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Abstract

The category of Segal spaces was proposed by Charles Rezk in 2000 as a suit-
able candidate for a model category for homotopy theories. We show that Quillen
functors induce morphisms in this category and that the morphisms induced by
Quillen pairs are “adjoint” in a useful sense. Quillen’s original total derived func-
tors are then obtained as a suitable localization of these morphisms within the
category of Segal spaces.

As an application, we consider a construction of “homotopy fibres” within a
homotopy theory modelled by a Segal space and show that the homotopy fibre of
a map is preserved by a localization which remembers only the homotopy category
plus the automorphism groups of objects.
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Chapter 1

Preliminaries

We will use this chapter to reiterate basic definitions which can be found in [Rezk].

We will then go on to establish some essential technical results which will be re-

quired in subsequent chapters.

1.1 Notation and nomenclature

By a “space” we will always mean a simplicial set, which will almost always be

Kan fibrant. The model structure on bisimplicial sets will be the Reedy–Kan model

structure; thus we will generally only want to consider one of the simplicial direc-

tions levelwise, justifying our preferred term “simplicial space”. In conformity

with this point of view, note the distinction between a constant simplicial space

(one in which all the face and degeneracy maps between levels are isomorphisms)

and a discrete simplicial space (one in which each level is the union of points).

The ith simplicial level of a simplicial space X is denoted Xi. Thus the 0th level

(the “space of objects”, if X is a Segal space which we are thinking of as behav-

ing like a category-object in spaces) will be X0; if we wish to refer instead to the

“underlying discrete category” which is the simplicial set obtained by taking the 0-

simplices of each simplicial level, we will write instead |X |. (Here |(−)| is intended

to suggest an extension of the notion of the right-exact functor “set of points”, not

the left-exact functor “realization”.) We take the attitude that an “element” of an
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object is a map from the terminal object, so when we write x ∈ X where X is a space

we understand that x is an 0-simplex. We will try not to write x ∈ X where X is a

simplicial space, but if we were to, it would mean the same as x ∈ X0.

Our guiding principles of notation will be to use script capitals for simplicial

spaces. Lower-case Latin, resp. Greek letters, will denote points of the zeroth,

resp. first, simplicial level of a simplicial space; since we will generally be trying

to think of a simplicial space, particularly a Segal space, as some kind of gener-

alized category we may refer to these as internal “objects”, resp. “morphisms”.

Lower-case bold Latin and Greek letters will correspondingly denote “diagrams”

and “natural transformations” indexed by a simplicial space. Thus bold Latin let-

ters will represent maps between simplicial spaces: a “natural transformation” will

be defined below to be a particular kind of map, so notational confusion may still

ensue.

We will tend to refer to categories as “discrete categories” to distinguish them

from our simplicial spaces. When we need to notate discrete categories and func-

tors we will use respectively script capitals and roman capitals. If that isn’t con-

fusing enough, a few “small” simplicial spaces which will be used for indexing

diagrams will also be indicated by roman capitals, in order to be consistent with

the notation in [Rezk].

We will not distinguish between a category and its nerve. All our model cate-

gories have functorial cofibrant and fibrant replacements.

1.2 Basic definitions

We here recapitulate some fundamental definitions and results, most of which can

be found in [Rezk].

By F(n) and G(n) we will mean the simplicial spaces which corepresent re-

spectively the two functors F(n)(X ) = Xn and G(n)(X ) = X1 ×X0
· · ·×X0

X1 (the

product having n factors). We will sometimes denote F(0) by ∗. We will also oc-

casionally use di: F(n − 1) → F(n) the map of simplicial spaces induced by the
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corresponding face map. E will be the nerve of the category which contains two

objects and has exactly one morphism between every pair of objects, viewed as a

discrete simplicial space. (Thus En is the discrete space with 2n+1 points). When

we need the equivalent of F(n) for the other simplicial direction—that is, the con-

stant simplicial space with value the n-simplex—we will call it ∆(n).

Definition. If X and Y are simplicial spaces, then:

• X × Y is the usual Cartesian product on bisimplicial sets, that is, the level-

wise Cartesian product of sets in both simplicial directions.

• MapSS(X ,Y) is the space whose i-simplices are maps X ×∆(i)→ Y .

• YX is the simplicial space whose jth simplicial level is MapSS(X × F(j),Y).

This is a Cartesian closure for the category of simplicial spaces.

• X op, the opposite simplicial space is the usual opposite of a simplicial object,

that is, that induced by the involution of the simplex category ∆ which inter-

changes di, dn−i: [n]→ [n+ 1] (and hence also si, sn−i: [n]→ [n− 1]).

Definition. A Segal space is a Reedy–Kan fibrant simplicial space which is local

with respect to G(i) ↪→ F(i) for each i ≥ 1. A complete Segal space is a Segal space

which additionally is local with respect to the inclusion (of either point) ∗ ↪→ E.

Definition. Let X be a Reedy fibrant simplicial space and let Y ⊆ X0 be a (Kan)

fibrant subspace. We define the simplicial subspace induced by Y to be the simplicial

subspace Y ⊆ X where each Yk = (
∏

0≤i≤k d
k
i )

−1(Y×Y× · · ·×Y), the dk
i denoting

the (k+ 1) possible k-fold face maps Xk → X0. (This is a right Kan extension of

Y ↪→ X0 to the category of simplicial spaces over X .) We say that a simplicial

subspace Y ⊆ X is full if Y is induced by some subspace of X0.

Proposition. In the situation above, if X is a Segal space then so is Y . If in addition

Y ↪→ X0 is a homotopy monomorphism (that is, an inclusion of path-components up to

homotopy, see [Rezk §12.2]) then if X is a complete Segal space then so is Y .
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Proof. The matching map Yn ! LnY• in the Reedy fibrancy condition is (for each

n) a pullback of the corresponding map for X , and hence is a fibration because

the latter is. Similarly the map Yn
∼
! Y1 ×Y0

Y1 ×Y0
· · ·×Y0

Y1 in the Segal space

condition is a pullback of the corresponding map for X , and hence is an acyclic

fibration for the same reason.

If Y ↪→ X0 is a homotopy monomorphism then since X is Reedy fibrant, so is

every in:Yn ↪→ Xn. Now we have i1s
Y
0 = sX0 i0 where i0, i1 and sX0 are homotopy

monomorphisms and hence so is sY0 . Thus Y is a complete Segal space.

We now give some definitions and results, mostly from [Rezk], motivated by

our intention to treat Segal spaces as some kind of “category up to homotopy”.

Definition. If X is a simplicial space and x, y ∈ X0, then the (internal) mapping space

from x to y is given by the double fibre mapX (x, y) : = (d0 × d1)
−1(x, y) ⊆ X1. We

may refer to points of this space as (internal) morphisms from the (internal) object x

to y.

Definition. If X is a Segal space, x, y ∈ X0, φ ∈ mapX (x, y) and ψ ∈ mapX (y, z)

then the space of compositions of φ and ψ is the double fibre of ψ × φ in d2 ×

d0:X2
∼
! X1 ×X0

X1. A composite of φ and ψ, denoted ψ ◦ φ, is any element of

the image of this space under d1. Since the space of compositions is always con-

tractible, any two composites of the same maps are homotopic, that is, lie in the

same component of mapX (x, z). We say φ is a homotopy equivalence if it has both a

left inverse (that is, some ψ such that there is a composition ψ ◦φ ≃ s0d0φ) and a

right inverse (guess). We say φ is strictly invertible if the corresponding morphism

of Segal spaces F(1)→ X factors through F(1) ↪→ E.

Proposition. If X is a Segal space, then:

• the homotopy type of mapX (x, y) depends only on the choice of component of (x, y) ∈

X0 × X0.

• choosing a lift of d2 × d0:X2
∼
! X1 ×X0

X1 and applying d1 gives a map of spaces

mapX (x, y)× mapX (y, z)→ mapX (x, y),
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the homotopy type of which does not depend on the choice of lift.

Proof. See [Rezk §5].

The following important result gives the relation between homotopy equiva-

lences and strictly invertible morphisms:

Theorem. The inclusion (of subspaces of X1) of the space of strictly invertible morphisms

into that of homotopy equivalences is a weak equivalence. If φ, ψ are homotopic and φ is a

homotopy equivalence, then so is ψ.

Proof. See [Rezk §11].

1.3 Diagrams indexed by Segal spaces

In this section we will prove some essential technical lemmas that will enable us

to treat maps between Segal spaces as functors and to define transformations be-

tween them. For example, we will need to verify that the vertical composition of

“natural transformations” and the inverse of “natural homotopy equivalences” are

suitably coherent.

Definition. If f, g:X → Y are maps of simplicial spaces then a natural transfor-

mation τ: f ⇀ g is a map τ:X × F(1) → Y satisfying τ ◦ (X × d0) = f and τ ◦

(X × d1) = g. If τx is a homotopy equivalence for every x ∈ X0 then we say

τ is a natural transformation through homotopy equivalences. If f, g,h:X → Y and

α: f ⇀ g, β: g ⇀ h, γ: f ⇀ h, then a natural (vertical) composition κ:β ◦ α ≃ γ is

a map κ:X × F(2) → Y satisfying with the obvious notation κ ◦ (X × d2) = α,

κ ◦ (X × d0) = β, κ ◦ (X × d1) = γ. In a similar way, a natural n-fold composition

of τi: fi−1 ⇀ fi, 1 ≤ i ≤ n is a map κ:X × F(n) → Y whose restriction to the

ith 1-face of F(n) in the obvious sense is τi. A homotopy between f and g is a map

X × ∆(1) → Y , with the obvious condition on the endpoints. If such a map exists

then f and g are homotopic.
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In order to manipulate maps between Segal spaces, it would be nice to know,

in particular—since composition of “morphisms” is not unique—that one can al-

ways find a natural vertical composition of two “natural transformations” (albeit

not uniquely determined.) The following lemma shows that this is true when the

target is a Segal space.

Invaluable Lemma. If X is a simplicial space and Y is a Segal space, then any map

X ×G(n)→ Y factors through the natural inclusion X ×G(n) ↪→ X × F(n).

Proof. It would suffice that X × G(n) → X × F(n) were an acyclic cofibration in

Rezk’s “Segal space model category structure”, in which Y is a fibrant object. But

this is immediate from compatibility of this model structure with the cartesian

closed structure [Rezk §2.5, §7.1].

Finally, we prove a coherent version of the theorem ending the previous section,

which related homotopy equivalences to strictly invertible morphisms:

Indispensable Lemma. Let f, g:X → Y be morphisms of Segal spaces. Suppose ε: f⇀

g is a natural transformation such that εx ∈ Yhoequiv for all x ∈ X0. Then:

(i) there is ε̃:X ⇀ Y homotopic to ε such that ε̃ is a transformation through strictly

invertible morphisms;

(ii) there is a natural transformation ε−1: g⇀ f such that compositions exist ε−1 ◦ ε ≃

s0f and ε ◦ ε−1 ≃ s0g; and

(iii) if Y is complete then f and g are homotopic.

Proof. Define the simplicial space YHoequiv by (YHoequiv)i = (YF(i))hoequiv. Notice

that (YF(i))hoequiv ⊆ (YF(i))1 = (YF(1))i so YHoequiv includes into YF(1). Moreover,

since (YHoequiv)i consists precisely of those components of (YF(1))i whose 0-faces

lie in (YHoequiv)0 = Yhoequiv, we find that YHoequiv is a full subspace of YF(1), and

in particular is a Segal space. Moreover, YE ↪→ YF(1) factors through YHoequiv ↪→

YF(1), and applying [Rezk] Theorem 6.2 to each simplicial level, we find that the

inclusion ιY :YE ↪→ YHoequiv is a levelwise weak equivalence, which is a Reedy
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weak equivalence between Reedy cofibrant–fibrant objects and hence a homotopy

equivalence.

Now consider ε as a mapX → YF(1). By hypothesis ε factors as X
ε ′

→ YHoequiv ↪→

YF(1). Then we can find ρ:X → YE with ιYρ homotopic to ε ′ via h:X × ∆(1) →

YHoequiv. We may not have diιYρ equal to diε
′ (i = 0, 1), but they will be homotopic

via dih. This latter is a homotopy X × ∆(1) → Y : to get a natural transformation

through strictly invertible morphisms, take the homotopy lift in:

X −−−−→
ιYρ

YE

i0

⏐⏐⏐# ∼
↗

···
↗ ⏐⏐⏐#

⏐⏐#d0 × d1

X ×∆(1) −−−−→
(d0 × d1)h

Y × Y .

and define ε̃:X → YE to be this lift restricted to the vertex 1 ∈ ∆(1).

Parts (ii) and (iii) follow immediately.

Part (ii) of the preceding lemma justifes the notation τ−1, which we will use in

the sequel when τ is a natural transformation through homotopy equivalences: it

denotes any choice of inverse, just as ◦ denotes any choice of composite.
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Chapter 2

Adjunctions for Segal spaces

In this chapter we will define an “adjunction” between maps of Segal spaces and

prove some desirable consequences of this definition.

Definition. A Segal space adjunction is a pair of Segal space morphisms X
f
"
g
Y

together with natural transformations η: 1X ⇀ gf and ε: fg ⇀ 1Y , such that there

exist natural compositions ρ: gε ◦ ηg ≃ 1g and λ: εf ◦ fη ≃ 1f.

The adjoint of a morphism, if it exists, is unique up to homotopy:

Proposition. Let f:X → Y be a morphism of Segal spaces where X is complete. If

(f, g,η, ε) and (f, g ′,η ′, ε ′) are adjunctions, then g, g ′:Y → X are homotopy equivalent.

Proof. We will show that g ′ε ◦ η ′g: g ⇀ g ′ and gε ′ ◦ ηg ′: g ′ ⇀ g are mutual ho-

motopy inverses, and then the fact that they are equivalences will follow from

completeness of X .

The squares in the diagram below commute up to homotopy by naturality; ap-

plying gλ ′g and then ρ to the toprightmost path through the diagram, this shows

that some-hence-every choice of quadruple composite gε ′ ◦ ηg ′ ◦ g ′ε ◦ η ′g is ho-

motopic to the identity transformation of g. A similar argument with the primes

redistributed shows the same for the other composite, thus establishing the propo-

sition.
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g −−−−→
ηg

gfg

η ′g

⏐⏐⏐# gfη ′g

⏐⏐⏐#

g ′fg −−−−→
ηg ′fg

gfg ′fg −−−−→
gε ′fg

gfg

g ′ε

⏐⏐⏐# gfg ′ε

⏐⏐⏐# gε

⏐⏐⏐#

g ′ −−−−→
ηg ′

gfg ′ −−−−→
gε ′

g

From this proof of uniqueness of right adjoints one can easily deduce unique-

ness of left adjoints by taking opposite Segal spaces: it is easy to see that (−)op

takes right adjoints into left adjoints and vice versa.

The uniqueness of adjoints will be important in chapter 5. In the remainder

of this chapter we will relate adjunctions of Segal spaces to adjunctions on their

homotopy categories which induce weak equivalences of mapping spaces. In par-

ticular we will see that imposing an extra condition on our adjunctions, analogous

to that which characterizes equivalences among adjunctions of discrete categories,

will give precisely those adjunctions which are mutually inverse pairs of “Dwyer–

Kan equivalences”, defined in [Rezk] as morphisms of Segal spaces which induces

equivalence both of homotopy categories and of corresponding mapping spaces.

Proposition. Let L be a localization of the model category of Segal spaces which is com-

patible with the cartesian closure ([Rezk §2.5]). Then a Segal space adjunction X
f
"
g
Y

induces adjunction between the localized maps LX
Lf
"
Lg

LY .

Proof. Let Lf and Lg be the functorial localizations of f, g. Now writing H for

F(0), F(0), we have by compatibility that X × F(1),X×H LX ×H ↪→ LX × F(1) is
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an L-equivalence. Hence we can define Lη by taking the homotopy extension in

X × F(1),X×H LX ×H −−−−→ LX
⏐⏐⏐#

↗
···
↗ ⏐⏐⏐#

⏐⏐#

LX × F(1) −−−−→ ∗

where the top map is η , (idX , (Lg)(Lf)). We form Lε in the same way.

To extend λ, let us define M(2) to be the simplicial space corepresenting the

functor X -→ M2X = lim(X1 × X1 × X1
→→ X0 × X0 ×X0) which gives the second

matching space of X . This time we will be taking the extension in

X × F(2),X×M(2) LX ×M(2) −−−−→ LY
⏐⏐⏐#

↗
···
↗ ⏐⏐⏐#

⏐⏐#

LX × F(2) −−−−→ ∗

where the map LX ×M(2) → LY is defined by gluing together the three maps

LX × F(1) → LY given by (Lε)(Lf), Lf ◦ prLX and (Lf)(Lη), and this map is then

glued with λ to give the top map in the diagram. Again the left vertical arrow is a

cofibration which is an L-equivalence by compatibility, so the homotopy extension

gives a suitable Lλ. We obtain Lρ similarly.

Corollary. A Segal space adjunction X
f
"
g
Y induces an adjunction (in the usual sense)

hoX
ho f
"
ho g

hoY .

Proof. Using the results of chapter 4, this is just the preceding Proposition applied

to the localization LS considered there. Alternatively, it is easy to prove this state-

ment directly by emulating the proof of the Proposition using the functor ho in

place of the localization.

Corollary. Let (f, g,η, ε) be a Segal space adjunction. Then η and ε are both transfor-

mations through homotopy equivalences iff f is a Dwyer–Kan equivalence (hence also iff g
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is).

Proof. (⇒) Localize in the complete Segal space model structure: by the Proposi-

tion, this gives an adjunction (f ′, g ′,η ′, ε ′). Then η ′ and ε ′ are transformations

through homotopy equivalences, since everything in their image is homotopic to

something in the image of η and ε respectively, But applying the Indispensable

Lemma shows that the localized maps are inverse homotopy equivalences of Segal

spaces, so the original f and g were also weak equivalences in the localized model

structure. Hence by [Rezk] Theorem 7.7, f and g are Dwyer–Kan equivalences.

(⇐) By Rezk’s definition of Dwyer–Kan equivalence, the induced adjunction on

homotopy categories is an equivalence. Hence the images of η and ε in the homo-

topy category are natural isomorphisms, so η and ε were transformations through

homotopy equivalences.

Proposition. A Segal space adjunction X
f
"
g
Y induces mutually inverse classes of ho-

motopy equivalences

♭: mapY (fa, b) −→ mapX (a, gb) and ♯: mapX (a, gb) −→ mapY (fa, b)

for each a ∈ X0, b ∈ Y0.

Proof. Let us use the notation mapX (x, y, z) := (d1d2, d0d2, d0d0)
−1(x, y, z) for x, y, z ∈

X0, that is, mapX (x, y, z) ⊂ X2 is the set of compositions of pairs of maps x→ y→

z; and the still more ad hoc convention that for any given m ∈ mapX (x, y) we write

mapX (xmy, z) := mapX (x, y, z)∩ d−1
2 m, the set of compositions x

m→ y→ z.

Note that d0: mapX (xmy, z) → mapX (y, z) is an acyclic fibration because it is

the pullback of one:

mapX (xmy, z) −−−−→ X2

∼

⏐⏐⏐#
⏐⏐# ∼

⏐⏐⏐#
⏐⏐#

mapX (y, z) −−−−→
m×−

X1 ×X0
X1
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Thus we may take ♭ by choosing any lifting

♭: mapY(fa, b)
g
→ mapX (gfa, gb)

∼
# mapX (aηagfa, gb)

d1→ mapX (a, gb)

and similarly for ♯ we have

♯: mapX (a, gb)
f→ mapY(fa, fgb)

∼
# mapY(fa, fgbεbb)

d1→ mapY(fa, b).

That ♯♭ is homotopic to the identity follows by considering the following dia-

gram:

map(gfa, gb) ←−
g

map(fa, b) −→
εs0

map(fgfaεfafa, b)

∼ ↗↗ f

⏐⏐⏐# εs1

⏐⏐⏐#

⏐⏐⏐# ↖↖ ∼

map(aηagfa, gb) map(fgfa, fgb) ←−←−
∼

map(fgfa, fgbεbb) −→ map(fgfa, b) map(fafηafgfaεfa
fa, b)

⏐⏐⏐# f↘ ∼

$⏐⏐⏐

$⏐⏐ ∼

$⏐⏐⏐

$⏐⏐ ∼

$⏐⏐⏐

$⏐⏐ ↙

map(a, gb) map(fafηafgfa, fgb) ←−←−
∼

map(fafηafgfa, fgbεbb) −→ map(fafηafgfa, b)

f↘
⏐⏐⏐#

⏐⏐⏐#

⏐⏐⏐#

map(fa, fgb) ←−←−
∼

map(fa, fgbεbb) −→ map(fa, b)

Here the composite ♯♭: map(fa, b) → map(fa, b) is defined to be that around the

left-hand edge of the diagram from top to bottom, choosing any lifts through the

acyclic fibrations. By properties of Segal spaces and by naturality of ε the diagram

is homotopy commutative and so this composite is homotopic to that along the

right-hand edge of the diagram. But the latter factors through the internal triple

composition map

d1d1 = d1d2: map(fafηafgfaεfa
fa, b)→ map(fa, b),

and if one were to replace this by d0d0 = d0d1, the face map which simply extracts

the last edge, one would instead get the identity as composite. So it suffices to
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show that d1d1 ∼ d0d0. But these maps factor as

map(fafηafgfaεfa
fa, b)

∼
! map(fa, b)

∼
# map(fafηafgfa

λa

εfa
fa, b)

d1→ map(faidfa
fa, b)→→ map(fa, b)

where the subscript λa denotes restriction to d−1
3 λa, and with the rightmost arrow

being d0 and d1 respectively. These latter are homotopic since s0: map(fa, b) →

map(faidfa
fa, b) is a homotopy inverse to each of them.

The proof for ♭♯ is similar.
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Chapter 3

Derived Segal morphisms

The “classification diagram” construction N associates a simplicial space to any

category with weak equivalences. However, a functor between such categories

need not give a morphism between the associated simplicial spaces except in the

very special case where the functor preserves weak equivalences.

The aim of this chapter is to show, firstly, that a Quillen functor between model

categories induces (up to homotopy) a map between their classification diagrams,

and secondly, that the maps so induced by a Quillen pair of adjoint functors are

themselves adjoint in the sense defined in the previous chapter. We will see that

this can be viewed as a generalization of Quillen’s construction of the total derived

functor of a Quillen functor ([Qui §I.4]).

Proposition 1. (compare [Qui] §I.4, Proposition 1) Let F: C → |B| be a map of simplicial

sets, where C is a model category and B is a Segal space. Suppose that F carries weak

equivalences in Cc into homotopy equivalences in B. Then there is a map of Segal spaces

f:NC → B together with a natural transformation ε: |f|ιC ⇀ F such that for any such

pair (g, ζ) there is a natural transformation θ: f ′ ⇀ f, unique up to homotopy, such that

(|θ|ιC) · ε = ζ.

Proof. Let λ: L⇀ idC denote a functorial cofibrant replacement on C. Now FL: C →

|B| takes weak equivalences to homotopy equivalences, hence it induces (using

the functorial Reedy fibrant replacement) a morphism f:NC → B which satisfies
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FL ≃ |f|ιC . Define ε: |f|ιC ⇀ F to be the natural transformation Fλ. We verify its

universal property: suppose ζ: |g|ιC → F where g:NC → B. Define θ: |g|ιC ⇀ |f|ιC

as the composite

|g|ιC
|g|(ιCλ)

−1

⇀ |g|ιCL
ζL⇀ FL = |f|ιC ;

since ιCλ is a transformation through homotopy equivalences, the notation (ιCλ)
−1

is justified by the Indispensable Lemma applied to diagrams indexed by discnerve C.

Thus we have θ: discnerve C → BF(1), or equivalently θ: C → |BF(1)| = |B|F(1) which

takes weak equivalences to homotopy equivalences and hence descends to a map

of Segal spaces θ:NC → BF(1), which is a natural transformation g ⇀ f. The

uniqueness of θ up to homotopy is clear since it is determined by ζ on N(Cc),

which is a deformation retract of NC.

Theorem 3. (compare [Qui] §I.4, Theorem 3) Let C and C ′ be model categories and let

C
F
"
G

C ′

be a pair of adjoint functors, F being the left and G the right adjoint functor. Suppose that

F preserves cofibrations and that F carries weak equivalences in Cc into weak equivalences

in C ′. Also suppose that G preserves fibrations and that G carries weak equivalences in C ′
f

into weak equivalences in C. Then the induced maps

NC
f
"
g

NC ′

are adjoint.

Proof. Let λ: L ⇀ 1C be the cofibrant replacement on C and ρ: 1C ′ ⇀ R the fibrant

replacement on C ′. Let η: 1C ⇀ GF be the unit and ε: FG ⇀ 1C ′ the counit of

the adjunction. Now the natural transformations (viewed as functors from −× 2)

η̂ := gρf ◦ η: C × 2 → C and ε̂ := ε ◦ fλg: C ′ × 2 → C ′ take weak equivalences to

weak equivalences and so by the proposition they induce η̂:NC × F(1)→ NC and

ε̂:NC ′ × F(1) → NC ′. We define η and ε by choosing natural composites η ≃

η̂ ◦ λ−1 and ε ≃ ρ−1 ◦ ε̂, where λ and ρ extend to the classifying diagrams because
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they preserve all weak equivalences, and then taking their inverse is justified by

the Indispensable Lemma.

Now in the diagrams of functors

LG −−−−→
λG

G

ηLG

⏐⏐⏐# ηG

⏐⏐⏐#
↘

=
↘

GFLG −−−−→
GFλG

GFG −−−−→
Gε

G

GρFLG

⏐⏐⏐# GρFG

⏐⏐⏐# Gρ

⏐⏐⏐#

GRFLG −−−−→
GRFλG

GRFG −−−−→
GRε

GR

and

F ←−−−−
Fλ

FL

↙
=
↙ ⏐⏐⏐# Fη

⏐⏐⏐# FLη

F ←−−−−
εF

FGF ←−−−−
FλGF

FLGF
⏐⏐⏐# ρF

⏐⏐⏐# FGρF

⏐⏐⏐# FLGρF

RF ←−−−−
εRF

FGRF ←−−−−
FλGRF

FLGRF

the squares commute by naturality and the triangles commute by the characteriz-

ing property of a unit and counit. Hence the diagrams commute, whence we get

natural composites GRε ◦ ηGR ≃ (GRρ)−1 ◦ GρR and εFL ◦ FLη ≃ FλL ◦ (FLλ)−1,

in which both right-hand sides are natural transformations through weak equiva-

lences and thus homotopic to the identity. So f = FL and g = GR are adjoint with

η and ε as above.
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Chapter 4

The homotopy category as a

localization

In this chapter we will show that there exists a set S of cofibrations between Se-

gal spaces which has the property that the unit X → NhoX of the adjunction

ho: Seg " Cat:N between the category of Segal spaces and that of discrete cate-

gories is an S-localization. (Here, of course, N denotes only the classifying dia-

gram of a discrete category, not the more general classification diagram of a model

category.)

Unless otherwise stated, assertions which need to be interpreted in the context

of a model category structure on simplicial spaces refer to Rezk’s “complete Segal

space” structure.

We will use the following construction, which we will call Υ because of its re-

semblance to one introduced by that name in [Sim97 §2.4]. (Simpson works in

a slightly different category, that of so-called Segal categories, but opportunity for

confusion should be minimal.)

Definition. Let X be a space. Define Υ̂(X) to be the semi-simplicial space (that is,

diagram of spaces indexed by the subcategory ∆δ consisting of all face maps of ∆
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the simplicial indexing category) given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Υ̂(X)0 = S0

Υ̂(X)1 = X

Υ̂(X)i = ∅ for i > 1

where d0, d1: Υ̂(X)1 → Υ̂(X)0 are constant maps to the two respective components

of S0. Now set Υ(X) to be the simplicial space which is the left Kan extension to ∆

of Υ̂(X).

We remark that Υ is functorial in an obvious way, and that when X satisfies the

Kan condition, it is clear that Υ(X) is a complete Segal space.

The utility of the construction Υ(X) for us lies in the following

Proposition. Let f:A ↪→ B be a Kan cofibration, i.e., an inclusion of simplicial sets. Then

a Segal space X is Υ(f)-local iff every mapping space of X is f-local.

Proof. The inclusions ∅ ↪→ A ↪→ B induce a diagram

∐
(x,y)

Map(B,map(x, y)) −−−−→ MapSS(Υ(B),X ) −−−−→ MapSS(Υ(∅),X ) = X0 ×X0⏐⏐⏐#

⏐⏐⏐#

⏐⏐⏐#
∐

(x,y)
Map(A,map(x, y)) −−−−→ MapSS(Υ(A),X ) −−−−→ MapSS(Υ(∅),X ) = X0 ×X0,

where the coproducts take one representative (x, y) of each component of X0 ×X0.

By the last sentence of [Rezk] Theorem 7.2, X is Υ(f)-local iff the middle vertical

map is a weak equivalence. But each map(x, y) is f-local iff the left-hand vertical

map is a weak equivalence. Since the rows are fibration sequences and the other

vertical map is an isomorphism, the result follows.

The localization in which we will be particularly interested has as its set of

generating cofibrations

S =
{
Υ(S

i) ↪→ Υ(D
i+1) | i ≥ 1

}
,
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that is, our functor Υ applied to the inclusion of the i-sphere into the (i+ 1)-ball

for each i.

Lemma 1. Let {fi}i be a set of Kan cofibrations. Then localization of the category of Segal

spaces (resp. complete Segal spaces) with respect to the set {Υ(fi)}i exists and is compatible

with the cartesian closure.

Proof. Existence follows from Theorem 4.1.1 in [Hir], since the Reedy–Kan struc-

ture on simplicial sets is a left proper cellular model category and since the cat-

egory of Segal spaces (resp. complete Segal spaces) is defined as a left Bousfield

localization thereof.

Using [Rezk] Prop. 9.2 together with Thm. 7.2, for compatibility with the carte-

sian closure it suffices to show that whenever X is an Υ(fi)-local Segal space,

X F(1) is also Υ(fi)-local. Thus we must check that for such an X , (X F(1))1 =

Map(F(1)× F(1),X )
d0,d1

! Map(F(1) , F(1),X ) = (X F(1))0 × (X F(1))0 has fi-local

fibres. This factors as

Map(F(1)× F(1),X ) ! Map(Z(3),X ) ! Map(F(1), F(1),X )

where the fibre of the right-hand map over (φ,ψ) ∈ Map(F(1) , F(1),X ) is just

mapX (d0φ, d1ψ) which is fi-local. Thus the proposition will follow if we can show

that

Map(F(2),X )
d0,d1

! Map(F(1)d0 ,
F(0)

d0F(1),X )

(which is a fibration by the Reedy fibrancy condition) has fi-local fibres. But every

fibre of the latter is also the homotopy fibre of

mapX (x, y)× mapX (y, z)→ mapX (x, z)× mapX (y, z)

which is a map of fi-local spaces. Hence it is fi-local as required.

Lemma 2. The classifying diagram N(C) of a discrete category C is S-local. In particular,

for any Segal space X , NhoX is S-local.
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Proof. The fibres map(a, b) are discrete spaces and therefore are {Si ↪→ Di+1}-local

for i ≥ 1. The result follows from the Proposition above.

Lemma 3. Every S-equivalence between complete Segal spaces induces an equivalence of

homotopy categories.

Proof. That the result holds for weak equivalences between complete Segal spaces

follows from [Rezk] Prop. 7.6 and Theorem 7.2, so it suffices to prove it for S-

acyclic cofibrations. But any such map is S-cellular (i.e., a transfinite composite of

pushouts of maps in S), and since the result is easily verified for each map in S it

holds for all S-cellular maps because ho preserves small colimits.

Proposition. If X is S-local then ηX :X → NhoX is a weak equivalence.

Proof. Claim 1: ηX induces equivalence on −0. For any complete Segal space A and

any object a ∈ A0, define AB
a to be the component of A0 containing a, and AE

a =

Ahoequiv ∩ d−1
1 a ⊂ A1. Then AE

a ≃ ∗ since d1 is a fibration and a weak equivalence

on this component of A1 (because it is a left inverse to the weak equivalence s0).

Define AF
a to be the fibre over a of the fibration d0:AE

a → AB
a . (AF

a is thus the space

haut(a) ⊂ map(a, a) of homotopy automorphisms of a.) Now for each 0-simplex

x ∈ X0, ηX induces a diagram of fibre sequences

X F
x −−−−→ X E

x ≃ ∗ −−−−→ X B
x⏐⏐⏐#

⏐⏐⏐#

⏐⏐⏐#

(NhoX )Fx −−−−→ (NhoX )Ex ≃ ∗ −−−−→ (NhoX )Bx

in which the first two vertical arrows are weak equivalences—the first because

Nho takes each mapping space to its set of components whereas we know from

Lemma 2 that X F
x is discrete, the second because both spaces are contractible—so

the rightmost arrow must also be an equivalence. Since ηX is bijective on the 0-

simplices of −0, every component of (NhoX )0 can be expressed as (NhoX )Bx for

some x ∈ X0, so (ηX)0 is an equivalence.
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Claim 2: ηX induces equivalence on −1. This time define

X E
x,y = (d0 × d1)

−1(X B
x ×X B

y )

and

X F
x,y = (d0 × d1)

−1(x× y)

for any x, y ∈ X0. Then we have

X F
x,y −−−−→ X E

x,y −−−−→ X B
x ×X B

y⏐⏐⏐#

⏐⏐⏐#

⏐⏐⏐#

(NhoX )Fx,y −−−−→ (NhoX )Ex,y −−−−→ (NhoX )Bx × (NhoX )By

in which the rows are fibration sequences. Now Claim 1 implies that the rightmost

vertical arrow is an equivalence, and the leftmost vertical arrow is an equivalence

for the same reason it was so in the proof of Claim 1, so it follows that the centre

arrow is also an equivalence. Since every component of X1 is included in some

X E
x,y, Claim 2 is proved.

From the fact that the homotopy type of each space Ai of a Segal space A is

determined by that of A0 and A1, it follows that any map between Segal spaces

which is equivalence on the zeroth and first spaces is an equivalence. Thus the

theorem is a consequence of Claims 1 and 2.

Theorem. For any complete Segal space X , the map X → NhoX is an S-localization.

Proof. Given X , by Lemma 1 there must exist a localization LX :X → LSX , that is,

an S-equivalence to an S-local object. Functoriality of Nho gives us a diagram

X −−−−→ LSX⏐⏐⏐#

⏐⏐⏐#

NhoX −−−−→ NhoLSX

and by the preceding Proposition, the composite X → LSX → NhoLSX is also
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an S-localization of X . To conclude that the left-hand vertical arrow is an S-

localization, it would suffice to show that NhoLX :NhoX → NhoLSX is an S-

equivalence. But by Lemma 3, ho LX is an equivalence of categories, so (obviously

or by [Rezk] Theorem 7.7) NhoLX is a weak equivalence.
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Chapter 5

S-localization and homotopy fibres

In this chapter we will consider Segal spaces with an internal “zero object”. This

will enable us to consider a special class of composable pair of internal morphisms,

viz. those whose composite is zero; thus we can define a notion of a “fibre se-

quence” which has a universal property among such pairs.

Definition. A pointed Segal space is a Segal space X together with a chosen zero

object 0 ∈ X0 which satisfies map(x, 0) ≃ ∗ ≃ map(0, x) for every x ∈ X0.

Since (all choices of) composites of homotopic maps are homotopic, it is clear

that for objects x, y in a pointed Segal space X there is a unique zero component

of mapX (x, y), which we may denote map0
X (x, y), which contains all maps which

factor through 0.

Definition. For a pointed Segal space X , let X1̂ ⊆ X1 be given by

X1̂ =
⋃

x,y∈X0

map0
X (x, y)

and let X2̂ ⊆ X2 denote d−1
1 X1̂. Now define X F̂(2) ⊆ X F(2) to be the full Segal

subspace of X F(2) induced by X2̂ ↪→ X2.

Definition. The map X d0

:X F(2) → X F(1) (which forgets the first morphism in any

composition) restricts to a map we will call f:X F̂(2) → X F(1). If there is some
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g:X F(1) → X F̂(2) right adjoint to f (in the sense of chapter 2) we say that gφ, or by

abuse of language X d2

gφ or just X d1d2

gφ, is a (homotopy) fibre of φ ∈ (X F(1))0 =

X1. The analogous construction in X op is of course a (homotopy) cofibre. (We may

omit the word “homotopy” because as with other constructions on Segal spaces,

there is no other meaningful possibility.)

In the remainder of this chapter we will consider localization LS with respect

to the set of maps S from Chapter 4. However, we will now be starting from

Rezk’s “Segal space model structure” rather than his “complete Segal space model

structure”: that is, we will not be taking F(0) ↪→ E to be acyclic. Thus our localized

structure will be “less local” than the one from Chapter 4.

By the first Proposition from the preceding Chapter, S-local Segal spaces are

precisely those for which all mapping spaces are discrete. However, unlike in

the preceding Chapter, X ↪→ LSX is always a homotopy equivalence in level

zero since this is true for all the generating acyclic cofibrations and preserved by

pushouts. Hence the effect of LS is to keep the the “space of homotopy auto-

morphisms” X0 intact while replacing the internal mapping spaces (the fibres of

X1 ! X0 × X0) with discrete spaces.

Our goal is the following result, in which we show that although we obviously

cannot expect it to preserve arbitrary homotopy Kan extensions, LS still preserves

fibres of maps when it is applied to complete Segal spaces (i.e. those for which the

homotopy automorphism data is “correct” to begin with.)

Theorem. Let X be a complete pointed Segal space and suppose that the restriction f:X F̂(2) →

X F(1) described above has right adjoint g. Then the analogous construction on the S-

localized space, f ′: (LSX )F̂(2) → (LSX )F(1), has a right adjoint g ′ with the property that

g factors as g ′ ◦ (X ↪→ LSX )F(1). In particular the fibre of every internal morphism of X

is homotopy equivalent to the fibre of its image in LSX .

Proof. Recall that X F(1) and X F(2) are complete Segal spaces, which follows from

Corollary 7.3 of [Rezk].
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First we note that εφ is a homotopy equivalence for all φ ∈ (X F(1))0. To see

this, it suffices to show that the adjunction induced on homotopy categories has

counit which is a natural isomorphism. On the level of homotopy categories, we

have

ho εφ = colim
(ho f)a→φ

((ho f)a→ φ) ∼= idφ

since the colimit is over a category which has a terminal object (obtained e.g. by

precomposing φ with a morphism from 0). So every εφ and hence every gεφ is a

homotopy equivalence and thus so is its one-sided inverse ηgφ.

Let us denote by X F̃(2) ⊆ X F̂(2) the full Segal subspace induced by the inclusion

of those components of (X F̂(2))0 which are hit by g. Then since X F̃(2) and X F(1) are

complete, it follows from the previous paragraph and the Indispensable Lemma

that f and g induce mutually inverse homotopy equivalences X F̃(2) " X F(1).

Now we have a homotopy commutative diagram

X F̃(2)
f
" X F(1)

⏐⏐⏐#

⏐⏐⏐#

(LSX )F̃(2)
f ′→ (LSX )F(1)⏐⏐⏐#

⏐⏐#

⏐⏐⏐#
⏐⏐#

X ×X ×X → X × X

and we wish to find g ′ adjoint to f ′. Since the localization LS acts componentwise

on each fibre of X F(2) ! X × X × X and X F(1) ! X × X , in order to be able

to find a g ′ making the diagram homotopy commutative, it would suffice for g to

take components of fibres to components of fibres up to homotopy, or equivalently,

that

hofib(X d0×d1

, (y, z)) ↪→ X F(1) → X F̃(2) → X ×X ×X

be homotopically trivial on each component, for each (y, z) ∈ X × X . That g

preserves the last two factors X is immediate because its inverse f does so by

definition. For the first factor X , take ψ ∈ X F(1) representing a component of
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(X d0×d1

)−1(y, z)—we may denote the full Segal subspace corresponding to the

component by Xψ—and define φ ∈ X F(1) by φ = X d2

gψ, that is, the fibre of ψ.

Now φ determines a constant diagram φ:Xψ → X F(1) which is composable with

the restriction to Xψ of g, because d1 of one and d0 of the other are both equal to

the constant diagram determined by y. Moreover any choice h:Xψ → X F(2) for

their composition lies entirely within X F̃(2) because X F̃(2) ⊆ X F(2) is an inclusion

of path-components and Xψ is connected by definition. Now we have (where all

maps are restricted to Xψ)

X d0×d1×d2

g = X d0×d1×d2

gfh ≃ X d0×d1×d2

h

which is a constant map as required.

Similarly, for η:X F̃(2) → (X F̃(2))F(1) to extend to η ′: (LSX )F̃(2) → ((LSX )F̃(2))F(1)

requires that η take components of fibres to components of fibres, in the sense that

hofib(X d0×d1×d2

, (x, y, z)) ↪→ X F̃(2) → (X F̃(2))F(1) → X F(1) ×X F(1) ×X F(1)

be homotopically trivial on each component, for each (x, y, z). The same argument

applies as for extending g: the last two factors are preserved because η is the ho-

motopy equivalence between the identity and gf, and the first factor is preserved

because the relevent morphism in the composition can be assumed to be constant

without loss of generality.

A similar argument shows that ε can be extended to ε ′. Then (g ′ε ′ ◦η ′g ′)ψ and

(ε ′f ′ ◦ f ′η ′)φ are homotopic to identity maps for all ψ, φ, so since mapping spaces

in (LSX )F(1) and (LSX )F̂(2) are discrete (by compatibility of LS with the cartesian

closure; see Chapter 4, Lemma 1) it is possible to choose compositions so that the

composites are the identity, as required.
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