
Convergence of the homology spectral sequence
of a cosimplicial space

by

Brooke E. Shipley

A.B., Mathematics, Magna Cum Laude, Harvard University, 1990

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

© Massachusetts Institute of Technology 1995. All rights reserved.

A uthor .................... J................'."''...A
Department of Mathematics

May 1, 1995

Certified by ...................... ..... ..... .................
Haynes R. Miller

Professor of Mathematics
Thesis Supervisor

Accepted by.., .... ............ ..........................
David Vogan

Chairman, Departmental Committee on Graduate Students

.. ,IAGACHUSETTS INSTrl-UTE
OF TECHNOLOGY

OCT 2 0 1995

IInD A 1211_-





Convergence of the homology spectral sequence of a

cosimplicial space

by

Brooke E. Shipley

Submitted to the Department of Mathematics
on May 1, 1995, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mathematics

Abstract
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1. INTRODUCTION

In this paper we study the convergence properties of the homology spectral se-
quence of a cosimplicial space. The Eilenberg-Moore spectral sequence is an ex-
ample of this spectral sequence applied to the cobar construction of a fibre square.
Hence this spectral sequence is also called the generalized Eilenberg-Moore spectral
sequence.

This work builds on results due to W. Dwyer and A. K. Bousfield. W. Dwyer
considered the convergence properties of the Eilenberg-Moore spectral sequence for
a fibration in [D1]. Then A. K. Bousfield used these results as a basis for finding
convergence conditions for the generalized Eilenberg-Moore spectral sequence [B2].
We continue in this direction. In section 3 we consider new convergence conditions
for the Eilenberg-Moore spectral sequence of a fibre square. Using these results and
adding a finite type assumption we obtain a new pro-convergence result, Theorem
5.3. Combining this result with Corollary 1.2 from [S] gives conditions for strong
convergence, Theorem 6.1, which replace Bousfield's one-connectedness requirement
in [B2, 3.6] by a p-good requirement.

In [D2] W. Dwyer analyzed what the Eilenberg-Moore spectral sequence for a
fibration is converging to when it is not necessarily converging to the homology of
the fibre. We consider this exotic convergence question in the case of the generalized
Eilenberg-Moore spectral sequence in section 7. In section 8 we note that our
exotic convergence result for the Eilenberg-Moore spectral sequence of a fibre square
generalizes one of W. Dwyer's results for a fibration.

I would like to thank Bill Dwyer for helping me get started on this project, Paul
Goerss for suggesting that the p-resolution of a cosimplicial space is an interesting
object, Mike Hopkins for a helpful suggestion at a crucial moment, Tom Goodwillie
for finding a mistake in an earlier version of this paper, Dan Grayson for pointing
out to me that one can always add a disjoint base point, and Jim Turner for many
hours of fruitful conversation. I would also like to thank Haynes Miller for his
guidance throughout this work. I have benefitted greatly from our discussions.

In section 2 we construct the homology spectral sequence of a cosimplicial space.
We also define pro-convergence and strong convergence. Section 3 contains the
various Eilenberg-Moore spectral sequence convergence results. The special case of
pro-convergence for a cosimplicial simplicial abelian group is considered in section 4.
As mentioned above, sections 5 and 6 contain the main pro-convergence and strong
convergence results, Theorem 5.3, and Theorem 6.1. The homology of mapping
spaces is discussed at the end of section 6 as an application of Theorem 6.1. Section
7 considers exotic convergence results. In section 8 we apply the exotic convergence
results from section 7 to the Eilenberg-Moore spectral sequence. Relative conver-
gence is considered in section 9. In the last section we consider the total space of
the p-resolution of a cosimplicial space. We also prove another strong convergence
theorem which generalizes Theorem 6.1.

This paper is written simplicially, so "space" means "simplicial set". Throughout,
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the homology of spaces is homology with coefficients in the field with p elements.
Let R = Fp.

2. THE HOMOLOGY SPECTRAL SEQUENCE FOR A COSIMPLICIAL SPACE

In this section we recall some of the necessary definitions for cosimplicial spaces
and towers. Then we construct the homology spectral sequence for a cosimplicial
space X'. Finally we consider definitions of strong convergence and pro-convergence.

The main objects of study in this paper are cosimplicial spaces. We use the model
category structure on cosimplicial spaces developed in [BK, X]. A map f : X' -+ Y'
is a weak equivalence if f" : X n - Yn is a weak equivalence for n > 0. The map f
is a fibration if

X + Y XM,_ly. M 1 X

is a fibration for n > 0. Here MnX' = {(x,... n) E X n x ... x Xnlsixi = s-l i

for 0 < i < j < n} for n > 0 and M -1 = *. The map s: Xn - Mn-IX is induced by
so x... x sn. The map f is a cofibration if fn : Xn - Yn is a cofibration of simplicial
sets for n > 0 and f induces an isomorphism on the maximal augmentations. The
maximal augmentation of X' is the subspace of X0 which consists of the simplices
x E X 0 such that d°x = dx. X' is fibrant (cofibrant) if X' >* is a fibration
(0 ) X' is a cofibration).

Let A' be the cosimplicial space with Am = A[m] the simplicial m-simplex for
m > 0. Let TotX' = Hom(A',X') and TotsX' = Hom(A[s], X ' ) where A[s] is the
simplicial s-skeleton of A'.

Lemma 2.1. A weak equivalence between fibrant cosimplicial spaces X' - Y'
induces a weak equivalence TotsX' - TotsY'.

Proof. Since A[S] is cofibrant, this lemma follows from the simplicial model category
structure on cosimplicial spaces. See [BK, X 5.2]. 

This lemma shows that on fibrant cosimplicial spaces Tots is homotopy invariant.
This is not true in general. For a non-fibrant cosimplicial space X' we replace X'
by a weakly equivalent fibrant cosimplicial space X'. Since the choice of fibrant
replacement is unique up to weak equivalence, TotsX' is homotopy invariant.

Towers are useful for studying convergence properties of spectral sequences. A
good reference for towers is [BK, III]. Over any category a map of towers {fs} 
{As } - {Bs} is a pro-isomorphism if for each s there is a t and a map from Bs+t
to As which makes the following diagram commute.

As+t ' , Bs+t

A_ l ?R_
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A map of towers of spaces {Xs} -+ {Y} is a weak pro-homotopy equivalence
if it induces a pro-isomorphism of sets {r0X s} -+ {ro0Y,} and for each i and s
there exists a t such that for each vertex v X,+t there exists a homomorphism
7ri(Y8+t, v) -+ 7ri(X, v) making the following diagram commute.

Ti (X+t v V) -- 7ri(Y+t v)

7ri(X,, ) ' · 1(Y,, v)

For pointed towers of connected spaces this condition is equivalent to having a
pro-isomorphism of sets on r0 and a pro-isomorphism of groups for each tower of
higher homotopy groups. A weak pro-homotopy equivalence induces a pro-homology
isomorphism, i.e. {HnX} - {HnYs} is a pro-isomorphism for all n [B2, 8.5].

We now construct the mod p homology spectral sequence for a cosimplicial space,
{Er(X')}, which abuts to H,(TotX'; Fp). See also [B2].

Let sA (cA) be the category of (co)simplicial abelian groups. Let csA be the
category of cosimplicial simplicial abelian groups. For G in sA, let NG be the
normalized chain complex with NnG = G/imso + ... + imsn_l and boundary
a = (-1)idi. For B' in cA, let N*B' be the normalized cochain complex with
NnB' = Bn n kers °0 n ... f kersn-l with boundary 6 = E(-1)id i . For B' in csA let
N*N*B' be the normalized double chain complex.

Given B' in csA construct the total complex TB' with

(TB')n = NmNm+nB' , T = + (-1)n+l6.
m>O

Let TmB' = TB'/Fm+lTB' where (Fm+lTB') = lk>m+l NkNk+nB' . Then
TB' = mTmB'.

For a cosimplicial space X', let R X' be the cosimplicial simplicial vector
space generated by X', i.e. (R ® X') m is the vector space generated by the set
Xn. Let {Er(X')} be the homology spectral sequence of the filtered chain complex
T(R 0 X'). In other words, the spectral sequence comes from the following exact
couple.

, H*Ts(R X') , H,*Ts_ (R X') .

E.l+ (X) E(X ' )

Hence we can identify E,, = NsHt(X') and d = (-l)id i. So E2,t = 7rsHt(X').
The tower {H*Ts(R X')} contains all of the information needed for convergence

questions about this spectral sequence. Occasionally we need to translate between
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the usual spectral sequence language and the analogous tower theoretic descriptions.
For instance, the following two lemmas give very useful translations.

Lemma 2.2. If for some r the map f : X' -4 Y' induces an Er-isomorphism be-
tween spectral sequences {Er(X')} - {Er(Y')}, then f induces a pro-isomorphism
of towers

{HTs(R ® X')} - {H.Ts(R 0 Y')}
for each n.

Proof. Consider the rth-derived exact couple.

* >---- H*T(r)(R X') X) HT(r) (R X ) X'.

Esr+T1 (X ' ) Esr(X' )

Here HT(r)(R ® X') is the image of i,: HT,+r(R X') H,*Ts(R ® X') in the
tower {H,T (R®X')}. Note that H*T_1 (RX' ) = 0. So H*T(r)(R®X' ) - E(X').
Hence by induction and the five-lemma, an Er-isomorphism induces an isomorphism
HT(r)(R 0 X') -+ H*,Tr)(R 0 Y'). This is enough to show that f induces a pro-
isomorphism of towers {HTs(R 0 X')} -+ {HT(R 0 Y')}. El

Any weak equivalence between cosimplicial spaces X' - Y' induces an E2 -

isomorphism, r*H*(X') - )r*H,(Y'). Hence by Lemma 2.2 a weak equivalence
induces a pro-isomorphism {H*Ts(R 0 X')} - {H*,T(R 0 Y')}.

Before we state the next lemma we need two definitions. A tower which is
pro-isomorphic to a constant tower is called pro-constant. A tower which is pro-
isomorphic to the trivial constant tower is called pro-trivial.

Lemma 2.3 (B2, 3.5). For any integer n, the tower {HnTs(R 0 X')} is pro-
constant if and only if for each s there exists r < oo with E,8 +n(X') = E,+n(X' )
and for each sufficiently large s E+n(X') = O. The tower is pro-trivial if and only
if for each s there exists r < oo with Er,+ (X') = O.

Proof. The proof is a straightforward translation between tower information and
spectral sequence information. 

In [B2, 2.2] Bousfield writes down compatible maps

b, : H,(TotsX') - H,T, (R 0 X').

Using the map induced from Tot X' - TotX' we get the following tower maps.

{H, Tot X'} P {H,TotX'} -{H,T(R X')}
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A cosimplicial space X' is strongly convergent if

4 o P: ({HTotX') - {HT (R C X'))

is a pro-isomorphism for each integer n. The homology spectral sequence {Er(X'))
is called strongly convergent if X' is strongly convergent.

Lemma 2.3 translates the above tower theoretic definition of strong convergence
into the usual structural strong convergence statements. Note that Er(X ') is
strongly convergent if and only if for each n {HnTS(R 0 X')} is pro-constant with
constant value HTot X'. Hence Lemma 2.3 shows that there are two necessary
conditions for strong convergence. First, there must only be finitely many non-zero
differentials emanating from any one ES,t and only finitely many non-trivial spots
on any one total degree line by E°. Second, the spectral sequence must eventually
vanish in negative total degrees.

A cosimplicial space X' is pro-convergent if

4D: {HTotX'} - {HnT, (R ® X) 

is a pro-isomorphism for each integer n. If X' is pro-convergent then the homology
spectral sequence {(E(X')} is also called pro-convergent.

The following proposition, which is a generalization of [B2, 8.6], is used in the
proofs of Theorem 4.1 and Theorem 5.3. First we need a definition. A tower of
cosimplicial spaces {(X} will be called pro-convergent if

({HTot X -4 ({HnT (R X )}

is a pro-isomorphism for each n.

Proposition 2.4. Let h : {(Xs - ({Y be a map of towers of cosimplicial spaces
such that h: {(Xm} - (Y m} is a weak pro-homotopy equivalence for each m > 0.
Then {(X) is pro-convergent if and only if ({Y'} is pro-convergent.

Proof. {(X} is pro-convergent if and only if {(X is pro-convergent. The map h
induces a map {(X} - (Y } of fibrant replacements which is also a weak pro-
homotopy equivalence on each codegree. Hence we reduce to the case where all of
the cosimplicial spaces in the lemma are fibrant.

Because h induces weak pro-homotopy equivalences on each codegree, it induces
a pro-homology isomorphism {Hn(Xm)} - {Hn(Ysm)} for each m and n. So by
the five lemma for pro-isomorphisms, [BK, III 2.7], it induces a pro-isomorphism
{1rmH,Xj} -+ {rm"H,Y } for each m and n. In other words, it induces a pro-
isomorphism of each tower {E, (Xs)} - {E ,n(Ys)}

Lemma 2.2 can be restated for a map of towers of cosimplicial spaces to show that
a pro-isomorphism of E2 towers induces a pro-isomorphism of towers {HTs(R 0
X) -+ {H, Ts(R 0 Yj)}. This new statement can be proved by following the proof
of Lemma 2.2 using the five lemma for pro-isomorphisms in place of the usual five
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lemma. Thus we can conclude that the right hand map in the following diagram is
a pro-isomorphism for each n.

(HTotsX} - {HT,(R C) Xs)}

I

{HTotsYj} - {H,Ts(R® Y)}

If the left-hand map in this diagram is a pro-isomorphism then the top map will
be a pro-isomorphism if and only if the bottom map is a pro-isomorphism. This is
equivalent to the statement of the proposition. So to conclude the proof we only
need to show that the left hand map is a pro-isomorphism.

We proceed by induction to show that {TottXs}, -+ {TottYj}s is a weak pro-
homotopy equivalence for each t. First, Tot OX' = X ° . Since h: {X° } - {Yo} is a
weak pro-homotopy equivalence, Tot oh: {Tot 0X } - {Tot oYj } is also.

Throughout this paper fibre square refers to a pull-back square where at least
one map is a fibration. For a fibrant cosimplicial space X', TottX' can be built up
inductively by fibre squares as follows. See also [B1, p.149-150].

TottX' Hom(A[t], X t)

I I
Tot t_lX' ) P'

Here P' is the pull-back of the following diagram.

Hom(A[t], Mt-lX ')

Hom(a[t], X t ) Hom(aA[t],Mt-X ' )

For the induction step we assume Tot t-lh: {Tot t_lXs} - {Tot t-lYs} is a weak
pro-homotopy equivalence. Since h induces a weak pro-homotopy equivalence on
each codegree, it induces a weak pro-homotopy equivalence on each of the corners of
the diagram for building Totth: {TottX}s -+ {TottYj } as a pull-back. Using the
five-lemma for pro-isomorphisms, [BK, III 2.7], one can show that a map between
towers of fibre squares induces a weak pro-homotopy equivalence on the pull-back
towers if it is a weak pro-homotopy equivalence on the other towers. Thus Totth:
{TottX-} -+ {TottYj } is a weak pro-homotopy equivalence.

So by induction {TottX} -+ {TottY' } is a weak pro-homotopy equivalence for
each t. Hence, by considering the diagonal, {TotsX]} -+ {TotsY/} is a weak pro-
homotopy equivalence. So it induces a pro-isomorphism on homology. 
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The following corollary states the specific case which will be used in the proofs
of Theorem 4.1 and Theorem 5.3.

Corollary 2.5. Let h : {X'} - {Ys} be a map of towers of cosimplicial spaces
such that h {Xm} - {Yn} is a weak pro-homotopy equivalence for each m > O.
If each Ys is pro-convergent, then so is X'.

Proof. From the definition of pro-convergence for towers we can see that a tower
of pro-convergent cosimplicial spaces is a pro-convergent tower. Also, for a con-
stant tower pro-convergence for the tower is equivalent to pro-convergence for the
cosimplicial space itself. Thus this corollary follows easily from Proposition 2.4. [

The following lemma shows one way of ensuring that each homotopy group of
the partial total spaces is finite. This will be used in the proof of Lemma 5.4.

Lemma 2.6. Let X' be a cosimplicial space. If r,(Xn, *) is finite for each m, n
and choice of base point in Xn, then r,(TotsX', *) is finite for each m, s and choice
of base point in TotX'.

Proof. Since X' is weakly equivalent to X' we see that rm(X, *) is also finite
for each m, n, and choice of base point. Hence we can assume that X' is a fi-
brant cosimplicial space. Note that TotOX' is X °. So 7rm(TotX',,*) is finite
for each m > 0 and for each choice of base point. We proceed by induction.
Assume that 7rm(Tot k_lX',*) is finite for each m > 0 and for each base point.
Consider the fibration Pk : Tot kX' - Tot k_1X'. We must consider each of the
components separately. Consider a vertex b E TotkX'. Let Fb be the fibre of
Pk over pk(b) E Tot klX'. Let bo be the vertex in X ° which is in the image of
b. By using the construction discussed in the proof of Lemma 2.4 of the fibration
Pk: Tot kX Tot k-lX' Bousfield shows that 2ri(Fb, b) _ Nklri+k(X , b) [B3, 10.2].
Here, Nkri+k (X', b) 1 ri+k (Xk, bk) n kers° n ... n kersk- . Thus the normalization
is finite for each i > 0. Hence 'i(Fb, b) is finite for i > 0 and for each choice of b.
Because Tot k_-X' has finite homotopy this is enough to show that 7ri(Tot kX, b)
is finite for each i > 0 and for each choice of b. 

3. THE EILENBERG-MOORE SPECTRAL SEQUENCE

In this section, we generalize the Eilenberg-Moore spectral sequence results stated
by Bousfield [B2, 4.1, 8.4]. Theorem 3.3 is used in section 4 to prove Theorem 4.1
and in section 5 to prove Theorem 5.3.

Consider the fibre square

M ,Y

X , B,
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where f is a fibration and M is the pull-back. Farjoun and Smith noticed that for X
contractible they could generalize W. Dwyer's Eilenberg-Moore spectral sequence
convergence result to cases where B is not necessarily connected [D1], [FS]. Bousfield
considered the convergence of the Eilenberg-Moore spectral sequence for a fibre
square with X, Y, and B connected [B2, 4.1]. We combine these two directions in
the next theorem. Let Yy denote the component of Y containing the point y. Let
Fy be the fibre of the fibration Y, - B over the point f (y).

Theorem 3.1. In the above diagram assume that rOX XroB T0Y is finite and that
r,1(B, f(y)) acts nilpotently on H.(Fy) for every point y E Y where Yy is in the
image of iroX oB7rOY. Then the Eilenberg-Moore spectral sequence for this diagram
strongly converges to H.M.

Proof. We will denote the cobar construction of the above diagram by B'. We can
assume X, Y, and B are fibrant simplicial sets. This ensures that B' is fibrant.
Let X = I, Xa where {(Xa is the set of connected components of X. Similarly,
let Y = Jip YP. Then it is easy to see that B' = _,p B,p where B,p is the cobar
construction of the following diagram.

(1)y 

We show that the spectral sequence for each Bp strongly converges. Then we
use this information to conclude the statement of the theorem.

We consider two different cases for the cosimplicial space B,J. The first case
to consider is when the images of X, and Yp lie in different components of B. In
this case the pull-back is empty. Thus Tot B',,p = 0. A computation shows that
the E 2-term of the spectral sequence is 0. Hence the spectral sequence is strongly
convergent.

Next consider the case when the images of X, and Y3 lie in the same component
of B. Call this component Bo. Let B' be the cobar construction for the following
diagram.

(2) f ,

X, -- Bo

The inclusion Bo -÷ B induces an inclusion of cosimplicial spaces i: Bo - B&,.

By assumption 7r1Bo acts nilpotently on H,(f- '*). Thus, by [B2, 4.1], this
spectral sequence strongly converges for B. This is equivalent to the top map in
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the following diagram being a pro-isomorphism for each n.

{HnTot B) - , {HnTs(R B))

{HTot Ba,,} , {HnTs(R ( B;,)}

By considering the contribution of the homology of the components of B other than
Bo we see that the inclusion i induces an E2-isomorphism for each n. This implies
that the right map above is a pro-isomorphism by Lemma 2.2. The homotopy pull-
back for diagram (1) is homotopy equivalent to the homotopy pull-back for diagram
(2). Thus Tot B - Tot Bp, is a homotopy equivalence. This shows that the left
map above is a pro-isomorphism. Thus we conclude that the bottom map is a pro-
isomorphism. This shows that the spectral sequence for B',p strongly converges.

To conclude the proof we need to show that since each Bp, is strongly convergent,
B' is also strongly convergent. Because A' has connected codegrees Tot commutes
with coproducts. So Tot B' = B u, Tot Ba,, because B' = Jj,, B,,. This also
shows that the E2-term for the cosimplicial space B' splits as the direct sum of the
E 2-terms for each Ba. Hence we have the following commutative diagram.

({H.Tot B, p} , H{H.T(R Ba, )}
al3 a,

{H Tot B} - {H.T (R® B')}

The top map is a pro-isomorphism on each direct summand because each Bp
strongly converges. Since roX X 0oB 7roY is finite and the spectral sequence collapses
at E2 when Tot Bop is empty, the top map is in fact a pro-isomorphism. Arguments
similar to those above show that both the left and right maps are pro-isomorphisms.
Thus the bottom map is a pro-isomorphism. This is equivalent to the statement of
the theorem. 

Using this convergence result for the Eilenberg-Moore spectral sequence for spaces
we can prove the following theorem for cosimplicial spaces. This is a generalization
of [B2, 8.4].

Theorem 3.2. Let

IX' fB'
X. - B
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be a fibre square of cosimplicial spaces where f is a fibration, M' is the pull-back,
and X', Y', and B' are fibrant and pro-convergent. Assume that 7voX n X,,Bn T Y n

is finite, r0oTotsX' x 0ot, B 7r0TotY' is finite, and that 7rrl(Bn, *) and 7r (TotB', *)
are finite p-groups for each n, s, and choice of base points * E Bn and * E TotB'.
Then M' is pro-convergent.

Proof. Using the proof of [B2, 8.4], we see that M' is pro-convergent if X', Y', and
B' are pro-convergent and the Eilenberg-Moore spectral sequences for the following
diagrams are strongly convergent

TotY' y

TotX' > TotB' Xn ~ Bn

for each s and n. A finite p-group acts nilpotently on any Fp vector space. Hence a
finite p-group always acts nilpotently on mod p homology. Thus, by Theorem 3.1,
we see that the hypotheses of this theorem ensure that these spectral sequences are
in fact strongly convergent. 

We need to apply this convergence result to a pull-back diagram where the cosim-
plicial spaces are not necessarily fibrant and the maps are not necessarily fibrations.
The following theorem is a slight generalization of Theorem 3.2 which is tailored to
this application.

Theorem 3.3. Let

f

X' - B'

be a pull-back diagram of cosimplicial spaces where f : Yn >>Bn is a fibration
for each n, B' is fibrant, and X', Y', and B' are pro-convergent. Assume that
roXn XroB wr0Y is finite, ro Tot8X' X roTot.B. 7roTotY' is finite, and 7r (B n, *) and

7r,1(Tot, B' , *) are finite p-groups for each n, s, and choice of base points * E Bn and
* E Tot,B'. Then M' is pro-convergent.

Proof. We use the model category structure on cosimplicial spaces to replace the
given diagram by a diagram which satisfies the hypotheses of Theorem 3.2. Let
X' > - )X' - B' be the factorization of X' - B' into a trivial cofibration fol-
lowed by a fibration. Repeat this process for Y' - B'.
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Consider the following diagram of pull-back squares

M' W' Y'

Because B' is fibrant, X' and Y' are fibrant. Thus the lower right hand pull-
back diagram satisfies the hypotheses of Theorem 3.2. This implies that Z' is
pro-convergent.

To conclude the proof of this lemma we only need to see that Z' is a weakly
equivalent fibrant object for M'. Since a pull-back of a fibration is a fibration
Z' Y' is a fibration. So Z' is fibrant.

The model category on simplicial sets is proper, i.e. the pull-back of a weak equiv-
alence along a fibration is a weak equivalence (and the dual statement). Thus since a
fibration of fibrant cosimplicial spaces induces level-wise fibrations and weak equiva-
lences are defined as level-wise weak equivalences, W' - Z is a weak equivalence.

Now we need to see that M' ) W' is a weak equivalence. By the hypotheses,
Y' >Bn' is a fibration for each n. Thus Wn - X is a fibration for each n.
Each Xn -- X is a weak equivalence. Hence Mn - W n is a weak equivalence
because it is the pull-back of a weak equivalence along a fibration. [

4. COSIMPLICIAL SIMPLICIAL ABELIAN GROUPS

This section is devoted to proving Theorem 4.1 which shows that certain cosim-
plicial simplicial abelian groups are pro-convergent.

Theorem 4.1. Let B' be in csA. Assume that Nm7rn(B' ) is a finite p-group for
each n < m. Then B' is pro-convergent as a cosimplicial space.

We need the following lemmas before beginning the proof of Theorem 4.1.

Lemma 4.2. Let B' be in csA. 7roBm is a finite p-group for each m > 0 if and only
if Nm7roB' is a finite p-group for each m > 0.

Proof. The forward direction is obvious. The converse follows by induction using
the fibration Nm B ' -+ Bm -+ Mm -1l(B') and the fact that Mm 7ri = riM m [BK, X
6.3]. 
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In the next lemma we use the classifying space functor W. W and the associated
total space functor W are defined on sA in [M]. These functors prolong to functors
on csA [Do]. Let E be the functor which shifts grading by one. The following
lemma states one useful fact about WB'.

Lemma 4.3. For B' in csA, HiTmWB' = Hi_TmB'.

Proof. For G in sA, the definitions of W and N, imply that N,WG = ENG.
Thus, for B' in csA, N*N*WB' = N*EN*B'. Hence, TmWB' = TmB'. The
lemma follows by applying homology. 

To begin the proof of Theorem 4.1, we prove the following special case.

Lemma 4.4. Let B' be in csA with N"m rB ' a finite p-group for n < m. If there
exists an N such that {HiTmB} is pro-trivial for i < N, then B' is pro-convergent.

Proof. We use descending induction on N, beginning with N = 0. Given B' sat-
isfying the hypotheses of the lemma for N = 0, consider WB'. By Lemma 4.3 we
see that HiTWB' } is pro-trivial for i < 0. By construction WB' is termwise
connected, so WB' is pro-convergent by the following lemma due to Bousfield.

Lemma 4.5 (B2, 8.7). Let A' be in csA. If {HiTmA'} is pro-trivial for each i < 0
and A' is termwise connected, then A' is pro-convergent.

Consider the following fibre square of cosimplicial spaces

B' WB'

* -WB'

where * denotes the constant cosimplicial point. We need to verify that the hypothe-
ses for applying Theorem 3.2 to this fibre square are satisfied. WB' is pro-convergent
because it is weakly equivalent to the cosimplicial point. This also implies that
7roWBn and roTotsWB' are trivial. Hence the fibred product of components for
both codegrees and the partial total spaces of this fibre square are trivial.

From the proof of Lemma 4.3 we see that N*WB' = EN*B'. Hence r*WB' =
Er,*B'. So N m lrWB ' = N m r,_lB' is a finite p-group for each n < m + 1. This is
enough to ensure that rlTotmWB' is a finite p-group for m > 0 [BK, X 6.3]. Since
NmuoB ' is a finite p-group for m > 0, Lemma 4.2 implies that roB m is a finite
p-group for m > 0. Thus, since rlWB m = roB m, rlWBm is a finite p-group for
each m > 0. Since WB' and WB' are in csA and WB' -+ WB' is an epimorphism,
WB' and WB' are fibrant and WB' - WB' is a fibration [BK, X 4.9]. Thus
Theorem 3.2 applies to the fibre square above. Hence B' is pro-convergent.

For the induction step, assume that we have proved Lemma 4.4 for n > N. Given
B' satisfying the hypotheses of the lemma for n = N, we see by Lemma 4.3 that



17

WB' satisfies the hypotheses for n = N + 1. Thus, by the induction assumption,
WB' is pro-convergent. As in the case for N = 0, the fibre square satisfies the
conditions for Theorem 3.2. So we conclude that B' is pro-convergent. 

Proof of Theorem 4.1. To finish the proof of Theorem 4.1 we need to consider a
map of towers of cosimplicial spaces and apply Corollary 2.5.

Let X' be a cosimplicial space. The nth cosimplicial skeleton, coskn(X'), is the
cosimplicial space generated by all simplices of X' of codegree less than or equal
to n. This is just the nth skeleton of X' considered as a simplicial object over the
opposite category of spaces. Note that Xm - (cosknX') m is an isomorphism for
n > m.

Consider the map of towers of cosimplicial spaces B') - {cosknB'} for B'
satisfying the conditions of Theorem 4.1. This is a pro-homotopy equivalence on
each codegree. To use Corollary 2.5, we need to see that each cosknB' is pro-
convergent. NcosknB ' is trivial for j > n. So HNJcosknB' is trivial for j > n.
Because the cosimplicial and simplicial operators commute HN j = NjH,. Thus
El,, (cosknB') = 0 for j > n. Hence E1 ,+i(cosknB' ) = 0 for i < -n, since Elq = 0
if p or q is negative. By Lemma 2.3 this shows that {HiTmcosknB' } is pro-trivial
for i < -n.

N21rkcosknB' is trivial for i > n and is equal to N'irkB' for i < n. So, for any
k < i, Ni7rkcosknB' is a finite p-group. Hence, by Lemma 4.4, we see that each
cosknB' is pro-convergent. Thus, by Corollary 2.5, B' is pro-convergent. 

Remark. We should note here that in fact the hypotheses of Theorem 4.1 can be
weakened. As is evident from the statement of Proposition 2.4, it is only necessary
for cosknB' to be pro-convergent for infinitely many n. If NmiroB' is a finite p-group
for each m < n and 7rkTot ,Wn B' is a finite p-group for 1 < k < n, then cosknB'
is pro-convergent. This implies, for instance, that if N mirnB ' is a finite p-group
except for finitely many m and n and there exists some r such that each E ,t (B') is
a finite p-group in the homotopy spectral sequence of B', then B' is pro-convergent.

5. PRO-CONVERGENCE

In this section we use Theorem 4.1 to prove Theorem 5.3, a pro-convergence
statement which applies to a more general class of cosimplicial spaces.

A connected space X is nilpotent if its fundamental group acts nilpotently on each
7riX for i > 1. A connected space X is p-nilpotent if it is nilpotent and riX is a
p-group with bounded torsion for each i. In general, define a space to be p-nilpotent
if each of its components is p-nilpotent. See also [BK, III 5].

We need a construction from [BK, I 2]. Let R X be the simplicial vector space
generated by the simplicial set X. Define RX C R 0 X to be the simplicial set
consisting of the simplices Erixi with Eri = 1. Then RX has an affine R-structure
which becomes an R-module structure once a base point is chosen in X. See [BK, I
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2.2]. R is a triple on the category of spaces. So iterating R produces an augmented
cosimplicial space, X -+ R'X, called the p-resolution of X. Here (R'X)' = Rn+'X.
Let RX = TotsR'X.

Bousfield and Kan show that a connected space is p-nilpotent if and only if
{X} -+ RsX} is a weak pro-homotopy equivalence [BK, III 5.3]. To prove Theo-
rem 5.3 below we need to prove the same statement for spaces with finitely many
components. Before we can do this we need the following lemma about the inter-
action of the p-resolution and coproducts. We also include in this lemma a similar
statement about products which will be used in section 8.

Lemma 5.1. The product of the projection maps induces a weak pro-homotopy
equivalence {Rs(X x Y)} -+ {RSX x RsY}. Consider Z = II Za, where Za is
the component corresponding to a E roZ. The map of towers induced by inclusion

{II RsZa} -+ {RZ} is a weak pro-homotopy equivalence.

Proof. In [BK, I 7.1 and 7.2] Bousfield and Kan show that the p-completion functor
commutes with products and coproducts. This lemma is just the tower theoretic
analogue to those statements. In fact, for showing that p-completion commutes
with products they show that there is an E2-isomorphism of homotopy spectral
sequences between R'(X x Y) and R'X x R'Y. As in Lemma 2.2, translating this
E2 -isomorphism into tower theoretic language shows that {1riTotR' (X x Y)} -
1{iTot,(R'X x R'Y)} is a pro-isomorphism for each i. This proves the first state-
ment in the lemma.

Similarly, for coproducts Bousfield and Kan exhibit an E2 -isomorphism which
translates into tower theoretic language to show that {Tots(H R'Za)} - {RsZ} is
a weak pro-homotopy equivalence. Since Tot OX' = X 0, the functor Tot 0 commutes
with coproducts. For s > 0, the simplicial s-skeleton of A' has connected codegrees.
So Tot, also commutes with coproducts. Thus {I RsZa} - {RsZ} is a weak pro-
homotopy equivalence. Ol

Now we are ready to prove the next lemma.

Lemma 5.2. If {X} -+ {RX} is a weak pro-homotopy equivalence then X is
p-nilpotent. A space with finitely many components is p-nilpotent if and only if
{X} - {RsX} is a weak pro-homotopy equivalence.

Proof. Write X as a coproduct of its components, i.e. X = I Xa with each Xa a
connected component. To prove each of the statements in the lemma we consider
the following diagram.

{II Xa} , {X}

{I RsXa} - {RRX}
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Lemma 5.1 shows that the bottom map in this diagram is a weak pro-homotopy
equivalence. Assume that {X} - {RX} is a weak pro-homotopy equivalence.
Using the diagram above, this implies that {I Xa} -+ {I RsXa} is a weak pro-
homotopy equivalence. Because this map is a coproduct of maps each component
map is also a weak pro-homotopy equivalence. Thus each Xa is p-nilpotent by [BK,
III 5.3]. By definition this shows that X is p-nilpotent.

Assume X is p-nilpotent, then by definition each Xa is p-nilpotent. This, by [BK
III 5.3], implies that each Xa} - RsXa} is a weak pro-homotopy equivalence.
The coproduct of finitely many weak pro-homotopy equivalences is again a weak pro-
homotopy equivalence. Hence if X has finitely many components {(X -+ {(RX is
a weak pro-homotopy equivalence because the other three maps in the diagram are
also weak pro-homotopy equivalences. []

The next statement is the main pro-convergence theorem.

Theorem 5.3. Let X' be a cosimplicial space. Assume X n is p-nilpotent and H,X n

is finite type for all n. Then X' is pro-convergent. In other words, the following
map is a pro-isomorphism

(I: {HTotX'} -+ {H, T(R X' )}.

The following lemma contains the main work for proving Theorem 5.3.

First consider the bicosimplicial space R'X' with codegrees (R'X')s' n = Rs+lXn.
We refer to the cosimplicial direction within X' as the vertical direction and the
other cosimplicial direction as the horizontal direction. Then by definition RsX',
with codegrees (RX')n = RSXn, is TothR'X'.

Lemma 5.4. If X' is a pointed cosimplicial space such that H,Xn is finite type,
then RSX' is pro-convergent for all s < oo.

Proof. We prove this lemma by induction on s. First consider s = 0. RoX' is
R1X' . Given a pointed cosimplicial space X', R1 X ' is in csA [BK, I 2.2]. Since
ir,,R'X = HmXn, this group is a finite p-group by hypothesis. Thus, by Theorem
4.1, R 1X' is pro-convergent.

Now we assume by induction that RSX' is pro-convergent and prove that R,+1X'
is pro-convergent. The following diagram forms Rs+1X' as a pull-back [B1, p.149-
150].

R,+lX' TotRh+iR'X' Hom(A[s + 1], Rs+2X ' )

(3)

RX' - TothR'X' p'
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Here P' is the pull-back of the following diagram

Hom(A[s + 1], Ms(R'X'))

(4)

Hom(aA[s + 1], R+2X') . Hom(OA[s + 1], Ms(R'X'))

where 0A[s] is the s- 1 skeleton of A[s]. We use Theorem 3.3 to prove that R+ 1lX'
is pro-convergent. Hence, we need to see that the other three cosimplicial spaces in
diagram (3) are pro-convergent, P is fibrant, the right map is a level-wise fibration,
certain spaces have finitely many components, and that certain fundamental groups
are finite p-groups.

First, we assume that RsX' is pro-convergent by way of induction hypothesis.
Note that RX ' is in csA for any s. Using the fact that a space with finite
homotopy groups has finite homology groups, we see that each rmRsXn is a fi-
nite p-group. Thus Theorem 4.1 shows that RsX ' is pro-convergent for any s.
Hom(A[s + 1], Rs+2X ' ) also satisfies the hypotheses for Theorem 4.1. Hence it is
pro-convergent.

Applying Lemma 2.6 to R'X' we see that mrRs Xn is finite for each m, s, n
and choice of base point. This is also true of the fibrant replacement, RsX'. Thus
applying Lemma 2.6 to RSX' shows that 7rmTott(RsX') is finite for each m, t,
s and choice of base point. Since Hom(A[s + 1], Rs+2X ' ) is fibrant, applying
Lemma 2.6 shows that rmTottHom(A[s + 1], Rs+2 X ' ) is finite for each m, t, s and
choice of base point. In particular, these arguments show that 7roTottRX' xroTottP.
7roTottHom(A[s + 1], R+ 2 X ' ) and roRXn xrop,, roHom(A[s + 1], Rs+2Xn) are
finite for each s, t, and n.

Next we show that Hom(A[s + 1], Rs+2Xn) -+ Pn is a fibration for each n. The
maps s: Rs+2Xn - Ms(R'Xn) and i: OA[s + 1] -+ A[s + 1] induce map(i, s) :
Hom(A[s+l1], Rs+2 Xn) -+ Pn. The model category on cosimplicial spaces developed
in [BK, X] is a simplicial model category. Hence the axiom for a simplicial model
category shows that if s is a fibration and i is a cofibration then map(i, s) is a
fibration [BK, X 5]. Since R'Xn is fibrant [BK, X 4.10] s: Rs+2 Xn 4 Ms(R'Xn)
is a fibration. The map i: 6A[s + 1] - A[s + 1] is a cofibration. Thus Hom(A[s +
1], Rs+2Xn) -+ Pn is a fibration.

We are left with proving that P' is pro-convergent and rlPn and rlTotP' are
finite p-groups for each n and s. The horizontal codegeneracy maps in R'X' are
homomorphisms. Thus Ms(R'X ' ) is in csA. Hence diagram (4) is a pull-back
square in csA. So P' is in csA. The finite type hypothesis ensures that the necessary
homotopy groups are finite p-groups. Hence, by Theorem 4.1, P' is pro-convergent.

Using pull-back diagrams to inductively build TotP' we see for each s that the
fundamental group of each component of TotsP' is a finite p-group. So i7rl(Pn, *)
and rl(TotP', *) are finite p-groups for each n, s and choice of base points. This
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is what we needed to apply Theorem 3.3 to diagram (3) and conclude that Rs+1X'
is pro-convergent. l

Proof of Theorem 5.3. To use Lemma 5.4 we need a pointed cosimplicial space. If
X' is not pointed then consider Y' = X' I *', where *' is the constant cosimplicial
space with each codegree equal to a point. If X' satisfies the hypotheses in Theorem
5.3 then Y' does too. Also note that Y' = X' I *. Because R ® Y' = (R ( X') E)
(R 0 *') and Tot8 Y' = TotX' II *, the vertical maps in the diagram below are
level-wise isomorphisms.

{fHTotY') T, (T(R Y)}

({HTotX' e H*} f (H,*Tn(R ) H* Tn(R *)}

Because { H, (*)} -+ H, T, (R 0')} is an isomorphism of constant towers this shows
that X' is pro-convergent if and only if Y' is pro-convergent. Thus we can assume
that X' is a pointed cosimplicial space.

To finish the proof of Theorem 5.3 we use Corollary 2.5. Consider the map of
towers of pointed cosimplicial spaces {X'} -+ {RX' }. Lemma 5.4 shows that for a
pointed cosimplicial space X' satisfying the hypotheses in Theorem 5.3 each RsX'
is pro-convergent. Since each Xm is p-nilpotent and has finitely many components,
Lemma 5.2 shows that X"} -+ {R sXm" is a weak pro-homotopy equivalence.
Thus, Corollary 2.5 shows that X' is pro-convergent. El

Remarks. Given the hypotheses of Theorem 4.1, one might expect that Theorem
5.3 would only require HmXn finitely generated for m < n. In fact, here we need
that H*X n is finite type, because the construction of the matching space MsX '

uses codegrees Xn for n < s. See [BK, X 6.3].

We should also note here that the finite type assumptions are necessary. Consider
for example the Eilenberg-Moore spectral sequence for the path loop fibration over
the classifying space of an infinite dimensional Z/2 vector space V.

QBV - PBV

BV

Let B' be the cobar construction for this fibration. At E', this spectral sequence
has infinitely many non-zero filtrations on the zero total degree line. Thus, by
Lemma 2.3, HTS(R 0 B')} is not pro-constant. But {H,(TotB')} for any cobar
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construction is pro-constant since Tot B' _ Tot 2B' - -- Tot B'. Thus :
{H, (TotB')} -+ {H,Ts(R 0 B')} is not a pro-isomorphism.

6. STRONG CONVERGENCE

In this section we discuss strong convergence of the homology spectral sequence
for a cosimplicial space. As an example we then apply this convergence result to
the calculation of the homology of a mapping space.

First we need two definitions. In section 5 we defined the cosimplicial space
R'X. Its total space, Tot R'X = RX, is called the p-completion of the space X.
A space is called p-good if the map from the space to its p-completion is a homology
isomorphism, i.e. H,X - H,R X.

We combine Theorem 5.3 and Corollary 1.2 from [S] to get the following strong
convergence result. To use Corollary 1.2 from [S] each {HiTotsX'} must be pro-
isomorphic to a tower of finite groups. If H,X is finite type then so is H,,X- .

Thus rm(R 0 Xn) = HmY'- is finite for each m, n, and choice of base point. Hence
Lemma 2.6 implies that rmTots (R X') is finite for each m and s. Bousfield shows
that rmTots(R ® X') _ HmTs(R X') [B2, 2.2]. Thus ({HiT(R ® X')) is a tower
of finite groups for each i. So {HiTotX')j is pro-isomorphic to a tower of finite
groups.

Theorem 6.1. Let X' be a cosimplicial space with Xs p-nilpotent and HX 8 finite
type for each s. Assume either

a) H,TotX' is finite type, or

b) 1imHTotX' is finite type.

Then the homology spectral sequence for X' is strongly converging to H,TotX' (i.e.
{H,TotX}' -+ H,T (R®X')} is a pro-isomorphism) if and only if TotX' is p-good.

Remarks. In section 10 we prove another strong convergence result which only re-
quires that each Xs is p-complete.

We should note that since {HTotX' } is pro-finite type, i.e. each degree is pro-
isomorphic to a tower of finite groups, condition b) is equivalent to HTotX' }
being pro-constant. Thus, considering Lemma 2.3 and Theorem 5.3, we see that
condition b) is equivalent to having certain structural strong convergence properties.
Specifically, condition b) is equivalent to requiring that at each Es,t there are only
finitely many non-zero differentials and that "by E°" each total degree has only
finitely many filtrations.

One common use for the homology spectral sequence of a cosimplicial space is
calculating the homology of mapping spaces. We now consider the application of
Theorem 6.1 to these calculations.

One cosimplicial space associated to a mapping space, map(X, Y), is constructed
by using the p-resolution of the target, map(X, R' Y). Note that each codegree here
is p-nilpotent. If H,X is finite and HY is finite type, then r,map(X, RsY) is finite
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type. Thus each codegree has finite type homology. Hence we have the following
corollary to Theorem 6.1.

Corollary 6.2. Let X and Y be spaces such that H,X is finite and H,Y is finite
type. Assume either

a) Hmap(X, ROOY) is finite type, or

b) imH, map(X, RsY) is finite type.

Then the homology spectral sequence for map(X,R'Y) strongly converges to the
H,map(X, ROOY) if and only if map(X, ROOY) is p-good.

Remarks. Again, note that condition b) is equivalent to certain structural strong
convergence conditions. Hence part b) of this corollary states that if the spectral
sequence "looks" like it is converging then it is strongly converging if and only if
the mapping space is p-good. We should also note that this same result holds for
pointed mapping spaces.

Under certain conditions one can easily see that map(X, ROOY) is p-good. If Y is
nilpotent then R.Y is also nilpotent [BK, VI 5.1]. Hence, if X is a finite complex
and Y is nilpotent, map(X,ROY) is nilpotent [BK, V 5.1] and therefore p-good

[BK, VI 5.3].

7. EXOTIC CONVERGENCE

In sections 5 and 6 we have analyzed when the homology spectral sequence is
pro-convergent or strongly convergent. In this section, we change our focus. Here,
instead of asking when the spectral sequence converges, we ask to what the spectral
sequence is converging. This change in focus allows us to consider cosimplicial spaces
whose codegrees are not necessarily p-nilpotent. The exotic convergence results are
stated in Corollaries 7.6 and 7.7.

In section 5 we considered the bicosimplicial space R'X'. Here we consider the
diagonal of this bicosimplicial space, which we denote RAX ' . RX ' is the p-
resolution of the cosimplicial space X'. The codegrees of this cosimplicial space are
(RAX' )n = Rn+lXn. Each codegree is a simplicial vector space over R. Therefore
it is p-nilpotent. For a pointed cosimplicial space X', RAX ' is group-like. Hence it
is fibrant [BK, X 4.9]. In fact the following lemma shows that R'X ' is fibrant for
any cosimplicial space X'. So the p-resolution construction takes any cosimplicial
space to a related fibrant cosimplicial space which has p-nilpotent codegrees.

Lemma 7.1. Let X' be a cosimplicial space. RAX' is fibrant.

Proof. If X' is the empty cosimplicial space then RAX' is the cosimplicial point.
Hence it is fibrant. Now assume X' is non-empty and hence also that X° is non-
empty. Choose an element x0 E X ° . This element is carried by the iterated coface
operators d for i > 0 to a system of basepoints. This system of basepoints is
respected under all iterated cosimplicial operators not involving d°. We will use
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this system of basepoints to show that RaX ' is group-like and hence fibrant [BK,
X 4.9].

Each Rn+lXn has the structure of a simplicial R-module using the choice of
basepoint above [BK, I 2.2]. To show that RAX ' is group-like we need to see that
each cosimplicial operator except do is a homomorphism with respect to these group
structures. Each di : RnXn- 1 - Rn+lXn is a composite of di : RnXn - 1 - RnX.
and d : RnX - Rn+lXn. Because each di: ·n-l Xn for i > 0 preserves
the chosen basepoints each of these composite maps is a homomorphism. Similar
arguments work for each si also. Thus any cosimplicial operator except do in RaX '

is a homomorphism. Hence RX ' is fibrant. El

In order to apply Theorem 5.3 to the p-resolution we need the next lemma.

Lemma 7.2. Let X' be a cosimplicial space such that H,Xn is finite type for each
n. Then rm(RAX ' )n is finite and H,(RAX')n is finite type for each m and n.

Proof. This is easy to see using induction, the fact that HXn = i7r,R(Xn), and the
fact that a space with finite homotopy groups has finite mod p homology. 

The following corollary is an easy application of Theorem 5.3 given this lemma
and the fact that each codegree of RaX ' is p-nilpotent.

Corollary 7.3. Let X' be a cosimplicial space. Assume that H,Xn is finite type
for all n. Then RaX ' is pro-convergent. In other words, the following map is a
pro-isomorphism

b-: {H,TotRX ' } -+ {HT, (R RaX')}.

We can also apply Theorem 6.1 to the p-resolution to get the following corollary.

Corollary 7.4. Let X' be a cosimplicial space with HX n finite type for each n.
Assume either

a) H,Tot RAX' is finite type, or

b) ,imH TotRA X' is finite type.

Then {HTot RAX ' } -+ {H,T(R0RAX' )} is a pro-isomorphism, i.e. the homology
spectral sequence for RAX' strongly converges, if and only if Tot RAX ' is p-good.

These corollaries become more interesting once we realize the relationship be-
tween a cosimplicial space and its p-resolution. Using the canonical map X -+ R8 X,
one can construct a map X' -+ RaX ' .

Lemma 7.5. Let X' be a cosimplicial space. The canonical map X' - RAX'

induces an isomorphism rsHt(X') -+ 7rHt(R'X') for all s and t.
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Proof. First consider the p-resolution of a space Y. Its homology is augmented by
H,Y - H,R'Y. The natural map R 0 RY - R Y induces a natural cosim-
plicial retraction of H,R'Y onto H,Y. Hence 7r*H*R'Y HY. This natural
cosimplicial retraction can be extended to give a retraction of H,*RX ' onto H*X'.
Thus, r*H*X' - 7r*HRZX ' . See also [G, 3.4], where an analogous statement in
cohomology is proved. 

This lemma shows that the map X' -+ RX ' induces an E 2-isomorphism of the
respective homology spectral sequences. Lemma 2.2 shows that the E 2-isomorphism
induced by the map X' - RaX ' produces a pro-isomorphism {H,Ts(R 0 X')} -
{H*Ts (R 0 RA X ' )}. Thus strong convergence of the homology spectral sequence
for RAX ' is equivalent to having the homology spectral sequence for X' converge
to H*Tot RaX ' . More precisely we have the following corollary.

Corollary 7.6. Under the hypotheses of Corollary 7.4, the following maps are both
pro-isomorphisms

{HITot RaX' } > {H*,T(R RX')} - {H*,T(R 0 X')}

if and only if Tot RAX ' is p-good. In other words, the homology spectral sequence
for X' is strongly converging to H*Tot RaX ' if and only if Tot RaX ' is p-good.

Restating Corollary 7.3 from this perspective, the following corollary states that
the homology spectral sequence for X' pro-converges to the homology of the tower
{TotRAX } quite generally.

Corollary 7.7. Let X' be a cosimplicial space with H*,X finite type for each n.
Then the following maps are both pro-isomorphisms.

{I*,TotRAX' } ) {HTS(R 0 RAX')} { H*Ts(R X')}

Remark. This corollary shows that for X' with H*,X finite type {HnTS(R 0 X'))
is pro-trivial for n < 0. Thus Lemma 2.3 shows that in this case the homology
spectral sequence will vanish in negative total degrees "by E ° ". In [D3] W. Dwyer
constructed operations which ensure over Z/2, among other things, that E°°(X ' )

vanishes in negative total degrees for any cosimplicial space X'. We conjecture
that this is true over Z/p for any prime p, although we have only proved this for
cosimplicial spaces whose codegrees have finite type mod p homology.

8. EXOTIC CONVERGENCE OF THE EILENBERG-MOORE SPECTRAL SEQUENCE

In this section we apply the exotic convergence results discussed in section 7 to
the Eilenberg-Moore spectral sequence. First we need the following proposition.

The following proposition is useful for dealing with the total space of RaX ' .

Let Y" be a bicosimplicial space. Let AY" be the cosimplicial space with code-
grees (AY") = yn,n. Hence RaX ' = AR'X'. Let Toth and Tot"' refer to the
"horizontal" and "vertical" Tot functors.
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Proposition 8.1. Tot (AY") is isomorphic to TothTotV(Y" ) and TotVToth(Y").
Similarly, {Tots(AY)} is pro-isomorphic to {TothTotY " } and {Tot~TothY" }.

Proof. Let ' x A' be the bicosimplicial space such that (A' x A') n = A[n] x A[m].
Then the first statement in the lemma is equivalent to Hom(A', AY") - Hom(A' x
A', Y"). We exhibit the isomorphism on the zero simplices.

A k-simplex of (A' x A')n' m is a simplex ak x rk with k E \[n]k and k E
A[m]k. A[n]k can be identified as Homa(k,n). Under this identification, let k

correspond to dk. Given an element g E Hom(A', AY"), define 9: A' x A' - Y"
by ('k X k) = dk X Tk(g(ik)). Here ik is the non-degenerate k-simplex in A[k].
Given an element f E Hom(A' x A', Y") restrict this map by the diagonal inclusion
A' - A' x A' to get an element of Hom(A', AY"). It is easy to check that these
maps are natural two-sided inverses.

The second statement of the lemma is equivalent to having a pro-isomorphism
{Hom(sksA' x skA',Y")} - {Hom(skAN',AY")}. Arguments similar to those
above show that for each s Hom(skA',AY") is isomorphic to Hom(sk,(A' x
A'),Y"). So the proof of the lemma is finished by noting that the inclusion
{sks (A' x A')} -+ {sksA' x skAN'} is a pro-isomorphism of simplicial sets. 

For RsX ' this proposition shows that Tot RaX ' is isomorphic to Tot (RX')
and {Tot,(RX')} - {TotsRaX ' j is a pro-isomorphism.

Now we consider the Eilenberg-Moore spectral sequence for the following diagram

y

(5) f

X >B

where f is a fibration. If HX, H,B, and H,Y are finite type then the codegrees
of the cobar construction B' are finite type. Thus we can apply Corollary 7.7 to
see that the Eilenberg-Moore spectral sequence here is pro-converging to the tower
{H. TotRB }.

Applying Proposition 8.1, we see that {TotRaB ' } is weakly pro-homotopy equiv-
alent to {Tot-TothR'B' }. Let the cosimplicial direction in B' be the vertical direc-
tion. Consider {TothR'B'} = {RSB'}. Since each codegree of B' is a product of
copies of X, Y, and B by Lemma 5.1 this tower of cosimplicial spaces is weakly pro-
homotopy equivalent on each codegree to {B}, where B. is the cobar construction
of the following diagram.

RsY

(6) R, f

RsX -- R8B



27

Thus applying Tots to these two towers gives a weak pro-homotopy equivalence,
{TotsTotR B' -+ {TotsB j. Hence {TotsRaB ' } is weak pro-homotopy equivalent
to {TotsB;J.

Any cobar construction has the property that Tot B' _ Tot 2B' - Tot 1B'
and Tot 1B' is the homotopy pull-back of the diagram being considered. Let Ms
be the homotopy pull-back of diagram (6). Then TotsB; is homotopy equivalent to
Ms for s > 0. Hence {TotsRaB ' j is weakly pro-homotopy equivalent to {Ms}. So
we can state the following corollary to Corollary 7.7.

Corollary 8.2. Let B' be the cobar construction for diagram (5). If H,X, H,B,
and H,Y are finite type, then the Eilenberg-Moore spectral sequence for diagram (5)
pro-converges to {H,M)}. More precisely, there is a sequence of weak pro-homotopy
equivalences between {H,Ms)} and {H,Ts(R 0 B')}.

This is a generalization to fibre squares of one of W. Dwyer's exotic convergence
results for fibrations [D2, 1.1].

Let Mo be the homotopy pull-back of the following diagram

R, Y

Rof

R,,X RB.
Then M = irnMM. Thus we can state the following strong convergence corollary
to Corollary 7.6.

Corollary 8.3. Consider diagram (5). Let H,X, H,B, and H,Y be finite type.
Assume either

a) H,Mo is finite type, or

b) imH,MS is finite type.

Then the Eilenberg-Moore spectral sequence for diagram (5) strongly converges to
H,M, if and only if M is p-good.

9. RELATIVE CONVERGENCE

In this section we consider yet another type of convergence question. Here we
ask whether a map of cosimplicial spaces which induces an E 2-isomorphism on the
hormology spectral sequence gives us any information about the relationship between
the total spaces of the cosimplicial spaces.

Let f: X' - Y' be a map of cosimplicial spaces which induces an Er-isomorphism
on the homology spectral sequences. When H,X n and H,yn are finite type for each
n, we know that each of these spectral sequences is pro-convergent to {H,TotRXX ' }
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by Corollary 7.7. This shows that the horizontal maps in the following diagram are
pro-isomorphisms.

{H,TotsRAX' } - {HTs(R®RX')} - {fHTs(R X')}

I I 1

{H,TotsRY '} - {HTs(R RAY)} <- {H.T(R Y)}

The right-hand map is a pro-isomorphism by Lemma 2.2 because f is an E -

isomorphism. Thus we conclude that the left-hand map is also a pro-isomorphism.

By generalizing [BK, III 6.2] to the case of non-connected spaces, we see that a ho-
mology isomorphism HW -+ H,Z induces a pro-homotopy equivalence {RsW} -+
{Rs Z}. Applying this to the above pro-homology isomorphism gives a pro-homotopy
equivalence {RsTotsRaX ' } - {RsTotsRay'}. Each TotsRaX ' is p-nilpotent [B2,
4.6]. TotsRAX' also has finitely many components by Lemma 7.2 and Lemma
2.6. Hence Lemma 5.2 shows that {TotsRaX ' } is pro-homotopy equivalent to
{RsTotsRAX'}. The same is true for Y'. So we conclude that {TotsRaX ' } -
{TotsRay ' } is a pro-homotopy equivalence. Because of the finite type assump-
tions, Lemma 7.2, and Lemma 2.6, each homotopy group of Tot,RaX ' is finite. So

iml1riTotsRX ' is zero for each i. The same is true for Y'. Thus we conclude
that Tot RAX' -+ Tot RaY ' is a homotopy equivalence [BK, IX 3.1]. We state this
relative convergence result in the following theorem.

Theorem 9.1. Let f: X' -- Y' be a map of cosimplicial spaces which induces an
Er-isomorphism on the homology spectral sequences. If H,X ' and HYn are finite
type for each n, then the following map is a homotopy equivalence.

Tot RaX ' -- Tot RaY'

Using Lemma 7.5, we can apply this theorem to RaX ' itself to deduce the fol-
lowing corollary.

Corollary 9.2. Let X' be a cosimplicial space. If H,Xn is finite type for each n,
then the following map is a homotopy equivalence.

Tot RAX ' - Tot RaRaX '

10. THE p-RESOLUTION OF A COSIMPLICIAL SPACE

Because of the exotic convergence results in section 7 and the relative convergence
results in 9, we would like to understand Tot RaX ' and its relationship to Tot X'.

Let the constant cosimplicial space associated to X be denoted c'X. Then
Tot Ra(c'X) is by definition the p-completion of X, RooX, which was studied in
[BK]. So R (Tot c'X) Tot Ra(c'X). In general the relationship between Tot X'
and Tot RaX ' is not this straightforward. The following theorems discuss two spe-
cial cases in which we can relate these two spaces. First we need the following
lemma.
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Lemma 10.1. Let ROX' be the cosimplicial space with (RX' )n = R..Xn. Then
RX' is a fibrant cosimplicial space.

Proof. To show that ROX' is fibrant we must show that R00 X n - Mn-(R.X ' )

is a fibration for each n. This map is the map of total spaces induced by R'X -+
M n -1 (R'X') because the total space functor commutes with inverse limit construc-
tions such as the matching space. The mth codegree of this map of cosimplicial
spaces is R m Xn - M n- 1 (RmX'). A fibration of cosimplicial spaces induces a fibra-
tion on the total spaces because the category of cosimplicial spaces is a simplicial
model category. Thus it is enough to show that R'Xn -+ Mn- 1 (R'X ' ) is a fibration
of cosimplicial spaces. To show this we will use the fact that an epimorphism of
group-like cosimplicial spaces is a fibration [BK, X 4.9].

Any choice of basepoint in Xn makes R'Xn a group-like cosimplicial space [BK,
X 4.10]. Each codegree of Mn-I(R'X ' ) is a simplicial group because it is the
inverse limit of a diagram of homomorphisms of simplicial groups. Similarly each
cosimplicial operator other than d is a homomorphism. Hence Mn-1 (R'X' ) is
group-like. To see that the map between these group-like cosimplicial spaces is an
epimorphism it is enough to see that each level is an epimorphism. As noted above
the levels of this map are R m Xn -+ Mn-(RmX'). For each m this map is an
epimorphism because R mX ' is a group-like cosimplicial space [BK, X 4.9]. [1

Theorem 10.2. Let X' be a cosimplicial space such that each Xn is p-complete.
Then the following maps are homotopy equivalences.

TotX' ' Tot RaX' Tot R'X '

Proof. Proposition 8.1 shows that Tot RX ' is isomorphic to Tot ROOX. So to
show that the first map is a homotopy equivalence we need to show that Tot X' -
Tot RX' is a homotopy equivalence. To do this we consider the map X' -+ ROX'.
This map is a weak equivalence of cosimplicial spaces because each Xn is p-complete.
The lemma above shows that ROX' is fibrant. Hence this map is a weak equivalence
of fibrant cosimplicial spaces. So it induces a homotopy equivalence on the total
spaces by Lemma 2.1.

The functor R preserves weak equivalences. So since X' - X is a weak equiv-
alence, RaX' -+ RaX ' is a weak equivalence. By Lemma 7.1 both of these cosim-
plicial spaces are fibrant. Hence Tot RAX' -+ Tot RaX ' is a homotopy equivalence
by Lemma 2.1. l

We now prove a strong convergence result which generalizes Theorem 6.1 by
requiring only that each codegree is p-complete.

Corollary 10.3. Let X' be a cosimplicial space with H,Xn finite type and Xn p-
complete for each n. Assume either

a) H,Tot RzaX' is finite type (equivalently H,Tot X' is finite type), or
b) imH*TotsRaX' is finite type (equivalently {H,Ts(R 0 X')) is pro-constant.)
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Then {H,TotX'} - {H,Ts(R ® X')} is a pro-isomorphism, i.e. the homology
spectral sequence for X' strongly converges, if and only if Tot X' is p-good.

Proof. First we should note that the equivalence of the two statements in condition
b) follows from the fact that RX' is pro-convergent here. Thus {H,TotsRIX ' } -+

{H,TS(R 0 RAX') } is a pro-isomorphism. Lemma 7.5 shows that these towers
are also pro-isomorphic to {H,TS(R O X')}. These towers are pro-finite type by
arguments similar to those before the statement of Theorem 6.1. Thus the inverse
limit of {HTotRaX ' } is finite type if and only if {HT,(R0X')} is pro-constant.
Using these pro-isomrophisms and Theorem 10.2 this corollary follows easily from
Corollary 7.4 above. [l

To identify Tot RLX' when each Xn is not p-complete we must ask that both X'
and RaX ' are strongly convergent.

Theorem 10.4. If X' and RaX ' are both strongly convergent and Tot RAX' is
p-good then the following map is a homotopy equivalence of p-complete spaces.

RTotX' - Tot RaX'

Proof. Since RaX ' is strongly convergent RAX ' is also strongly convergent. Thus
the horizontal maps in the following diagram are pro-isomorphisms.

(HTotX') - {(HT(R X'))

{H, Tot R X ) - {HT (R RX' )}

By Lemma 7.5 and Lemma 2.2 the right-hand map is a pro-isomorphism. Thus we
conclude that the left-hand map is a pro-isomorphism. Tot RaX ' is p-good and an
inverse limit of p-nilpotent spaces. Hence by [S, 5.3] it is p-complete. So the map
Tot X' - Tot RAX ' is a homology isomorphism to a p-complete space. Thus there
is a homotopy equivalence RooTotX' --+ Tot RAX ' [BK, VII 2.1]. 

Note that if one uses the strong convergence conditions in Theorem 6.1 and
Corollary 7.4 then Tot X' and Tot RAX' must be p-good. Also Theorem 6.1 requires
that each Xn is p-nilpotent. Hence [S, 5.3] implies that Tot X' and Tot RAX' are
p-complete. Thus Tot X' - R (Tot X) - Tot RAX' - Ro (Tot RaX').
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