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Abstract

The bar spectral sequence for algebras over a spectral operad relates Koszul duality phe-
nomena in several contexts. In this thesis, we apply this classical tool to the Koszul dual pair
given by the (non-unital) Ec.-operad and the spectral Lie operad over IF,,. The bar spectral
sequence for E-algebras yields the structure of operations on mod p Topological André-
Quillen cohomology and the homotopy groups of spectral partition Lie algebras, building
on the work of Brantner-Mathew. In the colimit, the unary operations are Koszul dual to
the Dyer-Lashof algebra. On the other hand, the bar construction against certain spectral
Lie algebras models labeled configuration spaces by a theorem of Knudsen. The associated
bar spectral sequence yields new results on their mod p homology at low weights, as well
as interesting patterns of universal differentials. We also record an attempt with Andrew
Senger on detecting these differentials via deformation of the bar comonad.
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Chapter 1

Introduction

The study of Koszul duality in classical algebra dates back to Moore [Moo70] and Quillen
[Quui68], who examined adjunctions between the category of dg-Lie algebras and the cat-
egory of cocommutative coaugmented dg-coalgebras over QQ via a certain bar construction.
Quillen further showed that this adjunction restricts to an equivalence of homotopy cate-
gories between the full subcategories of connected dg-Lie algebras and 1-connected co-
commutative coaugmented dg-coalgebras over Q. Later on, Ginzburg-Kapranov [GK94]
and Getzler-Jones [GJ94] observed that this adjunction of categories of algebras reflects the
Koszul duality of the quadratic operads Comm and Lie in the category of chain complexes
over (Q via the bar construction. On the other hand, Priddy [Pri70] developed the notion of
Koszul duality for augmented quadratic algebras over a field k. For A a Koszul algebra, its
Koszul dual H*(A) = Ext} (k, k) has a presentation with generators and relations the linear
dual of those of A.

The phenomenon of Koszul duality of operads in higher algebra was first studied by
Ching [ChiO5] and later vastly generalized by Lurie in [Lurl7]. For any non-unital aug-
mented operad O in a stable presentable symmetric monoidal co-category % with geometric
realizations, its Koszul dual is the operad given by the Spanier Whitehead dual DB(Q) of
the operadic bar construction B(O) := |Bar(1,0, 1)].

It is then natural to ask if the Koszul duality of operads gives rise to a Koszul duality of
algebras in higher algebra, i.e., if the bar construction yields an adjunction at the level of

algebras over operads. In [FG12], Francis and Gaistgory showed that the bar construction
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|Bar, (id, O, —)| on O-algebras refines to a bar-cobar adjunction

Barp dp.
Algo (€) = coAlg}l, (7).
coBarp(o)

Here the superscript d.p. stands for divided power coalgebras, indicating that the B(O)-
coalgebras C in the image of the bar construction are equipped with structure maps that

factor through the norm maps
(B(O)(n) @C*" )z, — (B(O(n)) @ CF")n.

In the case where O is the non-unital E.-operad, Francis-Gaitsfory [FG12], Ching-Harper
[CH19] and Brantner-Mathew [BM19] examined on which subcatogries do the bar-cobar
adjunction restricts to an equivalence in several contexts. Their results are subsumed by
the upcoming work of Heuts [Heu], who showed that if O(1) ~ 1, the monoidal unit of &,
the bar-cobar adjunction restricts to an equivalence of co-categories on the subcategory of
complete O-algebras and cocomplete B(QO)-coalgebras with divided power structure. Fur-
thermore, these subcategories are the optimal for a general operad (0. Here completeness

is with respect to the n-truncated operads 7<,(O), and cocompleteness is defined dually.

The next natural question to one could ask is whether the Koszul duality of algebras
over operads is reflected in some form of duality between natural operations on the ho-
mology groups of algebras over operads. In this thesis, we use the bar spectral sequence
to investigate this question when the operad is Koszul dual pair given by the non-unital
[Ec.-operad and the spectral Lie operad over HIF,. For O a non-unital augmented operad in

the co-category of HIF ,-module spectra and an (J-algebra A, the bar spectral sequence
E;, = mmBar, (id, 0,A) = 7y, Bar, (id, 0,7, (A)) = Ty4|Bar,(id, 0,A)]

is obtained by skeletal filtration of the geometric realization of the bar construction. Here
O is the monad on the 1-category of IF,-modules that parametrizes natural operations on

the homotopy groups of (D-algebras.

14



1.1 The bar spectral sequence for non-unital E..-H ,-algebras

Partition Lie algebras are the key objects in the emerging field of formal moduli problems in
characteristic p. Work of Brantner and Mathew [BM19] showed that there is an equivalence
of co-categories between spectral formal moduli problems over I, and spectral partition Lie
algebras, generalizing the characteristic 0 phenomenon studied by Drinfeld [Dri], Pridham
[Pri10], Lurie [Lurl 1], and many others. A restricted version of this equivalence establishes
spectral partition Lie algebras over I, as divided power algebras Koszul dual to non-unital
Eo-HIF ,-algebras, implementing the Koszul duality between the non-unital E..-operad and

the spectral Lie operad.

Since spectral partition Lie algebras are algebras over a certain monad Liengw, the
homotopy groups of free spectral partition Lie algebras Lieﬁ,,}Ew (ThH F,®---® ZikH]P‘p)
parametrize all natural k-ary operations on the homotopy groups of spectral partition Lie al-
gebras as (iy,...,i) varies. In [BM19], Brantner and Mathew obtained bases for homotopy
groups of free spectral partition Lie algebras. Nonetheless, their method did not provide
explicit descriptions of the nature of the operations, nor were the relations among the op-
erations clarified. On the other hand, spectral partition Lie algebras are closely related to

topological André-Quillen objects introduced by Kriz [Kri93] and Basterra [Bas99].

Definition 1.1.1. For any object R in the category of E..-S-algebras with a map to HIF),

the ropological André-Quillen object of R is given by
TAQ(R,S; HF ) ~ |Bare(HF, ® (—),E, R)|.
The nth F,-linear TAQ cohomology of an E..-HIF ,-algebra R is given by
TAQ"(R,HF,; HF ;) = [£"|Bar,(id, Ec, ®HIFP,R)\,HIFP]M0dHFp.

The F-linear TAQ cohomology TAQ* (R, HF ,; HF ) of E..-HIF ,-algebras R has repre-
senting objects trivial square-zero extensions, and the reduced I ,-linear TAQ cohomology

groups of trivial algebras HF , © YOHF DD YkHF » parametrize all natural k-ary oper-
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ations. By [BM19], there is an isomorphism

m.(Lief 5 (E"'HF,®--- ©L*HF,)) O F,

~TAQ *(HF,®X "HF,& - &L “HF, HF,;HF),).

Hence natural operations on the homotopy groups of spectral partition Lie algebras agree
with cohomology operations on the (reduced) IF)-linear TAQ cohomology of Ee.-HIF -
algebras. In unpublished work, Kriz computed the [F»>-linear TAQ cohomology on a gen-
erator in non-negative degree [Kri93]. Around the same time, Basterra and Mandell an-
nounced a computation of unary operations and their relations as the Koszul dual to Dyer-
Lashof operations on [ ,-linear TAQ cohomology of connective objects for p > 2 and ob-
served a shifted restricted Lie algebra structure, but a proof never appeared.

In Chapter 3, we use the dual of the bar spectral sequence (2.2) with O = EX} ® HF , the
nonunital E..-operad in Modyr, to identify the structure of the homotopy groups of spectral
partition Lie algebras and [ )-linear TAQ cohomology, noting that the spectral sequence
collapses on the E2-page when A is a trivial algebra. The unary operations are parametrized
by a power ring ‘P (Definition 3.5.4), which is a collection of unstable Ext groups over the
Dyer-Lashof algebra, with composition product given by a sheared Yoneda product. The
verification of the law of composition makes use of a general result of Brantner [Bral7] that
demonstrates the compatibility of the algebraic Koszul duality on the E2-page of the (dual)
bar spectral sequence with the monadic Koszul duality that the E~-page assembles to when
there are no higher differentials in the spectral sequence. As the degree of a homotopy class
gets arbitrarily large, the colimit of the algebra of additive unary operations on that class
is the Koszul dual algebra of the Dyer-Lashof algebra. Then we construct a shifted Lie
bracket on the homotopy groups of spectral partition Lie algebras, and used a homotopy

fixed points spectral sequence to detect a restriction map on the shifted Lie bracket.
Theorem 1.1.2. (Theorem 3.5.5 and 3.6.6)

1. The homotopy groups of a spectral partition Lie algebra over HI,, or the reduced
TAQ cohomology of an Ew-HIF3-algebra, form a module over the power ring P of

additive unary operations.
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2. The weight 2 additive operations are given by the collection R' € ijfi[l] for all

i, ] € Z satisfying i > — j+ 1, subject to the Adem relations

RaRb: —C

(b - 1)Ra+b—cRc
a+b—c>2c, c>—j+1 a—2c

in pjiaib[Z] forall a,b € Z satisfyingb— j < a<2bandb > —j+1.

3. There is a nonadditive unary operation R_‘X‘H(x) for any homotopy class x that
serves as the restriction x11 on x. The restriction on a sum of classes x and y in

different degrees is given by
(e +2) =R )+ RV () + Ty

The bracket is compatible with the unary operations in the sense that [y, o/(x)] = 0
for any homotopy class x,y and unary operation a of weight greater than 1 that is

not an iteration of the restriction.

4. The operations R’ and the shifted restricted Lie bracket generate all natural opera-
tions under the above relations. A basis for unary operations on a degree j class is
given by the collection of all monomials R1R™ - - - R such that ij > — j and iy, > 2ippi1

for1 <m<|L
Theorem 1.1.3. (Theorem 3.5.6 and 3.6.6)

1. The homotopy groups of a spectral partition Lie algebra over HI ), or the reduced

TAQ cohomology of any Ee-HF ,-algebra, form a module over the power ring P.
2. The weight p unary operations are given by the collection BER' € Pj —2p 71)’.78[1]

for € =0,1 and any 2i > —j, subject to the Adem relations

BRaBRb: Z (_1)afc+1 ((p_l)(b_c)_l)BRaercBRc

a+b—c>pc2c>—j a—pc— 1

in P;_z(p_l)(ﬁb)_z[Z]for all a,b € Z satisfying a < pb, 2b > —j,2a>2(p—1)b—j

17



RaﬁRb _ Z (_l)a—c ((p - 1)<b _C))ﬁpa-i-b—cRc

a+b—c>pc2c>—j

. Z (—1)* ¢ ((P

a+b—c>pc2c>—j

—1)(b—c)—

1 Ra+b_cﬁRc
a—pc—1

in Pfﬁz(p*l)(a%)*lp]for all a,b € 7 satisfying a < pb, 2b > —j, 2a >2(p—1)b+
-7,
BSRaRh: Z (_l)a—c((p_l)(b_c)_1)B8Ra+b—cRc
a+b—c>pc,2c>—j

in P{fz(p*l)(aM)*e[Z] forall a,b € 7 satisfying a < pb, 2b > —j, 2a>2(p—1)b— j,
and € € {0,1}.

. For all odd j and x a homotopy class in degree j, the restriction xP! s the bottom
operation R=ITV12(x) up to a unit A, i.e., [y, A;RTIHD2(x)] = [[- - [[y,2],x] -+ -], %]
for any class y, where bracketing with x is iterated p times on the right hand side.

The restriction map on a sum of classes x and y in odd degrees j # k is given by

. p=l .
(e 3)P = LROIDP () AR (0) 4 Y S (),
i=1 !
where s; is the coefficient of t'~! in the formal expression ad(tx+y)?~'(x). Further-

more, [y,o(x)] = 0 for any homotopy class x,y and o a unary operation of weight

greater than 1, unless x is in odd degree and o an iteration of the restriction.

. The operations BER' and the shifted restricted Lie bracket generate all natural opera-
tions under the above relations. A basis for unary operations on a degree j class with
j odd is given by all monomials BE R BE2R™ ... B&RY such that 2i; > —j and i, >
Pims1+ €ny1 for 1 <m < L. If j is even, a basis is given by B&' R B&2R" - .. B& R BE

such that 2iy > —(14¢€)j— € and iy, > pipi1 + Eny1 for 1 <m <.

As an immediate application, we obtain a computation of natural operations and rela-
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tions on the mod p TAQ cohomology TAQ* (R, S; HF ) of [E..-S-algebras R, which is based

on conversations with Tyler Lawson.

Since the functor TAQi(—,S;HIFp) has representing object the trivial square-zero ex-
tension SO X' H IF), for all i, operations and relations are again parametrized by the mod p
TAQ cohomology on the trivial square-zero extensions S® L1 HF, @ - -- & XkHF ,. Using

the base change formula
TAQ(—,S; HF,)) @ HF , ~ TAQ(— ® HF ,, HF ,; HF ),
S S

we deduce immediately from Theorem 1.1.2 and 1.1.3 the structure of natural operations

on the mod p TAQ cohomology E..-S-algebras.

Theorem 1.1.4. (Corollary 3.7.1, Proposition 3.7.2) For any tuple (iy,...i;) of integers,

the k-ary cohomology operations
k .
[1TAQ" (—,S;HF ) — TAQ" (—,S; HF ).
i=1

are parametrized by the homological degree —m part of Free®licp T A®---dX*A),
where A is the Steenrod algebra graded homologically. All operations vanish on the unit
except for scalar multiplication. The Steenrod operations commute with the bracket via the
Cartan formula and the I -linear TAQ cohomology operations via the Nishida relations

on cohomology of the second extended power:

1. For p =2 we have
Sq®[x,y] = Y [Sq'(x),Sq° 7 (v)],

_ X|—c¢C _
SqaR |x|+1(x) _ Z <L|_2C>Ra+|x|+l CSqC(X) + Z [Sql(x),qu(x)],
I<k,l+k=a

b—1—c
a—72c

Sq°RP(x) =Y (

)Ra+b_cch(x), b> —|x|+1.

19



2. For p > 2 we have

Ple,y] = Y IP'(x), P ()], BPxy] = Y (IBP'(x), P ()] + [P'(x), BP*~ (7))

i

For any class x and all 2j > —|x| 4 1, the Nishida relations are

PnﬁRj :(_l)n—iz ((J_l)(pl_ 1))ﬁRn+j—iPi+(_1>n—iZ ((.]_l)(p_ 1) - 1)Rn+j_iﬁPi,

- n—p : n—pi—1

P'R/ — (_1>n7i2 ((J - i)(li;il) - 1>Rn+jipi7

- n
as well as
PnR] n IZ _l 1) 1 Rn+j—ipi(x)
i —pi
1 . . . .
to X [P ) P ()] P ()] -] P (x)]

Kl 1,6ex,,0(1)=1

when the degree of x is odd and 2j = —|x| + 1, where the bracket term sums over all

nondecreasing sequences I = (0 < iy <i, <... <i,) withij+iy+---+i, =n, and

l‘x‘ is a fixed unit given in Theorem 1.1.3.(3).

1.2 'The bar spectral sequence for spectral Lie algebras

Spectral Lie algebras are algebras over the spectral Lie operad s.Z, generalizing the no-
tion of Lie algebras over a field k to the (co—)category of spectra. The homology operad
{H.(dy(1d);k) }, of the spectral Lie operad recovers the ordinary Lie operad over k up to a
shift [GK94][Fre00][ChiO5].

In Chapter 4, we study the bar spectral sequence for spectral Lie algebras in Modyp,,.

To compute the E2-page of the bar spectral sequence
Ej, = mymBar, (id,s.Z,A® HF,) = T,1|Bar,(id,s.Z,A) ® HF | (1.1)

for A a spectral Lie algebra, it is necessary to understand the structure of the mod p ho-
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mology of spectral Lie algebras. In [Beh12], Behrens constructed Dyer-Lashof-type unary
operations Qj on the mod 2 homology of spectral Lie algebras and determined the relations
among these operations. Building on the work of Behrens, Antolin-Camarena [AC20]

showed that the structure of the mod 2 homology of spectral Lie algebras is parametrized

S_

R
Behrens’ operations, along with a shifted Lie algebra structure such that brackets of op-

by a monad Lie;—z. An algebra over Liel, is an unstable module over the algebra R of

erations always vanish and the self-bracket on an element x is identified with the bottom

nonvanishing operation Q := QM on x. Following the approach of Behrens and Antolin-

Camarena, Kjaer [Kjal8] constructed Dyer-Lashof-type unary operations €0/ on the mod
p homology of spectral Lie algebras for p > 2 and proved that brackets of operations al-
ways vanish. Recently, Konovalov [Kon23] completed the study of the structure of these
operations by computing the relations among the unary relations. Hence the E2-page of the

bar spectral sequence is given by the following algebraic object:

Definition 1.2.1. The Quillen homology of a Lie;—z—algebra g is the total left derived functor

Lie’: Lie . .
HQ, .*(g) := H>,<,>,<]L,QI\,[O§]Fz (g9) ~ m, Bar, (1d,L1e;—2, g).

The main challenge in computing the Quillen homology of Lie;—z—algebras when p =2
arises from the identification of the self-bracket with the bottom operation Q,, which pre-
cludes a factorization of the free Lie“;—z—algebra functor as a composition of the free Lieﬁ?z—
algebra functor followed by the free /R-algebra functor. Furthermore, since the category of
Liej%z—algebras is nonabelian, we cannot resort to the usual Grothendieck spectral sequence
and the generalized Grothendieck spectral sequence becomes unwieldy very fast.

To get around these obstacles, we construct a May spectral sequence with respect
to a length filtration on R-module. The E'-page is bounded above by the Quillen ho-
mology of a variant of Lie;—z—algebras whose the unary and binary operations are dis-
entangled, thus admitting a factorization as the homotopy group of the total complex
of a double complex. The homotopy groups of these total complexes can be computed

with the machinery of Koszul duality for additive Koszul algebras [Pri70] and Lie alge-
bras [BHK19][CE48][May66A][Pri70], as well as explicit understanding of the Bousfield-
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Cartan-Dwyer operations
¥t s (A" (Va)) = ot grsit (AT (Vo) 1 < i < r

on the homotopy group of the free simplicial shifted graded exterior algebra A®(V,) on a
simplicial F,-module V, [Bou68][Dwy80a]. This allows us to obtain general upper bounds

for the Quillen homology of Lie;—z—algebras and precise formulae in low weights.
Furthermore, we are able to provide a full computation of the Quillen homology of
Lie‘;—z—algebras in universal cases. Denote by Freeﬁgg@ the free allowable R-module func-
tor. The category Mody is stable under the desuspension functor ¥~ of Fy-modules.
Then for 1 < n < o, the R-module Z_”Freeﬁgifz (Z"HKT,) is an Lief, -algebra whose Lie’-

structure is trivial. Note that when n = oo, this is the trivial Lie;—z—algebra

colimHooZ*"FreeﬁzdR (KR, ) = 3FF,.

Theorem 1.2.2. [Zha2l] (Theorem 4.2.27) The Quillen homology

Lie,
HQ*,IER (Q”Freeﬁng (Z"HF,)) = m, . Bar, (id, Liey, Q”Freeﬁg dR (ZHEE,))

of the Lie, -algebra Q”FreeMOdR (Z’H'kIFz) 1 < n < o is isomorphic as a bigraded vector
space to the shifted graded exterior algebra on generators Y;Q(xi) satisfying the following

conditions:
1. I1=(iy,...,in) satisfies i; > 2i;q forl <m, i, > 2, and iy —ip— - — by < 1y

2. J="(J1,..-,Jr) satisfies 0 < j; < jis1+ 1 forl <r, 0< j. <n, and if j; =0 then

eitherr =1 or i, = 2.

Note in particular that in natural operations on a class of degree & in the Quillen homol-
ogy of Lie‘;-z—algebras are given by the Quillen homology of the trivial Lie‘;-z—algebras TR,

and the above theorem gives us a dimension count.
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1.2.1 Application to labeled configuration spaces

One application of the Quillen homology of Lie;-z—algebras is the computation of the mod

p homology of labeled configuration spectrum

Bi(M,X) := X7 Conf (M) @ X%
h%y

of k points in a parallelizable manifold M with labels in a spectrum X. The study of labeled
configuration spaces dates back to as early as Segal [Seg73] and McDuff [McD75] as gen-
eralizations of the unordered configuration space £ By (M) = By(M;S) of k points in M.
The rational homology groups of labeled configuration spaces are well understood in cases
of interests via classical methods, see for instance [BC88][BCT89][Tot96]. Nonetheless,
the mod p homology groups have remained mostly intractable. Classically, the only known

cases are the following:

(1). M = R* with arbitrary labeling spectra by May [May72] and McClure [BMMS8S,
IX], and M = R" by F. Cohen [CLM76, III]. Then @~ Bx(M;X) is the free E,-algebra
on X. Its mod p homology is captured by Dyer-Lashof operations and Browder brackets as

a functor of H,(X;F),).

(2). Arbitrary manifold M with labeling spectrum X = XS, where either p = 2 or
p > 2 and n+r is odd [BCT89][MLES][BCM93]. In these cases, there is a homology

decomposition

H. (D Bi(M:S")) = R H.(Qs™Fr)® dimHAi(M) (1.2)
k>0 i

In particular, the homology depends only on the F,-module H.(M;F,).

The most recent developments in the computation of the homology of labeled configu-
ration spaces originate from a result of Knudsen [Knul8]. Using factorization homology,

he established an equivalence of spectra

@B Bu(M;X) ~| Bara(id, 5.2, Free*? (£"X)M7) | . (1.3)
k>1

Here M is a parallelizable n-manifold, s.Z is the monad associated to the free spectral Lie

23



algebra functor Free*<, and (—)M " the cotensor with the one-point compactification of M
in the oo-category of spectral Lie algebras. Knudsen’s result opens up a path for extract-
ing information about the homology of labeled configuration spaces. In [Knul7], Knudsen
provided a general formula for the Betti numbers of unordered configuration spaces by
observing that the bar spectral sequence for the bar construction (1.3) with rational coef-
ficients, which we abbreviate as Knudsen’s spectral sequence, collapses at the E>-page.
Building on Knudsen’s work, Drummond-Cole and Knudsen [DCK17] computed the Betti
numbers of unordered configuration spaces of surfaces. In [BHK19], Brantner, Hahn, and
Knudsen studied Knudsen’s spectral sequence with coefficients in Morava E-theory at an
odd prime. They computed the weight p part of the labeled configuration spaces in R” and

punctured genus g surfaces X, | for g > 1 with coefficient in a sphere.

In the second half of Chapter 4, we adapt their approach to study the mod p homology
of By(M,X) for M a parallelizable n-manifold and X any spectrum by examining the mod
p Knudsen’s spectral sequence, i.e., the bar spectral sequence (1.1) with coefficients in ),

applied to the bar construction (1.3).

When p = 2, our general understanding of the E2-page, i.e., the Quillen homology of
Lie’ -algebras, allows us to obtain an upper bound for H, (Bx(M,X);F;) in Theorem 4.4.5
for arbitrary parallelizable manifold M and spectrum X. In the universal case M = R™ and
X =S, the bar spectral sequence has E2-page given by Theorem 4.2.27. Comparing with
the computation of the homology of free E-algebras [Ade52, DL62, May70, BMMSS88],
we see that there are infinitely many higher differentials and conjecture the following uni-

versal pattern, which can be verified in low weight by sparsity arguments:

Conjecture 1.2.3 (Conjecture 4.3.5). Each page of the spectral sequence
Lies,
E2, = HQy, ® (TF2) = 7oy Bary(id, 5.2, 5FF»)

is an exterior algebra. The higher differentials act on the exterior generators of the E>-page

as follows, see Figure 4-1:
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1. For an exterior generator ot = le e Qjm (x) on the Ez—page, we have
A"y () = 0 (a)

forr<mandr< ji+1.

2. For an exterior generator B = Y11 le e Qjm (x) on the E?-page, we have

(a) " (B) = 0,0;, - 0;, (%),
(b) d" Yini1 (B) =d" (B) @B,

(c) Y—2d" N (B) = d*" 11 (B) forn+1 <1l <m.

These generate all higher differentials under further applications of the v; operations in

accordance with (2).(b) and (2).(c), as well as the exterior product.

For an arbitrary M, sparsity arguments show that the weight k part of Knudsen’s spectral
sequence with I, coefficients always collapses on the EZ-page for small k. In particular,
we observe that the Fp-module H, (B (M;X)) depends on and only on the cohomology ring
H*(M™;F,) when k = 2,3 and H.(X;F,) has at least two generators. This is in contrast
to the case when X = §’, in that the equivalence (1.2) depends only on the F,-module
H*(M;F,) [BCT89].

When p > 2, the weight k < p part of the E>-page of Knudsen’s spectral sequence
with [F), coefficients can be described in terms of Liepr—algebra homology. In particular,
the spectral sequence collapses when k =2 or k = 3 and p > 5 (Corollary 4.5.9). As a

corollary, we deduce the following:

Corollary 1.2.4. (Remark 4.5.10) When X =S" and k =2,3, the F ,-module H,(By(M;S");IF,)

depends on and only on the cohomology ring H*(M*;F,) when r+ 1 is even.

This is in contrast to the case when r+/ is odd in the equivalence (1.2) [BCT89].
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1.3 Work in progress: bar spectral sequence via deforma-

tion of comonads

In the universal case M = R™ and X = S, Knudsen’s spectral sequence
2 _ s yhE ) & OFCR (yk - k
E;, = 7 Bar, (id, Lies , ZF) = HQ, * (£*F2) = 7,1, [Bar.(id,s.Z, Z°HF,)|  (1.4)

has E2-page given by Theorem 4.2.27. Comparing with the homology of free E..-algebras
[May66A, BMMSS88], we see that there are infinitely many higher differentials and observe

the following pattern:

Conjecture 1.3.1. [Zha21] Each page of the spectral sequence (1.4) is an exterior algebra.

The higher differentials act on the exterior generators of the E*-page as follows:

1. d ™y («) = O,(a) for an exterior generator o = Qj,-+- 0, (x) on the E?-page

withr <mandr < j; + 1.

2. Foran exterior generator 8 =Y,110;, -+ Q;, (xk) on the E?-page, we have d" 'y, 1 1(B) =

d"(B)® B and yd" ' (B) = d*" 'y 1 (B) forn+2 <1 <m.

These generate all higher differentials under further applications of v; and the exterior

product.

While the pattern of universal differentials is similar to classical ones studied by Dwyer
[Dwy80b], the operations 0 j on coalgebras over the comonad 7, ,Bar, (id,Lie;-z, —) in-
crease filtration and hence cannot be constructed using classical methods. In joint work in
progress with Andrew Senger, we use a suitable deformation of the comonad associated
to the bar construction |Bar,(id,s.Z, —)| on spectral Lie algebras in Mody, to propagate
weight two differentials to higher weights.

More generally, let k be a field and O a spectral operad. The comonad |Bar,(id, O, —)|
on Modyy arises from the adjunction cot +sqz : Algy(Modgi) — Modgy, and admits a lift
to a comonad cot* ocot, on the co-category Pz(Modgk) of product-preserving presheaves

over the oo-category of finite-free Hk-modules. We note that there is an equivalence & :
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Pr(Modil, ) = (Mod!il)~o, where the target is the co-category of Postnikov-connective
filtered Hk-modules. An object in (Mod}f}}c)zo isadiagramCe =--- —C; - Cy - C_| —
-+ in Modyy such that C,, is n-connective for all n.

There is a realization functor Re : Modgi,lc — Modyy sending C, to co}lim C_, and an
associated graded functor Gr sending Co to {C,,/Cy+1}n € Fun(Z°? ,Modpy). The two are

related by a spectral sequence
Ep = Tp+4Gr(Ca)p = Mpiq(Re(Ca)),

which recovers the spectral sequence associated to a filtered object [Lurl7]. This allows
us to identify bar spectral sequences as coalgebras over the deformation cot* o cot, of the

comonad |Bar, (id, O, —)|:

Theorem 1.3.2 (Senger-Zhang). For A an O-algebra in the category of Hk-modules, the

bar spectral sequence
Esz,t = T T, (Baro (1d> O;A) = T4t |Bar. (ld, O,A)|

is naturally isomorphic to the spectral sequence for w.Re(®(cot* ov(A))) € (Modi))s. If
A = sqz(X) with X a finite Hk-module, then the bar spectral sequence is isomorphic to the
spectral sequence for m,.Re(P(cot* ocot,(v(X))).

Here v : Modglz — Pz(Modgk) is the (restricted) Yoneda embedding. Furthermore,
the weight decomposition cotosqz(X) = ;> Bar(O)(i) @z, X*" lifts to a weight de-
composition of the deformed comonad cot* ocot,(—) ~ @;>; D;(—). In the case k = I,
and O = s.Z, the degeneration of the weight two part of the bar spectral sequence associ-
ated with the trivial algebra X*HTF; allows us to compute D, (X ) for any X € Pz(Modng).
This allows us to detect all differentials in weight two of the bar spectral sequence in the
universal case. Our hope is to use the structure map of the comonad cot* ocot,(—) and
the computation of the E>-page (Theorem 4.2.27) to inductively propagate and pull back

universal differentials along the weight. This will be explored in future endeavors.
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1.3.1 Conventions

We assume that every object is graded and weighted whenever it makes sense. For instance,
Mody, stands for the ordinary category of weighted graded F)-modules. A weighted
graded F»-module M, is an N-indexed collection of Z-graded F,-modules {M(w)q },ven.
The weight grading of an element x € M (w), is w, and the internal grading is |x| = n. Mor-
phisms are weight preserving morphisms of graded IF,-modules. The Day convolution &
makes Mody, a symmetric monoidal category. The Koszul sign rule x® y = (— 1)|x”y y@x
for the symmetric monoidal product ® depends only on the internal grading and not the
weight grading.

Similarly, a shifted Lie algebra L over IF), is a weighted graded [F,-module equipped
with a shifted Lie bracket [—, —] : L, ® L, — Ly, -, that adds weights, as well as satisfying

graded commutativity [x,y] = (—1)*PI[y, x] and the graded Jacobi identity

(=DM E e, [y, 2]] + (= )P [z, o] 4+ (= 1)z, e, y]) = 0.

When p = 3 we further require that [[x,x],x] = 0 for all x € L. Denote by Lie]}p the category
of shifted weighted graded Lie algebras over [, as well as the monad associated to the
free LieﬁFp-algebra functor. When p = 2, we use the abbreviation Lie® = LieﬁFz. We further

st of totally-isotropic Lie*-algebras, i.e., Lie’-algebras that have

consider the category Lie
vanishing self-brackets. We use the notation (—, —) exclusively for Lie*!! brackets.

We mean by shifted graded exterior algebra over I, a graded FF,-module M, together
with a graded commutative product M,, A M,, — M, ,,—1 such that x Ax = 0 for all x € M,.
We will often omit the adjectives shifted graded for the exterior algebra.

We use m,(—) to denote the following functors: the functor taking the nth homotopy
group of a spectrum, an HIF ,-module spectrum, or a simplicial F,-module, as well as the
functor taking the nth homology group of a chain complex over F,.

We use 7, (—) to denote the functor taking the bigraded homotopy group of a (weighted
graded) bisimplicial IF,-module, which is equivalent to taking the homology of the total

complex of the associated double complex via the generalized Eilenberg-Zilber theorem.

The bidegree (s,t) is given by the pair (simplicial degree, internal degree).
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Chapter 2

Preliminaries

2.1 The spectral Lie operad

The Koszul dual pair we are interested in involves the non-unital E..-operad and the spec-

tral Lie operad, which we recall in this section.

Ching [Chi05] and Salvatore showed that the Goowillie derivatives d,(Id) of the iden-
tity functor Id : Top, — Top, form an operad 5. := {d,(Id)}, in Spectra. The nth-
derivative d,(Id) admits an explicit description due to Arone and Mahowald [AM99], fol-
lowing the work of Johnson [Joh95]. Let P, be the poset of partitions of the set n =
{1,2,...,n} ordered by refinements, equipped with a X,-action induced from that on n.
Denote by 0 the discrete partition and 1 the partition {n}. Set IT, = P, — {0, 1}. Regard-

ing a poset P as a category, we obtain via the nerve construction a simplicial set No(P).

The partition complex X|I1,|°, the reduced-unreduced suspension of the realization |IT,|, is

modeled by the simplicial set
for n > 2 and the simplicial O-circle S° for n = 1. Then there is an equivalence

9(1d) ~ D(Z[IL,|°) ~ DBar(1,E™, 1)(n)
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of spectra with X, -action, where [D denotes the Spanier-Whitehead dual of a spectrum. This

identifies s.Z as the Koszul dual to the nonunital commutative operad E2", i.e.,
5. ~DBar(1,EX', 1).

For a description of the operadic bar construction and a proof of the compatibility of the op-
eradic structure on both sides, see [Chi05] for a topological model using trees and [Bral7,
Appendix D] for an eo-categorical construction along with a comparison with the topologi-

cal model.

2.2 Theory of operations

Given an operad, or more generally a monad in Modyy,, one can ask for natural opera-
tions on the homotopy groups of algebras over the monad. The following is adapted from
Lawson’s excellent survey [Law?20, section 1.4] on the theory of operations for algebras
over operads.

Given a monad T on ModH]Fp, we define an operation on T-algebras to be a natural
transformation 7,,(—) — 7,(—) of functors hAlgy(Modgy,) — Sets for some m,n. Here
hAlgy(Modyr,) is the homotopy category of T-algebras over Modyp,. Let Op(m;n) be
the set of operations for fixed m,n. It follows from the universal property of free algebras

that for any T-algebra A,
Tn(A) = Mapaig, (Modys, ) (FreeT (XHF,),A).

Hence Free™ (X HF,) is the representing object for the functor 7,,(—) on hAlgy (Modgr,, ).

By the Yoneda Lemma, the set of operations Op(m;n), or equivalently natural transfor-
mations 7, (—) — 7,(—) in hAlgp(Modpgr, ), is isomorphic to 7. (FreeT (X HT ,)). Explic-
itly, given an operation a € 7, (Free™ (ZHF,)) and a class x € m,,(A) with A a T-algebra,

we obtain a class a(x) in m,(A) via the pullback

Tm(A) = MapAlgT(ModH]Fp) (FreeT (X"HF,),A) AN Map g, ( )(FreeT (X"HFF)),A) = m,(A).

MOdHIFp
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Therefore, to understand the unary operations on T-algebras and their relations, we
need to first compute 7. (FreeT (Z"HTF,)) as an algebra for all m. Then we need to under-

stand the composition product on unary operations
7, (Free" (2" HF ) x m,(Free" (X'HF ) — m,(Free™ (X'HF))

for all I,m, n, which corresponds to composing two natural transformations 7;(—) — 7, (—)
and 7,,(—) — m,(—) of functors on hAlgp(Modyp, ). In general, natural k-ary operations

Hé‘zl m;, (—) — m,(—) are parametrized by the homotopy groups
7, (FreeV (21 HF, @ --- ©X*HF )

for all k-tuples (iy,...,i).

2.3 The bar spectral sequence

To investigate how Koszul duality of algebras manifest itself at the level of operations, we
make use of the bar spectral sequence. Given an operad O in Modyr, and an algebra A

over O, there is a spectral sequence
E;, = mymBar, (id, 0,A) = w4, |Bar.(id, 0,A)] (2.1)

obtained by skeletal filtration of the geometric realization in the bar construction. Note that
O has an analytic approximation in the sense that there is a monad O on Mody, such that
7, (Free? (X)) = O(m.(X)) for any X € Modpyp,. (cf. [AC20, Proposition 2.1]) Hence we

can rewrite the E2-page as the bigraded homotopy group
E;, = my,Bar, (id, 0, m.(A)) = y4|Bara(id, 0,A)] (2.2)

Note that the E2-page is also the total left derived functor that takes the indecomposables

of the @—algebra structure, as we recall below.
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2.3.1 The derived indecomposable functor

We briefly record without proof the homotopy theory of monads on the category of weighted
graded [F,-modules and especially the two-sided bar construction for simplicial objects,
following closely Sections 3.1, 4.2 and 4.3 in [BHK19]. For the general theory, see for
instance Sections 3.1 and 3.2 of [JN14].

Let T be an augmented monad on the category Modp, of weighted graded I ,-modules.
Denote by Algy(Modr, ) the category of T-algebras. The forgetful functor U : Algy(Modg, ) —
Modp, admits a left adjoint, the free functor Freel : Mody, — Algyp(Modg, ).

Denote by sModp, the category of simplicial weighted graded IF;,-modules. Levelwise
application of the adjunction Free™ - U gives rise to an adjunction between the correspond-

ing categories of simplicial objects
Freel 4U : Algp (sModp,) — sMod,,,

as well as a monad T on sMody,. We equip sMody, with the standard cofibrantly generated
model structure. Suppose that the path objects of sMody, lifts to sAlgy, the category of
simplicial T-algebras. Then this adjunction induces a right transferred model structure on
the category of simplicial T-algebras, with weak equivalences and fibrations defined on the
underlying simplicial weighted graded I,-modules by [JN14, Theorem 3.2, Remark 3.3].
In particular, this is true for all the monads that we will encounter in this thesis.

Denote by 77T : Modp, = Alg;q(Mody,) — Algy(Modr,) the inclusion of trivial T-
algebras, which is induced by the augmentation. It has a left adjoint QT : AlgT(Mode) —
Modg,, the indecomposable functor with respect to the T-algebra structure. Applying this
adjunction levelwise to the corresponding categories of simplicial objects, we obtain a
Quillen adjunction

T T.
Q" AT" :sAlgy — sModp,.

The total left derived functor LQT of QT can be computed by the following standard recipe.

Construction 2.3.1. Given a right module R : Mody, — Z over T, and a simplicial object

A in Algy(Modg, ), one can apply the two-sided bar construction Bare (R, T, —) levelwise
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to A. The diagonal of the resulting bisimplicial complex is a simplicial object in ¥, denoted

by Bare(R,T,A).

In particular, if we regard a T-algebra A as the constant simplicial object on U(A)
equipped with a simplicial T-algebra structure, denoted also as A by abuse of notation,
then Bar, (R, T,A) agrees with the usual two-sided bar construction.

Since the free resolution Bar, (Free™, T,A) is a cofibrant replacement of A in the cate-
gory of simplicial T-algebras, the left derived functor of a functor F' can be computed by

applying F' levelwise to a cofibrant replacement, so
LOY(A) ~ Q"Bar, (Free™, T,A) = Bar,(id, T,A).

Now suppose that we have a composite monad L o R with distributive law the natural
transformation Lo R = RoL in the sense of Beck [Bec69, Section 1]. Suppose in addition
that L, R and L o R are all compatibly augmented and each admit a cofibrant replacement
given by the free resolution. Let Algy ,Algg, Alg; g be the respective categories of alge-
bras. Then an Lo R-algebra A is an R-algebra via the forgetful map UII{’R : Algy g — Algg
induced by the augmentation of L, and an L-algebra via the augmentation of R. Further-
more, we have adjunctions

oR o™
MOdIE‘p <—> AlgR <—> AlgLOR

R LoR
T Tk

b

Construction 2.3.2. For A an algebra over L oR, the free resolution Bar, (Free®, R,A) has
the structure of a simplicial L o R-algebra given as follows. Levelwise, the L o R-algebra

structure map is given by
LOROROH(A) — ROLORO(n_l)(A) — ... 3 R"0Lo (R)(A) N Ron(A)7

where the rightmost arrow is the L o R-algebra structure map on A and the other arrows
are induced from the distributive law Lo R = Ro L. The face and degeneracy maps are
structure maps of the monad R and hence compatible with the levelwise L o R-algebra

structure maps by naturality of the distributive law.
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Levelwise application of QII{’R to Bar, (FreeR, R, A) yields a simplicial L-algebra struc-

ture on the bar construction Bar, (id, R,A) = Ok°RBar, (FreeR R, A).

We record the following result about the total left derived functor of the indecomposable

functor of a composite monad, which generalizes [BHK19, Proposition 4.19].
Lemma 2.3.3. Let A be an L o R-algebra. The homotopy group of Bare(id,LoR,A) is
computed by the homotopy group of the bisimplicial object Bar,(id, L, Bar,(id,R,A)).

Recall that the homotopy group of a bisimplicial I ,-module can be computed via the
Eilenberg-Zilber theorem, i.e. by first taking associated chain complexes in both directions
and then forming the total complex of the double complex. See for instance [GJ09, Chapter

4].

Proof. The augmentation L o R — R induces a map of simplicial L o R-algebras
¥ : Bar, (Free!R Lo R, A) — Bar, (Free® R, A),

where the simplicial L o R-algebra structure are the target is given by Construction 2.3.2.
This is an equivalence since both are free resolutions of A of L as an L o R-algebra and
an R-algebra respectively, and weak equivalences in sAlg; g are detected by the underly-
ing simplicial F,-modules. We want to show that QIﬁOR preserves this weak equivalence.
Since U preserves weak equivalences, it suffices to show that UL o QII{’R oW is a weak

equivalence.

Note that there is an isomorphism
ORo UL R = Lo gleR.
Hence U o Qk°R o W is the map
oRo UII{ORBar. (Free"R LoR,A) — ORo UII{ORBar. (FreeR R, A) = O®Bar, (Free® R A).

Since both Ux°®Bar, (Free”® Lo R,A) and Bar, (Free®, R, A) are free resolutions of A in

sAlgg and QR is a left Quillen functor, this is indeed a weak equivalence. [
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Chapter 3

Spectral partition Lie algebras and TAQ

cohomology

3.1 Spectral partition Lie algebras

Motivated by the theory of classical operadic Koszul duality [GK94], the natural next step
is to formulate a Koszul duality theorem between suitable categories of algebras over the
Koszul dual pair EX and d,(Id). Partial progress was achieved by Ching and Harper in
[CH19], following a general conjecture by Francis and Gaitsgory [FG12]. Recent work of
Brantner and Mathew [BM19] on spectral partition Lie algebras completely resolved the

question over HFF,, and we will give a very brief summary of their results.

Let Modng C Modyp, be the subcategory spanned by HF,-modules of finite type, i.e.

. . . fit fit
HT ,-modules with degree-wise finite homotopy groups. Denote by MOdH]F,,, <0 C ModHFp
the subcategory spanned by coconnective objects. Let P be the nonunital commutative

operad in Modyp,,. There is an adjunction

t
Algp(Mody,) ———— Mody, .
sqz

where the functor sqz sends an object M to the P-algebra M as a trivial square-zero ex-
tension. The restriction of this adjunction to the subcategory Modng <o defines a sifted-

colimit-preserving monad (M + cot(sqz(M)¥)") on MOd?nF,,,go-
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Definition 3.1.1. [BM19, Definition 5.32] The spectral partition Lie monad Liengm is the

unique sifted-colimit-preserving monad
. n .
Ller,Em : MOdH]Fp — MOdH]Fp

extending the monad (M +— cot(sqz(M)")") on Mod}fflﬂ% <0

Algebras over the monad Lie%p g, are called spectral partition Lie algebras. The free

spectral partition Lie algebras on bounded above objects admit an explicit description.

Proposition 3.1.2. [BM19, Proposition 5.35] For V a bounded above HF ,-module,

Lief 5 (V) ~D[Bar.(id,P,V")| ~ (P ((9u(id) @ HF,) @ (vV)*")"".

n>1

The above formula makes it clear that spectral partition Lie algebras are not algebras
over the spectral Lie operad, as the structural map of an algebra L over the spectral L