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Chapter 1

Introduction

Two important themes in modern homotopy theory are the study of structured ring

spectra, in particular E∞ ring spectra, and chromatic homotopy theory, which had

its genesis in computations with the Adams-Novikov spectral sequence based on the

𝑝-primary Brown-Peterson spectrum BP [18]. In [16], May asked about the interaction

between these two programs:

Question 1.0.1. Does the Brown-Peterson spectrum admit the structure of an E∞

ring spectrum?

This question has been seminal in the development of the theory of structured

ring spectra. In an unpublished preprint [10], Kriz developed the theory of topological

André-Quillen cohomology in an attempt to prove that BP does admit the structure of

an E∞ ring spectrum. While his attempt to apply his theory to BP did not ultimately

succeed, the careful study of what exactly went wrong became the seed of a new

attempt by Lawson to answer May’s question in the negative; recently, this project

reached maturity in Lawson’s proof [12] that BP does not admit an E∞ multiplication

at the prime 𝑝 = 2.

In this paper, we prove in Theorem 1.1.1 that BP does not admit an E∞ multipli-

cation at odd primes. Our technique is akin to Lawson’s and relies on the computation

of a certain secondary power operation in the dual Steenrod algebra. The key input

to this computation is the calculation of a certain MU-power operation in MU*.
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For further motivation and background, we refer the reader to the introduction

of [12].

1.1 Statement of the results

We prove two main results: one limiting the coherence of multiplicative structures on

the Brown-Peterson spectrum and related spectra at odd primes, and another giving

a stronger limitation on the coherence of complex orientations of such spectra.

Since the first theorem reduces to [12, Theorem 1.1.2] at the prime 𝑝 = 2, we are

able to state it for all primes.

Theorem 1.1.1. Neither the Brown-Peterson spectrum BP, nor the truncated Brown-

Peterson spectra BP⟨𝑛⟩ for 𝑛 ≥ 4, nor any of their 𝑝-adic completions admit the

structure of an E2(𝑝2+2) ring spectrum.

We will prove Theorem 1.1.1 at the end of Section 4.

Theorem 1.1.2. Neither the Brown-Peterson spectrum BP, nor the truncated Brown-

Peterson spectra BP⟨𝑛⟩ for 𝑛 ≥ 3, nor any of their 𝑝-adic completions admit an

E2𝑝+3-map from the complex cobordism spectrum MU.

We will prove Theorem 1.1.2 at the end of Section 2. Again, the 𝑝 = 2 case of this

theorem is due to Lawson [12, Remark 4.4.7].

1.2 Outline of the paper

In Section 2, we carry out the computations of MU-power operations that we will

need. The main result Chapter 2 is Theorem 2.1.2. In Section 3, we generalize results

of [12] to convert the MU power operations of Theorem 2 into Dyer-Lashof operations

in 𝜋*(HF𝑝 ∧MU HF𝑝), thus obtaining Theorem 3.0.3. At the end of this section, we

apply these results to obtain Theorem 1.1.2.

In Section 4.1, we state some relations satisfied by the action of the Dyer-Lashof

operations on H*(MU;F𝑝) and H*(HF𝑝;F𝑝). In Section 4.2, we write down the
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relation defining the secondary operation of interest and show that it is defined on

−𝜉1 ∈ H*(HF𝑝;F𝑝). Finally, in Section 4.3, we compute this secondary operation on

−𝜉1 to be a nonzero multiple of 𝜏4 modulo the 𝜉𝑖 by applying juggling formulae and a

Peterson-Stein relation to reduce to Theorem 3.0.3. We then deduce Theorem 1.1.1.

1.3 Questions

Our work raises several interesting questions. While Theorems 1.1.1 and 1.1.2 provide

upper bounds on the coherence of multiplicative structures on BP that are functions

of 𝑝, the best known lower bounds [3] and [5], which state that BP is an E4-algebra

and admits an E2 orientation MU → BP, do not depend on the prime 𝑝. So one is led

to ask whether these coherence bounds are independent of 𝑝.

Question 1.3.1. Let cohBP(𝑝) denote the largest integer 𝑛 such that the 𝑝-primary

BP admits the structure of an E𝑛 ring spectrum. Is cohBP(𝑝) constant in 𝑝? If not,

how does it vary with 𝑝?

In another direction, we may ask about E∞ structures on the truncated Brown-

Peterson spectra BP⟨𝑛⟩. While Theorem 1.1.1 rules out the possibility of such

structures for 𝑛 ≥ 4, the only known positive results state that BP⟨1⟩ always admits

an E∞ structure (since it is the Adams summand) and that BP⟨2⟩ admits an E∞

structure at the primes 2 and 3 [7] [13]. What about the remaining cases?

Question 1.3.2. At which of the primes 𝑝 ≥ 5 does the height 2 truncated Brown-

Peterson spectrum BP⟨2⟩ admit an E∞ multiplication?

Question 1.3.3. At which primes does the height 3 truncated Brown-Peterson spec-

trum BP⟨3⟩ admit an E∞ multiplication?

Remark 1.3.4. The above questions are not quite well-defined: there are many

generalized truncated Brown-Peterson spectra BP⟨𝑛⟩ which are not a priori equivalent.

However, Angeltveit and Lind [1] have shown that all choices of BP⟨𝑛⟩ are equivalent

after 𝑝-completion, so that Question 1.3.2 and Question 1.3.3 are well-defined after

𝑝-completion.
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1.3.1 Conventions

We work throughout at a fixed odd prime 𝑝. We will let H denote the mod 𝑝

Eilenberg-MacLane specrum HF𝑝 and let H*(𝑋) denote mod 𝑝 homology.

We let 𝐹 denote the universal formal group law, defined over MU*.

We will work freely with the language of ∞-cateogories and the notion of E𝑛-ring

native to this setting, as developed by Lurie [15] [14]. To translate between Lawson’s

framework [12, Section 1.6] and ours, we pass to the underlying ∞-category of the

model categories considered by Lawson. The compatibility of this procedure with

multiplicative structures is justified by [19, Theorem 7.10].

1.4 Generators of the homology and homotopy of

MU

For the convenience of the reader, we review the relations between various sets of

elements of 𝜋*(MU), H*(MU;Z) and 𝜋*(MU) ⊗ Q that we will need to make use of.

The integral homology H*(MU;Z) is generated by elements 𝑏𝑖 which are the images

of the duals of 𝑐𝑖
1 under H*(CP∞;Z) → H*(𝐵𝑈 ;Z) ∼= H*(MU;Z). If we define the

Newton polynomials in 𝑏𝑖 inductively by 𝑁1(𝑏) = 𝑏1 and

𝑁𝑛(𝑏) = 𝑏1𝑁𝑛−1(𝑏) − 𝑡2𝑁𝑛−2(𝑏) + · · · + (−1)𝑛−2𝑏𝑛−1𝑁1(𝑏) + (−1)𝑛−1𝑛𝑏𝑛,

then 𝑁𝑛(𝑏) generates the group of primitive elements in H2𝑛(MU;Z). Furthermore,

𝑁𝑛(𝑏) ≡ (−1)𝑛−1𝑛𝑏𝑛 modulo decomposables. As we will see in Section 4.1, there are

convenient formulae for the action of the Dyer-Lashof operations on 𝑁𝑛(𝑏).

The homotopy 𝜋*(MU) of MU is generated by elements 𝑥𝑖 whose images under

the Hurewicz map are ℎ(𝑥𝑖) ≡ 𝑞𝑏𝑖 modulo decomposables when 𝑖 = 𝑞𝑛 − 1 for some

prime 𝑞 and ℎ(𝑥𝑖) ≡ 𝑏𝑖 modulo decomposables otherwise.

We may view the corbordism class of CP𝑛 as an element [CP𝑛] of 𝜋2𝑛(MU). Then,

the [CP𝑛] do not generate 𝜋*(MU), though they are generators of 𝜋*(MU) ⊗ Q.

12



Under the isomorphism 𝜋*(MU) ⊗ Q ∼= H*(MU;Q) induced by the Hurewicz map,

[CP𝑛] ≡ −(𝑛 + 1)𝑏𝑛 modulo decomposables.

The logarithm of of the formal group 𝐹 on 𝜋*(MU) may be expressed in terms of

the [CP𝑛]:

ℓ𝐹 (𝑥) =
∑︁ [︁

CP𝑛−1
]︁

𝑥𝑛

𝑛
.

1.5 When are the Dyer-Lashof operations defined?

To obtain the precise bounds on E𝑛 structures of Theorem 1.1.1 and Theorem 1.1.2,

we need to know when a Dyer-Lashof operation 𝑄𝑘 is defined on an element 𝑥 ∈ 𝜋𝑛𝑅

for 𝑅 an E𝑛-H-algebra.

Theorem 1.5.1 ([4, Theorems III.3.1 and III.3.3]). Let 𝑅 be an E𝑛-H-algebra. Then

the operation 𝑄𝑠 is defined on an element 𝑥 ∈ 𝜋𝑛𝑅 when 2𝑠−deg(𝑥) ≤ 𝑛−1; however,

these operations only satisfy the expected properties (e.g. linearity, Cartan formula)

when 2𝑠 − deg(𝑥) ≤ 𝑛 − 2.
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Chapter 2

Power operations in the homotopy

of MU

2.1 Statement of results

Our goal in this section is to compute certain power operations in the homotopy

of MU which will form the starting point of our proof that BP does not admit the

structure of a E2(𝑝2+2)-ring.

We begin by recalling that the H2
∞-structure on MU equips the even MU-cohomology

of a space 𝑋 with a power operation

𝑃𝐶𝑝 : MU2*(𝑋) → MU2𝑝*(𝑋 × 𝐵𝐶𝑝).

Using the isomorphism

MU*(𝐵𝐶𝑝) ∼= MU*[[𝛼]]/[𝑝]𝐹 (𝛼),

we may view this power operation applied to 𝑋 = * a point as a map

𝑃𝐶𝑝 : MU2* → MU2𝑝*[[𝛼]]/[𝑝]𝐹 (𝛼).
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Let

𝑟* : MU*[[𝛼]]/[𝑝]𝐹 (𝛼) → BP*[[𝛼]]/[𝑝]𝐹 (𝛼)

denote the map induced by the Quillen idempotent. Our goal in this section will be

to compute the composition of 𝑟* ∘ 𝑃 applied to certain elements of MU2*. We begin

with the following piece of notataion.

Notation 2.1.1. Let

𝜒 =
𝑝−1∏︁
𝑖=1

[𝑖]𝐹 (𝛼) ∈ MU*(𝐵𝐶𝑝) ∼= MU*[[𝛼]]/[𝑝]𝐹 (𝛼)

denote the MU-Euler class of the real reduced regular representation of 𝐶𝑝.

Theorem 2.1.2. The follow equalities hold modulo BP*-decomposables:

𝑟*
(︁
𝜒2(𝑝−1)𝑃𝐶𝑝

(︁[︁
CP2(𝑝−1)

]︁)︁)︁
≡ 𝑣3𝛼

𝑝3−1−2(𝑝−1) + 𝑂(𝛼𝑝3) (2.1)

and

𝑟*
(︁
𝜒𝑝(𝑝−1)𝑃𝐶𝑝

(︁[︁
CP𝑝(𝑝−1)

]︁)︁)︁
≡ 𝑣3𝛼

𝑝3−1−𝑝(𝑝−1) + 𝑂(𝛼𝑝3) (2.2)

Remark 2.1.3. We will use (2.1) in the proof of Theorem 1.1.1 and (2.2) in the

proof of Theorem 1.1.2. Equation (2.1) could also be used to prove a version of

Theorem 1.1.2, but with a worse bound on the coherence.

We may deduce the following corollary.

Corollary 2.1.4. Suppose 𝑓 : MU(𝑝) → 𝐸 is a map of H∞-ring spectra satisfying:

1. 𝑓 factors through the Quillen idempotent MU(𝑝) → BP.

2. 𝑓 induces a Landweber exact MU*-module structure on 𝐸*.

Then the induced formal group on 𝐸* has height at most 2, i.e. 𝑣2 is invertible in

𝐸*/(𝑝, 𝑣1).

16



This corollary is similar to [8, Theorem 1.3], which differs from it in the following

respect: [8, Theorem 1.3] shows the stronger result that 𝐸* is a Q-algebra, but only

for primes 𝑝 ≤ 13.

Proof of Corollary 2.1.4. By [8, Theorem 1.3], we may as well assume that 𝑝 > 2.

The map MU → 𝐸 automatically acquires an H2
∞-structure by [8, Theorem 3.13].

Since 𝜒2(𝑝−1)
[︁
CP2(𝑝−1)

]︁
maps to zero in BP* and thus 𝐸*, it follows that

𝑃𝐶𝑝

(︁
𝜒2(𝑝−1)

[︁
CP2(𝑝−1)

]︁)︁
= 𝑣3𝛼

𝑝3−1−2(𝑝−1) + 𝑂(𝛼𝑝3)

maps to zero in 𝐸*[[𝛼]]/[𝑝](𝛼). Thus

𝑣3𝛼
𝑝3−1−2(𝑝−1) + 𝑂(𝛼𝑝3) = 𝑔(𝛼) · [𝑝](𝛼)

for some 𝑔(𝛼) ∈ 𝐸*[[𝛼]]. Examining the coefficient of 𝛼𝑝3−1−2(𝑝−1), we see that 𝑣3 is

divisible by 𝑝 in 𝐸*, so that 𝑣3 = 0 ∈ 𝐸*/(𝑝, 𝑣1, 𝑣2). On the other hand, 𝑣3 is regular

in 𝐸*/(𝑝, 𝑣1, 𝑣2) by Landweber exactness, so that we must have 𝐸*/(𝑝, 𝑣1, 𝑣2) = 0, as

desired.

We begin the proof of Theorem 2.1.2 with a reduction. Since we are working

modulo BP*-decomposables, the coefficients of 𝛼𝑝3−1−2(𝑝−1) (resp. 𝛼𝑝3−1−𝑝(𝑝−1)) in

(2.1) (resp. (2.2)) can be taken to be some constant multiple of 𝑣3 for degree reasons.

Moreover, these are the first terms in (2.1) and (??) that can be nonzero modulo

BP*-decomposables. It therefore suffices to show that the (2.1) and (2.2) hold after

composing with the map 𝑞 : BP* → Z𝑝[𝑣3]/(𝑣2
3) that sends 𝑣3 to 𝑣3 and 𝑣𝑖 to 0 for

𝑖 ̸= 3. Here, we let 𝑣𝑖 denote the (𝑖)th Hazewinkel generator. In conclusion, to prove

Theorem 2.1.2 it suffices to prove the following proposition.

Proposition 2.1.5. There are equalities

𝑞 ∘ 𝑟*
(︁
𝜒2(𝑝−1)𝑃𝐶𝑝(CP2(𝑝−1))

)︁
= 𝑣3𝛼

𝑝3−1−2(𝑝−1)
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and

𝑞 ∘ 𝑟*
(︁
𝜒𝑝(𝑝−1)𝑃𝐶𝑝(CP𝑝(𝑝−1))

)︁
= 𝑣3𝛼

𝑝3−1−𝑝(𝑝−1).

In the appendix of [12], Lawson shows how this computation may be made internally

to Z𝑝[𝑣3]/(𝑣2
3) and the induced formal group law. Since this formal group law is much

simpler than the formal group law of BP, the computation that we need to make

simplifies dramatically and so becomes tractable.

2.2 Proof of Proposition 2.1.5

We begin by reviewing some basic facts about 𝑀𝑈 -power operations. This section is

based on [12, Appendix A].

Notation 2.2.1. We let

⟨𝑝⟩𝐹 (𝑥) = [𝑝]𝐹 (𝑥)
𝑥

.

Fact 2.2.2. The power operation 𝑃𝐶𝑝 : MU2*(𝑋) → MU2𝑝*(𝑋)[[𝛼]]/[𝑝]𝐹 (𝛼) satisfies

the following properties:

1. 𝑃𝐶𝑝(𝑢𝑣) = 𝑃𝐶𝑝(𝑢)𝑃𝐶𝑝(𝑣)

2. 𝑃𝐶𝑝(𝑢) = 𝑢𝑝 modulo 𝛼

3. 𝑃𝐶𝑝(𝑢 + 𝑣) = 𝑃𝐶𝑝(𝑢) + 𝑃𝐶𝑝(𝑣) modulo ⟨𝑝⟩𝐹 (𝛼)

4. On the orientation class 𝑥 ∈ ̃︂MU
2
(CP∞),

𝑃𝐶𝑝(𝑥) = 𝑥
𝑝−1∏︁
𝑖=1

(𝑥 +𝐹 [𝑖]𝐹 (𝛼)).

Notation 2.2.3. We let

𝑔(𝑥, 𝛼) = 𝑥
𝑝−1∏︁
𝑖=1

(𝑥 +𝐹 [𝑖]𝐹 (𝛼)),

viewed as an element of MU*[[𝑥, 𝛼]]/[𝑝]𝐹 (𝛼), so that 𝑃𝐶𝑝(𝑥) = 𝑔(𝑥, 𝛼). Note that
𝜕

𝜕𝑥
𝑔(0, 𝛼) = 𝜒.
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Applying Fact 2.2.2 to the spaces 𝑋 = (CP∞)×𝑛, we obtain the following proposi-

tion:

Proposition 2.2.4. The composite

Ψ : MU* → MU*[[𝛼]]/⟨𝑝⟩𝐹 (𝛼)

of 𝑃𝐶𝑝 with the quotient map MU*[[𝛼]]/[𝑝]𝐹 (𝛼) → MU*[[𝛼]]/⟨𝑝⟩𝐹 (𝛼) is a ring homo-

morphism. Morover, the power series 𝑔(𝑥, 𝛼) defines an isogeny 𝐹 → Ψ*𝐹 .

Let 𝜔 ∈ Z𝑝 denote a (𝑝 − 1)st root of unity. We will find it convenient to express

𝑔(𝑥, 𝛼) and 𝜒 in terms of [𝜔𝑖]𝐹 (𝛼) instead of [𝑖]𝐹 (𝛼), where 𝑖 = 1, . . . , 𝑝 − 1 on both

sides. This is because we will eventually replace 𝐹 with a 𝑝-typical formal group law

𝐺, and for any 𝑝-typical 𝐺 we have the simple formula [𝜔𝑖]𝐺(𝑥) = 𝜔𝑖𝑥.

To make sense of this, we must base change to the 𝑝-completion

MU*
𝑝 = MU* ⊗Z Z𝑝.1

When base changed to MU*
𝑝, the formal group law 𝐹 admits the structure of a Z𝑝-

module. In particular, if we let 𝜔 ∈ Z𝑝 denote a primitive (𝑝 − 1)st root of unity, there

are endomorphisms [𝜔𝑖]𝐹 (𝑥) of 𝐹 . Since 𝜔1, . . . , 𝜔𝑝−1 form a set of representatives for

1, . . . , 𝑝 − 1 modulo 𝑝, we obtain the following lemma:

Lemma 2.2.5. There are equalities

𝜒 ≡
𝑝−1∏︁
𝑖=1

[𝜔𝑖]𝐹 (𝛼) mod [𝑝]𝐹 (𝛼)

and

𝑔(𝑥, 𝛼) ≡ 𝑥
𝑝−1∏︁
𝑖=1

(𝑥 +𝐹 [𝜔𝑖]𝐹 (𝛼)) mod [𝑝]𝐹 (𝛼).

1Note that the 𝑝-completion may be described as the tensor product with Z𝑝 because MU𝑛 is
finite dimensional over Z for each 𝑛.
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Since MU* and MU*[[𝛼]]/⟨𝑝⟩𝐹 (𝛼) are torsion-free, 𝐹 and Ψ*𝐹 admit logarithms

ℓ𝐹 (𝑥) =
∑︁ [︁

CP𝑛−1
]︁

𝑥𝑛

𝑛

and

ℓΨ*𝐹 (𝑥) =
∑︁ Ψ

(︁[︁
CP𝑛−1

]︁)︁
𝑥𝑛

𝑛
.

This implies that we may compute Ψ([CP𝑛]) as the coefficient of 𝑥𝑛 in the derivative

ℓ′
Ψ*𝐹 (𝑥) of ℓΨ*𝐹 (𝑥) with respect to 𝑥. We will now describe a method for computing

these coefficients. We begin with a lemma.

Lemma 2.2.6. Let 𝑅* denote a nonzero graded torsion-free ring and let 𝑟 : MU*
𝑝 → 𝑅*

denote a map classifying a formal group law 𝐺 over 𝑅*. Then

𝑟(𝜒) =
𝑝−1∏︁
𝑖=1

[𝜔𝑖]𝐺(𝛼)

factors as 𝑢𝛼𝑝−1, where 𝑢 is a unit. Moreover, 𝛼 is not a zero divisor in 𝑅*[[𝛼]]/⟨𝑝⟩𝐺(𝛼),

so neither is 𝜒.

Proof. We have

𝑟(𝜒) =
𝑝−1∏︁
𝑖=1

[𝜔𝑖]𝐺(𝛼)

=
𝑝−1∏︁
𝑖=1

(𝜔𝑖𝛼 + 𝑂(𝛼2))

= 𝛼𝑝−1(−1 + 𝑂(𝛼)),

which implies that 𝑟(𝜒) = 𝑢 · 𝛼𝑝−1 for a unit 𝑢.

It remains to show that 𝛼 is not a zero-divisor in 𝑅*[[𝛼]]/⟨𝑝⟩𝐺(𝛼). Suppose that

𝛼 · 𝑓(𝛼) = 𝑔(𝛼) · ⟨𝑝⟩𝐺(𝛼). We wish to show that 𝛼 must divide 𝑔(𝛼), or in other works

that 𝑔(𝛼) has trivial constant term. But this follows from the fact that ⟨𝑝⟩𝐺(𝛼) has

constant term 𝑝, which is not a zero divisor in 𝑅*.

Definition 2.2.7. We fix an arbitrary lift Ψ([CP𝑛]) ∈ MU*[[𝛼]] of Ψ([CP𝑛]) ∈
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MU*[[𝛼]]/⟨𝑝⟩𝐹 (𝛼). This determines a lift of ℓΨ*𝐹 (𝑥) to MU*[[𝑥, 𝛼]].

We also fix a lift of 𝑔(𝑥, 𝛼) to MU*
𝑝[[𝑥, 𝛼]]. Then 𝜕

𝜕𝑥
𝑔(0, 𝛼) is a lift of 𝜒 to MU*

𝑝[[𝛼]].

Notation 2.2.8. Define 𝑘(𝑦, 𝛼) by 𝑔(𝜒𝑦, 𝛼) = 𝜒2𝑘(𝑦, 𝛼). Then 𝑘(𝑦, 𝛼) has leading

term 𝑦, so we may let 𝑘−1(𝑦, 𝛼) denote a composition inverse.

Moreover, let ℓ′
𝐹 (𝑥) = 𝜕

𝜕𝑥
ℓ𝐹 (𝑥), ℓ′

Ψ*𝐹 (𝑥) = 𝜕
𝜕𝑥

ℓΨ*𝐹 (𝑥), 𝑘′(𝑦, 𝛼) = 𝜕
𝜕𝑦

𝑘(𝑦, 𝛼) and

(𝑘−1)′(𝑦, 𝛼) = 𝜕
𝜕𝑦

𝑘−1(𝑦, 𝛼).

Proposition 2.2.9. Let 𝑓𝑛(𝛼) denote the coefficient of 𝑦𝑛 in

ℓ′
𝐹 (𝜒𝑘−1(𝑦, 𝛼)) · (𝑘−1)′(𝑦, 𝛼).

Then

Ψ([CP𝑛])𝜒2𝑛 ≡ 𝑓𝑛(𝛼) mod ⟨𝑝⟩𝐹 (𝛼).

Proof. Applying 𝜕
𝜕𝑦

to the equation

𝑔(𝑥, 𝛼) +Ψ*𝐹 𝑔(𝑦, 𝛼) ≡ 𝑔(𝑥 +𝐹 𝑦, 𝛼) mod ⟨𝑝⟩(𝛼)

and evaluating at 𝑦 = 0, we obtain the equation

𝑔′(0, 𝛼)
(ℓΨ*𝐹 )′(𝑔(𝑥, 𝛼)) ≡ 𝑔′(𝑥, 𝛼)

(ℓ𝐹 )′(𝑥) mod ⟨𝑝⟩𝐹 (𝛼).

This implies that

𝑔′(𝑥, 𝛼) · (ℓΨ*𝐹 )′(𝑔(𝑥, 𝛼)) = 𝜒 · (ℓ𝐹 )′(𝑥) + ℎ(𝑥, 𝛼) · ⟨𝑝⟩𝐹 (𝛼)

for some ℎ(𝑥, 𝛼) ∈ MU*
𝑝[[𝑥, 𝛼]]. In the above equation, we have used the fact that

𝜒 = 𝑔′(0, 𝛼). Plugging in 𝑥 = 0, we find that ℎ(0, 𝛼) = 0, so that ℎ(𝑥, 𝛼) = 𝑥̃︀ℎ(𝑥, 𝛼)

for some ̃︀ℎ(𝑥, 𝛼) ∈ MU*
𝑝[[𝑥, 𝛼]].

Next, we make the substitution 𝑥 = 𝜒𝑦 and write 𝑔(𝜒𝑦, 𝛼) = 𝜒2𝑘(𝑦, 𝛼) as in
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Notation 2.2.8. Plugging in our substitution, we obtain

𝜒 · 𝑘′(𝑦, 𝛼) · (ℓΨ*𝐹 )′(𝜒2𝑘(𝑦, 𝛼)) = 𝜒 · (ℓ𝐹 )′(𝜒𝑦) + ℎ(𝜒𝑦, 𝛼) · ⟨𝑝⟩𝐹 (𝛼)

= 𝜒 · (ℓ𝐹 )′(𝜒𝑦) + 𝜒𝑦 · ̃︀ℎ(𝜒𝑦, 𝛼) · ⟨𝑝⟩𝐹 (𝛼).

Substituting 𝑘−1(𝑦, 𝛼) for 𝑦, applying the chain rule and dividing by 𝜒 (which is valid

by Lemma 2.2.6), we obtain

(ℓΨ*𝐹 )′(𝜒2𝑦) = (ℓ𝐹 )′(𝜒𝑘−1(𝑦, 𝛼)) · (𝑘−1)′(𝑦, 𝛼) + 𝑘−1(𝑦, 𝛼) · ̃︀ℎ(𝑦, 𝛼) · ⟨𝑝⟩𝐹 (𝛼).

Taking coefficients of 𝑦𝑛 on both sides, we find that

Ψ(CP𝑛)𝜒2𝑛 = 𝑓𝑛(𝛼) + ̃︀ℎ𝑛(𝛼) · ⟨𝑝⟩𝐹 (𝛼)

for some ̃︀ℎ𝑛(𝛼) ∈ MU*
𝑝[[𝛼]], as desired.

Finally, to compute 𝑃𝐶𝑝([CP𝑛]), we have the following proposition.

Proposition 2.2.10. There exists a unique polynomial ℎ𝑛(𝛼) ∈ MU*[𝛼] of degree

2𝑛(𝑝 − 1) with the property that

𝑓𝑛(𝛼) − ℎ𝑛(𝛼) · ⟨𝑝⟩𝐹 (𝛼) ≡ 𝜒2𝑛 [CP𝑛]𝑝 mod 𝛼2𝑛(𝑝−1)+1.

Furthermore,

𝑃𝐶𝑝([CP𝑛]) ≡ 𝜒−2𝑛(𝑓𝑛(𝛼) − ℎ𝑛(𝛼) · ⟨𝑝⟩𝐹 (𝛼)) mod [𝑝]𝐹 (𝛼).

Proof. By Proposition 2.2.9,

𝑓𝑛(𝛼) ≡ 𝜒2𝑛Ψ([CP𝑛]) ≡ 𝜒2𝑛𝑃𝐶𝑝([CP𝑛]) mod ⟨𝑝⟩𝐹 (𝛼).
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By Fact 2.2.2(2), this implies that

𝑓𝑛(𝛼) ≡ [CP𝑛]𝑝 mod (⟨𝑝⟩𝐹 (𝛼), 𝜒2𝑛𝛼).

Combining the above with Lemma 2.2.6, we find that ℎ𝑛(𝛼) exists. Uniqueness follows

from the fact that the constant term 𝑝 of ⟨𝑝⟩𝐹 (𝛼) is not a zero divisor in MU*
𝑝.

In particular, we find that 𝑓𝑛(𝛼) − ℎ𝑛(𝛼) · ⟨𝑝⟩𝐹 (𝛼) is divisble by 𝜒2𝑛 and that

𝜒−2𝑛(𝑓𝑛(𝛼) − ℎ𝑛(𝛼) · ⟨𝑝⟩𝐹 (𝛼)) ≡ [CP𝑛]𝑝 ≡ 𝑃𝐶𝑝([CP𝑛]) mod 𝛼

and

𝜒−2𝑛(𝑓𝑛(𝛼) − ℎ𝑛(𝛼) · ⟨𝑝⟩𝐹 (𝛼)) ≡ Ψ([CP𝑛]) ≡ 𝑃𝐶𝑝([CP𝑛]) mod ⟨𝑝⟩𝐹 (𝛼).

Again using the fact that 𝑝 is not a zero divisor in MU*
𝑝, this implies that

𝜒−2𝑛(𝑓𝑛(𝛼) − ℎ𝑛(𝛼) · ⟨𝑝⟩𝐹 (𝛼)) ≡ 𝑃𝐶𝑝([CP𝑛]) mod ⟨𝑝⟩𝐹 (𝛼),

as desired.

Suppose now that we are given a graded torsion-free ring 𝑅* and a homomorphism

𝑟 : MU*
𝑝 → 𝑅* classifying a formal group law 𝐺 over 𝑅*. Then we may define 𝜒𝐺,

𝑔𝐺(𝑥, 𝛼), 𝑘𝐺(𝑥, 𝛼), 𝑘−1
𝐺 (𝑥, 𝛼) and 𝑓𝐺

𝑛 (𝛼) as above, using the formal group law 𝐺 on

𝑅* in place of the formal group law 𝐹 over MU*.

Proposition 2.2.11. Let 𝑅* denote a graded torsion-free ring, and let 𝑟 : MU*
𝑝 → 𝑅*

classify a formal group law 𝐺 over 𝑅*. Then there exists a unique polynomial ℎ𝐺
𝑛 (𝛼) ∈

𝑅*[𝛼] of degree 2𝑛(𝑝 − 1) with the property that

𝑓𝐺
𝑛 (𝛼) − ℎ𝐺

𝑛 (𝛼) · ⟨𝑝⟩𝐺(𝛼) ≡ 𝜒2𝑛 [CP𝑛]𝑝 mod 𝛼2𝑛(𝑝−1)+1.
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Moreover,

𝑟(𝑃𝐶𝑝([CP𝑛])) ≡ 𝜒−2𝑛(𝑓𝐺
𝑛 (𝛼) − ℎ𝐺

𝑛 (𝛼) · ⟨𝑝⟩𝐺(𝛼)) mod [𝑝]𝐺(𝛼).

Proof. The first part follows exactly as in the proof of Proposition 2.2.10.

For the second part, we note that 𝑓𝐺
𝑛 (𝛼) = 𝑟(𝑓𝑛(𝛼)) by the definitions, and that

ℎ𝐺
𝑛 (𝛼) = 𝑟(ℎ𝑛(𝛼)) by uniqueness. The second part then follows from Proposition 2.2.10.

Proposition 2.2.12. Consider the map 𝑞 ∘ 𝑟* : MU*
𝑝 → Z𝑝[𝑣3]/(𝑣2

3) and its induced

formal group law 𝐺 = (𝑞 ∘ 𝑟*)*𝐹 . Then the following hold:

1. ℓ𝐺(𝑥) = 𝑥 + 𝑣3

𝑝
𝑥𝑝3

.

2. 𝑥 +𝐺 𝑦 = 𝑥 + 𝑦 + 𝑣3

𝑝
(𝑥𝑝3 + 𝑦𝑝3 − (𝑥 + 𝑦)𝑝3).

3. [𝑝]𝐺(𝛼) = 𝑝𝛼 − (𝑝𝑝3−1 − 1)𝑣3𝛼
𝑝3

, so that ⟨𝑝⟩𝐺(𝛼) = 𝑝 − (𝑝𝑝3−1 − 1)𝑣3𝛼
𝑝3−1.

4. 𝜒𝐺 =
𝑝−1∏︁
𝑖=1

𝜔𝑖𝛼 = −𝛼𝑝−1.

5. 𝑔𝐺(𝑥, 𝛼) ≡ 𝜒𝑥 + 𝑥𝑝 + 𝑂(𝑥𝑝2) mod [𝑝]𝐺(𝛼).

6. 𝑘𝐺(𝑦, 𝛼) ≡ 𝑦 + 𝜒𝑝−2𝑦𝑝 + 𝑂(𝑦𝑝2) mod [𝑝]𝐺(𝛼).

7. 𝑘−1
𝐺 (𝑦, 𝛼) = 𝑦 +

𝑝∑︁
𝑛=1

(−1)𝑛

(︁
𝑛𝑝
𝑛

)︁
𝑛(𝑝 − 1) + 1𝜒𝑛(𝑝−2)𝑦𝑛(𝑝−1)+1 + 𝑂(𝑦𝑝2).

8. 𝑓𝐺
𝑖(𝑝−1)(𝛼) = (−1)𝑖

(︃
𝑖𝑝

𝑖

)︃
𝜒𝑖(𝑝−2) for 1 ≤ 𝑖 ≤ 𝑝.

9. ℎ𝐺
𝑖(𝑝−1)(𝛼) = (−1)𝑖

(︁
𝑖𝑝
𝑖

)︁
𝑝

𝜒𝑖(𝑝−2) for 1 ≤ 𝑖 ≤ 𝑝.

Proof. Part (1) follows from the formula for the logarithm of the universal 𝑝-typical

formal group law [20, Appendix A2]. Recall that we are using the Hazewinkel 𝑣𝑖s.

Parts (2) and (3) follow in a straightforward way from part (1). To establish part (4),
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we note that, since the formal group law 𝐺 is 𝑝-typical, [𝜔𝑖]𝐺(𝑥) = 𝜔𝑖𝑥. Therefore

𝜒𝐺 =
𝑝−1∏︁
𝑖=1

𝜔𝑖𝛼 = −𝛼𝑝−1,

since 𝑝 is odd. Moreover, we have

𝑔𝐺(𝑥, 𝛼) = 𝑥
𝑝−1∏︁
𝑖=1

(𝑥 +𝐺 (𝜔𝑖𝛼)).

We then compute

𝑔𝐺(𝑥, 𝛼) = 𝑥
𝑝−1∏︁
𝑖=1

(𝑥 +𝐺 (𝜔𝑖𝛼))

= 𝑥
𝑝−1∏︁
𝑖=1

(𝑥 + 𝜔𝑖𝛼)
⎡⎣1 + 𝑣3

𝑝

𝑝−1∑︁
𝑗=1

𝑥𝑝3 + (𝜔𝑗𝛼)𝑝3 − (𝑥 + 𝜔𝑗𝛼)𝑝3

𝑥 + 𝜔𝑗𝛼

⎤⎦
≡ 𝑥

𝑝−1∏︁
𝑖=1

(𝑥 + 𝜔𝑖𝛼) + 𝑂(𝑥𝑝2) mod [𝑝]𝐺(𝛼)

= 𝑥(𝑥𝑝−1 − 𝛼𝑝−1) + 𝑂(𝑥𝑝2)

= 𝜒𝑥 + 𝑥𝑝 + 𝑂(𝑥𝑝2),

where we have used the fact that 𝑝𝑣3𝛼 = 0 modulo [𝑝]𝐺(𝛼). This establishes part (5).

Part (6) follows immediately from the defining equation 𝜒2𝑘𝐺(𝑦, 𝛼) = 𝑔𝐺(𝜒𝑦, 𝛼).

To deduce part (7), we apply Lagrange inversion to part (6). Since

(ℓ𝐺)′(𝑥) = 1 + 𝑂(𝑥𝑝3−1),

we deduce that

(ℓ𝐺)′(𝜒𝑘−1(𝑦, 𝛼)(𝑘−1)′(𝑦, 𝛼) = (𝑘−1)′(𝑦, 𝛼) + 𝑂(𝑦𝑝3−1),

so we may read off (8) from (7).

Finally, (9) follows from (8) and the fact that [CP𝑛]𝑝 = 0 in Z[𝑣3]/𝑣2
3.
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Corollary 2.2.13. There is an equality

𝑞 ∘ 𝑟*
(︁
𝜒𝑖(𝑝−1)𝑃 (CP𝑖(𝑝−1))

)︁
≡ −

(︁
𝑖𝑝
𝑖

)︁
𝑝

𝑣3𝛼
𝑝3−1−𝑖(𝑝−1) mod [𝑝]𝐺(𝛼).

Proof. Using Proposition 2.2.11 and Proposition 2.2.12, we compute:

𝑞 ∘ 𝑟*
(︁
𝜒𝑖(𝑝−1)𝑃 (CP𝑖(𝑝−1))

)︁
≡ 𝜒

−𝑖(𝑝−1)
𝐺 · (𝑓𝐺

𝑖(𝑝−1)(𝛼) − ℎ𝐺
𝑖(𝑝−1)(𝛼) · ⟨𝑝⟩𝐺(𝛼))

≡ 𝜒
−𝑖(𝑝−1)
𝐺 · (−ℎ𝐺

𝑖(𝑝−1)(𝛼)) · (−(𝑝𝑝3−1 − 1)𝑣3𝛼
𝑝3−1)

≡ −ℎ𝐺
𝑖(𝑝−1)(𝛼)𝑣3𝛼

𝑝3−1−𝑖(𝑝−1)2

≡ (−1)𝑖+1

(︁
𝑖𝑝
𝑖

)︁
𝑝

𝑣3𝛼
𝑝3−1−𝑖(𝑝−1) mod [𝑝]𝐺(𝛼),

where we have used the fact that 𝑝𝑣3𝛼 = 0 modulo [𝑝]𝐺(𝛼).

Proof of Proposition 2.1.5. Applying the congruences (2𝑝
2 )
𝑝

≡ −1 and (𝑝2
𝑝 )
𝑝

≡ 1 mod 𝑝

to Corollary 2.2.13, we deduce that

𝑞 ∘ 𝑟*
(︁
𝜒2(𝑝−1)𝑃 (CP2(𝑝−1))

)︁
≡ 𝑣3𝛼

𝑝3−1−2(𝑝−1) mod [𝑝]𝐺(𝛼)

and

𝑞 ∘ 𝑟*
(︁
𝜒𝑝(𝑝−1)𝑃 (CP𝑝(𝑝−1))

)︁
≡ 𝑣3𝛼

𝑝3−1−𝑝(𝑝−1) mod [𝑝]𝐺(𝛼),

as desired.

Remark 2.2.14. Zeshen Gu has independently worked on computations similar to

the above.
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Chapter 3

A Dyer-Lashof operation in the

MU-dual Steenrod algebra

In this section, we apply Theorem 2.1.2 to compute certain Dyer-Lashof operations in

the MU-dual Steenrod algebra 𝜋*(H ∧MU H). We begin by determining the structure

of 𝜋*(H ∧MU H) as an algebra.

Proposition 3.0.1. The algebra 𝜋*(H ∧MU H) is isomorphic to an exterior algebra

ΛF𝑝(𝜏𝑖) ⊗ ΛF𝑝(𝜎𝑚𝑖 | 𝑖 ̸= 𝑝𝑘 − 1) on classes 𝜏𝑖 for 𝑖 ≥ 0 and 𝜎𝑚𝑖 for 𝑖 ≥ 1. The degrees

of these classes are |𝜏𝑖| = 2𝑝𝑖 − 1 and |𝜎𝑚𝑖| = 2𝑖 + 1.

The natural map H ∧ H → H ∧MU H, upon taking homotopy, induces a map

ΛF𝑝(𝜏𝑖) ⊗ F𝑝[𝜉𝑖] → ΛF𝑝(𝜏𝑖) ⊗ ΛF𝑝(𝜎𝑚𝑖 | 𝑖 ̸= 𝑝𝑘 − 1)

sending 𝜏𝑖 to 𝜏𝑖 and 𝜉𝑖 to decomposable elements.

Proof. By comparison of the Künneth spectral sequence

TorH*MU
*,* (H*, H*H) ⇒ 𝜋* ((H ∧ H) ∧H∧MU (H ∧ H)) = 𝜋*(H ∧MU H)

with the other Künneth spectral sequence

Tor𝜋*MU
*,* (H*, H*) ⇒ 𝜋*(H ∧MU H),
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we find that the first Künneth spectral sequence collapses at the 𝐸2-page. Since

TorH*MU
*,* (H*, H*H) is isomorphic to ΛF𝑝(𝜏𝑖) ⊗ ΛF𝑝(𝜎𝑚𝑖 | 𝑖 ̸= 𝑝𝑘 − 1), the description of

𝜋*(H ∧MU H) follows. The assertion about the map H ∧ H → H ∧MU H follows from

the naturality of the Künneth spectral sequence.

Remark 3.0.2. Note that the second Künneth spectral sequence above gives an

alternative description of 𝜋*(H ∧MU H) as ΛF𝑝(𝜏0, 𝜎𝑥𝑖). Furthermore, Lawson [12]

shows that for 𝑥 ∈ 𝜋𝑛𝑅 for 𝑛 ≥ 1, there is a distinguished choice of 𝜎𝑥 ∈ 𝜋*(H ∧𝑅 H):

there is a map ̃︀H*(𝑆𝐿1(𝑅)) → 𝜋*+1(H ∧𝑅 H) which sends the Hurewicz image of

𝑥 ∈ 𝜋𝑛𝑅 ∼= 𝜋𝑛𝑆𝐿1(𝑅) to a distinguished choice of 𝜎𝑥.

Furthermore, this map 𝜎 : 𝜋𝑛𝑅 → 𝜋𝑛+1(H ∧𝑅 H) annihilates decomposables.

Whenever we write 𝜎𝑥 for 𝑥 ∈ 𝜋𝑛𝑅, we will be referring to this distinguished choice of

𝜎𝑥.

We are now able to state the main theorem of this section.

Theorem 3.0.3. In 𝜋*(H ∧MU H), we have

𝑄𝑝2+𝑝−1
(︁
𝜎
[︁
CP2(𝑝−1)

]︁)︁
= −𝜎𝑥𝑝3−1

and

𝑄𝑝2+1
(︁
𝜎
[︁
CP𝑝(𝑝−1)

]︁)︁
= 𝜎𝑥𝑝3−1.

This follows immediately from Theorem 2.1.2 and the following theorem:

Theorem 3.0.4. Let 𝑦 ∈ 𝜋2𝑛MU and suppose that

𝜒𝑛𝑃 (𝑦) =
∞∑︁

𝑖=0
𝑐𝑖𝛼

𝑖

for some elements 𝑐𝑖 ∈ 𝜋2(𝑛+𝑖)MU. Then the action of the Dyer-Lashof operations on

𝜋*(H ∧MU H) are determined by the equation

𝑄𝑘(𝜎𝑦) = (−1)𝑘𝜎𝑐𝑘(𝑝−1).
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Our proof of this theorem will follow [12, Sections 3 and 4] rather closely. The

idea will be to relate the power operation 𝑃𝐶𝑝 to the action of the multiplicative

Dyer-Lashof operations on the homology of the Ω-spectrum of MU, and to relate this

in turn to the Dyer-Lashof operations on 𝜋*(H ∧MU H).

First, we need to introduce some notation from [12, Section 4].

Notation 3.0.5. We let

MU𝑛 = Ω∞Σ𝑛MU

denote the spaces in the Ω-spectrum for MU.

Since MU is a ring spectrum, the homology of the spaces MU𝑛 is equipped with

two products, making H*(MU∙) into a Hopf ring. We denote the additive one, coming

from the infinite loop space structure on MU𝑛, by

−#− : H*(MU𝑛) ⊗ H*(MU𝑛) → H*(MU𝑛),

and the multiplactive one, coming from the multiplication on MU, by

− ∘ − : H*(MU𝑛) ⊗ H*(MU𝑚) → H*(MU𝑛+𝑚).

Since MU is an E∞-ring spectrum, MU0 is equipped with the structure of an

E∞-ring space. Its homology is therefore equipped with two actions of he Dyer-Lashof

operations, an additive action coming the infinite loop space structcure on MU0, and

a multiplictive one coming from the E∞-multiplication ono MU.

We denote the additive operations by

𝑄𝑘 : H𝑛(MU0) → H𝑛+2(𝑝−1)𝑘(MU0)

and the multiplicative operations by

̂︀𝑄𝑘 : H𝑛(MU0) → H𝑛+2(𝑝−1)𝑘(MU0).

Definition 3.0.6. The H2
∞-algebra structure on MU implies the existence of based
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maps

MU2𝑛 ∧ (𝐵Σ𝑝)+ → MU2𝑝𝑛

representing the power operation

𝑃 : MU2𝑛(𝑋) → MU2𝑝𝑛(𝑋 × 𝐵Σ𝑝).

We let

𝒬 : H*(MU2𝑛) → H*(MU2𝑝𝑛) ̂︀⊗H*(𝐵Σ𝑝)

denote the adjoint to the map

𝐻*(MU2𝑛) ⊗ H*(𝐵Σ𝑝) → H*(MU2𝑝𝑛)

induced by the above map of spaces.

Multiplicativity of 𝑃 implies the following:

Proposition 3.0.7 ([12, Proposition 4.2.2]). The operation 𝒬 preserves the ∘-product:

𝒬(𝑥) ∘ 𝒬(𝑦) = 𝒬(𝑥 ∘ 𝑦).

Notation 3.0.8. Let 𝑏𝑖 ∈ H2𝑖(MU2) denote the image under the orientation map

CP∞ → MU2 of the class in H2𝑖(CP∞) dual to 𝑐𝑖
1. We let 𝑏(𝑠) = ∑︀∞

𝑖=1 𝑏𝑖𝑠
𝑖, viewed as

a formal power series in 𝑠.

Remark 3.0.9. Since 𝑏1 is the fundamental class of the unit map 𝑆2 → MU2,

− ∘ 𝑏1 : H*(MU2𝑛) → H*(MU2𝑛+2) corresponds to suspension.

Notation 3.0.10. Given a homotopy element 𝑥 ∈ 𝜋2𝑛(MU), we let [𝑥] ∈ H0(MU2𝑛)

denote the image of the corresponding class in 𝜋0(MU2𝑛) under the Hurewicz map.

It follows from Remark 3.0.9 that [𝑥] ∘ 𝑏∘𝑛
1 ∈ H2𝑛(MU0) is the image of 𝑥, viewed

as an element of 𝜋2𝑛(MU0), under the Hurewicz map.

Definition 3.0.11. Given a based space 𝑋, there is a natural map

Λ : MU2𝑛(𝑋) = [𝑋, MU𝑛] → Hom(H*(𝑋), H*(MU2𝑛)) = H*(MU2𝑛) ̂︀⊗H*(𝑋)
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which sends a homotopy class of map to its induced map on homology.

The groups H*(MU2𝑛) ̂︀⊗H*(𝑋) are equipped with products # and ∘, each induced

by the corresponding product in H*(MU2𝑛) and the cup product in H*(𝑋).

Proposition 3.0.12 ([12, Propositions 3.2.3 and 4.2.3]). The map Λ satisfies the

following properties:

• Λ(𝑥 + 𝑦) = Λ(𝑥)#Λ(𝑦)

• Λ(𝑥𝑦) = Λ(𝑥) ∘ Λ(𝑦)

• Λ([𝑐]) = [𝑐] ⊗ 1

• (𝒬 ⊗ 1)(Λ(𝑥)) = Λ(𝑃 (𝑥)).

Notation 3.0.13. Recall that

H*(𝐵𝐶𝑝) ∼= F𝑝[𝑤] ⊗ ΛF𝑝(𝑣),

where |𝑣| = 1, |𝑤| = 2, and 𝑤 is the image of the generator 𝑐1 of 𝐻2(CP∞) under the

map on cohomology induced by the canonical map

𝐵𝐶𝑝 → CP∞.

Furthermore,

H*(𝐵Σ𝑝) ∼= F𝑝[𝑢] ⊗ ΛF𝑝(𝑧),

where, when pulled back to 𝐵𝐶𝑝, 𝑢 = 𝑤𝑝−1 and 𝑧 = 𝑣𝑤𝑝−2.

Remark 3.0.14 ([12, Remark 4.2.4]). Recall that MU*(𝐵𝐶𝑝) ∼= MU*[[𝛼]]/[𝑝]𝐹 (𝛼) for

some element 𝛼 ∈ MU2(𝐵𝐶𝑝). This element satifies the equation

Λ(𝛼) = 𝑏(𝑤).
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Lemma 3.0.15. For a space 𝑋 with 𝑝th extended power 𝐷𝑝(𝑋), the composite diagonal

map

H*(𝑋) ⊗ H*(𝐵Σ𝑝) → H*(𝑋 × 𝐵Σ𝑝) → H*(𝐷𝑝(𝑋))

on mod 𝑝 homology is given by

𝑥 ⊗ 𝛽𝑛 ↦→ (−1)𝑛
∑︁
𝑗≥0

𝑄𝑗+𝑛(𝑃𝑗𝑥)

and

𝑥 ⊗ 𝛾𝑛 ↦→ (−1)𝑛+|𝑥|

⎛⎝∑︁
𝑗≥0

𝛽𝑄𝑗+𝑛(𝑃𝑗𝑥) −
∑︁
𝑗≥0

𝑄𝑗+𝑛(𝑃𝑗𝛽𝑥)
⎞⎠

where 𝛽𝑛 is dual to 𝑢𝑛 in H*(𝐵Σ𝑝) ∼= F𝑝[𝑢] ⊗ ΛF𝑝 [𝑧], 𝛾𝑛 is dual to 𝑢𝑛−1𝑧, and 𝑃𝑗 is

the homology operation dual to 𝑃 𝑗.

Proof. This follows from the definition of the Dyer-Lashof operations (cf. [17, Definition

2.2]) and [17, Proposition 9.1]. Note that an extra sign is introduced in the latter

equation due to the fact that we have written the 𝐵Σ𝑝-action on the right and not

the left. See also [11, Proposition 6].

The following corollary then follows from the definitions:

Corollary 3.0.16. Suppose that 𝑥 ∈ H*(MU0). Then:

𝒬(𝑥) =
∑︁
𝑛,𝑗

(−1)𝑛 ̂︀𝑄𝑗+𝑛(𝑃𝑗𝑥)𝑢𝑛 + (−1)𝑛+|𝑥|
(︁
𝛽 ̂︀𝑄𝑗+𝑛(𝑃𝑗𝑥) − ̂︀𝑄𝑗+𝑛(𝒫𝑖𝛽𝑥)

)︁
𝑢𝑛−1𝑤.

In particular, if 𝑥 is in the image of the Hurewicz map, then

𝒬(𝑥) =
∞∑︁

𝑛=0
(−1)𝑛 ̂︀𝑄𝑛(𝑥)𝑢𝑛 + (−1)𝑛+|𝑥|𝛽 ̂︀𝑄𝑛(𝑥)𝑢𝑛−1𝑤.

Proposition 3.0.17. We have

𝒬(𝑏1) = 𝑏1 ∘ Λ(𝜒).

Proof. This is just the second to last equation in the proof of [12, Proposition 4.3.1].
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Proposition 3.0.18. Let 𝑦 ∈ 𝜋2𝑛MU and suppose that

𝜒𝑛𝑃 (𝑦) =
∞∑︁

𝑖=0
𝑐𝑖𝛼

𝑖

for some elements 𝑐𝑖 ∈ 𝜋2(𝑛+𝑖)MU.

Then, modulo #-decomposables and the ∘-ideal generated by 𝑏2, 𝑏3, . . . , we have

̂︀𝑄𝑘([𝑦] ∘ 𝑏∘𝑛
1 ) ≡ (−1)𝑘[𝑐(𝑝−1)𝑘] ∘ 𝑏

∘(𝑝−1)𝑘
1 .

Proof. We have:

𝒬([𝑦] ∘ 𝑏∘𝑛
1 ) = 𝒬([𝑦]) ∘ 𝒬(𝑏1)∘𝑛

= Λ(𝑃 (𝑦)) ∘ Λ(𝜒)∘𝑛

= Λ(𝑃 (𝑦)𝜒𝑛)

= Λ(
∞∑︁

𝑖=0
𝑐𝑖𝛼

𝑖)

=
∞
#
𝑖=0

[𝑐𝑖] ∘ 𝑏(𝑤)∘𝑖

≡
∞∑︁

𝑖=0
[𝑐𝑖] ∘ (𝑏1)𝑖 ∘ 𝑤𝑖,

where we view 𝒬([𝑦] ∘ 𝑏∘𝑛
1 ) as living inside of H*(MU0) ̂︀⊗H*(𝐵𝐶𝑝) via the natural

inclusion H*(𝐵Σ𝑝) →˓ H*(𝐵𝐶𝑝).

The result now follows from Corollary 3.0.16 and the fact that the operations 𝑃𝑗

and 𝑃𝑗𝛽 vanish on the spherical class [𝑦] ∘ 𝑏∘𝑛
1 .

Proposition 3.0.19. Let 𝑝 be an odd prime. Then the multiplicative Dyer-Lashof

operations in the Hopf ring of an E∞-ring satisfy the following identity whenever 𝑦 is

in the homology of the path component of zero:

̂︁𝑄𝑠([1]#𝑦) ≡ [1]#̂︁𝑄𝑠(𝑦)

modulo # and ∘ decomposables.
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We first prove a lemma.

Lemma 3.0.20. In the situation of Proposition 3.0.19, for any 𝑥 there exist elements

𝑧𝑖 for 0 < 𝑖 < |𝑥| such that the additive Dyer-Lashof operations satisfy

𝑄𝑠(𝑥) = 𝑄𝑠[1] ∘ 𝑥 +
∑︁

𝑄𝑠𝑖 [1] ∘ 𝑧𝑖.

Therefore 𝑄𝑠(𝑥) is ∘-decomposable for any 𝑥 and any 𝑠 > 0.

Proof. This follows from the formula

𝑄𝑠[1] ∘ 𝑥 =
∑︁

𝑄𝑠+𝑖([1] ∘ 𝑃𝑖𝑥)

of [6, II.1.6] by inducting on the degree of 𝑥.

Proof of Proposition 3.0.19. We apply the mixed Cartan formula, which states that

̂︁𝑄𝑠(𝑥#𝑦) =
∑︁

𝑠0+···+𝑠𝑝=𝑠

∑︁̂︂𝑄𝑠0
0 (𝑥0 ⊗ 𝑦0)# . . . #̂︂𝑄𝑠𝑝

𝑝 (𝑥𝑝 ⊗ 𝑦𝑝)

where

Δ𝑝+1(𝑥 ⊗ 𝑦) =
∑︁

(𝑥0 ⊗ 𝑦0) ⊗ · · · ⊗ (𝑥𝑝 ⊗ 𝑦𝑝)

and where ̂︁𝑄𝑠
0(𝑥 ⊗ 𝑦) = ̂︁𝑄𝑠(𝜀(𝑥)𝑦),

̂︁𝑄𝑠
𝑝(𝑥 ⊗ 𝑦) = ̂︁𝑄𝑠(𝑥𝜀(𝑦)),

and for 0 < 𝑖 < 𝑝 we put 𝑚𝑖 = 1
𝑝

(︁
𝑝
𝑖

)︁
so that

̂︁𝑄𝑠
𝑖 (𝑥 ⊗ 𝑦) = [𝑚𝑖] ∘

(︁∑︁
𝑄𝑗(𝑥1 ∘ · · · ∘ 𝑥𝑖 ∘ 𝑦1 ∘ · · · ∘ 𝑦𝑝−𝑖)

)︁

where Δ𝑖𝑥 = ∑︀
𝑥1 ⊗ . . . 𝑥𝑖 and Δ𝑝−𝑖𝑦 = ∑︀

𝑦1 ⊗ · · · ⊗ 𝑦𝑝−𝑖.

Applying this to the case that 𝑥 = [1] and 𝑦 is in the homology of the path

component of zero, we first note that this is #-decomposable and hence zero unless
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all of but one of the terms lies in degree 0, i.e. unless all of the 𝑦𝑖 = [0] and 𝑠𝑖 = 0 for

all but one 𝑖.

Using Lemma 3.0.20, we further deduce that all of the terms with 𝑠𝑖 ̸= 0 for some

0 < 𝑖 < 𝑝 are zero. Finally, we note that ̂︁𝑄𝑠
𝑝([1] ⊗ 𝑦) = ̂︁𝑄𝑠([1]) = 0 for 𝑠 > 0, so that

in fact the only term left is

̂︁𝑄𝑠
0([1] ⊗ 𝑦)#̂︁𝑄0

1([1] ⊗ [0])# . . . #̂︁𝑄0
𝑝([1] ⊗ [0]) = ̂︁𝑄𝑠𝑦#[1].

All that remains is to show that the multplicity of this term is one, i.e. that

([1] ⊗ 𝑦) ⊗ ([1] ⊗ [0]) ⊗ · · · ⊗ ([1] ⊗ [0])

appears with coefficient one in Δ𝑝+1([1] ⊗ 𝑦)

That this term appears with coefficient 𝑝 + 1 ≡ 1 in Δ𝑝+1([1] ⊗ 𝑥) follows from

the fact that Δ𝑝+1([1]) = [1] ⊗ · · · ⊗ [1] and that 𝑥 ⊗ [0] ⊗ · · · ⊗ [0] appears in Δ𝑝+1(𝑥)

with coefficient one.

We are now ready to prove Theorem 3.0.4.

Proof of Theorem 3.0.4. In [12, Section 3.3], a suspension map 𝜎 : ̃︀H*(𝑆𝐿1(MU)) →

𝜋*+1(H ∧MU H) is constructed. By the mod 𝑝 analogs of [12, Corollary 3.3.6 & Proposi-

tion 3.3.7] (which are proved in exactly the same way as for 𝑝 = 2), this map commutes

with the Dyer-Lashof operations and kills #-decomposables, ∘-decomposables, and

𝑏𝑖 for 𝑖 > 1. Applying 𝜎 to Proposition 3.0.18 and Proposition 3.0.19, we obtain the

desired result.

Our next goal is to deduce Theorem 1.1.2 from Theorem 3.0.3 by noting that

the Dyer-Lashof operations exhibited therein are incompatible with the existence of

a highly structured map H ∧MU H → H ∧BP H. We begin by showing that a highly

structured map MU → BP would induce a (slightly less) highly structured map

H ∧MU H → H ∧BP H.
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Proposition 3.0.21. Let 𝑅 be an E∞-ring and let 𝐴 → 𝐵 denote a map of E𝑛-

rings augmented over 𝑅. Then there exists a natural map 𝑅 ∧𝐴 𝑅 → 𝑅 ∧𝐵 𝑅 of

E𝑛−1-(𝑅 ∧ 𝑅)-algebras.

Proof. Let 𝒞 denote the ∞-category AlgE𝑛−1
𝑅 of E𝑛−1-𝑅-algebras, equipped with the

symmetric monoidal structure induced by that of Mod𝑅. Then the bar construction

defines a functor Bar : Alg(𝒞)/𝑅 → 𝒞 by [14, Example 5.2.2.3]. By [14, Theorem

5.1.2.2], Alg(𝒞) is equivalent to AlgE𝑛
𝑅 , so that Bar defines a functor from augmented

E𝑛-𝑅-algebras to E𝑛−1-𝑅-algebras.

Since the forgetful functor 𝒞 → Mod𝑅 preserves sifted colimits by [14, Proposition

3.2.3.1], Bar is computed in 𝑅-modules and so Bar(−) ∼= 𝑅 ∧− 𝑅 as functors into

𝑅-modules.

This implies the existence of a natural map 𝑅 ∧𝐴∧𝑅 𝑅 → 𝑅 ∧𝐵∧𝑅 𝑅 of E𝑛−1-𝑅-

modules. Applying the functor −∧𝑅 (𝑅 ∧𝑅) yields the desired map 𝑅 ∧𝐴 𝑅 → 𝑅 ∧𝐵 𝑅

of E𝑛−1-(𝑅 ∧ 𝑅)-algebras.

We are now ready to prove Theorem 1.1.2. In this proof, we allow 𝑝 to be 2: in

this case, Theorem 3.0.3 may be replaced by [12, Corollary 4.4.3]. At 𝑝 = 2, Lawson

indicated in [12, Remark 4.4.4] that the following argument should work in the case of

BP.

Proof of Theorem 1.1.2. For the sake of simplicity of notation, we prove Theorem

1.1.2 for BP. The proof for BP⟨𝑛⟩ with 𝑛 ≥ 3 is analogous. Taking the 𝑝-completion

changes nothing because we are only using the mod 𝑝 homology.

First note that the Künneth spectral sequences

TorH*BP
*,* (H*, H*H) ⇒ 𝜋*(H ∧BP H)

and

Tor𝜋*BP
*,* (H*, H*) ⇒ 𝜋*(H ∧BP H)

collapse at the 𝐸2-term. So there are isomorphisms 𝜋*(H ∧BP H) ∼= ΛF𝑝(𝜏𝑖) and

𝜋*(H ∧BP H) ∼= ΛF𝑝(𝜎𝑣𝑖).
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Suppose that there were a map of E2𝑝+3-rings MU → BP. By the naturality

of Postnikov towers of E2𝑝+3-rings, this is a map of E2𝑝+3-algebras augmented over

H. Then Proposition 3.0.21 implies that this induces a map H ∧MU H → H ∧BP H

of E2𝑝+2-(H ∧ H)-algebras. Forgetting the action of the left H, we obtain a map of

E2𝑝+2-H-algebras.

We claim that the induced map ΛF𝑝(𝜏0, 𝜎𝑥𝑖) ∼= H ∧MU H → H ∧BP H ∼= ΛF𝑝(𝜎𝑣𝑘)

sends 𝜎𝑥𝑝𝑘−1 to a nonzero multiple of 𝜎𝑣𝑘. Assuming this, we obtain a contradiction

with the operation 𝑄𝑝2+1𝜎𝑥𝑝(𝑝−1) = 𝐶2𝜎𝑥𝑝3−1 of Theorem 3.0.3 because 𝜎𝑥𝑝(𝑝−1) goes

to zero in ΛF𝑝(𝜎𝑣𝑘) for degree reasons. This operation is preserved by maps of

E2𝑝+2-H-algebras by Theorem 1.5.1.

To prove the claim, we use the fact that TorH*BP
*,* (H*, H*H) is concentrated in

homological degree zero and is therefore just H* ⊗H*BP H*H. The induced map

H* ⊗H*MU H*H → H* ⊗H*BP H*H

is automatically surjective; therefore the induced map of Künneth spectral sequences is

surjective on the 𝐸2 and therefore on the 𝐸∞ term because it collapses at the 𝐸2-term.

We conclude that the map on indecomposables is surjective, which is equivalent to

the claim.
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Chapter 4

A secondary power operation in

the dual Steenrod algebra

In this section, we define and compute a secondary power operation in the dual

Steenrod algebra and then show that Theorem 1.1.1 follows from this computation.

We make free use of the formalism of Toda brackets in categories enriched over pointed

topological spaces developed in [12, Section 2], including the juggling, additivity and

Peterson-Stein formulae of [12, Propositions 2.3.5 and 2.4.3].

Notation 4.0.1. Given a set 𝑆 of formal variables with gradings, we let P𝑛
H(𝑆) denote

the free E𝑛-H-algebra on the wedge of spheres
⋁︁

𝑥∈𝑆

𝑆|𝑥| and let 𝑥 ∈ 𝜋|𝑥| (P𝑛
H(𝑆)) denote

the homotopy element corresponding to the fundamental class 𝜄|𝑥| ∈ 𝜋|𝑥|
(︁
𝑆|𝑥|

)︁
.

Let 𝑥 be a formal variable with degree 2(𝑝 − 1) and let P2(𝑝2+2)
H (𝑥) denote the free

E2(𝑝2+2)-H-algebra on 𝑥. Then we will let 𝒟 denote the category
(︂

Alg
E2(𝑝2+2)
H

)︂
P2(𝑝2+2)

H (𝑥)/

of E2(𝑝2+2)-H-algebras under P2(𝑝2+2)
H (𝑥).

This is a topological category, so the category 𝒞 = 𝒟± of possibly pointed or

augmented objects [12, Definition 2.2.2] in this category is enriched over pointed

topological spaces. The category 𝒞 consists of augmented objects of 𝒟, pointed objects

of 𝒟, and objects of 𝒟 without a pointing or augmentation. Through casework, one

is able to define pointed spaces of maps between these objects, making use of the
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pointings and augmentations in the expected way when present. We refer the reader

to [12, Definition 2.2.2] for the somewhat lengthy details.

Whenever we take brackets in the below, it will be in the category 𝒞. Given a

set of graded elements 𝑆, we always view P2(𝑝2+2)
H (𝑥, 𝑆) as an element of 𝒞 via the

augmentation P2(𝑝2+2)
H (𝑥, 𝑆) → P2(𝑝2+2)

H (𝑥) sending 𝑥 to 𝑥 and all of the elements of 𝑆

to 0.

Notation 4.0.2. In the following, we will make our computations in the exterior

quotient ΛF𝑝(𝜏0, 𝜏1, . . . ) of the dual Steenrod algebra H*H; we call this quotient ℰ*.

4.1 Dyer-Lashof operations in H*(MU) and H*H

We will need to be able to compute Dyer-Lashof operations in H*(MU) and H*H. We

will find the description of this action in terms of Newton polynomials convenient for

our purposes, so we review how this works. Our choice to describe the action in this

way was heavily influenced by [2, Section 5].

We define the mod 𝑝 Newton polynomials 𝑁𝑛(𝑡) = 𝑁𝑛(𝑡1, . . . , 𝑡𝑛) ∈ F𝑝[𝑡1, . . . , 𝑡𝑛]

by setting 𝑁1(𝑡) = 𝑡1 and inductively letting

𝑁𝑛(𝑡) = 𝑡1𝑁𝑛−1(𝑡) − 𝑡2𝑁𝑛−2(𝑡) + · · · + (−1)𝑛−2𝑡𝑛−1𝑁1(𝑡) + (−1)𝑛−1𝑛𝑡𝑛.

Then the following useful relation holds:

𝑁𝑝𝑛(𝑡) = (𝑁𝑛(𝑡))𝑝 mod 𝑝.

We let 𝑁𝑛(𝑏) ∈ H*MU be defined by setting 𝑡𝑛 = 𝑏𝑛, and let 𝑁𝑛(𝜉) ∈ H*MU be

defined by setting 𝑡𝑝𝑘−1 = 𝜉𝑘 and the other 𝑡𝑛 to zero. Writing out the recurrence

for 𝑁𝑝𝑘−1(𝜉) shows that 𝑁𝑝𝑘−1(𝜉) = −𝜉𝑘 where 𝑥 ↦→ 𝑥 is the conjugation in the Hopf

algebra H*H.

Kochman [9] showed that the action of the Dyer-Lashof operations on 𝑁𝑛(𝑏) is
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described by the formula:

𝑄𝑟𝑁𝑛(𝑏) = (−1)𝑟+𝑛

(︃
𝑟 − 1
𝑛 − 1

)︃
𝑁𝑛+𝑟(𝑝−1)(𝑏).

Since the orientation MU → H maps 𝑏𝑝𝑘−1 to 𝜉𝑘 and the other 𝑏𝑛 to zero, it maps

𝑁𝑛(𝑏) to 𝑁𝑛(𝜉) and so we also have:

𝑄𝑟𝑁𝑛(𝜉) = (−1)𝑟+𝑛

(︃
𝑟 − 1
𝑛 − 1

)︃
𝑁𝑛+𝑟(𝑝−1)(𝜉).

Using 𝑁𝑝𝑘−1(𝜉) = −𝜉𝑘, we get:

𝑄𝑟𝜉𝑘 = (−1)𝑟+1
(︃

𝑟 − 1
𝑝𝑘 − 2

)︃
𝑁𝑝𝑘−1+𝑟(𝑝−1)(𝜉).

Using the above formulae, we may deduce the following two propositions by direct

calculation.

Proposition 4.1.1. In the dual Steenrod algebra H*H, the following identities hold:

𝑄𝑝2
𝜉1 = (𝜉𝑝−1

1 )𝑝𝑄𝑝𝜉1

𝑄𝑝2+𝑖𝜉1 = 0 for 𝑖 = 1, . . . , 𝑝 − 2

𝑄𝑝2+𝑝−1𝜉1 = −(𝑄𝑝(𝜉1))𝑝

𝑄𝑝2−𝑝+1(𝜉𝑝−1
1 ) = −(𝜉1)𝑝2

𝑄𝑝2+𝑝𝑖𝑄𝑝𝜉1 = 0 for 𝑖 = 1, . . . , 𝑝 − 1

𝑄2𝑝𝜉1 = −𝜉
𝑝

1𝑄𝑝(𝜉1)
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Proposition 4.1.2. The following identities hold in H*(MU):

𝑄𝑝2
𝑁𝑝−1(𝑏) = 1

2𝑄𝑝2−1𝑁2(𝑝−1)(𝑏)

𝑄𝑝2+𝑖𝑁𝑝−1(𝑏) = 0 for 𝑖 = 1, . . . , 𝑝 − 2

𝑄𝑝2+𝑝−1𝑁𝑝−1(𝑏) = −(𝑄𝑝(𝑁(𝑝−1)(𝑏)))𝑝

𝑄𝑝2−𝑝+1(𝑁𝑝−1(𝑏)𝑝−1) = −(𝑁𝑝−1(𝑏))(𝑝−2)𝑝(𝑁2(𝑝−1)(𝑏))𝑝

𝑄𝑝2+𝑝𝑖𝑄𝑝𝑁𝑝−1(𝑏) = 0 for 𝑖 = 1, . . . , 𝑝 − 1

𝑄2𝑝𝑁𝑝−1(𝑏) = −1
2𝑄2𝑝−1(𝑁2(𝑝−1)(𝑏))

4.2 A relation among power operations

We will define the secondary operation of interest to us in terms of the following

relation between primary power operations.

Proposition 4.2.1. Let 𝑅 be an E2(𝑝2+2)-H-algebra and 𝑥 ∈ 𝜋2(𝑝−1)(𝑅). Define classes

𝑎𝑖, 𝑖 = 0, . . . , 𝑝 − 1; 𝑏; 𝑐𝑖, 𝑖 = 1, . . . , 𝑝 in 𝜋*(𝑅) by the following formulae:

𝑎0 = 𝑄𝑝2
𝑥 − (𝑥𝑝−1)𝑝𝑄𝑝𝑥

𝑎𝑖 = 𝑄𝑝2+𝑖𝑥 for 𝑖 = 1, . . . , 𝑝 − 2

𝑎𝑝−1 = 𝑄𝑝2+𝑝−1𝑥 + (𝑄𝑝𝑥)𝑝

𝑏 = 𝑄𝑝2−𝑝+1(𝑥𝑝−1) + 𝑥𝑝2

𝑐𝑖 = 𝑄𝑝2+𝑝𝑖𝑄𝑝𝑥 for 𝑖 = 1, . . . , 𝑝 − 1

𝑐𝑝 = 𝑄2𝑝𝑥 + (𝑄𝑝𝑥)𝑥𝑝

Then the following identity holds:

0 =𝑄𝑝3+𝑝𝑎0 +
𝑝−2∑︁
𝑖=1

(−1)𝑖𝑄𝑝3+𝑝−𝑖𝑎𝑖 + 𝑄𝑝3+1𝑎𝑝−1+

𝑏𝑝𝑄𝑝2
𝑄𝑝𝑥 +

𝑝−1∑︁
𝑖=1

(𝑄𝑝2−𝑝−𝑖+1(𝑥𝑝−1))𝑝𝑐𝑖 + (𝑥𝑝−1)𝑝2
𝑄2𝑝2−𝑝𝑐𝑝
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Proof. This is defined for E2(𝑝2+2)-H-algebras by Theorem 1.5.1 because the operation

which takes the greatest 𝑛 to be defined on E𝑛-H-algebras is the 𝑄𝑝3+𝑝 in in 𝑄𝑝3+𝑝𝑎0.

Since |𝑎0| = 2(𝑝 − 1)(𝑝2 + 1), we conclude that this is defined and satisfies the usual

properties whenever

𝑛 ≥ 2(𝑝3 + 𝑝) − 2(𝑝 − 1)(𝑝2 + 1) + 2 = 2(𝑝2 + 2).

The desired identity reduces to the following identities, which may be deduced

from the Adem relations, the instability relations, and the Cartan formula:

𝑄𝑝3+𝑝𝑄𝑝2
𝑥 =

𝑝−1∑︁
𝑖=1

(−1)𝑖+1𝑄𝑝3+𝑝−𝑖𝑄𝑝2+𝑖𝑥

𝑄𝑝3+1((𝑄𝑝𝑥)𝑝) = 0

𝑄𝑝3+𝑝((𝑥𝑝−1)𝑝𝑄𝑝𝑥) =
𝑝∑︁

𝑖=0
(𝑄𝑝2−𝑝−𝑖+1(𝑥𝑝−1))𝑝𝑄𝑝2+𝑝𝑖𝑄𝑝𝑥

𝑄2𝑝2
𝑄𝑝𝑥 = 𝑄2𝑝2−𝑝𝑄2𝑝𝑥

𝑄2𝑝2−𝑝(𝑥𝑝𝑄𝑝𝑥) = 𝑥𝑝2
𝑄𝑝2

𝑄𝑝𝑥.

Let the symbols 𝑎𝑖, 𝑖 = 0, . . . , 𝑝 − 1; 𝑏; 𝑐𝑗, 𝑗 = 1, . . . , 𝑝 have the gradings of the

the elements in Proposition 4.2.1, and let 𝑑 have the grading of the relation there

described. Then the relation above determines maps

𝑄 : P2(𝑝2+2)
H (𝑥, 𝑎0, . . . , 𝑎𝑝−1, 𝑏, 𝑐0, . . . , 𝑐𝑝−1) → P2(𝑝2+2)

H (𝑥)

and

𝑅 : P2(𝑝2+2)
H (𝑥, 𝑑) → P2(𝑝2+2)

H (𝑥, 𝑎0, . . . , 𝑎𝑝−1, 𝑏, 𝑐0, . . . , 𝑐𝑝−1)

such that the composition 𝑄 ∘ 𝑅 is nullhomotopic.

Proposition 4.2.2. The bracket ⟨𝜉1, 𝑄, 𝑅⟩ is defined in H*H and has zero indetermi-

nacy in the quotient ℰ* = ΛF𝑝(𝜏0, 𝜏1, . . . ) of H*H.
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Proof. To show that the bracket is defined, we need to show that 𝑄(𝜉1) = 0. This is

equivalent to Proposition 4.1.1.

The indeterminacy comes from degree 2𝑝3 + 2𝑝2 + 2𝑝 + 1 homotopy operations

applied to 𝜉1 and from the image of the suspended operation 𝜎𝑅. All homotopy

operations are generated by multiplication, addition, the operations 𝑄𝑛 and 𝛽𝑄𝑛 and

the Browder bracket. Since H is E∞, the Browder bracket always vanishes. The rest

of these operations preserve the subalgebra of H*H generated by the 𝜉𝑖 and therefore

the first sort of indeterminacy is trivial in ℰ*.

Up to indecomposables, 𝜎𝑅 is equal to 𝑄𝑝3+𝑝𝜎𝑎0+∑︀𝑝−2
𝑖=1 (−1)𝑖𝑄𝑝3+𝑝−𝑖𝜎𝑎𝑖+𝑄𝑝3+1𝜎𝑎𝑝−1,

where the 𝜎𝑎𝑖 are variables in degree one higher than 𝑎𝑖. So |𝜎𝑎𝑖| = (𝑝2+𝑖+1)(𝑝−1)+1,

𝑖 = 0, . . . , 𝑝 − 1. Since ℰ* is decomposable in these degrees, we conclude as above that

the second sort of indeterminacy must be decomposable in ℰ*. Since there are no

nonzero deomposables in ℰ* in degree 2𝑝4 − 1, we conclude that the indeterminacy

must actually be trivial in ℰ*.

4.3 Computation of the secondary operation

To compute this operation, we will first juggle it into a functional operation for the

map H ∧ MU → H ∧ H. To this end, we define maps:

𝜇 : P2(𝑝2+2)
H (𝑥, 𝑎0, . . . , 𝑎𝑝−1, 𝑏, 𝑐0, . . . , 𝑐𝑝−1) → P2(𝑝2+2)

H (𝑥, 𝑦2(𝑝−1))

𝑄 : P2(𝑝2+2)
H (𝑥, 𝑧𝑝3−1) → P2(𝑝2+2)

H (𝑥, 𝑦2(𝑝−1))

𝜈 : P2(𝑝2+2)
H (𝑥, 𝑑) → P2(𝑝2+2)

H (𝑥, 𝑧𝑝3−1)

𝛼 : P2(𝑝2+2)
H (𝑥, 𝑑) → P2(𝑝2+2)

H (𝑥, 𝑤1, . . . , 𝑤𝑝−2, 𝑐1, . . . 𝑐𝑝−1, 𝑧𝑝2(𝑝−1), 𝑧(2𝑝+1)(𝑝−1))

𝛽 : P2(𝑝2+2)
H (𝑥, 𝑤1, . . . , 𝑤𝑝−2, 𝑐1, . . . , 𝑐𝑝−1, 𝑧𝑝2(𝑝−1), 𝑧(2𝑝+1)(𝑝−1)) → P2(𝑝2+2)

H (𝑥, 𝑦2(𝑝−1))

with the 𝑦𝑖 and the 𝑧𝑖 in grading 2𝑖 and the 𝑤𝑖 in grading 2(𝑝 − 1)(𝑝2 + 𝑖 + 2), by:
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𝜇(𝑎0) = 𝑄𝑝2−1𝑦2(𝑝−1) − (𝑥𝑝−1)𝑝𝑄𝑝𝑥

𝜇(𝑎𝑖) = 0 for 𝑖 ̸= 0

𝜇(𝑏) = −2𝑥(𝑝−2)𝑝𝑦𝑝
2(𝑝−1) + 𝑥𝑝2

𝜇(𝑐𝑖) = 0 for 𝑖 ̸= 𝑝

𝜇(𝑐𝑝) = −𝑄2𝑝−1𝑦2(𝑝−1) + (𝑄𝑝𝑥)𝑥𝑝

𝑄(𝑧𝑝3−1) = 𝑄𝑝2+𝑝−1𝑦2(𝑝−1)

𝜈(𝑑) = −𝑄𝑝3
𝑧𝑝3−1

𝛼(𝑑) =
𝑝−2∑︁
𝑖=1

𝜎𝑖𝑄
𝑝3+𝑝−(𝑖+1)𝑤𝑖 − 𝑧𝑝

𝑝2(𝑝−1)𝑄
𝑝2

𝑄𝑝𝑥

−
𝑝−1∑︁
𝑖=1

(𝑄𝑝2−𝑝−𝑖+1(𝑥𝑝−1))𝑝𝑐𝑖 − (𝑥𝑝−1)𝑝2
𝑄2𝑝2−𝑝𝑧(2𝑝+1)(𝑝−1)

𝛽(𝑤𝑖) = 𝑄𝑝2+𝑖𝑦2(𝑝−1)

𝛽(𝑐𝑖) = 𝑄𝑝2+𝑝𝑖𝑄𝑝𝑥

𝛽(𝑧𝑝2(𝑝−1)) = 1
2𝑥𝑝(𝑝−2)𝑦𝑝

2(𝑝−1) + 𝑄𝑝2−𝑝+1(𝑥𝑝−1)

𝛽(𝑧(2𝑝+1)(𝑝−1)) = 𝑄2𝑝−1𝑦2(𝑝−1) + 𝑄2𝑝𝑥

Here we choose the 𝜎𝑖 such that

𝑄𝑝3+𝑝𝑄𝑝2−1𝑦2(𝑝−1) =
𝑝−2∑︁
𝑖=1

𝜎𝑖𝑄
𝑝3+𝑝−(𝑖+1)𝑄𝑝2+𝑖𝑦2(𝑝−1) − 𝑄𝑝3

𝑄𝑝2+𝑝−1𝑦2(𝑝−1).

The existence of such a relation follows from the Adem and instability relations.

Proposition 4.3.1. There is an identity 𝜇𝑅 = 𝑄𝜈 +𝛽𝛼 and a homotopy commutative

diagram
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P2(𝑝2+2)
H (𝑥, 𝑎0, . . . , 𝑎𝑝−1, 𝑏, 𝑐0, . . . , 𝑐𝑝−1) P2(𝑝2+2)

H (𝑥)

P2(𝑝2+2)
H (𝑥, 𝑦2(𝑝−1)) H ∧ MU H ∧ H

𝑄

𝜇 −𝑁𝑝−1(𝑏)
𝜉1

𝑓 𝑝

where 𝑓 is the map defined by sending 𝑥 to −𝑁𝑝−1(𝑏) and 𝑦2(𝑝−1) to −𝑁2(𝑝−1)(𝑏)
2 .

Proof. The proof of the identity 𝜇𝑅 = 𝑄𝜈 + 𝛽𝛼 follows directly from the relations

𝑄𝑝3+𝑝𝑄𝑝2−1𝑦2(𝑝−1) =
𝑝−2∑︁
𝑖=1

𝜎𝑖𝑄
𝑝3+𝑝−(𝑖+1)𝑄𝑝2+𝑖𝑦2(𝑝−1) − 𝑄𝑝3

𝑄𝑝2+𝑝−1𝑦2(𝑝−1)

and

𝑄𝑝3+𝑝((𝑥𝑝−1)𝑝𝑄𝑝𝑥) =
𝑝∑︁

𝑖=0
(𝑄𝑝2−𝑝−𝑖+1(𝑥𝑝−1))𝑝𝑄𝑝2+𝑝𝑖𝑄𝑝𝑥.

The right triangle of the diagram commutes because 𝜉1 = −𝑁𝑝−1(𝜉) and hence

𝑝(−𝑁𝑝−1(𝑏)) = 𝜉1. The left square commutes by Proposition 4.1.2.

Proposition 4.3.2. There is an equality ⟨𝜉1, 𝑄, 𝑅⟩ ≡ −𝑄𝑝3(⟨𝑝, 𝑓, 𝑄⟩) in ℰ*.

Proof. Exactly as in [12], the juggling relations for brackets imply the following

sequence of identities because each term is defined

⟨𝜉1, 𝑄, 𝑅⟩ = ⟨𝑝𝑁𝑝−1(𝑏), 𝑄, 𝑅⟩

⊂ ⟨𝑝, 𝑁𝑝−1(𝑏)𝑄, 𝑅⟩

= ⟨𝑝, 𝑓𝜇, 𝑅⟩

⊃ ⟨𝑝, 𝑓, 𝜇𝑅⟩

= ⟨𝑝, 𝑓, 𝑄𝜈 + 𝛽𝛼⟩

⊂ ⟨𝑝, 𝑓, 𝑄𝜈⟩ + ⟨𝑝, 𝑓, 𝛽𝛼⟩

⊃ ⟨𝑝, 𝑓, 𝑄⟩𝜈 + ⟨𝑝, 𝑓, 𝛽⟩𝛼.
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To show that we have equality up to decomposables in ℰ*, it suffices to show that

the indeterminacy of “local maxima” ⟨𝑝, 𝑁𝑝−1(𝑏)𝑄, 𝑅⟩ and ⟨𝑝, 𝑓, 𝑄𝜈⟩ + ⟨𝑝, 𝑓, 𝛽𝛼⟩ are

decomposable in ℰ*. The total indeterminacy of these two brackets is made up of

elements of three kinds. The first are in the image of H*MU → H*H, which maps to

zero in ℰ*. The second are in the image of 𝜎𝑅, which we already dealt with in the

proof of Proposition 4.2.2. Finally, there are elements in the images of 𝜎(𝑄𝜈) and

𝜎(𝛽𝛼). These are either decomposable or multiples of Dyer-Lashof operations applied

to a class in degree 2(𝑝 − 1) + 1; there are no nonzero indecomposables in ℰ* in this

degree.

Finally, we note that 𝛼 applied to any set of classes in H*H is decomposable in

ℰ* because ℰ* has no nonzero indecomposables in the degrees of 𝑤𝑖, 𝑖 = 1, . . . , 𝑝 − 1.

Therefore the second term is zero modulo decomposables.

Since there are no nonzero decomposables in degree 2𝑝4 − 1 of ℰ*, we conclude

that this holds on the nose in ℰ*.

Finally, we compute the bracket ⟨𝑝, 𝑓, 𝑄⟩ by means of Theorem 3.0.3.

Proposition 4.3.3. There is an equality ⟨𝑝, 𝑓, 𝑄⟩ ≡ 𝐶𝜏3 in ℰ* for some nonzero

𝐶 ∈ F𝑝.

Proof. By noting that each pair of maps in the diagram

P2(𝑝2+2)
H (𝑥, 𝑧𝑝3−1)

𝑄−→ P2(𝑝2+2)
H (𝑥, 𝑦2(𝑝−1))

𝑓−→ H ∧ MU 𝑝−→ H ∧ H 𝑖−→ H ∧MU H

compose to a nullhomotopic map in 𝒞, we find that we are allowed to apply the

Peterson-Stein formula to obtain the equality

𝑖⟨𝑝, 𝑓, 𝑄⟩ = −⟨𝑖, 𝑝, 𝑓⟩𝑄.

By [12, Proposition 2.7.5], 𝜎(−𝑁2(𝑝−1)(𝑏)
2 ) ∈ ⟨𝑖, 𝑝, 𝑓⟩. Since

−
𝑁2(𝑝−1)(𝑏)

2 ≡ 𝑏2(𝑝−1) ≡ −CP2(𝑝−1)

2𝑝 − 1 = CP2(𝑝−1)
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modulo decomposables, where we view CP𝑛 as an element of homology via the Hurewicz

map, we have 𝜎(−𝑁2(𝑝−1)(𝑏)
2 ) = 𝜎CP2(𝑝−1). By Theorem 3.0.3, 𝑄 applied to this is

−𝑄𝑝2+𝑝−1𝜎CP2(𝑝−1) = −𝜎𝑣3. Since 𝑖 is an isomorphism modulo decomposables in this

degree, we conclude that 𝐶𝜏3 ≡ ⟨𝑝, 𝑓, 𝑄⟩ modulo decomposables for some nonzero

𝐶 ∈ F𝑝, as desired.

As before, we upgrade this from a result modulo decomposables in ℰ* to a precise

result in ℰ* by noting that there are no nonzero decomposables in degree 2𝑝3 − 1 of

ℰ*.

Corollary 4.3.4. There exists a nonzero 𝐶 ∈ F𝑝 and an equality ⟨𝜉1, 𝑄, 𝑅⟩ ≡ 𝐶𝜏4 in

ℰ*.

Proof. Combine Propositions 4.3.2 and 4.3.3.

Since maps of E2(𝑝2+2)-ring spectra must preserve secondary power operations

by [12, Proposition 2.1.10], we immediately obtain the following corollary.

Corollary 4.3.5. Let 𝑅 be an E2(𝑝2+2)-ring spectrum and let 𝑅 → H be a map of

E2(𝑝2+2)-ring spectra. Then if the induced map on homology H*𝑅 → H*H is injective

in degrees less than or equal to (2𝑝2 + 1)(𝑝 − 1) and contains 𝜉1 in its image, then 𝜏4

must also be in the image of the composite H*𝑅 → H*H → ℰ*.

We conclude by deducing Theorem 1.1.1 from Corollary 4.3.5.

Proof of Theorem 1.1.1. Assume that BP were an E2(𝑝2+2)-ring spectrum. Since the

Postnikov tower of an E𝑛-ring spectrum naturally lifts to a tower of E𝑛-ring spectra,

there is a map of E2(𝑝2+2)-ring spectra

BP → 𝜏≤0BP ∼= HZ(𝑝) → H

which induces the inclusion

F𝑝[𝜉1, 𝜉2, . . . ] →˓ ΛF𝑝(𝜏0, 𝜏1, . . . ) ⊗ F𝑝[𝜉1, 𝜉2, . . . ]
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upon taking homology. In particular, the map is injective and contains 𝜉1 in its image.

However, 𝜏4 cannot be in the image of H*BP → H*H → ℰ* because this composite is

zero.

The case of BP⟨𝑛⟩ for 𝑛 ≥ 4 is analogous, using the fact that

H*(BP⟨𝑛⟩) ∼= ΛF𝑝(𝜏𝑛+1, 𝜏𝑛+2, . . . ) ⊗ F𝑝[𝜉1, 𝜉2, . . . ].

Finally, taking 𝑝-completions makes no difference because we are only working with

mod 𝑝 homology in the first place.
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