theorem 3.6.6.

3.5 The structure of unary operations

In the dual bar spectral sequence

E2
s,t
∼=Free

sLieρ

R̄! (Σ jF2)s,t⇒ πs+t(D|Bar•(id,P,Σ− jHF2)|)≃ πs+t(Lieπ
F2,E∞

(Σ jHF2)), p= 2

E2
s,t
∼=Free(R

′)!
FreesLieFp (Σ jFp)s,t⇒ πs+t(D|Bar•(id,P,Σ− jHFp)|)≃ πs+t(Lieπ

Fp,E∞
(Σ jHFp)), p> 2,

the E2-page is generated by a single class x ∈ E0, j
2 under unary operations

(Qi)∗ : E2
s,t → E2

s−1,t−i, i >−t
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for p = 2, and

(β εQi)∗ : E2
s,t → E2

s−1,t−2(p−1)i+ε
, 2i >−t

where ε ∈ {0,1}, as well as a shifted self-bracket if j is even for p > 2. The additive unary

operations, excluding the self-bracket, and their relations are encoded by the ringoid (R′)!

in Definition 3.4.1 and 3.4.11.

The E∞-page is the homotopy groups of the free spectral partition Lie algebra on

Σ jHFp. Hence it parametrizes unary operations on a degree j homotopy class of a spec-

tral partition Lie algebra and a degree − j cohomology class in mod p TAQ cohomology.

Now we give a concrete description of unary operations on the the homotopy groups of any

spectral partition Lie algebra A.

Construction 3.5.1. Suppose that ξ : Σ jHFp→ A represents a homotopy class x ∈ π j(A).

(1) Suppose that p = 2. For any sequence

α = (Qi1)∗(Qi2)∗ · · ·(Qik)∗ ∈ R̄!
((0, j),(−k, j−m))

with i1 + · · ·+ ik = m, there is a unique class R(i1+1,i2+1,...,ik+1)(x) ∈ π j−m−k(A) given by

Σ
j−m−kF2

α−→ FreeR
!
(Σ jF2) ↪→ Free

sLieρ

R̄! (Σ jF2)

∼= π∗(Lieπ
F2,E∞

(Σ jHF2))
ξ∗−→ π∗(Lieπ

F2,E∞
(A))→ π∗(A).

(2) Suppose that p > 2. For any sequence

α = (β ε1Qi1)∗(β ε2Qi2)∗ · · ·(β εkQik)∗ ∈ (R′)!((0, j),(−k, j−m))

with m= 2(p−1)i1+· · ·+2(p−1)ik−ε1−·· ·−εk, there is a unique class R(i1,...,ik,1−ε1,...,1−εk)(x)∈

π j−m−k(A) given by

Σ
j−m−kFp

α−→ Free(R
′)!
(Σ jFp) ↪→ Free(R

′)!
FreesLieFp (Σ jFp)

∼= π∗(Lieπ
Fp,E∞

(Σ jHFp))
ξ∗−→ π∗(Lieπ

Fp,E∞
(A))→ π∗(A).
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If j is even, then there is a unique class B(x) ∈ π2 j−1(A) given by

Σ
2 j−1 [x,x]−−→ FreesLieFp (Σ jFp) ↪→Free(R

′)!
FreesLieFp (Σ jFp)∼= π∗(Lieπ

Fp,E∞
(Σ jHFp))→ π∗(A)

Translating to cohomological grading, for any E∞-HFp-algebra A, there are unary op-

erations

R(i1,i2,...,ik) : TAQ j
(A)→ TAQ j+i1+···+ik(A), i > j

for p = 2 and

R(i1,...,ik,ε1,...,εk) : TAQ j
(A)→ TAQ j+2(p−1)(i1+···+ik)+ε1+···+εk(A), 2i > j

where ε ∈ {0,1} as well as a self-bracket

B : TAQ j
(A)→ TAQ2 j+1

(A)

when j is even for p > 2.

Remark 3.5.2. These operations are stable in the sense that any cohomology operation

α : TAQm
(A)→ TAQm+|α|

(A) agrees with α : TAQm−1
(A)→ TAQm−1+|α|

(A) under coho-

mological desuspension, or equivalently α : πm(L)→ πm−|α|(L) agrees with α : πm+1(L)→

πm+1−|α|(L) for any spectral partition Lie algebra L. This is straightforward to check on

the E2-page of the dual bar spectral sequence in the universal cases using the fact that

Dyer-Lashof operations satisfy this notion of stability.

A convenient way to encode the structure of additive operations is via a power ring, as

was introduced in [Bra17] to encode additive unary operations on the Lubin-Tate theory of

spectral Lie algebras. Note that our convention differs in that we switch to a logarithmic

grading convention for the weight grading.

Definition 3.5.3. [Bra17, Definition 3.17][BHK19, Definition 4.5] A power ring is a col-

lection P = {Pk
j (w)}( j,k,w)∈Z2×Z≥0)

of abelian groups with elements ιi ∈ Pi
i [0] for all i,

equipped with associative and unital composition maps Pi
j[v]×P j

k [w]→ Pi
k[v+w].
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A module over the power ring P is a (weighted) Fp-module M =
⨁︁

( j,w)∈Z×Z≥0
M j(w)

with structure maps Pi
j[v]⊗M j(w)→ Mi(pvw) that are compatible with the composition

maps in P.

Definition 3.5.4. The collection {P j
k [w] := (R′)!((0,k),(−w, j+w)),w > 0}, along with

P i
i [0] := Fp{ιi} for all i and P j

i [0] = /0 for i ̸= j, defines a power ring P , with composition

product given by the sheared Yoneda product

P i
j[v]×P

j
k [w] (R′)!((0, j),(−v, i+ v))× (R′)!((0,k),(−w, j+w))

(R′)!((0, j+w),(−v, i+ v+w))× (R′)!((0,k),(−w, j+w))

(R′)!((−w, j+w),(−v−w, i+ v+w))× (R′)!((0,k),(−w, j+w))

P i
k[v+w] (R′)!((0,k),(−v−w, i+ v+w)),

∼=

suspw×id

∼=

juxtaposition

∼=

for v,w > 0, as well as isomorphisms P j
i [w]×P i

i [0]
∼=−→P j

i [w] and P j
j [0]×P

j
i [w]

∼=−→P j
i [w]

exhibiting ιi as a two-sided unit.

The first map is an injection on the left factor because operations are stable under sus-

pension and here w ≥ 0, cf. Remark 3.4.2 and 3.4.12. The last map is the composition in

the ringoid (R′)!, i.e., juxtaposition corresponding to the Yoneda product on Ext groups.

Explicitly, when p = 2, the F2-module Pk
j [w] consists of operations Ri1,...,iw such that

j− i1− . . . iw = k and il−1 > il+1 + · · ·+ iw− j− (w− l) for all 1≤ l ≤ w, subject to the

relations in (R′)!((0, j),(−w,k+w)). The composition product sends R(i1,...,iv) ◦R( j1,..., jw)

to the juxtaposition R(i1,...,iv, j1,..., jw). The weight 2 additive operations are given by the col-

lection Ri ∈ P j−i
i [1] for any i >− j+1.

Theorem 3.5.5. The homotopy groups of a spectral partition Lie algebra over HF2, or the

reduced TAQ cohomology of an E∞-HF2-algebra form a left module over the power ring

P of additive unary operations. The relations among the weight 2 additive operations are
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given by the Adem relations

RaRb = ∑
a+b−c≥2c, c>− j+1

(︃
b− c−1

a−2c

)︃
Ra+b−cRc

in P j−a−b
j [2] for all a,b ∈ Z satisfying b− j < a < 2b and b >− j+1.

A basis for unary operations on a degree j class is given by all monomials Ri1Ri2 · · ·Ril

such that il >− j and im ≥ 2im+1 for 1≤ m < l.

When p > 2, the weight p unary operations are given by the collection of elements

β εRi := R(i,ε) ∈ P j−2(p−1)i−ε

j for ε = 0,1 and any 2i >− j.

Theorem 3.5.6. The homotopy groups of a spectral partition Lie algebra A over HFp, or

the reduced TAQ cohomology of any E∞-HFp-algebra, form a module over the power ring

P of unary operations. The relations among the weight p operations are given by the Adem

relations

βRa
βRb = ∑

a+b−c>pc,2c>− j
(−1)a−c+1

(︃
(p−1)(b− c)−1

a− pc−1

)︃
βRa+b−c

βRc

in Fp( j, j− 2(p− 1)a− 2(p− 1)b− 2) for all a,b ∈ Z satisfying a ≤ pb, 2b > − j, and

2a > 2(p−1)b− j,

Ra
βRb = ∑

a+b−c≥pc,2c>− j
(−1)a−c

(︃
(p−1)(b− c)

a− pc

)︃
βPa+b−cRc

− ∑
a+b−c>pc,2c>− j

(−1)a−c
(︃
(p−1)(b− c)−1

a− pc−1

)︃
Ra+b−c

βRc

in Fp( j, j− 2(p− 1)a− 2(p− 1)b− 1) for all a,b ∈ Z satisfying a ≤ pb, 2b > − j, and

2a > 2(p−1)b+1− j,

β
εRaRb = ∑

a+b−c≥pc,2c>− j
(−1)a−c

(︃
(p−1)(b− c)−1

a− pc

)︃
β

εRa+b−cRc

in P j−2(p−1)a−2(p−1)b−ε

j [2] for all a,b ∈ Z satisfying a < pb, 2b >− j, 2a > 2(p−1)b− j,

and ε ∈ {0,1}.
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A basis for unary operations on a degree j class with j odd is given by the collection

of all monomials β ε1Ri1β ε2Ri2 · · ·β εl Ril such that 2il >− j and im ≥ pim+1 + εm+1 for 1≤

m < l. If j is even, a basis is given by the collection β ε1Ri1β ε2Ri2 · · ·β εl Ril Bε such that

2il >−(1+ ε) j− ε and im ≥ pim+1 + εm+1 for 1≤ m < l.

Proof of Theorem 5.5 and 5.6. By construction, the set P i
j[w] is isomorphic to the image

of

(R′)!((0, j),(−w,w+ i))⊂ E2
∗,∗

in πi(L(Σ jHFp)) via the collapse of the dual bar spectral sequence

E2
∗,∗
∼= Free

sLieρ

R̄! (Σ jFp)⇒ π∗(Lieπ
F2,E∞

(Σ jHFp))

and for p > 2

E2
∗,∗
∼= Free(R

′)!
FreesLieFp (Σ jFp)⇒ π∗(Lieπ

F2,E∞
(Σ jHFp)).

We need to verify that compositions of unary operations on the homotopy groups of spectral

partition Lie algebras is reflected by the composition product of the power ring P .

For ease of notations, we will use L to denote the monad Lieπ
Fp,E∞

throughout this

proof. The unary operations on the homotopy groups of algebras over L, other than the

self-brackets on even classes when p > 2, are concentrated in weights pn for n ≥ 1 by

Proposition 3.4.9 and 3.4.14. When A is bounded above, they live in the homotopy groups

of the summands

L[n](A) := (∂pn(Id)⊗HFp)
hΣpn

⊗ (A)⊗pn ιpn
↪−→ L(A)

by Proposition 3.1.2. The composition β ◦α of two unary operations

α ∈ P j
k [w]⊆ π j(L[w](ΣkHFp)), β ∈ P i

j[v]⊆ πi(L[v](Σ jHFp)),

considered as maps α : Σ jHFp→ L[w](ΣkHFp) and β : ΣiHFp→ L[v](Σ jHFp), is given
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by

Σ
iHFp

β−→ L[v](Σ jHFp)
L[v](α)−−−−→ L[v]◦L[w](ΣkHFp)→ L[v+w](ΣkHFp). (3.4)

The last map is induced by the weight pv+w summand

(∂pv(Id)⊗HFp)
hΣpv

⊗
(︁
(∂pw(Id)⊗HFp)

hΣpw

⊗ A⊗pw
)
)︁⊗pv

→ (∂p(v+w)(Id)⊗HFp)
hΣpv+w

⊗ A⊗pv+w

of the structure map of the monad L ◦L→ L on any bounded above object A.

Let a ∈ R̄!
((0,k),(−w, j+w)),b ∈ R̄!

((0, j),(−v, i+ v)) be the unique preimages un-

der the isomorphisms in Proposition 3.4.9 and 3.4.14 of α and β on the E2-pages of the

dual bar spectral sequences converging respectively to π∗(L(ΣkHFp)) and π∗(L(Σ jHFp)).

Since π∗(L(ΣkHFp)) is bounded above and of finite type, we can run the dual bar

spectral sequence for the HFp-module A = L(ΣkHFp) converging to π∗(L ◦L(ΣkHFp)).

The spectral sequence collapses on the E2-page

E2 ∼= Free
sLieρ

R̄!
(︁
π∗(L(ΣkFp))

)︁∼= Free
sLieρ

R̄! ◦Free
sLieρ

R̄! (ΣkFp), p = 2,

E2∼=Free(R
′)!

FreesLieFp
(︁
π∗(L(ΣkFp))

)︁∼=Free(R
′)!

FreesLieFp ◦Free(R
′)!

FreesLieFp (ΣkFp), p> 2

by comparing with Theorem 3.2.2 in the limiting case.

The map L ◦L(ΣkHFp)→ L(ΣkHFp) coming from the monad composition induces a

map of the E2-pages of the dual bar spectral sequences

Free
sLieρ

R̄! ◦Free
sLieρ

R̄! (ΣkFp)→ Free
sLieρ

R̄! (ΣkFp), p = 2,

Free(R
′)!

FreesLieFp ◦Free(R
′)!

FreesLieFp (ΣkFp)→ Free(R
′)!

FreesLieFp (ΣkFp), p > 2.

We need to understand the restriction of the above maps to the additive part, i.e., the hori-

zontal maps of the diagram
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Free(R
′)! ◦Free(R

′)!
(ΣkFp) Free(R

′)!
(ΣkFp)

π∗(Bar•(id,AR′,π∗(Bar•(id,AR′,Σ−kFp)
∨)∨) π∗(Bar•(id,AR′,Σ−kFp)

∨)

∼= ∼= .

Recall that Free(R
′)!
(ΣkFp) is by construction isomorphic to the unstable Ext group

UnExt∗,∗R′ (Fp,Σ
kFp)∼= π∗(Bar•(id,AR′,Σ−kFp)

∨).

We will make use of a general result of Brantner that follows from [Bra17, Theorem

3.5.1 and 4.3.2]: Suppose that T is an additive monad on ModFp associated to the free

(unstable) module functor over an algebra R. Then the composition map of the monad

|Bar•(id,T,−)|∨ is compatible with the Yoneda product on the (unstable) Ext groups over

R up to a shearing of the Ext groups.

Here AR′ is an additive monad associated with the free functor that takes the unsta-

ble module over the Koszul algebra R̄. It follows that the top map is a sheared Yoneda

product on (unstable) Ext groups. More precisely, given b ∈ R′((0, j),(−v, i + v)) ∼=

UnExt−v,i+v
R′ (Fp,Σ

jFp) and a ∈R′((0,k),(−w, j+w)) ∼= UnExt−w, j+w
R′ (Fp,Σ

kFp), the top

map produces an element

b◦a|xk ↦→ b|a|xk ∈ (R′)!((0,k),(−v−w, i+ v+w))∼= UnExt−v−w,i+v+w
R′ (Fp,Σ

kFp)

via the composite

(R′)!((0, j),(−v, i+ v))× (R′)!((0,k),(−w, j+w))

(R′)!((0, j+w),(−v, i+ v+w))× (R′)!((0,k),(−w, j+w))

(R′)!((−w, j+w),(−v−w, i+ v+w))× (R′)!((0,k),(−w, j+w))

(R′)!((0,k),(−v−w, i+ v+w)).

suspw×id

∼=

The first map is an injection on the left factor because operations are stable under suspen-

sion and here w ≥ 0, cf. Remark 3.4.2 and 3.4.12. The last map is the composition in
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the ringoid (R′)!, i.e. juxtaposition corresponding to the Yoneda product on unstable Ext

groups. This is exactly the composition product in P .

Therefore the map (3.4) lifts to a map along the E2-pages of the respective dual bar

spectral sequences, given explicitly by b|x j ↦→ b◦ (a|xk) ↦→ b|a|xk. Here we use | to denote

juxtaposition in (R′)! and xk the generator for ΣkFp. Passing to the E∞-pages, we deduce

that there is a commutative diagram

P i
j[v]×P

j
k [w] P i

k[v+w]

(R′)!((0, j),(−v, i+ v))× (R′)!((0,k),(−w, j+w)) (R′)!((0,k),(−v−w, i+ v+w))

(R′)!((−w, j+w),(−v−w, i+ v+w))

×(R′)!((0,k),(−w, j+w)) (R′)!((0,k),(−v−w, i+ v+w))

πi(L(Σ jHFp))×π j(L(ΣkHFp)) πt+l(L(ΣkHFp))

∗

∼= ∼=

∪

∼=

|

◦

as desired. The first two horizontal maps, i.e. the composition product in the power ring P ,

are given by the sheared Yoneda product, and the bottom horizontal map is given explicitly

by the map (3.4).

In particular, the composition productP j−a−b
j−a [1]×P j−a

j [1]→P j−a−b
j [2] sends (Rb,Ra)

to R(b,a) = (Qb−1)∗(Qa−1)∗ for p = 2, and (β ε1Rb′−ε1,β ε2Ra′−ε2) to

R(b′−ε1,a′−ε2,ε1,ε2) = (β 1−ε1Qb′−1)∗(β 1−ε2Qa′−1)∗

for p > 2 where 2(p− 1)a′ = a,2(p− 1)b′ = b. The two classes in the composition are

defined whenever a > − j+1 and b > a− j for p = 2, and 2a′ > − j and 2b′ > a+ ε2− j

for p > 2. Hence all the Adem relations hold.

When p = 2, a basis for additive unary operations on a degree j class is given by all

monomials (Qi1)∗(Qi2)∗ · · ·(Qis)∗ ∈ (R′)!((0, j),(s,m)) such that is≥− j+1 and il > 2il+1

for all 1 ≤ l < s, cf. Proposition 3.4.9. Any such monomial is the image of the (well-

defined) iterated composition Ri1+1Ri2+1 · · ·Ris+1 inP j−m−s
j [s]. Hence every additive unary

66



operation R(i1,...,is) can be written as a linear combination of compositions R j1 . . .R js of

operations in P∗∗ [1]. The case p > 2 is analogous.

Corollary 3.5.7. When j gets arbitrarily large, we deduce that the algebra of unary op-

erations on a degree j homotopy class of a spectral partition Lie algebra, or equivalently

a degree − j class in mod p TAQ cohomology, is the Koszul dual algebra of the mod p

Dyer-Lashof algebra.

This is because when the degree j of a class x gets arbitrarily large, all unary operations

and relations are defined on x, while the shifted Lie brackets and restrictions vanish for

degree reasons. For p > 2 one needs be careful about the precise duality. The Dyer-

Lashof operation Qi is sent to βRi = βPi in cohomological degree 2(p−1)i+1 and βQi to

Ri = Pi in cohomological degree 2(p− 1)i since the Bockstein homomorphism increases

cohomological degree by one.

3.6 Shifted restricted Lie algebra structure

Next we examine the shifted restricted Lie algebra structure on the homotopy groups of

spectral partition Lie algebras and the reduced mod p TAQ cohomology. Some of the

methods in this section are inspired by the thesis works of Antolín-Camarena and Brantner

regarding the shifted Lie algebra structure on the mod 2 homology and the Lubin Tate

theory of spectral Lie algebras in [AC20, Bra17].

We showed in Proposition 3.4.10 and 3.4.16 that in the case of a free Lieπ
Fp,E∞

-algebra

on a bounded Fp-module A as a trivial P-algebra, there is a shifted (restricted) Lie bracket

on the André-Quillen cohomology of the trivial PolyR-algebra π∗(A), which is the E2-page

of the dual bar spectral sequence that converges to TAQ−∗(A) ∼= π∗(Lieπ
Fp,E∞

(A∨)). Now

we show that there is a shifted restricted Lie algebra structure on the homotopy groups of

any spectral partition Lie algebra, or the TAQ cohomology of any E∞-HFp-algebra A. The

shifted Lie algebra structure exists at the level of HFp-modules and agrees with the shifted

Lie algebra structure on the E2-page.

Recall that the second Goodwillie derivative of the identity functor ∂2(Id) ≃ S−1 is a

naïve Σ2-spectrum with trivial Σ2-action. By Proposition 3.1.2, the weight 2 part of the free
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spectral partition Lie algebra on a bounded HFp-module A is

(︁
(∂2(Id)⊗HFp)

hΣ2
⊗ A⊗2)︁ ι2

↪−→ Lieπ
Fp,E∞

(A)≃
⨁︂

n
(∂n(Id)⊗HFp)

hΣn
⊗ (A)⊗n.

Here ιn denotes the inclusion of the weight n homogeneous piece.

The binary operation [−,−] representing the shifted Lie bracket is encoded by the

weight two part of the structure map

ξ2 : S−1⊗ (A⊗2)hΣ2 ≃ (∂2(Id)⊗HFp)
hΣ2
⊗ A⊗2 ι2−→ Lieπ

Fp,E∞
(A)→ A,

explicitly given as follows.

Construction 3.6.1. For x : Σ jHFp→A,y : ΣkHFp→A representing two homotopy classes

of a spectral partition Lie algebra A, we have a map of Lieπ
Fp,E∞

-algebras

θ : Lieπ
Fp,E∞

(Σ jHFp⊕Σ
kHFp)→ Lieπ

Fp,E∞
(A)→ A,

where the second map is the Lieπ
Fp,E∞

-algebra structural map of A. Write X = Σ jHFp and

Y = ΣkHFp. There is a binary operation [−,−] on π∗(A) represented by the map

S−1⊗X⊗Y ≃ S−1⊗ (X⊗Y ⊕Y ⊗X)hΣ2 ↪→ S−1⊗
(︁
(X⊕Y )⊗2)︁hΣ2 ≃ ∂2(Id)

hΣ2
⊗ (X⊕Y )⊗2

(3.5)

followed by the composite

θ ◦ ι2 : ∂2(Id)
hΣ2
⊗ (X⊕Y )⊗2 ↪→ Lieπ

Fp,E∞
(Σ jHFp⊕Σ

kHFp)→ A,

which sends the pair of homotopy classes x and y to a class [x,y] ∈ π∗(A).

At the level of the dual bar spectral sequence, the binary operation [x,y] ∈ π∗(A) is

represented uniquely up to a nonzero scalar by the weight 2 part of the composite

Σ
−1(Σ jF2⊕Σ

kF2)→ FreesLieρ

F2 (Σ jF2⊕Σ
kF2) ↪→ FreesLieρ

F2 (Σ jFp⊕Σ
kFp)

∼= π∗(Lieπ
Fp,E∞

(Σ jHF2⊕Σ
kHF2))

θ∗−→ π∗(A),
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Σ
−1(Σ jFp⊕Σ

kFp)→ FreesLieFp (Σ jFp⊕Σ
kFp) ↪→ Free(R

′)!
FreesLieFp (Σ jFp⊕Σ

kFp)

∼= π∗(Lieπ
Fp,E∞

(Σ jHFp⊕Σ
kHFp))

θ∗−→ π∗(A),

for p > 2.

More precisely, since the dual bar spectral sequence converging to π∗(Lieπ
Fp,E∞

(Σ jHFp⊕

ΣkHFp)) collapses on the E2-page with no extension problems, there are unique preimages

of x,y on the E2-page, which we again call x,y by abuse of notations. The binary operation

[−,−] is then given at all primes p by

Σ
−1(Σ jFp⊕Σ

kFp)→ Fp{[x,y]} ↪→ wt2
(︁
FreesLieFp (Σ jFp⊕Σ

kFp)
)︁

∼= π∗
(︁
S−1 hΣ2
⊗ (Σ jHFp⊕Σ

kHFp)
⊗2)︁

(ι2)∗−−→ wt2[π∗(Lieπ
Fp,E∞

(Σ jHFp⊕Σ
kHFp))]

θ∗−→ π∗(A)

up to a nonzero scalar c. We fix a choice of the generator for the shifted Lie bracket on

the E2-page of the dual bar spectral sequence so that c = 1, and by abuse of notation we

use [−,−] to denote both the binary operation on π∗(A) and the shifted Lie bracket on the

E2-page.

Translating to cohomological grading, we constructed a binary operation

[−,−] : TAQm
(A)⊗TAQn

(A)→ TAQm+n+1
(A)

for any Enu
∞ -HFp-algebra A.

First we show that this binary operation is indeed a shifted Lie bracket in a general

sense.

Proposition 3.6.2. The binary operation [−,−] in Construction 3.6.1 satisfies graded com-

mutativity [x,y] = (−1)|x||y|[y,x] and the graded Jacobi identity

(−1)|x||z|[x, [y,z]]+ (−1)|x||y|[y, [z,x]]+ (−1)|y||z|[z, [x,y]] = 0.

We shall see in the next proposition that [x,x] = 0 for all x at p = 2 and [x, [x,x]] = 0
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for all x at p = 3. Hence [−,−] equips the homotopy groups of any spectral partition Lie

algebra with a shifted Lie algebra structure as is the convention of this paper.

Proof. Graded commutativity [x,y] = (−1)|x||y|[y,x] follows by construction, with the sign

coming from the induced action of the transposition (12) ∈ Σ2. To check the graded Jacobi

identity of the shifted bracket, we use an argument adapted from [AC20]. Let A= Σ jHFp⊕

ΣkHFp⊕ΣlHFp. The iteration [[−,−],−] of the binary operation [−,−] is given by the

weight 3 summand

(∂2(Id)⊗HFp)⊗
(︂(︁

(∂1(Id)⊗HFp)
hΣ1
⊗ A

)︁
⊗
(︁
(∂2(Id)⊗HFp)

hΣ2
⊗ A⊗2)︁)︂

(3.5)
↪−−→wt3

[︂
(∂2(Id)⊗HFp)

hΣ2
⊗

(︂(︁
(∂1(Id)⊗HFp)

hΣ1
⊗ A

)︁
⊕
(︁
(∂2(Id)⊗HFp)

hΣ2
⊗ A⊗2)︁)︂⊗2]︂

→(∂3(Id)⊗HFp)
hΣ3
⊗ A⊗3

of the monad composition Lieπ
Fp,E∞

◦Lieπ
Fp,E∞

→ Lieπ
Fp,E∞

applied to A. Since ∂2(Id)≃ S−1

and ∂1(Id)≃ S both have trivial actions by the symmetric groups, we deduce that the source

of the above structure map is equivalent to

∂2(Id)⊗ (∂1(Id)⊗∂2(Id))⊗HFp⊗ (A⊗3)hΣ3 .

Denote by ν the structure map ∂2(Id)⊗ (∂1(Id)⊗ ∂2(Id))→ ∂3(Id). The graded Jacobi

identity

(−1)|x||z|[x, [y,z]]+ (−1)|x||y|[y, [z,x]]+ (−1)|y||z|[z, [x,y]] = 0

is then equivalent to showing that ν +(σ)∗ν +(σ)2
∗ν is null-homotopic, where (σ)∗ is the

induced action of the cyclic permutation (123). It was proved in [AC20, Proposition 5.2]

that ν +(σ)∗ν +(σ)2
∗ν is null-homotopic.

Next we investigate the interaction between the shifted Lie bracket [−,−] and the unary

operation in Construction 3.5.1.

Proposition 3.6.3. Given any x,y ∈ π∗(A) and unary operation α of positive weight, we

have [x,α(y)] = 0 unless one of the following condition is satisfied:
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(1) p = 2 and α is an iteration of bottom unary operations on y. The bottom unary

operation on a class y is given by R−|y|+1 in Construction 3.5.1, which equips the shifted

Lie bracket with a restriction map x ↦→ x[2]. In particular [x,x] = 0 for all x.

(2) p > 2 and y is in odd degree α is an iteration of bottom unary operations on y. The

bottom unary operation on an odd class y is given by R(−|y|+1)/2 in Construction 3.5.1. In

particular [x, [x,x]] = 0 for all x when p = 3.

Proof. We use an argument adapted from [Bra17, Proposition 4.3.15]. Suppose that α is

a nonempty sequence of operations with weight w divisible by p, and x : Σ jHFp→ A,y :

ΣkHFp→ A representing two homotopy classes of a spectral partition Lie algebra A. The

operation [x,α(y)] is encoded by the weight w+ 1 part of the structure map Lieπ
Fp,E∞

◦

Lieπ
Fp,E∞

→ Lieπ
Fp,E∞

, i.e.,

Σ
j+k+|α|−1HFp→ d2⊗

(︂(︁
d1

hΣ1
⊗ Σ

jHFp
)︁
⊗
(︁
dw

hΣw
⊗ (ΣkHFp)

⊗w)︁)︂
(3.5)
↪−−→ wtw+1

[︂
d2

hΣ2
⊗

(︂(︁
d1

hΣ1
⊗ Σ

jHFp
)︁
⊕
(︁
dw

hΣw
⊗ (ΣkHFp)

⊗w)︁)︂⊗2]︂
→ dw+1

h(Σ1×Σw)
⊗ (Σ jHFp⊗Σ

kwHFp)

↪→ Lieπ
Fp,E∞

(Σ jHFp⊕Σ
kHFp)→ Lieπ

Fp,E∞
(A)→ A,

(3.6)

where we write dn for ∂n(Id)⊗HFp for ease of notation. Note that the action obtained by

restriction to Σ1×Σw ⊂ Σw+1 on ∂w+1(Id) is freely induced from the action of the trivial

subgroup on S−w. For any finite group G, we have (IndG
{e}(X)⊗Y )hG ≃ X ⊗Y for all

G-spectra Y by the Wirthmüller isomorphism. Hence

(∂w+1(Id)⊗HFp)
h(Σ1×Σw)
⊗ Σ

j+kwHFp ≃ Σ
j+(k−1)wHFp.

In particular, the Fp-module of weight w+ 1 operations on spectral partition Lie algebras

coming from the bracket of one weight one operation and one weight w operation is one-

dimensional. Note that [[· · · [[x,y],y] · · · ],y], where we take the bracket with y exactly w

times, is a class of weight w+1 obtained by taking the bracket of y with a length w bracket
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[[· · · [[x,y],y] · · · ],y] where we take the bracket with y exactly w−1 times in

FreesLieρ

Fp ◦FreesLieρ

Fp (Σ jFp⊕Σ
kFp)⊂ Free

sLieρ

R̄! ◦Free
sLieρ

R̄! (Σ jFp⊕Σ
kFp)

∼= π∗(Lieπ
Fp,E∞

◦Lieπ
Fp,E∞

(Σ jHFp⊕Σ
kHFp))

θ∗−→ π∗(A)

when p = 2 and

FreesLieFp ◦FreesLieFp (Σ jFp⊕Σ
kFp)⊂ Free(R

′)!
FreesLieFp ◦Free(R

′)!
FreesLieFp (Σ jFp⊕Σ

kFp)

∼= π∗(Lieπ
Fp,E∞

◦Lieπ
Fp,E∞

(Σ jHFp⊕Σ
kHFp))

θ∗−→ π∗(A)

for p> 2. In the free case this class is nonzero, so we obtain a generator γ of the Fp-module

of weight w+ 1 operations coming from the bracket of one weight one operation and one

weight w operation.

If α represents an iteration of the self-bracket, then [x,α(y)] = 0 by the Jacobi identity

when p ̸= 3. When p = 3 and |x|= k is even, a degree count shows that [x, [x,x]] = 0 since

the weight 3 part of the E2-page of the dual bar spectral sequence

E2 ∼= Free(R
′)!

FreesLieFp ◦Free(R
′)!

FreesLieFp (ΣkFp)⇒ π∗(Lieπ
Fp,E∞

◦Lieπ
Fp,E∞

(ΣkHFp))

has nothing in total degree 3k−2.

Suppose that α is not an iteration of the self-bracket. If α is not an iteration of the bot-

tom operation R−|x|+1 on x when p = 2, or an iteration of the bottom operation R(−|x|+1)/2

on odd x when p > 2. Then a comparison of topological degrees shows that [x,α(y)] has

strictly smaller topological degree than the generator γ = [[· · · [[x,y],y] · · · ],y] of weight

w+ 1 operations coming from the bracket of one weight one operation and one weight w

operation. Therefore it has to be zero.

If p= 2 and α is the bottom operation R−|y|+1 on y, then we know that [x,(Q−|y|)∗(y)] =

[[x,y],y] on the E∞∼=E2-page of the dual bar spectral sequence converging to π∗(Lieπ
F2,E∞

(Σ jHF2⊕

ΣkHF2))) by Proposition 3.4.10. This is the image of [x,(Q−|y|)∗(y)] under the summand

FreesLieF2 ◦Free
sLieρ

R̄! (Σ jFp⊕Σ
kFp)→ Free

sLieρ

R̄! (Σ jFp⊕Σ
kFp)
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of the map of E2-pages of the dual bar spectral sequences for the monad composition map

Lieπ
Fp,E∞

◦Lieπ
Fp,E∞

(Σ jHFp⊕Σ
kHFp)→ Lieπ

Fp,E∞
(Σ jHFp⊕Σ

kHFp).

Passing to the E∞-pages of the dual bar spectral sequences of the composition map, we de-

duce that [x,R−|y|+1(y)] = γ = [[x,y],y], i.e., the bottom operation serves as the restriction

for the bracket. By induction we conclude that if α is the n-th iteration of the restriction,

then [x,α(y)] = γ in weight 2n+ 1. Note that there is only one unary operation of de-

gree −|x|+ 1 on any class x up to a scalar, and the restriction is such an unary operation.

Hence we deduce that [x,x] = 0 since taking self-bracket is an additive operation while the

restriction is not.

When p > 2, we expect to see a shifted restricted Lie algebra structure on the E∞-page

analogous to the case p = 2 with the restriction given by the bottom operation, as was noted

in [BCN21, Remark 4.49] and by Basterra and Mandell, cf. [Law20, Example 1.8.8].

Definition 3.6.4. (cf. [Jac41], [Fre00]) A shifted restricted Lie algebra over Fp, denoted

as a sLieρ

Fp
-algebra, is a graded Fp-module L = L• with a shifted Lie bracket Lm⊗Ln→

Lm+n−1 and a restriction map x ↦→ x[p] with x[p] ∈ Lp|x|−p+1 whenever |x| is odd, satisfying

the following identities:

1. (cx)[p] = cpx[p] for all odd degree x ∈ L and c ∈ Fp;

2. ad(x[p]) = ad(x) for all odd degree x ∈ L;

3. For all odd degree x,y ∈ L, (x + y)[p] = x[p] + y[p] + ∑
p−1
i=1

si
i (x,y), where si is the

coefficient of t i−1 in the formal expression ad(tx+ y)p−1(x).

Here ad(x) stands for the self-map y ↦→ [y,x] on L.

Lemma 3.6.5. If j is odd, then TAQ−∗(Σ− jHFp) ∼= π∗(Lieπ
Fp,E∞

(Σ jHFp)) admits a re-

striction x ↦→ x[p] that coincides with the bottom operation R(− j+1)/2 on the generator x in

degree j up to a unit λ j that depends only on j. If j is even, such a map does not exist. In

general the shifted Lie bracket on the homotopy groups of spectral partition Lie algebras
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admits a restriction that on any odd degree class x is represented by the bottom operation

R(−|x|+1)/2 up to a unit λ|x|.

Proof. It suffices to check the cases of single generators and two generators. Since the

category of HFp-modules is equivalent to the derived category of chain complexes over Fp

([Lur17, 7.1.1.16]), we can think of πs+t(D|Bar•(id,P,A)|) as the homology of the chain

complex

C =C∗(D|Bar•(id,P,A)|)∼=
⨁︂

n
(sLie(n)⊗ (A∨)⊗n)hΣn

when A is bounded by [BCN21, Remark 4.49], and its homotopy group is a shifted re-

stricted Lie algebra. Here sLie is the shifted Lie operad in the dg-category, with sLie(r)

concentrated in dimension 1− r, weight r. It remains to show that the restriction is nonzero

and identify the restriction on the generator x of Σ jFp.

There is a homotopy fixed points spectral sequence

E2
s,t = Hs

(︂
Σp,πt

(︁
sLie(p)⊗ (Σ jFp)

⊗p)︁)︂⇒ πt−s

(︂(︁
sLie(p)⊗ (Σ jHFp)

⊗p)︁hΣp
)︂
,

where Σ jFp is considered as a one-dimensional chain complex over Fp concentrated in

homological degree j with no differentials. Since πt(sLie(p)⊗ (Σ jFp)
⊗p) = 0 unless t =

p j+ 1− p, the E2-page of the homotopy fixed points spectral is concentrated on a single

line t = p j + 1− p. Hence the spectral sequence collapses and there are no extension

problems.

Taking s = 0, we deduce that

πpn+1−p
(︁
sLie(p)⊗ (Σ jFp)

⊗p)︁∼= H0(︁
Σp; sLie(p)⊗ (Σ jFp)

⊗p)︁,
where the right hand side has coefficients in ModFp . By [Fre00, Theorem 1.2.5], if j is odd

then

H0(︁
Σp; sLie(p)⊗ (Σ jFp)

⊗p)
)︁∼= (︁

sLie(p)⊗ (Σ jFp)
⊗p)︁Σp ∼=

(︁
Σ
−1Lie(p)⊗ (Σ j+1Fp)

⊗p)︁Σp

contains an element that serves as the restriction x[p] in the free shifted restricted Lie algebra

74



on Σ jFp. Since x[p] is in topological degree p j+1− p and the only element in the weight p

part of πp j+1−p(Lieπ
Fp,E∞

(Σ jHFp)) comes from the bottom operation (βQ(− j+1)/2)∗(x) up

to a unit λ on the E2-page of the dual bar spectral sequence, we conclude that the restriction

on x is given by the image of λR(− j+1)/2(x) in πp j+1−p(Lieπ
Fp,E∞

(Σ jHFp)). This unit λ is

fixed for any class of a given degree j by functoriality of the restriction map and the bottom

Dyer-Lashof operation on an odd class x as the p-fold Massey product on x.

The class x does not admit a restriction when j is even because πp j+1−p(Lieπ
Fp,E∞

(Σ jHFp))=

0, which is as expected for a shifted restricted Lie algebra.

Next we take A = Σ jHFp⊕ ΣkHFp, with j odd. There is a homotopy fixed points

spectral sequence

E2
s,t =

⨁︂
n

Hs
(︂

Σn,πt
(︁
sLie(n)⊗(Σ jFp⊕Σ

kFp)
⊗n)︁)︂⇒⨁︂

n
πt−s

(︂(︁
sLie(n)⊗(Σ jHFp⊕Σ

kHFp)
⊗n)︁hΣn

)︂
.

On the line s = 0, we have

⨁︂
n

H0(︁
Σn; sLie(n)⊗ (Σ jFp⊕Σ

kFp)
⊗n)

)︁∼=⨁︂
n

(︁
sLie(n)⊗ (Σ jFp⊕Σ

kFp)
⊗n)︁Σn,

which is the free shifted restricted Lie algebra on the Fp-module Σ jFp⊕ΣkFp by [Fre00,

Theorem 1.2.5]. A prior the bracket on the E2-page of the homotopy fixed points spectral

sequence survives to a bracket on the E∞-page that agrees with the shifted Lie bracket

[−,−] in Construction 3.6.1 up to a nonzero scalar c. Hence we choose a generator for

sLie(2) so that c = 1, and by abuse of notation we also denote the bracket on the E2-

page by [−,−]. The (p+ 1)-th summand of the spectral sequence collapses on the E2-

page with no extension problems, since the group cohomology of Σn with coefficients in

ModFp is concentrated in degree 0 when n is coprime to p. From the computation on one

generator, we deduce that the restriction x[p] on the generator x of Σ jFp on the E2-page

of the homotopy fixed points spectral sequence survives to the element λ jR(− j+1)/2(x)

with λ j the unit given in the first part of the proof. Furthermore, the identity [y,x[p]] =

[[· · · [[y,x],x] · · · ],x] on the E2-page survives to an identity in πp j+k−p(Lieπ
Fp,E∞

(Σ jHFp⊕
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ΣkHFp)).

Similarly, suppose that j and k are both odd and let x,y represent the geneorator of Σ jFp

and ΣkFp on the E2-page above. Then the identity (x+ y)[p] = x[p]+ y[p]+∑
p−1
i=1

si
i (x,y)

on the line s = 0 of the E2-page survives to on identity (x + y)[p] = λ jR(− j+1)/2(x) +

λkR(−k+1)/2(y)+∑
p−1
i=1

si
i (x,y) on the E∞-page via the collapse of the homotopy fixed points

spectral sequence, where si is the coefficient of t i−1 in the formal expression ad(tx +

y)p−1(x). In particular, if j = k then

λ jR(− j+1)/2(x+ y) = λ jR(− j+1)/2(x)+λ jR(− j+1)/2(y)+
p−1

∑
i=1

si

i
(x,y),

so the bottom operation on an odd class is not additive in general even though it lifts to an

additive operation on the E2-page of the dual bar spectral sequence.

Finally, we want to show that the collection x[p] := λ jR(−|x|+1)/2(x) for |x|= j odd and

λ j a unit depending only on j defines a restriction map (−)[p] for the shifted Lie bracket

on the homotopy groups of spectral partition Lie algebras by extending to linear sums of

classes x,y with |x| = j ̸= |y| = k odd via (x+ y)[p] := λ jR(− j+1)/2(x)+λkR(−k+1)/2(y)+

∑
p−1
i=1

si
i (x,y). The pth iteration of [−,x] on a class y is encoded by a summand in the weight

p+1 part of the iterated monad composition

(Lieπ
Fp,E∞

)◦p→ (Lieπ
Fp,E∞

)◦p−1→ ··· → Lieπ
Fp,E∞

applied to HΣ jFp⊕HΣkFp. Explicitly, this summand is the (p−1)-th iteration of ∂2(Id)⊗

(∂1(Id)⊗(−)) on ∂2(Id). Note that the last step Lieπ
Fp,E∞

◦Lieπ
Fp,E∞

→Lieπ
Fp,E∞

of the above

chain of compositions is

(∂2(Id)⊗HFp)⊗
(︂(︁

(∂1(Id)⊗HFp)
hΣ1
⊗ Σ

jHFp
)︁
⊗
(︁
(∂p(Id)⊗HFp)

hΣp
⊗ (ΣkHFp)

⊗p)︁)︂
→(∂p+1(Id)⊗HFp)

h(Σ1×Σp)
⊗ (Σ jHFp⊗Σ

kpHFp)

as in (3.6), which we showed to be one-dimensional in Proposition 3.6.3 with [[· · · [[y,x],x] · · · ],x]
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where x appears p times a generator. The monad composition induces a map of homotopy

fixed points spectral sequences, both of which collapse on the E2-page at weight p+1 with

no extension problems. Hence we get a map that is the weight p+1 part of

⨁︂
n

(︂
sLie(n)⊗

(︁
π∗(

⨁︂
m

sLie(m)
hΣm
⊗ (Σ jFp⊕Σ

kFp)
⊗m)

)︁⊗n
)︂Σn
→

⨁︂
n

(︂
sLie(n)⊗(Σ jFp⊕Σ

kFp)
⊗n
)︂Σn

along the line s = 0 on the E2-pages. This map has as summand

sLie(2)
Σ2
⊗
(︂(︁

sLie(1)⊗ (Σ jFp⊕Σ
kFp)

⊗1)︁Σ1⊕
(︁
sLie(p)⊗ (Σ jFp⊕Σ

kFp)
⊗p)︁Σp

)︂⊗2

→
(︁
sLie(p+1)⊗ (Σ jFp⊕Σ

kFp)
⊗p+1)︁Σp+1,

with further summand

φ : sLie(2)⊗
(︂

Σ
jFp⊗

(︁
sLie(p)⊗ (ΣkFp)

⊗p)︁Σp
)︂
→

(︁
sLie(p+1)⊗ (Σ jFp⊕Σ

kFp)
⊗p+1)︁Σp+1.

The map φ agrees with the construction 3.6.1 on the E∞-page, i.e., it is the evaluation of

the free shifted restricted Lie bracket. The image of [y,R(−|x|+1)/2(x)] under φ is [y,x[p]] =

[[· · · [[y,x],x] · · · ],x] up to a unit λ|x|. Hence on the E∞-page we have [y,λ|x|R(−|x|+1)/2(x)] =

[[· · · [[y,x],x] · · · ],x] as desired.

To sum up, we have the following theorem.

Theorem 3.6.6. The binary operation [−,−] constructed above equips the homotopy groups

of any spectral partition Lie algebra A with a shifted restricted Lie algebra bracket

[−,−] : π j(A)⊗πk(A)→ π j+k−1(A)

over Fp. If p = 2, for all j and x ∈ π j(A) the restriction x[2] is represented by the bottom

operation R− j+1(x). The restriction map on a sum of classes x,y in degrees j ̸= k is given

by

(x+ y)[2] = λ jR− j+1(x)+λkR−k+1(y)+ [x,y].

If p > 2, for all odd j and x∈ π j(A) the restriction x[p] is the bottom operation R(− j+1)/2(x)
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up to a unit λ j. The restriction map on a sum of classes x,y in degrees j ̸= k are given by

(x+ y)[p] = λ jR(− j+1)/2(x)+λkR(−k+1)/2(y)+
p−1

∑
i=1

si

i
(x,y),

where si is the coefficient of t i−1 in the formal expression ad(tx+ y)p−1(x).

The bracket is compatible with the unary operations in Theorem 3.5.5 and 3.5.6 in the

sense that [x,α(y)] = 0 for x,y ∈ π∗(A) and any unary operations α of positive weight that

is not an iteration of the restriction map. Equivalently, for any Enu
∞ -HFp-algebra A, there

is a shifted Lie bracket with restriction

[−,−] : TAQ j
(A)⊗TAQk

(A)→ TAQ j+k+1
(A)

satisfying the above conditions.

Remark 3.6.7. The interaction between the unary operations and the shifted Lie bracket on

the homotopy groups of spectral partition Lie algebras differ from that on the homology of

spectral Lie algebras. It was shown in [AC20, Kja18] that on the mod p homology groups

of spectral Lie algebras, the bracket [x,α(y)] always vanishes if α is a unary operation of

positive weight. In comparison, on the homotopy groups of spectral partition Lie algebras

the bracket [x,α(y)] does not necessarily vanish when α is an iteration of the restriction

map, which is a non-additive unary operation. This phenomenon also shows up in the

Lubin-Tate theory of spectral Lie algebras, as was observed in [Bra17, Proposition 4.3.16]

that the non-additive unary operation θ interacts nontrivially with the bracket. For instance,

when p = 2, the bottom non-vanishing operation Q̄|x| on a mod 2 homology class x of a

free spectral Lie algebra is identified with the nonzero self-bracket [x,x] by [AC20, Lemma

6.4]. Hence [y, Q̄|x|(x)] = 0 by the Jacobi identity for all x,y. In comparison, the bottom

operation R−|x|+1 on a class in the homotopy group of a free spectral partition Lie algebra

over HF2 represents the restriction on x, so [y,R−|x|+1(x)] = [[y,x],x] is nonzero. Whereas

self-brackets always vanish in shifted restricted Lie algebras over F2, cf. [Fre00, Remark

1.2.9].
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3.6.1 Generation

Finally we put all the structures together to obtain the optimal target category for the ho-

motopy group of spectral partition Lie algebras, or equivalently the reduced mod p TAQ

cohomology.

Definition 3.6.8. A P-sLieρ -algebra L is a module over the power ring P , together with a

shifted Lie bracket and a restriction (−)[p], that satisfies the following conditions:

(1) If p = 2, for all j and x ∈ π j(A) the restriction x[2] is given by the bottom operation

R− j+1(x). The restriction map on a sum of classes x and y is given by

(x+ y)[2] = R− j+1(x)+R−k+1(y)+ [x,y].

If p> 2, for all odd j and x∈ π j(A) the restriction x[p] is up to a unit λ j the bottom operation

R(− j+1)/2(x). The restriction map on the sum of classes x,y in degrees j ̸= k are given by

(x+ y)[p] = λ jR(− j+1)/2(x)+λkR(−k+1)/2(y)+
p−1

∑
i=1

si(x,y),

where si is the coefficient of t i−1 in the formal expression ad(tx+ y)p−1(x);

(2) The bracket [y,α(x)] vanishes for any x,y ∈ L and α a unary operation of positive

weight, unless α is an iteration of the restriction map.

Denote by sLieρ

P the category of P-sLieρ -algebras.

Hence the homotopy group every spectral partition Lie algebra, or the reduced TAQ

cohomology of any E∞-HFp-algebra, has the structure of an sLieρ

P -algebra. The free

P-sLieρ -algebra functor FreesLieρ

P on a Fp-module M can be computed as follows: first

we take the free shifted restricted Lie algebra over Fp, then take the free P-module on

FreesLieρ

Fp (M). If p = 2 then we define the bottom operation R−|x|+1(x) to be the restriction

x[2]; if p > 2, we identify the restriction x ↦→ x[p] with the bottom operation R(−|x|+1)/2(x)

up to a unit λ|x| for any odd degree x. Finally we extend the shifted Lie bracket and the

restriction map to the quotient of FreePFreesLieρ

Fp (M) by the above identification, subject

to the conditions in Definition 3.6.9.
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Note that when p > 2, given an Fp-module M with basis {x1, . . . ,xk}, a basis for

FreesLieρ

Fp (M) is given by

{v}∪{u,u[p],(u[p])[p], . . .},

where u ranges over shifted brackets represented by Lyndon words in letters x1, . . . ,xk with

odd degree, and v those with even degree. (See, for instance, [BKS05, section 2].) Propo-

sition 3.4.10 and 3.4.16 immediately imply the following.

Corollary 3.6.9. The canonical map of P-sLieρ -algebras

α : FreesLieρ

Pπ∗(A)→ π∗(Lieπ
Fp,E∞

(A))

is an isomorphism when A is any direct sum of shifts of HFp’s.

Hence we have identified the target category for the homotopy groups of spectral parti-

tion Lie algebras and the reduced TAQ cohomology of any E∞-HFp-algebra.

3.7 Operations on mod p S-linear TAQ cohomology

As an application, we obtain in this section the structure of natural operations on the mod

p S-linear TAQ cohomology TAQ∗(−,S;HFp) of E∞-S-algebras, as well as determining

their relations. The results in this section are largely inspired by conversations with Tyler

Lawson.

Recall from [Law20, 1.8] that the mod p TAQ homology of an E∞-S-algebra R can be

computed by

TAQ∗(R,S;HFp)≃ π∗(|Bar•(HFp⊗ id,E∞,R)|).

For any Enu
∞ -S-algebra A, the reduced mod p TAQ cohomology of an E∞-S-algebra S⊕A

is the same as the mod p TAQ cohomology groups

TAQn
(A,S;HFp) := [Σ−n|Bar•(id,Enu

∞ ,A)|,HFp]Sp.

When A is of finite type, TAQ∗(A,S;HFp) ≃ π−∗(D|Bar•(HFp⊗ id,Enu
∞ ,A)|). Since all
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operations vanish on the unit of the mod p TAQ cohomology except for multiplication by

units, we will again compute operations on TAQ∗(−,S;HFp) by throwing away the base

point and computing the dual bar spectral sequence on representing objects.

Corollary 3.7.1. Unary operations on a degree j cohomology class in the reduced mod

p S-linear TAQ cohomology TAQ∗(A,S;HFp) of Enu
∞ -S-algebras A are parametrized by

the free P-sLieρ -algebra FreesLieρ

P (Σ− jA), where A is the mod p Steenrod algebra with

homological grading.

In general, for any tuple (i1, . . . ik), the k-ary cohomology operations

k

∏
i=1

TAQil(−,S;HFp)→ TAQm(−,S;HFp)

away from the unit are parametrized by the homological degree −m part of

FreesLieρ

P (Σ−i1A⊕·· ·⊕Σ
−ikA).

Proof. The representing objects for the mod p TAQ cohomology functor TAQ∗(−,S;HFp)

are the trivial square-zero extensions S⊕Σi1HFp⊕·· ·ΣinHFp. To compute the unary op-

erations, we plug in the trivial algebras S⊕Σ jHFp. There is a base change formula

TAQ(R,S;HFp)⊗
S

HFp ≃ TAQ(R⊗
S

HFp,HFp;HFp),

so unary operations on a degree j cohomology class are parametrized by the reduced mod

p TAQ cohomology TAQ∗(Σ jHFp⊗HFp,HFp;HFp).

It follows from the limiting case of Proposition 3.4.10 and 3.4.16 that the dual bar

spectral sequence takes the form

E2
s,t = πs(Bar•(id,PolyR,π∗(Σ

jHFp⊗HFp))
∨)t ⇒ TAQ−s−t

(Σ jHFp⊗HFp,HFp;HFp)

and collapses on the E2-page. Hence we deduce that

E∞
s,t
∼= E2

s,t
∼= FreesLieρ

R! (Σ− jA)∼= FreesLieρ

P (Σ− jA), p = 2,
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E∞
s,t
∼= E2

s,t
∼= Free(R

′)!
FreesLieFp (Σ− jA)∼= FreesLieρ

P (Σ− jA), p > 2

The computation for k > 1 is similar.

The Steenrod operations commute with the bracket via the usual Cartan formula

Sqa[x,y] = ∑
i
[Sqi(x),Sqa−i(y)], for p = 2,

Pa[x,y] = ∑
i
[Pi(x),Pa−i(y)], βPa[x,y] = ∑

i
([βPi(x),Pa−i(y)]+ [Pi(x),βPa−i(y)])

for p > 2.

Finally we deduce the relations between the Steenrod operations and the unary Fp-

linear TAQ cohomology operations.

Proposition 3.7.2. The Steenrod operations commute with unary Fp-linear TAQ cohomol-

ogy operations Ri via the Nishida relations on mod p cohomology, i.e.,

SqaR−|x|+1(x) = ∑

(︃
j− c

a−2c

)︃
Ra+ j+1−cSqc(x)+ ∑

l<k,l+k=a
[Sql(x),Sqk(x)],

SqaRb(x) = ∑

(︃
b−1− c

a−2c

)︃
Ra+b−cSqc(x), b >−|x|+1

for p = 2. For p > 2 we have

Pn
βR j(x) =(−1)n−i

∑
i

(︃
( j− i)(p−1)

n− pi

)︃
βRn+ j−iPi(x)

+(−1)n−i
∑

i

(︃
( j− i)(p−1)−1

n− pi−1

)︃
Rn+ j−i

βPi(x),

PnR j(x) = (−1)n−i
∑

i

(︃
( j− i)(p−1)−1

n− pi

)︃
Rn+ j−iPi(x)
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for all 2 j >−|x|+1, as well as

PnR j(x) =(−1)n−i
∑

i

(︃
( j− i)(p−1)−1

n− pi

)︃
Rn+ j−iPi(x)

+
1

λ|x|
∑

I,σ∈Σp,σ(1)=1
[[· · · [[Piσ(1)(x),Piσ(2)(x)],Piσ(3)(x)] · · · ],Piσ(p)(x)]

when the degree of x is odd and 2 j = −|x|+ 1, where the bracket term sums over all

nondecreasing sequences I = (0≤ i1 ≤ i2 ≤ . . .≤ ip) with i1 + i2 + · · ·+ ip = n for p > 2.

Recall that λ|x| is the unit by which bottom operation on an odd degree class x differs

from the restriction x[p] on x, cf. Lemma 3.6.5.

Remark 3.7.3. Note that the commuting relations between the Steenrod operations and the

TAQ cohomology operations Ri coincide with the Adem relations for Steenrod algebras,

thereby reinforcing the heuristics that the operations Ri are extended Steenrod operations.

Proof of Proposition 6.2. Since the operations Ri = (Qi−1)∗ come from the linear dual of

the Dyer-Lashof operations Qi−1, the Steenrod operations commute with Ri via the Nishida

relations on cohomology. When p = 2 the relations are worked out explicitly, for example,

by Miller in [Mil16]. The Nishida relations for applying a Steenrod operation to the bottom

operation on x involves an extra bracket term because the bottom operation is the restriction

on x.

For p > 2, the Nishida relations on cohomology can be read off from Theorem 3 and

its corollary in Nishida’s original paper [Nis68]:

Pn
βR j =(−1)n−i

∑
i

(︃
( j− i)(p−1)

n− pi

)︃
βRn+ j−iPi+(−1)n−i

∑
i

(︃
( j− i)(p−1)−1

n− pi−1

)︃
Rn+ j−i

βPi,

PnR j = (−1)n−i
∑

i

(︃
( j− i)(p−1)−1

n− pi

)︃
Rn+ j−iPi.

Analogous to the case p = 2, when x is a class in odd degree, the Nishida relations for

the steenrod action on the bottom class PnR(−|x|+1)/2(x) involve extra bracket terms since

λ|x|R(−|x|+1)/2(x) is the restriction on x.

In order to determine the extra bracket terms, we need an explicit expression for the
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restriction map on an odd class. In the setting of unshifted graded Fp-modules, this is

worked out by Fresse in [Fre00, Remark 1.2.8]. Note that there is an embedding of the Lie

operad into the associative operad Assoc. Furthermore, there is an identity

∑
σ∈Σp

Xσ(1) · · ·Xσ(p) = ∑
σ∈Σp,σ(1)=1

⟨⟨· · · ⟨⟨Xσ(1),Xσ(2)⟩,Xσ(3)⟩ · · · ⟩,Xσ(p)⟩ (3.7)

in the associative operad, where ⟨x,y⟩ = xy− yx is the commutator. For x ∈ V in even

degree, the pth power on x is given by

∑
σ∈Σp

Xσ(1) · · ·Xσ(p)⊗ x⊗p ∈ (Assoc(p)⊗V⊗p)Σp ∼= (Assoc(p)⊗V⊗p)Σp.

Using the identity (3.7), we can pull back the pth power on x along the embedding

(Lie(p)⊗V⊗p)Σp ↪→ (Assoc(p)⊗V⊗p)Σp.

The resulting element is the restriction on x in the free restricted Lie algebra on V , i.e.,

x[p] =
(︂

∑
σ∈Σp,σ(1)=1

[[· · · [[Xσ(1),Xσ(2)],Xσ(3)] · · · ],Xσ(p)]
)︂
⊗ x⊗p ∈ (Lie(p)⊗V⊗p)Σp.

(3.8)

Since we are working with shifted graded Fp-modules, the commutator in the shifted

graded associative algebra is ⟨x,y⟩ = xy− (−1)(|y|−1)(|x|−1)yx. If x,y are both in odd de-

grees, then ⟨x,y⟩= xy− yx. Hence the identity (3.7) pulls back to the restriction map (3.8)

on an odd class x in the free shifted graded restricted Lie algebra over Fp. Now we apply

the Steenrod operation Pn to the pth power on x and use the Cartan formula. Note that the

Steenrod operations Pa raises degree by an even number, so none of the signs are altered.

Pulling back to the free shifted restricted Lie algebra, we deduce that the bracket terms in

the Nishida relation for PnR(−|x|+1)/2(x) consists of terms

1
λ|x|

∑
σ∈Σp,σ(1)=1

[[· · · [[Piσ(1)(x),Piσ(2)(x)],Piσ(3)(x)] · · · ],Piσ(p)(x)]

for all nondecreasing sequences 0≤ i1 ≤ i2 ≤ . . .≤ ip with i1 + i2 + · · ·+ ip = n.
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Chapter 4

The bar spectral sequence for spectral

Lie algebras

In this chapter, we examine the bar spectral sequence for spectral Lie algebras in ModFp .

As an application, we deduce new information about the mod p homology of labeled con-

figuration spaces.

For L a spectral Lie algebra, its topological Quillen object is the bar construction

TQsℒ (L) := |Bar•(id,sℒ ,L)|.

We define its mod p topological Quillen homology to be

TQsℒ
∗ (L;Fp) := π∗(|Bar•(id,sℒ ,L)|⊗Fp).

Then the bar spectral sequence (2.2) for a spectral Lie algebra L converges to the homotopy

of the mod p topological Quillen homology of L.
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4.1 Operations on the mod 2 homology of spectral Lie al-

gebras

To compute the E2-page of the bar spectral sequence computing the mod 2 topological

Quillen homology, we recall the structure on the mod 2 homology of an algebra L over the

spectral Lie operad studied in [AC20, Beh12]. It consists of a Lies
F2

-algebra structure along

with Dyer-Lashof like unary operations.

The second structure map of a spectral Lie algebra L is given by

ξ : ∂2(Id) ⊗
hΣ2

L⊗2 ≃ ∂2(Id)⊗L⊗2
hΣ2
≃ S−1⊗L⊗2

hΣ2
→ L.

At the level of homology, this gives rise to a shifted Lie bracket

[−,−] : Hm(L)⊗Hn(L)→ Hm+n−1(L),

making H∗(L) a graded shifted Lie algebra [AC20, Proposition 5.2].

For L a connective spectral Lie algebra, Behrens defined unary operations of weight 2

Q̄ j : Hd(L)→ Hd+ j−1(L)

on the mod 2 homology of L via x ↦→ ξ∗σ
−1Q j(x), where Q j : Hd(L)→ Hd+ j(L⊗2

hΣ2
) is

an extended Dyer-Lashof operation x ↦→ e j−d ⊗ x⊗ x, σ−1 : H∗(L⊗2
hΣ2

)→ H∗−1(∂2(Id)⊗

L⊗2
hΣ2

) is the desuspension isomorphism, and ξ is the second structure map [Beh12, Section

1.5][AC20, Definition 5.4]. Furthermore, Behrens showed that the quadratic relations

Q̄rQ̄s
=

r−s−1

∑
l=0

(︃
r−2l−1

s− l

)︃
Q̄r+s−lQ̄l (4.1)

for s < r ≤ 2s generate all the relations among the unary operations on a class in some

positive degree [Beh12, Theorem 1.5.1]. By definition, for x a homogeneous class Q̄i
(x) =

0 for all i < |x|, hence Q̄rQ̄s
(x) = 0 for |x| ≥ 1 and r ≤ s.

Since the extended Dyer-Lashof operations are defined on the mod 2 homology of all
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nonconnective spectra, the operations Q̄i for all i∈Z can be defined on the mod 2 homology

of any spectral Lie algebra L with Q̄i
(x) = 0 for any homogeneous class x ∈ H∗(L) and

i < |x|. Let R̄ be the quotient algebra of the free algebra over F2 on generators {Q̄ j} j∈Z by

the two sided ideal generated by the relations

Q̄rQ̄s
= ∑

l≤r−s−1

(︃
r−2l−1

s− l

)︃
Q̄r+s−lQ̄l (4.2)

for all r ≤ 2s.

The Lies-bracket interact with the unary operations in the following way.

Proposition 4.1.1. [AC20, Lemma 6.4, 6.5] For any j ∈Z and x,y homogeneous classes in

the mod 2 homology of a spectral Lie algebra, we have [Q̄ j
(x),y] = 0 and Q̄|x|(x) = [x,x].

Remark 4.1.2. It follows that Q̄2|x|−1Q̄|x|(x) = [[x,x], [x,x]] = 0. This is guaranteed by the

Behrens’ relations, since r = 2|x|− 1 ≤ s = 2|x| and the right hand side of (4.2) vanished

due to instability of the extended Dyer-Lashof operations.

Sometimes it is more convenient to switch to the lower indexing Q̄ j(x) := Q̄|x|+ j
(x),

which automatically takes into account the instability condition.

Definition 4.1.3. The lower indexed R̄-algebra is generated by symbols Q̄ j for j ≥ 0 and

relations

Q̄aQ̄b = ∑
0≤c<(a+2b−1)/3

(︃
a+b−2c−2

b− c

)︃
Q̄a+2b−2cQ̄c (4.3)

for 0≤ a≤ b+1. When j < 0 we set Q̄ j = 0.

Definition 4.1.4. An F2-module M• over R̄ is allowable if for any homogeneous element

x ∈M• we have Q̄ j1Q̄ j2 · · · Q̄ jm(x) = 0 whenever j1 < j2 + · · ·+ jm + |x|. Alternatively, an

allowable R̄-module M is a module over the lower-indexed R̄-algebra.

Now we extend Behrens’ results to all spectral Lie algebras.

Proposition 4.1.5. For L any spectral Lie algebra, its mod 2 homology H∗(L) is an allow-

able module over R̄. Furthermore, for all k ≥ 0 and n ∈ Z there is an isomorphism of
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F2-modules

H∗(∂2k(Id) ⊗
hΣ2k

(Sn)⊗2k
)∼= F2{Q̄

j1 · · · Q̄ jk(xn), jl > 2 jl+1∀l < k, jk ≥ n}

∼= F2{Q̄i1 · · · Q̄ik(xn), ∀l, il ≥ 0, il > il+1 +1}.

Proof. The connectedness assumption in Behrens’ proof of [Beh12, Theorem 1.5.1] is nec-

essary only because of the connectedness assumption on the following two inputs to the

proof. Kuhn [Kuh83, Example 7.6] (see also [Beh12, Lemma 1.4.3]) showed that for Y a

connected space, the transfer τ : H∗(Y⊗4
hΣ4

)→ H∗(Y⊗4
hΣ2≀Σ2

) is given by

QrQs ↦→ Qr ≀Qs +∑
t

[︂(︃s− r+ t
s− t

)︃
+

(︃
s− r+ t
2t− r

)︃]︂
Qr+s−t ≀Qt . (4.4)

On the other hand, Arone and Mahowald’s computation [AM99, Theorem 3.16]

H∗(∂2k(Id) ⊗
hΣ2k

(Sn)⊗2k
)∼= F2{Q̄

j1 · · · Q̄ jk(xn), jl > 2 jl+1∀l < k, jk ≥ n}

works for any odd integer n, and extends to positive even integers via the fiber sequence

∂2m(Id) ⊗
hΣ2m

(Sn)⊗2m E−→ Σ
−1

∂2m(Id) ⊗
hΣ2m

(Sn+1)⊗2m H−→ Σ
−1

∂m(Id) ⊗
hΣm

(S2n+1)⊗m,

which was obtained by differentiating the EHP sequence [AM99, Proposition 4.7][Beh12,

Corollary 2.1.4]. Behrens proved the relations by using the transfer formula and induc-

tively checking that they are compatible with the operadic composition; then he provided a

basis by comparing with Arone-Mashowald’s answer. Hence we only need to remove the

connectedness assumption on both inputs.

Note that Kuhn’s transfer formula can be obtained as a consequence of the computation

of the transfer map τ0 : H∗(BΣ4)→ H∗(BΣ2 ≀Σ2) on group homology by Priddy [Kuh85,

section 4]. For any j,n ∈ Z, the Dyer-Lashof operation Q j on a class x in degree n is

defined via the canonical isomorphism Hn+ j((Σ
nF2)

⊗2
hΣ2

)∼= H j−n(BΣ2)[2n] [May70], where

[k] denotes a shift in homological degree by k. Similarly, the wreath product Qr ≀Qs and the

weight 4 operation QrQs are defined in H j−n(BΣ2 ≀Σ2)[4n] and H j−n(BΣ4)[4n] respectively,
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so the transfer map τ on a class in degree n of any spectrum Y is a shift of τ0 by 4n.

Next we extend the computation of Arone-Mahowald to nonnegative spheres. We make

use of the long exact sequence

· · · → H∗(Σ−2
∂m(Id) ⊗

hΣm

(S2n+1)⊗m)
P∗−→ H∗(∂2m(Id) ⊗

hΣ2m

(Sn)⊗2m)

E∗−→ H∗(Σ−1
∂2m(Id) ⊗

hΣ2m

(Sn+1)⊗2m)
H∗−→ ·· ·

and isomorphisms

H∗
(︂

∂2m−1(Id) ⊗
hΣ2m−1

(S2n)⊗(2m−1)
)︂
∼= H∗

(︂
Σ
−1(∂2m−1(Id) ⊗

hΣ2m−1

(S2n+1)⊗(2m−1))
)︂

for all n by Brantner [Bra17, 4.1.3], cf. [Kja18, Lemma 4.4]. There is an equivalence of

HF2-modules with Σm-action

∂m(Id) ⊗
hΣm

(ΣnHF2)
⊗m)≃ Σ

2mn
∂m(Id) ⊗

hΣm

(Σ−nHF2)
⊗m)

for any integers m,n ≥ 0, where the action on Σ2mn is trivial. Hence we obtain an isomor-

phism

H∗(∂m(Id) ⊗
hΣm

(Sn)⊗m))∼= H∗(Σ2mn
∂m(Id) ⊗

hΣm

(S−n)⊗m))

sending Q̄ j1 · · · Q̄ jk(ιn) to σ2k+1nQ̄ j1 · · · Q̄ jk(ι−n) when m= 2k, and both vanish when m ̸= 2k

for some k ≥ 0. This addresses the case of the negative spheres.

For n= 0, we use the long exact sequence. It follows from the case n= 1 that H∗(∂m(Id)⊗hΣm

(S0)⊗m) = 0 when m is not a power of 2. Now suppose that m = 2k. By the [Beh12, Propo-

sition 2.2.5] (cf. remark after [Kja18, Proposition 4.3]), the maps E∗ and P∗ preserve the

Q̄ operations, sending the class Q̄J
(xn) to σ−1Q̄J

(xn+1) and σ−2Q̄Jx2n+1 to Q̄JQ̄n
(xn) re-

spectively. This addresses the case n = 0.

Denote by ModR̄ the category of allowable R̄-modules and FreeModR̄
ModF2

the free allow-

able R̄-module functor, which is left adjoint to the underlying functor UModR̄
ModF2

: ModR̄→

ModF2 . We will suppress the adjective allowable from here on. Then there is an additive
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monad associated with the free R̄-module functor, which we denote by AR̄.

Definition 4.1.6. [AC20, Definition 6.1] An Lies
R̄-algebra is a graded F2-module L• with

a shifted Lie bracket and an (allowable) R̄-module structure on L• such that

(1) Q̄0(x) = Q̄k
(x) = [x,x] if x ∈ Lk, and

(2) [x, Q̄k
(y)] = 0 for all x,y ∈ L.

Denote by Lies
R̄ the category of Lies

R̄-algebras. To describe the free Lies
R̄-algebra func-

tor, we recall the construction of Lyndon words on a set S, which provides a basis for the

free Lies,ti-algebra on an F2-module with F2-basis S.

Construction 4.1.7. [Hal50] The Lyndon words on a set S is defined recursively as fol-

lows: The elements of S are Lyndon words of length one and given an arbitrary fixed total

ordering. Suppose that we have defined Lyndon words of length less than k with a total

ordering. Then a Lyndon word of length k is a formal bracket ⟨w1,w2⟩ such that

1. w1,w2 are Lyndon words whose lengths add up to k;

2. w1 < w2 in the order defined thus far;

3. To take into account the Jacobi identity, if w2 = ⟨w3,w4⟩ for some Lyndon words

w3,w4, then we require w3 ≤ w1.

To extend the total order to Lyndon words of weight at most k, we first impose an arbitrary

total ordering on Lyndon words of length k, and then declare that they are greater than all

Lyndon words of lower weights.

The free Lies
R̄-algebra functor can be computed explicitly as follows:

Proposition 4.1.8. [AC20, Proposition 7.4] Let V• be an F2-module with an ordered ba-

sis B of V•. First take the free totally isotropic Lie-algebra with ⟨−,−⟩ the free Lies,ti

bracket. Denote by B′ the set of Lyndon words on the letters B, which is an F2-basis of

FreeLies,ti

ModF2
(V•). Then we take the free R̄-module on the underlying F2-module of FreeLies,ti

ModF2
(V•)

and obtain a basis consisting of elements of the form Q̄Iw with w ∈ B′. Equip the free R̄-

module FreeModR̄
ModF2

(Lies,ti(V•)) with a Lies bracket [−,−] defined on the induced basis by
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requiring [Q̄Iw1, Q̄
Jw2] = 0 if I ̸= /0 or J ̸= /0, and setting recursively along the ordering on

B′

1) If ⟨w1,w2⟩ is a Lyndon word, then [w1,w2] = ⟨w1,w2⟩;

2) [w,w] := Q̄|w|w;

3) [w1,w2] := [w2,w1] if w1 > w2;

4) [w1,w2] := [w3, [w1,w4]]+ [w4, [w1,w3]] if w1 < w2 and w2 = [w3,w4] with w1 < w3.

Antolín-Camarena showed that the monad Lies
R̄ parametrizes the mod 2 homology of

connected spectral Lie algebras. The connectivity assumption can be removed in view of

Proposition 4.1.5. Denote by Freesℒ the free spectral Lie algebra functor on Spectra

X ↦→
⨁︂
n≥1

∂n(Id) ⊗
hΣn

X⊗n.

Theorem 4.1.9. [AC20, Theorem 7.1] The canonical map

Free
Lies
R̄

ModF2
(H∗(X ;F2))→ H∗(Freesℒ (X);F2)

of Lies
R̄-algebras is an isomorphism for any spectrum X.

Proof. Behrens proved the theorem in the case when X = Sk, k > 0. Antolín-Camarena

proved the isomorphism for X a connected spectrum follows: To extend Behrens’ theorem

to a finite wedge of spheres, he made use of a result of Arone and Kankaarinta that applies

Goodwillie calculus to the Hilton-Milnor Theorem [AK98, Theorem 0.1]. To extend to all

connected spectra, note that X ⊗F2 can be written as a filtered colimit of finite wedges of

Sm⊗F2 in the category of F2-module spectra. The same arguments work to extend the

isomorphism in Proposition 4.1.5 to all spectra.

The category ModR̄ is stable under the desuspension functor Ω := Σ−1 of F2-modules

since the extended Dyer-Lashof operations are. Namely, for M ∈ModR̄, the F2-module

ΩM has an R̄-module structrue given by Q̄ j
(σ−1x) = σ−1Q̄ j

(x) for any x ∈ M. As a

result, for ΣkF2 the trivial Lies
R̄-algebra, there is an Lies

R̄-structure on Ωg such that the

bracket is trivial.
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Proposition 4.1.10. There is a natural Lies
R̄-module structure on ΩnFreeModR̄

ModF2
(Σn+kF2)

for 1≤ n≤∞, where the bracket is trivial and Q̄ j acts by x ↦→ σ−nQ̄ j
(σnx). The canonical

map

FreeModR̄
ModF2

(ΣkF2)∼= Free
Lies
R̄

ModF2
(ΣkF2)→Ω

nFreeModR̄
ModF2

(Σn+kF2)

is surjective.

Proof. There is a canonical colimit-to-limit comparison map

Freesℒ (ΣkHF2)→ΩFreesℒ (Σk+1HF2) (4.5)

of spectral Lie algebras over HF2, which after taking homotopy is the composite of the top

and right arrows of the diagram

FreeModR̄
ModF2

(ΣkF2) Free
Lies
R̄

ModF2
(ΩFreeModR̄

ModF2
(Σk+1F2))

ΣkF2 ΩFreeModR̄
ModF2

(Σk+1F2)

ev ev

i

.

Let x be the generator of ΣkF2. By naturality of the Q̄ j operation, the class Q̄ j
(x) on the top

left corner is mapped to Q̄ j
(i(x)), which is sent to σ−1Q̄ j

σ(x) under evaluation. In general

Q̄J
(x) is mapped to σ−1Q̄J

σ(x) for any sequence J. Since the Lies bracket of operations

always vanishes and [i(x), i(x)] = Q̄|x|(i(x)) = σ−1Q|x|(σx)=0, the Lies-bracket is trivial

on ΩFreeModR̄
ModF2

(Σk+1F2). Applying Theorem 4.1.9, we see that the composite is surjective

since |σ(x)|= |x|+1. Iterating the construction yields the claim.

Quillen homology

Since the path object of sModF2 lifts to sLies
R, the discussion in the previous subsection

guarantees that any Lies
R̄-algebra g has a free (cofibrant) resolution Bar•(Free

Lies
R̄

ModF2
,Lies

R̄,g)

in Lies
R̄. The left derived functor of Q

Lies
R̄

ModF2
is thus computed by

LQ
Lies
R̄

ModF2
(g)≃ Q

Lies
R̄

ModF2
Bar•(Free

Lies
R̄

ModF2
,Lies

R̄,g)≃ Bar•(id,Lies
R̄,g),

92



where id : ModF2 → ModF2 is the identity functor considered as the trivial right module

over the monad Lies
R̄ with structure map the augmentation.

Definition 4.1.11. The Quillen homology of a Lies
R̄-algebra g, denoted by HQ

Lies
R̄∗ (g), is

the total left derived functor

HQ
Lies
R̄∗,∗ (g) := H∗,∗LQ

Lies
R̄

ModF2
(g)≃ π∗,∗Bar•

(︁
id,Lies

R̄,g
)︁
.

Hence the bar spectral sequence we are interested in takes the form

E2
s,t = πs,tBar•

(︁
id,Lies

R̄,π∗(L⊗F2)
)︁∼= HQ

Lies
R̄

s,t (H∗(L;F2))⇒ TQsℒ
s+t(L;F2).

4.2 Computing the Quillen homology of spectral Lie alge-

bras

In this section, we study the Quillen homology of Lies
R̄-algebras when p = 2 via com-

parison with two smaller double complexes that are easy to compute via Koszul duality

arguments.

4.2.1 May-type spectral sequence and an upper bound

First we find an upper bound for π∗,∗Bar•(id,Lies
R̄,g) by constructing a May-type spectral

sequence. The dimensions of its E1-page is bounded above by the homotopy groups of

the bar construction of the following variant of Lies
R̄-algebras whose unary and binary

operations do not intertwine.

Definition 4.2.1. Define a Lies,ti
R̄ -algebra to be an F2-module L with an allowable R̄-

module structure and a Lies,ti-bracket ⟨−,−⟩ such that ⟨x, Q̄i
(y)⟩= 0 for all x,y∈ L. Denote

by Lies,ti
R̄ the category of Lies,ti

R̄ -algebras and the monad associated to the free Lies,ti
R̄ -algebra

functor.

The underlying F2-module of the free Lies,ti
R̄ -algebra on on F2-module V is given by that

of AR̄ ◦Lies,ti(V ). Hence Lies,ti
R̄ admits an alternative description as the category of alge-

93



bras over the composite monadAR̄◦Lies,ti, with distributive law the natural transformation

Lies,ti ◦AR̄⇒AR̄ ◦Lies,ti determined by ⟨−, Q̄i
(−)⟩= 0 for all i.

Remark 4.2.2. Comparing with Proposition 4.1.8, we see that the underlying R̄-modules

of the free Lies
R̄ and Lies,ti

R̄ -algebra on any F2-module agree. The only difference between

the two free functors is that in the latter we do not change the Lies,ti-algebra to a Lies-

algebra via the identification Q̄0(x) = [x,x].

We will see later that any Lies
R̄-algebra g can be equipped with a Lies,ti

R̄ -algebra struc-

ture. The bar construction Bar•(id,Lies
R̄,g) is then levelwise isomorphic to Bar•(id,Lies,ti

R̄ ,g).

The latter has simpler face maps in the sense that the face maps preserve the unary and bi-

nary structures respectively, whereas in the former, a Lie bracket that is not a self-bracket

can be mapped to a self-bracket. To deal with these face maps, we draw inspiration from

the May spectral sequence: suppose that we want to compute the Ext groups over a Hopf

algebroid (A,Γ). In good cases, there exists a filtration on Γ such that the associated graded

is a Hopf algebra (A,Γ′), i.e. the left and right unit are equal. Then we obtain a May spec-

tral sequence with E1-page the Ext group over the Hopf algebra Γ′, whose cochain complex

has differentials simpler than th cobar complex for Γ.

To construct a filtration on Bar•(id,Lies
R̄,g) so that the associated graded assembles to

Bar•(id,Lies,ti
R̄ ,g), first we need to construct a filtration on any Lies

R̄-algebra so that the two

sides of the identification Q̄0(x) = [x,x] live in different filtrations.

Construction 4.2.3 (Length filtration). Consider the complete filtration

· · · → R̄(n)→ R̄(n−1)→ ··· → R̄(1)→ R̄

of the homogeneous algebra R̄, where R̄(n) is the ideal generated by monomials Q̄I with

|I|= n. Thus we obtain functorsAR̄(n) on ModF2 , sending M to the submodule ofAR̄(M)

consisting of Q̄I
(x) for x ∈M and |I| ≥ n. Thus we obtain a complete increasing filtration

Fq
l (M) = coker(AR̄(q)(M)

ev−→ M), where ev is the R̄-module struture map. We call this

the length filtration of M.

Given an arbitrary Lies
R̄-algebra g, we would like to equip g with the structure of an
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Lies,ti
R̄ -algebra. This boils down to producing a method that equips any Lies-algebra with a

Lies,ti-algebra structure.

Construction 4.2.4. (Lies,ti-structure on Lies-algebras.) For g is Lies-algebra with bracket

[−,−], let V ′ be the ideal of self-brackets. Thus we obtain a two-step filtration V ′→ g of g.

Denote by ⟨−,−⟩ the canonical Lies,ti-bracket on the quotient V = g/V ′ = QLies

Lies,ti(g) and

consider V ′ as a trivial Lies,ti-algebra. Thus we obtain a Lies,ti-structure on the associated

graded of g as the product of V and V ′ with the above Lies,ti-structures. Denote by g̃ the

resulting Lies,ti-algebra with ⟨−,−⟩ the Lies,ti-bracket.

Therefore, any Lies
R̄-algebra g admits a Lies,ti-structure that is unique up to a choice of

splitting of g→V . Denote by g̃ the resulting Lies,ti
R̄ -algebra, which has the same underlying

R̄-module structure as g, cf. Remark 4.2.2.

Remark 4.2.5. If we fix a choice of splitting for g→V , then any Lies bracket [x,y] in g is

equal to a sum of self-brackets and the Lies,ti-brackets ⟨x,y⟩ in g̃.

Now we compute the E2-page of the bar spectral sequence by constructing a May-

type spectral sequence in the sense that the filtration comes from the length filtration of

R̄-modules in Construction 4.2.3.

Theorem 4.2.6. Let g be a Lies
R̄-algebra and g̃ the associated Lies,ti

R̄ -algebra via Con-

struction 4.2.4. Then there is a May-type spectral sequence with respect to the R̄-module

structure converging to πs,tBar•(id,Lies
R̄,g). The E1-page

⨁︁
q E1

q,s,t of the May-type spec-

tral sequence has dimensions bounded above by πs,tBar•(id,Lies,ti
R̄ , g̃), in the sense that

there is an algebraic γ1-Bockstein spectral sequence converging to the May E1-page whose

E1-page is πs,tBar•(id,Lies,ti
R̄ , g̃).

Proof. We start by inductively constructing a filtration on (Lies
R̄)
◦n(g) that heuristically

count the number of Q̄ symbols in a given element.

Since any Lies
R̄-algebra g is an R̄-module, it admits a length filtration. The filtration is

compatible with the bracket since brackets of operations always vanish (Definition 4.1.6).

Furthermore, since any self-bracket [x,x] = Q̄0(x) is in F1
l (g) and the right hand side is

zero in F0
l (g), we deduce that Gr0

l (g) is a Lies,ti-algebra, and the Lies,ti-structure can be
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extended to
⨁︁

Grq(g) via trivial extension to positive q. On the other hand,
⨁︁

Grq(g) is an

R̄-module since R̄ is homogeneous. Hence g̃=
⨁︁

Grq
l (g) equipped with the Lies,ti-bracket

in Construction 4.2.4 is an algebra over the composite monad Lies,ti
R̄ =AR̄ ◦Lies,ti.

Now we define a new filtration F• on Lies
R̄(g) that combines the length filtration on g,

the length filtration on Lies
R̄(M) for any F2-module M, and the effect of Lies brackets. We

extend the length filtration on g to Lies,ti(g) via the Day convolution, i.e. for x ∈ Fq
l (g),y ∈

Fr
l (g), we have ⟨x,y⟩ ∈ Fq+r(Lies,ti(g)), so on and so forth. Then we extend it to a new fil-

tration on Lies
R̄(g) by combining with the length filtration on Lies

R̄(M) for M an F2-module,

using the fact that when g= M is an F2-module, Gr0
l (Lies

R̄(M)) = Lies,ti(M). In particular,

after passing to the associated graded, the evaluation map Lies
R̄(g)→ g assembles to the

Lies,ti
R̄ -algebra structure map ev : AR̄ ◦Lies,ti(g̃)→ g̃: for x ∈ g, [x,x] = Q̄0|x ∈ Lies

R̄(g)

is mapped to a nonzero element only if x ∈ F0
l (g), in which case Q̄0|x ∈ F1Lies

R̄(g) and

Q̄0(x) ∈ F1
l (g) while [x,x] ∈ F0Lies

R̄(g).

Iterating this process, we obtain a filtration F• on Lies
R̄ ◦ (Lies

R̄)
◦n(g) for all n > 0 by

combining the filtration F• on (Lies
R̄)
◦n(g) with the length filtration on Lies

R̄. This is the nth

simplicial level of Bar•(id,Lies
R̄,g), with associated graded assembling to (Lies,ti

R̄ )◦n(g̃).

Explicitly, Fq
(︂
(Lies

R̄)
◦n(g)

)︂
is the collection of elements α|x in simplicial degree n sat-

isfying the following condition: if we rewrite α|x as an element in (Lies,ti
R̄ )◦n(g) via Re-

mark 4.2.2 and Remark 4.2.5, so any Lies bracket in α|x is written as a linear combination

of Lies,ti brackets and Q̄0 applies to other elements, then the sum of the filtration degree of

x ∈ g times the number of times x appears and the number of symbols Q̄ j in any term of

α|x coming from applications of the monad Lies,ti
R̄ is at most q.

Since R̄ is a homogeneous algebra and evaluation of brackets do not increase the num-

ber of Q̄ j’s in the expression, the structure map Lies
R̄(g)→ g is compatible with this fil-

tration, and so are the face maps and degeneracy maps in Bar•(id,Lies
R̄,g). The induced

filtration F• on the normalized complex of Bar•(id,Lies
R̄,g) gives rise to a May-type spec-

tral sequence

⨁︂
q

E1
q,s,t =

⨁︂
q

πs,tGrqBar•(id,Lies
R̄,g)⇒ πs,tBar•(id,Lies

R̄,g).
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Note that the face maps

(Lies,ti
R̄ )◦n(g̃) =

⨁︂
q

GrqBarn(id,Lies
R̄,g)→ (Lies,ti

R̄ )◦(n−1)(g̃) =
⨁︂

q
GrqBarn−1(id,Lies

R̄,g)

do not change the associated graded degree unless the differential creates self-brackets –

evaluating the R̄-module structure or a Lies,ti-bracket is either zero or does not change

the number of Q̄ symbols. Hence they assembles to the Lies,ti
R̄ -algebra structure maps

(Lies,ti
R̄ )◦ j(g̃)→ (Lies,ti

R̄ )◦( j−1)(g̃) except in the following situation: for x∈Gr0
l (g), γ1(Q̄

i|x) :=

[Q̄i|1|x,1|Q̄i|x] and Q̄0|Q̄
i|x are both in the second associated graded piece. Hence the total

differential ∂ of the normalized complex of Bar•(id,Lies
R̄,g) sends γ1(Q̄

i|x) := [Q̄i|1|x,1|Q̄i|x]

to [Q̄i|x, Q̄i|x]+ [Q̄i|x,1|Q̄i
(x)] = Q̄0|Q̄

i|x+[Q̄i|x,1|Q̄i
(x)] in E0

2,∗,∗, i.e. the self-bracket has

not been filtered away. Similarly, any class containing γ1(Q̄
i|x) with x ∈ Gr0

l (g) has a face

map whose target has at least one self-bracket term. Whereas when x ∈ F1
l (g), the self-

brackets in the target of such differentials are not visible in the associated graded because

the number of Q̄ j’s in the term decrease after we rewrite the self-brackets in terms of Q̄0.

To further filter away the self-brackets in such differentials, we assign weight 1 to

γ1(Q̄
i|x) and [Q̄i|x,1|Q̄i

(x)] for all i and x ∈ Gr0
l (g), weight 0 to everything else in g,

Lies
R̄(g), and Lies

R̄◦Lies
R̄(g), including Q̄0|Q̄

i|x. Then we propagate the weight to (Lies
R̄)
◦n(g)

for n > 2 by stipulating that applying Q̄ does not change weight and brackets add weights.

The associated graded of this weight filtration is precisely Bar•(id,Lies,ti
R̄ , g̃), since the only

face or degeneracy maps that are altered are the ones involving γ1(Q̄
i|x) for x ∈ Gr0

l (g),

whose target no longer contains the self-bracket term Q̄0|Q̄
i|x. Therefore we obtain an al-

gebraic γ1-Bockstein spectral sequence converging to the E1-page of the May-type spectral

sequence, whose E1-page has dimensions those of πs,tBar•(id,Lies,ti
R̄ , g̃). Therefore we ob-

tain an upper bound of the dimension of the E1-page of the May-type spectral sequence⨁︁
q E1

q,s,t .

Since differentials preserve weights and the γ1 operation on Bar•(id,Lies,ti
R̄ ,L) appears

in weight at least four, we immediately deduce the following from Theorem 4.2.6.

Corollary 4.2.7. For any Lies
R̄-algebra g, the homotopy groups of Bar•(id,Lies

R̄,g) and

Bar•(id,Lies,ti
R̄ , g̃) are isomorphic in weight less than four.
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Proof. In the algebraic γ1-Bockstein spectral sequence, the differentials do not appear un-

til weight 4 since γ1(Q̄ j|x) has weight 4. By construction, differentials in the May-type

spectral sequence occur when the source and target of a face map in Bar•(id,Lies
R̄,g) have

different number of self-brackets. In weight two and three this cannot happen. Hence both

spectral sequences collapse in weight less than four.

Since Lies,ti
R̄ = AR̄ ◦ Lies,ti is a composite monad, we apply Construction 2.3.2 and

Lemma 2.3.3 to compute the homotopy groups of Bar•(id,Lies,ti
R̄ ,L) for L a Lies,ti

R̄ -algebra.

Construction 4.2.8. For L a Lies,ti
R̄ -algebra with Lies,ti-bracket ⟨−,−⟩, denote by AR•(L)

the bar construction Bar•(id,AR̄,L) equipped with a Lies,ti-bracket ⟨−,−⟩ given levelwise

by

⟨α1|α2| . . . |αn|x,β1|β2| . . . |βn|y⟩=

⎧⎨⎩ 1| · · · |1|⟨x,y⟩ if αi = βi = 1,1≤ i≤ n

0 otherwise
,

where αi,β j ∈ R̄ and x,y∈ L. Here we use L to mean the underlying R̄-module U
Lies,ti
R̄

ModR̄
(L).

Corollary 4.2.9. For L a Lies,ti
R̄ -algebra with Lies,ti-bracket ⟨−,−⟩, there is an isomorphism

of bigraded homotopy groups

π∗,∗Bar•(id,Lies,ti
R̄ ,L)∼= π∗,∗Bar•(id,Lies,ti,AR•(L)).

4.2.2 Homology groups of simplicial Lies,ti-algebras.

The homotopy group of Bar•(id,Lies,ti,V•) for V• a simplicial Lies,ti-algebra can be com-

puted via a shifted version of the classical Chevalley-Eilenberg complex.

Recall from [CE48], [May66A, Section 5] and [Pri70] that given a Lieti-algebra L, i.e.,

an unshifted totally isotropic Lie algebra over F2, its Lieti-algebra homology is computed

by

HLieti
(L) := H∗(LQ

Lieti
F2

ModF2
(L)[1]⊕F2) = H∗(CE(L)).

Here CE(L) is the standard Chevalley-Eilenberg complex, defined to be the exterior algebra
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on L[1] with differential δ given by

δ (σx1⊗·· ·⊗σxn) = ∑
1≤i< j≤n

[σxi,σx j]⊗σx1⊗·· ·⊗ ˆ︂σxi⊗·· ·⊗ˆ︃σx j⊗·· ·⊗σxn.

There is no divided power part at p = 2. Since we are working with shifted, graded totally-

isotropic Lie algebras, we use a modified version for ease of notation. First we note that

given a Lies,ti-algebra L, there are weak equivalences

N(Bar•(id,Lies,ti,L))≃ N(ΣBar•(id,Lieti
F2
,Σ−1L))≃ ΣCE(Σ−1L[1])[−1], (4.6)

where CE is the reduced complex.

Definition 4.2.10. The Chevalley-Eilenberg complex for a Lies,ti-algebra L is CE(L) =

(Λ•(L),δ ), where Λ•(L) is the free shifted graded exterior algebra on L (placed in homo-

logical degree 0) with a shifted graded exterior product Σ−1⊗ [1], which we continue to

denote by ⊗, that increases homological degree by one and decreases internal degree by

one, reflecting the behavior of shifted graded Lie brackets. The differential δ is given by

δ (x1⊗·· ·⊗ xn) = ∑
1≤i< j≤n

[xi,x j]⊗ x1⊗·· ·⊗ xî⊗·· ·⊗ x jˆ ⊗·· ·⊗ xn.

Then the Lies,ti-algebra homology of L is given by

HLies,ti

∗,∗ (L) := π∗,∗(LQLies,ti

ModF2
(L)⊕F2)∼= H∗,∗(N(Bar•(id,Lies,ti,L)⊕F2)∼= H∗,∗(CE(L)),

where the last isomorphism follows from rearranging the right hand side in (4.6).

In the case where L is a simplicial Lies,ti-algebra, its Chevalley-Eilenberg complex

CE(L) is the simplicial chain complex obtained by applying the Chevalley-Eilenberg com-

plex levelwise. Then Dold-Kan correspondence says that the homotopy group of CE(L) is

isomorphic to the homology of its total complex. A simplicial version of May’s result is

recorded in [BHK19, Section 3]. Here we state the shifted version.
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Theorem 4.2.11. [BHK19, Theorem 3.13] Let L be a simplicial Lies,ti-algebra. Then there

is a natural isomorphism

HLies,ti

∗,∗ (L) := π∗,∗(LQLies,ti

ModF2
(L)⊕F2)∼= H∗,∗(CE(L)).

In the total complex of CE(L), the differential in the homological direction is given by

δ in Definition 4.2.10. The differential d in the simplicial direction is obtained by applying

the shifted graded exterior algebra functor Λ• to each simplicial differential di of L and

taking the alternating sum, i.e.

d = d0⊗d0⊗·· ·⊗d0 + · · ·+dr⊗dr⊗·· ·⊗dr.

Both differentials preserve weights.

If the Lies,ti-bracket on a simplicial Lies,ti-algebra L is trivial, then the differential δ in

the homological direction vanishes and H∗,∗(CE(L))∼= π∗,∗(Λ
•(L)). The natural operations

on the homotopy groups of simplicial exterior algebras are well-understood by the work of

Cartan, Bousfield, and Dwyer. We only state their results in the case of free algebras, and

modify the grading to take into account the fact that we work with shifted, graded exterior

algebras.

Theorem 4.2.12. [Dwy80a, Theorem 2.1, Remark 4.4][Bou68][Car54][HM16, Theorem

3.9] Let V• be a simplicial graded F2-module. There are natural operations

γi : πh,r,t(Λ
h(V•))→ π2h+1,r+i,2t−1(Λ

2h+1(V•)),1≤ i≤ r

for all r ≥ 1, satisfying the relations

γiγ j(x) = ∑
(i+1)/2≤l≤(i+ j)/3

(︃
j− i+ l−1

j− l

)︃
γi+ j−lγl(x) for all i < 2 j.

Here in the trigrading (h,r, t) records the number of exterior products h, the simplicial

degree r in V•, and the internal degree t.
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Furthermore, they computed the homotopy group of the free exterior algebra on a sim-

plicial F2-module.

Definition 4.2.13. A sequence I = (i1, . . . , im) is γ-admissible if il ≥ 2il+1 for 1≤ l≤m−1.

The excess of I is e(I) = i1− i2−·· ·− im.

Theorem 4.2.14. [Bou68, Theorem 8.6][HM16, Theorem 3.19] Let A be a graded F2-

basis for π∗(V•). Then π∗,∗(Λ
•(V•)) is the (shifted graded) exterior algebra on generators

γI(α), where α ∈ A and I = (i1, . . . , im) is γ-admissible with e(I)≤ s(α), where s(α) is the

simplicial degree of the basis element α .

The following is immediate by combining Theorem 4.2.11 and Theorem 4.2.14.

Corollary 4.2.15. Suppose that L is a Lies,ti
R̄ -algebra with trivial Lie brackets. Then the

homotopy group of Bar•(id,Lies,ti,AR•(L)) is isomorphic as a bigraded vector space to

the (shifted graded) exterior algebra on generators γI(α), where α is a basis element of

πr,∗(AR•(L)) (cf. Construction 4.2.8) and I is γ-admissible with e(I)≤ r.

Now we can compute the homotopy groups of Bar•(id,Lies,ti
R̄ ,L) when the Lies,ti struc-

ture on L is trivial. First we recall the following result of Priddy that computes the Ext and

Tor groups of a homogeneous Koszul algebra, which we make use of to compute the Tor

groups over R̄.

Theorem 4.2.16. [Pri70, Theorem 2.5] Let R be a homogeneous Koszul algebra over F2

on generators ai, i ∈ J in weight 1 and quadratic relations r j. Let B be a subset of S, the

set of nonempty sequences on J, such that there is a basis of R consisting of monomials

{aI}I∈S. Then the cohomology algebra H∗(A) = Ext∗R(F2,F2) is isomorphic to the tensor

algebra on a∨i subject to relations that are linear dual to the r j’s.

Remark 4.2.17. Call aia j allowable if (i, j) ∈ B and unallowable otherwise. We identify

TorR
m(F2,F2) with ExtmR (F2,F2). A cycle corresponding to the class

a∨i1a∨i2 · · ·a
∨
im ∈ TorR

m(F2,F2)
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with (ik, ik+1) unallowable for all k in the reduced bar complex over R is a sum

∑
j
[a j1|a j2| · · · |a jm] ∈ R⊗m

that contains the term [ai1|ai2| · · · |aim] with nonzero coefficient. We call this the cycle com-

pletion of the monomial [ai1|ai2| · · · |aim]. To find the cycle explicitly, we start with α0 =

[ai1|ai2 | · · · |aim ]. The differential ∂ is a sum of face maps composing adjacent terms aikaik+1 .

We use the relation aikaik+1 = ∑b jkb jk+1 to cancel out the the terms [ai1| · · · |aikaik+1 | · · · |aim ]

in the differential by adding ∑[ai1| · · · |a jk−1|b jk |b jk+1 |a jk+2| · · · |aim ] to α0 for all k and de-

note the resulting sum α1. Then we pair off the differential for every term in α1−α0, i.e.

for each nonzero term in ∂ (α1−α0) obtained by composing an unallowable 2-tuple via

the kth face map, we use the relations in R to find a sum in R⊗m whose image under the

kth face map cancel out that term. Thus we obtain a new sum α2 such that all terms in the

differential on α1 are paired off. Now we repeat the process again. It has to terminate since

the number of unallowable adjacent pairs is nonincreasing for any term at each step and

and there are finitely many monomials with a given number of unallowable adjacent pairs.

In other words, ai1ai2 · · ·aim can be written as a unique sum of basis monomials through

this iterative process in finite steps.

Lemma 4.2.18. (1). Suppose that L = ΣkF2 is a trivial Lies,ti
R̄ -algebra. Then the bi-

graded homotopy group π∗,∗Bar•(id,Lies,ti,AR•(L)) is the exterior algebra on generators

γIQ̄
J
(xk), where xk is the generator of π∗(L), J = ( j1, . . . , jr) satisfies

jl+1 + · · ·+ jr + k− (r− l)≤ jl ≤ 2 jl+1

for 1 ≤ l < r and jr > k, and I is γ-admissible with e(I) ≤ r. In lower indexing, the

generators are γIQ̄J(xk), where J = ( j1, . . . , jr) satisfies 0≤ jl ≤ jl+1 +1 for all l, and I is

γ-admissible with e(I)≤ r.

(2). Let L be the Lies,ti
R̄ -algebra with underlying R̄-module ΩnFreeModR̄

ModF2
(Σn+kF2),n≥

1 and trivial Lie brackets. Then π∗,∗Bar•(id,Lies,ti,AR•(L)) is the exterior algebra on

generators γIQ̄J(xk), where J = ( j1, . . . , jr) satisfies 0 ≤ jl ≤ jl+1 + 1 for all l < r and
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0≤ jr < n, and I is γ-admissible with e(I)≤ r.

Proof. (1). In light of Corollary 4.2.15, it suffices to compute

π∗,∗(AR•(L)) = π∗,∗Bar•(id,AR̄,Σ
kF2),

where the right hand side is the unstable Tor groups UnTorR̄∗,∗(F2,Σ
kF2). The unstable Tor

group is computed by taking the homotopy group of the subcomplex of the bar complex

computing the Tor group TorR̄∗,∗(F2,Σ
kF2) obtained by regarding ΣkF2 as an unstable trivial

module over R̄ and imposing the unstability conditions [Q̄ j|α] = 0 for j ≤ |α|, cf. [BC70,

§3].

The quadratic algebra R̄ is a homogeneous Koszul algebra, since the canonical basis

{Q̄ j1 · · · Q̄ jr , ji > 2 ji+1∀i} of R̄ is a Poincaré-Birkhoff-Witt basis in the sense of Priddy

[Pri70, Theorem 5.3]. In particular, it follows from Priddy’s machinery [Pri70, Theo-

rem 2.5, 3.8] that the Tor group TorR̄s,∗(F2,F2) has a basis consisting of cycles indexed

by Q̄ j1 · · · Q̄ js , where ji ≤ 2 ji+1 for all i.

To compute the unstable Tor groups on a class xk of internal degree k, we need to impose

the unstability condition Q̄ j
(x) = 0 for j < |x|, then the basis of UnTorR̄r,∗(F2,F2{xk}) con-

sists of basis elements of TorR̄r,∗(F2,F2) satisfying ji > ji−1−1+ ji−2−1+ · · ·+ jr−1+ |x|

for all i < r and jr ≥ k, or equivalently sequences Q̄ j1 · · · Q̄ js(xk), where 0 ≤ ji ≤ ji+1 +1

for all i.

(2). Iterating Proposition 4.1.10 yields a canonical map of R̄-modules

L = Ω
nFreeModR̄

ModF2
(Σn+kF2)→Ω

∞FreeModR̄
ModF2

(Σ∞
Σ

kF2)∼= Σ
kF2,

which gives rise to a surjective map of Lies,ti
R̄ -algebras with trivial brackets. The underlying

F2-module of L has basis Q̄Jxk, where J = ( j1, . . . , jr) is a basis element of R̄ satisfying

jr ≥ n+ k. Suppose that α ∈ AR•(L) is the cycle completion of an element Q̄ j1| · · · |Q̄ jr |xk

with k ≤ jr < n+ k and jl+1− 1+ · · ·+ jr − 1+ k ≤ jl ≤ 2 jl+1 for l < r. Since cycle

completion via Behrens’ relations in the sense of Remark 4.2.17 cannot increase the index

of the right most operation, the differentials supported by α are the same as those supported
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by its image in AR•(F2{xk}), so α is a nontrivial cycle. Otherwise, all but the rightmost

face maps send α to zero, while the rightmost face map from at least one (distinct) term of

α is nonzero, so it is impossible to complete the cycle. Switching to lower-indexing yields

the desired answer.

Combining Theorem 4.2.14 and Lemma 4.2.18, we have the following:

Corollary 4.2.19. For g=ΩnFreeModR̄
ModF2

(Σn+kF2) with 1≤ n≤∞, the E1-page π∗,∗Bar•(id,Lies,ti
R̄ ,g)

of the algebraic γ1-Bockstein spectral sequence (cf. Theorem 4.2.6) is the (shifted graded)

exterior algebra on generators γIQ̄J(xk), where I = (i1, . . . , im) is γ-admissible with e(I)≤ r

and J = ( j1, . . . , jr) satisfies 0≤ jl ≤ jl+1 +1 for l < r, 0≤ jr < n.

4.2.3 Quillen homology of Lies
R̄-algebras with trivial brackets

Next we want to identify the differentials in the May-type spectral sequence and the γ1-

Bockstein spectral sequence when g = ΩnFreeModR̄
ModF2

(Σn+kF2). There is no canonical map

from π∗,∗Bar•(id,Lies
R̄,g) to the E1-page π∗,∗Bar•(id,Lies,ti

R̄ ,g) of the γ1-Bockstein spectral

sequence; instead we map Bar•(id,Lies
R̄,g) into the bar construction of another variant of

Lies
R̄-algebras.

Definition 4.2.20. Let ModR̄>0
⊂ModR̄ be the subcategory of allowable R̄-modules M

such that Q̄0(x) = 0 for all x ∈ M. Denote by Free
ModR̄>0
ModF2

the free R̄>0-module functor,

and AR̄>0
the additive monad associated to the free functor. Let Lies,ti

R̄>0
= AR̄>0

◦Lies,ti,

where the composite monad on the right has distributivity given by [Q̄ j
(−),(−)] = 0.

By Proposition 4.1.8, there is an equivalence Lies
R̄(M) = AR̄ ◦ Lies(M)/(Q̄0(x) =

[x,x],x∈M), while Lies,ti
R̄>0

(M) =AR̄>0
◦Lies,ti(M) =AR̄ ◦Lies(M)/⟨Q̄0(x), [x,x],x∈M⟩,

where the quotient is taken with respect to the left R̄-algebra ideal. Hence the category

Lies,ti
R̄>0

of Lies,ti
R̄>0

-algebras is the subcategory of Lies
R̄-algebras L satisfying the condition

that Q̄0(x) = [x,x] = 0 for all x ∈ L. The inclusion T
Lies
R̄

Lies,ti
R̄>0

(g) : Lies,ti
R̄>0
→ Lies

R̄ of subcate-

gory admits a left adjoint Q
Lies
R̄

Lies,ti
R̄>0

(g) that takes the quotient by the R̄-algebra ideal of the
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self-brackets. When g is a Lies
R̄-algebra with trivial Lies brackets, Q

Lies
R̄

Lies,ti
R̄>0

(g) is given by

equipping the R̄>0-module QModR̄
ModR̄>0

(g) with trivial Lies,ti brackets.

Lemma 4.2.21. Let g be an Lies
R̄-algebra. There is a surjective map of simplicial F2-

modules

ϕ : Bar•(id,Lies
R̄,g)→ Bar•(id,Lies,ti

R̄>0
,Q

Lies
R̄

Lies,ti
R̄>0

(g)).

Proof. There is a map of monads Lies
R̄→ Lies,ti

R̄>0
that sends the symbol Q̄0 to 0, and this

induces the map of bar constructions in question.

The bigraded homotopy group of Bar•(id,Lies,ti
R̄>0

,L) is computed in the same way as

that of Bar•(id,Lies,ti
R̄ ,L) via Lemma 2.3.3 and Lemma 4.2.18 (Q̄0 operation no longer

appears in the generators).

Construction 4.2.22. For L a Lies,ti
R̄>0

-algebra with Lies,ti-bracket ⟨−,−⟩, denote by AR>0
• (L)

the bar construction Bar•(id,AR̄>0
,L) equipped with the simplicial Lies,ti-algebra structure

given levelwise by

⟨α1|α2| . . . |αn|x,β1|β2| . . . |βn|y⟩=

⎧⎨⎩ 1| · · · |1|⟨x,y⟩ if αi = βi = 1,1≤ i≤ n

0 otherwise
.

Lemma 4.2.23. (1). There is an isomorphism

π∗,∗Bar•(id,Lies,ti
R̄>0

,ΣkF2)∼= π∗,∗Bar•(id,Lies,ti,Bar•(id,AR̄>0
,ΣkF2))

∼= π∗,∗Λ
•(UnTorR̄>0

∗,∗ (F2,F2{xk})).

Hence π∗,∗Bar•(id,Lies,ti
R̄>0

,ΣkF2) is the exterior algebra on generators γIQ̄J(xk), where

J = ( j1, . . . , jr) satisfies 1≤ jl ≤ jl +1 for all l and I is γ-admissible with e(I)≤ r.

(2). The homotopy group of Bar•(id,Lies,ti
R̄>0

,ΩnFree
ModR̄>0
ModF2

(Σn+kF2)) is the exterior

algebra on generators γIQ̄J(xk), where J = ( j1, . . . , jr) satisfies 1 ≤ jr < n and 1 ≤ jl ≤

jl +1 for l < r, while I is γ-admissible with e(I)≤ r.

(3). For L = ΩnFree
ModR̄>0
ModF2

(Σn+kF2) with 1 ≤ n ≤ ∞, the quotient map of monads

AR̄ → AR̄>0
induces a surjective map π∗,∗Bar•(id,Lies,ti

R̄ ,L) → π∗,∗Bar•(id,Lies,ti
R̄>0

,L)
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that sends the symbol Q̄0 to 0.

In order to use the comparison map (cf. Lemma 4.2.21)

ϕ∗ : π∗,∗Bar•(id,Lies
R̄,g)→ π∗,∗Bar•(id,Lies,ti

R̄>0
,g)

to detect differentials and permanent cycles, we make use of explicit combinatorial for-

mulae of γi by Bökstedt and Ottosen. The grading conventions are modified to suit our

context.

For r, i ∈ N with 1 ≤ i ≤ r, let U(r, i) be the set of pairs (A,B) of ordered sequences

a1 < · · ·< ai,b1 < · · ·< bi such that {a1, . . . ,ai} and {b1, . . . ,bi} are complementary subsets

of {r− i,r− i+1, . . . ,r+ i−1}. Let V (r, i)⊂U(r, i) be the subset with a1 = r− i.

Proposition 4.2.24. [BO06, Theorem 1.3, Lemma 3.1] Suppose that V• is a simplicial

F2-module with face maps d j. Let z be a representative of a class [z] ∈ πs,t(V•) in the

normalized complex N(V•). For 2≤ i≤ s, define

γi(z) = ∑
(A,B)∈V (s,i)

sai · · ·sa2sa1(z)⊗ sbi · · ·sb2sb1(z) ∈ Λ
2(V•).

Then d j(γi(z))= 0 for 0≤ j≤ i+s, and the induced operation γi : πs,t(V•)→ πs+i+1,2t−1(Λ
2(V•))

are exactly the Dwyer-Bousfield operations in Theorem 4.2.14.

Remark 4.2.25. If in addition V• is exterior, then the formula above for i = 1 induces the

operation γ1 on π∗,∗(V•). The operation γ1 is not well-defined when there is some element

a in the simplicial commutative algebra V• such that a⊗ a ̸= 0. This is because in N(V•)

the differential sends γ1(a) to a⊗a, cf. [Dwy80a, Remark 4.3, 4.4][BO06, Remark 3.2].

Hence we obtain natural operations γi for 1≤ i≤ s on

πs,∗(Bar•(id,Lies,ti,AR>0
• (ΣkF2)))∼= πs,∗(Λ

•(Bar•(id,AR̄>0
,ΣkF2))),

and similarly on

πs,∗(Bar•(id,Lies,ti,AR•(ΣkF2)))∼= πs,∗(Λ
•(Bar•(id,AR̄,Σ

kF2))).
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Suppose that ξ is a cycle in AR>0
s (ΣkF2). In the total complex of Bar•(id,Lies,ti,AR>0

• (ΣkF2)),

a representative for the homotopy class γi([ξ ]) is

γi(ξ ) = ∑
(A,B)∈V (s,i)

⟨sai · · ·sa2sa1(ξ ),sb1sb2 · · ·sbi(ξ )⟩ ∈ Lies,ti ◦ (AR̄>0
)◦(s+i)(ΣkF2).

When we iterate the γi operations, the formula is harder to write down explicitly.

Notation 4.2.26. Suppose that V• is a simplicial F2-module as a trivial simplicial Lies,ti-

algebra. For distinct classes [ξ1], . . . , [ξn] ∈ π∗,∗(V•), denote by B(ξ1, . . . ,ξn) the cycle in

the normalized complex of Bar•(id,Lies,ti,V•) that represents the class [ξ1]⊗ ·· ·⊗ [ξn] ∈

π∗,∗(Λ
n−1(V•))⊂ π∗,∗(CE(V•))∼= π∗,∗Bar•(id,Lies,ti,V•), which is obtained by cycle com-

pletion via the Jacobi identity in the sense of Remark 4.2.17.

Therefore a homotopy class [ξ1]⊗·· ·⊗[ξl] with l > 1 in πs,∗(Λ
•(Bar•(id,AR̄>0

,ΣkF2)))

is represented by an element B(ξ1, . . . ,ξl) in the summand (Lies,ti)◦(l−1)◦(AR̄>0
)◦(s−l+1)(ΣkF2)

of the total complex of Bar•(id,Lies,ti,AR>0
• (ΣkF2)). Since a representative for the homo-

topy class γ jγi(ξ ) in the total complex of Λ•(Bar•(id,Free
ModR̄>0
ModF2

,ΣkF2)) is given by

γ jγi(ξ ) = ∑
(C,D)∈V (s+i+1, j)

∑
(A,B)∈V (s,i)

sC
(︁
sA(ξ )⊗ sB(ξ )

)︁
⊗ sD

(︁
sA(ξ )⊗ sB(ξ )

)︁
,

a representative for γ jγi(ξ ) in the total complex of Bar•(id,Lies,ti,AR>0
• (ΣkF2)) is given the

sum of over all (A,B)∈V (s, i),(C,D)∈V (s+i+1, j) of B(sCsA(ξ ),sCsB(ξ ),sDsA(ξ ),sDsB(ξ )),

with the three brackets coming from distinct simplicial filtrations.

Theorem 4.2.27. The Quillen homology

HQ
Lies
R̄∗,∗ (ΩnFreeModR̄

ModF2
(Σn+kF2))∼= πs,tBar•(id,Lies

R̄,Ω
nFreeModR̄

ModF2
(Σn+kF2))

of the Lies
R̄-algebra ΩnFreeModR̄

ModF2
(Σn+kF2),1 ≤ n ≤ ∞ is isomorphic as a bigraded vector

space to the exterior algebra on generators γIQ̄J(xk), where I = (i1, . . . , im) is γ-admissible

with e(I) ≤ r and im ≥ 2, whereas J = ( j1, . . . , jr) satisfies 0 ≤ jl ≤ jl+1 + 1 for l < r,

0≤ jr < n and if j1 = 0 then either r = 1 or im = 2.
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Recall from Proposition 4.1.10 that in the case n = ∞, ΩnFreeModR̄
ModF2

(Σn+kF2) is the

trivial Lies
R̄-algebra ΣkF2.

Before we proceed to prove the theorem, we provide some intuition about the strategy.

From the construction of the May-type spectral sequence and the γ1-Bockstein spectral se-

quence in Theorem 4.2.6, we see that there is a differential on a class in π∗,∗(Bar•(id,Lies,ti
R̄ ,L))

in either spectral sequences if and only if its representative cycle, considered as an ele-

ment in Bar•(id,Lies
R̄,L), admits a face map that evaluates a non-self-bracket to a self-

bracket. Remark 4.2.25 and Corollary 4.2.19 indicate that γ1 is the only operation that

arises in π∗,∗(Bar•(id,Lies,ti
R̄ ,L))∼= Λ{γIQ̄J(x)} with I γ-admissible precisely because self-

brackets are zero in Lies,ti
R̄ -algebras and thus generates all the differentials in the May-

type spectral sequence and the γ1-Bockstein spectral sequence. Hence we expect that

π∗,∗Bar•(id,Lies
R̄,L) to be a quotient of π∗(Bar•(id,Lies,ti

R̄ ,L)) (cf. Corollary 4.2.19) by

a suitable ideal generated by γ1(α) for all α ∈ π∗,∗(AR•(L)), and we use the induced map

on homotopy groups of ϕ : Bar•(id,Lies
R̄,L)→ Bar•(id,Lies,ti

R̄>0
,L) from Lemma 4.2.21 to

help detect the differentials and permanent cycles.

Proof of Theorem 4.2.27. We focus on the case L = ΣkF2, since in the cases n < ∞ the only

difference is an extra condition on the rightmost operation in basis elements, so the same

argument applies with no change.

Consider the map

ϕ∗ : π∗,∗Bar•(id,Lies
R̄,L)→ π∗,∗Bar•(id,Lies,ti

R̄>0
,L)

from Lemma 4.2.21. Its cokernel consists of all cycles in Bar•(id,Lies,ti
R̄>0

,ΣkF2) whose

preimage is the source of a differential to an element that is in the kernel of ϕ . Since ϕ

is surjective by Lemma 4.2.21, this is equivalent to finding all classes α that are cycles

in Bar•(id,Lies,ti
R̄>0

,ΣkF2) precisely because the differential ∂ ′ in the normalized complex

of Bar•(id,Lies,ti
R̄>0

,ΣkF2) sends α to a linear combination of elements that contain self-

brackets or Q̄0. In other words, via the inclusion to π∗,∗Bar•(id,Lies,ti
R̄ ,ΣkF2) in Lemma 4.2.23.(3),

all elements in the cokernel of φ∗ support differentials in the May spectral sequence or the

γ1-Bockstein spectral sequence.
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We start with the generators of the exterior algebra, cf. Lemma 4.2.18. Let [α] =

Q̄ j1Q̄ j2 · · · Q̄ jr(xk) be a basis element of π∗,∗Bar•(id,Lies,ti,AR>0
• (ΣkF2)), represented by

a cycle α = Q̄ j1 | · · · |Q̄ jr |xk + ∑l Q̄ j′1
| · · · |Q̄ j′r |xk in Bar•(id,Lies,ti

R̄>0
,ΣkF2). The terms in

the summation comes from cycle completion via Behrens’ relations in the sense of Re-

mark 4.2.17, with the condition that any term containing Q̄0 is 0. It has preimage α̃ the

cycle completion of Q̄ j1| · · · |Q̄ jr |xk in Bar•(id,Lies
R̄,Σ

kF2) via Behrens’ relations, which is

the sum of α and terms Q̄ j′1
| · · · |Q̄ j′r |xk such that at least one of the Q̄ j′l

, l > 1 is equal to Q̄0.

By [BO06, Lemma 3.1], the differential ∂ in the normalized complex of Bar•(id,Lies,ti
R̄>0

,ΣkF2)

sends γi(α), i≥ 2 to zero because the terms are either zero or cancel out in pairs due to the

simplicial identities of face and degeneracy maps. Hence its preimage γi(α̃) is also a cy-

cle in the normalized complex of Bar•(id,Lies
R̄,Σ

kF2) and hence a permanent cycle in

the May spectral sequence. Similarly, for any γ-admissible sequence I = (i1, . . . , im) with

im ≥ 2, γI(α) lifts to a cycle γI(α̃) in Bar•(id,Lies
R̄,Σ

kF2) and hence a permanent cycle in

the May spectral sequence. By naturality of the γi operations and Lemma 4.2.23.(3), the

class γI(α) with im ≥ 2 and α ∈ π∗,∗(AR•(ΣkF2)) is also a permanent cycle.

On the other hand, the differential ∂ sends γ1(α) to ⟨α,α⟩= 0 in Bar•(id,Lies,ti
R̄>0

,ΣkF2),

whereas its preimage γ1(α̃) = [s0α̃,s1α̃] maps to [α̃, α̃] = Q̄0|α̃ under the differential in

Bar•(id,Lies
R̄,Σ

kF2), which is in the kernel of ϕ . In other words, there is a differential

in either the May spectral sequence or the γ1-Bockstein spectral sequence from γ1(α) ∈

π∗,∗Bar•(id,Lies,ti
R̄ ,ΣkF2) to Q̄0α . Similarly, for any γ-admissible sequence I = (i1, . . . , im)

with im ≥ 2, γIγ1(α) is a cycle in Bar•(id,Lies,ti
R̄>0

,ΣkF2) because of the self-bracket in

∂γIγ1(α) = γI(∂ (γ1(α))) if the simplicial degree of α is r > 1 and

∂γIγ1(α) = ∂ (γ1(α))⊗ γ1(α)⊗ γ2γ1(α)⊗·· ·⊗ γ2m−1 · · ·γ2γ1(α)

if r = 1, cf. [HM16, 3.9.(i)]. On the other hand, its preimage γIγ1(α̃) is mapped by the total

differential in Bar•(id,Lies
R̄,Σ

kF2) to the cycle completion B(Q̄0|α̃,γ1(α̃), · · · ,γ2m−1 · · ·γ2γ1(α̃))

(cf. Notation 4.2.26) if r = 1, and to γI([α̃, α̃]) when r > 1. Note that in π∗,∗Bar•(id,Lies,ti
R̄ ,ΣkF2)∼=

Λ{γIQ̄J(xk)}with I γ-admissible and J satisfying certain conditions, we have [γI([α̃, α̃])] =

[γI′(Q̄0|α̃)] with I′ = (i1 +1, . . . , im +2m−1). There is a shift in the indexing of the γ oper-
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ations because by construction the self-brackets appearing in the same bracket term live in

distinct filtrations when more γ’s are applied, so replacing each self-bracket by a Q̄0 in a

cycle will increase the index of the acting γi by one. Hence there is a differential in either

the May spectral sequence or the γ1-Bockstein spectral sequence from γIγ1(α) to γI′(Q̄0|α),

and all the generators γIγ1(α) of the exterior algebra π∗,∗Bar•(id,Lies,ti,AR>0
• (ΣkF2)) are

in the cokernel of ϕ∗. Again by naturality of the γi operations and Lemma 4.2.23.(3), the

class γIγ1(α) ∈ π∗,∗Bar•(id,Lies,ti
R̄ ,ΣkF2) supports a differential to γI′(Q̄0α) in the May

spectral sequence or the γ1-Bockstein spectral sequence.

In general, suppose [α] is a basis element of

π∗,∗Bar•(id,Lies,ti
R̄ ,ΣkF2)∼= π∗,∗Bar•(id,Lies,ti,AR•(ΣkF2))

that is the exterior product of generators γI1([α1]), . . . ,γIn([αn]) with each αi the cycle

completion of a basis element [αi] ∈ π∗,∗AR•(ΣkF2). It is represented by a cycle α =

B(γI1(α1), . . . ,γIn(αn)) in the total complex of Bar•(id,Lies,ti,AR•(ΣkF2)), cf. Notation 4.2.26,

since d j(γIl(αl)) = 0 for all j and l by Proposition 4.2.24. Then [α] supports a differential

in the May spectral sequence or the γ1-Bockstein spectral sequence if and only if at least

one of the γ-admissible sequences Il is of the form Il = (il1, . . . , ilm ,1). By Corollary 4.2.19,

the above covers all classes in the F2-basis of the E1-page of π∗,∗Bar•(id,Lies,ti
R̄ ,ΣkF2).

Remark 4.2.28. Note that π∗,∗Bar•
(︁
id,Lies

R̄,Σ
kF2

)︁
is the cofree coalgebra on ΣkF2 over

the comonad |Bar•
(︁
id,Lies

R̄,−)| := π∗,∗Bar•(id,FreeLies
R̄
,−) on ModF2 . The coalgebra

structure map is given by

|Bar•
(︁
id,Lies

R̄,Σ
kF2

)︁
| ≃←− |Bar•

(︁
id,Lies

R̄, |Bar•
(︁
Free

Lies
R̄

ModF2
,Lies

R̄,Σ
kF2

)︁
|
)︁
|

→ |Bar•
(︁
id,Lies

R̄, |Bar•
(︁
id,Lies

R̄,Σ
kF2

)︁
|
)︁
|,

where the last map makes use of the augmentation Free
Lies
R̄

ModF2
→ id, cf. [Bra17, Appendix

D]. In particular, π∗,∗Bar•
(︁
id,Lies

R̄,Σ
kF2

)︁
records all natural unary operations on a degree

k class in the mod 2 Quillen homology of Lies
R̄-algebras, and Theorem 4.2.27 gives us a

dimension count.
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4.3 Application to mod 2 homology of labeled configura-

tion spaces

The rest of the paper is devoted to studying the mod p homology of labeled configuration

spaces using the computation of Quillen homology of spectral Lie algebras. The coeffi-

cients for homology is F2 unless otherwise specified.

Let M be a manifold of dimension n and X a spectrum. The configuration space of k

points in M labeled by X is the spectrum

Bk(M;X) = Σ
∞
+Confk(M)⊗

Σk

X⊗k,

considered as a weighted spectra of weight k. Here Confk(M) is the space of k-tuples of

pairwise distinct points in M. Denote by sℒ the monad associated to the free spectral Lie

algebra functor Freesℒ . The ∞-category of spectral Lie algebras is cotensored in Spaces,

and we write (−)M+
for the cotensor with the one-point compactification of M in this

category. In [Knu18], Knudsen established the following equivalence using factorization

homology, cf. [BHK19, Theorem 5.1].

Theorem 4.3.1. [Knu18, Section 3.4] Let M be a parallelizable n-manifold and X a spec-

trum. Consider X as a weighted spectrum of weight one. Then there is an equivalence of

weighted spectra

⨁︂
k≥1

Bk(M;X)≃| Bar•(id,sℒ ,Freesℒ (ΣnX)M+
) | .

The left hand side is weighted by the index k; the weight filtration on the right hand side is

given by propagating the weight on X via the free spectral Lie operad functor.

Applying the bar spectral sequence to the bar construction on the right hand side, we

obtain the following:
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Proposition 4.3.2. There is a weighted spectral sequence

E2
s,t = HQ

Lies
R̄

s,t (H∗(Freesℒ (ΣnX)M+
))⇒

⨁︂
k≥1

Hs+t(Bk(M;X)). (4.7)

The Lies
R̄-algebra structure on the F2-module

H∗(Freesℒ (ΣnX)M+
)∼= ˜︁H∗(M+)⊗H∗(Freesℒ (ΣnX))∼= ˜︁H∗(M+)⊗Free

Lies
R̄

ModF2
(H∗(ΣnX))

has an explicit description.

Proposition 4.3.3. [BHK19, Proposition 5.9] Let g be a spectral Lie algebra. Then there is

a spectral Lie algebra structure on the cotensor gM+
in the category of spectra. The weight

two structural map factors as

∂2(Id)⊗ (D(M+)⊗g)⊗2
hΣ2
→ D(M+)⊗2

hΣ2
⊗ (∂2(Id)⊗g⊗2

hΣ2
)

D(δ ∗)⊗ξ∗−−−−−−→ D(M+)⊗g,

where D is the Spanier-Whitehead dual and δ the diagonal embedding.

As a result, the shifted Lie bracket on ˜︁H∗(M+)⊗H∗(g) is given by

[y1⊗ x1,y2⊗ x2] := (y1∪ y2)⊗ [x1,x2].

On the other hand, the Steenrod operations on H∗(M+) induces a twisted R̄-module

structure in the cotensor.

Proposition 4.3.4. The operations Q̄ j act on ˜︁H∗(M+)⊗H∗(g) by

Q̄ j
(y⊗ x) = ∑

i
Sqi− j(y)⊗ Q̄i

(x).

Proof. Applying the Cartan formula Q j(y⊗x) = ∑i Q j−i(y)⊗Qi(x) for the extended Dyer-

Lashof operations Q j : x ↦→ e j−|x|⊗ x⊗ x and the identification Q−i = Sqi [May70] to the

definition of the Q̄ j operations, we have

Q̄ j
(y⊗x)= ξ∗σ

−1(∑
i

Sqi− j(y)⊗Qi(x))=∑
i

Sqi− j(y)⊗ξ∗σ
−1Qi(x)=∑

i
Sqi− j(y)⊗Q̄i

(x)
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Here σ−1 is the desuspension isomorphism, and ξ is the second structure map of spectral

Lieq algebras.

4.3.1 The universal case

Now we apply Theorem 4.2.27 to the case where M is the Euclidean space. While the

homology for Bk(Rn;X) is well-understood [BMMS88][CLM76][May72], we observe in-

teresting patterns of higher differentials in the associated Knudsen spectral sequence. Fur-

thermore, the computation of the E2-page in these cases will be useful in deducing the

E2-page for a general M.

Since ˜︁H∗(Sn) = F2{ιn} is concentrated in one dimension, the only nonzero Steenrod

operation is Sq0 = id, so the R̄-module structure on ˜︁H∗(Sn)⊗H∗(g) is given by

Q̄ j
(ιn⊗ x) = σ

−nQ̄ j
(x) = Q̄ j

(σ−nx),x ∈ g.

In the limiting case M = R∞ = lim
n→∞

Rn, we have the stabilization

lim
n→∞

Ω
nFreesℒ (ΣnX)≃ X ,

and the spectral sequence (4.7) becomes

E2
s,t = HQ

Lies
R̄

s,t (ΣkF2)⇒ Hs+t(FreeE∞(Sk)). (4.8)

The E2-page is computed in Theorem 4.2.27. Namely, it is the exterior algebra generated by

one class xk and two types of operations on coalgebras over the comonad π∗,∗Bar•(id,Lies
R̄,−)

Q̄ j : E2
h,s,t → E2

h,s+1,t+ j−1, j ≥ t

γi : E2
h,s,t → E2

2h+1,s+i,2t−1, 2≤ i≤ s

under a further splitting of the filtration degree into a sum of homological degree h counting

the number of brackets and simplicial degree s counting the number of Q̄ j’s.
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Comparing with the computation of H∗(FreeE∞(Sk)) [May72][BMMS88], which is the

E∞-page, we can immediately deduce that the E2-page is much larger. Using sparsity

arguments, we can identify higher differentials in low degrees, which allows us to make the

following conjecture.

Conjecture 4.3.5. Each page of the spectral sequence

E2
s,t = HQ

Lies
R̄

s,t (ΣkF2)⇒ πs+tBar•(id,sℒ ,ΣkF2)∼= Hs+t(FreeE∞(Sk))

is an exterior algebra. The higher differentials on the exterior generators of the E2-page

are given as follows:

1. For an exterior generator α = Q̄ j1 · · · Q̄ jm(xk) on the E2-page, we have

dr+1
γr+1(α) = Q̄r(α)

for r < m and r ≤ j1 +1.

2. For an exterior generator β = γn+1Q̄ j1 · · · Q̄ jm(xk) on the E2-page, we have

(a) dn+1(β ) = Q̄nQ̄ j1 · · · Q̄ jm(xk),

(b) dn+1γm+n+1(β ) = dn+1(β )⊗β ,

(c) γl−2dn+1(β ) = d2n+1γn+l+1(β ) for n+1 < l < m.

These generate all higher differentials under further applications of γi operations in accor-

dance with (2).(b) and (2).(c), as well as the exterior product.

Figure 4-1 is an illustration of the higher differentials in homological Adams grading

(s+ t,s) for β = γn+1Q̄ j1 · · · Q̄ jm(xk) and α = Q̄nQ̄ j1 · · · Q̄ jm(xk) with internal degree b. Set

a= 2b+m+1. Along the horizontal line s=m+1 we have generators Q̄1(α), . . . , Q̄n+1(α),

each receiving a blue differential via Conjecture 4.3.5.(1). Along the top slope we have, for

each i with n+1 < i < m, a cyan arrow d2n+1(γn+i(β )) = γi+1(α), which correspond to the

differentials in Conjecture 4.3.5.(2).(c). Finally we have a gray arrow dn+1(γm+n+1(β )) =

β ⊗α , corresponding to Conjecture 4.3.5.(2).(b).
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2m+2n+3 •
2m+2n+2 •
2m+2n+1 •
· · ·

m+3n+5 •
m+3n+4 •

...
2m+n+2 . . . •

2m+1 •
2m •
· · ·

m+n+5

m+n+4 •
m+n+3 •
m+n+2 •
m+n+2 •
· · ·

m+4 • · · ·
m+3 •
m+2

m+1 • • · · · • •
a+1 · · · a+n+1

Figure 4-1: Conjectural pattern of universal differentials in the bar spectral sequence.

Remark 4.3.6. The pattern in the universal case is similar to the pattern of universal higher

differentials in [Dwy80b, Proposition 2.6] and [Tur98], where divided squares kills off

Steenrod operations that are not admissible. Here, the Dyer-Lashof operations Q̄ j on the

E∞-page should be represented by the surviving Q̄ j operations. On the E2-page, the ad-

missibility condition for Q̄ j allows for more admissible sequences than the Dyer-Lashof

algebra. The γi operations eliminate the Q̄ j operations that do not satisfy the admissibility

condition for Dyer-Lashof operations via higher differentials.

One major difference is that while Steenrod operations can be defined on the spectral

sequence filtration-wise in [Dwy80b] and [Tur98], the operations Q̄ j increase filtration by

one and hence the classical methods of constructing operations on spectral sequences no

longer apply.

In joint work in progress with Andrew Senger, we use a suitable deformation of the

comonad associated to the bar construction |Bar•(id,sℒ ,−)| to the ∞-category of Beilinson-

connective filtered F2-modules, which allows us to detect the higher differentials in Con-

jecture 4.3.5.
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Remark 4.3.7. The spectral sequence we study here is analogous to the bar spectral se-

quence

E2
s,t = πsπtBar•(id,Enu

∞ ⊗Fp,π∗(A))⇒ πs+tBar•(id,Enu
∞ ⊗Fp,A)

and its dual. The latter was used to identify operations on homotopy groups of spectral

partition Lie algebras and mod p TAQ cohomology operations of nonunital E∞-Fp-algebras

in [Zha22], which subsumes unpublished work of Kriz, Basterra and Mandell. The E2-page

of this spectral sequence is the André-Quillen homology of PolyR-algebras, i.e., graded F2-

modules equipped with Dyer-Lashof operations and a polynomial product that satisfying

the Cartan formula. In contrast to Conjecture 4.3.5, this spectral sequence collapses on the

E2-page. Heuristically, the phenomenon here arises from the nonadditivity of the free Lies-

algebra functor and the order of the factorization Q
Lies
R̄

ModF2
= QLies

ModF2
◦Q

Lies
R̄

Lies , which results

in simplicial homotopy operations. Whereas the Dyer-Lashof operations are additive away

from the bottom operations on even degree classes, so the factorization QPolyR
ModFp

=Q
ModR>0
ModFp

◦

QPolyR
ModR>0

does not introduce simplicial homotopy operations.

4.3.2 With coefficients

Next, we take up a slightly more complicated case, where M = Rn with labels in an arbi-

trary spectrum X . Then H∗(Freesℒ (ΣnX)M+
) ∼= ΩnFree

Lies
R̄

ModF2
(ΣnH∗(X)) and the spectral

sequence (4.7) becomes

E2
s,t = HQ

Lies
R̄

s,t (ΩnFree
Lies
R̄

ModF2
(ΣnH∗(X)))⇒ Hs+t(FreeEn(X)). (4.9)

When X =Sk, the E2-page HQ
Lies
R̄

s,t (ΩnFree
Lies
R̄

ModF2
(Σn+kF2)) is computed in Theorem 4.2.27.

Write H∗(X)∼=
⨁︁

k,l F2{xk,l}, where {xk,l}l is an F2-basis of Hk(X) for each k. Then

g= H∗(ΩnFreesℒ (ΣnH∗(X)))∼= F2{ιn}⊗H∗(Freesℒ (ΣnH∗(X)))

∼= F2{ιn}⊗
(︂ ⨁︂

w∈W

F2{Q̄
Jw,J ∈ R̄(d(w))}

)︂

by [AC20, Proposition 7.3]. Here R̄(n) is the quotient of R̄ by the relations Q̄ j1 · · · Q̄ jk = 0
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if j1 < j2 + · · · jk + n, and W is the set of Lyndon words on the set of letters {σnxk,l}k,l ,

which is a basis for the free Lies,ti-algebra on generators {σnxk,l}k,l .

We define the degree of a word w ∈W to be d(w) = 1+∑k,l mk,l(w)(n+ k−1), where

mk,l(w) counts the number of times the letter σnxk,l appears in w. Set

gw = F2{ιn}⊗F2{Q̄
Jw,J ∈ R̄(n+ |w|)}.

Then g ≃
⨁︁

w∈W gw with trivial brackets. Note that this splitting is induced by an equiva-

lence of sℒ -algebras over F2-module spectra

(︂
Freesℒ (ΣnX)

)︂(Rn)+

⊗F2 ≃D(Sn)⊗Freesℒ (ΣnX⊗F2)

≃D(Sn)⊗Freesℒ (
⋁︂
xk,l

Σ
n+kF2)

≃
⋁︂

w∈W

(︂
Freesℒ (Σd(w)F2)

)︂(Rn)+

,

where the last step makes use of Corollary 5.13 in [AB21]. The equivalence above would

only be that of F2-module spectra if we did not kill the brackets by cotensoring with (Rn)+.

Therefore we deduce the following:

Proposition 4.3.8. The spectral sequence E2
s,t =HQ

Lies
R̄

s,t (ΩnFree
Lies
R̄

ModF2
(ΣnH∗(X)))⇒Hs+t(FreeEn(X))

splits as

E2
s,t
∼=

⨁︂
w∈W

HQ
Lies
R̄

s,t (gw)⇒
⨁︂
w∈W

πs+tBar•(id,sℒ ,ΩnFreesℒ (Σn
Σ

d(w)−nF2)).

Remark 4.3.9. The canonical map of spectral Lie algebras

Ω
nFreesℒ (ΣnSk)→Ω

∞Freesℒ (Σ∞Sk)

via stabilization induces an embedding of the E2-pages

HQLies
R̄(ΩnFreeModR̄

ModF2
(Σn+kF2))→ HQLies

R̄(ΣkF2)
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by Proposition 4.1.10 and Theorem 4.2.27. We expect that the higher differentials in the

target (Conjecture 4.3.5) pull back to higher differentials in the source. Indeed, combinato-

rially this will yield the computation of the free En-algebra on a single generator. If H∗(X)

has multiple generators, then the splitting of the spectral sequence above via Lyndon words

corresponds precisely the Browder bracket on the free En-algebra on those generators, cf.

[CLM76, III].

4.4 Upper bounds and low weight computations

For a general parallelizable manifold M of dimension n, the Lies
R̄-algebra

g= ˜︁H∗(M+)⊗Free
Lies
R̄

ModF2
(ΣnH∗(X))

has non trivial Lies-brackets and the precise image of the comparison map ϕ∗ in Lemma 4.2.21

becomes much harder to pin down. Nonetheless, Theorem 4.2.6 and Corollary 4.2.9 allow

us to obtain a formula for an upper bound of π∗,∗Bar•(id,Lies
R̄,g) by

π∗,∗Bar•(id,Lies,ti
R̄ , g̃)∼= π∗,∗(CE(AR•(g̃)))

that is an equivalence in weight less than four. Here g̃ = ˜︁H∗(M+)⊗FreeLies,ti
R̄ (H∗(X)) is

the associated Lies,ti
R̄ -algebra, where ˜︁H∗(M+) is equipped with the Lies,ti-bracket coming

from the associated Lies,ti-algebra of the Lies-algebra H∗(M+) with its usual cup product,

cf. Construction 4.2.4. In particular, it follows from Corollary 4.2.7 that in weight less than

four, the two homotopy groups are isomorphic.

4.4.1 General upper bounds

We will see that π∗,∗(CE(AR•(g̃))) admits a description in terms of the Lies,ti-algebra ho-

mology of g̃. The key observation is that for g̃= ˜︁H∗(M+)⊗FreeLies,ti
R̄ (H∗(X)), AR•(g̃) has

trivial Lies,ti-structure away from simplicial degree 0 and its degeneracies, cf. Construc-

tion 4.2.8, and the Lies,ti-bracket on g̃ vanishes on elements that involve Q̄i operations.
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Definition 4.4.1. For a Lies,ti-algebra g, we say that its Lies,ti-structure is supported entirely

by a sub-Lies,ti-algebra g′ if the Lies,ti-algebra g is isomorphic to the product Lies,ti-algebra

N⊕g′, where the Lies,ti bracket vanishes on the complement N ⊂ g.

Lemma 4.4.2. Let g̃ = L⊗Free
Lies,ti
R̄

ModF2
(V ) be a Lies,ti

R̄ -algebra, where L is equipped with a

not necessarily unital Lies,ti-bracket and the Lies,ti-structure on g̃ is the usual one on the

tensor product. Then

π∗,∗(CE(AR•(g̃)))∼= Λ{γI(α),α ∈ A}⊗HLies,ti

∗,∗ (g̃),

where α ∈ A is an element of an F2-basis for π≥1,∗(AR•(g̃)) with simplicial degree s(α),

and I is γ-admissible with e(I)≤ s(α).

Proof. Since brackets of operations are zero, the Lies,ti-algebra g̃ is supported entirely by

the sub-Lies,ti-algebra g′0 = L⊗ FreeLies,ti

ModF2
(V ). Furthermore, for all m ≥ 1, the Lies,ti-

algebra ARm(g̃) is supported entirely by the degeneracies coming from g′0 by Construc-

tion 4.2.8. Hence each simplicial level ARm(g̃) is isomorphic to the product Lies,ti-algebra

Tm⊕ g′m, where g′m is the sub-Lies,ti
F2

-algebra consisting of degeneracies of g′0 and Tm a

trivial Lies,ti-algebra. Since the splittings respect the simplicial Lies,ti-algebra structure of

AR•(g̃), we deduce that AR•(g̃) ∼= T•⊕ g′• as simplicial Lies,ti
F2

-algebras. This induces a

splitting of chain complexes

CE(AR•(g̃))∼= CE(T•)⊗CE(g′•),

where T• is a trivial simplicial Lies,ti-algebra and g′• the constant simplicial object on

g′0. The lemma then follows from Theorem 4.2.14, noting that HLies,ti

∗,∗ (g̃) ∼= HLies,ti

∗,∗ (T0)⊗

HLies,ti

∗,∗ (g′0).

It remains to compute π∗,∗(AR•(g̃)) for g̃= ˜︁H∗(M+)⊗FreeLies,ti
R̄ (H∗(X)). Since g and

g̃ are isomorphic as R̄-modules (cf. Remark 4.2.2), we will not distinguish the two. Re-

call from Proposition 4.3.4 that the R̄-module structure on g is twisted by the Steenrod
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operations in the sense that

Q̄ j
(y⊗α) = ∑

0≤s≤n
Sq j+s(y)⊗ Q̄s

(α).

Notation 4.4.3. Let H ∪{z} be an F2-basis of the cohomology ring H∗(M+), where z cor-

responds to the added point in the one-point compactification and H is a basis for ˜︁H∗(M+).

For y ∈ H, denote by |y| the cohomological degree of y.

Let ˜︁B = {xa}a be a totally ordered basis for V = H∗(X) and B = {σnxa}a with the

induced ordering, where n is the dimension of M. Denote by W the set of basic products

on the set B. Then

g= ˜︁H∗(M+)⊗H∗(Freesℒ (ΣnX))∼=
⨁︂

w∈W,y∈H

F2{y}⊗F2{Q̄
Jw,J ∈ R̄(|w|)}.

Proposition 4.4.4. The bigraded homotopy group π∗,∗(AR•(g̃)) = π∗,∗(AR•(g)) is isomor-

phic to π∗,∗(AR•(gtriv)), where the the untwisted R̄-module gtriv has the same underlying

F2-module as g and the R̄-module structure is given by Q̄ j
(y⊗ x) = y⊗ Q̄ j

(x) for all j.

Proof. We make use of a spectral sequence to filter away the twisting by the action of

the Steenrod operations. We abuse notation here and denote again by AR•(g) the associ-

ated chain complex of AR•(g). Filter g in terms of decreasing cohomological degree of˜︁H∗(M+), so we have

F−p(g) = ˜︁H≥p(M+)⊗Free
Lies
R̄

ModF2
(V )∼=

⨁︂
w∈W,y∈H,|y|≥p

F2{y⊗ Q̄J
(w),J ∈ R̄(|w|)}

with associated graded pieces given by

G−p(g) = F−p(g)/F−p−1(g)∼=
⨁︂

w∈W,y∈H,|y|=p

F2{y⊗ Q̄J
(w),J ∈ R̄(|w|)}.

Since action by Steenrod operations does not decrease cohomological degree, the induced

filtration

F−p(AR•(g)) := AR•(F−p(g))
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makes AR•(g) a filtered chain complex. The associated graded pieces are

G−p(AR•(g)) = AR•(G−p(g)) =
⨁︂

w∈W,y∈H,|y|=p

AR•(F2{y⊗ Q̄J
(w),J ∈ R̄(|w|)})

and the induced differential preserves direct summands.

Using the case M = Rn in Proposition 4.3.8, we deduce that

E1
−p,q = H−p+q(Gp(AR•(g)))∼=

⨁︂
w∈W,y∈H,|y|=p

π∗
(︂

AR•
(︁
F2{y⊗ Q̄J

(w),J ∈ R̄(|w|)}
)︁)︂

∼=
⨁︂

w∈W,y∈H,|y|=p

F2{Q̄
j1 · · · Q̄ jm(y⊗w),( j1, . . . , jm) ∈ R̄(p, |w|)},

where R̄(p, |w|) is the set of sequences ( j1, . . . , jm) such that

1. jl ≤ 2 jl+1 for 1≤ l < m and |w|− p≤ jm < |w|;

2. If m ≥ 2 then jl ≥ jl+1 + · · ·+ jm + |w| − (m− l) for 2 ≤ l ≤ m− 1 and j1 > j2 +

· · ·+ jm + |w|− (m−1).

We claim that every class on the E1-page survives to a class on the E∞-page by induction

along decreasing cohomological degree on ˜︁H∗(M+).

For y∈ ˜︁Hn(M+)∈F−n(g) a top cohomology class, there are no nonzero Steenrod action

on y other than Sq0, so the differential on β in AR•(g) is the same as the differential in

G−n(AR•(g)), i.e. β survives to a nontrivial cycle on the E∞-page.

Suppose that in F−p−1(AR•(g))=AR•(F−p−1(g)), any basis element β ′= Q̄ j′1 · · · Q̄ j′m(y′⊗

w′) of the E1-page is a permanent cycle and they span all permanent cycles in F−p−1(AR•(g)).

Let [β ] = Q̄ j1 · · · Q̄ jm(y⊗w) be a basis element on the E1-page, with y ∈ ˜︁H p(M+). A cycle

representing this class in AR•(G−p(g)) is a finite sum

β = Q̄ j1| · · · |Q̄ jm|(y⊗w)+∑
l

Q̄l1| · · · |Q̄lm|(y⊗w)

obtained by cycle completion via Behrens’ relations in the sense of Remark 4.2.17. Note
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that lm ≤ jm < |w| for all l. Let dm be the rightmost face map. Then in AR•(g)

∂β = ∂

(︂
Q̄ j1 | · · · |Q̄ jm |(y⊗w)+∑

l
Q̄l1| · · · |Q̄lm|(y⊗w)

)︂
= 0+dm

(︂
Q̄ j1| · · · |Q̄ jm|(y⊗w)+∑

l
Q̄l1| · · · |Q̄lm|(y⊗w)

)︂
= ∑

s≥0
Q̄ j1| · · · |Q̄ jm−1|Sqs(y)⊗ Q̄ jm+s

(w)+∑
l

∑
s≥0

Q̄l1| · · · |Qlm−1|Sqs(y)⊗ Q̄lm+s
(w).

Note that the sum of these θl = Q̄l1| · · · |Qlm−1 |Sqs(y)⊗Q̄lm+s
(w) or Q j1| · · · |Q̄ jm−1|Sqs(y)⊗

Q̄ jm+s
(w) over s ≥ 0 is a boundary in AR•(g): If lm + s < |w| then θl = 0. If lm + s ≥ |w|

or jm + s ≥ |w|, then s ≥ 1, since lm ≤ jm < |w|, so θl ∈ F−p−1(AR•(g)). By the induc-

tive hypothesis, the sum of such θl is not a nonzero cycle on the E∞-page and thus the

boundary of a finite sum of classes in F−p−1(AR•(g)) of the form Q̄ j′1| · · · |Q̄ j′m|(y′⊗w′)

with |y′| ≥ p+ s > p. Denote by ξ this finite sum, so ∂ (β + ξ ) = 0 in AR•(g). Note

that ξ is not a boundary because it is maximally nondegenerate and ξ ̸= β since β is not

in F−p−1(AR•(g)). Hence β + ξ is a cycle in AR•(g) corresponding to the basis element

β = Q̄ j1 · · · Q̄ jm(y⊗w) on the E1-page. Therefore the dimension of the E1-page is at most

that of the E∞-page, so no differential can happen in the spectral sequence.

Combing Lemma 4.4.2, Proposition 4.4.4 and Corollary 4.2.7, we deduce the following

general upper bound and low weight computation of the E2-page of the Knudsen spectral

sequence.

Theorem 4.4.5. Let M be a parallelizable manifold of dimension n and X any spectrum.

Let g denote the Lies
R̄-algebra ˜︁H∗(M+)⊗ Free

Lies
R̄

ModF2
(ΣnH∗(X)) with F2-basis B, and g̃

the associated Lies,ti
R̄ -algebra. An upper bound for the E2-page of the weighted spectral

sequence

E2
s,t = HQ

Lies
R̄

s,t (g)⇒
⨁︂
k≥1

Hs+t(Bk(M;X)) (4.10)

is given by

π∗,∗(CE(AR•(g̃)))∼= Λ{γIQ̄J(y⊗w),y⊗w ∈ H⊗B}⊗HLies,ti

∗,∗ (g̃),
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where γIQ̄J(y⊗w) satisfies the conditions that

1. J = ( j1, . . . , jm) with m≥ 1, 0≤ jl ≤ jl+1 +1 for 1≤ l < m, and 0≤ jm < |y|

2. I is γ-admissible with e(I)≤ m.

Furthermore, in weight less than four equality is achieved.

4.4.2 Low weight computations

Theorem 4.4.5 allows us to deduce the degeneration of the spectral sequence at weight two

and three using sparsity arguments. Denote by wtk(M) the weight k part of a weighted

(bi)graded F2-module M and set Er(k) = wtk(Er).

Corollary 4.4.6. Let g, g̃ be the same as in Theorem 4.4.5 and B, H bases given in Nota-

tion 4.4.3. The weight two part of the spectral sequence (4.10)

E2
s,t(2) = wt2(HQ

Lies
R̄

s,t (g))⇒ Hs+t(B2(M;X))

collapses on the E2-page, and hence

E∞(2)∼= E2(2)∼= wt2(HLies,ti

∗,∗ (g̃))⊕
⨁︂

x∈B,y∈H

{Q̄ j(y⊗ x),0≤ j < |y|}.

Proof. Since classes in the tensor factor

A = Λ{γI(Q̄J(y⊗w)),y⊗w ∈ H⊗B}

of Theorem 4.4.5 have weight at least two, classes of weight two lie in exactly one of

the two tensor components A and HLies,ti

∗,∗ (g̃). The weight two classes in A are of the form

Q̄ j(y⊗w) where w has weight one, i.e. w is an element of the F2-basis B of V = H∗(X),

cf. Notation 4.4.3. The weight two classes in HLies,ti

∗,∗ (g̃) are of the form y⊗⟨xa,xb⟩ and

(y⊗ xa)⊗ (y′⊗ xb). Hence the weight two part of the spectral sequence has E2-page con-

centrated in simplicial degrees 0, 1 and thus cannot admit higher differentials.
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In particular, this demonstrates that for a parallelizable M, the F2-module H∗(B2(M;X))

depends on and only on the cohomology ring H∗(M+) when H∗(X) has at least two gener-

ators.

Remark 4.4.7. This is in contrast to the case where X = Sr has only one generator in its

homology: Bödigheimer-Cohen-Taylor showed that for any n-manifold M,

⨁︂
k≥1

H∗(Bk(M;Sr))∼=
n⨂︂

i=0

H∗(Ωn−iSn+r)⊗ dim Hi(M)

depends only on H∗(M) as an F2-module [BCT89].

There is a clear bijection from the weight 2 part of their decomposition to the basis

above: let xk denote the generator of the free En-algebra H∗(ΩnΣnSk). For y a basis element

of ˜︁H i(M+) ∼= Hi(M), the bijection sends Q̄ j(y⊗ xn+r) to the tensor with Q j(xr+i) in the

tensor factor H∗(Ωn−iSn+r) corresponding to y and 1 in all other tensor factors. The Lies,ti-

algebra Lies,tig is trivial, so wt2(HLies,ti
(Lies,tig)) ∼= {yy′} where y,y′ ranges over distinct

basis of ˜︁H i(M+) and the bijection sends yy′ to the tensor with factors y, y′ and 1 in all other

slots.

On the other hand, the homology of Conf2(M), the space of ordered configurations of

two points in M, also depends only on the cup product structure of H∗(M) as discussed in

[Pet20, Section 1.1].

Corollary 4.4.8. If in addition M is closed, then the weight three part of the spectral se-

quence (4.10) collapses on the E2-page, and a basis for H∗(B3(M;X)) is given by

E∞(3)∼= E2(3)∼=
⨁︂

x,x′∈B,y,y′∈H

F2{(Q̄ j(y⊗ x))⊗ (y′⊗ x′),0≤ j < |y|}

⊕wt3(HLies,ti

∗,∗ (g̃)),

Proof. Let d denote the generator for ˜︁H0(M+) ∼= H0(M). Then any element that is a sum

of y⊗⟨⟨x1,x2⟩,x3⟩ ∈ H⊗B is killed by a sum of (y⊗⟨x1,x2⟩)⊗ (d⊗ x3). Since classes in

A have weights positive powers of two, weight three classes on the E2-page either live in
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wt3(HLies,ti

∗,∗ (g̃)) with simplicial degree one or two, or have the form

(Q̄ j
(y⊗ x))⊗ (y′⊗ x′) ∈ wt2(A)⊗wt1(HLies,ti

∗,∗ (g̃))

with simplicial degree two. Hence E2(3) is concentrated in simplicial degree 1 and 2, so

there cannot be any higher differentials.

At weight four part we can no longer deduce that the spectral sequence (4.10) collapses

on the E2-page using sparsity arguments. An upper bound for the bigraded F2-module

E2(4) is given by the weight four part of A⊗HLies,ti
(g̃), which consists of:

1. Q̄i(y⊗⟨x,x′⟩) in simplicial degree one,

2. Q̄iQ̄ j(y⊗ x) and Q̄i(y⊗ x)⊗ (y′⊗⟨x1,x2⟩) in simplicial degree two,

3. Q̄i(y⊗x)⊗Q̄ j(y′⊗x′) and Q̄i(y⊗x)⊗(y1⊗x1)⊗(y2⊗x2) in simplicial degree three,

4. Weight four part of HLies,ti
(g̃).

There could well be a d2-differential from degree considerations.

We close this section by a few example computations: the closed torus, the punctured

genus g surfaces with g≥ 1 and the (punctured) real projective space RP3.

4.4.3 Example computations: closed torus and punctured genus g sur-

faces

Let Σg,1 be a once-punctured surface of genus g≥ 1 and Σ1 the closed torus. Let ˜︁B = {xi}i

be a totally ordered basis for H∗(X) and B = {σ2xi}i with the induced ordering. Then

˜︁H∗(Σ+
g,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F2{ai⊕bi, i = 1, . . . ,g} ∗= 1

F2{c} ∗= 2

0 otherwise

with nonzero cup products ai∪bi = c for all i and no nontrivial Steenrod operations.

For the closed surface Σ1, we further have a class in ˜︁H2(Σ+
1 )
∼= H2(Σ1) = F2{c}, with

nonzero cup products a∪b = c and d∪ y = y for all y ∈ H∗(Σ1).
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Weight two

For M = Σg,1, the weight two classes supporting nonzero CE differentials are ∂ (ai⊗x1,bi⊗

x2) = c⊗⟨x1,x2⟩ for x1 ̸= x2 ∈ B, since these are only one nonzero cup products. Denote

by H1 the set of generators {ai,bi, i = 1, . . . ,g} for ˜︁H1(Σ+
g,1). Impose a total ordering on

H1∪{c,d}. By Corollary 4.4.6, a basis for H∗(B2(Σg,1;X)) is given by

E∞(2) = E2(2)∼=
⨁︂
x∈B

F2{Q̄0(y⊗ x),y ∈ H1; Q̄0(c⊗ x), Q̄1(c⊗ x)}

⊕
⨁︂

x1<x2∈B

F2{y⊗⟨x1,x2⟩,(y⊗ x1)⊗ (y⊗ x2),y ∈ H1;(c⊗ x1)⊗ (c⊗ x2)}

⊕
⨁︂

x1,x2∈B

F2{(y⊗ x1)⊗ (c⊗ x2),y ∈ H1}⊕
⨁︂
x∈B

F2{(y⊗ x)⊗ (y′⊗ x),y < y′ ∈ H1∪{c}}

⊕
⨁︂

x1<x2∈B

F2{(y⊗ x1)⊗ (y′⊗ x2)+(a1⊗ x1)⊗ (b1⊗ x2),y ̸= y′ ∈ H1,(y,y′) ̸= (ai,bi)}.

For M = Σ1, the weight two classes supporting CE differentials are

δ ((a⊗ x2)⊗ (b⊗ x2)) = c⊗⟨x1,x2⟩ and δ ((d⊗ x1)⊗ (y⊗ x2)) = y⊗⟨x1,x2⟩

for x1 ̸= x2 ∈ B and y ∈ ˜︁H∗(Σ+
1 ). By Corollary 4.4.6, a basis for H∗(B2(Σ1;X)) is given by

E∞(2) = E2(2)∼=
⨁︂
x∈B

F2{Q̄0(y⊗ x),y ∈ H1; Q̄0(c⊗ x), Q̄1(c⊗ x)}

⊕
⨁︂

x1<x2∈B

F2{(y⊗ x1)⊗ (y⊗ x2),y ∈ H1;(z⊗ x1)⊗ (z⊗ x2)}

⊕
⨁︂

x1 ̸=x2∈B

F2{(y⊗ x1)⊗ (z⊗ x2),y ∈ H1}

⊕
⨁︂
x∈B

F2{(y⊗ x)⊗ (y′⊗ x),{y < y′} ∈ {a,b,c,d}}

⊕
⨁︂

x1<x2∈B

F2{(y⊗ x1)⊗ (y′⊗ x2),y,y′ ∈ H1,{y,y′} ̸= {a,b}}

⊕
⨁︂

x1<x2∈B

F2{(y⊗ x1)⊗ (y′⊗ x2)+(d⊗ x1)⊗ (c⊗ x2),{y,y′}= {a,b} or (y,y′) = (c,d)}.

Example 4.4.9. When X = Sk with k ≥ 1, we have B = {x = σ2ιk}, so H∗(B2(Σ1,Sk)) has
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F2-basis

{Q̄0(a⊗ x), Q̄0(b⊗ x), Q̄0(c⊗ x), Q̄1(c⊗ x);(y⊗ x)⊗ (y′⊗ x),{y < y′} ⊂ {a,b,c,d}}.

The weight two part of Bödigheimer-Cohen-Taylor’s decomposition [BCT89]

⨁︂
k≥1

H∗(Bk(Σ1;Sk))∼=
n⨂︂

i=0

H∗(Ω2−iS2+k)⊗ dim Hi(M)∼=H∗(Ω2
Σ

2Sk)⊗H∗(ΩΣS1+k)⊗2⊗H∗(S2+k)

(4.11)

is an F2-module on generators Q0(xk)⊗ 1⊗ 1⊗ 1,Q1(xk)⊗ 1⊗ 1⊗ 1,1⊗ Q̄0(xk+1)⊗ 1⊗

1,1⊗ 1⊗ Q̄0(xk+1)⊗ 1, as well as 6 other elements where we let two of the four tensor

factors be 1 and the other two be the weight 1 generators. There is a one-to-one correspon-

dence by sending y⊗ x to xk+2−|y| and Q̄i(y⊗ x) to Qi(xk+2−|y|) for y = a,b,c,d.

Weight three

Classes in A = Λ
(︁
γI(Q̄

j1| · · · |Q̄ jm|(y⊗ w)),m ≥ 1
)︁

have weights positive powers of 2.

Hence weight three classes in E2(3) either live in wt3(HLies,ti

∗,∗ (g̃)) or has the form

(Q̄ j(y⊗ x))⊗ (y′⊗ x′) ∈ A⊗HLies,ti

∗,∗ (g̃), x,x′ ∈ B.

Let H be the set of generators for ˜︁H∗(Σ+
g,1)
∼= ˜︁H∗(Σg) and H1 the set of generators for˜︁H1(Σ+

g,1). Recall that g̃= ˜︁H∗(Σg)⊗Free
Lies,ti
R̄

ModF2
(ΣnH∗(X)). Then we have

E2(3)∼=
⨁︂

x1,x2∈B

F2{(Q̄0(y⊗ x1))⊗ (y′⊗ x2),y ∈ H1,y′ ∈ H}

⊕
⨁︂

x1,x2∈B

F2{(Q̄0(c⊗ x1))⊗ (y⊗ x2),(Q̄1(c⊗ x))⊗ (y⊗ x2),y ∈ H}

⊕wt3(HLies,ti

∗,∗ (g̃)).

A complete list of an F2-basis of wt3(HLies,ti

∗,∗ (g̃) can be written down in a straight forward

way.

The E2-page is concentrated in simplicial degree 0,1,2. We need to investigate all
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classes in E2
2,∗(3) to see if they support nontrivial d2-differentials to E2

0,∗+1(3). Note that

all classes in E2
0,∗(3) are of the form y⊗⟨⟨x1,x2⟩,x3⟩ for y ∈ H1. Since E2(3) is natural

in H∗(V ), we can assume x1,x2,x3 ∈ B have internal degree k respectively. There are two

cases:

1. The class (Q̄ j(y1⊗x1))⊗(y2⊗x2)∈ E2
2,∗(3) has internal degree at most 3k−5 for all

y1,y2 ∈ H, while the class y⊗⟨⟨x1,x2⟩,x1⟩ has internal degree 3k−3 for all y ∈ H1.

Hence they do not support d2-differentials.

2. The other type of classes in filtration 2 are of the form (y1⊗x1)⊗(y2⊗x2)⊗(y3⊗x3)

with internal degrees at most 3k− 5, while the class y⊗ ⟨⟨x1,x2⟩,x3⟩ has internal

degree 3k−3. Hence these classes do not support d2-differentials either.

Therefore the weight three part of the spectral sequence collapses at the E2-page, and we

obtain a basis for H∗(B3(Σg,1;X)).

For the closed surface Σ1, g̃= H∗(Σ1)⊗Free
Lies,ti
R̄

ModF2
(ΣnH∗(X)) and Corollary 4.4.8 says

that

E∞(3) = E2(3)∼=
⨁︂

x1,x2∈B

F2{(Q̄0(y⊗ x1))⊗ (y′⊗ x2),y ∈ H1,y′ ∈ H ∪{d}}

⊕
⨁︂

x1,x2∈B

F2{(Q̄0(c⊗ x1))⊗ (y⊗ x2),(Q̄1(c⊗ x))⊗ (y⊗ x2),y ∈ H ∪{d}}

⊕wt3(HLies,ti

∗,∗ (g̃)).

We do not list the F2-basis of wt3((HLies,ti

∗,∗ (g̃)) for simplicity.

Example 4.4.10. As in the weight two case, our basis for H∗(B3(Σ1,Sk)),k≥ 1 is in bijec-

tion with the weight 3 part of Equation (4.11) by sending y⊗ x to xk+2−|y| and Q̄i(y⊗ x) to

Qi(xk+2−|y|) for y = a,b,c,d.

4.4.4 Example computations: (punctured) real projective space

The simplest examples of parallelizable manifolds admitting nontrivial Steenrod actions

other than Sq0 are the real projective space RP3 and the once-punctured real projective
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space RP3̇ . Let y be a generator for H1(RP3). Then

˜︁H∗((RP3)+)∼= H∗(RP3) = F2[y]/(y4), ˜︁H∗((RP3̇ )+) = ˜︁H∗(RP3) = F2{y,y2,y3}

with the obvious cup products and one nontrivial Steenrod operation Sq1(y) = y2.

Weight two

We deduce H∗(B2(RP3̇ ;X)) and H∗(B2(RP3;X)) from Corollary 4.4.6. For M =RP3̇ , there

is only one nontrivial cup product y∪ y2 = y3, so

E∞(2) = E2(2) =
⨁︂

x∈B,a=1,2,3

F2{Q̄ j(y
a⊗ x),0≤ j < a}⊕

⨁︂
x∈B

F2{(ya⊗ x)⊗ (yb⊗ x),1≤ a < b≤ 3}

⊕
⨁︂

x1<x2∈B

F2{y⊗⟨x1,x2⟩;(ya⊗ x1)⊗ (ya⊗ x2),a = 2,3}

⊕
⨁︂

x1 ̸=x2∈B

F2{(ya⊗ x1)⊗ (y3⊗ x2),a = 1,2}

⊕
⨁︂

x1<x2∈B

F2{(y1⊗ x1)⊗ (y2⊗ x2)+(y2⊗ x1)⊗ (y1⊗ x2)}.

For M = RP3, the nonzero cup products are y∪ y = y2,y∪ y2 = y3 and 1∪ ya = ya for

0≤ a≤ 3, so

E∞(2) = E2(2) =
⨁︂

x∈B,a=1,2,3

F2{Q̄ j(y
a⊗ x),0≤ j < a}

⊕
⨁︂
x∈B

F2{(ya⊗ x)⊗ (yb⊗ x),0≤ a < b≤ 3}

⊕
⨁︂

x1<x2∈B

F2{(ya⊗ x1)⊗ (ya⊗ x2),a = 2,3}

⊕
⨁︂

x1 ̸=x2∈B

F2{(ya⊗ x1)⊗ (y3⊗ x2),a = 1,2}

⊕
⨁︂

x1<x2∈B

F2{(ya⊗ x1)⊗ (yb⊗ x2)+(y3⊗ x1)⊗ (1⊗ x2),(a,b) ̸= (3,0)}

⊕
⨁︂

x1<x2∈B

F2{(ya⊗ x1)⊗ (1⊗ x2)+(1⊗ x1)⊗ (ya⊗ x2),a = 1,2,3}.
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Example 4.4.11. When X = Sk with k ≥ 1, we have B = {x = σ2ιk}, so H∗(B2(RP3,Sk))

has F2-basis

{Q̄ j(y
a⊗ x),0≤ j < a,a = 1,2,3;(ya⊗ x)⊗ (yb⊗ x),0≤ a < b≤ 3}.

A bijection with weight 3 part of Bödigheimer-Cohen-Taylor’s decomposition [BCT89]

⨁︂
k≥1

H∗(Bk(RP3;Sk))∼=
n⨂︂

i=0

H∗(Ω3−iS3+k)⊗ dim Hi(M)

∼=H∗(Ω3
Σ

3Sk)⊗H∗(Ω2
Σ

2Sk+1)⊗H∗(ΩΣSk+2)⊗H∗(Sk+3)

∼=FreeE3(F2{xk})⊗FreeE2(F2{{xk+1})⊗FreeE1(F2{xk+2})⊗F2{xk}

is given by sending ya⊗ x to xk+3−a and Q̄i(ya⊗ x) to Qi(xk+3−a) for 0≤ a≤ 3.

Weight three

For the closed manifold RP3 and g̃ = H∗(RP3)⊗ Free
Lies,ti
R̄

ModF2
(ΣnH∗(X)), it follows from

Corollary 4.4.8 that

E∞(3) = E2(3)∼= wt3(HLies,ti

∗,∗ (g̃))⊕
⨁︂

x1,x2∈B,1≤a≤3,0≤b≤3

F2{(Q̄ j(y
a⊗ x1))⊗ (yb⊗ x2),0≤ j < a}.

For the punctured real projective space RP3̇ and g̃= ˜︁H∗(RP3)⊗Free
Lies,ti
R̄

ModF2
(ΣnH∗(X)),

weight three classes in E2(3) either live in wt3(HLies,ti

∗,∗ (g̃)) or has the form

(Q̄ j(y
a⊗ x))⊗ (yb⊗ x′) ∈ A⊗HLies,ti

∗,∗ (g̃)

with x,x′ ∈ B and 1≤ a,b≤ 3. Therefore

E2(3) = wt3(HLies,ti

∗,∗ (g̃))⊕
⨁︂

x1,x2∈B,1≤a,b≤3

F2{(Q̄ j|(ya⊗ x1))⊗ (yb⊗ x2),0≤ j < a}.

A complete list of an F2-basis for wt3(HLies,ti

∗,∗ (g̃)) is given by
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1. y⊗⟨⟨x1,x2⟩,x3⟩ for x1,x2,x3 ∈ B,x1 < x2,x1 < x3 in simplicial degree 0;

2. (y3⊗⟨x1,x2⟩)⊗ (yb⊗x3)+(y3⊗⟨x1,x3⟩)⊗ (yb⊗x2)+(y3⊗⟨x2,x3⟩)⊗ (yb⊗x1) for

b = 1,2

and (y⊗⟨x1,x2⟩)⊗ (y2⊗ x3)+ (y⊗⟨x1,x3⟩)⊗ (y2⊗ x2)+ (y⊗⟨x2,x3⟩)⊗ (y2⊗ x1)

for distinct xi ∈ B in simplicial degree 1;

3. (ya⊗ x1)⊗ (yb⊗ x2)⊗ (yc⊗ x3) for {1,2},{1,1}⊈ {a,b,c} and xi ∈ B;

∑{i, j,k}={1,2,3},i< j(y⊗ xi)⊗ (y⊗ x j)⊗ (y2⊗ xk),

∑{i, j,k}={1,2,3}, j<k(y⊗xi)⊗(y2⊗x j)⊗(y2⊗xk) for distinct x1,x2,x3 ∈B in simplicial

degree 2.

Again the E2-page is concentrated in simplicial degrees 0,1,2, and we use sparsity to

rule out higher differentials. Suppose that x1,x2,x3 have internal degree k. We examine the

two cases that could potentially support a d2-differential.

1. The class (Q̄ j(ya⊗ x1))⊗ (yb⊗ x2) ∈ E2
2,∗(3) has internal degree at most 3k− 5 for

all 1 ≤ a,b ≤ 3, while the class y⊗⟨⟨x1,x2⟩,x1⟩ has internal degree 3k− 3. Hence

they do not support d2-differentials.

2. The other type of classes in simplicial degree 2 are of the form (ya⊗x1)⊗(yb⊗x2)⊗

(yc⊗ x3) with internal degrees at most 3k− 5, while the class y⊗⟨⟨x1,x2⟩,x3⟩ has

internal degree 3k−3. Hence these classes do not support d2-differentials either.

Therefore the weight three part of the spectral sequence collapses on the E2-page, and we

obtain a basis for H∗(B3(RP3̇ ;X)).

4.5 Odd primary homology

In this last section, we apply the same methods to study the mod p homology of Bk(M;X)

for p > 2 via the Knudsen spectral sequence with Fp coefficient.
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4.5.1 Odd primary Knudsen spectral sequence

We start by recalling partial progress in understanding the unary operations on the mod p

homology of spectral Lie algebras by Kjaer [Kja18]. He constructed weight p Dyer-Lashof-

type operations in analogy to Behrens’ construction of Q̄ j, which was further clarified by

the work of Konovalov.

Proposition 4.5.1. [Kja18, Definition 3.2][Kon23, Definition 2.5.17] Let L be a spectral

Lie algebra. Then H∗(L;Fp) admits unary operations

β εQ j : H∗(L;Fp)→ H∗+2(p−1)i−ε−1(L;Fp), ε ∈ {0,1}, j ∈ Z.

On a class x ∈ H∗(L;Fp) such that if |x| is even then 2 j ̸= x, the class β εQ j(x) is given by

by ξ∗(σ
−1β εQ j(x)), where β εQ j is a mod p Dyer-Lashof operation, σ−1 the desuspen-

sion isomorphism, and ξ : ∂p(Id)⊗hΣp L⊗p→ L the pth structure map of the spectral Lie

algebra L. When |x| = 2l, define βQl(x) via the isomorphism H∗(∂p(id)⊗hΣp (S
2l)⊗p) ∼=

H∗(Σ−1(∂p(id)⊗hΣp (S
2l−1)⊗p)).

It follows from the instability condition of Dyer-Lashof operations that the allowability

condition for the operations β ε are given by β εQ j(x) = 0 if j < |x|
2 . Analogous to the case

p = 2, brackets of unary operations always vanish.

Proposition 4.5.2. [Kja18, Proposition 3.7] For L a spectral Lie algebra, [β εQ j(x),y] = 0

for any ε, j and x,y ∈ H∗(L;Fp) .

The relations among the unary operations were obtained by Konovalov.

Proposition 4.5.3. [Kon23, Theorem 8.2.14] Let R̄ be the free algebra over Fp on gener-

ators β εQ j,ε ∈ {0,1}, subject to the relations

β εQ j ·βQi =(−1)ε+1
i+ j−1

∑
m=pi

(︃
p(m− i)− (p−1) j+ ε−1

m− pi

)︃
βQm ·β εQ j+i−m

+(1− ε)
i+ j−1

∑
m=pi+1

(︃
p(m− i)− (p−1) j

m− pi

)︃
Qm ·βQ j+i−m
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for j < pi, and

β εQ j ·Qi =
i+ j−1

∑
m=pi+1

(︃
p(m− i)− (p−1) j−1

m− pi−1

)︃
β εQm ·Q j+i−m

for j≤ pi. Then the mod p homology of a spectral Lie algebra is an allowable module over

R̄.

Denote by AR̄ the free allowable R̄-module monad. Let Lies
R̄ : ModFp → ModFp

be the composite monad AR̄ ◦Lies
Fp

subject to the commuting relations Proposition 4.5.2

when p> 3, and the monad given by Lies
R̄(M) =AR̄ ◦Lies

F3
(M)/⟨β εQ|x|/2(x) = [[x,x],x]⟩,

where we take the quotient by the R̄-module ideal ranging over x ∈M in even degree. For

M ∈ModFp , let A be an Fp-basis for the free shifted Lie algebra Free
Lies

Fp
ModFp

(M). The graded

Fp-module Lies
Poly(M) has basis

{β ε1
1 Q j1 · · ·β εk

k Q jk |x, x ∈ A, jk ≥
|x|
2
, ji ≥ p ji+1− εi+1∀i}.

Theorem 4.5.4. [Kja18, Theorem 5.2][Kon23, Theorem 8.2.17] For X a spectrum. there

is an isomorphism of Lies
R̄-algebras

Lies
R̄(H∗(X ;Fp))→ H∗(Freesℒ (X);Fp).

Remark 4.5.5. For p = 3, Kjaer claimed in [Kja18, Corollary 4.7] that the triple bracket

on an even degree homology class ι2l of a spectral Lie algebra is zero by showing that

[[ι2l, ι2l], ι2l] ∈ H∗(∂3(id) ⊗
hΣ3

(S2l)⊗3)

vanishes. The claim is incorrect in light of Proposition 4.5.8 below, and was independently

observed by Nikolai Konovolav. Specifically, Kjaer argued that in the long exact sequence

· · · → H6l−2(Σ
−2(S2l)⊗3

hΣ3
)→ H6l−2(∂3(id) ⊗

hΣ3

(S2l)⊗3)→ H6l−2((Σ
−1(S2l)⊗3

hΣ3)→ ··· ,

the middle group is generated as an F3-module by the bottom operation βQlι2l , which is
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mapped isomorphically onto σ−1βQlι2l by definition of the bottom operation in Defini-

tion 3.2. However, σ−1βQlι2l ∈ H6l−2(Σ
−1(S2l)⊗3

hΣ3) = 0. In fact, one can see that the

confusion was caused by incorrect placement of parentheses. Since the left term is one-

dimensional on [[ι2l, ι2l], ι2l], we see that [[ι2l, ι2l], ι2l] = µlβQlι2l , where µl = ±1. This

also motivates the modification of the definition of the bottom operation on an even class

in Proposition 4.5.1.

Now we turn to the odd primary Knudsen spectral sequence

E2
s,t(k) = πs,t

(︁
Bar•

(︁
id,Lies

R̄,g
)︁
⊗Fp

)︁
(k)⇒ Hs+t(Bk(M;X);Fp), (4.12)

where g = H∗(Freesℒ (ΣnX)M+
;Fp) ∼= ˜︁H∗(M+;Fp)⊗Lies

Poly(Σ
nH∗(X ;Fp)). Furthermore,

g has a Lies
Fp

-structure given by Proposition 4.3.3, i.e.,

[y1⊗ x1,y2⊗ x2] := (y1∪ y2)⊗ [x1,x2].

We proceed to compute the E2-page of the spectral sequence (4.12) in small weight in

terms of Lies
Fp

-algebra homology.

Definition 4.5.6. [CE48][May66A] For a shifted Lie algebra L over Fp, let Leven and Lodd

denote the elements in L with even and odd degree, respectively. The Chevalley-Eilenberg

complex of L is the chain complex

CE(L) = (Γ•(Leven)⊗Λ
•(Lodd),∂ ),

where Γ• and Λ• are respectively the graded, shifted divided power and exterior algebra

functor over Fp, and the differential ∂ on a general element

γk1(x1)γk2(x2) · · ·γkm(xm)⟨y1,y2, . . . ,yn⟩ ∈ Γ
•(Leven)⊗Λ

•(Lodd)
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is given by

∑
1≤i< j≤m

γk1(x1) · · ·γki−1(xi) · · ·γk j−1(x j) · · ·γkm(xm)⟨[xi,x j],y1, . . .yn⟩

+ ∑
1≤i< j≤n

(−1)i+ j−1
γk1(x1) · · ·γkm(xm)⟨[yi,y j],y1, . . . , ˆ︁yi, . . . ˆ︁y j, . . .yn⟩

+
1
2

m

∑
i=1

γk1(x1) · · ·γki−2(xi) · · ·γkm(xm)⟨[xi,xi],y1, . . . ,yn⟩

+
m

∑
i=1

n

∑
j=1

(−1) j−1
γ1([xi,y j])γk1(x1) · · ·γki−1(xi) · · ·γkm(xm)⟨y1, . . . , ˆ︁y j, . . . ,yn⟩.

Proposition 4.5.7. Let Mn be a parallelizable manifold and X any spectrum.

1. For k < p, the weight k part of the spectral sequence

E2
s,t(k) = πsπt

(︁
Bar•

(︁
id,sℒ ,Freesℒ (ΣnX)M+)︁

⊗Fp
)︁
(k)⇒ Hs+t(Bk(M;X);Fp)

has E2-page given by wtk(H∗,∗(CE(g)), where g= ˜︁H∗(M+;Fp)⊗Lies
Fp
(ΣnH∗(X ;Fp)).

2. For p≥ 5, the weight p part of the spectral sequence has E2-page given by

E2
∗,∗(k)∼= wtp(H∗,∗(CE(g)))⊕

⨁︂
y∈H,x∈B

Fp

{︂
β εQ j|y⊗ x,

|x|− |y|
2

≤ j <
|x|
2

}︂
,

where H is an Fp-basis of ˜︁H∗(M+;Fp) and B an Fp-basis of H∗(X ;Fp).

Proof. For k < p, all elements in the weight k part of the E2-page of the spectral sequence

do not contain unary operations β εQ j. When k = p, nondegenerate elements of weight p

on the E2-page are either of the form β εQ j|y⊗ x ∈ Lies
R̄(g), β εQ j(y⊗ x) ∈ g, or a bracket

of weight p. When p ≥ 5, the unary operation β εQ j cannot be an iteration of brackets on

a single element, since [[x,x],x] = 0 for any x by the Jacobi identity. Hence there is no

d1-differential from a weight p bracket to β εQ j|y⊗ x or y⊗β εQ j(x). The same argument

in Proposition 4.4.4 implies that the twisting of the action of β εQ j by Steenrod operations

can be ignored when computing a basis for the E2-page.

The condition p ≥ 5 in part (2) is necessary in light of the following computation for
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Euclidean spaces.

Proposition 4.5.8. For p≥ 5, the only higher differential in the weight p part of the spectral

sequence (4.12) for M =Rn,2≤ n≤∞, which converges to H∗(Bp(Rn;S2l);Fp), is a dp−2-

differential γp(x) ↦→ β εQl|yn⊗σn(x).

When p = 3, the above spectral sequence has a d1-differential γ3(x) ↦→ β εQl|x.

Heuristically, this is because the bottom non-vanishing mod p Dyer-Lashof operation

on a class x of degree 2l in the mod p homology of an En-algebra is given by Q̄l
(x) = x⊗p,

so γp(x) is redundant.

Proof. Consider the spectral sequence (4.12) when M = Rn and X = S2l with n > 2, so

g= Fp{yn}⊗Lies
Poly(Fp{σn(x2l)})

with y in internal degree −n and x2l in degree 2l. Set x = yn⊗σn(x2l). Then the weight p

part of the E2-page has basis

{︂
β εQ j|x, l ≤ j <

2l +n
2

; γp(x)
}︂
.

Comparing with the weight p part of the E∞-page, which is the weight p part of the mod

p homology of the free En-algebra on the S2l , we see that there are two classes that do not

survive to the E∞-page, i.e., γp(x) in bidegree (p−1,2pl− (p−1)) and βQl|x in bidegree

(1,2pl− 2) (cf. [CLM76, III]). Hence there has to be a dp−2-differential from γp(x) to

β εQl|x.

When p = 3, γ3(x) is represented by the element [[x,x],x]∈ Lies
Fp
◦Lies

Fp
(g)⊂ Lies

Poly ◦

Lies
Poly(g). It is mapped by the differential to [[x,x],x] ∈ Lies

Fp
(g), which by Remark 4.5.5

is indeed β εQl|x.

As an immediate corollary to Proposition 4.5.7, we see that the weight two part of

the spectral sequence (4.12) collapses on the E2-page, since the E2-page is concentrated

in simplicial degree 0 and 1. When p > 3, weight three elements on the E2-page are in

simplicial degree 1 or 2 since [[x,x],x] = 0 by the Jacobi identity. Hence the weight three

part of the spectral sequence (4.12) also collapses on the E2-page.
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Corollary 4.5.9. Let Mn be a parallelizable manifold and X any spectrum. Let g be the

Lies
Fp

-algebra ˜︁H∗(M+;Fp)⊗Lies
Fp
(ΣnH∗(X ;Fp))

1. For all i, there is an isomorphism of Fp-modules

Hi(B2(M;X);Fp)∼=
⨁︂

s+t=i

wt2(Hs,t(CE(g)).

2. If p≥ 5, then Hi(B3(M;X);Fp)∼=
⨁︁

s+t=i wt3(Hs,t(CE(g)) for all i.

Remark 4.5.10. For M a connected n-manifold, Bödigheimer-Cohen-Taylor showed that

⨁︂
k≥1

H∗(Bk(M;Sr);Fp)∼=
n⨂︂

i=0

H∗(Ωn−iSn+r;Fp)
⊗ dim Hi(M;Fp)

for r + n odd and r ≥ 0 [BCT89]. Their proof does not work in the case where r + n is

even due to the existence of nontrivial self-brackets in H∗(ΩmΣmSl);Fp) when l is even.

Roughly speaking, their inductive proof relies on the canonical map H∗(ΩmΣmSl;Fp)→

H∗(Ω∞Σ∞Sl;Fp) being an injection, which is only true when l is odd. Corollary 4.5.9

shows that when l is even, the mod p homology of Bk(M;Sr),k = 2,3 depends on the cup

product structure on H∗(M+;Fp): if a∪b = c in ˜︁H∗(M+;Fp), then the d1-differential sends

(a⊗ x)⊗ (b⊗ x) to c⊗ [x,x] ∈ g = ˜︁H∗(M+;Fp)⊗Lies
Poly(Fp{x}), which is not zero since

x has internal degree l.

At higher weights, there generally will be higher differentials in the odd primary Knud-

sen spectral sequence (4.12). In recent work with Matthew Chen [CZ22], we make use of

Proposition 4.5.7 and Drummond-Cole-Knudsen’s computation of the rational homology

of the unordered configurations space Bk(M) where M = Σ1 or Σg,1 [DCK17] to identify

the differentials in the Knudsen spectral sequence for Bk(Σg;S). As a result, we show that

the integral homology of Bk(Σ1) is p-torsion-free for k ≤ p. The same argument works

for the punctured surface Σg,1 with g ≥ 1, thereby providing a more elementary proof for

[BHK19, Theorem 1.10]
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Chapter 5

The structure of the bar spectral

sequence

The philosophy of viewing spectral sequences as one-parameter deformations of homo-

topy theories has recently proven to be useful in a number of situations. For instance,

Pstrągowski [Pst] constructed the ∞-category SynFp
of Fp-synthetic spectra as a deforma-

tion of the ∞-category Sp of spectra with formal parameter τ . Informally, inverting the

parameter τ recovers Sp, whereas modding out by τ yields the derived category of comod-

ules over the dual of the Steenrod algebra. On the other hand, building on the insights of

[HL17, Lur11a], Brantner [Bra17] computed the additive operations and their relations on

the Morava E-theory of spectral Lie algebras using a deformation of the comonad asso-

ciated to the bar construction against Rezk’s monad of additive power operations on the

Morava E-theory of E∞-algebras [Rez12].

This chapter records joint work in progress with Andrew Senger on examining the bar

spectral sequence as a coalgebra over a filtered comonad. The motivation is to use the

comonadic structure map to detect the higher differentials in the bar spectral sequence in

Conjecture 4.3.5.
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5.1 Categorical setup

We start by starting up the necessary framework to carry out the computation. The main

references for this section are [Lur09] and [Pst].

5.1.1 Product-preserving presheaves

Let C be a small ∞-category and P(C) = Fun(Cop,S) the ∞-category of presheaves on C

with value in Spaces. Denote by ν the Yoneda embedding C → P(C) that sends X ∈ C to

the presheaf MapC(−,X).

Theorem 5.1.1. [Lur09, Proposition 5.3.6.2, Proposition 5.5.8.10, Lemma 5.5.8.14] Let C

be a small ∞-category with finite coproducts. Denote byPΣ(C)⊆P(C) the full subcategory

generated by the image of the Yoneda embedding under sifted colimits. Then the following

statements hold:

1. PΣ(C) is the full subcategory Fun×(C,S) of product-preserving presheaves, i.e.,

presheaves f ∈ P(C) satisfying f (X ⊔X ′) ≃−→ f (X)× f (X ′) for all X ,X ′ ∈ C;

2. The Yoneda embedding ν : C→ PΣ(C) preserves finite coproducts;

3. For any ∞-category D that admits all sifted colimits, precomposing with the Yoneda

embedding ν induces an equivalence FunΣ(PΣ(C),D)
≃−→ Fun(C,D) with inverse left

Kan extension along ν . Here FunΣ(PΣ(C),D) denotes the ∞-category of functors

PΣ(C)→D that preserve sifted colimits.

For example, suppose that C is an ∞-category with all colimits and i : C0 ↪→ C the

finite coproduct-preserving inclusion of a full subcategory C0 that is closed under finite

coproducts. Then there is a natural colimit-preserving functor Re : PΣ(C0)→ C, called the

realization map, obtained by left Kan extension of i along the Yoneda embedding ν : C0→

PΣ(C0).

Proposition 5.1.2. The right adjoint to Re : PΣ(C0)→ C is given by the restricted Yoneda

embedding ν0 : C→PΣ(C0) that sends X ∈ C to the product-preserving presheaf MapC(−,X).
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Proof. We want to show that there is a natural equivalence

MapC(Re(X),Y )≃MapPΣ(C0)
(X ,ν0(Y ))

for X ∈ PΣ(C0) and Y ∈ C. Since PΣ(C0) is generated by the image of ν : C0→ PΣ(C0)

under sifted colimits and Re preserves sifted colimits, it suffices to check the equivalence

of the image of ν . By construction Re sends ν(X) to X ∈ C for any X ∈ C0. Hence there

are natural equivalences

MapC(Re◦ν(X),Y )≃MapC(X ,Y )≃ ν0(Y )(X)≃MapPΣ(C0)
(ν(X),ν0(Y ))

as desired.

Proposition 5.1.3. (1) Suppose that the full sucategory C0 of C consists of compact objects.

Then the restricted Yoneda embedding ν0 : C→ PΣ(C0) preserves filtered colimits.

(2) If in addition C = Ind(C0), then ν0 is fully faithful and the counit map Re◦ν0→ idC

is an equivalence.

Proof. (1) Suppose that X ∈ C is a filtered colimit X = colim
α

Xα of compact object Xα ∈ C.

For any Y ∈ C0, there are natural equivalences

ν0(X)(Y )≃MapC(Y,X)≃MapC(Y,colim
α

Xα)≃ colim
α

MapC(Y,Xα)≃ colim
α

ν(Xα)(Y ).

The second to last equivalence is due to the compactness of Y .

(2) If C = Ind(C0), then for any X ,Y ∈ C expressed as filtered colimits X = colim
α

Xα ,Y =

colim
β

Yβ of compact objects Xα ,Yβ , we have

MapC(X ,Y ) = MapC(colim
α

Xα ,colim
β

Yβ )≃ lim
α

colim
β

MapC(Xα ,Yβ )≃ lim
α

colim
β

MapC(Xα ,Yβ ).
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On the other hand, by part (1) we have

MapPΣ(C0)
(ν0(X),ν0(Y )) = MapC(colim

α
ν(Xα),colim

β

ν(Yβ ))

≃ lim
α

MapC(ν(Xα),colim
β

ν(Yβ ))

≃ lim
α

colim
β

ν(Yβ )(Xα)

≃ lim
α

colim
β

MapC(Xα ,Yβ )

as desired, so ν0 is fully faithful. Hence there are natural equivalences

MapC(X ,Y )≃MapPΣ(C0)
(ν0(X),ν0(Y ))≃MapC(Re◦ν0(X),Y ).

It follows from the Yoneda lemma that the counit Re◦ν0→ id is an equivalence.

Proposition 5.1.4. [Pst, Section 2.3] Suppose that C has a symmetric monoidal struc-

ture. Then PΣ(C) admits a unique symmetric monoidal structure such that the symmetric

monodial tensor product preserves colimit in both variables and the Yoneda embedding ν

is symmetric monoidal.

5.1.2 Filtered and graded objects

Let C be a stable, presentable ∞-category. Denote by Z the symmetric monoidal ∞-category

with underlying category the discrete set Z and the symmetric monoidal product given by

addition. Denote by ZFil the symmetric monoidal ∞-category with underlying category the

discrete poset Z under ≤ and the symmetric monoidal product given by addition.

Definition 5.1.5. Let CFil denote the presentable ∞-category Fun((ZFil)op,C) of filtered

objects in C, whose objects are diagrams in C of the form

C• = · · · →C2→C1→C0→C−1→ ·· · .

Let CGr denote the presentable ∞-category Fun((Zop,C) of graded objects, whose objects

are collections {Cn}n of objects in C.
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If C is equipped with a symmetric monoidal structure, then so do CFil and CGr under

the Day convolution.

We have the following adjunctions from standard considerations:

Proposition 5.1.6. 1. There is a natural left adjoint Y : C → CFil sending C ∈ C to the

constant diagram

· · · id−→C id−→C id−→C id−→C id−→ ·· · .

Its right adjoint Re sends a filtered object C• to colim
n

C−n.

2. For each n ∈ Z, there is a natural left adjoint Yn : C → CFil sending C ∈ C to the

diagram

· · · → 0→ 0→C id−→C id−→C id−→ ·· · ,

where Yn(C)k = 0 for k < n and Yn(C)k =C for k ≥ n. Its right adjoint (−)n sends a

filtered object C• to Cn and preserves sifted colimits.

3. There is a natural left adjoint Gr : CFil→ CGr sending a filtered object C• to its asso-

ciated graded object {Cn/Cn+1}n. Its right adjoint sends the graded object {Xn}n to

the filtered object X• with Xn in the nth place and all the maps are zero.

Suppose that C is a presentable stable ∞-category equipped with a t-structure (C≥0,C≤0).

Definition 5.1.7. The Postnikov t-structure on CFil is a pair of full subcategories ((CFil)≥0,(CFil)≤0),

where (CFil)≥0 consists of objects C• ∈ CFil such that Cn ∈ C≥n for all n ∈ Z, and (CFil)≥0

consists of objects C• ∈ CFil such that Cn ∈ C≤n for all n ∈ Z.

The natural left adjoint τ≥0 : CFil→ (CFil)≥0 to the inclusion (CFil)≥0→ CFil takes the

connective cover with respect to the Postnikov t-structure. Explicitly, for C• ∈ C we have

(τ≥0 C•)n = τ≥n Cn, i.e., it takes the n-connective cover of filtration n with respect to the

t-structure on C for all n ∈ Z.

Since CFil is presentable and τ≥0 preserves sifted colimits, the subcategory (CFil)≥0

is closed under sifted colimits. If C has a symmetric monoidal structure, then (CFil)≥0 is

closed under the induced symmetric monoidal structure in CFil.
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5.1.3 Product-preserving presheaves as connective filtered objects

Let k be a field and Modk the ∞-category of k-module spectra. Denote by Modff
k the full

subcategory of Modk consisting of finite free objects. In this section, we identify the cate-

gory PΣ(Modff
k ) with the category (ModFil

k )≥0 of Postnikov connective filtered k-modules.

Let c be the composite

Modff
k ↪→Modk

Y−→ModFil
k

τ≥0−−→ (ModFil
k )≥0,

where Y is the constant embedding in Proposition 5.1.6 and τ≥0 the connective cover with

respect to the Postnikov t-structure. Then c sends Σnk to kn,n for all n, where kn,n is the

filtered object

· · · → 0→ 0→ Σ
nk→ Σ

nk→ ·· · ,

where (kn,n)i = Σnk for i≤ n and (kn,n)i = 0 for i > n.

Since the Yoneda embedding ν : Modff
k → PΣ(Modff

k ) preserves finite coproducts, by

Theorem 5.1.1.(3) there is a unique colimit-preserving functor Φ that serves as the left Kan

extension of c along ν .

Modff
k (ModFil

k )≥0

PΣ(Modff
k )

ν

c

Φ

Theorem 5.1.8. The functor Φ : PΣ(Modff
k )→ (ModFil

k )≥0 induces an equivalence of ∞-

categories.

The theorem will follow from a general criterion, which we recall below.

Definition 5.1.9. [Lur09, Definition 5.5.8.18] Let C be an ∞-category with all sifted col-

imits. An object X ∈ C is projective if the functor MapC(X ,−) preserves geometric real-

izations.

If in addition C admits filtered colimits, then X ∈ C is compact projective if MapC(X ,−)

preserves filtered colimits and geometric realization.
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Proposition 5.1.10. [Lur09, Proposition 5.5.8.22] Let C be a small ∞-category which ad-

mits finite coproducts, D an ∞-category which admits sifted colimits, and F : PΣ(C)→ D

the left Kan extension of f : C → D along the Yoneda embedding ν : C → PΣ(C). Then F

is an equivalence if and only if the following conditions are satisfied:

1. The functor f is fully faithful;

2. The essential image of f consists of compact projective objects of D;

3. D is generated by the essential image of f under sifted colimits.

Proof of Theorem 5.1.8. We check that the functor

c : Modff
k ↪→Modk

Y−→ModFil
k

τ≥0−−→ (ModFil
k )≥0

satisfies the three conditions in Proposition 5.1.10.

(1). The category Modff
k is generated under finite coproducts by shifts of k. Since c

preserves finite coproducts, it suffices to check that there are natural equivalences

MapModk
(Σik,Σ jk) = MapModff

k
(Σik,Σ jk)≃Map(ModFil

k )≥0
(c(Σik),c(Σ jk))

= Map(ModFil
k )≥0

(ki,i,k j, j)

for all i, j. When j ≥ i, this follows from the adjunction Yn ⊣ (−)n Proposition 5.1.6.(2).

When j < i, both sides are trivial since πn(MapModff
k
(Σik,Σ jk))∼= Ext−n

k (Σik,Σ jk)). Hence

the functor c is fully faithful.

(2). Next we want to show that the essential image of c consists of compact projec-

tive objects of (ModFil
k )≥0, i.e., Map(ModFil

k )≥0
(c(X),−) preserves sifted colimits for all

X ∈Modff
k . It suffices to consider X = Σnk. Let C• = colim

α
Cα
• be any sifted colimit in

(ModFil
k )≥0. Since c(X) = kn,n =Yn(k) and Yn is left adjoint to the sifted-colimit-preserving

functor (−)n (Proposition 5.1.6.(2)), there are natural equivalences

Map(ModFil
k )≥0

(kn,n,colim
α

Cα
• )≃MapModk,≥n

(︂
Σ

nk,
(︁
colim

α
Cα
•
)︁

n

)︂
≃MapModk,≥n

(︁
Σ

nk,colim
α

(Cα
• )n

)︁
.
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Since (Cα
• )n is n-connective by assumption, there are further natural equivalences

MapModk,≥n

(︁
Σ

nk,colim
α

(Cα
• )n

)︁
≃MapModk,≥0

(︁
k,colim

α
Σ
−n(Cα

• )n
)︁
≃Ω

∞(colim
α

Σ
−n(Cα

• )n
)︁
)

≃ colim
α

Ω
∞

Σ
−n(Cα

• )n.

The last equivalence is because Ω∞ : Sp≥0 → Spaces preserves sifted colimits [Lur17,

Proposition 1.4.3.9] and so does the forgetful functor Modk,≥0 → Sp≥0. Similarly, there

are natural equivalences

colim
α

Map(ModFil
k )≥0

(kn,n,Cα
• )≃ colim

α
MapModk,≥n

(Σnk,Cα
• )≃ colim

α
MapModk,≥0

(k,Σ−nCα
• )

≃ colim
α

Ω
∞

Σ
−n(Cα

• )n.

Therefore kn,n is compact projective in (ModFil
k )≥0 for all n.

(3). Since (ModFil
k )≥0 has all finite coproducts, we will show instead that {kn,n}n∈Z gen-

erates (ModFil
k )≥0 under colimits. This is equivalent to showing that Map(ModFil

k )≥0
(kn,n,C•)≃

0 if and only if C• is the constant object on 0. As in part (2), we have

Map(ModFil
k )≥0

(kn,n,C•)≃MapModk,≥n
(Σnk,Cn)≃MapModk,≥0

(k,Σ−nCn)≃Ω
∞

Σ
−nCn,

which is zero if and only if Cn ≃ 0 as desired.

5.1.4 Grading conventions

Denote by Σn = Σn,n the nth categorical suspension in PΣ(Modff
k ) for n ≥ 0. Since Re :

PΣ(Modff
k )→Modk is a left adjoint, it commutes with categorical suspension, so Re(Σν(X))≃

ΣX .

Fro all n ∈ Z, define the nth internal suspension Σn,0 in PΣ(Modff
k ) by Σn,0X(Y ) :=

X(ΣnY ) where X ∈ PΣ(Modff
k ),Y ∈ Modff

k . In particular, there is a natural equivalence

Σ1,0ν(Y )≃ ν(ΣY ) for Y ∈Modff
k .

Therefore we obtain a bigrading on PΣ(Modff
k ) with respect to the set of compact gen-

erators {Σa,bν(k),a ∈ Z,b ∈ Z≥0}.
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Definition 5.1.11. The bigraded homotopy groups of X ∈ PΣ(Modff
k ) are given by

πa,b(X) := π0(MapPΣ(Modff
k )
(Σa,b

ν(k),X))

for all a ∈ Z,b ∈ Z≥0.

Therefore the realization map Re induces a map of homotopy groups πa,b(X)→ πa(Re(X)).

5.1.5 The spectral sequence of a filtered object

Given a filtered object C• ∈ModFil
k , there is an associated spectral sequence recovering the

usual spectral sequence associated to a filtered chain complex over k, which we recall in

this section.

For each i∈N, the category ModFil
k admits natural automorphims (i) : ModFil

k →ModFil
k

sending C• to C•+i by precomposing with the automorphism (ZFil)op→ (ZFil)op sending n

to n− i for all n ∈ Z.

Definition 5.1.12. Denote by τ : (1)→ (0) = id the natural transformation that encodes the

shift map in filtration, and by Cτ the cofiber of 1(1)→ 1. Here 1 is the monoidal unit of

ModFil
k .

For example, on the constant object · · · → 0→ 0→ X id−→ X id−→ X id−→ ·· · , the natural

transformation τ encodes the following diagram in Modk:

· · · 0 0 0 X X · · ·

· · · 0 0 X X X · · ·

id id

id id id

Recall that there is a realization functor Re : ModFil
k →Modk sending C• to colim

n
C−n.

We say that a filtered object is complete if limnCn = 0.

Proposition 5.1.13. [Lur17, Section 1.2.2] To each complete filtered object C• ∈ModFil
k ,

there is an associated spectral sequence

E2
p+q,q = πp+qGr(C•)p ≃ πp+q(C•⊗Cτ)p⇒ πp+q(Re(C•)),
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which coincides with the usual spectral sequence of a filtered object.

Remark 5.1.14. We use the homological Adams grading in this paper.

Under the equivalence Φ : PΣ(Modff
k )→ (ModFil

k ))≥0, the generators Σb,0ν(k) are sent

to kb,b. The categorical suspension Σ in PΣ(Modff
k ) is sent to the pointwise suspension

in (ModFil
k ))≥ 0 and the internal suspension Σb,0 is sent to the composition of the shift

(−b) with the bth pointwise suspension. Hence the natural transformation τ : (1)→ id in

(ModFil
k ))≥0 corresponds to the natural transformation defined by Σ0,1X(Y )≃ΣX(Σ−1Y )→

X(Y ) in PΣ(Modff
k ), which we will also denote by τ .

Proposition 5.1.15. The restricted realization functor Re : (ModFil
k ))≥0 →Modk and the

realization functor Re : PΣ(Modff
k )→Modk are compatible under Φ.

Proof. The functor Re preserves sifted colimits and there is a natural equivalence Re ◦

Φ(ν(X))≃ X ≃ Re◦ν(X) for X ∈Modff
k .

5.2 Bar spectral sequences via deformed comonads

Let k be a field and Modk the ∞-category of k-module spectra. Let O be a nonunital

∞-operad in Modk and AlgO(Modk) the ∞-category of O-algebras in Modk. There is a

commonad sqz ◦ cot on Modk associated to the operad O that classically comes from the

Quillen adjunction between the indecomposable functor and the square-zero extension.

The goal of this section is to construct a lift the commonad sqz ◦ cot to a commonad on

product-preserving presheaves.

5.2.1 Comonads and the weight grading

We start by recalling the adjunction

cot ⊣ sqz : AlgO(Modk)→Modk

that gives raise to the commonad of interest. Furthermore, this commonad is compatible

with a natural weight-grading on O-algebras that reflects the decomposition of the free
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O-algebra into homogeneous pieces. The main references for this subsection are [Bra17,

Appendix] and [BM19, Section 4, 5].

Given a nonunital ∞-operad O in C, i.e., an object in Alg(Sseq(C)), there is a free-

forgetful adjunction freeO ⊣ forget : C → AlgO(C) that gives rise to an augmented monad

on C. The free O-algebra on X ∈ C is given by freeO(X) ≃
⨁︁

i≥1 O(i)⊗hΣi X⊗i. On the

other hand, there is a square-zero functor sqz : C → AlgO(C), sending an object X ∈ C to

X ∈ AlgO(C) with the trivial O-algebra structure. It admits a left adjoint cot, called the

cotangent fiber.

Definition 5.2.1. Let C be a presentable stable ∞-category equipped with a symmetric

monoidal structure. Denote by CFil,≥1 := Fun((ZFil
≥1)

op,C) the ∞-category of positively-

filtered objects. An object C• in CFil,≥1 is a diagram · · · →C3→C2→C1 in C.

Let Cwt := Fun(Zop
≥1,C) be the ∞-category of weight-graded objects.

Here ZFil
≥1⊂ZFil is the subcategory with underlying category the discrete set Z≥1, which

is closed under the symmetric monoidal product given by addition. Hence we obtain anal-

ogous adjunctions as in proposition 5.1.6.

The underlying functors und : Cwt→ C sending {Xn}n≥1 to
⨁︁

n≥1 Xn, and und : CFil,≥1→

C sending C• to C1 are symmetric monoidal, and so is the associated graded functor

CFil,≥0→ Cwt. Hence we obtain underlying functors und : AlgO(CFil,≥1)→ AlgO(C) and

und : AlgO(Cwt)→ AlgO(C). When the context is clear, we write AlgO for AlgO(C) and

Algwt
O for AlgO(Cwt).

Definition 5.2.2. [BM19, Construction 5.2] The adic filtration functor adic : AlgO(C)→

AlgO(CFil,≥1) is the left adjoint to und : AlgO(CFil,≥1)→ AlgO(C).

On a freeO-algebra A = freeO(X) ∈AlgO, the adic filtration sends A to the positively-

filtered object

adic(freeO(X))n =
⨁︂
i≥n

O(i) ⊗
hΣi

X⊗i

as expected. The composition Gr◦adic sends freeO(X) to the weight-graded object {O(i)⊗hΣi

X⊗i}i≥1, which is left ajoint to the underlying functor und : Algwt
O → AlgO.
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Proposition 5.2.3. [BM19, Remark 4.24, Proposition 5.8] Let C = Modk. There is a com-

mutative diagram of sifted-colimit-preserving functors

Modwt
k Algwt

O Modwt
k

Modk AlgO Modk

freeO

und

cot

forget

und

sqz

und

freeO cot

forget sqz

where horizontal composites are the identity in both directions, and all horizontal pairs are

natural adjunctions. The functor cot is computed by the geometric realization of the bar

construction |Bar•(id, freeO,−)| for both AlgO and Algwt
O .

Remark 5.2.4. Proposition 5.8 in [BM19] is concerned only with the case O = Enu
∞ and

restricts to connective objects. Since we do not require the horizontal rows in the diagram

to be comonadic adjunctions, both conditions can be dropped and the proof is standard.

The adjunctions in the right square give rise to sifted-colimit-preserving comonads

cot◦sqz on Modk and Modwt
k compatible with und : Modwt

k →Modk.

5.2.2 Functoriality of product-preserving presheaves

In order to construct lifts of the commonad sqz ◦ cot, we need a few functoriality results

that will be used repeatedly in the sections to follow.

Proposition 5.2.5. [Pst, Proposition 2.10, A.13] Let F : C→D be a functor of ∞-categories.

Then the induced adjunction F∗ ⊣ F∗ : P(C)⇄ P(D) restricts to an adjunction F∗ ⊣ F∗ :

PΣ(C) ⇄ PΣ(D). Here F∗ is given by precomposition and F∗ the left Kan extension of

C F−→ D ν−→ PΣ(D) along the Yoneda embedding ν : C → PΣ(C). Furthermore, the right

adjoint F∗ preseves sifted-colimits.

In particular, there is an equivalence F∗ ◦ν ≃ ν ◦F by construction.

Suppose that C,D are ∞-categories with all colimits. Furthermore i : C0 ↪→ C, i :D0 ↪→

D are finite coproduct-preserving inclusions of full subcategories C0, D0 that are closed

under finite coproducts.
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Proposition 5.2.6. Suppose that we have an adjunction F ⊣G : C→D such that F restricts

to a finite coproduct-preserving functor f : C0→D0.

1. There is a natural equivalence f∗ ◦ν0(X)≃ ν0 ◦G(X) ∈ PΣ(C0) for X ∈D;

2. There is a natural equivalence f∗ ◦ν(X)≃ ν0 ◦G◦ i(X) ∈ PΣ(C0) for X ∈D0;

3. If in addition G preserves sifted colimits, then there is a natural equivalence Re ◦

f∗(X)≃ G◦Re(X) ∈D for X ∈ PΣ(C0).

C0 D0

PΣ(C0) PΣ(D0)

C D

i

ν

f

i

ν

Re

f ∗

Re
f∗

ν0
F

G

ν0

Proof. (1). For a given X ∈D and any Y ∈ C0, there are natural equivalences

f∗(ν0(X))(Y )≃ ν0(X)( f (Y ))≃MapD(F(Y ),X)≃MapC(Y,G(X))≃ ν0(G(X))(Y ).

(2). For X ∈D0, there are natural equivalences

f∗ ◦ν(X)≃ f∗ ◦ν0(i(X))≃ ν0 ◦G(i(X)).

(3). Note that Re and f∗ both preserves sifted colimits by Proposition 5.2.5. Hence it

suffices to check on the image of ν . For a given X ∈ C0, G◦Re(ν(X))≃ G(i(X)). For any

Y ∈D0,

f∗ν(X)(Y )≃ ν(X)( f (Y ))≃MapD0
( f (Y ),X)≃MapD(F(Y ), i(X))

≃MapC(Y,G(i(X)))≃ ν0(G(i(X)))(Y ).

Hence for any Z ∈D, there are natural equivalences

MapD0
(Re◦ f∗(ν(X)),Z)≃MapPΣ(D0)

( f∗(ν(X)),ν0(Z))≃MapPΣ(D0)
(ν0(G(i(X))),ν0(Z))

≃MapD0
(G(i(X)),Z).
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The first equivalence follows from the adjunction Re ⊣ ν0 in Proposition 5.1.2. The second

equivalence follows from part (2). By the Yoneda lemma, there is a natural equivalence

Re◦ f∗(ν(X))≃ G(i(X)) as desired.

5.2.3 Deforming adjunctions

The goal of this section is to construct compatible deformations of the comonad cot◦sqz

associated to a nonunital operad O in Modk.

Recall that Modff
k is the full subcategory of Modk consisting of finite free objects. De-

note by Modff,wt
k the full subcategory of Modff,wt

k consisting of objects X• whose underlying

object
⨁︁

i Xi is finite free. Let Algff
O (resp Algff,wt

O ) be the full subcategory of AlgO (resp.

Algwt
O ) consisting of the essential image of Modff

k (resp. Modff,wt
k ) under freeO.

By Proposition 5.2.5, the restriction of the cotangent functor cot : Algff
O→Modff

k gives

rise to a sifted-colimit-preserving comonad cot∗ ◦cot∗ on PΣ(Modff
k ). We want to show

that this comonad is a lift of the comonad cot◦sqz on Modk via the realization map Re.

Proposition 5.2.7. There is a commutative diagram

PΣ(Modff
k ) PΣ(Algff

O) PΣ(Modff
k )

Modk AlgO Modk

cot∗

Re

cot∗

Re Re
sqz cot

.

Proof. Since every arrow in the diagram preserves sifted-colimits, it suffices to check on

the image of ν . It follows from Proposition 5.2.6.(1) and the adjunction cot ⊣ sqz that the

left square commutes. On the other hand, cot∗ν(Y )≃ ν(cot(Y )) by definition, so the right

square commutes.

Note that the exact same arguments goes through in the weight-graded setting, which

yields the weight-graded version of Proposition 5.2.7.

Proposition 5.2.8. The restriction of the cotangent functor cot : Algff,wt
O →Modff,wt

k gives

rise to a sifted-colimit-preserving comonad cot∗ ◦cot∗ on PΣ(Modff,wt
k ) and there is a com-

mutative diagram
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PΣ(Modff,wt
k ) PΣ(Algff,wt

O ) PΣ(Modff,wt
k )

Modwt
k Algwt

O Modwt
k

cot∗

Re

cot∗

Re Re

sqz cot

.

The weight-graded version is compatible with the ungraded version via the underlying

functor und : Modwt
k →Modk and its restriction und : Modwt,ff

k →Modff
k .

Proposition 5.2.9. There is a commutative cube of sifted-colimit-preserving functors

PΣ(Modff,wt
k ) PΣ(Modff,wt

k )

PΣ(Modff
k ) PΣ(Modff

k )

Modwt
k Modwt

k

Modk Modk

cot∗ ◦cot∗

und∗

Re

Re
und∗

cot∗ ◦cot∗

Re
cot◦sqz

und
und

cot◦sqz

Re
.

Proof. The two squares on the side of the cube are commutative by naturality of the re-

alization map Re. The front and back squares are commutative by Proposition 5.2.7 and

5.2.8. The bottom square is commutative by Proposition 5.2.3. It remains to check the

commutativity of the top square, i.e., the composition of squares

PΣ(Modff,wt
k ) PΣ(Algff,wt

O ) PΣ(Modff,wt
k )

PΣ(Modff
k ) PΣ(Algff

O) PΣ(Modff
k )

cot∗

und∗

cot∗

und∗ und∗

cot∗ cot∗

.

The right square of left adjoints is commutative by functoriality. All arrows in the left

square preserve sifted colimits, so it suffices to check on the image of ν . It follows from

Proposition 5.2.6.(2) and the adjunction cot ⊣ sqz that for any X ∈Modff,wt
k or Modff

k , there

are natural equivalences

und∗ ◦ cot∗(ν(X))≃ und∗ ◦ν0(sqz(i(X)))≃ ν0(und◦ sqz(i(X))).

Similarly, we have cot∗ ◦und∗(ν(X))≃ cot∗(ν(und(X)))≃ ν0(sqz(i(und(X)))). Hence the

left square commutes by Proposition 5.2.3.
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5.2.4 Bar spectral sequence as décalage

For any O-algebra A in Modk, there is a bar spectral sequence obtained by the skeletal

filtration of the geometric realization of the bar construction

E2
s,t = πs(πt(Bar•(id, freeO,A))⇒ πs+t(|Bar•(id, freeO,A)|).

When A = sqz(X) is a trivial O-algebra, we have cot◦sqz(X) ≃ |Bar•(id, freeO,sqz(X))|.

The comonad cot∗ ◦cot∗ on PΣ(Modff
k ) is a deformation of the comonad cot◦sqz on Modk

in light of Proposition 5.2.7.

In order to identify the bar spectral sequence for an O-algebra A with the décalage

of the filtered object Φ(cot∗ ◦ν(A)) ∈ (ModFil
k )≥0, we need a more explicit formula for

cot∗ ◦ν(A) ∈ PΣ(Modff
k ).

Lemma 5.2.10. There is a natural equivalence ν0(A) ≃ |ν0Bar•(freeO, freeO,A)| for A ∈

AlgO.

Proof. For any M ∈Modff
k , ν0(A)(freeO(M)) = MapAlgO(freeO(M),A)≃MapModk

(M,A),

and

|ν0Bar•(freeO, freeO,A)|(freeO(M)) = |MapAlgO(freeO(M),Bar•(freeO, freeO,A))|

≃ |MapModk
(M,Bar•(freeO, freeO,A)))|.

The augmented simplicial object Bar•(freeO, freeO,A)→ A in AlgO admits a splitting after

forgetting to Modk. Hence the equivalence Bar•(freeO, freeO,A)
≃−→A in Modk is preserved

by any functor. This completes the proof.

Denote by Algf
O the full subcategory of AlgO consisting of free O-algebras.

Lemma 5.2.11. There is a commutative diagram

PΣ(Algff
O) PΣ(Modff

k )

Algf
O Modk

cot∗

ν0

cot

ν0
.
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Proof. Recall that cot∗ preserves all colimits by Proposition 5.2.5. Applying Lemma 5.2.10

for A ∈Algf
O yields natural equivalences cot∗ ◦ν0(A)≃ |cot∗ν0Bar•(freeO, freeO,A)|. Ex-

press free◦iO(A) as filtered colimits free◦iO(A) = colim
αi

Xαi of Xαi ∈ Algff
O inductively along

i, i.e. there is an inclusion of filtered systems {Xαi}αi ⊂ {Xαi+1}αi+1 induced by the map

free◦iO(A)→ free◦(i+1)
O (A) of free O-algebras for all i. By Proposition 5.1.3 ν0 preserve

filtered colimits, so

cot∗ ◦ν0(A)≃ |cot∗ ◦ν0(free◦iO(A))| ≃ |cot∗ ◦ν0(colim
αi

Xαi)| ≃ |colim
αi

cot∗ ◦ν(Xαi)|

≃ |colim
αi

ν(cot(Xαi))|.

Appealing again to the splitting of the augmented simplicial object Bar•(freeO, freeO,A)→

A in Modk, for any Y ∈Modff
k there are natural equivalences

ν0(cot(A))(Y ) = MapModk
(Y,cot(A))≃ |MapModk

(Y,cotBar•(freeO, freeO,A))|

≃ |MapModk
(Y,colim

αi
cot(Xαi))|

≃ |ν0(colim
αi

cot(Xαi))(Y )| ≃ |colim
αi

ν(cot(Xαi))|(Y )

as desired. In the second equivalence we used the fact cot is a left adjoint.

Now we are ready to prove the main theorem of this section.

Theorem 5.2.12. For A ∈ AlgO, the bar spectral sequence

E2
s,t = πs(πt(Bar•(id, freeO,A)⇒ πs+t(|Bar•(id, freeO,A)|)

is naturally isomorphic to the spectral sequence for the realization of (Φ(cot∗ ◦ν0(A)) ∈

(ModFil
k )≥0. If A = sqz(X) with X ∈Modff

k , then the bar spectral sequence is isomorphic

to the spectral sequence for the realization Φ(cot∗ ◦cot∗(ν(X))).

Proof. Since the simplicial maps in the bar construction preserve internal degrees, we can

consider the functor F : AlgO→ (ModFil
k )≥0 given by the level-wise whitehead tower of the

bar construction F(A)t = |τ≥tBar•(id, freeO,A)|, with associated graded F(A)t/F(A)t−1 ≃
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|πt(Bar•(id, freeO,A))|. Hence the spectral sequence associated to the filtered object F(A)

is precisely the bar spectral sequence for A by Proposition 5.1.13.

It remains to show that there is a natural equivalence F(A)≃Φ(cot∗ ◦ν0(A)). There is

a commutative diagram

AlgO PΣ(Algff
O) PΣ(Modff

k ) (ModFil
k )≥0

PΣ(Algff
O)

∆op PΣ(Modff
k )

∆op
(ModFil

k )∆op

≥0

(Algf
O)

∆op
(Modk)

∆op

ν0

Bar•(−)

cot∗ Φ

|−|

cot∗ Φ

|−| |−|

ν0

cot

ν0

,

where Bar•(−) = Bar•(freeO, freeO,−) is the free resolution in AlgO. The left square

commutes by Lemma 5.2.10, the upper middle square commutes because cot∗ preserves

geometric realization, the bottom square commutes by Lemma 5.2.11, and the right square

commutes because Φ preserves geometric realization.

Hence there is a natural equivalence Φ(cot∗ ◦ν0(A))≃ |Φ(ν0Bar•(id, freeO,A))|. Since

ν0 preserves filtered colimits by Proposition 5.1.3 and Bar•(id, freeO,A) is levelwise given

by filtered colimits of finite free k-modules, Φ ◦ ν0Bar•(id, freeO,A) is precisely the sim-

plicial filtered object F• with

(F•)n = τ≥nBar•(id, freeO,A).

Taking geometric realization completes the proof.

When A = sqz(X) with X ∈ Modff
k , there is a natural equivalence cot∗ ◦cot∗ν(X) ≃

cot∗ν0(sqz(X)) for X ∈Modff
k by Proposition 5.2.6.(2).

5.2.5 Weight decomposition

The bar spectral sequence has a natural weight decomposition induced by the weight de-

composition of the comonad cot◦sqz, which we recall below.

The comonad cot◦sqz associated to a nonunital operad O on Modk admits a natural
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decomposition into homogeneous pieces: for X ∈Modk,

cot◦sqz(X) = |Bar•(id, freeO,sqz(X))| ≃ Bar(O)◦V ≃
⨁︂
i≥1

Bar(O)(i) ⊗
hΣi

X⊗n,

where Bar(O) ≃ |Bar•(1,O,1)| is the bar construction in the ∞-category of symmetric

sequences in Modk and Bar(O)◦X denotes the composition of symmetric sequences with

X regarded as a symmetric sequence concentrated in arity 1. (Br Appendix D)

The weight i part of the comonad cot◦sqz can be extracted as follows. There are natural

left adjoints c : Modk→Modwt
k sending X to the weight-graded object X• with X1 = X and

Xi = 0 for i > 1 and (−)i : Modwt
k →Modk sending X• to Xi. Hence the composite

Di := (cot◦sqz)i : Modk
c−→Modwt

k
cot◦sqz−−−−→Modwt

k
(−)i−−→Modk

sends X to Bar(O)(i)⊗hΣi X⊗i.

Similarly, we would like to extract the weight i piece of the deformed comonad cot∗ ◦cot∗.

Note that the functor c restricts to c : Modff
k →Modff,wt

k and (−)i restricts to (−)i : Modff,wt
k →

Modff
k .

Proposition 5.2.13. There is a commutative diagram of sifted-colimit-preserving functors

PΣ(Modff
k ) PΣ(Modff,wt

k ) PΣ(Modff,wt
k ) PΣ(Modff

k )

Modk Modwt
k Modwt

k Modk

c∗

Re

cot∗ ◦cot∗

Re Re

(−)∗i

Re

c cot◦sqz (−)i

.

Denote by Di the composite along the top horizontal line, which preserves sifted colimits.

Hence there is a natural equivalence Re◦Di(ν(X))≃ Di(X).

Proof. The leftmost and rightmost squares are commutative by naturality of the realization

map Re and the middle square is commutative by Proposition 5.2.8.

5.3 Universal differentials in the bar spectral sequence

From here on, we specialize to the case where k =F2 andO= sℒ is the spectral Lie operad

in ModF2 . Then cot◦sqz(X)≃ Bar(sℒ )◦X ≃
⨁︁

i≥1(X
⊗i)hΣi , with D2(X) = (X⊗2)hΣ2 .
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We start by computing the differential on any element in the weight 2 part of the bar

spectral sequence in the universal class, which is encoded by D2.

5.3.1 Computing D2

Lemma 5.3.1. For X ∈Modff
k , there is a natural equivalence D2(ν(X))≃ Σν0(Σ

−1D2(X)).

Proof. Recall that the weight 2 part of the bar spectral sequence for sqz(X) collapses on

the E2-page with no extension problems. Furthermore, all permanent cycles are in filtration

1. Hence Gr(Φ(D2(X)))≃G1(D2(X)) by theorem 5.2.12, where G1(D2(X)) is the graded

object with D2(X) in degree 1 and 0 otherwise. The adjunction in Proposition 5.1.6.(2)

yields a natural transformation Φ(D2(X))→ Y1(D2(X)), where Y1(D2(X)) is the filtered

object with Y1(D2(X))i = 0 for i≤ 0 and Y1(D2(X)) = D2(X) for i≥ 1. Hence we obtain a

natural transformation D2(X)ν → Σν0(Σ
−1D2(X)), which is an equivalence.

Lemma 5.3.2. There are natural equivalences D2(X ⊕Y ) ≃ D2(X)⊕D2(Y )⊕Σ1,0X ⊗Y,

symmetric in X ,Y ∈ PΣ(Modff
F2
). In general

D2(X0⊕·· ·⊕Xn)≃ D2(X0)⊕·· ·⊕D2(Xn)⊕
⨁︂

0≤i< j≤n

Σ
1,0Xi⊗X j,

for any n≥ 1.

Proof. Since finite products are finite coproducts, for X ,Y ∈ PΣ(Modff
k ) there are natural

comparison maps symmetric in X ,Y

D2(X)⊕D2(Y ) D2(X⊕Y ) D2(X)⊕D2(Y )

id

,

exhibiting D2(X)⊕D2(Y ) functorially as a direct summand of D2(X⊕Y ). In other words,

there is a functor G :PΣ(Modff
F2
)×2→PΣ(Modff

F2
) symmetric and sifted-colimit-preserving

in both arguments such that D2(X ⊕Y ) ≃ D2(X)⊕D2(Y )⊕G(X ,Y ). By Lemma 5.3.1,
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there are natural equivalences

D2(ν(X)⊕ν(Y ))≃ D2(ν(X⊕Y ))≃ Σν0(Σ
−1D2(X⊕Y ))

≃ Σν0(Σ
−1(D2(X)⊕D2(Y )⊕X⊗Y ))

≃ Σν0(Σ
−1D2(X))⊕Σν0(Σ

−1D2(Y ))⊕Σν(Σ−1X⊗Y ).

Therefore, there is a natural equivalence G(ν(X),ν(Y ))≃ Σν0(Σ
−1X⊗Y )≃ Σ1,0ν(X⊗Y ).

The first part of the lemma follows from the fact that G preserves sifted colimits and ν is

symmetric monoidal (Proposition 5.1.4). The second part follows from standard induction

on
⨁︁

1≤i≤n Xi ≃ (
⨁︁

1≤i≤n−1 Xi)⊕Xn.

Proposition 5.3.3. For X ∈ PΣ(Modff
F2
), there is a natural cofiber sequence

ΣD2(X)→ D2(ΣX)→ Σ
3,2X⊗2.

Proof. Consider the resolution of ΣX obtained by smash product with the simplcial circle

· · · ∗⊔ s1(c)⊔ s0(c) ∗⊔ c ∗

given by

∗⊔ (
⨆︂

0≤i≤n

sn ◦ sn−1 ◦ · · · ◦ sî ◦ · · · ◦ s0(c))

on simplicial level n+ 1, cf. [Lod11, 1.2]. We omit the degeneracy maps in the diagrams

for simplicity. Denote by Xi the degeneracy sn ◦ sn−1 ◦ · · · ◦ sî ◦ · · · ◦ s0(c)⊗X in simplicial

level n for all i ≤ n. Recall that D2 commutes with geometric realizations. Applying

the direct sum decomposition in Lemma 5.3.2 levelwise to the simplicial resolutions of

D2(ΣX)→ ΣD2(X) yields a cofiber sequence of simplicial resolutions

· · · D2(X)⊕3 D2(X)⊕2 D2(X) ∗ ΣD2(X)

· · · D2(X⊕3) D2(X⊕2) D2(X) ∗ D2(ΣX)

· · · (Σ1,0X⊗2)⊕3 Σ1,0X⊗2 ∗ ∗ Y

.
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Since the resolution of Y is a sub simplicial object of the resolution of D2(ΣX), the de-

generacy maps are the restriction of those in D2(ΣX). Appealing again to the natural

decomposition in Lemma 5.3.2, the restricted degeneracy maps are given by si(x⊗ y) ≃

si(x)⊗ si(y) ≃ si(y)⊗ si(x). It follows from standard induction that the simplicial level

n+1 of Y is explicitly given by (Σ1,0X⊗2)⊕(
n
2) =

⨁︁
0≤i< j≤n Xi⊗X j. It remains to show that

Y is equivalent to Σ2Σ1,0X⊗2, which has a resolution obtained by tensoring Σ1,0X⊗2 with

the simplicial 2-sphere given by

∗⊔ (
⨆︂

0≤i< j≤n

sn ◦ sn−1 ◦ · · · ◦ s ĵ ◦ · · · ◦ sî ◦ · · · ◦ s0(c))

on simplicial level n+1 for all n≥ 1, i.e., all possible degeneracies of a two-cell c and the

basepoint. We abbreviate the degeneracy sn ◦sn−1 ◦· · ·◦s ĵ ◦· · ·◦sî ◦· · ·◦s0(c))⊗(Σ1,0X⊗2)

as Σ1,0Xi, j for all i < j.

Consider the partial simplicial diagram Y≤2 ∈ Fun(∆op
≤2,PΣ(Modff

k )) of Y given by

X⊗2 ∗ ∗

Left Kan extension along the inclusion ∆
op
≤2→∆op yields a simplicial object that is precisely

the resolution of Σ2X⊗2, Hence we obtain a natural map φ : Σ1,0Σ2X⊗2→ Y coming from

· · · (Σ1,0X⊗2)⊕3 Σ1,0X⊗2 ∗ ∗ Σ2Σ1,0X⊗2

· · · (Σ1,0X⊗2)⊕3 Σ1,0X⊗2 ∗ ∗ Y

φ3 φ2 φ1 φ0 φ .

It remains to show that φ is an equivalence.

We will show by induction that φn is an equivalence for all n. By construction φ2 :

X0,1→X0⊗X1 is an equivalence. Suppose that φn is an equivalence Xi, j to Xi⊗X j for all 0≤

i < j≤ n−1. Consider the degeneracy map sn :
⨁︁

0≤i< j≤n−1 Xi, j→
⨁︁

0≤i< j≤n−1 Xi, j, along

with the restriction of the degeneracy maps sn−1 :
⨁︁

0≤i≤n−2 Σ1,0Xi,n−1→
⨁︁

0≤i≤n−2 Σ1,0Xi,n

and sn−2 : Σ1,0Xn−2,n−1 → Σ1,0Xn−1,n from simplicial level n to n+ 1 in Σ2Σ1,0X⊗2. All

three maps are equivalences, so we obtain an equivalence

sn⊕sn−1⊕sn−2 :
(︂ ⨁︂

0≤i< j≤n−1

Σ
1,0Xi, j

)︂
⊕
(︂ ⨁︂

0≤i≤n−2

Σ
1,0Xi,n−1

)︂
⊕Xn−2,n−1→

⨁︂
0≤i< j≤n

Σ
1,0Xi, j.
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Similarly, the degeneracy map sn :
⨁︁

0≤i< j≤n−1 Σ1,0Xi⊗X j→
⨁︁

0≤i< j≤n−1 Σ1,0Xi⊗X j and

the restriction of the degeneracy map sn−1 :
⨁︁

0≤i≤n−2 Σ1,0Xi⊗Xn−1→
⨁︁

0≤i≤n−2 Σ1,0Xi⊗

Xn, sn−2 : Σ1,0Xn−2⊗Xn−1→ Σ1,0Xn−1⊗Xn from simplicial level n to n+1 in Y are both

equivalences, so we obtain an equivalence sn⊕ sn−1⊕ sn−2 :

(︂ ⨁︂
0≤i< j≤n−1

Σ
1,0Xi⊗X j

)︂
⊕
(︂ ⨁︂

0≤i≤n−2

Σ
1,0Xi⊗Xn−1

)︂
⊕Σ

1,0Xn−2⊗Xn−1→
⨁︂

0≤i< j≤n

Σ
1,0Xi⊗X j.

Thus we obtain a commutative diagram

(︂ ⨁︂
0≤i< j≤n−1

Σ
1,0Xi, j

)︂
⊕
(︂ ⨁︂

0≤i≤n−2

Σ
1,0Xi,n−1

)︂
⊕Σ

1,0Xn−2,n−1
⨁︂

0≤i< j≤n

Σ
1,0Xi, j

(︂ ⨁︂
0≤i< j≤n−1

Σ
1,0Xi⊗X j

)︂
⊕
(︂ ⨁︂

0≤i≤n−2

Σ
1,0Xi⊗Xn−1

)︂
⊕Σ

1,0Xn−2⊗Xn−1
⨁︂

0≤i< j≤n

Σ
1,0Xi⊗X j.

sn⊕sn−1⊕sn−2

φn φn+1

sn⊕sn−1⊕sn−2

Since the top, left, and bottom arrows are all equivalences, so is φn+1. This completes the

proof.

For simplicity, we use Fa,b
2 to denote Σa,bν(F2).

Lemma 5.3.4. For all a,n≥ 1 and b ∈ Z,

D2(Fa+b,a
2 )≃

(︂⨁︂
i≥0

F2a+2b+i,a+1
2

)︂
⊕

a−1⨁︂
n=1

Σ
2b+a+n,a+1Cτ

n.

Proof. Recall that when a = 0, then D2(ν(Σ
bF2)) ≃ Σν0(Σ

−1D2(F2)) ≃
⨁︁

i≥0F
2b+i,1
2 by

Proposition 5.1.3 and Lemma 5.3.1.

If a= 1, Proposition 5.3.3 yields a cofiber sequence F2b+1,2
2 →ΣD2(ν(Σ

bF2))→D2(Σν(ΣbF2))→

F2b+2,3
2 , so the spectral sequence for π∗Re(D2(Σν(ΣbF2))) is

3 •

2 • • • • · · ·
2b+1 2b+2 2b+3 2b+4

.
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The only possible attaching map goes from Σ2+2b,3ν(F2) to the bottom cell of ΣD2(ν(Σ
bF2)).

This map is indeed nonzero since we know the realization is Re◦D2(Σν(ΣbF2))≃D2(Σ
b+1F2)

by Proposition 5.2.13. Hence in the cofiber sequence F2b+1,2
2 hits the bottom cell and

D2(Σν(ΣbF2))≃
⨁︁

i≥2F
2b+i,2
2 .

If a = 2, setting X = Fb+2,2
2 in Proposition 5.3.3 yields a cofiber sequence

ΣD2(Σν(ΣbF2))→ D2(Σ
2
ν(ΣbF2))→ F2b+4,5

2 .

Hence the spectral sequence for π∗Re(D2(Σ
2ν(ΣbF2))) is given by Figure 5-1.

5 •

4

3 • • • • · · ·
2b+3 2b+4 2b+5 2b+6

.

Figure 5-1: The spectral sequence for π∗Re(D2(Σ
2ν(ΣbF2))).

The only possible differential goes from F2b+4,5
2 to the bottom cell of ΣD2(Σν(ΣbF2)).

The differential indeed happens since the realization Re ◦D2(Σ
2ν(ΣbF2)) ≃ D2(Σ

b+2F2)

(Proposition 5.1.15, Proposition 5.2.13) has only one class in degree s+ t = 2b+4. Hence

D2(Σ
2
ν(ΣbF2))≃ D2(F2+b,2

2 )≃
(︂⨁︂

i≥0

F2b+4+i,3
2

)︂
⊕Σ

2b+3,3Cτ.

Now we induct on a≥ 2. Suppose that

D2(Σ
a
ν(ΣbF2))≃ D2(Σ

a+b,a
ν(F2))≃

(︂⨁︂
i≥0

F2a+2b+i,a+1
2

)︂
⊕

a−1⨁︂
n=1

Σ
2b+a+n,a+1Cτ

n.

Setting X = Fa+b,a
2 in Proposition 5.3.3 yields a cofiber sequence

ΣD2(Σ
a
ν(ΣbF2))→ D2(Σ

a+1
ν(ΣbF2))→ F2a+2b+2,2a+3

2 .

Hence the spectral sequence for π∗Re(D2(Σ
a+1ν(ΣbF2))) is given by Figure 5-2.

The only possible differential has source F2a+2b+2,2a+3
2 , as indicated by the two dashed
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2a+3 •

2a+2 •

· · · · · ·

•

a+4 •

a+3

a+2 • • · · · • • • · · ·

a+2b+2 a+2b+2 2a+2b 2a+2b+1 2a+2b+2

Cτa−1

Cτ2

Cτ

Figure 5-2: The spectral sequence for π∗Re(D2(Σ
a+1ν(ΣbF2))).

arrows. Suppose that the short arrow is nontrivial. Then the τa−1-torsion class in bidegree

(s+t,s)= (2a+2b,a+2) cannot receive another differential and thus is a permanent cycle,

a contradiction. On the other hand, the class F2a+2b+2,2a+3
2 must support a differential since

Re◦D2(Σ
a+1ν(ΣbF2)) ≃ D2(Σ

b+a+1F2) has only one class in degree s+ t = 2a+2b+2.

Therefore

D2(Σ
a+1

ν(ΣbF2))≃ D2(Fa+b+1,a+1
2 )≃

(︂⨁︂
i≥0

F2a+2b+2+i,a+2
2

)︂
⊕

a⨁︂
n=1

Σ
a+2b+1+n,a+2Cτ

n.

Notation 5.3.5. We name the elements on the E2-page of the spectral sequence for π∗Re(D2(Fa+b,a
2 ))

as follows. When a = 0,1, let Q̄i(xa+b,a) = Q̄i+b
(xb,a) denote the unique element in bide-

gree (a+ 2b+ i,a+ 1) for i ≥ a. When a ≥ 2, let Q̄i(xa+b,a) = Q̄i+b
(xa+b,a) denote the

unique element in bidegree (a+ 2b+ i,a+ 1) for i ≥ 1 and γ j(xa+b,a) the unique element

in bidegree (a+2b+ j,a+ j+1) for 2≤ j ≤ a.

By Lemma 5.3.4, the cofiber sequence ΣD2(Fa+b,a
2 )→D2(Fa+b+1,a+1

2 )→F2a+2b+2,2a+3
2

splits after tensoring with Cτ . Hence σQ̄ixa+b,a = Q̄i(σxa+b,a) = Q̄i(xa+b+1,a+1), and sim-

ilarly σγi(xa+b,a) = γi(σxa+b,a) = γi(xa+b+1,a+1).

Next we study the application D2 to a shift of Cτn, which encodes how differentials are

propagated via the comonad structure.
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Lemma 5.3.6. For a−1≥ n≥ 1 and any b ∈ Z, there is an equivalence of filtered objects

D2(Σ
a+b,aCτ

n)≃
(︂ 2n⨁︂

i=1

Σ
a+2b−n+i+1,a+n+2Cτ

i
)︂
⊕
(︂ n⨁︂

i=1

Σ
a+2b+i,a+1Cτ

i
)︂

⊕
(︂⨁︂

j≥0

Σ
a+2b+n+ j+1,a+1Cτ

n
)︂
⊕
(︂a−n−2⨁︂

j=0

Σ
a+2b+n+ j+2,a+n+ j+3Cτ

2n
)︂
⊕Σ

2a+2b+1,2a+n+2Cτ
n.

Remark 5.3.7. In general, the spectral sequence for π∗Re(D2(Σ
a+b,aCτn)) looks like Fig-

ure 5-3 with the s+ t degree shifted to the right by 2b.

2a+2n+3 •

2a+2n+2 •

2a+2n+1 •
· · ·

a+3n+5 •

a+3n+4 •

a+3n+3 •

a+3n+2 •
· · ·

2a+n+2 . . . ⋆

· · ·

a+2n+4 •

a+2n+3 •
· · ·

2a+1 ◦

2a ◦
· · · . . . . . .

a+n+5 •

a+n+4 • ◦

a+n+3 ◦

a+n+2 • • · · · • • · · · • •◦ • • · · · • • · · ·

a+n+1 ◦

.

.

.

a+4 ◦ . . . . . . . . .

a+3 ◦

a+2

a+1 ◦ ◦ · · · ◦ ◦ ◦ ◦ · · · ◦ ◦ · · ·
a−n+2 · · · a+1 · · · a+n−1 2a−2

.

Figure 5-3: The spectral sequence for π∗Re(D2(Σ
a+b,aCτn)).

In light of Notation 5.3.5, the lemma says the following. Suppose that we have a dn+1-

differential from γn+1(x) to Q̄n(x) represented by Σa+b,aCτn in the spectral sequence for

π∗(Re(D2(Fa−1+c,a−1
2 ))), where a−1≥ n+1≥ 2 and b = 2c+n−1. Applying D2 to this

differential, we deduce that the differentials in the spectral sequence for π∗(Re(D2(Σ
a+b,aCτ)))

are the following:

1. For 2≤ i≤ n, a di-differential γi ◦ Q̄n(x) ↦→ Q̄i−1 ◦ Q̄n(x), represented by a red arrow
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connecting white dots coming from D2(Fa+b,a
2 );

2. For 1 ≤ j ≤ 2n− 1, a d j-differential γ j ◦ γn+1(x) ↦→ Q̄ j ◦ γn+1(x), represented by a

blue arrow connecting black dots coming from D2(Fa+b+1,a+n+1
2 );

3. A dn+1-differential γn+1◦Q̄n(x)+Q̄2n◦γn+1(x) ↦→ Q̄n◦Q̄n(x), and a d2n+1-differential

from γ2n ◦ γn+1(x) to the remaining Fa+2b+n+1,a+n+2
2 , both arrows are in purple;

4. For each i > n, a dn+1-differential Q̄n+i ◦γn+1(x) ↦→ Q̄i ◦ Q̄n(x), represented by a pink

arrow connecting a black dot and a white dot;

5. For each i with n+1 ≤ i ≤ a−1, a d2n+1-differential γn+i ◦ γn+1(x) ↦→ γi+1 ◦ Q̄n(x),

represented by a cyan arrow connecting a black dot and a white dot;

6. A dn-differential γa+n ◦ γn+1(x) ↦→ Σ0,1γn+1(x) · Q̄n(x), connecting the top black dot

to the cross term represented by the star.

Proof of Lemma 5.3.6. We assume b = 0, since changing b by 1 simply shifts the s+ t

degree by 2.

Using the defining cofiber sequence F0,0
2 →Cτ→F1,n+1

2 , we deduce that Gr(D2(Cτ))≃

D2(F0,0
2 )⊕D2(F1,n+1

2 )⊕Σ0,1F0,0
2 ⊗F1,n+1

2 , so the E2-page and higher differentials of the

spectral sequence for π∗(Re(D2(Cτ))) is Figure 5-4.

2n+3 •

2n+2 •

... . . .

n+5 •

n+4 •

n+3

n+2 • • · · · • •
⋆

• • • · · ·

...

1 ◦ ◦ ◦ ◦ · · ·
2−n 3−n · · · 0 1 2 3

Figure 5-4: The spectral sequence for π∗(Re(D2(Cτ))).

Classes from the three summands labeled respectively by white dots, black dots, and

star. Since Re(D2(Cτ))≃D2(Re(Cτ))≃ 0, we deduce that the two parallel lines are killed
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by d2-differentials. Starting from s+ t = 2 to the right, there is only one way for each class

on the top line to be killed, as indicated by the solid arrows.

Now consider the cofiber sequence F1,1
2 → ΣnCτ → F2,n+2

2 . The E2-page of the spec-

tral sequence for π∗Re(D2(Σ
aCτ)) is given by D2(F1,1

2 )⊕D2(F2,n+2
2 )⊕Σ0,1F1,1

2 ⊗F2,n+2
2

as depicted below on the left. On the other hand, it follows from the cofiber sequence

ΣD2(Cτn)→ D2(ΣCτn)→ Σ2,3Cτn⊗Cτn (Proposition 5.3.3) that the spectral sequence

for π∗Re(D2(ΣCτ)) is depicted in Figure 5-5 on the right, where the classes represented by

asterisks come from Σ2,3Cτn⊗Cτn.

2n+5 •

2n+4 •

2n+3 •

.

.

. . . .

n+6 •

n+5 •

n+4 ⋆

n+3 • • · · · • • • • · · ·

.

.

.

3

2 ◦ ◦ · · ·
3−n · · · 2 3

2n+5 ∗

2n+4 •

2n+3 •

.

.

. . . .

n+6 •

n+5 •

n+4 ∗∗

n+3 • • · · · • •• • • · · ·

.

.

.

3 ∗

2 • • • · · ·
3−n · · · 1 2 3

Figure 5-5: The spectral sequence for π∗Re(D2(ΣCτ)).

Hence there have to be two d1-differentials as indicated by the dashed arrows that pre-

empt two dn-differentials in ΣD2(Cτ). The rest of the differentials are then forced by a

sparsity argument, and we conclude that

D2(ΣCτ
n)≃

(︂ n⨁︂
i=1

Σ
2−n+i,n+3Cτ

i
)︂
⊕
(︂⨁︂

i≥1

Σ
i+1,2Cτ

n
)︂
⊕Σ

2a+2b+1,n+4Cτ
n.

Now we induct along s = a. We will explain the case n = 1 in full details and the cases

n > 2 is analogous. Suppose that

D2(Σ
aCτ)≃ Σ

a+1,a+3Cτ⊕
(︂⨁︂

i≥1

Σ
a+i,a+1Cτ

)︂
⊕
(︂ a⨁︂

j=2

Σ
a+ j,a+1+ jCτ

2
)︂
⊕Σ

2a+1,2a+3Cτ.

There is a cofiber sequence Fa+1,a+1
2 → Σa+1Cτ → Fa+2,a+3

2 . The E2-page of the spectral
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sequence for π∗Re(D2(Σ
a+1Cτ)) is given by

D2(Gr(Σa+1Cτ))≃ D2(Fa+1,a+1
2 )⊕D2(Fa+2,a+3

2 )⊕F2a+3,2a+5
2

as depicted in Figure 5-6.

2a+7 •

2a+6 •

2a+5 • ⋆

2a+4 •

2a+3 • ◦

2a+2 ◦

2a+1 ◦

.

.

. · · ·

a+8 •

a+7 •

a+6 • ◦

a+5 ◦

a+4 • •◦ • • · · · · · · • • • • · · ·

a+3

a+2 ◦ ◦ ◦ · · · · · · ◦ ◦ ◦ ◦ · · ·
a+2 a+3 a+4 · · · 2a 2a+1 2a+2 2a+3 2a+4

Figure 5-6: The E2-page of the spectral sequence for π∗Re(D2(Σ
a+1Cτ)).

On the other hand, it follows from the cofiber sequence

ΣD2(Σ
aCτ)→ D2(Σ

a+1Cτ)→ Σ
2a+2,2a+3Cτ⊗Cτ

(Proposition 5.3.3) that the spectral sequence for π∗Re(D2(Σ
a+1Cτ)) is depicted in Fig-

ure 5-7, where the classes represented by asterisks come from Σ2a+2,2a+3Cτ⊗Cτ . Hence

there is a d1-differential from (2a+3,2a+5) to (2a+2,2a+4), as indicated by the dashed

arrow on the right in Figure 5-7, which preempts the d2-differential from (2a+ 3,2a+ 6)

to (2a+2,2a+4) in ΣD2(Σ
aCτn). The rest of the differentials are therefore forced upon us

for degree reasons after the d2-differentials kill the parallel lines at the bottom. Therefore

D2(Σ
a+1Cτ)≃Σ

a+2,a+4Cτ⊕
(︂⨁︂

i≥1

Σ
a+1+i,a+2Cτ

)︂
⊕
(︂ a⨁︂

j=2

Σ
a+1+ j,a+2+ jCτ

2
)︂
⊕Σ

2a+3,2a+5Cτ.
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2a+7 ∗

2a+6 •

2a+5 • ∗∗

2a+4 • •

2a+3 • ∗

2a+2 •

2a+1 •

.

.

. · · ·

a+8 •

a+7 •

a+6 • •

a+5 •

a+4 • •• • • · · · · · · • • • • · · ·

a+3

a+2 • • • · · · · · · • • • • · · ·
a+2 a+3 a+4 · · · 2a 2a+1 2a+2 2a+3 2a+4

Figure 5-7: The spectral sequence for π∗Re(D2(Σ
a+1Cτ)).

For n> 1, the inductive step is the same: comparing the E2-page D2(
⨁︁

i Gr(Σa+1Cτ)i)≃

D2(Fa+1,a+1
2 )⊕D2(Fa+2,a+2+n

2 )⊕F2a+3,2a+4+n
2 of the spectral sequence for π∗Re(Σa+1Cτn)

with the E2-page coming from the cofiber sequence

ΣD2(Σ
aCτ

n)→ D2(Σ
a+1Cτ

n)→ Σ
2,3(ΣaCτ

n)⊗2

forces a d1-differential from the class F2a+3,2a+n+4
2 in Σ2,3(ΣaCτn)⊗2 to the class F2a+2,2a+n+3

2

in D2(Σ
a+1Cτn). After that all the remaining differentials are determined uniquely for de-

gree reasons, noting that the first n−1 dn+1-differentials between the two parallel lines are

preempted by shorter differentials in D2(Fa+1,a+1
2 ).

Therefore we have computed the differential on any element in the weight 2 part of the

bar spectral sequence in the universal class.

5.3.2 Looking ahead: Differentials from the comonad structure

Now that we have a good understanding of D2, we want to use the command structure map

D2n→ D2 ◦Dn⊕
⨁︂

i j=2n,i>2, j>1

Di ◦D j
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on ν(X) to inductively deduce the higher differentials in the bar spectral sequence for ΣkF2

as a trivial spectral Lie algebra.

The bar construction on the E2-page π∗
(︂

Bar•
(︁
id, freeLies

R̄
,ΣkF2

)︁)︂
is a coalgebra over

the comonad π∗
(︁
Bar•(id, freeLies

R̄
,sqz(−))

)︁
on ModF2 . The coalgebra structure map is

given by

|Bar•
(︁
id, freeLies

R̄
,ΣkF2

)︁
| ≃←− |Bar•

(︁
id, freeLies

R̄
, |Bar•

(︁
freeLies

R̄
, freeLies

R̄
,ΣkF2

)︁
|
)︁
|

→ |Bar•
(︁
id, freeLies

R̄
, |Bar•

(︁
id, freeLies

R̄
,ΣkF2

)︁
|
)︁
|,

where the last map makes use of the augmentation freeLies
R̄
→ id, cf. [Bra17, Appendix D].

First we give an explicit description of the composite

ξ2 : D2n→
⨁︂

i j=2n,i, j>1

Di ◦D j ↠ D2 ◦Dn

of the comonad structure map followed by projection on to a summand on the E2-page,

i.e., after tensoring with Cτ .

Lemma 5.3.8. The map ξ2⊗Cτ is given by the following on the basis elements in Theo-

rem 4.2.27:

1. Q̄iQ̄ jQ̄ j1 · · · Q̄ jm(xk) ↦→ Q̄i◦Q̄ jQ̄ j1 · · · Q̄ jm(xk)+∑l αlQ̄
i+ j−l ◦Q̄lQ̄ j1 · · · Q̄ jm(xk), where

the sum ranges over the nonzero terms on the right hand side of Behrens’ relation

Q̄iQ̄ j
= ∑l αlQ̄

i+ j−lQ̄l
.

2. γiQ jQ̄ j1 · · · Q̄ jm(xk) ↦→ γi ◦Q jQ̄ j1 · · · Q̄ jm(xk).

Furthermore, for any cycle α on the E1-page, the chain Q̄ j|γi(α) does not survive to the

E2-page.

Proof. For i≤ 2 j, the comonad structure map sends Q̄iQ̄ j to Q̄i◦Q̄ j
+∑l,i+ j−l>l αlQ̄

i+ j−l ◦

Q̄l , where the sum ranges over the nonzero terms on the right hand side of the relation

Q̄iQ̄ j
= ∑l,i+ j−l>l αlQ̄

i+ j−lQ̄l
. This can be deduced either from Priddy’s machinery of

Koszul duality [Pri70] on the subcomplex Bar•(id, freeR̄,Σ
kF2), or directly from the fact
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that the class Q̄iQ̄ j
(x) ∈ E2 is represented by the cycle Q̄i|Q̄ j|x+∑l,i+ j−l>l αlQ̄

i+ j−l|Q̄l|x

on the E1-page. Since any l in the sum is less than j, the term Q̄lQ̄ j1 · · · Q̄ jm(xk) is either

zero or a basis element of the E2-page and hence always well defined. This proves (1).

Item (2) follow from the explicit chain-level construction of γi, see [Dwy80a, Section

4].

For any cycle z on the E1-page, the differential d1 sends Q̄ j|γi(z) to Q̄ j
γi(z) since γi(z)

is a cycle. In order for Q̄ j|γi(z) to survive to the E2-page, we need to complete the cycle by

finding a different chain α such that

d1(α) = Q̄ j
γi(z) = ∑

a,b∈Vr,i

Q̄ j
[sa1sa2 · · ·sai(z),sb1sb2 · · ·sbi(z)]

for some r, i, cf. Proposition 4.2.24. Note that the outmost Q̄ j and Lie bracket come from

the same simplicial level, and hence cannot be rewritten as a sum of other compositions

of operations in a free spectral Lie algebra. Furthermore, there is no chain β such that

d1(β ) = γi(z), i.e., there is no chain such that d1(Q̄
j
β ) = Q̄ j

γi(z). Therefore such an α

does not exist.

The comonadic composition on γiγ j turns out to be rather tricky, and we intend to

investigate it in some future endeavor.
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