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ABSTRACT

We present progress in trying to verify a long-standing conjecture by Mark Mahowald on the v1-

periodic component of the classical Adams spectral sequence for a Moore space M . The approach

we follow was proposed by John Palmieri in his work on the stable category of A-comodules. We

improve on Palmieri's work by working with the endomorphism ring of M - End(M) thus resolving

some of the initial di�culties of his approach and formulating a conjecture of our own that would

lead to Mahowald's formulation. We further improve upon a method for calculating di�erentials

via double �ltration �rst used by Miller and apply it to our problem.
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1 Introduction

1.1 Motivation and background

Homotopy groups have been one of the cornerstone objects of study in algebraic topology and really

something that gave birth to the subject itself. The Freudenthal Suspension theorem gives rise

to a stability phenomenon for those groups. More precisely, for an n-connected pointed space X,

the suspension map πk(X) → πk+1(ΣX) is an isomorphism for k ≤ 2n. This generalizes to an

isomorphism [X,Y ]→ [ΣX,ΣY ] given dim X < 2n− 1 and Y is n− 1-connected, and allows us to

study homotopy theory in this stable context. We move from working in the category of spaces and

homotopy classes of maps to its stable version - the category of spectra.

In this category we have a generalized Adams Spectral Sequence that converges to a certain local-

iztion of π∗(X). This spectral sequence is constructed via a ring spectrum E that needs to satisfy a

number of conditions to make sure E2 = ExtE∗(E)(E∗, E∗(X)) and to guarantee convergence. Most

common candidates for E are the mod p Eilenberg-MacLane spectrum H or the Brown-Peterson

spectrum BP . We get the classical Adams spectral sequence and the Adams Novikov spectral se-

quence respectively. The later spectral sequence has a striking connection to the theory of formal

group laws.

A formal group law over a ring R is a power series of two variables with coe�cients in that ring

that satis�es certain group-like properties. We can talk about morphisms of group laws in terms

of a change-of-base map over R or as arising from a ring map R → T . It's natural to look for

universal objects in this setting and (working p-locally) the pair (BP∗BP,BP∗) is one such object.

BP∗corepresents p-typical formal group laws over a Z(p)-algebra, while BP∗BP correspresents iso-

morphisms between them. Thus, the pair correpresents objects and morphisms in a groupoid and

as such is called a Hopf algebroid. The structure of this Hopf algebroid is present in the world of

formal group laws and so we conclude this world �knows� exactly how the E2 page of the Adams

Novikov spectral sequence looks like. One manifestation of this relation is chromatic homotopy

theory.

Given BP∗ = Z(p)[v1, v2, ...], our interpretation of a formal group law over a ring R as a map

f : BP∗ → R allows us to de�ne the concept of height associated to the formal group law. The

height is the smallest integer n for which f(vn) 6= 0. This ��ltration� of formal group laws by height

4



translates to the chromatic �ltration in homotopy theory and leads us to talk about vn-periodicity.

Informally speaking, if In is the complete information that formal group laws of height n or higher

�see� in stable homotopy, then the vn-periodic phenomena are given by In/In+1. The objects that

detect periodicity on the level of spectra are the Morava K-theories K(n). Given a �xed p-local

�nite spectrum X, let n be the smallest integer such that K(n)∗(X) 6= 0. Then we say X is of

type n and π∗(X) has a non-trivial vn-periodic part. Furthermore, one can isolate vn-periodicity by

virtue of the Periodicity theorem. The theorem tells us there is an (asymptotically) unique self-map

β : Σ|β|X → X which induces an isomorphism onK(n)∗. Hence the �ber of this map has type higher

than n and so the vn-periodic homotopy of X is exactly what (powers of) β detect. The telescope

β−1X is the geometric manifestation of the vn-periodic part ofX i.e. π∗(β
−1X) = β−1π∗(X). It's an

interesting question how β works on the level of the Adamas Novikov spectral sequence, which is the

statement of the telescope conjecture, for instance. More precisely, the telescope conjecture claims

that the vn-localized Adams Novikov spectral sequence of X converges to β−1π∗(X). Alternatively,

it says there is no vn-periodic element in π∗(X) with unbounded Novikov �ltration as higher powers

of β are applied (there are enough vn-towers) and there is no vn-periodic element in the unlocalized

spectral sequence that kills o� non-periodic elements as higher powers of β are applied (there are

not too many vn-towers). This is a step towards computing β−1π∗(X).

The connection of BP to formal groups makes it into a computationally e�ective tool in the

study of stable homotopy. However, at least on theory, one can try to play the same game with

other spectra and in particular with ordinary mod p homology H. An immediate issue that arises

is that homology itself doesn't detect self maps as e�ectively and we are limited as to what we can

construct geometrically. That is to say we don't have an equivalent to the Periodicity theorem or

Morava K-theory or at least we don't know what they are supposed to be. For example, the mod

2 Moore space M has a v1-self map α : Σ8M → M and clearly H(α) = 0, so ordinary homology

doesn't detect α as well as BP . This has to do with the fact that BP (unlike H) detects periodicity

at �ltration 0 (this is related to the Nilpotence theorem). So what can we do? Can we change our

framework so ordinary homology �sees more�?

Before we give an answer we would need to know a bit about the structure theory of A and

(co)modules over it. Those were extensively studied by Margolis [4], among others. He introduced

elements P st ∈ A∗dual to ξ
ps

t ∈ A. At p = 2 we know that (P st )2 = 0 for s < t, so one can de�ne
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H(N,P st ) for a given A-comodule N . The signi�cance of these homology groups becomes apparent

by the following results

Theorem 1.1: Let N be a bounded below comodule N such that H(N,P st ) = 0 for all s < t.

Then N is cofree.

Theorem 1.2: Given an integer d, if H(N,P st ) = 0 for all |P st | < d then ExtA(F2, N) has a

vanishing line of slope d.

Theorem 1.2 leads us to de�ne the type of a bounded below comodule N to be the smallest

n = |P st | such that H(N,P st ) 6= 0. Naively, following the BP analogy we want to construct a

(unique) self map β : N |β| → N which induces an isomorphism on H(−, P st ). To do that we

need to work in the derived category of A-comodules - Stable(A). This is enough to deal with

the limitations of H mentioned earlier as compared to BP . To see how, consider again the v1

self-map α : Σ8M → M for the mod 2 Moore space. H(α) = 0, but α has to be detected by

Ext
(s,t)
A (H∗(M), H∗(M)) and so it is present in Stable(A) and, in fact, it induces an isomorphism

on H(H∗(M), P 0
2 ). More generally, a type n = |P st | comodule N = H∗(X) has a self-map β with a

geometric realization (also called β). If Y is the spectrum that is the �ber of β, we get that H∗(Y ) is

of type higher than n and so ExtA(F2, H∗(Y )) has a vanishing line of slope m > n. Hence β induces

an isomorphism on ExtA(F2, H∗(X)) above a line of slope m. As a result β−1ExtA(F2, H∗(X))

completely detects ExtA(F2, H∗(X)) above a line of slope m. We refer to this as the P st -periodic

part of X.

The author is �nally in a position to present the problem he will try to tackle. Let N be the

stable comodule corresponding to H∗(M). It is a stable comodule of type |P 0
2 | and the self-map

is induced precisely from the map α : Σ8M → M . By the above discussion α−1Exts,tA (F2, H∗(M))

detects completely Es,t2 (H,M) above a line of slope |P 1
2 | − 1 = 5. This leads to the central problem

of this thesis

Problem : What is α−1Exts,tA (F2, H∗(M))?

An explicit answer was claimed by Mahowald [3], but it was never veri�ed. According to him it

is built out of a number of copies of two pieces. Those pieces are α−1Exts,tA (F2, H∗(bo ∧M)) and

α−1Exts,tA (F2, H∗(bu∧M)) where bo and bu are connected real and complex K-theory respectively.
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It is worth noting that both of these pieces are easily computed by a change of rings isomorphism

(occuring due to a colapse of the Cartan-Eilenberg spectral sequence in both cases). To present

the answer in an explicit form, we de�ne a polynomial algebra P = F2[x1, x2, ...] with derivation

d(xi) = x1x
2
i−1. P is bigraded with |xi| = (2, 2i+2 + 1). If H(d) and B(d) are the homology and

image of d resepectively, then the conjecture takes the following form

Conjecture: α−1Exts,tA (F2, H∗(M)) =
⊕

a∈H(d)

Σ|a|α−1Exts,tA (F2, H∗(bo ∧M))

⊕
⊕
b∈B(d)

Σ|b|α−1Exts,tA (F2, H∗(bu ∧M))

We proceed to describe an approach to this conjecture proposed by Palmieri in his book [8]. He

�rst notes the analogy between Stable(A) and the category of spectra allows us to build a generalized

Adams Spectral sequence in precisely the same way. Furthermore, there are spectra Qn (playing

the role of Morava K-theories) that detect P 0
n+1-periodicity. Recalling N was the stable comodule

corresponding toH∗(M) we get a spectral sequence with E2 = ExtQ1∗Q1(Q1∗, Q1∗(N)) converging to

α−1Exts,tA (F2, H∗(M)). This spectral sequence converges to v−11 E2(M ;H) and computations seem

promising due to the simplicity of E2 = F2[v
±1
1 , h11, h21, · · · , hn1, · · · ] and the fact that E3 = E2

as for degree reasons nontrivial di�erentials can only occur at odd pages. It is important to note

that since M is not a ring spectrum, Er is not an algebra and dr is not a derivation and so what

we really mean by the above equality is that E2 is a F2-vector space with basis the monomials

in F2[v
±1
1 , h11, h21, · · · , hn1, · · · ]. Palmieri then conjectured what the values of d3(hn1) are and

proposed one should be able to extend them in some way to the entire E3. Moreover he conjectured

that the spectral sequence collapses at E4 and claimed this would imply Mahowald's conjecture.

Note it is not immediately obvious how Palmieri's formulation relates to Mahowald's and it is

something we address in more detail at a later section of the paper.

Thus our problem is three-fold: how does one compute d3(hn1), how does one extend it to the

rest of E3 and why are there no higher degree di�erentials. We solely address the �rst two questions,

fully answering the second one. We do this by working with the endomorphism ring spectrum of

M - End(M). It is the 4 cell complex M ∧ DM . The advantage of End(M) is that its spectral

sequence is multiplicative and so d3 is a derivation. At the same time the action End(M)∧M →M
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makes Er(M) into a module over Er(End(M)). We will also show Palmieri's originally conjectured

values for d3(hn1) can't be true and so we propose a revised conjecture of what those values are.

We verify that conjecture modulo knowing that the elements vm1 hn1 don't survive to E4 for n ≥ 3,

m ∈ Z.

1.2 The suqare

Computing d3 on the above elements seems to be signi�cantly harder. An example of a similar

computation in the literature can be found in a paper due to Miller [6]. He manages to compute

α−1π∗(M) in the case of an odd p by analyzing d2 in the Adams Spectral sequence. This is done

by considering the Cartan-Eilenberg spectral sequence arising from the reduced powers in A. This

spectral sequence colapses, but its second page coincides with the second page of the Algebraic

Novikov spectral sequence which converges to Exts,tBP∗(BP )(BP∗, BP∗(M)). Miller is able to relate

d2 to the di�erential in the Algebraic Novikov spectral sequence, which is more computationally

accessible . This relation determines d2 modulo higher Cartan-Eilenberg �ltration, which is enough

to compute α−1π∗(M).

We will present an attempt to follow the same strategy refered to as the �square� since one obtains

4 spectral sequnces that form a square diagram. In fact, we will generalize the square construction

to any triangulated category (rather than the category of spectra) and obtain information about

any dr (rather than just d2).

1.3 Organization

This thesis is informally divided into two main parts. In the �rst part (sections 2 − 5) we present

the progress regarding the conjecture, while sections 6− 7 are dedicated to the development of the

square method as an independant tool and it's use regarding our conjecture.

In section 2 we provide the necessary background about Stable(A) - the stable category of

comodules over the Steenrod algebra A, and explicitly write Palmieri's original conjecture and our

revised version of it. In section 3 we work out the corresponding spectral sequence for End(M)

and its action on the the one for M . Section 4 consists of the meat of the paper as we proceed to

show that Mahowald's conjecture would follow as long as a family of elements vanishes at E4. We

conclude the �rst part with section 5 where we introduce the original conjecture by Mahowlad and
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show explicitly how it follows from our revised conjecture.

We switch gears in section 6 as we introduce the terminology and basic setting of the square

construction. Then in Section 7 we discuss how the square construction �ts into the setting of our

original problem.

2 The category Stable(A)

In this chapter we give a brief description of Stable(A) and any related results of immediate use to

us. For more detail the reader is directed to Palmieri's book [8].

Objects in Stable(A) are unbounded cochain complexes of (left) A-comodules. We will identify

a comodule L with its injective resolution over A. For two such objects L,N the set of morphisms

is [L,N ]s,t = Exts,tA (L,N). Then Ls,t = πs,t(L) = Exts,tA (F2, L). For the sake of clarity we observe

L itself is bigraded and one should make a distinction between the elements of degree (s, t) in L

and Ls,t. Note also the sphere spectrum S ∈ Stable(A) is the injective resolution of F2, which is in

line with our notation of πs,t(L) = [S,L]s,t above. Stable(A) is now a triangulated category and for

a ring spectrum X ∈ Stable(A) we can build a generalaized Adams spectral sequence in the usual

way. Then assuming certain conditions hold we can identify E2(L;X) = ExtX∗∗X(X∗∗, X∗∗L) and

further conditions would guarantee convergence to π∗∗L.

We are interested in the case where the spectrum Q1 plays the role of X. To de�ne Q1, we �rst

de�ne q1 to be the injective resolution of A�F2(ξ2)/(ξ22)
F2. Q1 is now obtained from q1 after working

out how to extend the q1-resolution into the negative dimensions. Then one can check q1∗∗ = F2[v1],

Q1∗∗ = F2[v
±1
1 ] [8, p.44] and Q1∗∗Q1 = F2[v

±1
1 , ξ1, ξ

2
2 , · · · ξ2n, · · · ]/(ξ41 , ξ42 , · · · ) [8, p.101].

The trigraded spectral sequence of interest is

E2(M ;Q1) = ExtQ1∗∗Q1(Q1∗∗, Q1∗∗(M)) = F2[v
±1
1 , h11, h21, · · · , hn1, · · · ]

and it converges to v−11 E2(M ;H) [8, p.81, 101]. Note the abuse of notation above as what we

really mean by E2(M ;Q1) is E2(L;Q1) where L is an injective resolution for H∗(M). Elsewhere

M will always refer to the topological Moore spectrum. For degree reasons the only potential non-

zero di�erentials in Er(M ;Q1) happen at odd pages, so E2 = E3. Palmieri then conjectured the

following di�erentials:
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d3(v
2
1) = h311

d3(hn1) = v−21 h11h21h
2
n−1,1 for n ≥ 3

As we will see later, the conjecture in its current form is incorrect, so we make the following

revised conjecture:

d3(v
2
1) = h311

d3(hn1) = v−21 h311hn1 + v−21 h11h21h
2
n−1,1 for n ≥ 3

Though this isn't enough to fully determine d3, Palmieri goes on to propose that d3 �looks� as though

as E2(M ;Q1) is an algebra. One reason for this proposal that he notes is we can also compute the

E2 page of the corresponding spectral sequence for the sphere

E2(S;Q1) = ExtQ1∗∗Q1(Q1∗∗, Q1∗∗) = F2[v
±1
1 , h10, h11, h21, · · · , hn1, · · · ]

and use the map S → M to induce a surjection E2(S;Q1)→ E2(M ;Q1) with hn1 → hn1, h10 → 0

and v1 → v1. Then the identity map S ∧M → M turns E2(M ;Q1) into a cyclic module over

E2(S;Q1). Now identifying E2(M ;Q1) with F2[v
±1
1 , h11, h21, · · · , hn1, · · · ] becomes justi�ed as both

coincide as E2(S;Q1)-modules:

E2(M ;Q1) ∼= E2(S;Q1)/(h10) = F2[v
±1
1 , h11, h21, · · · , hn1, · · · ]

Then information about di�erentials inEr(S;Q1) could directly produce di�erentials inEr(M ;Q1)

and since S is a ring spectrum, Er(S;Q1) is a spectral sequence of algebras, so the di�erentials in

Er(S;Q1) are derivations. The problem is di�erentials in E2(S;Q1) are di�cult to compute and

so we don't know what E3(S;Q1) looks like. This is where End(M) enters the picture - it is a

ring spectrum that acts on M just as S does, but di�erentials in E2(End(M);Q1) are much more

manageable to compute.

10



3 The Q1 E2 term for End(M)

We begin by computing H∗(End(M)) as a comodule over A. Let x0 and x1 denote the two cells of

M and y−1 and y0 denote the two cells of DM = Σ−1M . Then End(M) = M ∧DM has four cells

of the form xiyj with |xiyj | = i+ j. As DM is the dual of M we have maps η : S →M ∧DM and

ε : DM ∧M → S that specify the ring structure of End(M). More precisely, η is the unit, while

multiplication is given by

M ∧DM ∧M ∧DM M ∧DM1∧ε∧1

and the action of End(M) onM is then given by the map 1∧ε : M ∧DM ∧M →M . If ι ∈ H∗(S) is

the generator, then η∗(ι) = x1y−1 + x0y0 and ε∗(y1x−1) = ε∗(y0x0) = ι. This allows us to compute

the multiplicative structure of H∗(End(M))

(xiyj)(xkyl) =


xiyl if j + k = 0

0 otherwise

Setting α = x0y−1 and γ = x1y0 we get that H∗(End(M)) = F2[α, γ]/(α2, γ2, αγ + γα + 1).

Note this is a 4-dimensional non-commutative F2-algebra with basis 〈1, α, γ, αγ〉 where |α| = −1

and |γ| = 1. To understand the coaction of A we just need to understand the coaction on α and γ.

Since ψ(x0) = 1⊗ x0 and ψ(x1) = 1⊗ x1 + ξ1 ⊗ x0 we conclude that

ψ(α) = ψ(x0y−1) = ψ(x0)ψ(y−1) = (1⊗ x0)(1⊗ y−1) = 1⊗ x0y−1 = 1⊗ α

and

ψ(γ) = ψ(x1y0) = ψ(x1)ψ(y0) = 1⊗ x1y0 + ξ1 ⊗ (x1y−1 + x0y0) + ξ21 ⊗ x0y−1

= 1⊗ γ + ξ1 ⊗ 1 + ξ21 ⊗ α

Recall we are interested in computing d3 in E2(M ;Q1). Since M lacks multiplicative structure,

we will work with End(M) and try to understand Er(End(M);Q1). We proceed with a direct
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computation

E2(End(M);Q1) = Ext(Q1)∗∗Q1
((Q1)∗∗, (Q1)∗∗(End(M)))

= F2[v
±1
1 ]⊗ ExtF2[ξ1,ξ22 ,··· ]/(ξ4i )

(F2,F2〈1, α, γ, αγ〉)

= F2[v
±1
1 ]⊗ F2[h21, h31, ...]⊗ ExtF2[ξ1]/(ξ41)

(F2,F2〈1, α, γ, αγ〉)

Here we used that the coaction of ξ2i on F2〈1, α, γ, αγ〉 is trivial for i ≥ 2. The conormal

extension F2(ξ
2
1)/(ξ41)→ F2(ξ1)/(ξ

4
1)→ F2(ξ1)/(ξ

2
1) produces a Cartan-Eilenberg spectral sequence

that collapses since H∗(End(M)) = F2〈1, α, γ, αγ〉 is cofree over F2(ξ1)/(ξ
2
1). Thus, we get

ExtF2[ξ1]/(ξ41)
(F2,F2〈1, α, γ, αγ〉) = ExtF2[ξ21 ]/(ξ

4
1)

(F2, ExtF2[ξ1]/(ξ21)
(F2,F2〈1, α, γ, αγ〉))

= ExtF2[ξ21 ]/(ξ
4
1)

(F2,F2〈1, α〉)

We conclude that ExtF2[ξ1]/(ξ41)
(F2,F2〈1, α, γ, αγ〉) = F2〈1, α〉 ⊗ F2[h11] and so

E2(End(M);Q1) = F2[v
±1
1 , α, h11, h21, h31, ...]/(α

2)

which (expectedly so) is two copies of E2(M ;Q1). The degrees of the generators are given by |v1| =

(0, 2, 1), |α| = (0,−1, 0), |hn1| = (1, 2n+1−2, 0). It is worth noting that even thoughH∗(End(M)) is

not commutative, the spectral sequence above ends up with a commutative multiplicative structure.

3.1 E2(M ;Q1) as a di�erential module over E2(End(M);Q1)

The action of End(M) on M extends to an action Er(End(M);Q1) ⊗ Er(M ;Q1) → Er(M ;Q1)

and so Er(M ;Q1) is a di�erential module over Er(End(M);Q1). The commutative diagram

M ∧DM ∧M M

S ∧M

1∧ε

η∧1
∼=

implies the action of E2(S;Q1) on E2(M ;Q1) factors through the action of E2(End(M);Q1) via
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the algebra map η∗ : Er(S,Q1)→ Er(End(M);Q1), which is just

η∗ : F2[v
±1
1 ]⊗ F2[h10, h11, h21, h31, ...]→ F2[v

±1
1 ]⊗ F2[h11, h21, h31, ...]⊗ F2〈1, α〉

with η∗(v1) = v1 and η∗(hn1) = hn1. Furthermore we claim η∗(h10) = αh11. Indeed, since ψ(γ) =

1⊗ γ+ ξ1⊗ 1 + ξ21 ⊗α it follows that ξ1⊗ 1 + ξ21 ⊗α vanishes in the homology of the cobar complex

of End(M) and so αh11 = ξ21 |α = ξ1|1, which is the cobar representative of h10 in E2(S;Q1).

Hence E2(M ;Q1) is a cyclic module over E2(End(M);Q1). Furthermore, we have an isomor-

phism of E2(End(M);Q1)-modules:

E2(M ;Q1) ∼= E2(End(M);Q1)/(α) = F2[v
±1
1 , h11, h21, · · · , hn1, · · · ]

Before we move on to the next section we note that all of the elements h11, v1, h21v1, h21v
2
1 survive

to E∞(M ;Q1) as shown by the diagram of E2(M ;H) below. Observe this doesn't guarantee the

same is true in Er(End(M);Q1), but we will still be able to extract some of the information back

to Er(End(M);Q1) using the action above.
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4 Calculating d2 and d3 of E2(End(M);Q1)

4.1 Low-degree calculations

We begin by calculating d2 and d3 on the low-degree elements in Er(End(M);Q1) and then proceed

to formulating a conjecture for d2 and d3 on the remaining elements.

Theorem 4.1.1: The elements α, h11, v1α, v1h21 survive to E4(End(M);Q1). Furthermore,

d2(v1) = αh211

d3(v
2
1) = h311

Proof:

Since we will need to distinguish between di�erentials in Er(End(M);Q1) and Er(M ;Q1), we

will denote them by dr and d
M
r respectively.

In Er(M ;Q1), h
3
11 must be a coboundary at some point and for degree reasons dM3 (v21) = h311.

Indeed, if dr(x) = h311 for some r ≥ 3 and x ∈ Er(M ;Q1) then since |h311| = (3, 6, 0) and dMr changes

degrees by (r, r − 1, 1− r) we conclude that |x| = (3− r, 7− r, r − 1). Recall |v1| = (0, 2, 1), |α| =

(0,−1, 0), |hn1| = (1, 2n+1 − 2, 0). Then 3 − r ≥ 0, so r = 3 and |x| = (0, 4, 2). The only option

now is x = v21. Note if v1 was to survive to E3(End(M);Q1) then d3(v
2
1) = 0, which would force

dM3 (v21) = 0. Hence d2(v1) 6= 0 and so for degree reasons d2(v1) = αh211. Given the action of

E2(End(M);Q1) we must also have d2(v1) = αh211. Either of those di�erentials could be also seen

since d2(v1) = h10h11 in E2(S;Q1) which follows from the same di�erential in the Cartan-Eilenberg

spectral sequence computing H∗(A(1)).

Next we claim d2(h21) 6= 0. Indeed, assume that d2(h21) = 0. Then d2(v
2
1h21) = 0 and since

v21h21 survives in Er(M ;Q1) it must be that d3(v
2
1h21) = 0 in E3(End(M);Q1). By multiplicativity

we conclude d3(h21) = v−21 h311h21. But now considering the action E3(End(M);Q1)⊗E3(M ;Q1)→

E3(M ;Q1) we have

dM3 (h21 · v1) = d3(h21) · v1 + h21 · dM3 (v1) = v−11 h311h21 6= 0

which can't happen since h21v1 survives in Er(M ;Q1). Note we have to consider the action since

h21v1 would not be present in E3(End(M);Q1). Hence our assumption was wrong and d2(h21) 6= 0,

which by degree reasons means d2(h21) = v−11 αh211h21.
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Finally both h11 and v1h21 survive d
M
3 inE3(M ;Q1), so they must also survive d3 inE3(End(M);Q1)

i.e. d3(h11) = d3(v1h21) = 0. At the same time, for degree reasons dr(α) = dr(αv1) = 0 for

r = 2, 3 and neither elements can be a coboundary, which means both α and αv1 are present in

E4(End(M);Q1).

�

4.2 Conjectures on Er(End(M);Q1)

Given the theorem above, in order to compute d2 completely we just need to know the values on

the remaining generators i.e. d2(hn1) for n ≥ 3. Thus we make the following conjecture:

(Main) Conjecture part 1: d2(hn1) = v−11 αh211hn1 for n ≥ 3

Observe then xn = v1hn+1,1 is a cycle, and that

E2(End(M);Q1) = F2[x1, x2, ...]⊗ F2[v
±1
1 , h11, α]/(α2)

where the �rst factor has zero di�erential and the second factor has only d2v1 = αh211. The homology

is thus

E3(End(M);Q1) = F2[x1, x2, ...]⊗ F2[v
±2
1 , h11, α, α

′]/(α2, αh211, αα
′, α′2)

where α′ is the class of v1α. Again Theorem 1 tells us d3(x1) = d3(α) = d3(α
′) = 0 and d3(v

2
1) = h311

and so in order to compute d3 completely we just need to know the values on the remaining

generators i.e. d3(xn) for n ≥ 2. Thus we further conjecture:

(Main) Conjecture part 2: d3(xn) = v−41 h11x1x
2
n−1 for n ≥ 2

We can prove this conjecture modulo the following assumption

(Smaller) conjecture: vm1 xn does not survive to E4(End(M);Q1) for n,m ∈ Z, n ≥ 2.

Theorem 4.2.1: The smaller conjecture above implies the main one.
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Before proving the Theorem observe the converse statement that the main conjecture implies the

smaller one also holds. In fact, the main conjecture even speci�es what dr(v
m
1 xn) is, which is what

justi�es the naming convention of the two conjectures. Thus, the Theorem can be reformulated by

saying that the smaller and main conjectures above are equivalent.

Proof:

For n ≥ 3 d2(hn1) is a linear combination of v−11 αh211hn1 and v
−1
1 αh21h

2
n−1,1 for degree reasons,

but the later is not in the image of E2(S;Q). Hence d2(hn1) = v−11 αh211hn1 or 0. Assume that

for some n ≥ 3 d2(hn1) = 0. For degree reasons, d3(hn1) is a linear combination of v−21 h311hn1 and

v−21 h11h21h
2
n−1,1, but v

−2
1 h11h21h

2
n−1,1 doesn't survive to E3(End(M);Q1) since

d2(v
−2
1 h11h21h

2
n−1,1) = d2(h21)v

−2
1 h11h

2
n−1,1 = v−31 αh311h21h

2
n−1,1

By our smaller conjecture, d3(hn1) 6= 0 and so d3(hn1) = v−21 h311hn1. Then

d3(v
2
1hn1) = d3(v

2
1)hn1 + v21d3(hn1) = h311hn1 + h311hn1 = 0

which again contradicts the (smaller) conjecture. We conclude d2(hn1) = v−11 αh211hn1 for all n ≥ 2,

which is also equivalent to d2(v1hn1) = 0 for all n ≥ 2. Hence the elements xn = v1hn+1,1 survive,

which justi�es their presence in E3. This completes the d2 calculation in E2(End(M);Q1).

Next for n ≥ 2 d3(xn) is a linear combination of v−41 h11x1x
2
n−1 and v−21 h311xn, which leaves us

with 4 possibilities. d3(xn) = v−21 h311xn would imply d3(v
2
1xn) = 0 and so d3(xn) = 0 or v−21 h311xn are

both ruled out as possibilities due to the (smaller) conjecture. Then either d3(xn) = v−41 h11x1x
2
n−1

or d3(xn) = v−41 h11x1x
2
n−1 + v−21 h311xn. However, the latter case would imply

d3(v
2
1xn) = d3(v

2
1)xn + v21d3(xn) = h311xn + h311xn + v−21 h11x1x

2
n−1 = v−21 h11x1x

2
n−1

and so

0 = d23(v
2
1xn) = d3(v

−2
1 h11x1x

2
n−1) = d3(v

−2
1 )h11x1x

2
n−1 = v−41 h411x1x

2
n−1

which is false as v−41 h411x1x
2
n−1 is present in E3(End(M);Q1). We conclude d3(xn) = v−41 h11x1x

2
n−1

for n ≥ 2 as desired.
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�

It is worth mentioning that Palmieri's original conjecture would imply that dM3 (vm1 hn1) 6= 0

for n ≥ 3, which would guarantee the (smaller) conjecture. However, the smaller conjecture itself

is enough to arrive at a di�erent answer than what Palmieri suggested. This proves his original

formulation is incorrect, but as we will see in the next section it is close to what we arrive at based

on the (smaller) conjecture.

4.3 Completing the calculation of d3 in E3(M ;Q1)

Now that we have learnt a fair bit about the structure of Er(End(M);Q1) we will see how the

information about its di�erentials can translate to information about the di�erentials in Er(M ;Q1).

Recall for degree reasons E2(M ;Q1) = E3(M ;Q1). Observe E3(M ;Q1) is now generated by {1, v1}

as a E3(End(M);Q1)-module. Since v1 survives to E∞(M ;Q1) we get d
M
3 (v1) = dM3 (1) = 0 and so

d3 now completely determines dM3 .

For example, to compute dM3 (hn1) for n ≥ 3 note that hn1 = v−21 xn−1 · v1 and so we get

dM3 (hn1) = d3(v
−2
1 xn−1) · v1 = v−21 h311hn1 + v−21 h11h21h

2
n−1,1

We conclude that assuming the (smaller) conjecture holds, the di�erentials in E3(M ;Q1) are

dM3 (v21) = h311

dM3 (h21) = v−21 h21h
3
11

dM3 (hn1) = v−21 h311hn1 + v−21 h11h21h
2
n−1,1 for n ≥ 3

which is what we conjectured in Section 2.

5 Relation between Palmieri's and Mahowald's notations

In this section we will see how the conjectured di�erentials for E3(M ;Q1) imply Mahowald's conjec-

ture assuming there are no higher degree di�erentials. We begin by stating Mahowald's conjecture

explicitly following the original description in [3]. Let P = F2[x1, x2, · · · ] be a polynomial algebra,

which is bigraded with |xi| = (2, 2i+2 + 1). Set a derivation d on P by d(xi) = x1x
2
i−1 for i > 1. Let

H(d) be the resulting homology and B(d) the image of d. Then assuming a and b run through an

F2-basis for H(d) and B(d) Mahowald conjectured that
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v−11 Exts,tA (F2, H∗(M)) =
⊕

a∈H(d)

Σ|a|v−11 Exts,tA (F2, H∗(bo ∧M))

⊕
⊕
b∈B(d)

Σ|b|v−11 Exts,tA (F2, H∗(bu ∧M))

Here bo and bu are connective real and complex K-theory respectively and we have explicit

computations:

v−11 Exts,tA (F2, H∗(bo ∧M)) = F2[v
±4
1 ]⊗ F2(h11, v1)/(h

3
11, v

2
1)

v−11 Exts,tA (F2, H∗(bu ∧M)) = F2[v
±1
1 ]

In other words, the conjecture reads that v−11 E2(M ;H) consists of |H(d)| copies of F2[v
±4
1 ] ⊗

F2(h11, v1)/(h
3
11, v

2
1) and |B(d)| copies of F2[v

±1
1 ]. To clarify, by |H(d)| we mean the number of

basis elements of any given degree in H(d) and even though H(d) is in�nite, it is of �nite type and

so for every basis element a ∈ H(d) the copy is suspended by the degree of a. The same holds for

B(d).

Recall E3 = E3(M ;Q1) = F2[v
±1
1 ]⊗ F2[h11, h21, h31, ...] with proposed di�erentials d3(v

2
1) = h311

and d3(hn1) = v−21 h311hn1+v−21 h11h21h
2
n−1,1 for n > 2. We will express E4 in such a way that it takes

the form Mahowald suggested. Rewrite E3 = F2[v
±1
1 , h11] ⊗ F2[x1, x2...] where xn = v1hn+1,1 and

introduce a grading on E3 so that |vi1| =


0 if i ≡ 0, 1(4)

2 if i ≡ 2, 3(4)

, |h11| = 1 and |xn| = 0. Extend this

grading to monomials in the obvious fashion. Then E3 = ⊕n≥0E3,n. The reason we are interested

in this grading is that now d3 increases it by 1. But then E4 is just the homology of the graded

chain complex i.e. E4 = ⊕n≥0 ker(dn3 )/im(dn−13 ).

0 E3,0 E3,1 E3,2 · · ·
d−1
3 d03 d13 d23

We claim that

(1) ker(d03)/im(d−13 ) = ker(d03) = Z(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)

(2) ker(d13)/im(d03) = H(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {h11}
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(3)

(
ker(d23)/im(d13)

)
/H(d)⊗ F2[v

±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {h211} ∼=

∼= B(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {v21}

(4) ker(dn3 )/im(dn−13 ) = 0 for n ≥ 3

Given the proof of (1)− (4) is not particularly insightful, we leave it for the end of this section.

We are left with the task of identifying the expressions above with Mahowald's formulation. The

key here is to observe that given (2) and (3) we would need to identify Z(d)⊗F2[v
±4
1 ]⊗F2[v1]/(v

2
1)

in (1) with (H(d)⊕B(d))⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1). Then from (1), (2), (3) we would get the |H(d)|

copies of F2[v
±4
1 ] ⊗ F2(h11, v1)/(h

3
11, v

2
1). What is left over is B(d) ⊗ F2[v

±4
1 ] ⊗ F2[v1]/(v

2
1) from

(1) and B(d) ⊗ F2[v
±4
1 ] ⊗ F2[v1]/(v

2
1) ⊗ {v21} from (3), which combine to produce |B(d)| copies of

F2[v
±1
1 ]. Thus each of (1), (2) and (3) corresponds to a third of the �lightning �ash� sequence, while

the remainder of (1) and (3) each represent half of the v1-line.

Below we can see exactly how the elements of H(d) and B(d) correspond to lightning �ashes

and v1-lines in E2(M ;H). The �rst few elements of H(d) appearing are 1, x1, x
2
1, x

2
2 and x21x3 + x32

and we can see the lightning falshes for each one. Similarly, the �rst few elements of B(d) appearing

are x31 through x91 and x1x
2
2 each corresponding to a copy of F2[v

±1
1 ]. The colors used have no

underlying meaning outside of grouping together the di�erent elements in E2(M ;H) and relating

each group to its representing element of H(d) or B(d).

19



We are left to prove (1) − (4). It is an immediate check to verify they follow from (i) and (ii)

below, which is what we set out to show.

(i)

ker(dn3 ) = Z(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {hn11} if n = 0, 1

ker(dn3 )/Z(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {hn11} ∼=

∼= B(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {v21} ⊗ {h

n−2
11 } if n ≥ 2

(ii) im(dn3 ) =


B(d)⊗ F2[v

±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {hn+1

11 } if n = 0, 1

ker(dn+1
3 ) if n ≥ 2

Note that that E0
3 = P ⊗ F2[v

±4
1 ] ⊗ F2[v1]/(v

2
1), E1

3 = P ⊗ F2[v
±4
1 ] ⊗ F2[v1]/(v

2
1) ⊗ {h11} and
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d03(y) = d(y)v−41 h11 for every y ∈ P ⊂ E0
3 . Hence ker(d

0
3) and im(d03) take the desired form and the

same argument holds for ker(d13) and im(d13). We proceed to calculate ker(d23) and the calculation

of ker(dn3 ) for n > 2 is analogous. Every element of E2
3 takes the form

∑s
i=1 v

mi
1 yi +

∑t
j=1 v

lj
1 zjh

2
11

where m1 < m2 < · · · < ms, mi ≡ 2, 3(4), l1 < l2 < · · · lt, lj ≡ 0, 1(4) and yi, zj ∈ P . We also

assume yi, zj 6= 0. Then

d23

(
s∑
i=1

vmi
1 yi +

t∑
j=1

v
lj
1 zjh

2
11

)
=

s∑
i=1

(
vmi−2
1 yih

3
11 + vmi−4

1 d(yi)h11
)

+

t∑
j=1

v
lj−4
1 d(zj)h

3
11

Setting this equal to 0 we observe two cases. First if s = 0 then d(zj) = 0 for all j and we get

the same component as in ker(d03), namely Z(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)⊗{h211} ⊂ ker(d23). If s > 0

then we obtain d(yi) = 0 for all i and we are left with

s∑
i=1

vmi−2
1 yi +

t∑
j=1

v
lj−4
1 d(zj) = 0

which given the degrees of v1 can only happen if s = t, mi − 2 = li − 4 and yi = d(zi). Note

yi = d(zi) already implies d(yi) = 0. Furthermore, for every yi ∈ B(d) we have a unique zi ∈ P

with yi = d(zi) modulo Z(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {h211} ⊂ ker(d23). Hence

ker(d23)/Z(d)⊗ F2[v
±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {h211} ∼= B(d)⊗ F2[v

±4
1 ]⊗ F2[v1]/(v

2
1)⊗ {v21}

as desired. In fact, ker(d23)
∼= P ⊗ F2[v

±4
1 ]⊗ F2[v1]/(v

2
1), but stated this way it does not relate well

with Mahowald's conjecture.

Next we show im(d23) = ker(d33) and the result for im(dn3 ) follows analogically. As we saw above

elements of ker(d33) are sums of elements of the form vm1 yh11+vm−21 zh311 form ≡ 2, 3(4) and y, z ∈ P

such that d(z) = y. But then d23(v
m
1 z) = vm1 yh11 + vm−21 zh311 and so ker(d33) ⊂ im(d23) and since the

reverse inclusion holds as well the two must coincide. This completes the proof of (i) and (ii) and

thus we have successfully identi�ed Mahowald's and Palmieri's formulations of the problem.
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6 Introducing the �square� of spectral sequences

In this section we will improve upon a technique originally used by Miller [6] and further re�ned by

Andrews and Miller [1] to obtain information about di�erentials in a spectral sequence. An informal

discussion to the approach below was �rst presented by Novikov [7]. Most of this section is based

on [1] and follows the approach there closely. We will try to set up the machinery of the �square�

in a great generality where we are working in any triangulated category, but the reader should keep

in mind the goal is to ultimatly use our setup in the category of stable comodules over the dual

Steenrod algebra.

Consider resolving a spectrum X by another spectrum B thus obtaining a spectral sequence

E2(X;B) =⇒ π∗(X). How can we go about computing the di�erentials? One approach is to pick

a spectrum A and consider the resolutions of X by A and B simultaniously. We can resolve by A

�rst and then by B or vice versa. This would give us 4 di�erent spectral sequences organized as in

the �gure below - hence a �square� of spectral sequences.

∗ E2(X;B)

E2(X;A) π∗(X)

May

Mahowald

B−Adams
A−Adams

Explaining why would such a diagram make sense and how is it organized is the goal of this

section. There are a number of conditions that need to be satis�ed by A and B, but perhaps the

most vital one - central to the approach - is requiring the existence of a ring map A → B. This

guarantees that every element in π∗(X) has A-�ltration s and B-�ltration s + t for some s, t ≥ 0.

Then the diagram gives us two di�erent ways to resolve elements of π∗(X) - �rst by �nding s + t

and then �nding out s or �rst �nding out s and then s+ t. This condition is at the �heart� of the

construction as it will become apparent. The rest of the conditions on A,B are more technical and

it is conceivable that one would be able to perform similar (albeit more di�cult and less complete)

analysis without them.

(C. 1)There exists a ring map δ : A −→ B
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6.1 Setting up the A,B- Adams spectral sequence

We set up the A-Adams spectral sequence for X by considering the canonical A-resolution of S and

smashing it on the left with X. Via the unit map of A we obtain a co�ber sequence S −→ A −→ Ā.

Smashing it with powers of Ā we obtain an A-resolution for S

S Ā · · · Ā∧s Ā∧(s+1) · · ·

A[0] A[1] A[s] A[s+1]

where the top maps are desuspensions and we use the notation A[s] = Ā∧s∧A. Smashing the above

diagram with X on the left and taking the LES of homotopy groups for each co�ber sequence results

in an exact couple, which is the A- Adams spectral sequence for X.

We perform the exact same construction for B except that B[t] = B ∧ B̄∧t and we smash the

canonical B-resolution with X on the right instead of on the left. It is crucial to observe that the

reason we can simultaniously resolve X by both A and B is precisely because we have a freedom

to resolve either on the left or on the right. This will be an important point when we end up

performing calculations as the cobar complexes for computing E2(X,A) and E2(X;B) would be set

up via coaction maps for right and left comodules respectively. An interesting observation is that

resolving by more than 2 spectra simultaniously can't be done in that context as we have no more

degrees of freedom available (not to mention it is not clear why one would like to deal with such a

beast in the �rst place).

6.2 Setting up the May and Mahowald spectral sequences

We begin by de�ning the May spectral sequence in our square diagram. NoteE2(X;A) = H(E1(X;A), dA1 ) =

H(π∗(X ∧ A[s]), dA1 ), so we consider the B-�ltration of π∗(X ∧ A[s]) we will obtain a spectral se-

quence converging to E2(X;A) - the May spectral sequence in our diagram. To be able to perform

computations we need the following assumption:

(C.2) Er(X ∧A[s];B)⇒ π∗(X ∧A[s]) collapses at E2

This implies that EMay
1 = E2(X ∧ A[s];B). Another way to express the above condition is by
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saying that X is a (A,B)-primary spectrum.

To de�ne the Mahowald spectral sequence note that (C.1) implies that B is A-injective and so

A-exact sequences are B-exact. Hence, applying E2(−;B) to the A-resolution of X would produce

a family of LES's that link together to produce an exact couple. The resulting spectral sequence is

the Mahowald spectral sequence. It converges to E2(X;B). Note EMah
1 = E2(X ∧A[s];B) = EMay

1 ,

which completes our square of spectral sequences.

We will need a �nal condition stating that the following diagram commutes (C3):

B̄ ∧ Ā B̄ ∧ B̄

ΣB̄

1∧δ

1∧iA

iB∧1

For simplicity, we introduce the notation X [t][s] = B[t] ∧ X ∧ A[s], X(t)[s] = B̄∧t ∧ X ∧ A[s],

X [t](s) = B[t] ∧X ∧ Ā∧s, X(t)(s) = B̄∧t ∧X ∧ Ā∧s. We also set iA, jA, kA and iB, jB, kB to be the

maps in the exact couple for the A and B Adams Spectral Sequences respectively. For example,

Er(X ∧A[s];B) is obtained via the exact couple

⊕t,uπu(X(t)[s]) ⊕t,uπu(X(t)[s])

⊕t,uπu(X [t][s])

iB

jBkB

with maps

iB : πu(X(t+1)[s])→ πu−1(X
(t)[s])

jB : πu(X(t)[s])→ πu(X [t][s])

kB : πu(X [t][s])→ πu(X(t+1)[s])

6.3 Main result

Theorem 6.3.1: If an element x ∈ Et+s2 (X;B) survives to E4 then its representative a ∈ EMay
1

survives to EMay
3 . More precisely we will see that dB2 x = 0 implies dMay

1 a = 0 and dB3 x = 0 implies
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dMay
2 a = 0.

An integral part of the proof is the following lemma due to May [5] following from observations

in [2].

Lemma 6.3.2: Let D → E → F and X → Y → Z be co�ber sequences. Smash them together

to get the following commutative diagram of co�ber sequences.

D ∧X D ∧ Y D ∧ Z

E ∧X E ∧ Y E ∧ Z

F ∧X F ∧ Y F ∧ Z

Take e ∈ πn(E ∧ Y ) that maps to 0 in πn(F ∧ Z). Then there are elements d ∈ πn(D ∧ Z) and

f ∈ πn(F ∧X) that map to the image of e in πn(E ∧Z) and πn(F ∧ Y ) respectively. Fruthermore,

those elements can be chosen so that they have the same image (up to a sign) in πn−1(D∧X) under

the boundary maps associated to the co�ber sequences along the top and left edge of the diagram.

We will use a slightly stronger version of this lemma, which states that for every d′ ∈ πn(D∧Z)

that maps to the image of e in πn(E ∧Z), there exists a f ′ ∈ πn(F ∧X) that maps to the image of

e in πn(F ∧ Y ). To see how this stronger version follows from the lemma above, note d′ − d maps

to 0 in πn(E ∧ Z) and so there is g ∈ πn+1(F ∧ Z) that maps to d′ − d. But then we can pick

f ′ ∈ πn(F ∧X) so that g maps to f ′ − f in πn(F ∧ Z). Now d′ and f ′ would have the same image

(up to a sign) in πn−1(D∧X). Also note since we are working mod 2, we don't have to worry about

signs.

Proof of Theorem 6.3.1: Let x has A-�ltration s i.e. it can be lifted to an element z ∈ Et2(X ∧

Ā∧s;B). Clearly z survives to E4 as well. Pick z
′ ∈ Et1(X ∧ Ā∧s;B) = π∗(X

[t][s]) that represents z.

Since z′ survives to E4, there must exist y
′′′ ∈ π∗(X(t+4)(s)) such that kBz

′ = i3By
′′′ and jBy

′′′ will be

represented by dB4 z
′ in E4(X ∧ Ā∧s;B). A central point will be to show we can choose y′′′ so that it

lifts to E1(X ∧ Ā∧s+1;B) via the map δ. With that in mind, note a′ = jA(z′) survives to an element

a ∈ E2(X ∧ Ā∧s;B) and so must survive to E∞ by (C2). Hence there exists b′ ∈ π∗(X(t)[s]) with

jBb
′ = a′ and so kBa

′ = 0. Consider jAi
2
By
′′′. We know applying either iB or jB to this element

produces 0. But note iBjAi
2
By
′′′ = 0 implies we can pull back jAi

2
By
′′′ to an element w ∈ π∗(X [t+1][s])

while jBjAi
2
By
′′′ = 0 implies dB1 w = 0 and so w survives to E∞ and as above jAi

2
By
′′′ = 0. By the
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exact same reason since both iB and jB yield 0 on jAiBy
′′′ we conclude jAiBy

′′′ = 0. Hence there

exists y2 ∈ π∗(X(t+3)(s+1)) such that iAy2 = iBy
′′′, but iAy2 = iBδy2 by (C3) and so we can pick

y′′′ = δy2. As a side note, observe jBy
′′′ = δjBy2 and so dB4 x has A-�ltration s+ 1.

Recall we want to show dMay
1 a = 0 and dMay

2 a = 0. dMay
1 a is obtained by the top of the following

diagram.

X [t][s] X [t][s+1] X [t+1][s+1]

X(t)[s] X(t)[s+1] X(t+1)[s+1]

X(t)(s+1) X(t+1)(s+1)

dA1

iB
jB

dA1

kA

jB jB

iBjA

iB

jA

Set y0 = iBy1 = i2By2. Then May's lemma applied to the diagram below guarantees the existence

of b′ such that iBy
′
0 = kAb

′. But then dMay
1 a is represented by jBjAy0 = 0 as desired.

X(t)(s+1) X(t)(s) X(t)[s]

X [t](s+1) X [t](s) X [t][s]

X(t+1)(s+1) X(t+1)(s) X(t+1)[s]

iA

jB

jA

jB jB

kA

iA

kB

jA

kB kB

iA

iB

jA

Similarly to get dMay
2 a we need to lift jAy0 via iB to π∗(X

(t+2)[s+1]) and apply jB, but y0 lifts

via iB to y1 and jBy1 = 0. Hence jBjAy1 = 0 represents dMay
2 a. This concludes the proof.

X [t][s] X [t][s+1] X [t+2][s+1]

X(t)[s] X(t)[s+1] X(t+2)[s+1]

X(t)(s+1) X(t+2)(s+1)

dA1

i2B
jB

dA1

kA

jB jB

i2BjA

i2B

jA

�

It is easy to see that the same argument we applied to dMay
2 a works for higher di�erentials and

we end up with the following generalization:

26



Theorem 6.3.3 (Generalization): If an element x ∈ Et+s2 (X;B) survives to En+1 then its

representative a ∈ EMay
1 survives to EMay

n .

It is worth noting the representative a above might not be unique and the result holds for any

such choice. Indeed, the element a is obtained uniquely from a representative z′ ∈ Et1(X ∧ Ā∧s;B)

of x and the above proof works for any such z′.

7 Proof of the Smaller Conjecture

7.1 Choice of spectra in the context of the square construction

We will begin this section with an informal discussion that would hopefully shed some light on the

reason why the above construction of the square could be useful to our problem as well as problems

of that type. Let's recall our goal is to show that a d3 di�erential is non-zero on a family of elements

of an Adams spectral sequence. We can reformulate this by saying we want to show the family of

elements does not survive to E4. Theorem 2 tells us it is then su�cient to �nd a spectrum T that

together with Q1 �ts into the setting of the square de�ned above and for which the representatives of

the family of elements we are interested in does not survive to EMay
3 . At �rst sight this might seem

like it introduces an unnecessary level of complexity. It is also not clear how one might go about

�nding such a T . The advantage we have here is that we know exactly what dQ1
3 should look like.

Note all elements hn1 have an (s+ t)−�ltration of 1, while dMay
n increases s−�ltration by 1. Hence

we want hn1 to have s-�ltration 1 less than the s−�ltration of v−21 h11h21h
2
n−1,1 for every n > 2.

For every hn1 we have 2 possibilities to the corresponding values of (s, t) as both are non-negative

and they sum to 1. Note also the (s + t)−�ltration of v1 is 0. Now pick the smallest n > 2 (if it

exists) such that the s−�ltration of hn1 is 1 (rather than 0). Then the s−�ltration of v−21 h11h21h
2
n1

would be at least 2 and the s−�ltration of hn+1,1 is at most 1, but we want the di�erence between

the two to be exactly 1 and so h11 and h21 are forced to have an s−�ltration of 0. However, then

the s−�ltration of v−21 h11h21h
2
n−1,1 is 0, which is not 1 more than the s−�ltration of hn1. Hence

we can assume for n > 2 hn1 has s−�ltration 0. This forces h11 to have s−�ltration 1 and h21 to

have s−�ltration 0. What this means is the elements hn1 for n > 1 are represented by elements in

T∗∗M in the cobar complex that is the E1 page of the T -Adams spectral sequence for M . At the

same time h11 should not be present in T∗∗M , but rather be represented in T∗∗M ⊗ T∗∗T .
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Recall the May spectral sequence is obtained by applying aQ1−�ltration to the T -cobar complex.

Then the calculation of dMay
n comes down to calculating the coaction map T∗∗M → T∗∗M ⊗ T∗∗T

for the Hopf Algebroid (T∗∗, T∗∗T ). For that reason we will choose T = HC for some conormal

quotient coalgebra C of the dual Steenrod algebra. Then (T∗∗, T∗∗T ) is in fact a split Hopf algebra

with T∗∗T ∼= A�CF2 ⊗ T∗∗ and T∗∗ = ExtC(F2,F2) (prop. 1.4.6, p.27, Palmieri) i.e. the map of

interest is just the coaction map of ExtC(F2,F2(ξ1)/(ξ
2
1)) as a A�CF2−comodule.

As noted above, for n > 1 hn1 must be represented in ExtC(F2,F2), while h11 shouldn't be. This

means we can choose any conormal quotient coalgebraC of the dual Steenrod algebra locked between

C0 and C1 i.e. both C → C0 and C1 → C are quotients, where C0 = F2(ξ1, ξ2, · · · )/(ξ21 , ξ42 , ξ43 , · · · )

and C1 = F2(ξ1, ξ2, · · · )/(ξ21). In other words C0 and C1 are the largest and smallest quotients that

satisfy the restrictions on hn1 listed above.

As we proceed with the formal application of the square construction in our setup, observe there

is a bit of care we need to exercise when translating the statements. Speci�cally, maps in Stable(A)

are bigraded and our construction will essentially ignore the second grading. Also as a matter of

convention, co�ber sequences in Stable(A) have the form E → R→ F → Σ−1,0E and so while the

general arguments remain unchanged, C.3 takes the following slightly di�erent form:

Q̄1 ∧ H̄C Q̄1 ∧ Q̄1

Σ−1,0Q̄1

1∧δ

1∧iHC

iQ1
∧1

7.2 Condition C.1

In the next sections we will address what choice of C would �t in the setup of the square so

that the pair (HC,Q1) would satisfy conditions C.1−C.3. Condition C.1 is in fact trivial as

Q1 = HF2(ξ2)/(ξ
2
2) = A�F2(ξ2)/(ξ22)

F2 and so the quotient map C → F2[ξ2]/(ξ
2
2) produces a ring

map HC → Q1. So far this imposes no further restrictions on our choice of C.

7.3 Condition C.2

Condition C.2 is essential for the construction of the May spectral sequence. More precisely we have

that E2(M ;HC) = H(π∗∗(M ∧HC [s]), dHC1 ) and we would like to �lter this complex via Q1. This
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would produce a �ltration spectral sequence which is the May spectral sequence. Condition C.2 now

allows us to identify EMay
1 = E2(M ∧HC [s];Q1). An important point is that E2(M ∧HC [s];Q1)

converges to v−11 π∗∗(M ∧ HC [s]) = π∗∗(v
−1
1 M ∧ HC [s]), where the equality is just the Telescope

conjecture in the setting of Stable(A), which is known to hold [8, Prop.3.1.10]. Hence in order to

construct the May spectral sequence we should be working with v−11 M instead of M .

Proposition 7.3.1: The Q1-Adams spectral sequences converging to v−11 π∗∗(M ∧ HC0) and

v−11 π∗∗(M ∧HC1) collapse.

Proof: This holds for degree reasons (p102-103, Palmieri).

Proposition 7.3.2: The Q1-Adams spectral sequences converging to v−11 π∗∗(M ∧ HC [s]
0 ) and

v−11 π∗∗(M ∧HC [s]
1 ) collapse.

Proof: In fact this proposition holds for any conormal C as long as Prop.7.3.1 holds. Indeed,

since C is conormal

v−11 π∗∗(M ∧HC [s]) = v−11 π∗∗(M ∧HC)⊗ ¯A�CF2
⊗s

Furthermore

E2(M ∧HC [s];Q1) = E2(M ∧HC;Q1)⊗ ¯A�CF2
⊗s

and so the result follows from the previous proposition.

7.4 Condition C.3

Recall condition C.3 states that the following diagram commutes:

Q̄1 ∧ H̄C Q̄1 ∧ Q̄1

Σ−1,0Q̄1

1∧δ

1∧iHC

iQ1
∧1

This would follow from the stronger statement that Q−1,01 (Q̄1 ∧ H̄C) = 0 as observed by Andrews

and Miller in [1]. More precisely, if we compose either of the two maps Q̄1 ∧ H̄C → Σ−1,0Q̄1 in the

diagram with iQ1 : Σ−1,0Q̄1 → Σ−2,0S we will obtain iQ1 ∧ iHC : Q̄1 ∧ H̄C → Σ−2,0S. Hence the

di�erence between the two maps lifts to the �ber of iQ1 , which is just Σ−1,0Q1, so to prove condition
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C.3 it su�ces to show [Q̄1 ∧ H̄C,Σ−1,0Q1] = Q−1,01 (Q̄1 ∧ H̄C) vanishes.

Q̄1 ∧ H̄C Q̄1 ∧ Q̄1

Σ−1,0Q1

Σ−1,0Q̄1

Σ−2,0S

1∧δ

1∧iHC

iQ1
∧1

kQ1

iQ1

To prove Q−1,01 (Q̄1 ∧ H̄C) = 0 �rst note we have a duality statement relating the Q1-homology

and cohomology. This follows since Q1∗∗ = F2[v
±1
1 ] is a �eld and so Qa,b1

∼= Homa,b
Q1∗∗(Q1∗∗, Q1∗∗) ∼=

(Q1)a,b. Furthermore HomQ1∗∗(−, Q1∗∗) is exact and so inductively we get that for every �nite type

stable comodule N over the dual Steenrod algebra it holds that Qa,b1 (N) ∼= (Q1)a,b(N). Thus it

su�ces to show (Q1)−1,0(Q̄1 ∧ H̄C) = 0. Indeed, we claim that for a suitable choice of C that

(Q1)−1,0(Q1 ∧HC) is an F2-vector space of dimension 2 with elements coming from (Q1)−1,0(Q1)

and (Q1)−1,0(HC) each of dimension 1. In other words smashing the two spectra produces no

further homology and so (Q1)−1,0(Q̄1 ∧ H̄C) is trivial. Note this is exactly the same reasoning one

uses in the ordinary category of stable cell complexes.

We directly compute Q1∗∗(HC) = H(A�CF2, Q1) ⊗ Q1∗∗. Note H(A�CF2, Q1) has bidegree

(0, ∗). Hence as long as ξ21 ∈ A�CF2 we have that

(Q1)−1,0(HC) = H2(A�CF2, Q1)⊗ {v−11 } = F2〈ξ21 ⊗ v−11 〉

Similarly

(Q1)−1,0(Q1) = H2(A�F2(ξ2)/(ξ22)
F2, Q1)⊗ {v−11 } = F2〈ξ21 ⊗ v−11 〉

and

(Q1)−1,0(Q1∧HC) = H2(A�F2(ξ2)/(ξ22)
F2⊗A�CF2, Q1)⊗{v−11 } = F2〈(1⊗ξ21)⊗v−11 , (ξ21⊗1)⊗v−11 〉

as desired.
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7.5 Calculating dMay
2

Recall we start with E2(M ;HC) = H(π∗∗(HC ∧ H̄Cs ∧M), dHC1 ). Note following our construction

we are smashing on the left and not on the right. That's because the Q1-spectral sequence we

already have is obtained by smashing on the right. Furthermore, the part of dHC1 we are interested

in is exactly the coaction map for π∗∗(HC ∧M) as a A�CF2-comodule. However, this coaction

map is one for a right comodule i.e. we are interested in π∗∗(HC ∧M)→ π∗∗(HC ∧M)⊗A�CF2.

Recall

π∗∗(HC ∧M) = ExtF2[ξ2,··· ]/(ξ4i )
(F2,F2) = ⊗n≥2F2[hn0, hn1]

So what is dHC1 (hn1)? Well, the representative in the cobar complex for F2[ξ2, · · · ]/(ξ4i ) is just

ξ2n|1. We have that 4ξ2n =
∑n

i=0 ξ
2i+1

n−i ⊗ ξ2i and so we are interested in those indices 0 < i ≤ n for

which ξ2
i+1

n−i ∈ F2[ξ2, · · · ]/(ξ4i ) and ξ2i ∈ A�CF2, but this can't happen and so dHC1 (hn1) = 0 and hn1

is primitive. But then all May di�erentials for hn1 vanish, which while not being what we want, at

least doesn't contradict the square construction.
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