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Frobenius Transfers and p-local Finite Groups

by

Kári Ragnarsson
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Doctor of Philosophy

Abstract

In this thesis we explore the possibility of defining the p-local finite groups of Broto,
Levi and Oliver in terms of their classifying spaces. More precisely, we consider the
question posed by Haynes Miller, whether an equivalent theory can be recovered by
studying maps f : BS → X from the classifying space of a finite p-group S to a
p-complete space X equipped with a stable retract t satisfying a form of Frobenius
reciprocity. In the case where S is elementary abelian, we answer this question in the
affirmative, by showing that under some finiteness conditions such a triple (f, t,X)
does indeed induce a p-local finite group over S. We also discuss the converse in some
detail for general S.

Thesis Supervisor: Haynes R. Miller
Title: Professor of Mathematics
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Chapter 1

Introduction

Defined by Broto, Levi and Oliver [7], p-local finite groups are the culmination of a
program initiated by Puig [24, 25] to find a formal framework for the p-local structure
of a finite group. To a finite group G, one associates a fusion system (at a prime p)
consisting of all p-subgroups of G and the homomorphims between them induced by
conjugation in G. Puig formalised fusion systems and identified an important subclass
of fusion systems, which we now call saturated fusion systems. Fusion systems of finite
groups are contained in this class, but saturated fusion systems also arise in other
important contexts, most notably in modular representation theory through Brauer
subpairs of blocks of group algebras and more recently as Chevalley groups of p-
compact groups [8].

The fusion system of a group G can be considered as an algebraic interpretation
of the p-local structure of the group. One can also take a topological approach,
and think of the p-local structure of G as being the p-completed classifying space
BG∧

p . By Bob Oliver’s solution of the Martino-Priddy conjecture, these approaches
are the same. That is, two groups induce the same fusion system if and only if their
p-completed classifying spaces are homotopy equivalent. This suggests that more
generally each saturated fusion system may have a unique classifying space. A p-local
finite group consists of a saturated fusion system and an associated centric linking
system, a category which offers just enough information to construct a classifying
space associated to the fusion system. Thus one can think of a p-local finite group as
a saturated fusion system with a chosen classifying space.

The definition of p-local finite groups is rather complicated and has the drawback
that there is no straightforward concept of morphisms between p-local finite groups,
so they have not yet been made to form a category in any sensible way. In this
thesis, we adopt the approach used by Dwyer and Wilkerson for p-compact groups
[13] and try to develop the theory of p-local finite groups in terms of classifying
spaces. Specifically, we consider maps f : BS → X from the classifying space of a
finite p-group S to a p-complete space X, which satisfy some finiteness conditions
and are endowed with a transfer satisfying a form of Frobenius reciprocity. We will
refer to such a triple (f, t,X) as a Frobenius transfer triple over S (def. 3.1.4). For
a Frobenius transfer triple (f, t,X), we ask whether X is the classifying space of a
p-local finite group. This question will be addressed in chapter 3, where we answer
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the question in the affirmative in the case where S is elementary abelian. Conversely
we ask whether a p-local finite group gives rise to a Frobenius transfer triple. This
question will be addressed in chapter 4.

In this chapter we give a brief overview of the theory of p-local finite groups. Most
of this material is found in [7]. In this chapter and throughout the thesis, p is a fixed
prime.

1.1 Some definitions and terminology

We begin by recalling some terminology regarding p-local finite groups.

Definition 1.1.1. A fusion system F over a finite p-group S is a category, whose
objects are the subgroups of S, and whose morphism sets HomF(P,Q) satisfy the
following conditions:

(a) HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

Here HomS(P,Q) is the set of group homomorphims induced by conjugation by
elements in S.

Before stating the next definition, we need to introduce some additional terminol-
ogy and notation. We say that two subgroups P, P ′ ≤ S are F-conjugate if they are
isomorphic in F . A subgroup P ≤ S is fully centralised in F if |CS(P )| ≥ |CS(P

′)|
for every P ′ ≤ S which is F -conjugate to P . Similarly P is fully normalised in F
if |NS(P )| ≥ |NS(P

′)| for every P ′ ≤ S which is F -conjugate to P . Finally, for any
finite group G, we write Sylp(G) for the set of Sylow p-subgroups of G.

Definition 1.1.2. A fusion system F over a p-group S is saturated if the following
two conditions hold:

(I) If P ≤ S is fully normalised in F , then P is also fully centralised and
AutS(P ) ∈ Sylp(AutF(P )).

(II) If P ≤ S and ϕ ∈ HomF(P, S) are such that ϕP is fully centralised, then ϕ
extends to ϕ̄ ∈ HomF(Nϕ, S), where

Nϕ = {g ∈ NS(P ) | ϕ ◦ cg ◦ ϕ
−1 ∈ AutS(ϕP )}.

There is a class of subgroups of S of special interest to us, defined as follows.

Definition 1.1.3. Let F be a fusion system over a p-group S. A subgroup P ≤ S is
F-centric if CS(P

′) ≤ P ′ for every P ′, that is F-conjugate to P . Let F c denote the
full subcategory of F , whose objects are the F-centric subgroups of S.

Remark 1.1.4. The condition CS(P
′) ≤ P ′ in the previous definition is equivalent

to the condition CS(P ′) = Z(P ′).
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Definition 1.1.5. Let F be a fusion system over the p-group S. A centric linking
system associated to F is a category L, whose objects are the F-centric subgroups of
S, together with a functor

π : L → F c,

and distinguished monomorphisms P
δP→ AutL(P ) for each F-centric subgroup P ≤ S,

which satisfy the following conditions.

(A) The functor π is the identity on objects and surjective on morphisms. More
precisely, for each pair of objects P,Q ∈ L, the centre Z(P ) acts freely on
MorL(P,Q) by composition (upon identifying Z(P ) with δP (Z(P )) ≤ AutL(P )),
and π induces a bijection

MorL(P,Q)/Z(P )
∼=

−−−→ HomF(P,Q).

(B) For each F-centric subgroup P ≤ S and each g ∈ P , π sends δP (g) ∈ AutL(P )
to cg ∈ AutF(P ).

(C) For each f ∈MorL(P,Q) and each g ∈ P , the following square commutes in L:

P
f

−−−→ QyδP (g)

yδQ(π(f)(g))

P
f

−−−→ Q.

We can now finally define our objects of study.
Definition 1.1.6. A p-local finite group is a triple (S,F ,L), where F is a saturated
fusion system over a finite p-group S and L is a centric linking system associated to
F .

The classifying space of the p-local finite group is the p-completed geometric real-
isation |L|∧p .

A p-local finite group comes equipped with a natural inclusion

θ : BS −→ |L|∧p .

1.2 The fusion systems of groups

In this section we will discuss the fusion system arising from a Sylow subgroup
inclusion S ≤ G. This section serves as motivation for the discussion in the previous
section as well as being of independent interest.

Definition 1.2.1. Let G be a finite group. The fusion system of G is the category
F(G), whose objects are the p-subgroups of G and whose morphism sets are given by

HomF(G)(P,Q) = HomG(P,Q)

11



for all p-subgroups P,Q ≤ G.
For a p-subgroup S ≤ G, the fusion system of G over S is the full subcategory

FS(G) ⊆ F(G), whose objects are the subgroups of S.

If S is a Sylow subgroup of G, then the inclusion of FS(G) in F(G) is an equi-
valence of categories, since every p-subgroup of G is conjugate to a subgroup of S.

Proposition 1.2.2. [7, Prop. 1.3] Let G be a finite group and let S be a p-subgroup.
Then the fusion system FS(G) of G over S is saturated if and only if S is a Sylow
subgroup.

The centric linking system of a finite group was initially introduced in [6] as a
powerful tool to study homotopy equivalences between p-completed classifying spaces
of finite groups. The p-centric subgroups of a finite group G are the p-subgroups
P ≤ G whose centre Z(P ) is a p-Sylow subgroup of the centraliser CG(P ). This
notion of centricity is equivalent to the one introduced in 1.1.3 in the sense that if
S ≤ G is a Sylow subgroup, then a subgroup P ≤ S is p-centric if and only if it is
FS(G)-centric.

For the following definition, we recall that if a group P ≤ G is p-centric, then one
can write

CG(P ) = Z(P )× C ′
G(P ),

where C ′
G(P ) ≤ G has order prime to p. The notation C ′

G(P ) will be used in the
definition. In addition, for subgroups P,Q ≤ G, we will let NG(P,Q) denote the
transporter

NG(P,Q) = {g ∈ G|gPg−1 ≤ Q}.

Definition 1.2.3. Let G be a finite group. The centric linking system of G is the
category L(G), whose objects are the p-centric subgroups of G and whose morphism
sets are given by

MorL(G)(P,Q) = NG(P,Q)/C
′
G(P )

for all p-subgroups P,Q ≤ G.
For a p-subgroup S ≤ G, the centric linking system of G over S is the full sub-

category LS(G) ⊆ L(G) whose objects are the subgroups of S, that are p-centric in
G.

In the case of a Sylow inclusion S ≤ G, the centric linking system LS(G) is a
centric linking system associated to the saturated fusion system FS(G) and we have
the following proposition, which serves as a motivating example for the definition of
a p-local finite group.

Proposition 1.2.4. Let S be a Sylow subgroup of a finite group G. Then the triple
(S,FS(G),LS(G)) is a p-local finite group over S. Furthermore, the natural map

θ : BS → |LS(G)|
∧
p

is equivalent to the p-completed inclusion

BS → BG∧
p

as a space under BS.
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1.3 Homotopy theoretic constructions of fusion sys-

tems

In this section we will recall how a map f : BS → X, from the classifying space of a
finite p-group S to a space X induces a fusion system FS,f (X) over S. In general this
fusion system will not be saturated.

The following definition is motivated by the fact that two group homomorphisms
ϕ, ψ : G→ H between finite groups are H-conjugate if and only if the induced maps
of classifying spaces are freely homotopic.

Definition 1.3.1. [7, Def. 7.1] For any space X, any p-group S, and any map
f : BS → X, define FS,f (X) to be the category whose objects are the subgroups of
S, and whose morphisms are given by

HomFS,f
(P,Q) = {ϕ ∈ Inj(P,Q) | f |BP ≃ f |BQ ◦Bϕ}

for each P,Q ≤ S.

It is easy to see that FS,f is indeed a fusion system, although it need not be
saturated. In the case where FS,f is saturated however, one can get a candidate
LcS,θ(|L|

∧
p ) for an associated centric linking system by retaining information about the

homotopies giving the equivalence f |BP ≃ f |BQ ◦Bϕ in the definition above.

Theorem 1.3.2. [7, Thms. 7.4,7.5] Let (S,F ,L) be a p-local finite group.
Then FS,θ(|L|

∧
p ) is saturated and LS,θ(|L|

∧
p ) is a centric linking system as-

sociated to FS,θ(|L|
∧
p ). Furthermore, the p-local finite groups (S,F ,L) and

(S,FS,θ(|L|
∧
p ),L

c
S,θ(|L|

∧
p )) are isomorphic.

1.4 Obstruction theory for centric linking systems

The main questions in the theory of p-local finite groups are the following: Given a
saturated fusion system, does there exist an associated centric linking system? If so,
is it unique? Broto, Levi and Oliver have developed an obstruction theory to answer
these questions [7, Sec. 3]. We present their results in this section.

The problem of finding a centric linking system L associated to a saturated fusion
system F can roughly be thought of as the problem of finding a compatible system of
expressions of HomF(P,Q) as the orbit set of free Z(P ) actions on MorL(P,Q), as P
and Q run through the centric subgroups of S. Compatibility here means satisfying
the axioms of 1.1.5. In the special case when P = Q, we get the more familiar problem
of finding a group AutL(P ) along with morphisms δP and π fitting into the following
diagram (with exact rows)

0 −−−→ Z(P ) −−−→ P −−−→ AutF(P ) −−−→ OutF(P ) −−−→ 1y
y=

yδP
y=

y
y

0 −−−→ Z(P )
δP−−−→ AutL(P )

π
−−−→ AutF(P ) −−−→ 1 −−−→ 1,

13



where OutF(P ) := Inn(P )\AutP (F). The obstruction to the existence of the bottom
row is the element u ∈ H3(OutF(P );Z(P )), (where OutF(P ) acts on Z(P ) in the
obvious way,) defined by the crossed module extension in the top row [9]. In the
case when this obstruction vanishes, the group H2(OutF(P );Z(P )) acts freely and
transitively on the set of isomorphism classes of bottom rows fitting into the diagram.
The obstructions to existence and uniqueness of a centric linking system associated to
a given saturated fusion system F similarly lies in a higher limit of a “centre functor”
over a certain quotient category of F . This will be made precise below.

Definition 1.4.1. The orbit category of a fusion system F over a p-group S is the
category O(F) whose objects are the subgroups of S and whose morphisms are defined
by

MorO(F)(P,Q) := Inn(Q)\HomF(P,Q).

We let Oc(F) denote the full subcategory of O(F) whose objects are the F-centric
subgroups of S.

Now consider the functor

Z = ZF : Oc(F)op −→ Ab,

defined for any fusion system F by setting ZF(P ) = Z(P ) and

ZF(P
ϕ
→ Q) = (Z(Q)

incl
→ Z(ϕ(P ))

ϕ−1

→ Z(P )).

To make sense of this definition, the reader should keep in mind that since P and Q
are both centric, one has

Z(Q) = CS(Q) ≤ CS(ϕ(P )) = Z(ϕ(P ))

and that although a morphism ϕ ∈MorO(F)(P,Q) only defines a homomor-
phism ϕ̃ : P → Q (and its image ϕ̃(P )) up to Q-conjugacy, the isomorphism
ϕ : Z(P )

∼=
→ Z(ϕ(P )) of centres is uniquely determined by ϕ.

The importance of this functor is evident in the following proposition.

Proposition 1.4.2. [7, Prop. 3.1] Fix a saturated fusion system F over the p-group
S. Then there is an element η(F) ∈ lim3

✛

Oc(F)

(Z) such that F has an associated centric

linking system if and only if η(F) = 0. Also, if there are any centric linking systems
associated to F , then the group lim2

✛

Oc(F)

(Z) acts freely and transitively on the set of

isomorphism classes of centric linking systems associated to F .
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Chapter 2

A classification of p-local finite groups

over abelian groups

In this chapter we classify the p-local finite groups over an abelian finite p-group S.
The resulting classification shows that the isomorphism classes of p-local finite groups
over S are in a bijective correspondence with the subgroups W ≤ Aut(S), under the
assignment

W 7→ (S,FS(W ⋉ S),LS(W ⋉ S)),

where W ⋉ S is the semi-direct product. In particular, there are no exotic p-local
finite groups over abelian p-groups.

We will prove this straight from the definitions given in section 1.1. The reader
should note however, that this is also a direct consequence of deeper results, namely
Alperin’s theorem for saturated fusion systems [25] and very recent work of Broto-
Castellana-Grodal-Levi-Oliver [5].

2.1 Saturated fusion systems over abelian p-groups

In the case where S is an abelian p-group, there are significant simplifications to be
made in the conditions for saturation of a fusion system over S (definition 1.1.2). We
note the most immediate ones:

(i) Every P ≤ S is both fully centralised and fully normalised, since
CS(P ) = NS(P ) = S.

(ii) AutS(P ) = {id} for all P ≤ S. More generally, for subgroups P,Q ≤ S, the
morphism set HomS(P,Q) is either empty or consists solely of the inclusion
P →֒ Q, depending on whether P ≤ Q or not.

(iii) For P ≤ S and ϕ ∈ HomF(P, S), we have

Nϕ = {g ∈ NS(P ) | ϕ ◦ cg ◦ ϕ
−1 ∈ AutS(ϕP )}

= {g ∈ S | ϕ ◦ id ◦ ϕ−1 ∈ {id}}

= S.
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These simplifications allow us to show that a saturated fusion system F over an
abelian p-group S is completely determined by S and the automorphism group
AutF(S). To make this more precise, we will need some notation. Given a sub-
group W ≤ Aut(S), we let FW be the category whose objects are the subgroups of S
and whose morphisms HomFW

(P,Q) are restrictions of morphisms in W mapping P
to Q. In other words,

HomFW
(P,Q) = {ϕ|P | ϕ ∈ W,ϕ(P ) ≤ Q}.

It is easy to see that FW is equal to the fusion system FS(W ⋉ S) of the semi-direct
product W ⋉ S. In particular, FW is a fusion system.

Lemma 2.1.1. Let S be a finite abelian p-group and F a saturated fusion system
over S. Put W := AutF(S). Then F = FW .

Proof: Since the categories F and FW have the same objects, it suffices to check
that HomF(P,Q) = HomFW

(P,Q) for all P,Q ≤ S.
Suppose we are given ϕ ∈ HomFW

(P,Q). Then ϕ = ϕ̄|P , for some
ϕ̄ ∈ W = AutF(S) such that ϕ̄(P ) ⊆ Q. By condition (b) of definition 1.1.1, ϕ̄|P fac-
tors as an isomorphism ϕ′ : P

∼=
−→ ϕ̄(P ) in F , followed by the inclusion ϕ̄(P ) →֒ S.

Since the inclusion ϕ̄(P ) →֒ Q is also in F , by condition (a) of definition 1.1.1, we see
that the composition ϕ : P

∼=
→ ϕ̄(P ) →֒ Q is in HomF(P,Q).

Conversely, suppose we are given ϕ ∈ HomF(P,Q). Composing with the inclusion
Q →֒ S, we get a morphism in HomF(P, S), which we also denote by ϕ. By (i) above,
ϕQ is fully centralised and so by axiom (II) for a saturated fusion system (definition
1.1.2), ϕ extends to a map ϕ̄ ∈ HomF(Nϕ, S). However, Nϕ = S by (iii) above, so
ϕ̄ ∈ HomF(S, S) = W . We have shown that ϕ is the restriction of an element ϕ̄ ∈ W
and therefore ϕ ∈ HomFW

(P,Q). ✷

The question now arises, for which subgroups W ≤ S the fusion system FW is
saturated. This question has a comprehensive answer.

Lemma 2.1.2. Let W ≤ Aut(S). The fusion system FW is saturated if and only if
W has order prime to p.

Proof: By 1.2.2, the fusion system is saturated if and only if S ≤ W ⋉ S is a Sylow
inclusion, which in turn is true if and only if W has order prime to p. ✷

Combining the lemmas, we get the following classification of saturated fusion
systems over abelian groups.

Proposition 2.1.3. If S is an abelian finite p-group, then the assignment
W 7→ FS(W ⋉ S) gives a bijective correspondence between subgroups W ≤ Aut(S) of
order prime to p and saturated fusion system over S.
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Our work in this section also produces the following lemma, which describes pre-
cisely how the conditions in definition 1.1.2 are simplified under the assumption that
S is abelian. We record it for later use.
Lemma 2.1.4. Let F be a fusion system over a finite abelian p-group S. Then F is
saturated if and only if the following two conditions are satisfied:

(Iab) |AutF(S)| is prime to p.

(IIab) Every ϕ ∈ HomF(P,Q) is the restriction of some ϕ̃ ∈ AutF(S).

2.2 Centric linking systems

Having classified the saturated fusion systems over a finite abelian p-group S, we
now turn our attention towards the associated centric linking systems. Our work is
again simplified by the abelian assumption. The main observation here is that since
CS(P ) = S for every P ≤ S, the only F -centric subgroup is S itself. Therefore Oc(F)
is a category with only one object S and morphism set

MorO(F)(S, S) = Inn(S)\AutF(S) = AutF(S) =: W

and the obstruction theory of section 1.4 is thus simplified to ordinary group coho-
mology

lim*
✛

Oc(F)

(Z) ∼= H∗(W ;S).

Assume now that the fusion system F is saturated. By the results of the pre-
vious section, we know that F is the fusion system FS(W ⋉ S) of the semi-direct
product W ⋉S. This fusion system has a canonical associated centric linking system
LcS(W ⋉ S). We will show that there are no other centric linking systems associated
to F .

Now, W has order prime to p and S is a p-group, so a simple transfer argument
shows that the cohomology groups H∗(W ;S) vanish for ∗ > 0. By proposition 1.4.2,
there is therefore a unique centric linking system associated to F .

Taking the results of this chapter together, we get the following proposition.

Proposition 2.2.1. If S is an abelian finite p-group, then the assignment

W 7→ (S,F(W ⋉ S),LcS(W ⋉ S)

gives a bijejctive correspondence between subgroups W ≤ Aut(S) of order prime to p
and p-local finite groups over S. In particular, there are no exotic p-local finite groups
over S.
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Chapter 3

p-local finite groups induced by

subgroup inclusions

In this chapter we study homotopy subgroup inclusions BS → X of a finite p-group
S to a p-complete space X with a transfer t satisfying a form of Frobenius reciprocity.
We refer to such a triple (f, t,X) as a Frobenius transfer triple. The goal is to prove
that such an inclusion induces a p-local finite group whose classifying space is X.
This goal is achieved in the case where S is elementary abelian.

In section 3.1 we explain what is meant by a subgroup inclusion and introduce
Frobenius transfer triples. In section 3.2 we analyse the cohomological structure
induced by a Frobenius transfer. We then restrict ourselves to the case where S is
abelian and show that for (f, t,X) to induce a p-local finite group, H∗(X) must be
a ring of invariants in H∗(BS) under the action of a group W ≤ Aut(S) of order
prime to p. In section 3.3, we use a theorem of Adams and Wilkerson to show that
in the case where S is elementary abelian, H∗(X) is indeed such a ring of invariants.
This turns out to be more than just a necessary condition, because in section 3.4, we
apply the theorems of Miller and Lannes to conclude that F is saturated. This shows
that the inclusion f : BS → X induces the same p-local finite group as the group
W ⋉ S. Finally in section 3.5 we show that X is equivalent to the classifying space
B(W ⋉ S)∧p as objects under BS.

3.1 Frobenius transfers

First we make precise the setting we are working in. Cohomology will always be taken
to be with Fp-coefficients unless otherwise specified.

Definition 3.1.1. A space F is called quasifinite at p if Map∗(BZ/p, F ) is con-
tractible for all choices of basepoint in F . A map f : Y → X is called a homotopy
monomorphism at p if its homotopy fibre F (over every connected component of Y ) is
quasifinite at p. In the special case where Y = BP is the classifying space of a finite
p-group, we say that f is a p-subgroup inclusion.

In what follows, we will speak of homotopy monomorphisms and subgroup inclu-
sions, taking the suffix “at p” to be understood. This should cause no confusion as
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the prime p is fixed throughout.
The quasifiniteness condition of the fibre can be rather difficult to verify in prac-

tice. Fortunately the following proposition allows us to give a more convenient charac-
terisation of homotopy monomorphisms between the spaces in which we are interested.

Proposition 3.1.2. [16] Let f : Y → X be a map between two p-complete spaces,
with Noetherian cohomology rings. Then f is a homotopy monomorphism if and
only if the induced map in mod p-cohomology makes H∗(Y ;Fp) a finitely generated
H∗(X;Fp)-module.

We will demand some additional structure on our subgroup inclusions, namely,
that they allow a transfer with properties similar to that of the transfer of a Sylow
subgroup inclusion.

Definition 3.1.3. Let f : Y → X be a map of spaces. A Frobenius transfer of f is a
stable map t : Σ∞

+X → Σ∞
+ Y such that Σ∞

+ f ◦ t ≃ idΣ∞

+
X and the following diagram

commutes up to homotopy

Σ∞
+X

∆
−−−→ Σ∞

+X ∧ Σ∞
+Xyt

y1∧t

Σ∞
+ Y

(f∧1)◦∆
−−−−−→ Σ∞

+X ∧ Σ∞
+ Y.

(3.1)

The objects that will be the focus of our attention are defined as follows.

Definition 3.1.4. A Frobenius transfer triple over a finite p-group S is a triple
(f, t,X), where X is a connected, p-complete space with finite fundamental group,
f is a subgroup inclusion BS → X and t is a Frobenius transfer of f .

Since the space X in the above definition is p-complete with finite fundamental
group, it follows that π1(X) is a finite p-group [13]. For reference, we note the
following consequence.

Observation 3.1.5. If (f, t,X) is a Frobenius transfer triple, then the space X is
nilpotent.

For a Frobenius transfer triple (f, t,X) over a finite p-group S, we ask the following
questions:

• Is the fusion system FS,f (X) saturated?

• If so, does there exist an associated centric linking system L? Is it unique?

• If an associated centric linking system exists, then what is the relation between the
classifying space |L|∧p and X? Are they equivalent as objects under BS?

In the course of this chapter we will answer these questions affirmatively in the
case when S is an elementary abelian p-group, proving the following theorem.
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Theorem 3.1.6. Let S be a finite elementary abelian p-group. Let (f, t,X) be a
Frobenius transfer triple over S and put W := AutFS,f (X)(S). Then the following hold

(i) W has order prime to p.

(ii) FS,f (X) is equal to the saturated fusion system FS(W ⋉ S)

(iii) FS,f (X) has a unique associated centric linking system with classifying space
B(W ⋉ S)∧p .

(iv) There is a natural equivalence B(W ⋉ S)∧p
≃

−→ X of objects under BS.

Thus the triple (f, t,X) induces a p-local finite group (S,FS,f (X),LcS,f (X
∧
p )) over S

with classifying space X.

Proof: The proof is by forward referencing. By lemma 3.4.2, W is the group of
automorphisms of S acting trivially on H∗(X). By proposition 3.3.10, W has order
prime to p. By proposition 3.4.3, FS,f (X) is equal to the fusion system FS(W ⋉ S).
This fusion system is saturated by lemma 2.1.2 and has a unique classifying space
B(W ⋉ S)∧p by section 2.2. Finally, proposition 3.5.2 states that the inclusion
f : BS → X is equivalent to the natural inclusion θ : BS → B(W ⋉ S)∧p as a space
under BS. ✷

3.2 Cohomological structure of Frobenius transfer

triples

In this section we discuss the cohomological structure of a Frobenius transfer triple
(f, t,X) over a finite p-group S. We also discuss the cohomological structure of a p-
local finite group over S, paying special attention to the case when S is abelian. This
gives us a simply stated necessary condition on H∗(X) for X to be the classifying
space of a p-local finite group over an abelian group S. We include this discussion
here, because it provides a starting point for the discussion that follows, leading to
the proof of theorem 3.1.6.

Applying the cohomology functor H∗(−;Fp) to (3.1) we get maps

H∗(X)
f∗

−→ H∗(BS)
t∗

−→ H∗(X)

with the following properties:

CohI t∗ ◦ f ∗ = id.

CohII t∗ is H∗(X)-linear by the Frobenius reciprocity property.

CohIII t∗ is a morphism of unstable modules over the Steenrod algebra.

CohIV f ∗ is a morphism of unstable algebras over the Steenrod algebra.
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Hence H∗(X) is a direct summand of H∗(BS) as a H∗(X)-module and as a module
over the Steenrod algebra. CohI allows us to regard H∗(X) as a subring of H∗(BS)
and we will often do so without further comment.

These properties are quite restrictive and the question of which unstable
subalgebras R∗ ⊂ H∗(BS) over the Steenrod algebra admit a stable splitting
H∗(BS) → R∗ as R∗-modules and unstable modules over the Steenrod algebra is
interesting in itself. However, we focus our attention on p-local finite groups.

The following finiteness properties of Frobenius transfer triples will be needed
later. The first fact is a standard result, a proof of which can be found in [13, Sec.
12].

Fact 3.2.1. If S is a finite p-group, then H∗(BS) is Noetherian.

Lemma 3.2.2. Let S be a finite p-group and (f, t,X) be a Frobenius transfer triple
over S. Then H∗(X) is Noetherian and in particular X is of finite Fp-type.

Proof: By [13, Lemma 2.6], this follows from CohI, CohII and the fact that H∗(BS)
is Noetherian. ✷

Lemma 3.2.3. Let S be a finite p-group and (f, t,X) be a Frobenius transfer triple
over S. Then X is of Z(p)-finite type.

Proof: By the universal coefficient theorem, it suffices to show that X is of finite
Fp-type and of finite Q-type. The former is lemma 3.2.2 above. The latter is deduced
in a similar way: By a transfer argument, BS has trivial Q-cohomology. As in the
Fp-coefficient case, H∗(X;Q) is a direct summand of H∗(BS;Q). Hence X also has
trivial Q-cohomology and we are done. ✷

For a Frobenius transfer triple (f, t,X) over S we are interested in whether the
space X is the classifying space of a p-local finite group over S. As a first test, we
examine whether X has the right cohomology. In [7] it is shown that the classifying
space |L|∧p of a p-local finite group (S,F ,L) has cohomology

H∗(|L|∧p ) = H∗(F) := lim
✛

O(F)

H∗(B(−)).

We restrict our attention to the case when S is abelian. Let F be the fusion system
Ff,S(X) induced by the inclusion f : BS → X. By the discussion in section 2.1 we
see that if F is saturated, then we must have

H∗(F) = H∗(BS)W ,

where W := AutF(S) ≤ Aut(S) has order prime to p. This gives us the following
necessary cohomological condition.

Observation 3.2.4. If X is the classifying space of a p-local finite group over an
abelian group S, then

H∗(X) = H∗(BS)W

for some subgroup W ≤ Aut(S) of order prime to p.
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3.3 A theorem of Adams and Wilkerson

In this section, we restrict ourselves to the case where S is an elementary abelian
finite p-group. In this case, we use a theorem of Adams and Wilkerson [2] to prove
that if (f, t,X) is a Frobenius transfer triple over S, then H∗(X) is a ring of invariants
H∗(BS)W for a subgroup W ≤ Aut(S). We then use a result of Lannes [14] to deduce
that W must in fact have order prime to p. In addition to verifying that the necessary
condition in 3.2.4 is satisfied, we will be able to draw further conclusions from this
result in the following sections.

In this section we will consider only the case of an odd prime. The results still
hold true for the case of an even prime and the proofs proceed in more or less the
same way, but are simpler at times.

In [2], Adams and Wilkerson study the following category.

Definition 3.3.1. Let AW be the category of evenly graded unstable algebras R∗ over
the Steenrod algebra, that are integral domains.

They also make precise the notions of “algebraic extension” and “algebraic closure”
in this setting and prove the following.

Proposition 3.3.2. [2, Prop 1.5] Every object R∗ in AW has an algebraic closure
H∗ in AW. If R∗ has finite transcendence degree, then so does H∗.

Theorem 3.3.3. [2, Thm 1.6] The objects H∗ in AW, that are “algebraically closed”
and of finite transcendence degree are precisely the polynomial algebras Fp[x1, . . . , xn]
on generators xi of degree 2.

The theorem we wish to apply is the following.
Theorem 3.3.4. [2, Thm 1.2] Let R∗ be an algebra in AW of finite transcendence
degree and let H∗ = Fp[x1, . . . , xn] be the algebraic closure in AW. In order that R∗

should admit an isomorphism
R∗ ∼= (H∗)W ,

for some group W of automorphisms of H∗, the following two conditions are necessary
and sufficient:

AW1 The integral domain R∗ is integrally closed in its field of fractions.

AW2 If y ∈ R2dp and Qry = 0 for each r ≥ 1, then y = xp for some x ∈ R2d.

The second condition is really an “inseparably closed” condition. The operation
Qr is the Milnor primitive of dimension 2pr − 2 in A∗.

We now assume that S is a finite elementary abelian group. Before applying
theorem 3.3.4 we have to put ourselves in the framework of AW . To do this, we
apply some techniques of [14].

Let U denote the category of unstable modules over the Steenrod algebra and K
denote the category of unstable algebras over the Steenrod algebra. In both cases
morphisms are of degree zero. Let U ′ and K′ denote the corresponding full subcate-
gories whose objects are evenly graded. The forgetful functor θ : K′ → K has a right
adjoint θ̃ : K → K′.
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Proposition 3.3.5. [14, Cor. 3.5] If K1 and K2 are two unstable Steenrod algebras,
whose images in U are reduced U-injectives, then K1 is isomorphic to K2 in K if and
only if θ̃K1 is isomorphic to θ̃K2 in K′.

When S is elementary abelian, the cohomology ring H∗(BS) is a reduced
U -injective by [17]. If (f, t,X) is a Frobenius transfer triple over S, then H∗(X)
is a direct summand of H∗(BS) and hence H∗(X) is also a reduced U -injective. The
following result of Lannes, which appeared in [14], describes precisely in which cases
a ring of invariants of H∗(BS) is a reduced U -injective.
Proposition 3.3.6. [14, Prop. 4.1.1] Let S be an elementary abelian p-group and
let W ≤ Aut(S). Then the ring of invariants H∗(BS)W is a reduced U-injective if
and only if W has order prime to p.

Remark 3.3.7. Proposition 3.3.6 equivalently says that H∗(BS)W is a direct sum-
mand of H∗(BS) as unstable modules over the Steenrod algebra if and only if W has
order prime to p. By the same proof, we can deduce that (θ̃H∗(BS))W is a direct
summand of θ̃H∗(BS) if and only if W has order prime to p.

To show that H∗(X) = H∗(BS)W for some W ≤ Aut(S) of order prime to p, it is
now enough to show that the corresponding equality holds after applying θ̃. Before
doing so, we prove the following lemma in order to remove the confusion caused by
working with automorphisms in many different categories.

Lemma 3.3.8. Let S be a finite elementary abelian p-group. Then there are isomor-
phisms

Aut(S)
H∗(−)
−−−−→

∼=
AutK(H

∗(BS))
θ̃

−−−→
∼=

AutK′(θ̃H∗(BS)).

Proof: Let n be the rank of S. Recall, that as an algebra

H∗(BS) ∼= E[y1, . . . , yn]⊗ Fp[x1, . . . , xn], (3.2)

is a tensor product of an exterior algebra over Fp on n generators yi of degree 1 and
a polynomial algebra over Fp on n generators xi of degree 2. The Steenrod module
structure is determined by the unstable condition and that the Bockstein maps yi to
xi. Therefore, we see that any homomorphismH∗(BS) → H∗(BS) in K is determined
by its restriction to a linear self map of the Fp-vector subspace V ∼= S of H2(BS)
spanned by the elements x1, . . . , xn. Conversely, any linear map V → V extends
to a homomorphism H∗(BS) → H∗(BS) in K by simply applying the cohomology
functor to the corresponding group homomorphism S → S. In particular, this holds
for automorphisms, in which case we get the desired isomorphism

H∗(−): Aut(S)
∼=

−→ AutK(H
∗(BS)).

For the second isomorphism, we recall [17, 29] that (3.2) implies that

θ̃H∗(BS) ∼= Fp[x1, . . . , xn]. (3.3)

By the same reasoning as above, we get an isomorphism

θ̃H∗(−): Aut(S)
∼=

−→ AutK′(θ̃H∗(BS)),
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which factors through the isomorphism H∗(−): Aut(S)
∼=
→ AutK(H

∗(BS)). It follows
that we have an isomorphism

θ̃ : AutK(H
∗(BS))

∼=
−→ AutK′(θ̃H∗(BS)).

Alternatively, this isomorphism follows directly from [14, Cor. 3.3], since H∗(BS) is
a reduced U -injective. ✷

Proposition 3.3.9. Let (f, t,X) be a Frobenius transfer triple over an elementary
p-group S. Then

H∗(X) = H∗(BS)W

for some subgroup W ≤ Aut(S) of order prime to p.

Proof: Put
R∗ := θ̃H∗(X)

and
H∗ := θ̃H∗(BS) = Fp[x1, . . . , xn],

where the xi are algebraically independent elements of degree 2 (cf. proof of 3.3.8).
It is clear that H∗ ∈ AW . Since R∗ is a subobject of H∗ in K′, it follows that H∗ is
also in AW .

By assumption, the map f ∗ : H∗(X) → H∗(BS) makes H∗(BS) into a finitely
generated H∗(X) algebra and therefore R∗ →֒ H∗ is an algebraic extension. Since
H∗ is algebraically closed in AW , this means that H∗ is the algebraic closure of R∗

in AW . Thus theorem 3.3.4 applies. We use the properties of the morphisms

R∗ f∗

−→ H∗ t∗

−→ R∗

discussed in section 3.2 and the fact that H∗ satisfies conditions AW1 and AW2 to
show that the same is true of R∗.
Proof of AW1: Let x ∈ Fr(R∗) be in the field of fractions of R∗ and suppose that x
is integral over R∗. Write x = a/b, with a, b ∈ R∗. Now, x is also integral over H∗

and since H∗ is integrally closed, this implies that x ∈ H∗. We now have the equation
a = bx in H∗. Applying t∗ and using R∗-linearity (CohII), we get:

a = t∗(a) = t∗(bx) = bt∗(x).

Since H∗ is an integral domain, this implies that

x = a/b = t∗(x) ∈ R∗.

Proof of AW2: Let y ∈ R2dp and assume that Qry = 0 for all r ≥ 1. Since H∗ satisfies
AW2, this implies that there is an x ∈ H2d such that xp = y. Applying t∗ to this
equation and using the fact that t∗ preserves Steenrod operations (CohIII), we get

y = t∗(y) = t∗(xp) = t∗(P dx) = P dt∗(x) = (t∗x)p.

Since t∗(x) ∈ R2d we are done.
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We have now shown that R∗ = (H∗)W for some subgroup W of Aut(S). Since R∗

is a direct summand of H∗ as unstable modules over the Steenrod algebra, we deduce
by remark 3.3.7 that W has order prime to p. The right adjoint θ̃ preserves inverse
limits and in particular rings of invariants. We therefore have an isomorphism

(H∗)W ∼= θ̃(H∗(BS)W )

compatible with the inclusion into H∗. As noted earlier, H∗(X) is a reduced
U -injective. Since W has order prime to p, proposition 3.3.6 applies to show that
H∗(BS)W is also a reduced U -injective. Hence, by proposition 3.3.5, the isomor-
phism

θ̃H∗(X) = R∗ ∼= (H∗)W ∼= θ̃(H∗(BS)W )

implies that
H∗(X) ∼= H∗(BS)W .

✷

With very litte extra work, we can get a slightly nicer statement.
Proposition 3.3.10. Let (f, t,X) be a Frobenius transfer triple over an elementary
p-group S and let W ≤ Aut(S) be the subgroup of automorphisms acting trivially on
H∗(X). Then

H∗(X) = H∗(BS)W

and W has order prime to p.

Proof: The inclusion H∗(X) ⊆ H∗(BS)W is obvious. For the converse, we apply
proposition 3.3.9 to get a subgroup W ′ ≤ Aut(S) such that H∗(X) = H∗(BS)W

′

.
Then W ′ acts trivially on H∗(X), so W ′ ≤ W . It follows that

H∗(BS)W ⊆ H∗(BS)W
′

= H∗(X).

This shows that H∗(X) = H∗(BS)W and theorem 3.3.6 applies to show that W
has order prime to p. ✷

Remark 3.3.11. A posteriori, one can show that W ′ = W in the above proof by
comparing the fusion systems of W ⋉ S and W ′

⋉ S.

3.4 Proving saturation of Ff,S(X)

We have now determined the cohomological structure of a Frobenius transfer triple
(f, t,X) over an elementary abelian p-group S. In this section we use the theorems of
Miller and Lannes to draw conclusions in homotopy from the results in the previous
section and prove that the fusion system Ff,S := Ff,S(X) is saturated.

Theorem 3.4.1. [15] Let Y be a connected space and V an elementary abelian p-
group. Suppose that Y is nilpotent, that π1Y is finite and that H∗(Y ) is of finite type.
Then the natural map

[BV, Y ] → HomK(H
∗(Y ), H∗(BV ))

is a bijection.
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The case when Y is a space with cohomology of the type H∗(Y ) = U(M) is due
to Miller [21].

Let (f, t,X) be a Frobenius transfer triple over an elementary abelian p-group S.
By observation 3.1.5, X is a nilpotent space. By assumption, π1(X) is finite. By
CohI in section 3.2, H∗(X) is of finite type. Thus theorem 3.4.1 applies to X.

The two things we need to show in order to prove saturation of Ff,S are expressed
in lemma 2.1.4. The first part, that AutFf,S

(S) has order prime to p, follows from
proposition 3.3.10 and the following lemma.

Lemma 3.4.2. Let (f, t,X) be a Frobenius transfer triple over a finite elementary
abelian p-group S and let W be the subgroup of Aut(S) acting trivially on H∗(X).
Then the isomorphism

Hom(S, S) → [BS,BS] → HomK(H
∗(BS), H∗(BS))

sends AutFf,S(X)(S) to W .

Proof: By definition, an automorphism ϕ: BS → BS is in AutFf,S
(S) if and only if

f ◦Bϕ ≃ f . By theorem 3.4.1, this is true if and only if the corresponding equality
Bϕ∗ ◦ f ∗ ≃ f ∗ holds in cohomology. Since f ∗ is the inclusion H∗(X) →֒ H∗(BS)
and W is the group of automorphisms of H∗(BS) fixing H∗(X), the equality in
cohomology holds if and only if Bϕ∗ ∈ W . ✷

Given the fact that AutFf,S
(S) ≃ W and the classification of p-local finite groups

over elementary abelian groups in chapter 2, we see that Ff,S is saturated if and only
if it is isomorphic to the fusion system FS(W ⋉ S). This follows from the results in
the next section, but can also be proved independently in a fashion similar to the
proof of the last lemma.

Proposition 3.4.3. Let (f, t,X) be a Frobenius transfer triple over an elementary
abelian group S and put W := AutFf,S

(S). Then W has order prime to p and Ff,S is
equal to the fusion system FS(W ⋉ S). In particular Ff,S is saturated.

Proof: By lemma 3.4.2, W is the group of automorphisms of S acting trivially on
H∗(X). By proposition 3.3.10, W has order prime to p.

We will now show that Ff,S = FS(W ⋉ S). Let V and V ′ be two subgroups in S.
Let ιV and ιV ′ be the inclusions V →֒ S and V ′ →֒ S, respectively. By definition of
Ff,S, a morphism ϕ: V → V ′ is in HomFf,S

(V, V ′) if and only if

f ◦BιV ′ ◦Bϕ ≃ f ◦BιV .

By theorem 3.4.1, this is true if and only if the corresponding equality

Bϕ∗ ◦Bι∗V ′ ◦ f ∗ ≃ Bι∗V ◦ f ∗ (3.4)

holds in cohomology.
Similarly, let θ be the natural map BS → B(W ⋉ S)∧p . Then a morphism

ϕ: V → V ′ is in HomFS(W⋉S)(V, V
′) if and only if

θ ◦BιV ′ ◦Bϕ ≃ θ ◦BιV .
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Again, by theorem 3.4.1, this is true if and only if the corresponding equality

Bϕ∗ ◦Bι∗V ′ ◦ θ∗ ≃ Bι∗V ◦ θ∗ (3.5)

holds in cohomology.
By the Cartan-Eilenberg theorem [11, Thm. XII.10.1], we have

H∗(B(W ⋉ S)) ∼= H∗(BS)W ,

so the two maps f ∗ and θ∗ are both the inclusion

H∗(BS)W →֒ H∗(BS).

Therefore the two conditions 3.4 and 3.5 in cohomology agree and

ϕ ∈ HomFf,S
(V, V ′)

if and only if
ϕ ∈ HomFS(W⋉S)(V, V

′).

Since Ff,S is equal to the fusion system FS(W ⋉ S) and W has order prime to p,
lemma 2.1.2 applies to show that Ff,S is saturated. ✷

3.5 Comparing classifying spaces

So far we have proved that if (f, t,X) is a Frobenius transfer triple over an elementary
abelian finite p-group S, then the induced fusion system Ff,S := Ff,S(X) agrees with
the fusion system FS(W ⋉S), where W := AutF(S). This fusion system has a unique
associated centric linking system LS(W ⋉ S), by the results in chapter 2. Thus we
have shown that to the triple (f, t,X) one can associate a unique p-local finite group
(S,Ff,S,LS(W ⋉ S)).

In this section we will use Wojtkowiak’s obstruction theory to compare
the classifying space |LS(W ⋉ S)|∧p = B(W ⋉ S)∧p of the p-local finite group

(S,Ff,S,LS(W ⋉ S)) to the space X. We will prove that BS
f
→ X is isomorphic

to BS
θ
→ B(W ⋉ S)∧p as objects under BS, thus completing the proof of theorem

3.1.6.
In [27, 28], Wojtkowiak develops an obstruction theory for the existence and

uniqueness of maps from homotopy colimits to p-complete classifying spaces. This
obstruction theory is quite general and it is interesting to note that, when applied
to the classifying spaces of p-local finite groups, Wojtkowiak’s obstructions to the
existence of maps are identical to the obstructions to uniquness of classifying spaces
in proposition 1.4.2. It is this phenomenon, which we will use to our advantage in
this section.

The particular result we wish to apply is reproduced below. For the sake of
simplicity, we state the result only in a special case, relevant to our needs.

28



Theorem 3.5.1. [27, 28] Let S be a finite abelian p group and W a group of order
prime to p, which acts on S. For any nilpotent p-local space X of Z(p)-finite type with
trivial W -action, the natural map

[B(W ⋉ S), X]
−◦BiS−→ [BS,X]W

is a bijection.

The application of the theorem allows us to prove the following.
Proposition 3.5.2. Let (f, t,X) be a Frobenius transfer triple over an elemen-
tary abelian group S and put W := AutFf,S

(S). Let θ be the p-completed inclusion
BS →֒ B(W ⋉ S)∧p . Then there is an isomorphism

h: (θ, B(W ⋉ S)∧p ) → (f,X)

of spaces under BS.

Proof: Since X is p-complete, it is in particular p-local. By lemma 3.2.3, X is of
finite Z(p)-type. Thus theorem 3.5.1 applies to give a bijection

[B(W ⋉ S), X]
−◦Bι
−→ [BS,X]W ,

where Bι is the inclusion BS →֒ B(W ⋉ S) (before completion).
Now, f ∈ [BS,X]W by definition of W . Hence the bijection yields a map

h: B(W ⋉ S) → X such that
h ◦Bι ≃ f.

Upon applying the cohomology functor H∗(−), we see, as in the proof of proposition
3.4.3, that the induced maps f ∗ and Bι∗ are both the inclusion

H∗(BS)W →֒ H∗(BS).

From Bι∗ ◦ h∗ ≃ f ∗, we can therefore deduce that h induces an isomorphism in coho-
mology. Upon p-completion, we now get a homotopy equivalence

h∧p : B(W ⋉ S)∧p
≃
→ X∧

p = X

such that
h∧p ◦ θ = h∧p ◦ ι

∧
p ≃ f.

✷

29



30



Chapter 4

Transfer properties of p-local finite

groups

In chapter 3 we introduced the notion of a Frobenius transfer triple over a finite p-
group S and showed that in the case where S is elementary abelian, such a triple
induces a p-local finite group. In this chapter, we consider the reverse implication.
Namely, we start with a p-local finite group (S,F ,L) over a general finite p-group
S and attempt to show that the inclusion θ : BS → |L|∧p has a Frobenius transfer t,
which makes (θ, t, |L|∧p ) into a Frobenius transfer triple.

To determine the cohomological structure of a saturated fusion system, Broto, Levi
and Oliver [7, prop. 5.5] have constructed a stable self-map [Ω]: Σ∞

+BS → Σ∞
+BS,

which is idempotent in cohomology. Building on their result we will produce a stable
idempotent ω : Σ∞

+BS → Σ∞
+BS satisfying the following Frobenius reciprocity rela-

tion
(ω ∧ ω) ◦∆ = (ω ∧ 1) ◦∆ ◦ ω,

where ∆: Σ∞
+BS → Σ∞

+BS ∧ Σ∞
+BS is the diagonal. This stable idempotent induces

a splitting

Σ∞
+BS

f
−→ Σ∞

+ |L|∧p
t

−→ Σ∞
+BS.

The final step is now to relate f to the map Σ∞
+BS

Σ∞

+
θ

−→ Σ∞
+ |L|∧p . This part is not

yet complete, but we will identify a plausible conjecture (4.3.1), which, if true implies
that (θ, t, |L|∧p ) is a Frobenius transfer triple.

4.1 The double Burnside ring and the Segal conjec-

ture

In this section we give a brief discourse about the double Burnside ring and its
connection to the ring of stable self-maps of the classifying space of a finite p-group.

For finite groups G and H, let Mor(G,H) be the set of isomorphism classes of
finite sets with a left G-action and a free right H-action. The disjoint union operation
makes Mor(G,H) into a commutative monoid. We denote the Grothendieck group
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completion by A(G,H). The group structure of A(G,H) is easy to describe. It is
a free abelian group with one basis element G ×(G′,ϕ) H for each conjugacy class of
pairs (G′, ϕ), where G′ ≤ G and ϕ is a homomorphism ϕ : G′ → H. Here G×(G′,ϕ)H
denotes the biset

G×(G′,ϕ) H = (G×H)/ ∼,

with the obvious left G-action and right H-action, where

(xg, y) ∼ (x, ϕ(g)y)

for x, y ∈ S, g ∈ G′.
Given three finite groups G,H, and K, we get a morphism of monoids

◦: Mor(H,K)×Mor(G,H) → Mor(G,K)

by
(Ω,Λ) 7→ Ω ◦ Λ := Λ×H Ω,

which extends to a bilinear map

A(H,K)× A(G,H) → A(G,K). (4.1)

In the case where G = H = K, this defines a ring structure on A(G,G).

Definition 4.1.1. Let G be a finite group. The double Burnside ring of G is the ring
A(G,G) described above.

The ring structure of the double Burnside ring can be described in terms of the
basis elements using the double coset formula. See for example [3, sec. 2].

For a (G,H)-biset Ω, a subgroup G′ ≤ G and a homomorphism ϕ : G′ → G, we
let Ω|(ϕ,H) denote the restriction of Ω to a (G′, H)-biset, where the left G′-action is
induced by ϕ. In the special case where ϕ is the inclusion G′ ≤ G, we will denote the
restriction by Ω|(G′,H). We note that Ω|(ϕ,H) can also be constructed by the pairing

◦: Mor(G,H)×Mor(G′, G) → Mor(G′, G)

as
Ω|(ϕ,H) = Ω ◦ (G′ ×(G′,ϕ) G).

For spaces X and Y , let {X+, Y+} be the group of homotopy classes of stable
maps Σ∞

+X → Σ∞
+ Y . Given a finite (G,H)-biset Ω ∈ Mor(G,H), we get a stable

map [Ω] ∈ {BG+, BH+} as follows. Let Λ := Ω/H. Since the right H-action on Ω
was free, we get a principal fibre sequence

H → EG×G Ω → EG×G Λ.

Let
ξΩ : EG×G Λ → BH
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be the classifying map of this fibration. Furthermore, the projection map

EG×G Λ → BG

is a finite covering. Let τ : Σ∞
+BG→ Σ∞

+EG×G Λ be the associated transfer map.
The map [Ω] is now defined by

[Ω] := Σ∞
+ ξΩ ◦ τ.

This assignment extends to a homomorphism

α: A(G,H) → {BG+, BH+}

of abelian groups. Although it may not be immediate from the definition, the map α
sends the pairing of 4.1 to the composition pairing for stable maps:

α(Ω ◦ Λ) = α(Ω) ◦ α(Λ).

Thus α is a ring homomorphism when G = H. For basis elements, one can check that

[G×(G′,ϕ) H] = Σ∞
+Bϕ ◦ trG′ ,

where trG′ denotes the transfer of the inclusion G′ ≤ G.
The homomorphism α gives a way to relate A(G,H) to the group of stable maps

{BG+, BH+}. Lewis, May and McClure have made this relationship precise [18]. As
a consequence of the Segal conjecture (proved by Carlsson in [10]), they show that
this map is a certain completion. In the case where G is a p-group, this completion
takes a simple form, which we will describe below.

Consider the augmentation homomorphism given by

ǫ: A(G,H) → A(G, 1), Ω 7→ Ω/H.

This sends a basis element G×(G′,ϕ) H to G/G′. Let Ã(G,H) be the kernel of ǫ.
Then Ã(G,H) is free abelian on elements G×(G′,ϕ) H − (G/G′ ×H) as (G′, ϕ) runs
through H-conjugacy classes of subgroups G′ ≤ G and nontrivial homomorphisms
ϕ: G′ → H. Moreover, α induces a homomorphism

α̃: Ã(G,H) → {BG+, BH+},

G×(G′,ϕ) H − (G/G′ ×H) 7→ Σ∞
+ ϕ ◦ trG′ .

When G = H, this is a ring homomorphism.

Theorem 4.1.2 (Segal conjecture). [10, 18] If G is a p-group, then α̃ induces an
isomorphism

Ã(G,H)∧p
∼=

−→ {BG+, BH+},

where (−)∧p = (−)⊗ Z∧
p is p-adic completion. If in addition H = G, then this is an

isomorphism of rings.
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Remark 4.1.3. We note that there is a surjection

A(G,H) ։ Ã(G,H),Ω 7→ Ω− (Ω/H ×H)

and that α factors through this surjection:

α: A(G,H) ։ Ã(G,H)
α̃

−→ {BG+, BH+}.

Hence there is a surjection

α∧
p : A(G,H)∧p ։ Ã(G,H)∧p

∼=
−→ {BG+, BH+}.

4.2 Stable idempotents induced by p-local finite

groups

In this section we turn our attention back to fusion systems. For a saturated fusion
system F over a finite p-group S, we will prove the existence of an idempotent
ω ∈ {BS+, BS+} making the following diagram commute:

Σ∞
+BS

∆
−−−→ Σ∞

+BS ∧ Σ∞
+BSyω

yω∧ω

Σ∞
+BS

(ω∧id)◦∆
−−−−−→ Σ∞

+BS ∧ Σ∞
+BS.

(4.2)

In [7, sec. 5] Broto, Levi and Oliver determine the cohomological structure of a
p-local finite group (S,F ,L). In short, they prove that there is a natural isomorphism

H∗(|L|∧p )
∼=

−→ H∗(F),

where
H∗(F) := lim

✛

O(F)

H∗(B(−))

is the “ring of stable elements for F ”, regarded as a subring of H∗(BS), and that the
map θ∗ makes H∗(BS) a finitely generated H∗(|L|∧p )-module.

One of the key ingredients in their proof is the construction of a biset
Ω ∈ Mor(S, S), for which the induced map in cohomology, [Ω]∗, is idempotent and
satisfies the analogue of (4.2). We will take advantage of their result (included below
as proposition 4.2.2) and produce our idempotent by showing the convergence of a
judiciously chosen subsequence of the sequence

[Ω], [Ω]2, [Ω]3, . . .

The author would like to thank Bob Oliver and Ran Levi for their patient and
helpful suggestions for the work in this section.
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For a fusion system F over a finite p-group S, let MorF(S, S) ⊆ Mor(S, S) be
the subset of Mor(S, S) whose irreducible components are of the form S ×(P,ϕ) S,
for P ≤ S and ϕ ∈ HomF(P, S). Then MorF(S, S) is clearly a submonoid of
Mor(S, S). We let AF(S, S) denote the corresponding subgroup of A(S, S), i.e.
AF(S, S) ≤ A(S, S) is the subgroup of A(S, S) generated by the basis elements
S ×(P,ϕ) S, for P ≤ S and ϕ ∈ HomF(P, S).

Lemma 4.2.1. The submonoid MorF(S, S) ≤ Mor(S, S) is closed under the prod-
uct operation

Mor(S, S)×Mor(S, S) → Mor(S, S), (Ω,Λ) 7→ Ω ◦ Λ.

Consequently AF(S, S) is a subring of A(S, S).

Proof: By the double coset formula, the product of two basis elements S ×(P,ϕ) S
and S ×(P ′,ϕ′) S can be written as a sum of basis elements S ×(Q,ψ) S, where each ψ
is obtained from ϕ and ϕ′ by composition, restriction and conjugation in S. By the
axioms of a fusion system, it follows that ψ ∈ HomF(Q,S). ✷

After p-completion, we get a subring AF(S, S)
∧
p of A(S, S)∧p . We let the subring

{BS+, BS+}F of {BS+, BS+} denote the image of AF(S, S)
∧
p under the surjection

α∧
p of remark 4.1.3. Then {BS+, BS+}F is a free Z∧

p -module on the basis elements
Σ∞

+Bϕ◦ trP as (P, ϕ) runs through conjugacy classes of P ≤ S and ϕ ∈ HomF(P, S).
The properties of the (S, S)-biset Ω constructed by Broto, Levi and Oliver and its

induced map in cohomology are described in the proposition that follows.

Proposition 4.2.2. [7, Prop. 5.5] For any saturated fusion system F over a p-group
S, there is an (S, S)-biset Ω with the following properties:

(a) Ω ∈ MorF(S, S)

(b) For each P ≤ S and each ϕ ∈ HomF(P, S), the restrictions Ω|(P,S) and Ω|(ϕ,S)
are isomorphic as (P, S)-bisets.

(c) |Ω|/|S| ≡ 1 (mod p).

Furthermore, for any biset Ω which satisfies these properties, the induced map [Ω]∗ in
cohomology is a H∗(F)-linear idempotent in EndU(H

∗(BS)) with

Im[H∗(BS)
[Ω]∗

−→ H∗(BS)] = H∗(F).

We now proceed by a sequence of lemmas about (S, S)-bisets.

Lemma 4.2.3. Let Ω and Λ be two (S, S)-bisets satisfying properties (a),(b) and (c)
in proposition 4.2.2. Then Ω ◦ Λ also satisfies the properties. In particular, any power
of Ω satisfies these properties.
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Proof: That Ω ◦ Λ satisfies property (a) is lemma 4.2.1. To see that Ω ◦ Λ satisfies
property (b), we note that

(Ω ◦ Λ)|(ϕ,S) = (Ω ◦ Λ) ◦ (P ×(ϕ,P ) S)

= Ω ◦ (Λ ◦ (P ×(ϕ,P ) S))

= Ω ◦ (Λ|(ϕ,S))

= Ω ◦ (Λ|(P,S))

= Ω ◦ (Λ ◦ (P ×(ιP ,P ) S))

= (Ω ◦ Λ) ◦ (P ×(ιP ,P ) S)

= (Ω ◦ Λ)|(P,S).

Finally,
|Ω ◦ Λ| = |Ω×S Λ| = |Ω| · |Λ|/|S|,

so
|Ω ◦ Λ|/|S| = (|Ω|/|S|)(|Λ|/|S|) ≡ 1 · 1 ≡ 1 (mod p),

Proving that Ω ◦ Λ satisfies (c). The final statement now follows by induction. ✷

Lemma 4.2.4. Let Ω ∈ A(S, S). Then there exists an M > 0 such that ΩM is idem-
potent mod p.

Proof: Let Ω̄ denote the image of Ω under the projection
A(S, S) → A(S, S)/pA(S, S). It is equivalent to show that Ω̄M is idempotent
for some M > 0. Now, A(S, S) is a finitely generated Z-module and hence
A(S, S)/pA(S, S) is finite. Consider the sequence

Ω̄, Ω̄2, Ω̄3, . . .

in A(S, S)/pA(S, S). By the pigeonhole principle, there must be numbers, N, t > 0
such that Ω̄N = Ω̄N+t. It follows that

Ω̄n = Ω̄n+t

for all n ≥ N . Now take m ≥ 0 such that mt > N and put M := mt. Then

Ω̄2M = Ω̄M+mt = Ω̄M+(m−1)t = · · · = Ω̄M+t = Ω̄M .

✷

The following two lemmas were suggested to the author by Bob Oliver through
private correspondence. Although they hold for any p-torsion-free ring, we will state
them only for A(S, S).
Lemma 4.2.5. If Ω ∈ A(S, S) is an idempotent mod pk, where k > 0, then Ωp is an
idempotent mod pk+1.

Proof: For notational convenience, put q := pk. By assumption we can write

Ω2 = Ω+ qΛ (4.3)
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for some Λ ∈ A(S, S). It follows that

Ω2 + qΩΛ = Ω(Ω + qΛ) = Ω3 = (Ω + qΛ)Ω = Ω2 + qΛΩ,

so
qΩΛ = qΛΩ.

Since A(S, S) is torsion-free as a Z-module, we deduce that Ω and Λ commute. This
allows us to apply the binomial formula to (4.3) and get

Ω2p = Ωp +

(
p

1

)
Ωp−1qΛ +

(
p

2

)
Ωp−2q2Λ2 + · · ·+

(
p

p− 1

)
Ωqp−1Λp−1 + qpΛp.

A brief inspection of the coefficients occurring on the right hand side, taking into
account that p divides q since k > 0, shows that we can therefore write

Ω2p = Ωp + pqΛ′

for some Λ′ ∈ A(S, S). Since pq = pk+1 we finally deduce that Ωp is idempotent
mod pk+1. ✷

Lemma 4.2.6. If Ω ∈ A(S, S) is idempotent mod p, then the sequence

Ω,Ωp,Ωp2 , . . .

converges in A(S, S)∧p . Furthermore the limit is idempotent.

Proof: By lemma 4.2.5 and induction, Ωpk is idempotent mod pk+1 for each k ≥ 0.
That is to say, that

Ω2pk − Ωpk ∈ pk+1A(S, S), (4.4)

for k ≥ 0. By induction it follows that

Ωnpk − Ωpk ∈ pk+1A(S, S),

for k ≥ 0, n > 0. In particular

Ωpl − Ωpk ∈ pk+1A(S, S),

when l ≥ k > 0, so
Ω,Ωp,Ωp2 , . . .

is a Cauchy sequence in the p-adic topology of A(S, S). Hence, it converges to a
unique element Ω̂ ∈ A(S, S)∧p . Since the multiplication in A(S, S) is continuous with
respect to the p-adic topology, Ω̂2 is the limit of the sequence

Ω2,Ω2p,Ω2p2 , . . .

Idempotence of Ω̂ now follows from taking the limit of (4.4) over k. ✷

We can now prove the main result of this section.
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Proposition 4.2.7. For any saturated fusion system F over a p-group S, there is a
stable self-map ω ∈ {BS+, BS+} with the following properties:

(a) ω ∈ {BS+, BS+}F

(b) For each P ≤ S and each ϕ ∈ HomF(P, S), the restrictions ω|Σ∞

+
BP and

ω ◦ Σ∞
+Bϕ are homotopic as maps Σ∞

+BP → Σ∞
+BS.

(c) ω is idempotent.

Proof: Let Ω be an (S, S)-biset given by proposition 4.2.2. By lemmas 4.2.4 and
4.2.3, we may assume that Ω is an idempotent mod p. By lemma 4.2.6, the sequence

Ω,Ωp,Ωp2 , . . .

converges to an idempotent Ω̂ ∈ A(S, S)∧p . Let ω be the image of Ω̂ under the surjec-
tion

A(S, S)∧p ։ {BS+, BS+}.

Then ω is idempotent, proving (c). It is not hard to see that AF(S, S) is a closed
subspace of A(S, S) in the p-adic topology and hence that AF(S, S)

∧
p is a closed

subspace of A(S, S)∧p . Since each Ωn is in AF(S, S) by lemma 4.2.1, it follows that
the limit Ω̂ is in AF(S, S)

∧
p and hence that ω ∈ {S+, S+}F , proving (a).

By property (b) of proposition 4.2.2, we have

Ω ◦ (P ×(ϕ,P ) S) = Ω ◦ (P ×(ιP ,P ) S)

and consequently
Ωpk ◦ (P ×(ϕ,P ) S) = Ωpk ◦ (P ×(ιP ,P ) S),

for all k ≥ 0. Since the pairing

◦: A(S, S)× A(P, S) → A(P, S)

is continuous in the p-adic topology on the relevant Z-modules, we can take limits to
get

Ω̂ ◦ (P ×(ϕ,P ) S) = Ω̂ ◦ (P ×(ιP ,P ) S).

Applying α, we now get
ω ◦ Σ∞

+BιP ≃ ω ◦ Σ∞
+ ϕ,

proving (b). ✷

The following lemma is a homotopy version of the H∗(F)-linearity in proposition
4.2.2. The argument in the proof given here is the same as in the proof in [7], but
formally lifted to the stable homotopy category.
Lemma 4.2.8. Let ω be a stable selfmap Σ∞

+BS → Σ∞
+BS satisfying properties

(a),(b) and (c) in proposition 4.2.7. Then ω satisfies the Frobenius reciprocity re-
lation

(ω ∧ ω) ◦∆ = (ω ∧ 1) ◦∆ ◦ ω,

where ∆: Σ∞
+BS → Σ∞

+BS ∧ Σ∞
+BS is the image of the diagonal of BS under the

infinite suspension functor Σ∞
+ .
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Proof: For the sake of notational convenience, we will let Bϕ denote the stable map
Σ∞

+Bϕ in this proof.
By condition (a), we can write ω as a linear combination with Z∧

p -coefficients of
maps [S ×(P,ϕ) S] ∈ {BS+, BS+}, where ϕ ∈ HomF(P, S). For such a map [S ×(P,ϕ)

S], we have by condition (b):

ω ◦Bϕ = ω ◦BιP , (4.5)

where ιP is the inclusion P ≤ S. We will take advantage of this and the fact [1] that
the transfer trP of the inclusion ιP satisfies the Frobenius relation

(1 ∧ trP ) ◦∆S = (BιP ∧ 1) ◦∆P ◦ trP , (4.6)

where ∆P and ∆S are the diagonals of Σ∞
+BP and Σ∞

+BS respectively. We will also
use the fact that since Bϕ has a desuspension, it commutes with the diagonals as
follows

∆S ◦Bϕ = (Bϕ ∧ Bϕ) ◦∆P . (4.7)

Now,

(ω ∧ 1) ◦∆S ◦ [S ×(P,ϕ) S] = (ω ∧ 1) ◦∆S ◦Bϕ ◦ trP
(4.7)
= (ω ∧ 1) ◦ (Bϕ ∧ Bϕ) ◦∆P ◦ trP

= ((ω ◦Bϕ) ∧ Bϕ) ◦∆P ◦ trP
(4.5)
= ((ω ◦BιP ) ∧ Bϕ) ◦∆P ◦ trP

= (ω ∧ Bϕ) ◦ (BιP ∧ 1) ◦∆P ◦ trP
(4.6)
= (ω ∧Bϕ) ◦ (1 ∧ trP ) ◦∆S

= (ω ∧ (Bϕ ◦ trP )) ◦∆S

= (ω ∧ [S ×(P,ϕ) S] ◦∆S.

and summing over the different [S ×(P,ϕ) S], we get the desired result. ✷

Remark 4.2.9. By analogy with proposition 4.2.2, for any stable selfmap
ω ∈ {BS+, BS+}, that satisfies the properties in proposition 4.2.7, the induced map
in cohomology ω∗ is an idempotent in End(H∗(BS)), is H∗(F)-linear and a homo-
morphism of modules over the Steenrod algebra; and

Im[H∗(BS)
ω∗

−→ H∗(BS)] = H∗(F).

Only the last statement is non-obvious at this point. The proof proceeds along the
same lines as in the proof of proposition 4.2.2 in [7].

4.3 Frobenius transfers induced by p-local finite

groups

In this section we discuss the stable splitting of BS induced by the stable idempotent
ω of the previous section. More precisely, we will apply mapping telescope techniques
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[12] to produce a factorisation

ω : Σ∞
+BS

f
−→ Σ∞

+ |L|∧p
t

−→ Σ∞
+BS

and discuss the problems involved with showing that this splitting yields a Frobenius
transfer triple over S. For the sake of notational convenience, we will denote the
suspension spectrum functor Σ∞

+ (−) by (̃−) in this section.
Let F be a saturated fusion system over a finite p-group S and let ω be an

idempotent in {BS+, BS+} as given by proposition 4.2.7.
Let M be the infinite mapping telescope of the idempotent ω. In other words,

M := Holim
✲

(
B̃S

ω
−→ B̃S

ω
−→ B̃S

ω
−→ . . .

)
,

We denote the structure map of the homotopy colimit by σ : B̃S →M . Since ω is
idempotent, we get a factorisation of ω through the homotopy colimit

ω : B̃S
σ

−→M
t′

−→ B̃S,

such that σ ◦ t′ ≃ idM . Thus M is a retract of the p-complete spectrum B̃S and
is therefore p-complete. Furthermore, the induced map of σ in cohomology is the
inclusion

Im[H∗(BS)
ω∗

−→ H∗(BS)] →֒ H∗(BS),

which by remark 4.2.9 is the inclusion

H∗(F) →֒ H∗(BS).

Consider next the case, in which the fusion system F belongs to a p-local
finite group (S,F ,L). The natural map θ : BS → |L|∧p also induces the inclusion

H∗(F) →֒ H∗(BS) in cohomology. Hence the composite θ̃ ◦ t′ :M → |̃L|∧p is an iso-
morphism in cohomology and since the spectra involved are p-complete, it follows
that we have a homotopy equivalence

h := θ̃ ◦ t′ :M
≃

−→ |̃L|∧p .

Putting f := h ◦ f ′ and t := t′ ◦ h−1, we now get a splitting

ω : B̃S
f

−→ |̃L|∧p
t

−→ B̃S,

where f ◦ t ≃ id
|̃L|∧p

.
To show that the p-local finite group induces a Frobenius triple it now remains

to show that f desuspends to a map BS → |L|∧p and that our splitting satisfies the
Frobenius reciprocity relation

(1 ∧ t) ◦∆|L|∧p ≃ (f ∧ 1) ◦∆S ◦ t. (4.8)
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In fact, we will show below that if f does desuspend, then (4.8) follows from lemma
4.2.8. For our purposes, we are not happy with just any desuspension γ of f to get
a Frobenius transfer triple (γ, t, |L|∧p ) over S associated to (S,F , |L|∧p ). We demand
that f should desuspend to the natural inclusion θ : BS → |L|∧p of BS into the clas-
sifying space of (S,F ,L). The problem with relating θ̃ to f is that the equivalence
h:M

≃
→ |̃L|∧p is not natural. The missing ingredient to achieve the desired level of

naturality is the truth of the following conjecture.
Conjecture 4.3.1. Let (S,F ,L) be a p-local finite group. Then the stable self-map

ω ∈ {BS+, BS+} of proposition 4.2.7 can be chosen so that θ̃ ◦ ω ≃ θ̃.

This conjecture is plausible, since θ has the property that

θ ◦Bϕ ≃ θ ◦BιP

for all ϕ ∈ HomF(P, S) and ω ∈ {BS+, BS+}F . These properties in themselves do
not imply the conjecture. As an example, the set Ω of proposition 4.2.2 has the
analogous properties (a) and (b) of the proposition, yet it does not follow that Ω

is idempotent. However, the failure of θ̃ ◦ ω ≃ θ̃ to hold is similar in nature to the
failure of idempotence of Ω. Therefore it is entirely possible that the idempotent ω,
as constructed in proposition 4.2.7 to get an idempotent version of Ω, does satisfy the
conjecture.

In order to prove the conjecture, one may be able amend lemma 5.4 of [7] by
carefully studying the inductive step to be able to produce an Ω in proposition 4.2.2
satisfying θ̃ ◦ [Ω] ≃ θ̃. However, this Ω will certainly have to be an element of A(S, S)
or even A(S, S)∧p rather than an actual (S, S)-biset.

Proposition 4.3.2. Let (S,F ,L) be a p-local finite group. If conjecture 4.3.1 is true,
then there is a transfer map t: Σ∞

+ |L|∧p → Σ∞
+BS such that (θ, t, |L|∧p ) is a Frobenius

transfer triple.

Proof: By [7, Prop. 5.2], the map θ makes H∗(BS) into a finitely generated H∗(F)-
module and is therefore a homotopy monomorphism by lemma 3.1.2. By [7, Prop.
1.12] there is a surjection S ։ π1(|L|

∧
p ). In particular, |L|∧p has finite fundamental

group.
Let ω be a stable self-map of BS as prescribed by proposition 4.2.7, such that

θ̃ ◦ ω ≃ θ̃. Let M be the mapping telescope of ω and let

ω : B̃S
σ

−→M
t′

−→ B̃S,

be the corresponding stable splitting. Since θ̃ ◦ ω ≃ θ̃, the universal mapping property
of M gives us a map

u:M → |̃L|∧p

such that u ◦ σ ≃ θ̃. Since the maps σ and θ both induce the inclusion
H∗(F) →֒ H∗(BS) in cohomology, we see that u is an isomorphism in cohomology.
Since the spectra involved are p-complete, it follows that u is a homotopy equivalence.
Putting t := t′ ◦ u−1, we now get a splitting

ω : B̃S
θ̃

−→ |̃L|∧p
t

−→ B̃S,
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with θ̃ ◦ t ≃ id
|̃L|∧p

.

Since the stable map θ̃ has a desuspension θ, it commutes with the diagonals ∆S

and ∆|L|∧p of B̃S and |̃L|∧p , respectively, in the following sense:

∆|L|∧p ◦ θ̃ ≃ (θ̃ ∧ θ̃) ◦∆S.

This allows us to deduce

(1 ∧ t) ◦∆|L|∧p ≃ (θ̃ ∧ 1) ◦∆S ◦ t

from
(ω ∧ ω) ◦∆S ≃ (ω ∧ 1) ◦∆S ◦ ω (4.9)

as follows. Applying (θ̃ ∧ 1) ◦ − ◦ t to the left hand side of (4.9) and rewriting, we
get

(θ̃ ∧ 1) ◦ (ω ∧ ω) ◦∆S ◦ t ≃ ((θ̃ ◦ t) ∧ t) ◦ (θ̃ ∧ θ̃) ◦∆S ◦ t

≃ (1
|̃L|∧p

∧ t) ◦∆|L|∧p ◦ θ̃ ◦ t

≃ (1
|̃L|∧p

∧ t) ◦∆|L|∧p

Doing the same with the right hand side yields

(θ̃ ∧ 1) ◦ (ω ∧ 1) ◦∆S ◦ ω ◦ t ≃ ((θ̃ ◦ t ◦ θ̃) ∧ 1) ◦∆S ◦ (t ◦ θ̃ ◦ t)

≃ (θ̃ ∧ 1) ◦∆S ◦ t.

By (4.9) we can take the last two equations together to form a new equation

(1 ∧ t) ◦∆|L|∧p ≃ (θ̃ ∧ 1) ◦∆S ◦ t.

✷
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