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ABSTRACT

We show that equivariant elliptic cohomology, as defined by I. Grojnowski, gives a

natural cohomological proof of the rigidity theorem of Witten for the elliptic genus.

We also state and prove a rigidity theorem for families of elliptic genera, and show the

existence for spin vector bundles of a Thom class (section) in Sl-equivariant elliptic

cohomology. This in turn allows us to define equivariant elliptic pushforwards with the

-orrect properties.

Finally, we give a description of Sl-equivariant K-theory in terms of equivariant coho-

mology, and show that a twisted version of the Chern character becomes an isomorphism.
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1. INTRODUCTION

The classical, or level 2, elliptic genus is defined (see Landweber [18], p.56) as the

Hirzebruch genus with exponential series the Jacobi sine s(x). It is known to physicists

as the supercharge of a supersymmetric nonlinear sigma model, and to mathematicians

in connection with the mysterious field of elliptic cohomology (see Segal [23]).

A striking property of the elliptic genus is its rigidity with respect to group actions.

This was conjectured by Witten in [26], where he used heuristic quantum field theory

arguments to support it.

Rigorous mathematical proofs were soon given by Taubes [25], Bott & Taubes [6],

and K. Liu [19]. While Bott & Taubes's proof of the rigidity theorem involved the local-

ization formula in ordinary equivariant cohomology, Liu's proof involved the modularity

properties of the elliptic genus. The question remained however whether one could find

a direct connection between the rigidity theorem and elliptic cohomology.

Earlier on, Atiyah & Hirzebruch [2] had used pushforwards in equivariant K-theory to

prove the rigidity of the A-genus for spin manifolds. Following this idea, H. Miller [20]

interpreted the equivariant elliptic genus as a pushforward in the Borel (completed)

equivariant elliptic cohomology, and posed the problem of developing and using a non-

completed Sl-equivariant elliptic cohomology, which didn't exist at that time, to prove

the rigidity theorem.

In 1994 I. Grojnowski [13] proposed a noncompleted equivariant elliptic cohomology

with complex coefficients. For G a compact connected Lie group he defined E* (-)

as a coherent holomorphic sheaf over a certain variety XG constructed from a given

elliptic curve. Grojnowski also constructed pushforwards in this theory. (At about the

same time and independently, Ginzburg, Kapranov and Vasserot [11] gave an axiomatic

description of equivariant elliptic cohomology.)

Given Grojnowski's construction, it seemed natural to try to use Sl-equivariant el-

liptic cohomology to prove the rigidity theorem. In doing so, we noticed that our proof

relies on a translation and generalization of Bott & Taubes' transfer formula (see [6]).

And this generalization of the transfer formula turns out to be essentially equivalent to

the existence of a Thom class (or orientation) in Sl-equivariant elliptic cohomology.
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One can generalize the results of this thesis in several directions. One is to extend

the rigidity theorem to families of elliptic genera, which we do in Theorem 6.7. Anohter

would be to generalize from G = S' to an arbitrary connected compact Lie group,

or to replace complex coefficients with rational coefficients for all cohomology theories

involved. Such generalizations will be treated elsewhere.

2. STATEMENT OF RESULTS

All the cohomology theories involved in this paper have complex coefficients. If X is

a finite S'-CW complex, H , (X) denotes its ordinary Sl-equivariant cohomology with

complex coefficients (for a description of this theory see the paper [1] of Atiyah & Bott).

Let F be a nonsingular elliptic curve over C. Let X be a finite S'-CW complex (e.g. a

compact Sl-manifold). Then Grojnowski defines the Sl-equivariant elliptic cohomology

E*1 (X) as a coherent analytic sheaf of superalgebras (i.e. Z/2-graded algebras) over

E. His definition uses a choice of a global isomorphism E a S1 x S1 . We are going to

give an invariant definition of E*, (-), as a functor from the category of finite S1 -CW

complexes to the category of sheaves of Oe-superalgebras.

THEOREM A. E*,(-) is an S1 -equivariant cohomology theory with values in the

category of coherent analytic sheaves of Or -superalgebras.

If f : X -+ Y is a complex oriented map between compact S'-manifolds, Grojnowski

also defines equivariant elliptic pushforwards. They are maps of sheaves of OF-modules

fFE : E* 1(X)twisted -+ E* 1(Y)

satisfying properties similar to those of a pushforward. E*1 (X)twisted has the same

stalks as E*1 (X), but the gluing maps are different. (See Section 5.)

The construction of f!E has two steps. First, one defines local pushforwards, at the

level of stalks. Then one tries to assemble them into a sheaf map between E*1 (X) and

E*1 (Y). This fails, because local pushforwards do not glue well. However, if one twists

E* (X), i.e. one changes the gluing maps, then fE becomes a map of sheaves from

E*i(X)twisted to E*(Y).
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In Grojnowski's preprint, the existence of the local pushforwards is merely stated.

In spelling out the details, we realized that the proof (which is given in Corollary 5.4)

implies in particular that the equivariant elliptic genus of a compact S1 -manifold is

meromorphic everywhere and holomorphic at zero. More precisely, we know that the

equivariant genus of an Sl-manifold can be represented as a power series in one variable

u = the generator of H*BSl. Then we have

PROPOSITION B. The Sl-equivariant elliptic genus of a compact Sl-manifold is

the Taylor expansion at zero of a function on C which is holomorphic at zero and mero-

morphic everywhere.

This question was posed by H. Miller and answered independently by Dessai &

Jung [7], who use a result in complex analysis suggested by T. Berger.

Grojnowski's construction raises a few natural questions. First, can we say more

about E*1 (X)twisted? The answer is given in Proposition 6.8, where we show that, up

to an invertible sheaf, E*1 (X)twisted is the Sl-equivariant elliptic cohomology of the

Thom space of v(f), the stable normal bundle to f.
This suggests looking for a (Thom) section in E*1 (X)twisted. More generally, given

a real oriented vector bundle V -+ X, we can twist E*, (X) in a similar way to obtain

a sheaf, which we denote by E* 1 (X)[v]. When does such a Thom section in E*1 (X)v]

exist? The answer is the following key result:

THEOREM C. If V -+ X is a spin S' -vector bundle over a finite S 1 -CW complex,

then the element 1 in the stalk of E* (X)[v] at zero extends to a global section, called

the Thom section.

The sheaf E*1 (X)[v] is regarded here not on E, but on a double cover of E, for

reasons explained in the beginning of Section 6.

In proving Theorem C, one comes very close to the proof of the rigidity theorem given

by Bott & Taubes in [6]. In fact, Theorem C is essentially a generalization of Bott &

Taubes' transfer formula. Armed with this result, the rigidity theorem of Witten follows

easily. But the slightly greater level of generality allows us to extend the rigidity theorem
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to families of elliptic genera. The question of stating and proving such a theorem was

posed by H. Miller in [21].

THEOREM D. (Rigidity for families) Let 7r : E -+ B be an S'-equivariant fibration

such that the fibers are spin in a compatible way, i.e. the projection map -r is spin

oriented. Then the elliptic genus of the family, which is irF (1) E H**(B), is constant as

a rational function in u (i.e. if we invert the generator u of Cluj, over which H*i (B)

is a module).

Here H**(X) denotes the formal Laurent series over H*(X) (as defined in Dyer [9],

p. 58), and H *(B) = H**(B xS1 ES'), where B xSi ES' is the Borel construction.

H**(B) can be alternatively be thought as the completion of H*1 (B) with respect to

the ideal generated by u in H* (point) = C[u]. For every finite S'-CW complex B we

have the formula

H 1 (B) =- H*i (B) O®u] C[u].

Notice that, while H*, (B) is a Z-graded object, H** (B) is only Z/2-graded, by its even

and odd part.

A different path of research was taken in Section 4. There we show that a sheaf

X*,(X)lg similar to E*,(X), but constructed over Cx instead of the elliptic curve

F, gives S'-equivariant K-theory after taking global sections. X*1 (X)' 1 9 is constructed,

just like E*1 (X), by gluing together the equivariant cohomology of subspaces of X fixed

by different subgroups of S. The map which gives the isomorphism of K*1 (X) with

the global sections in X*, (X)al9 is some kind of "twisted" equivariant Chern character.

This seems to give a satisfactory way in which the Sl-equivariant Chern character from

Kji (X) to H* (X) (which is not an isomorphism in general) can be made into an

isomorphism, if the target is seen in this sheafified version over CX. The fact that the

result is the same when we use a general Lie group G represents work in progress.

Baum, Brylinski, and MacPherson [4] give a description of the G-equivariant K-theory

of a space X as a sheaf over the space of orbits X/G, but except in very special cases

they fail to show the connection with equivariant cohomology. Block and Getzler [5]

construct a sheaf, but they obtain cyclic cohomology instead of equivariant K-theory.
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The closest to our construction seems to be the work of Duflo and Vergne [8], but the

authors cannot prove that their construction yields indeed equivariant K-theory. For

one thing, they cannot prove Mayer-Vietoris, the reason being that they work directly

with the sections of the sheaf, for which it is much harder to prove Mayer-Vietoris.

Mayer-Vietoris is easy to show for our sheaf, though, and we do this in Proposition 3.9.

Then we use the fact that for K-theory, the sheaf is algebraic coherent over an affine

scheme (Cx), so taking global sections preserve exactness, by a classical theorem of

Grothendieck. The problem with Duflo and Vergne's sheaf is that it is defined using

smooth functions on the group, so we don't have the machinery of algebraic geometry

to prove general results.

We should observe also that the twisting of the Chern character mentioned above is

rather a translation performed over the special points. This resembles a lot the transla-

tion we have to perform while proving rigidity, which Bott & Taubes call the "transfer

formula". The connection between the twisted Chern character and the transfer formula

are, in our opinion, a good motivation for regarding generalized equivariant cohomology

theories in this sheafified way. In fact, one could notice that the whole HKR [17] has

this sheafifying touch. It is just the fact that they use a finite group, which saves them

from being forced to pass to a continuous family of stalks.

3. S 1 -EQUIVARIANT ELLIPTIC COHOMOLOGY

In this section we give, following Grojnowski [13], the construction of Sl-equivariant

elliptic cohomology with complex coefficients. Given E an elliptic curve over C with

structure sheaf (9, S1 -equivariant elliptic cohomology is defined as a contravariant

functor from the category of pairs of finite S1-CW complexes to the abelian category

of coherent analytic sheaves of Op-modules: (X, A) -+ E* I(X, A). Moreover, E*, (X)

turns out to be a sheaf of OF-superalgebras.

Let us start with an elliptic curve F over C. Choose an identification of C with the

universal cover of E. Let 0 be a local inverse around zero to the covering map C -+ E.

We call 0 an additive uniformizer. Any two such uniformizers differ by a nonzero

scalar multiple. Fix an additive uniformizer 0.
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Definition 3.1. Fix a neighborhood VO of zero in E such that 0 : Vo -4 (Vo) C C is a

homeomorphism. We say that a neighborhood V of a E 8 is small if t.-(V) C V. t-o

is translation by -a in E.

Let X be a finite S'-CW complex. Let a E E. We say that a is a division point of

E of order n > 0 if na = 0 and n is the smallest positive number with this property. If

H C S' is a subgroup, denote by XH the submanifold of X fixed by each element of H.

Let Zn C S1 be the cyclic subgroup of order n.

Definition 3.2.

f XZ", if a has exact order n;

XSl , otherwise.

Suppose we are given an S1 -equivariant map of pairs of S' -CW complexes f : (X, A) -+

(YB), i.e. an S1 -equivariant map f : X -+ Y such that f(A) C B. A point a E 8 is

called special with respect to f if at least one of X", A', Y', B0 is not equal to XS1,

Asi, yS', BS' respectively. When it is clear what f is, we simply call a special.

An indexed open cover 21 = (Ua0 ) 0 of 8 is said to be adapted to f if it satisfies the

following conditions:

1. Ua is a small open neighborhood of a E 8;

2. If a is not special, then U0 contains no special point;

3. If a 5 a' are special points, U0 n U0, = 0.

A point a E E is called special with respect to the pair (X, A) if it is special with

respect to the identity function id : (X, A) -+ (X, A). a is called special with respect to

X if it is special with respect to the pair (X, 0).

Definition 3.3. If (X, A) is a pair of finite S 1-CW complexes, we define the holomor-

phic S'-equivariant cohomology of (X, A) to be

HO*1 (X, A) = H*i (X, A) O®Cu] O(CO

OcO is the ring of germs of holomorphic functions at zero in the variable u, or al-

ternatively it is the subring of Cuj of convergent power series with positive radius of

convergence.
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We are going to define now a sheaf T = To,u over E whose stalk at a E E is isomorphic

to HO*1 (X', A'). Recall that, in order to give a sheaf T over a topological space,

it is enough to give an open cover (U0 ), of that space, and a sheaf T 0 on each Ua

together with isomorphisms of sheaves 0/, : TIu -+ T3u, such that the

cocycle condition #p,,$, = qay is satisfied on Ua n Up n U.,. The sheaf T is unique up

to isomorphism, with the condition T lu .

Consider an adapted open cover U = (Ua)oeF. Such a cover exists, because X is a

finite S 1 -CW complex, so the set of special points is a finite subset of E.

Definition 3.4. Define a sheaf T, on Ua by declaring for any open U C U0

.,(U) := H*1(X', Aaa) Oct] 0p(U - a) ,

where the map C[u] -+ Op (U - a) is given by the sending u to the uniformizer 0 (we use

the smallness of U0 here). U - a represents the translation of U by -a, and OF (U - a)

is the ring of holomorphic functions on U - a. The restriction maps of the sheaf are

defined so that they come from those of the sheaf g.

First we notice that we can make Y0 into a sheaf of Op lu-modules: if U C U0 , we

want an action of f E Ofy(U) on TY(U). The translation map t, : U - a -+ U, which

takes u to u + a gives a translation t* : (e(U) -+ OF,(U - a), which takes f(u) to

f(u + a). Then we take the result of the action of f E OF (U) on p 0 g E Tc(U) =

H*1 (X', A') OCu] 09 (U - a) to be p ® t* f - g. Moreover, Ta is coherent because, since

X' and A' are finite, H*, (X', A') is a finitely generated C[u]-module.

Now for the second part of the definition of T, we have to glue the different sheaves

Ta we have just constructed. If U0 n U, $ 0 we need to define an isomorphism of sheaves

Oa,3 : -Talvan, -- + Tplu.,n which satisfies the cocycle condition. Recall that we started

with an adapted open cover (U)oAe. Because of the condition 3 in Definition 3.2, a

and 3 cannot be both special, so we only have to define 0,, when, say, 3 is not special.

So assume X = XS'. Consider an arbitrary open set U c U0 n U.
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Definition 3.5. Define 04,, on U as the composite of the following isomorphisms:

Ta(U) = H. (Xc, Aa) Oqu iO(U -a)

-- + H* 1(V X7 A,3) Oqu] 0 (U - a)

+ (H *(X, A,3) Oc C[u]) ® )u] 0 (U - a)

(*) -+ H*(X 3, AO) 0COr_(U - a)

-+ H*(XO, A3) O, E(U -3)

-+ H*1 (X/4, A) 0qu (9(U - #3)

= (U) .

The map on the second row from the top is the natural one: i* 0 1, where

i: (X, AO) - (X , A') is the inclusion. i* 0 1 is an isomorphism because

a) If a is not special, then X' = XS1 - X, and similarly Aa = A 3 , so i* 0 1 is the

identity.

b) If a is special, then either Xa 5 X or Ac : AO. However, we have

(Xa)s1 - XS' = XO, and similarly (Aa)S' = A3. Then we can use the Atiyah-

Bott localization theorem in equivariant cohomology from [1]. This says that

i* : H*I(Xa, Aa) -* H*1 (X, A) is an isomorphism after inverting u. So it is

enough to show that 0 is invertible in OF (U - a), because this would imply that i*

becomes an isomorphism after tensoring with OF (U - a) over C[u]. Now, because

a is special, the condition 2 in Definition 3.2 says that a V U,3. But U c u. n Uo,

so a V U, hence 0 V U - a. This is equivalent to 0 being invertible in OF (U - a).

The isomorphism on the third row comes from the isomorphism H*(X, A'3) =

H*(X , A3)® &C[u], since since Xfl and AO are fixed by the S'-action. The isomorphism

on the fifth row is given by the translation t*a :e (U - a) -+ OF (U-3).
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Remark 3.6. To simplify notation, we can describe #,, as the composite of the fol-

lowing two maps:

H*j (Xa, Aa) Oqu] (e9 (U - a)

Ii*

H1* 1(XV A,) Ogu] 0 F_(U - a)

t*-

01a

H* (XO, A") ®q)u] OF(U - 3)

By the first map we really mean i* 01. The second map is not 10 t*-, because t*- is

not a map of C[u]-modules. However, we use t*-,, as a shorthand for the corresponding

composite map specified in (*).

One checks easily now that 0 satisfies the cocycle condition: Suppose we have three

open sets U0, U3 and U, such that U, n U n U. 5 0. Because our cover was chosen

to be adapted, at least two out of the three pairs (X', A"), (X#, A,) and (X)', A')) are

equal to (XS1, As'). Thus the cocycle condition reduces essentially to t*_t* = t* 0 .

This completes the definition of T = T0,U. One can check easily that T is a coherent

analytic sheaf of (9-superalgebras.

We can remove the dependence of T on the adapted cover U as follows: Let U and V be

two covers adapted to (X, A). Then any common refinement W is going to be adapted

as well, and the corresponding maps of sheaves T0,U - T0,w +- To,v are isomoprhisms

on stalks, hence isomorphisms of sheaves. Therefore we can omit the subscript U, and

write T= o.

Next we want to show that To is independent of the choice of the additive uniformizer

0.

Proposition 3.7. If 0 and 0' are two additive uniformizers, then there exists an iso-

morphism of sheaves of (e -superalgebras foo : To -4 Te. If 0" is a third additive

uniformizer, then foe',foo, = ±fo".
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Proof. We modify slightly the notations used in Definition 3.4 to indicate the dependence

on 0:

To (U) := H~j (X', Aaa) ® 0((U -)

(u is sent to 0 via the algebra map C[u] -+ Op (U - a)). If 0' is another additive

uniformizer, there exists a nonzero constant c E C such that 0 = cO'. Choose a square

root of c and denote it by c1/ 2 (we need the square root because u is in homogeneous

degree 2). For a homogeneous element x E H*1 (X', Aaa), define a map foo',0 : To(U) -

T'(U) by

X O0 g -*cIJ/ 2 X0 g .

jxj is the homogeneous degree of x. One can easily check that foot,, is a map of sheaves

of (9E-superalgebras. We also have 00' o foo,,Q = foo,,l 3o000, which means that the maps

foe,,, glue to define a map of sheaves foo, : To -+ -To,.

The equality fo'oefoo, = tfoo", comes from (Q'/I")1/2(0/0')1/2 = t(0/01")1/2. El

Definition 3.8. The S1 -equivariant elliptic cohomology of the pair (X, A) is defined to

be the sheaf T, which, according to the previous results does not depend on the adapted

open cover U or on the additive uniformizer 0.

For E*(-) to be a cohomology theory, we also need naturality. Let f : (X, A) -

(Y, B) be an Sl-equivariant map of pairs of finite S'-CW complexes. We want to define a

map of sheaves f* : E*1 (Y, B) -+ E*, (X, A) with the properties that 1 (x, = 1 E. (X,A)

and (fg)* = g*f*. Choose U an open cover adapted to f, and 0 an additive uniformizer

of F. Since f is S1 -equivariant, for each a we get by restriction a map of pairs f:

(Xa, Aa) -+ (Y', Ba). This induces a map

H~p YoB")ops Ge(U - a) 4H~i (X', A') Ogtu] Or (U - a).

To get our global map f*, we only have to check that the maps f* glue well, i.e.

that they commute with the gluing maps 0,3. This follows easily from the naturality of

ordinary equivariant cohomology, and from the naturality in (X, A) of the isomorphism
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H*, (Xs , As) _ H* (XS', As') Oc C[u]. Now we are in the position to state the

theorem-definition of Grojnowski Sl-equivariant elliptic cohomology.

Theorem 3.9. E*1 (-) is an S1 -equivariant cohomology theory with values in the cat-

egory of coherent analytic sheaves of OF -superalgebras.

Proof. First we have to define the coboundary map 6: E*, (A) -+ E*+1 (X, A). This is

obtained by gluing the maps

H*,(A ) ogul OF (U - a) '--4 H gfl(X , Ao) Ogu] OF, (U - a),

where 3a : H*, (A") -+ H +' (X', A') is the usual coboundary map. The maps 6' 0 1

glue well, because Ja is natural.

To check the usual axioms of a cohomology theory (naturality, exact sequence of a

pair, and excision) for E*, (-), recall that it was obtained by gluing the sheaves T, along

the maps 0,,. Since the sheaves Tc were defined using H*, (X', A'), the properties of

ordinary Sl-equivariant cohomology pass on to E*, (X, A). l

This proves THEOREM A stated in Section 2. Here perhaps we should mention that

one can make E*, (-) to take values in the category of coherent algebraic sheaves over

F rather than the category of coherent analytic sheaves. This follows from a theorem of

Serre which says that the the categories of coherent holomorphic sheaves and coherent

algebraic sheaves over a projective variety (in particular over E) are equivalent. (See for

example [12], Theorem A, p. 75.)

Now the description we gave above for E*, (X) was good to prove that E*, (-) is

a cohomology theory, but it is hard to work with it in practice. This is because the

open cover (U0 )sEp has too many elements. To remedy this, we are going to use a

finite cover of E: Start with an adapted open cover (UO)OEF. Recall that the set of

special points with respect to X is finite. Denote this set by {1,... , an}. Denote by

U00 := E \ {a 1 ,... , an}. To simplify notation, denote by U := U0 1 , for all 0 < i < n.

Definition 3.10. (See Definitions 3.4 and 3.5.) On each Ui, with 0 < i < n, we are

going to define a sheaf 9 as follows:
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a) If 1 < i < n, then VU C Uj,

9i(U):= H*1(Xai) ®9u] (9(U - ac)

The map C[u] -+ OF (U - ai) was described in Definition 3.4.

b) If i = 0, then VU C U0 ,

Si (U) := H* (XS1) 0(c OE(U).

Now glue each 9, to 9o via the map of sheaves qjo defined as the composite of the

following isomomorphisms (U g Ui nUo): H*, (Xai)0qu] 0 (U-ai) L 4 H&i (Xsl) qu]
es t*

(3(U - Oi) --- + H*(XSl) 0c (9(U - aj) -4 H*(Xs0) c 0 e(U).

Since there cannot be three distinct Uj with nonempty intersection, there is no cocycle

condition to verify.

Claim 3.11. The sheaf 9 described in the previous definition is isomorphic to 'T, thus

allowing an alternative definition of E*s1(X).

Proof. One notices that Uo = U{U0 1 3 nonspecial}, because of the third condition in

the definition of an adapted cover. If U C U3UO, a global section in 3T(U) is a collection

of sections sp 6 Y(U fl Up - /3) which glue, i.e. t* -0'3 = so'. So t*sy = t*,sp' in

9(Un U3 n Uo,), which means that we get an element in 9(U), since the Uf's cover U. So

,Tio 91u,. But clearly Tlu 2 91 for 1 < i < n, and the gluing maps are compatible.

Therefore - ' 9. EZ

As it is the case with any coherent sheaf of OE-modules over an elliptic curve, E*1 (X)

splits (noncanonically) into a direct sum of a locally free sheaf, i.e. the sheaf of sections

of some holomorphic vector bundle, and a sum of skyscraper sheaves.

Given a particular X, we can be more specific: We know that H*j (X) splits non-

canonically into a free and a torsion C[u]-module. Given such a splitting, we can speak

of the free part of H*j (X). Denote it by H*, (X)free. The map

H*l(X)free H*(Xs1)
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is an injection of finitely generated free C[u]-modules of the same rank (by the local-

ization theorem). C[u] is a p.i.d., so by choosing appropriate bases in H, (X)free and

H*(Xs'), the map i* can be written as a diagonal matrix D(u"n,... ,unk), ni > 0.

Since i*1 = 1, we can choose n, = 0.

So at the special points ai, we have the map H*,l(Xoi)free & H, (Xsi), which in

appropriate bases can be written as a diagonal matrix D(1, Un2, . . . , Ufk ). This gives

over Ui n Uo the transition functions u -+ D(1, un2,... , unk) E GL(n, C). However, we

have to be careful since the basis of H*1 (Xsl) changes with each ai, which means that

the transition functions are diagonal only up to a (change of base) matrix. But this

matrix is invertible over C[u], so we get that the free part is a sheaf of sections of a

holomorphic vector bundle, and moreover we can describe it explicitly.

An interesting question is what holomorphic vector bundles one gets if X varies.

Recall that holomorphic vector bundles over elliptic curves were classified by Atiyah in

1957.

Example 3.12. Calculate E*,(X) for X = S 2 (n) = the 2-sphere with the Sl-action

which rotates S 2 n times around the north-south axis as we go once around S1. If

a is an n-division point, then X& = X. Otherwise, Xa = XS', which consists of two

points: {P+, P-}, the North and the South poles. Now H* (S 2 (n)) = H*(BSl V BS') =

{(f, g) E C[u] e C[u] f (0) = g(0)}. Denote this by C[u] Eo C[u]. C[u] acts diagonally.

H*i (X) H*, (Xse) is the inclusion C[u] EO C[u] e-+ C[u] e C[u].

Choose the bases

a) {(1, 1), (u, 0)} of C[u] eo C[u];

b) {(1, 1), (1, 0)} of C[u] e C[u].

Then H* (X) -- 4 C[u] E C[u] by (P(u), Q(u)) '=+ (P, 9 ), and Hel (Xs') -~-* C[u] (
C[u] by (P(u), Q(u)) i-+ (P, Q -P). Hence i* is given by the diagonal matrix D(1, u). So

E*1 (X) looks locally like 9 cpl @ Ocpl (-1). This happens at all the n-division points

of E, so E*, (X) O F- e Op(A), where A is the divisor which consists of all n-division

points of F, with multiplicity 1.
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One can also check that the sum of all n-division points is zero, so by Abel's theorem

the divisor A is linearly equivalent to -n 2 - 0. Thus E* (n)) OF E F_ 2 -0).

We stress that the decomposition is only true as sheaves of OF-modules.

Remark 3.13. Notice that S 2 (n) is the Thom space of the Sl-vector space C(n), where

z acts on C by complex multiplication with z". This means that the Thom isomorphism

doesn't hold in Sl-equivariant elliptic cohomology, because E*1 (point) = OF, while the

reduced S'-equivariant elliptic cohomology of the Thom space E* 1 (S2(n)) = 2(-n2 0).

Coming back to a previous observation, from the work of Serre, GAGA [24], we

know that the categories of coherent holomorphic sheaves and coherent algebraic sheaves

over a projective variety are equivalent. Hence we could replace E*1 (X), which is

holomorphic, by its algebraic correspondent via the GAGA functor. This means that

the S'-equivariant elliptic cohomology functor E*1 (-) can be made to take values in

the category of algebraic coherent sheaves over the elliptic curve E.

However, for the purposes of Section4, we would like to describe the algebraic version

of E*1 (-) as a subsheaf of the holomorphic one. For this, it is enough to have a criterion

which tells us when a local section in the holomorphic sheaf is algebraic. So, to work in

complete generality, let yThI be a holomorphic coherent sheaf over the projective variety

X. Denote by Oh" and 0'19 the holomorphic and the algebraic structure sheaves of

X, respectively. If 9a19 is some algebraic coherent sheaf over X, then we can associate

canonically to it a holomorphic one by 9 alg + 9 hol a ®g (&a 9h. For such a
X

sheaf 9 hol there is a canonical notion of an algebraic section over any Zariski open

U C X: s E 9 hoI(U) is algebraic if and only if it is in the image of the inclusion map

Sal(U) ' 9hol(U).

Now coming back to Thol, by GAGA we know that there is an algebraic coherent sheaf

9 aig over X such that 'Thol holomorphically isomorphic via 4 to 9 hol _ galg ®0ag M
x

Let s E Tho (U) be some holomorphic section over the Zariski open U. We say that s

is algebraic if 4 (s) is algebraic in 9hoI(U). To check that this definition is independent

of the choice of 9 and 1, let 'H and T be other two similar choices. Then T o 4-- is a

holomorphic section in the holomorphic coherent sheaf Hom(9hol, 'hol). For this sheaf
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we have a well defined notion of an algebraic section, and by applying GAGA again, it

follows that a global holomorphic section has to be algebraic. This means that T o <D-

takes algebraic sections to algebraic sections, so our definition of an algebraic section of

Thl is well defined. So we can define now the algebraic version of yh"o by

3'Ta9(U) := {s E Thol(U) I s is algebraic}

4. S1 -EQUIVARIANT K-THEORY

The purpose of this section is to motivate the definition we gave for the Sl-equivariant

elliptic cohomology. We are going to show that a sheaf construction entirely parallel to

the one in the previous section, but using the multiplicative algebraic group C' instead

of the elliptic curve C/A, yields indeed Sl-equivariant K-theory, after taking the global

sections. Again the division points of the algebraic group (for C' they are the roots of

1) will come to play an essential role.

For Sl-equivariant cohomology the appropriate algebraic group is C with addition,

so here there is only one division point: zero. Therefore, H*j (X) itself can be regarded

as a sheaf, whose only special part lies at zero (everywhere else the sheaf is built us-

ing H*1 (XS )). In this sense, equivariant cohomology is the simplest such equivariant

theory, and one can expect other theories to be built out of it.

This sheaf construction of S'-equivariant K-theory obtained by gluing together the S'-

equivariant cohomology of various subcomplexes X' of X also answers in a satisfactory

way the problem that the equivariant Chern character K*j (X) c,, H* (X) fails to

be and isomorphism, although the nonequivariant Chern character K*(X) - H**(X)

is. (Of course, we work at least with rational coefficients.) In fact, we will see that a

suitably modified equivariant Chern character gives indeed an isomorphism, when we

use instead of H*i (X) the above mentioned sheaf construction.

We are going to discuss elsewhere the full story on the description of G-equivariant

K-theory using G-equivariant cohomology. For the purposes of this paper however, we

will restrict ourselves to the case when G = S 1 .
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A good reference concerning equivariant K-theory, is G. Segal's paper [22]. If X is a

finite S 1-CW complex, then its Sl-equivariant K-theory K*j (X) is a finitely generated

module over K 1 (pt) = R(S1 ), the representation ring of S1 . If A is the representation

of S, given by the inclusion S1 -+ CX = End C, then R(S1 ) = C[A, A- 1 ], the ring of

Laurent polynomials in A. But Spec C[Ail] = CX, hence one can regard K*1 (X) as

a coherent algebraic sheaf over C' (see Hartshorne [14]). The stalk of this sheaf at

a point a in CX is the localization K*, (X)(A-a) with respect to the maximal ideal in

C[A* 1 ] generated by A - a.

On the other hand, we will see that by simply transposing the definition of E*1 (X)

using A = 27riZ c C instead of a lattice in C, one obtains a holomorphic coherent

sheaf X*1 (X)hoI over C'. Notice that this is built essentially out of the equivariant

cohomology of subcomplexes Xa of X fixed by different subgroups of S1. The sheaf

X*1 (X)hoI extends naturally to CP 1 , so by GAGA we have a well defined notion of an

algebraic section on any Zariski open of CP 1 (see the discussion at the end of Section 3).

So we denote by X*, (X)ala the sheaf of algebraic sections of X*, (X)hoI, and we can use

the same notation for its restriction to the Zariski open CX.

So we have two coherent algebraic sheaves over C', and it is natural to try to compare

them. In fact, they turn out to be isomorphic. For this, we will define a natural

multiplicative map

K i(X) chz *

which is built, not surprisingly , out of the equivariant Chern character of the Xe's.

However, over the division points of CX, i.e. over the roots of 1, the equivariant Chern

character has to be twisted in a certain sense. Or, rather, one should call it a translation

of the Chern character. This bears a striking resemblance to the translation we have

to perform while dealing with the rigidity of the elliptic genus. There the phenomenon

is called "transfer", from the transfer formula of Bott & Taubes [6]. This resemblance

indicates that sheafifying equivariant cohomology theories is not as unnatural as it might

first seem.
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To check that a map of S-equivariant cohomology theories is an isomorphism over

the finite S'-CW complexes, we only have to check that it gives an isomorphism on the

"equivariant points", i.e. on the orbits of the form S'/H, with H C S1 a subgroup.

In fact, to understand better the constructions used in this section, it is a good idea

to start by looking at what happens for X = S/Z. Recall that the equivariant Chern

character

K 1 (X) c-z H* *(X)

is defined, if E -+ X is a complex Sl-vector bundle over a finite finite S1 -CW complex,

by chs1 (E) = e" +- - -+ e', where x 1,... , x, are the equivariant Chern roots of E (see

Definition A.3 in the Appendix). chsi is multiplicative, but unlike the nonequivariant

case it fails to be a rational isomorphism.

Consider now X = S'/Z,

K*S1(SI/Z) - R(Zn) = C[Zn] = C[AE ]/(A" - 1)

This isomorphism sends a complex Sl-vector bundle to its fiber over a point. Since

S/Zn is fixed by Zn, the fiber is a representation of Z. The inverse of the above

isomorphism sends a Zn-module V to its Borel construction S xz,, V -+ S 1/Z,. C[Z,]

is the group ring of Zn. The generator A represents the bundle S1 xz,, C(1) -* S/Zn,

where C(1) is the standard representation of S1 restricted to Zn.

Hi (S 1/Zn) = H*(S1/Zn x S1 ES1 ) = H*(ES/Zn) = H*(BZn) = C .

BZn is the classifying space of Zn. H*(BZn; Z) = Z[u]/(nu) is torsion in degree higher

than zero, so the complex cohomology H*(BZn) = C.

One can check that C[Z] splits as a C-algebra into a direct product C e ... (D C, n

copies. This splitting is given by the idempotents I, = 1(1 + E-1 A +-- + f-(n-1)An-1x
27ri .

one for each root of unity e. Say fn = eF is the generator of Z. Then the direct

product decomposition of C[Zn] can be rewritten as

C[Zn] -~+ C(i) ( C(En) e C(,e *'E C ) -1
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To describe this isomorphism, take A E C[Z,,] and multiply it by the idempotents I.

Then AIE = El. So the map is

A - (1, Eni E2 ,... , E n )- .

Now chsi (A) = e" (A)si = o = 1, since c1(A)si E HS1(Sl/Zn) = 0. This means that,

if we want to have an isomorphism

K*, (Sl/Zn) -~+4 H p (S'/Zn)(1) E H*,(S1/Zn)(,,,) E .. -- E)H*,(S1/Zn)(,1),

we need to send A not to (chsi (A),.-- , chs1 (A)) = (1,... ,1), but to

(chsi(A), t*chs(A),... t*nichs(A)) = (1, En, en, .-e-)-

We will define this translation t*ch(-)si of the Chern character later, but at least we

know that, when X = Sl/Zn, t*chsi (A) should equal E.

So, if X = S'/Zn, one checks easily that (see Definition 3.2) Xa = X if a is an n'th

root of unity, and X' = 0 otherwise. This means that, if we define a sheaf X over CX

such that the stalk at a is X, = HO*, (X), this will be a skyscraper sheaf with nonzero

stalks only at the n'th roots of unity. At an n'th root of unity a, X" = C[u]/(u) Oqu]

Oc,o = Oc,o /(u) = C. Thus FX = C e ... e C, n copies, and "chsi", the twisted

equivariant Chern character map mentioned above is an isomorphism K*1 (S'/Zn) ~+

LX.

This points to the general strategy we will take. Consider X a finite S1-CW complex.

Define a coherent sheaf X* 1 (X)hol over C' in the same way we defined E* I(X)ho over

E = C/A in Section 3. The results of that section apply also to X* (X)hol, including

the simpler description 3.10 and the existence of the algebraic version. We simply have

to make A mean not a lattice in C, but the subgroup 27riZ C C. There is one problem

though: GAGA is not valid over C', since CX is not a projective variety. But luckily we

notice that X* 1 (X)hoI has a natural extension over CP 1 . This can be seen more easily

using the simpler description 3.10, which uses only a finite cover of C/A. In this case

the sheaf is trivial over the UO, the complement of the special points, so we can use the
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same gluing maps <,,, to extend the sheaf at 0 and oo. We will use the same notation

X* (X)hol for the sheaf extended over CP.

Now CP 1 is projective, so GAGA applies as in the end of Section 3 to allow us to

define what algebraic sections of X* (X)hoI mean, on all Zariski opens of CP'.

Definition 4.1. If U is a Zariski open in CP',

X* (X)alg (U) := {s E X* 1(X)hoI(U) s is algebraic}

This is a coherent algebraic sheaf over CP1 , but we can also use the same notation to

denote its restriction to Cx .

Proposition 4.2. X* 1(X) alg(-) is an S' -equivariant cohomology theory with values in

the category of coherent algebraic sheaves of O(cx -superalgebras. The sections over Cx,

F X* 1 (X)al9(-) is also an S'-equivariant cohomology theory, with values in the category

of C[A -1 ] -superalgebras.

Proof. The first part of the proposition has the same proof as Proposition 3.9. For

the second part, notice that taking global sections over CX is an exact functor, due to

the vanishing of the higher sheaf cohomology groups over the affine variety C. (See

Hartshorne [14], p. 215.) E

The next step is to provide a multiplicative map of Sl-equivariant cohomology theories

K* (X) cl S

Take X a finite S'-CW complex. Given a complex S1 -vector bundle E -+ X, we

would like to associate a section in X*, (X)a19. We are going to construct a section in

X* I(X)hl, and then show that the section is algebraic. If .1,... , ar are the special

points corresponding to X (so X0 i $ Xs'), we choose an open cover Uo, U1,... , Ur as

in the discussion before Definition 3.10, with U0 = CX \ {1,... , ar}-

Over U0 consider the section so = chsi (E1Xsi), where E1xsi is the restriction of the

bundle E to the fixed point subspace Xs'. Eixsi splits as a complex S'-vector bundle
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into a direct sum

Ejxsi = E(mi) e ... E(mp)

E(mj) is a complex Sl-vector bundle, say of rank rj, where g E S' acts by complex

multiplication with g'. Since we are working over the space Xs', which has a trivial

Sl-action, we can calculate chsi (Elxsi). So let xi = wi + mju be the equivariant Chern

roots of the bundle E(mj), where wi are its ordinary (nonequivariant) Chern roots.

Then
r3  r3

chsiE(mj) = ew+mtu - ewemju = chE(mj) - e"iu
i=1 i=1

where chE(mj) E H*(Xsl) is the ordinary Chern character of E(mj). So, using the

direct sum decomposition of EjXsi,

P
chsi (EXsi ) = chE(mj) - e'"

j=1

Over CX we use the variable A = eu given by the map C X C C/27riZ, so

P
chsi(EiXsi) = ZchE(mj) -Amj

j=1

If a = ozj is a special point, thus a primitive n'th root of unity for some n, we have to

see if chsi (Elxsi) glues via the sheaf map #jo = t*, o i*0 1 (see Definition 3.10) to some

section over U,. Or, equivalently, we have to see if t* chsi (Exsi), which is well-defined,

lifts via i* to an element in H 1 (X) Oqu] 0C,0 - It is enough to take germs, since we

can always restrict the open cover.

Now, if a = e&,
p r3

t*chsi (EiXsi) =E ewi+mju+mj,
j=1 i=1

where xi = wi + mj are the equivariant Chern roots of Ejgsi. We know that ena = 1,

so mj only matters modulo n: Write mj = qj - n + rj, 0 < rj < n - 1; then emi & = eri&

Hence
n-1 n-1

t* chsi (EiXs1) = exi +k E _ Z exi -a
k=1 i k=1 i
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where xi are the equivariant Chern roots of Eixsi.

Look at the bundle EIX.. Since X' is fixed by the action of Z, we have the (fiberwise)

decomposition EIx. = V(O) e V(1) e - - - e V(n - 1), corresponding to the irreducible

representations of Z,. V(k) is a complex Sl-vector bundle over X', and its restriction

to XS' decomposes into a direct sum of bundles of the form E(mj) with the numbers mj

having the same remainder modulo n. Then we have just proved the following "transfer

formula":

Proposition 4.3. If i : XS' -+ X' is the inclusion, then

n-1

t*chsi (EI s1) = i* E chsi V(k) -Ck

k=1

Definition 4.4.

a) The translation by a of chsi (Ejxa ) is defined as

n-1
t*chs1(EIx.) := Zchs1V(k) -k

k=1

b) We have just showed that the sections t*chsi (EIX.c) and chsi (E s1) glue to a

global section in X*1 (X)hol over CX. Denote it by chsi(E). It is an object of

rX* 1 (X)hol, where we understand by r sections over C' .

Proposition 4.5. chsi(E) is actually an algebraic map, i.e. it lies in F XC*(X)alg.

Proof. Consider what happens when try to extend chsi (E) to a section in X* (X)hol

over the whole CP'. On Uo we saw that chs1 (E) is equal to

chsi(Eixsi) = ZchE(mj) - A',
j=1

with A the complex variable on C' = Spec C[A:i]. Clearly this extends as a meromor-

phic section over CP'. But a global meromorphic section of X*1 (X)hol by GAGA has

to be in fact rational. So the section chsi (E) over CX is holomorphic and rational,

therefore algebraic. 0
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Proposition 4.6. The map we have just defined

K 1 (X) chLi FX* (X)a1 9

is an algebra map.

Proof. It is immediate that chsi is additive, because the usual Chern character is ad-

ditive.

For the multiplicativity part, we have to show that t*chsi (EOF)lx. = t*chsi (EIx.)

t*chsi (Fixa). From the decomposition into eigenspaces of the Zn-action, we can assume

that Ejx. = V(i) and Fixa = W(j), with 0 < ij < n - 1.

On V o W g E S' acts as g -(v 0 w) = gt v 0 gjw = 0 w, so V(i) 0 W(j)

(V0W)(i+j). Then t*chs1(V(i)0 W(j)) = t*chsi(V® W)(i+j) = chsi (V® W)aii-

chsi (V)chsi (W)&aai - t*chsiV(i) - t*chsi W(j). El

Theorem 4.7. The twisted equivariant Chern character map

K*1(-) chsi

is a multiplicative isomorphism of S'-cohomology theories.

Proof. Given what we know so far, it only remains to check the isomorphism part.

Because of Mayer-Vietoris it is enough to verify the isomorphism on the "equivariant

points" S1/H, H C S' subgroup. If H = S', S'/H = pt, and so K*i (pt) = C[A"].

X~s 1 (pt) = 0, the algebraic structure sheaf of Cx. FX*1 (pt)alg = C[Ail], and chsi is

obviously an isomorphism, because it takes 1 to 1, and it is a map of C[AIl ]-modules

(coherent sheaves over CX correspond to finitely generated C[Ail ]-modules).

Now suppose X = S1 /Za. We saw before that X*, (Sl/Z,)hol is a skyscraper sheaf

with stalks = C at the n'th roots of unity. X*,(Sl/Z)hol = X*, (Sl/Zn))l9, and

PX*,(S/Z )alg = C E ... e C, n copies. Take A = S 1 xZ C(1) -+ S1/Z1. If a is

an n'th root of unity, X' = X. As a Z,-bundle, A can be written as A = A(1). Then

t*chsi (A) = chsi (A) - al = 1 - a = a. (Recall that chsi (A) = eci(A)s, - e= 1.) But we
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showed before that the map

K~i (S'/Zn) = (C[Zn]-~ C(i) (D C(Cn) (D C(62 ) (1 .. -- E Cg n-,

A - (1,En,... ,6"-1) gives a multiplicative isomorphism. So K*,(S 1 /Zn)

F'K*, (S/Z)al9 is an isomorphism of algebras.

5. S 1 -EQUIVARIANT ELLIPTIC PUSHFORWARDS

While the construction of E*1 (X) depends only the elliptic curve E, the construction

of the elliptic pushforward f!E involves an extra choice, that of a 2-division point on E.

This is because fE is defined using the Jacobi sine function s(x), which is associated to

an elliptic curve E with a specified 2-division point.

More precisely, if F = C/A, where A = Zwi + Zw2 is a lattice in C with a specified

division point wi/2, then there exists a meromorphic function s : C -+ C, which is

periodic to the "doubled" lattice A = Zw1 + 2Zw2, and has simple zeroes at 0 + A,

w2 + A, and simple poles at wi/2 + A, wi/2 + w 2 + A. This meromorphic function is

unique up to a scalar, which is fixed by requiring that limxmo s(x)/x = 1.

The Jacobi sine s(x) is an elliptic function with respect to the "doubled" elliptic

curve = C/A. Notice that the construction of , given E and the 2-division point, is

canonical (does not depend on the choice of the lattice A). It is easy to check that s(X)

has the following additional properties:

Facts 5.1.

a) s(x) is odd, i.e. s(-x) = -s(x). Around zero, s can be expanded as a power series

s(x)=x+a3x 3 +a5X 5 +---.

b) s(X + w1 ) = s(X); s(x + w 2 ) = -s(X).

c) s(x + w1/2) = a/s(x), a 5 0.

For the construction of S'-equivariant elliptic pushforwards we are going to follow

Grojnowski [13]. Let f : X -* Y be an equivariant map between compact SI-manifolds
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so that the restrictions f : X' -4 Y' are oriented maps. Then the Grojnowski pushfor-

ward of f is a map of sheaves

f!E : E* 1(X)[Il -+ E* 1(Y)

where E*1 (X)[If] is the sheaf E*1 (X) twisted by a 1-cocycle to be defined below.

The main technical ingredient in the construction of the (global i.e. sheafwise) elliptic

pushforward fE : E*1 (X)[I] -+ E*1 (Y) is the (local i.e. stalkwise) elliptic pushforward

f!E : HO*1 (Xa) -+ HO*1 (Ya). For this, we need to define the elliptic Thom class of an

oriented Sl-vector bundle.

Let V be a 2n-dimensional oriented real vector bundle over a finite S1 -CW complex X.

Classify its Borel construction Vsi -- Xsi by mapping into BSO(2n), and get the map

fv : XSi -+ BSO(2n). If Vuniv is the universal orientable vector bundle over BSO(2n),

we also have a map of pairs, also denoted by fv : (DVsi, SVsi) -+ (DVuni, SVniv). As

usual, DV and SV represent the disc and the sphere bundle of V, respectively.

But it is known that the pair (DVuniv, SVuniv) is homotopic to (BSO(2n), BSO(2n -

1)). Also, we know that

H*BSO(2n) = C[pi,.. . ,pn, e]/(e2 - pn)

where pj is the universal j'th Pontrjagin class, and e is the universal Euler class. From

the long exact sequence of the pair, it follows that H*(BSO(2n), BSO(2n - 1)) can be

regarded as the ideal generated by e in H*BSO(2n). The class e E H*(DVniv, SVuniv) is

the universal Thom class, which we will denote by #univ. Then the ordinary equivariant

Thom class of V is defined as the pullback class f *uni, E H,1 (DV, SV), and we denote

it by #(V)si.

Definition 5.2. Consider Q(x) = s(x)/x, where s(x) is the Jacobi sine. Since Q(x) is

even and holomorphic around zero, Proposition A. 7 gives a class PQ(V )s1 E HO* 1 (X).

Then we define the equivariant elliptic Thom class of V to be the product PQ(V)s1

q(V)si in H*(DV, SV), and denote it by #E(V)s1. (One can also say that #E(V)Sl
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s(xi) ... s(x,), while #(V)si = x 1 ... x, where x1 ,... ,x, are the equivariant Chern

rootsof V.)

Proposition 5.3. If V -+ X is an even dimensional real oriented S-vector bundle,

and X is a finite S'-CW complex, then OE(V)s 1 actually lies in HO*1 (DV, SV).

Proof. The only difficult part, namely that IQ(V)s1 is holomorphic, is proved in the

Appendix, in Proposition A.5. So we only need to know that the cup product

H*i (X) 0 H*1 (DV, SV) -+ H~j (DV, SV)

extends by tensoring with OC,O over C[u] to a map

HO*I (X) 0 HO*1 (DV, SV) -+ HO*1 (DV, SV).

E

Because Q(x) = s(x)/x is an invertible power series around zero, it follows that

multiplication by the equivariant elliptic Thom class #E(V)si gives an isomorphism

HO*I (X) -~+ HO*1 (DV, SV), which is the Thom isomorphism in HO-theory.

Corollary 5.4. If f : X -+ Y is an S1 -equivariant oriented map between compact S1-

manifolds, then there is a functorial elliptic pushforward

f!E : HO* (X) -+ HO* (Y)

In the case when Y is a point, fE(I) is the Sl-equivariant elliptic genus of X.

Proof. Recall ([9]) that the ordinary pushforward is defined as the composition of three

maps, two of which are Thom isomorphisms, and the third is a natural one, so the first

statement follows from the previous corollary.

The second statement is an easy consequence of the topological Riemann-Roch the-

orem (see again [9]), and of the definition of the equivariant elliptic Thom class. 0

Notice that, if Y is point, HO*,(Y) ,, so the S'-equivariant elliptic genus

of X is holomorphic around zero. Also, if we replace HO*,(-) = H*,(-) oqu] (9 c,O
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by HM~j (-) = H* (-) o®qu M(C), where M(C) is the ring of global meromorphic

functions on C, the same proof as above shows that the Sl-equivariant elliptic genus of

X is meromorphic in C. This proves PROPOSITION B stated in Section 2.

The local construction of elliptic pushforwards is thus completed. We want now to

assemble the pushforwards in a map of sheaves. The problem is that pushforwards do

not commute with pullbacks, i.e. if

f
Xa > ya

i Ii

XO > Y'3
9

is a commutative diagram where f, g are oriented maps between S'-manifolds, and i, j

are the inclusions, then it is not true in general that j*fE gE j*.

To see the extent to which this relation fails, consider e E (X'/XO) the S1 -equivariant

Euler class of the normal bundle of the embedding X "+ X', and similarly consider

e (Y'/Y,3). Denote by

Aa0 = es, (Xa/X0)- 1 - g*e (Yo/Y) ,

and assume for the moment that esi (X/X 3 ) is invertible, so that Ac3 exists. Then we

have the following standard result:

Lemma 5.5.

j* f,ELc =a g_(j*p .A

Proposition 5.6. Let f : X -+Y be an S' -map such that the induced maps f : X -

Y' and g : X = Xs 1 -+ Y+ - Ys' are oriented. Let U be a small neighborhood of a

but not containing a. Then Aap exists in H~1(X3) ®qu] O E(U - 8), and the following
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diagram is commutative:

f E
H*1 (X') Oq] Op (U - a) : H*1(Y') Oqu] OF (U - a)

z* *A"' E I j*
H*(X) Oqu] 0P_(U - a) - H*i(Y") Oqu] Oe (U - a)

H*j (X) Ocu] (E (U - -) H* (Y") Oqu] 0 (U - 13)

Here the notation "i* -Aj,,p" means: apply i* first, and then multiply the result with AO.

Proof. Denote by W = the normal bundle of the embedding X = XS1 -+ X'. Let us

show that, if a V U, then esi (W) is invertible in H* (X)3 ) 0qu] OE(U -a). Denote by wi

the nonequivariant Chern roots of W, and by mi the corresponding rotation numbers of

W (i.e. the weights of the Sl-action). Since X = XS', mi / 0. Also, the Sl-equivariant

Euler class of W is given by

esi(W) = (wi + miu) ... (w, + mru) = M . .mr (u + wi/mi) ... (u + wr/mr)

But wi are nilpotent, so esi (W) is invertible as long as u is invertible. Now a ( U

translates to 0 V U -a, which implies that the image of u via the map C[u] -+ OF (U -a)

is indeed invertible. To deduce now that eE (W), the elliptic S'-equivariant Euler class

of W, is also invertible, recall that esi (W) and esi (W) differ by a class defined using

the power series s(x)/x = 1 + a3x 2 + a5X4 +. - -, which is invertible for U small enough.

So A,, exists, and by the previous Lemma, the uppper part of our diagram is com-

mutative. The lower part is trivially commutative.

Now, while i* were essentially the gluing maps in the sheaf T = E*, (X), we think of

the maps i* - Aa, as giving a twisted sheaf, denoted by T[f]. T was obtained by gluing

the sheaves F over an adapted open cover (Ua)IEF. The gluing maps 0,a, were defined

in Section 3 as the composite of a few maps.
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Definition 5.7. The twisted gluing functions # are defined as the composition of the

following three maps

H*1 (Xa) Oqu} OF (U - a)

i*01

H* I(XV) Oqu OF (U - a)

H 1 (X13) oqu] Op-(U - 0)

H*i (X3) Oqu] Or-(U - 0)

where Ap~ = e 1 (X"/X)- 1 -f~ej 1 (Ya/YO). For explanations regarding the third map,

read Remark 3.6. q$, satisfy the cocycle condition, because if 3 and y are not special,

- = t*,, and as in the case of 00j the cocycle condition reduces to t*_ - = 1-
The sheaf E* (X)[f] is now defined by gluing the same sheaves Ta, but using the new

functions 0f].

Proposition 5.8. If f : X -+ Y is a map of compact Sl -manifolds such that the re-

strictions f : Xa -+ Y' are oriented Va E E, then the commutativity of the diagram in

Proposition 5.6 gives a map of coherent sheaves over E

f : E* 1(X)] -+ ES* (Y)

This is the Grojnowski pushforward of f in E*1 (-). It is functorial in a certain

sense (see [13]), and is a map of E*1 (Y)-modules, i.e.

fE(l - f*V) = E

6. RIGIDITY OF THE ELLIPTIC GENUS

As in the beginning of the previous section, let E = C/A be a nonsingular elliptic

curve over C together with a 2-division point. We saw that we can associate to this
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data a double cover of E, such that the Jacobi sine function s(x), which appears in

the definition of the elliptic pushforward, is an elliptic function with respect to .

In this section we discuss the rigidity phenomenon in the context of equivariant elliptic

cohomology. If X is a compact spin S'-manifold, a theorem of Edmonds (see [10]) says

that the fixed point submanifolds Xz' are oriented for all n E N. XS' is also oriented,

because the normal bundle of the embedding XS' -4 X has a complex structure. Since

X' is oriented Va E F, the map 7r : X -+ point satisfies the hypothesis of Proposition 5.8,
so we get a Grojnowski pushforward

7r. : E*,(X)["i -* E* (point) = (9e

We will see that the rigidity phenomenon amounts to finding a global (Thom) section

in the sheaf E* I(X)[7]. Since s(x) is not a well-defined function on E, we cannot expect

to find such a global section. However, if we take the pullback of the sheaf E*1 (X)[1r

along the covering map E - E, we'll show that the new sheaf has global section.

Convention. From this point on, all the sheaves T will be considered over F, i.e. we

will replace them by the pullback of T via the map F - E.

For our purposes, however, we need a more general version of E*1 (X) [".

Proposition 6.1. Let V be a spin S1 -vector bundle over the finite S1-CW complex X.

Let n E N. Then Vzn and Vs1 are oriented, and there exist oriented vector bundles

V/VS 1 and Vz/Vs' over XS' and V/VZn over XZn such that

V@xz- V/VZn; V V s1 () V/VS 1; Vn = s1 e Vzn Vs

as oriented bundles.

Proof. The decompositions of these three restriction bundles come from the fact that

the groups Zn in the first case, and S1 in the other two cases act on the fibers and

decompose them as representations into a trivial and nontrivial part.

Now we define orientations for the different bundles involved. Z preserves the spin

structure of V, so we can apply Lemma 10.3 from [6], and deduce that Vzn is oriented. (It
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is interesting to notice that Bott & Taubes prove this result at the level of generality that

we need, although they only use it in the special case when X is an S'-manifold, and V =

TX.) VXzI is oriented, so V/VZn gets an induced orientation. V/Vs1 has a complex

structure, because its rotation numbers are all nontrivial. However, for computational

reasons, we do not choose the complex structure on V/VS' where all rotation numbers

are positive, but we choose a complex orientation depending on n: namely one for which

rotation numbers m3 satisfy mn = nqj + r with 0 < r < a; if rj = 0 or rj = 1, we

can always arrange mj > 0 (thus fixing the complex structure), but for 0 < rj < n the
2

choice of mj is forced on us, and we may have mj < 0. Since V/VS is oriented, Vs'

gets an induced orientation. Now V2 's1 is oriented, because VZn is; so VZn/V' gets

an induced orientation.

Definition 6.2. As in Definition 5.7, we define 0[V1 as the composition of three maps,

where the second one is multiplication by Ao, = eE(Va/V)-1. (Vc /V is oriented as

in the previous Proposition.) #b( satisfies the cocycle condition, so by gluing the sheaves

Ta using #[V, we obtain a new sheaf which we denote by ES*1 (X) v].

Notice that, if we take the map 7r : X -+ point as above, for V = TX we have

E*,(X)[v] = E*, (X)[If]. We now proceed to prove THEOREM C.

Theorem 6.3. If V - X is a spin S'-vector bundle over a finite S'-CW complex,

then the element 1 in the stalk of E*1(X)[v] at zero extends to a global section, called

the Thom section.

Proof. To simplify notation, we are going to identify E with C/A, where A = Zw 1 + Zw 2

is a lattice in C. It is a good idea to think of points in E rather as points in C, and

of E*1 (X) as the pullback on C via C - C/A. Then we call a C C a division point if

there is an integer n > 0 such that na E A. The smallest such n is called the order of a.

Now E*, (X)[v] was obtained by gluing the sheaves T,, along the adapted open cover

(UQ)QEF. So to give a global section p of E*,(X)[v] is the same as to give global

sections pa, of T, such that they glue, i.e. #fpcp = po for any a and #3 with Ua n Uo $
0. From Definition 6.2, to give p is the same as to give p, C HO*, (Xa) so that

Z -e E $1(Vagy -1) = po, or i*p, - e 1 (V,/V 3)- 1 = t* (i the inclusion
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XO -+ X'). Because p is supposed to globalize 1, we know that po = 1. This implies

that po = t*eE1 (V/VO)- 1 for 3 in a small neighborhood of 0 E C.

In fact, it turns out that this formula for pO is valid for all 3 E C, as long as 3 is not

special. This means we have to check that pO = t*eE (V/V)- 1 exists in HO*,(XO)

as long as 3 is not special. 3 not special means X = XSe. Then consider the bundle

V/VS1 . Because VS 1 is fixed by the S'-action, V/Vs' decomposes into a direct sum

V(mi) e V(m 2 ) e ... e V(mr). mj are the weights of the Sl-action, and they are called

rotation numbers. We can choose all mj positive, which gives a complex structure on

V/VS', where g E S1 acts on V(m) by complex multiplication with g"'. Then

= t*je i (V/VO)-1 = fi s(X, + mj#)~1

where xi are the equivariant Chern roots of V/VS1 (see Definition A.3 in the Appendix).

This expression for pO exists in HO* 1 (X13) long as s(mj/) $ 0. Suppose s(mj,3 ) = 0.

Then mj# E A, so 3 is a division point, say of order n. It follows that n divides mj,

which implies XZn $ XS1 . But XO = XZn, since 3 has order n, so X $ 3 Xs1 i.e. 3 is

special, contradiction.

The only problem is what happens at a special point a E C, say of order n. We have

to find a class p, E HO*1 (Xa) such that 47pp = po, i.e. t* -a fta 'e E (Va/V3) ) =

t*eE(V/V')- 1 . Equivalently, we want a class p, such that i*paa = t*eE (V/VO)- 1

e 1 (V'/V), i.e. we want to lift the class t* eE (V/VO)-' -eE (V"/V) from HO*1 (XO)

to HO*1 (X'). If we can do that, we are done, because the class (P,),Cr is a global

section in E*1 (X)[v], and it extends po = 1 from the stalk at zero. So it only remains

to prove the following lemma, which is a generalization of the transfer formula of Bott

& Taubes. 0

Lemma 6.4. Let a be a special point of order n, and V -+ X a spin S 1 -vector bundle.

Let i : XS1 _> Xz- be the inclusion map. Then there exists a class p E HO* 1 (XZn)

such that

i*A = t*eEi(V/Vs1 . (z s)
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Proof. The main difficulty arises from the fact that XS' may have different connected

components, and so may Xzl. Otherwise, it is easy to lift the class t*ei(V/Vs')1

esi (VZn/VS') from XS' to XZn if we do not worry about signs. Indeed, we might

get different signs if we have several connected components of XS1 inside a connected

component of XZn; then the class pL, on XZn would not be well defined. This is where

the spin structure of V will make sure that the different signs are equal.

Fix N a connected component of Xs 1 . Also, let P be the connected component of

XZn which contains N. Denote by i : N "+ P. We will use the same notation for VZn

and VS 1 when we restrict them to P and N respectively. The action of Z on P is

trivial, so we get a fiberwise decomposition of Vjp by the different representations of Z,:

(1) p = VZn V/vZn Vzn e V(k) e V(n)
2O<k< n

Here VZn and V(i) are real vector spaces, and V(k) has a complex structure for which

a generator g = e2,i/' E Z4 acts by complex multiplication with gk. V(1) = 0 if n is

odd. Denote by V(K) = EO<k< V(k). Then we have the following decomposition

(2) V/VS1 = VZn/V 's EV(K)INV/VZ N

The orientations are chosen as follows: V is oriented by its spin structure. VZn, VS,

Vz/V s, V/Vs' have orientations as described in Proposition 6.1.

* If V(1) 4 0, choose the complex orientation of V(K) described above.

" If V(!) = 0, then V(K) = V/VZn, which is already oriented, so choose this

orientation for V(K).

All bundles appearing in 2 also have orientations coming from their complex structure

(they have nonzero rotation numbers). As a notational rule, we are going to use the

subscript "or" to indicate the "correct" orientation on the given vector space, i.e. the

orientation which is induced from the spin structure on V as in Proposition 6.1. When

we omit the subscript "or", we assume the bundle has the correct orientation. The sub-

script "cx" will indicate that we chose a complex structure on the given vector space.

This is only intended to make calculations easier. Here is a table with the bundles of
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interest:

bundle with the

correct orientation

(V/VSl)or

(VZ'/S 1 )or

V(K)or

i*(V(n)or)

bundle with the

complex orientation

(V/Vs')

(Vzn/Vs)

V(K)c x

(i*V(!2))Cz

sign difference between

the two orientations

(-1)o(K)

(1)0,(12)

From the decomposition in (2) under the correct and the complex orientations, we

deduce that

(3) (-1), = (- 1 )o(O)(- 1 )u(K)(_j)(!)

Now we want to show that there exists a class pp E HO*1 (P) such that

i*pp = t* esi(V/VS 1 ) .VI IN S y)IN -(4)

From the table we deduce the following formula

(5)

Now we calculate t*e E ((V/Vsl)z 1 . Since the bundle V/Vs' is complex over N,

which is a connected space with a trivial Sl-action, we can associate the weights of

the Sl-action: ml,... , mr, which are also called complex rotation numbers of the S1-

action. They need not be distinct. We write mj = qj -n + rj, with 0 < rj < n. Now the

rotation numbers fall into classes with respect to their remainder modulo n. Define for

all 0 K k n

Ik ={j E 1,... ,r |rj=k or n -k} .

E E ((V/ V S') CX) - Ita*esl (VlVsl)-' - (-1)0'ta*eslI N N
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Ik contains exactly the rotation numbers corresponding to the k'th term in the decom-

position of (V/Vsl)cx with respect to the Z,-action. We get the following formula:

te i((VIVS' -

(6) 1 s(xj + mja)- - J s(xj + mja)-1 - s(x- + m-a)-'
jEIo O<k<n/2 jEIn/ 2jEIk

Before we analyze each term in the above formula, recall that mj = qj - n + rj, with

0 < rj < n.

a) j E Io: Here we chose the complex structure (VZn/VS')Cx such that all mj > 0.

Then, since s(xj + mja) = s(xj + qjna) = cq s(xj), we have: HjCI0 s(xj + mja)-' =

ero 3 -1110 s(x,)-1 = eEo q . E7 (VZn/VS') -l cE-o qj (_1)E() . (VZn/VSi )1

So we get eventually

(7) H s(Xj + mja)f = ZEi0 qj (-i)'(0 ) -e 1 (Vor Vs 1 -1
jEIo

b) j E Ik, 0 < k < a. The complex structure on V(k) is such that g e2i/n E Zn

acts by complex multiplication with gk. Notice that in Porposition 6.1 we defined the

complex structure on V/VS1 so that for j E Ik, mj = nqj +k. g acts as g'm = gk, so the

complex structures on V(K) and i*V(K) are compatible. We have s(xj + m + ja) =

s(xj + qina + ka) = i s (xj + ka).

Consider pk the equivariant class on P corresponding to the complex vector bundle

V(k) with its chosen complex orientation, and the convergent power series s(x + ka)- 1 .

Then i*Pk = H, s(xj + ka)- 1. Define PK = HO<k<n = Pk- We obtain s(xj + mja) =

s(xj + qjna + ka) = E s (xj + ka), which implies

(8) H s(xj + mja)-l = E k,Ik q i* P .
k,JEIk

c) j E In/2. The complex structure on i*V(1) is the one for which all mj > 0. The

rotation numbers satisfy mj = qjn + 1, hence s (xj + mja) = cqs1 s(xj+ ). Now consider

p a the equivariant characteristic class on P corresponding to the real vector bundle V(i)
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with its correct orientation, and the convergent power series Q(x) = s(x + a)-'. Q(x)

satisfies Q(-x) = s(-x + !a)- 1 = -s(x - !Ic)1 = -es(x + a)-l = (-E)Q(x), hence,

according to Lemma A.8, i*p = (-L jEIk s(x,+ ga)-1, where this latter class

is calculated using the complex structure on i*V(1). Finally we obtain

(9) JJ s(xj + mj = En/2 (_ E)(2)

Now, putting together equations (3)-(9), and defining pp :1K kPfracn2, we have

proved that t* ei (V//VS -l1 - co(N) .e i(ZnVS')-1 . * o

(10) t*eSi(V/VS 1)-1 . Zn ys1) - ga(N) .g*

where

u(N) = qj+ q + Eqgj + (K) ±o .
I0 k,Ik In/2

Notice that c(N) is described in terms of rotation numbers mj of the S1 -vector bundle

(V/Vsl)cz. What if we consider instead m , the rotation numbers of (V/Vsl)or? First,

m are the same as m3 up to a sign (and a permutation). Write m = gn + r,

0 < rj< Z1. We have the following cases:

a) jEIo. If m = -mj, then qj = -qj, and the parity of a(N) doesn't change.

b) j E Ik, 0 < k < !. Then we cannot have m = -mi, because we chose 0 rj, r <
n
2

c) j E In/2. If m= -m, then m = -mj = -qjn - = -(qj + 1)n + 1, so

q= -(qj + 1), and the parity of u(N) changes.

Since the orientations of (V/Vs),. and (V/Vs1 )or differ by a parity of u(0) + u(K) +

r(n), we get

or (N) = + E+( qj+ q .
I0 kIk In/2
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In the next lemma we will show that, for N and N two different connected components

of XS' inside P, o-(N) and a(9 are congruent modulo 2, so the class 6,(N) . pp is well-

defined (independent of N). Now define

/ic Ea(N) .pp G HO* 1(XZn) = epHO* 1(P)
P

This is a well-defined class, and since we have equation (10), Lemma 6.4 is proved. l

Lemma 6.5. In the conditions of the previous lemma, o-(N) and a(N) are congruent

modulo 2.

Proof. The proof follows Bott & Taubes [6]. (Again they use the level of generality that

we need.) Denote by S 2 (n) the 2-sphere with the Sl-action which rotates S 2 n times

around the north-south axis as we go once around S1. Denote by N+ and N- its North

and South poles, respectively. Consider a path in P which connects N with N, and

touches N or N only at its endpoints. By rotating this path with the Sl-action, we

obtain a subspace of P which is close to being an embedded S 2 (n). Even if it is not,

we can still map equivariantly S 2 (n) onto this rotated path. Now we can pull back the

bundles from P to S2 (n) (with their correct orientations). The rotation numbers are

the same, since the North and the South poles are fixed by the S1 -action, as are the

endpoints of the path.

Therefore we have translated the problem to the case when we have the 2-sphere S 2 (n)

and corresponding bundles over it, and we are trying to prove that U(N+) = u(N-)

modulo 2. The only problem would be that we are not using the whole of V, but

only V/VS1 . However, the difference between these two bundles is Vs', whose rotation

numbers are all zero, so they do not influence the result.

Now Lemma 9.2 of [6] says that any even-dimensional oriented real vector bundle

W over S 2 (n) has a complex structure. In particular, the pullbacks of Vs', V(K),

and V(1) have complex structure, and the rotation numbers can be chosen to be the

m described above. Say the rotation numbers at the South pole are rfn* with the

obvious notation conventions. Then Lemma 9.1 of [6] says that, up to a permutation,
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m = n (q- and E gj dj* modulo 2. But this means that o(N+) = O -)

modulo 2, i.e. o-(N) =_ua(N) modulo 2. 0

Corollary 6.6. (The Rigidity theorem of Witten) If X is a spin manifold with an S1 -

action, then the equivariant elliptic genus of X is rigid i.e. it is a constant power series.

Proof. By the usual trick of lifting the Sl-action to a double cover of S1, we can make

the Sl-action preserve the spin structure. Then we will say that X is a spin S'-manifold.

At the beginning of this Section, we say that if X is a compact spin Sl-manifold, i.e.

the map 7r : X -+ point is spin, then we have the Grojnowski pushforward, which is a

map of sheaves

7rF : E* i (X)[ - E*1(point) = Or

The elliptic pushforward 7rF, if we consider it at the level of stalks at 0 E E, is nothing

but the elliptic pushforward in HO* -theory, as described in Corollary 5.4. So consider

the element 1 in the stalk at 0 of the sheaf E*1(X) = E* (X)[TX].

From Theorem 6.3, since TX is spin, 1 extends to a global section of E*, (X)[TX].

Denote this global section by boldface 1. Because 7rF is a map of sheaves, it follows

that 7rF(1) is a global section of E*1 (point) = OE, i.e. a global holomorphic function on

the elliptic curve E. But any such function has to be constant. This means that 7rF (1),
which is the equivariant elliptic genus of X, extends to 7rF(1), which is constant. This

is precisely equivalent to the elliptic genus being rigid. El

The extra generality we had in Theorem 6.3 allows us now to extend the Rigidity

theorem to families of elliptic genera. This was stated as THEOREM D in Section 2.

Theorem 6.7. (Rigidity for families) Let F -+ E -4 B be an S 1 -equivariant fibration

such that the fibers are spin in a compatible way, i.e. the projection map 7r is spin

oriented. Then the elliptic genus of the family, which is ,rF(1) E H*i (B), is constant as

a rational function in u (i.e. if we invert the generator u of Clu], over which H* (B)

is a module).

Proof. We know that the map

7rF: E*,1 (E)[7r -+ E* 1 (B)



42

when regarded at the level of stalks at zero is the usual equivariant elliptic pushforward

in HO*,(-). Now 7r,(1) E HO* I(B) is the elliptic genus of the family. We have

E*, (E)[7r E* (E)[T(F)], where r(F) -+ E is the bundle of tangents along the fiber.

Since -r(F) is spin, Theorem 6.3 allows us to extend 1 to the Thom section 1. Since

7rF is a map of sheaves, it follows that 7rF(1), which is the elliptic genus of the family,

extends to a global section in E*, (B). So, if i : BS - B is the inclusion of the fixed

point submanifold in B, i*7rF(1) gives a global section in E*(Bsi). Now this latter

sheaf is trivial as a sheaf of OF-modules, so any global section is constant. But i* is an

isomorphism in HO* 1 (-) if we invert u. El

We saw in the previous section that, if f : X -+ Y is an S'-map of compact S-

manifolds such that the restrictions f : X + Y' are oriented maps, we have the

Grojnowski pushforward

fF : E* (X)If - E*,(Y)

Also, in some cases, for example when f is a spin S'-fibration, we saw that E*1 (X)[ I

admits a Thom section. This raises the question if we can describe E*1 (X)[If] as a E*1

of a Thom space. It turns out that, up to a line bundle over 8 (which is itself E* 1 of a

Thom space), this indeed happens:

Let f : X -+ Y be an Sl-map as above. Embed X into an S'-representation W,

i : X - W. (W can be also thought as an Sl-vector bundle over a point.) Look at the

embedding f x i : X -+ Y x W. Denote by V = v(f), the normal bundle of X in this

embedding (if we were not in the equivariant setup, v(f) would be the stable normal

bundle to the map f).

Proposition 6.8. With the previous notations,

E*l (X)[Ifl E* (DV, SV) ® E* (DW, SW)-1

DV, SV are the disk and the sphere bundles of V, respectively.



43

Proof. From the embedding X -+ Y x W, we have the following isomorphism of vector

bundles:

TX eV c f*TY EW.

So, in terms of S 1 -equivariant elliptic Thom classes we have

esi (V/V 3 ) = eEi (Xa /Xf)-l -f *es (Yc/Y) - esi (Wa/W4)

Multiplication by the equivariant

following commutative diagram

H*1 (X') Oqu] OF (U - a)

Ii*

H*i (X") ®gqt] (9,(U - a)

H*1 (X 3 ) OqgL] (e(U - 13)

elliptic Thom class <E (Va) on each stalk gives the

H* (Xa) Oqu] 09-(U - a)

i*E-ei(Va/V )

H* (X'3 ) Oqu] 0(U - a)

H*, (XO) Ogu rs4 (U -)

This gives an isomorphism of sheaves

E*1 (DV, SV) c E* (X)[1] 9 E* (DW, SW)

The latter sheaf E*1 (DW, SW) has stalks HO* (DWa, SWa) a HO*1 (point) = OC,0,
so it is invertible. In fact, we can identify it by the same method we used in Proposi-

tion 3.12. [-I

This suggests that we can define Gysin maps if we compose the Grojnowski pushfor-

ward with multiplication by a Thom section. They are well-defined and functorial again

up to a line bundle.

APPENDIx A. EQUIVARIANT CHARACTERISTIC CLASSES

The results of this section are well-known, with the exception of the holomorphicity

result Proposition A.5.
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Let V be a complex n-dimensional Sl-equivariant vector bundle over an S'-CW

complex X. Then to any power series Q(x) E Cjx] starting with 1 we are going

to associate by Hirzebruch's formalism (see [15]) a multiplicative characteristic class

pQ(V)s1 E H*i*(X). (Recall that H*(X) is the completion of H*j1(X).)

Consider the Borel construction for both V and X: VSi = V x S1 ES' -+ X x si ES' =

XSi. Vsi -+ Xsi is a complex vector bundle over a paracompact space, hence we have

a classifying map fv : XS, -+ BU(n). We know that the image via f * of the universal

j'th Chern class cj E H*BU(n) = C[ci,... , c,) is the equivariant j'th Chern class of

V, cj(V)si. Now look at the product Q(Xi)Q(x 2 ) ... Q(X,). It is a power series in

xi, ... , x, which is symmetric under permutations of the xj's, hence it can be expressed

as another power series in the elementary symmetric functions a3 = (,... , x"):

Q(xi) - - -Q(xn) = PQ(O'i, . .. , Orn) .

Notice that PQ(ci,... , cn) lies not in H*BU(n), but in its completion H**BU(n).

The map f* extends to a map H**BU(n) -+ H**(Xsi).

Definition A.1. Given the power series Q(x) E C~xj and the complex S'-vector bundle

V over X, there is a canonical complex equivariant characteristic class pQ(V)s1 G

H**(Xs1), given by

Q(V)sI := PQ(c,(V)sI,--- ,cn(V)si) = fCPQ(c, ... ,c)

Remark A.2. If Tn + BU(n) is a maximal torus, then then H*BT = C[xi, ... , Xnb

and the x 3 's are called the universal Chern roots. The map H*BU(n) -+ H*BT is

injective, and its image can be identified as the Weyl group invariants of H*BTn. The

Weyl group of U(n) is the symmetric group on n letters, so H*BU(n) can be identi-

fied as the subring of symmetric polynomials in C[xi,... , xn]. Similarly, H**BU(n)

is the subring of symmetric power series in Clxi, ... , Xn] Under this interpreta-

tion, c3 = a (xi,... , xn). This allows us to identify Q(xi) ... Q(xn) with the element

PQ (ci,.. , cn) E H**BU(n).
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Definition A.3. We can write formally pQ(V)s1 = Q(xi) -'' Q(x2 ). x1, ... , Xn are

called the equivariant Chern roots of V.

We want now to show that the class we have just constructed, pQ (V)si, is holomorphic

in a certain sense, provided Q(x) is the expansion of a holomorphic function around zero.

But first, let us state a classical lemma in the theory of symmetric functions.

Lemma A.4. Suppose Q(y1,... ,yn) is a holomorphic (i.e. convergent) power series,

which is symmetric under permutations of the yj's. Then the power series P such that

Q (Y ,.. ,yn) = P(O-1(Yi,.... , yn),.. o- 1 n(y1,.. ,yn)) ,

is holomorphic.

We have mentioned above that IpQ(V)s1 belongs to H* (X). This ring is equivariant

cohomology tensored with power series. It contains HO*1 (X) as a subring, correspond-

ing to the holomorphic power series.

Proposition A.5. If Q(x) is a convergent power series, then pQ(V)s1 is a holomorphic

class, i.e. it belongs to the subring HO*1 (X) of H* (X).

Proof. We have pQ(V)si = P(c1(V)si, - - - , cn(V)si), where we write P for PQ.

Assume X has a trivial S'-action. It is easy to see that H*1 (X) = (H 0 (X) Or Cu])E

nilpotents. Hence we can write cj(E)si = fj + aj, with fj c H0 (X) oc C[u], and aj

nilpotent in H*i (X). We expand pQ(V)s1 in Taylor expansion in multiindex notation.

We make the following notations: A = (A, - - - ,An) E Nn, Al = A1 + - - - + An, and

aA = af ... an. Now we consider the Taylor expansion of pQ(V)si in multiindex

notation:

IpQ(V)si = P(... , c (V)si,-) = lA .,, ... )-a

This is a finite sum, since aj's are nilpotent. We want to show that pQ(V)s1 E HO*1 (X).

a, lies in HO*,(X), since it lies even in H*,(X). So we only have to show that

(f... ,f...) lies in HO*, (X).



46

But fj E H0 (X) Oc C[u] = C[u] e ... ED C[u], with one C[u] for each connected

component of X. If we fix one such component N, then the corresponding component

f N) lies in C[u]. According to Lemma A.4, P is holomorphic around (0,... , 0), hence

so is '. Therefore A N)(u),...) is holomorphic in u around 0, i.e. it lies in
acw. 3,

O(c,o. Collecting the terms for the different connected components of X, we finally get

0jA\p
aAp .. ,j fy... ) E Oc~o E) -. -E-D OC,O = H (X) OC oc~o-

But H0 (X)0c Oc,o ; H* (X)@ OC O = Hi(X)c {u Oc,o = HO*1(X), so we are done.

If the S'-action on X is not trivial, look at the following exact sequence associated

to the pair (X, Xs'):

0 -+ T -+ H1*(X) H 1 (Xs') J H+ 1g(X, Xs) 7

where T is the torsion submodule of H , (X). (The fact that T = ker i* follows from

the following arguments: on the one hand, ker i* is torsion, because of the localization

theorem; on the other hand, H*1 (Xs 1 ) is free, hence all torsion in H*1 (X) maps to zero

via i*.) Also, since T is a direct sum of modules of the form C[u]/(u"), it is easy to see

that

T Ocu] Oco T & T Ocu] Clu.

Now tensor the above exact sequence with Oc,o and C[uj over C[u]:

o >p- T C >HO*, 1(X) > HO* 1(XS1) >HO*(

fs ft
0 : T HPj1 (X) HPj1 (Xsl) HP*-,(XXs1)

We know a := pQ(V)s E HPji(X). Then 0 := i*pQ(V)sl = i*a was showed previ-

ously to be in the image of t, i.e. 3 = t3. 6,3 = 6i*a = 0, so ft/ = 0, hence Jf3 = 0. Thus

E Im i*, so there is an & E HO*,(X) such that 3 = i*&. s& might not equal a, but
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i*(a-&) = 0, so a-& E T. Consider +(a-&) E HO*,(X). Now s(&+(a-&) = a,

which shows that indeed a E Im s = HO*I(X). E

There is a similar story when V is an oriented 2n-dimensional real S'-vector bundle

over a finite S 1-CW complex X. We classify VSi -+ XSi by a map fv : XSi -+ BSO(2n).

H*BSO(2n) = C[pi,... ,pn]/(e2 -Pn), where pj and e are the universal Pontrjagin and

Euler classes, respectively. The only problem now is that in order to define characteristic

classes over BSO(2n) we need the initial power series Q(x) C Cjx] to be either even or

odd:

Remark A.6. As in Remark A.2, if Tn - BSO(2n) is a maximal torus, then the

map H*BSO(2n) -+ H*BT" is injective, and its image can be identified as the Weyl

group invariants of H*BTn. The Weyl group of SO(2n) is the semidirect product of the

symmetric group on n letters with Z2, so H*BSO(2n) can be identified as the subring

of symmetric polynomials in C[li,... , Xn] which are invariant under an even number

of sign changes of the xj's. A similar statement holds for H**BSO(2n). Under this

interpretation, pj = oj(xi,... , X2) and e = Xi ... Xn.

So, if we want Q(X1 ) - - -Q(Xn) to be interpreted as an element of H**BSO(2n), we

need to make it invariant under an even number of sign changes. But this is clearly true

if Q(x) is either an even or an odd power series.

Let us be more precise:

a) Q(x) is even, i.e. Q(-x) = Q(x). Then there is another power series

S(x) such that Q(x) = S(x2 ), SO Q(X 1 ) ... Q(Xn) =S(x) - S(4l) =

PS(... , o-j(X2I,... ,2%),...) =Ps(-. - pj, ...-)

b) Q(x) is odd, i.e. Q(-x) = -Q(x). Then there is another power series R(x)

such that Q(x) = xT(x 2 ), so Q(Xi) ... Q(Xn) = x 1 ... xnT(X2) ... T(x2) =

Definition A.7. Given the power series Q(x) E Cjxj which is either even or odd,

and the real oriented Sl-vector bundle V over X, there is a canonical real equi-

variant characteristic class pQ(V)s1 E Hj*(X), defined by pulling back the element

Q(X 1 ) ... Q(Xn) E H**BSO(2n) via the classifying map fv : Xsi -+ BSO(2n).
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Proposition A.5 can be adapted to show that, if Q(x) is a convergent power series,

pQ(V)s1 actually lies in HO*, (X).

The next result is used in the proof of Lemma 6.4.

Lemma A.8. Let V be an orientable S'-equivariant even dimensional real vector bundle

over X. Suppose we are given two orientations of V, which we denote by Vor1 and Vor 2 -

Define o = 0 if Vor = Vor 2 , and o- = 1 otherwise. Also, suppose Q(x) is a power series

such that Q(-x) = aQ(x), where a = ±1. Then

PQ(Vorn) = aYpQ(Vor2 )-

Proof. a) If Q(-x) = Q(x), pQ(V) is a power series in the equivariant Pontrjagin

classes pj(V)si. But Pontrjagin classes are independent of the orientation, so

PQ(Vor1) = PQ(Vor2)-

b) If Q(-x) = -Q(x), then Q(x) = xQ(x), with Q(-x) = Q(x). Hence pIQ(V) =

esi (V) - p,(V). e(V)si changes sign when orientation changes sign, while P((V)

is invariant, because of a).
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