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by
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Doctor of Philosophy

Abstract

In this thesis we study the Bousfield-Kan spectral sequence (BKSS) in the Quillen model
category 𝑠Com of simplicial commutative F2-algebras. We develop a theory of unstable
operations for this BKSS and relate these operations with the known unstable operations
on the homotopy of the target. We also prove a completeness theorem and a vanishing
line theorem, and together these eliminate the possibility of convergence problems for a
connected object of 𝑠Com.

We approach the computation of the BKSS by deriving a composite functor spectral
sequence (CFSS) which converges to the BKSS 𝐸2-page. We then extend this construction
to an infinite sequence of CFSSs, with each abutting to the 𝐸2-page of the last. Equipping
each of these CFSSs with a theory of unstable spectral sequence operations, we are able
to calculate the Bousfield-Kan 𝐸2-page in the most important case, that of a connected
sphere in 𝑠Com. We use this calculation to describe the 𝐸1-page of a May-Koszul spectral
sequence which computes the BKSS 𝐸2-page for any connected object of 𝑠Com. We conclude
by making two conjectures which would, together, allow for a full computation of the BKSS
for a connected sphere in 𝑠Com.

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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Chapter 1

Introduction

The primary object of study in this thesis is the Bousfield-Kan spectral sequence (BKSS)

in the Quillen model category 𝑠Com of simplicial non-unital commutative F2-algebras.

This spectral sequence calculates the homotopy groups of the homology completion 𝑋^

of 𝑋 ∈ 𝑠Com, with 𝐸2-page given by certain derived functors applied to the André-Quillen

cohomology groups 𝐻*
Com𝑋. The approach we take in this thesis is two-fold. On the one

hand, we develop an extensive theory of spectral sequence operations on the BKSS. On the

other hand, we use composite functor spectral sequences (CFSSs) to calculate the derived

functors that form the 𝐸2-page.

In §1.1 we recall certain aspects of the theory of the BKSS of a pointed connected

topological space, including a CFSS due to Miller for the computation of its 𝐸2-page. There

are a number of useful analogies to be drawn between this classical theory and the content

of this thesis.

After giving a little of the necessary algebraic and topological background in §1.2, we

discuss in §1.3 the BKSS in 𝑠Com, and introduce the unstable spectral sequence operations

referred to in the title of this thesis. There are three types of operations appearing at 𝐸2.

Higher divided power operations and a commutative product arise as the Koszul dual op-

erations to Goerss’ operations on André-Quillen cohomology, and an action of the Steenrod

algebra emerges as an artifact of the positive characteristic. The 𝛿-operations and the Steen-

rod operations are unstable as described in §1.3, and we also describe an elegant relation

between the two types of operations. We also explain how the 𝛿-operations and product

relate to the natural homotopy operations on the target, a relationship clarified by a com-

pleteness theorem and a vanishing line theorem which, together, eliminate the potential for

convergence problems.

We describe the other part of our approach in §§1.4-1.6. The derived functors that

form the BKSS 𝐸2-page may be analyzed using a sequence of composite functor spectral
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sequences. As we explain in §1.4, the algebraically rich BKSS 𝐸2-page is the target of the

first CFSS, and a key aspect of our approach is to extend this rich structure into this CFSS,

producing therein a theory of unstable operations. This structure alone does not suffice for

us to make our computations, and in §1.5 we generalize the construction, forming an infinite

regress of CFSSs, each calculating the 𝐸2-page of the last, and each possessing a theory of

unstable spectral sequence operations.

In §1.6, we explain how it is possible to use this immense amount of structure to make

calculations, including a calculation of the BKSS 𝐸2-page for a sphere in the category 𝑠Com.

This special case is important for the more general calculation of the BKSS 𝐸2 page, as it is

involved in the description the 𝐸1-page of a May-Koszul spectral sequence which calculates

the BKSS 𝐸2 page for a general connected simplicial algebra.

Finally, in §1.7, we discuss some conjectures which would unify the two parts of our

approach. Were these conjectures verified, we would be able to give a complete description

of the differentials available in the BKSS of a commutative algebra sphere. These conjectures

are supported by the calculation we have given of the 𝐸2-page in this case.

1.1. The classical Bousfield-Kan spectral sequence

The homotopy theory 𝑠Com has much in common with that of pointed connected topological

spaces, and before we introduce our main results, we briefly recall the analogous classical

theory in this section. The intention of this thesis is to produce an enriched version in the

model category 𝑠Com of this classical theory.

Suppose that 𝑋 is a pointed connected topological space with 𝜋*𝑋 finitely generated

in each degree. The (absolute) Bousfield-Kan spectral sequence of 𝑋 over F2 is a second

quadrant spectral sequence

[𝐸2𝑋]𝑠𝑡
∼= Ext𝑠K(𝐻

*
(𝑋;F2), 𝐻

*
(𝑆𝑡;F2)) =⇒ 𝜋𝑡−𝑠𝑋2̂,

where 𝑋2̂ is the completion of 𝑋 at the prime 2. Throughout this thesis, we use the notation

[𝐸2𝑋]𝑠𝑡 rather than the more standard 𝐸𝑠,𝑡2 for the pages of the spectral sequence.

At least when 𝑋 is simply connected and 𝜋*𝑋 is of finite type, one may view this spectral

sequence as a tool for calculating 𝜋*𝑋, as 𝜋*(𝑋2̂) ∼= (𝜋*𝑋 )̂2 determines the 2-torsion in 𝜋*𝑋.

Under certain hypotheses (satisfied for example when 𝑋 = 𝑆𝑛 for 𝑛 ≥ 1) the BKSS admits

a vanishing line at 𝐸2 [5], and is thus strongly convergent.

The non-abelian derived functors Ext𝑠 are calculated in the category K of non-unital

unstable algebras over the Steenrod algebra (c.f. [51, §1.4]). If we write V+ for the category

12



of cohomologically graded vector spaces

𝑊 =
⨁︀

𝑛≥1𝑊
𝑛,

the objects of K are graded non-unital F2-algebras 𝑊 ∈ V+ equipped with an unstable left

action of the Steenrod algebra, i.e. maps:

Sq𝑖 :𝑊 𝑡 −→𝑊 𝑡+𝑖,

𝜇 :𝑊 𝑡 ⊗𝑊 𝑡′ −→𝑊 𝑡+𝑡′ ,

satisfying the usual properties — Adem relations, unstableness relations, and the Cartan

formula. We take a moment to introduce notation, defining the functor of indecomposables

𝑄K : K −→ V+ by the formula

𝑊
𝑄K

↦−→𝑊/

(︂
im
(︁
𝑊 ⊗𝑊 𝜇→𝑊

)︁
⊕
⨁︀

𝑖≥1 im
(︁
𝑊

Sq𝑖→ 𝑊
)︁)︂
∈ V+.

The BKSS 𝐸2-page can be rewritten as the dual left derived functors

[𝐸2𝑋]𝑠𝑡
∼= 𝐻𝑠

K(𝐻
*
(𝑋;F2))𝑡 := D((L𝑠𝑄K)(𝐻

*
(𝑋,F2))

𝑡),

where we write D𝑉 for the linear dual of a vector space 𝑉 , and insist that D interchanges

homological and cohomological dimensions. We will use notation following this pattern for

the rest of the thesis.

One useful idea is to search for operations which act on the BKSS. Spectral sequence

operations are typically used to produce new elements on the 𝐸2-page and to compute

differentials on those elements. Bousfield and Kan [11, §14] construct a Lie bracket:

[𝐸𝑟𝑋]𝑠𝑡 ⊗ [𝐸𝑟𝑋]𝑠
′
𝑡′ −→ [𝐸𝑟𝑋]𝑠+𝑠

′+1
𝑡+𝑡′ for 1 ≤ 𝑟 ≤ ∞,

with the bracket on 𝐸𝑟 satisfying a Leibniz formula and inducing the bracket on 𝐸𝑟+1.

There are two reasons why one might expect such a Lie algebra structure. First, the

commutative operad C and the Lie operad L are Koszul dual, and even though the theory

of Koszul homology is complicated by the non-zero characteristic, there is an action of L

on the derived functors calculating 𝐸2. Next, there is a graded Lie algebra structure on

homotopy groups given by the Whitehead bracket [56]:

[ , ] : 𝜋𝑛𝑋2̂ ⊗ 𝜋𝑛′𝑋2̂ −→ 𝜋𝑛+𝑛′−1𝑋2̂,

and one may ask whether or not this action preserves the filtration, in which case it would
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define a Lie algebra structure on 𝐸∞. Bousfield and Kan answer this question in the affir-

mative by proving that the bracket at 𝐸∞ is compatible with the Whitehead bracket, and

they also show that the pairing given at 𝐸2 has the correct homological description.

This appears to be as far as it is possible to pursue this strategy, as at both 𝐸2 and 𝐸∞

we lose hope of finding structure that can be readily described. We do not expect to extract

further structure on 𝐸2 using the Steenrod algebra action in K, or at least not any that can

be described so explicitly. The Steenrod algebra A2 suffers from the inhomogeneity Sq0 = 1.

Were it a homogeneous Koszul algebra (in the sense of [46]), then its Koszul dual would at

very least act on ExtA2(F2,𝑀) for an A2-module 𝑀 , but even this is not the case. There

is no particular reason to think that the situation should be any better for the non-abelian

derived functors defining 𝐸2. Moreover, we simply do not understand the natural operations

that exist on 𝜋* in enough detail to expect to see uniform structure appearing on 𝐸∞. After

all, by the Hilton-Milnor Theorem [44, §4], all natural operations on the homotopy groups

of pointed spaces are composites of the Whitehead bracket and unary operations, and a

natural homotopy operation 𝜋𝑛𝑋 −→ 𝜋𝑚𝑋 is equivalent to an element of 𝜋𝑚𝑆𝑛.

Before we break from our extended analogy, we will discuss the considerable task of

calculating the 𝐸2-page of this classical BKSS. Performing this calculation is at least as

difficult as the calculation of the 𝐸2-page for the classical (stable) Adams spectral sequence,

which appears to be rather difficult. There is, however, the following method due to Miller

[42] for extracting information about the derived functors 𝐻*
K. There is a factorization of

𝑄K into

K
𝑄Com

−→ ΣU
𝑄ΣU

−→ V+,

where ΣU is the algebraic category whose objects are vector spaces 𝑉 ∈ V+ equipped with

a left action of A2 such that Sq𝑖 : 𝑉 𝑛 −→ 𝑉 𝑛+𝑖 is zero unless 0 ≤ 𝑖 < 𝑛. This modified

unstableness condition is necessary in order that 𝑄Com satisfies an acyclicity condition, so

that for 𝑊 ∈ K there is a composite functor spectral sequence

[𝐸cf
2 𝑊 ]𝑠2,𝑠1𝑡 = 𝐻𝑠2

ΣU(𝐻
Com
* (𝑊 ))𝑠1𝑡 =⇒ 𝐻𝑠1+𝑠2

K (𝑊 )𝑡.

This spectral sequence was an integral part of Miller’s proof of the Sullivan conjecture. The

functor 𝐻Com
* appearing in the above description is the André-Quillen homology functor on

𝑠Com.

1.2. The various categories 𝑠C

In this thesis we will use quite a number of categories of universal algebras, such as the

category Com of non-unital commutative F2-algebras, or the category Lie of Lie algebras
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over F2. While we introduce certain general notions we will write C for any one of these

categories.

For any category C of universal algebras, the category 𝑠C of simplicial objects in C is a

Quillen model category [48]. These model categories have much in common with the category

of topological spaces. For example, an object 𝑋 ∈ 𝑠C possesses homotopy groups 𝜋*𝑋

and homology groups 𝐻C
*𝑋. We use the pragmatic notion of homology that appears in the

spectral sequences that appear in this context, and it does not always coincide with Quillen’s

notion of homology derived abelianization. The cohomology groups 𝐻*
C𝑋 are defined to be

the linear duals of the homology groups.

In §3, we recall the definition of spheres and Eilenberg-Mac Lane objects in 𝑠C. These

play the same role in 𝑠C as their namesakes in the category of pointed topological spaces,

which is to represent the homotopy and cohomology functors on the homotopy category of 𝑠C,

respectively. We also present a unified treatment of homotopy and cohomology operations

(and of homology co-operations) for such categories.

In §5 and §6 we present a number of existing examples of homotopy and cohomology

operations in a common framework, with the construction of cohomology operation following

Goerss’ method from [33]. In particular, it will be useful for us to understand the well-known

cohomology operations for simplicial Lie algebras in this same framework, and in Appendix

A . yeah say it

In §4, we recall Radulescu-Banu’s [49] cosimplicial resolution of 𝑋 ∈ 𝑠Com, which we

denote by X ∈ 𝑐𝑠Com. The resolution X is suitable for the construction of a BKSS for 𝑋.

This construction is rather more difficult than that of Bousfield and Kan’s F2-resolution, as

the naïve monadic cobar construction in 𝑠C is not homotopically correct. The totalization

of X is the homology completion 𝑋^ of 𝑋, and the (absolute) BKSS is the spectral sequence

associated with the totalization tower. In §4.1 we perform the homotopical algebra needed

to identify the 𝐸1 and 𝐸2-pages arising from Radulescu-Banu’s resolution.

1.3. The Bousfield-Kan spectral sequence in 𝑠Com

At this point we depart from generalities, turning to the homotopy theory of simplicial non-

unital commutative algebras in earnest. We will restrict to the connected objects 𝑋 ∈ 𝑠Com,

which simplifies various aspects of our analysis. As in the classical case, one must know

how the homotopy groups of the homology completion 𝑋^ determine those of 𝑋. We will

demonstrate (Theorem 4.4) that 𝑋^ is equivalent to 𝑋 as long as 𝑋 is connected. Moreover,

we will prove in Theorem 15.3 that the BKSS admits a vanishing line from 𝐸2 in this case,

and thus strongly converges to the homotopy of 𝑋.

As forecast by the discussion in §1.1, it will help to know a little about the natural

15



operations on the homotopy of simplicial F2-algebras in advance. Fortunately, we have

the explicit description of homotopy operations which is lacking in the category of pointed

spaces, since they have been completely calculated by Dwyer [26] (and were studied earlier

by Bousfield [8, 6] and Cartan [14]). In summary, 𝜋*𝑋 supports operations

𝛿𝑖 : 𝜋𝑛𝑋 −→ 𝜋𝑛+𝑖𝑋, defined when 2 ≤ 𝑖 ≤ 𝑛,

𝜇 : 𝜋𝑛𝑋 ⊗ 𝜋𝑛′𝑋 −→ 𝜋𝑛+𝑛′𝑋,

with 𝜇 a graded non-unital commutative algebra product, and the 𝛿𝑖 satisfying various

compatibilities which we discuss in detail in §5.4. In fact, these 𝛿-operations satisfy a 𝛿-

Adem relation which is homogeneous, and there is a corresponding unital associative algebra

Δ. Note that 𝜋*𝑋 is not a left module over the algebra Δ, because the operations are

not defined in every dimension. This situation can not be remedied simply be defining

the missing operations to be zero, as doing so is incompatible with the Adem relations

on homotopy. Instead, we must adopt language for such situations, saying that Δ has a

partially defined unstable left action on 𝜋*𝑋. In general, unstable homotopy operations will

be partially defined, whereas unstable cohomology operations will be everywhere defined

but vanish in certain ranges.

Goerss [33] described the analogue for 𝑠Com of the category K, and all of the natural

operations on the André-Quillen cohomology 𝐻*
Com𝑋 of 𝑋 ∈ 𝑠Com are generated by:

𝑃 𝑖 : 𝐻𝑛
Com𝑋 −→ 𝐻𝑛+𝑖+1

Com 𝑋;

[ , ] : 𝐻𝑛
Com𝑋 ⊗𝐻𝑚

Com𝑋 −→ 𝐻𝑛+𝑚+1
Com 𝑋;

𝛽 : 𝐻0
Com𝑋 −→ 𝐻1

Com𝑋.

As we restrict to connect objects of 𝑠Com, the operation 𝛽 can be ignored. These operations

satisfy various compatibilities which we recount in detail in §6.6, and we will denote by W(0)

the category whose objects are vector spaces 𝑊 ∈ V+ equipped with the 𝑃 𝑖-operations and

the bracket. The bracket satisfies the Jacobi identity but falls just short of being a Lie algebra

pairing as [𝑥, 𝑥] is not always zero. The 𝑃 𝑖 satisfy a 𝑃 -Adem relation that is homogeneous.

The evident unital associative algebra 𝑃 acting on 𝐻*
Com is a homogeneous Koszul algebra,

the 𝑃 -algebra with Koszul dual the algebra Δ, and indeed, this is how it was originally

described by Goerss. In §4.1, we identify the 𝐸2-page (for connected 𝑋 ∈ 𝑠Com with 𝜋*𝑋

of finite type) as the non-abelian derived functors

[𝐸2X]
𝑠
𝑡
∼= 𝐻𝑠

W(0)(𝐻
*
Com𝑋)𝑡.
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This description begets a laundry list of operations that we expect to see on 𝐸2. The

cohomology of a Lie algebra enjoys an action of the commutative operad (the Koszul dual

of the Lie operad). As we are working in positive characteristic, they also support an

action of the homogeneous Steenrod algebra A := 𝐸0A2, due to Priddy [47]. We will discuss

these operations in detail in §6.8 and Appendix A.1. We construct in Proposition 8.9 the

corresponding natural ‘horizontal’ operations on 𝐸2:

Sq𝑗h : (𝐻𝑠
W(0)𝑋)𝑡 −→ (𝐻𝑠+𝑗

W(0)𝑋)2𝑡+1;

𝜇 : (𝐻𝑠
W(0)𝑋)𝑡 ⊗ (𝐻𝑠′

W(0)𝑋)𝑡′ −→ (𝐻𝑠+𝑠′+1
W(0) 𝑋)𝑡+𝑡′+1.

Moreover, we construct in Proposition 8.2 natural vertical operations constituting a (par-

tially defined) action of the Koszul dual Δ of the 𝑃 -algebra:

𝛿v𝑖 : (𝐻𝑠
W(0)𝑋)𝑡 −→ (𝐻𝑠+1

W(0)𝑋)𝑡+𝑖+1 defined for 2 ≤ 𝑖 < 𝑡.

These operations satisfy various compatibilities (c.f. §8.4 and Propositions 8.2 and 8.9).

Although the product and 𝛿-operations on 𝐸2 look encouraging, there is the following

issue: if 𝑥 ∈ [𝐸2X]
𝑠
𝑡 is a permanent cycle detecting a class 𝑥 ∈ 𝜋*𝑋, then at least when

𝑠 ≥ 2 there are more operations 𝛿v2𝑥, . . . , 𝛿v𝑡−1𝑥 defined on 𝐸2 than there are operations

𝛿2𝑥, . . . , 𝛿𝑡−𝑠𝑥 defined on homotopy. Moreover, the Steenrod operations at 𝐸2 have no

counterpart in homotopy.

This situation is quite reminiscent of that described by Dwyer [25], who works in the

spectral sequence of a cosimplicial simplicial coalgebra (such as the Eilenberg-Moore spectral

sequence). In such a spectral sequence, one expects to find Steenrod operations at 𝐸2 but

finds too many. Dwyer constructs 𝛿-operations and differentials mapping the excess Steenrod

operations to the 𝛿 operations. In this way, the excess Steenrod operations fail to be defined

at 𝐸∞, and the 𝛿-operations become zero by 𝐸∞, an excellent resolution to this problem.

Unfortunately, we cannot use Dwyer’s operations. Indeed, although the linear dual of a

cosimplicial simplicial coalgebra is a cosimplicial simplicial algebra (of which the resolution

X is an example), the choice of filtration direction is transposed. Instead, we perform

analogous constructions in the dual setting, and describe in §10.6 a theory of operations on

the spectral sequence of a cosimplicial simplicial F2-algebra, which may be of independent

interest. While defining these operations is a good first step, they are not yet what we

require, as it happens that they can be lifted one filtration higher when we are working in
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the BKSS. In §10 and §11, we explain how to construct operations

𝛿v𝑖 : [𝐸𝑟X]
𝑠
𝑡 −→ [𝐸𝑟X]

𝑠+1
𝑡+𝑖+1,

Sq𝑗h : [𝐸𝑟X]
𝑠
𝑡 −→ [𝐸𝑟X]

𝑠+𝑗
2𝑡+1,

𝜇 : [𝐸𝑟X]
𝑠
𝑡 ⊗ [𝐸𝑟X]

𝑠′
𝑡′ −→ [𝐸𝑟X]

𝑠+𝑠′+1
𝑡+𝑡′+1 ,

with the 𝛿v𝑖 potentially multi-valued functions, defined when 2 ≤ 𝑖 ≤ max{𝑛, 𝑡−(𝑟−1)}, and

single-valued whenever 𝑖 ≤ min{𝑛+1, 𝑡+1−2(𝑟−1)}, and the Sq𝑗h potentially multi-valued

functions with indeterminacy vanishing by 𝐸2𝑟−2, and which equal zero unless min{𝑡, 𝑟} <
𝑗 ≤ 𝑠 + 1. All of the functions that are defined on 𝐸2 are single-valued, and indeed, they

coincide with the operations defined on 𝐻*
W(0), as we show in Proposition 11.2.

For 𝑥 ∈ [𝐸𝑟X]
𝑠
𝑡 such that 𝛿v𝑖 𝑥 is defined:

𝑑𝑟𝛿
v
𝑖 (𝑥) + 𝛿v𝑖 (𝑑𝑟𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sq𝑡−𝑖+2

h (𝑥), if 𝑖 > 𝑡− 𝑠 and 𝑟 = 𝑡− 𝑖+ 1;

𝜇(𝑥⊗ 𝑑𝑟𝑥), if 𝑖 = 𝑡− 𝑠, 𝑠 = 0 and 𝑟 ≥ 2;

0, otherwise.

This is Corollary 11.6. In particular, if 𝑖 > 𝑡− 𝑠 and 𝑥 ∈ [𝐸𝑡−𝑖+1X]
𝑠
𝑡 survives to [𝐸𝑡−𝑖+2X]

𝑠
𝑡 ,

then 𝑑𝑡−𝑖+1 maps 𝛿v𝑖 𝑥 to Sq𝑡−𝑖+2
v 𝑥. These formulae explain how the Sqv serve to absorb

differentials supported by the excess 𝛿v.

1.4. The first composite functor spectral sequence

Now that we have a theory of the operations available on the BKSS in 𝑠Com, we turn to the

question of calculating it. If we hope to imitate Miller’s use of a composite functor spectral

sequence (CFSS), using the factorization

𝑄W(0) = 𝑄L(0) ∘𝑄U(0) :
(︁
W(0)

𝑄U(0)

−→ L(0)
𝑄L(0)

−→ V+
)︁
,

where L(0) is the category whose objects are graded vector spaces 𝑊 ∈ V+ which are Lie

algebras under a bracket which shifts gradings,

𝑊 𝑡 ⊗𝑊 𝑡′ −→𝑊 𝑡+𝑡′+1.

We write U(0) for the category whose objects are vector spaces 𝑉 ∈ V+ equipped with an

unstable action of the 𝑃 -algebra given by operations

𝑃 : 𝑉 𝑡 −→ 𝑉 𝑡+𝑖+1
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which are zero unless 2 ≤ 𝑖 ≤ 𝑡. The functor 𝑄U(0) is defined for 𝑊 ∈W(0) by

𝑊 ↦−→𝑊/
⨁︀

𝑖≥2 im(𝑊
𝑃 𝑖

−→𝑊 ).

As the category L(0) is not an abelian category, it is a more technical task to form a

CFSS, and we use the method of Blanc and Stover [3]. The key idea in their presentation

is that the derived functors 𝐻U(0)
* := L*𝑄

U(0) take values in the category W(1) of L(0)-Π-

algebras, as they are calculated as the homotopy of an object of 𝑠L(0). The first CFSS takes

the following form for 𝑊 ∈W(0):

[𝐸cf
2 𝑊 ]𝑠2,𝑠1𝑡 = 𝐻*

W(1)(𝐻
U(0)
* 𝑊 )𝑠2,𝑠1𝑡 =⇒ (𝐻*

W(0)𝑊 )𝑠1+𝑠2𝑡 .

We will now unpack this somewhat dense expression, and explain how various unstable

operations defined at the 𝐸2-page and the target interact with the spectral sequence.

Objects of the category W(1) are certain bigraded Lie algebras with a certain partially

defined right action of the Λ-algebra (c.f. §1.5). In §9.2 we calculate the structure of 𝐻U(0)
* 𝑊

as an object of W(1) by explicit chain-level computation, after defining in §9.1 an unstable

version of Priddy’s Koszul resolution [46] for the functors 𝐻U(0)
* .

The linear duals 𝐻*
U(0)𝑊 admit an unstable partially defined left Δ-algebra action, since

the algebras Δ and 𝑃 are Koszul dual, and by Proposition 12.9 there is a commuting diagram

(for 2 ≤ 𝑖 < 𝑡):

(𝐻*
W(0)𝑊 )𝑠𝑡

edge hom //

𝛿v𝑖 ��

[𝐸cf
2 𝑊 ]0,𝑠𝑡

// // (𝐻*
U(0)𝑊 )𝑠𝑡

𝛿v𝑖��
(𝐻*

W(0)𝑊 )𝑠+1
𝑡+𝑖+1

edge hom // [𝐸cf
2 𝑊 ]0,𝑠+1

𝑡+𝑖+1
// // (𝐻*

U(0)𝑊 )𝑠+1
𝑡+𝑖+1

In this sense the 𝛿v𝑖 -operations on the BKSS 𝐸2-page are compatible with the CFSS.

The BKSS 𝐸2-page also supports products and horizontal Steenrod operations, and we

should attempt to identify them in the CFSS. The functor 𝐻*
W(1) may also be viewed as

a Lie algebra cohomology functor, so that we expect horizontal Steenrod operations and

products to appear in [𝐸cf
2 𝑊 ]𝑠2,𝑠1𝑡 . We use a new definition of these operations that fits

into the framework set out in §6 (deferring to Appendix A the work of showing that these

operations coincide with those constructed by Priddy [47].)

Moreover, just as we expected 𝛿v𝑖 operations on 𝐻*
W(0), we expect a ‘vertical’ left action of

the homogeneous Steenrod algebra on 𝐻*
W(1), as it is Koszul dual to the Λ-algebra. Indeed,

we construct in Proposition 8.9 such operations on the derived functors 𝐻*
W(1). Moreover,

Proposition 8.6 applies to 𝐻*
W(1) just as it applies to 𝐻*

W(0), yielding horizontal Steenrod
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operations and products, so that ultimately we obtain operations

Sq𝑖v : [𝐸cf
2 𝑊 ]𝑠2,𝑠1𝑡 −→ [𝐸cf

2 𝑊 ]𝑠2+1,𝑠1+𝑖−1
2𝑡+1 ,

Sq𝑗h : [𝐸cf
2 𝑊 ]𝑠2,𝑠1𝑡 −→ [𝐸cf

2 𝑊 ]𝑠2+𝑗,2𝑠12𝑡+1 ,

𝜇 : [𝐸cf
2 𝑊 ]𝑠2,𝑠1𝑡 ⊗ [𝐸cf

2 𝑊 ]𝑝2,𝑝1𝑞 −→ [𝐸cf
2 𝑊 ]𝑠2+𝑝2+1,𝑠1+𝑝1

𝑡+𝑞+1 ,

with both the horizontal and vertical Steenrod operations satisfying their own unstableness

conditions.

Now suppose that 𝑥 ∈ [𝐸cf
2 𝑊 ]𝑠2,𝑠1𝑡 is a permanent cycle detecting an element 𝑥 ∈

(𝐻*
W(0)𝑊 )𝑠2+𝑠1𝑡 . The 𝑠2+𝑠1−1 operations Sq3h𝑥, . . . ,Sq

𝑠2+𝑠1+1
h 𝑥 are the potentially non-

zero Steenrod operations on 𝑥. The 𝑠1−2 vertical operations Sq3v𝑥, . . . ,Sq
𝑠1
v 𝑥 and the 𝑠2+1

horizontal operations Sq1h𝑥, . . . ,Sq
𝑠2+1
h 𝑥 are the potentially non-zero Steenrod operations

on 𝑥. This is quite reminiscent of Singer’s framework [52] (c.f. §13.1), and in §13.2 we use

Singer’s methods to extend the operations on [𝐸cf
2 𝑊 ] to the entire CFSS. The upshot is that

if 𝑥 ∈ [𝐸cf
2 𝑊 ]𝑠2,𝑠1𝑡 is a permanent cycle, then so are all of the above mentioned Sq𝑖v𝑥 and

Sq𝑗h𝑥, and moreover,

Sq𝑖v𝑥 detects Sq𝑖h𝑥 (3 ≤ 𝑖 ≤ 𝑠1) and Sq𝑗h𝑥 detects Sq𝑠1+𝑖h 𝑥 (1 ≤ 𝑗 ≤ 𝑠2 + 1).

That is, the horizontal and vertical Steenrod operations combined account for the horizontal

Steenrod operations on the target. We examine how this plays out for admissible sequences

of Steenrod operations in Theorem 8.15.it

1.5. Higher composite functor spectral sequences

We have constructed a comprehensive theory of the operations in the first CFSS, but it may

still be the case that the 𝐻*
W(1) is as difficult to calculate as 𝐻*

W(0), which would mean that

the CFSS is of little use for the calculation of 𝐻*
W(0). Rather than being discouraged, we

will turn this similarity to our advantage by iterating our approach. In §7 we extend the

constructions summarized in §1.4, defining algebraic categories W(𝑛) and L(𝑛) for 𝑛 ≥ 1

such that W(𝑛) is the category of L(𝑛− 1)-Π-algebras and there are factorizations

𝑄W(𝑛) = 𝑄L(𝑛) ∘𝑄U(𝑛) :
(︁
W(𝑛)

𝑄U(𝑛)

−→ L(𝑛)
𝑄L(𝑛)

−→ V+
𝑛

)︁
.

There are CFSSs for 𝑊 ∈W(𝑛):

[𝐸cf
2 𝑊 ]

𝑠𝑛+2,...,𝑠1
𝑡 = 𝐻*

W(𝑛+1)(𝐻
U(𝑛)
* 𝑊 )

𝑠𝑛+2,𝑠𝑛+1,...,𝑠1
𝑡 =⇒ (𝐻*

W(𝑛)𝑊 )
𝑠𝑛+2+𝑠𝑛+1,𝑠𝑛,...,𝑠1
𝑡 ,
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and we equip each of these spectral sequences with a theory of operations which generalize

those discussed in §1.4. say koszul changes.

At this point it is useful to summarize the definitions. For 𝑛 ≥ 1, let U(𝑛) denote the

category whose objects are vector spaces 𝑉 ∈ V+
𝑛 equipped with linear right 𝜆-operations

(−)𝜆𝑖 : 𝑉 𝑡
𝑠𝑛,...,𝑠1 −→ 𝑉 2𝑡+1

𝑠𝑛+𝑖,2𝑠𝑛−1,...,2𝑠1
(1.1)

defined whenever 0 ≤ 𝑖 < 𝑠𝑛+1 and not all of 𝑖, 𝑠𝑛, . . . , 𝑠1 are zero. Let L(𝑛) denote the

category whose objects are 𝑉 ∈ V+
𝑛 equipped with a (typically non-linear) 𝜆-operation as in

(1.1) defined whenever 𝑖 = 𝑠𝑛+1 and not all of 𝑖, 𝑠𝑛, . . . , 𝑠1 are zero, which acts as a partial

restriction for a Lie algebra bracket

[ , ] : 𝑉 𝑡
𝑠𝑛,...,𝑠1 ⊗ 𝑉

𝑡′

𝑠′𝑛,...,𝑠
′
1
−→ 𝑉 𝑡+𝑡′+1

𝑠𝑛+𝑠′𝑛,...,𝑠1+𝑠
′
1
.

Finally, let W(𝑛) be the category whose objects are simultaneously objects of U(𝑛) and L(𝑛)

subject to certain compatibilities.

The functor 𝐻U(𝑛)
* 𝑊 may be calculated by an unstable Koszul resolution, and both

its linear dual 𝐻*
U(𝑛)𝑊 and the functor 𝐻*

W(𝑛)𝑊 are naturally objects of Mv(𝑛 + 1), the

category whose objects are graded vector spaces 𝑀 ∈ V𝑛+1
+ with an unstable left action of

the Steenrod algebra, operations

Sq𝑖v :𝑀
𝑠𝑛+1,...,𝑠1
𝑡 −→𝑀

𝑠𝑛+1+1,𝑠𝑛+𝑖−1,2𝑠𝑛−1,...,2𝑠1
2𝑡+1 ,

which are zero except when 1 ≤ 𝑖 ≤ 𝑠𝑛 and 𝑖 − 1, 𝑠𝑛−1, . . . , 𝑠1 are not all zero. This

structure is derived in §8.2, using the Koszul duality between the Λ-algebra and the ho-

mogeneous Steenrod algebra. This differs from the analogous constructions for W(0)- and

U(0)-cohomology, in that 𝐻*
W(0) supports one fewer vertical 𝛿-operation than 𝐻*

U(0).

On the other hand, as in the 𝑛 = 0 case, 𝐻*
W(𝑛) is an example of (partially restricted)

Lie algebra cohomology, so that ‘horizontal’ Steenrod operations and products appear. In

§8.3 we define these operations:

Sq𝑗h : (𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡 −→ (𝐻*

W(𝑛)𝑋)
𝑠𝑛+1+𝑗,2𝑠𝑛,...,2𝑠1
2𝑡+1 ,

𝜇 : (𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡 ⊗ (𝐻*

W(𝑛)𝑋)𝑝𝑛+1,...,𝑝1
𝑞 −→ (𝐻*

W(𝑛)𝑋)
𝑠𝑛+1+𝑝𝑛+1+1,𝑠𝑛+𝑝𝑛,...,𝑠1+𝑝1
𝑡+𝑞+1 ,

so that W(𝑛)-cohomology is also a certain type of unstable algebra over the homogeneous

Steenrod algebra, with the horizontal Steenrod action. We write Mh(𝑛+1) for the resulting

category of V𝑛+1
+ -graded unstable algebras over the homogeneous Steenrod algebra.

We identify in §8.4 the relations between the Mv(𝑛+1)- and Mh(𝑛+1)-operations, which
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leads to the definition of an algebraic category Mhv(𝑛+1) in which W(𝑛)-cohomology takes

values for 𝑛 ≥ 1.

Consider again the CFSS for 𝑊 ∈W(𝑛):

[𝐸cf
2 𝑊 ]

𝑠𝑛+2,...,𝑠1
𝑡 = 𝐻*

W(𝑛+1)(𝐻
U(𝑛)
* 𝑊 )

𝑠𝑛+2,𝑠𝑛+1,...,𝑠1
𝑡 =⇒ (𝐻*

W(𝑛)𝑊 )
𝑠𝑛+2+𝑠𝑛+1,𝑠𝑛,...,𝑠1
𝑡 .

The target is an object of Mhv(𝑛+1), while the 𝐸2-page is an object of Mhv(𝑛+2). We prove

in Proposition 12.9 that there is a commuting diagram relating the Mv(𝑛+1)-structures on

𝐻*
W(𝑛)𝑊 and 𝐻*

U(𝑛)𝑊 under the edge homomorphism. As in the 𝑛 = 0 case, after extending

the Mhv(𝑛+ 2)-structure on 𝐸2 to the whole spectral sequence, this structure converges to

the Mh(𝑛+ 1)-structure on the target.

1.6. Computing with the composite functor spectral sequences

So far, we have not explained how the CFSSs may be used for calculation. First, we make the

following simple observation. Suppose we wish to calculate the group (𝐻*
W(𝑛)𝑊 )

𝑠𝑛+1,𝑠𝑛,...,𝑠1
𝑡

for a given choice of indices. The part of the 𝐸2-page that contributes to this particular group

is the following direct sum indexed by pairs of indices 𝑠′𝑛+2, 𝑠
′
𝑛+1 such that 𝑠′𝑛+2 + 𝑠′𝑛+1 =

𝑠𝑛+1: ⨁︁(︁
𝐻*

W(𝑛+1)(𝐻
U(𝑛)
* 𝑊 )

𝑠′𝑛+2,𝑠
′
𝑛+1,𝑠𝑛,...,𝑠1

𝑡

)︁
Now in each summand, either 𝑠′𝑛+1 = 0 or 𝑠′𝑛+2 < 𝑠𝑛+1. Except for the challenges of

understanding the differentials and hidden extensions of algebraic structure, it suffices then

to calculate the groups

(𝐻*
W(𝑛+𝑘)𝐻

U(𝑛+𝑘−1)
* · · ·𝐻U(𝑛)

* 𝑊 )
𝑠′𝑛+𝑘+1,...,𝑠

′
𝑛+1,𝑠𝑛,...,𝑠1

𝑡

for all 𝑘 ≥ 1 and for all indices 𝑠′𝑛+𝑘+1 + · · ·+ 𝑠′𝑛+1 = 𝑠𝑛+1 satisfying either 𝑠′𝑛+𝑘+1 = 0 or

𝑠′𝑛+𝑘 = 0. It is easy to calculate these groups in either case, as long as we understand the

derived functors

𝐻
U(𝑛+𝑘−1)
* · · ·𝐻U(𝑛)

* 𝑊

as objects of W(𝑛+𝑘). We undertake these calculations in §9.2. When 𝑠′𝑛+𝑘+1 = 0 there are

no derived functors being taken, and when 𝑠′𝑛+𝑘 = 0 the derived functors may be calculated

simply as the cohomology of a (constant, not simplicial) partially restricted Lie algebra.

With this computation in mind we define the Chevalley-Eilenberg-May complex of a

partially restricted Lie algebra in §A.3. This complex interpolates between the Chevalley-

Eilenberg complex for the homology of Lie algebras and May’s 𝑋 complex [39] for the

homology of restricted Lie algebras.
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This method is employed to prove Theorems 14.4 and 14.6, which together imply Corol-

lary 14.7, that Mhv(𝑛+ 1) is the category of W(𝑛)-cohomology algebras for 𝑛 ≥ 1. That is,

the Mhv(𝑛+ 1)-structure is all of the natural structure on W(𝑛)-cohomology for 𝑛 ≥ 1.

Finally, we are able to use all of this structure together to calculate, at least as a vector

space, the BKSS 𝐸2-page for the commutative algebra 𝑇 -sphere SCom
𝑇 whenever 𝑇 ≥ 1. That

is, we calculate the derived functors 𝐻*
W(0)𝑊 , where 𝑊 = 𝐻*

ComSCom
𝑇 is a one-dimensional

trivial object concentrated in dimension 𝑇 ≥ 1.

Finally, we derive in §15.1 a convergent spectral sequence which calculates the 𝐸2-page for

any connected 𝑋 ∈ 𝑠Com of finite type, which we name the May-Koszul spectral sequence.

Its 𝐸1-page may be described in terms of the BKSS 𝐸2-pages of the spheres (using Theorem

14.6), and information about the 𝐸2-operations in the BKSS for a sphere passes over to

information about the general BKSS 𝐸2-page via the May-Koszul spectral sequence.

1.7. The Bousfield-Kan spectral sequence for SCom
𝑇

In §14.6, we present a small model for the BKSS 𝐸1-page for a commutative algebra sphere.

Given our knowledge of the operations on the BKSS, of the 𝐸2-page for SCom
𝑇 and of the

homotopy groups 𝜋*SCom
𝑇 (c.f. §5.4), a natural goal is the complete computation of the BKSS

for SCom
𝑇 . In §16.1, we make two conjectures which would together allow us to make this

complete computation. It turns out that 𝐸2 is not the right place to start this computation,

and we need to consider classes on 𝐸1 and 𝑑1 differentials in order to see the full picture. The

problem is that certain relations involving the 𝛿v- and Sqh-operations only hold from 𝐸2.

The conjectures we make would overcome these problems, and would lead to the description

given in §16.2 of the full structure of the BKSS for SCom
𝑇 . meep moop

1.8. Overview

The primary object of study in this thesis is the Bousfield-Kan spectral sequence (BKSS) in

the Quillen model category 𝑠Com of simplicial non-unital commutative F2-algebras. This

spectral sequence, which we discuss in §4, calculates the homotopy groups of the homology

completion 𝑋^ of 𝑋 ∈ 𝑠Com, with 𝐸2-page given by certain derived functors applied to the

André-Quillen cohomology groups 𝐻*
Com𝑋. change up whole sec-

tionIn §4 we work directly with the Adams tower to show that whenever 𝑋 is connected,

𝑋^ is equivalent to 𝑋. Together with the vanishing line we prove in §15, this shows that

whenever 𝑋 is connected, the BKSS is strongly convergent to the homotopy of 𝑋.

In §3 we give an introduction to the theory of homotopy and cohomology algebras and

homology coalgebras. In §§5-6 we construct a framework in which a number of classically
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known homotopy and cohomology operations may be considered together. In §§7-8 we

construct a number of homotopy and cohomology operations in preparation for the following

chapters, and in §9 we study the unstable Koszul resolutions related to certain of these

operations.

We define and study three families of unstable spectral sequence operations on the BKSS.

Our approach is to perform a generic construction of spectral sequence operations in a cosim-

plicial simplicial vector space in §10, and then perform a shift in filtration using properties

of Radulescu-Banu’s resolution in §11.

In §12 we define a sequence of composite functor spectral sequences (CFSSs) which we

use in §14 to make calculations of the BKSS 𝐸2-page in the most important case, when 𝑋

is a sphere in 𝑠Com. In order for these spectral sequences to be of any use, we must equip

them in §13 with various unstable spectral sequence operations, using a technique due to

Singer.

We define a May-Koszul spectral sequence in §15 which converges to the BKSS 𝐸2-page

for any connected simplicial algebra 𝑋, and describe the May-Koszul 𝐸1-page using the data

of the BKSS 𝐸2-pages for spheres. Using this spectral sequence one can transfer information

about the spectral sequence for spheres to the general setting.

Using the operations on the BKSS we conjecture the full structure of the spectral se-

quence for a sphere in 𝑠Com in §16.
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Chapter 2

Background and conventions

2.1. Universal algebras

In this thesis we will be dealing with various categories C of universal graded algebras over

F2, which we will refer to as algebraic categories. The relevant examples include a number of

categories of graded associative algebras, commutative algebras and Lie algebras, categories

of graded unstable modules and unstable algebras. We’ll give the background on such

categories of universal algebras in this section.

For us, an algebraic category is a category whose objects are 𝐺-graded F2-vector spaces

𝑋 = {𝑋𝑔}𝑔∈𝐺, for some set 𝐺 of gradings, equipped with a set of operators of the form

𝑋𝑔1 × · · · ×𝑋𝑔𝑛 −→ 𝑋𝑘 (with 𝑛 ≥ 1) satisfying a set identities, and whose morphisms are

graded vector space maps preserving this structure. These defining maps will be referred to

as the C-structure maps. This is similar to the definition given in [3, §2.1] of a category of

universal graded algebras.

It need not be true that all of the C-structure maps must be (multi-)linear in a given

presentation of an algebraic category C, but we will always assume that C is monadic over

the category of 𝐺-graded F2-vector spaces. That is, the forgetful functor 𝑈C : C −→ V

will admit a left adjoint 𝐹 C : V −→ C, and the natural comparison functor from C to the

category of algebras over the monad 𝑈C𝐹 C on V will be an equivalence.

In our examples, the monad 𝑈C𝐹 C will admit an augmentation (of monads) 𝜖 : 𝑈C𝐹 C −→
id, reflecting homogeneity in the relations defining C. This augmentation has the monad

unit 𝜂 : id −→ 𝑈C𝐹 C as a section, and may be thought of as projection onto generators.

We will generally omit the functor 𝑈C from our notation, writing 𝐹 C as shorthand for

either the monad 𝑈C𝐹 C on V or the comonad 𝐹 C𝑈C on C. We will refer to elements of a free

construction 𝐹 C𝑉 using notation such as 𝑓(𝑣𝑖), thought of as a composite 𝑓 of C-structure

maps applied to generators 𝑣𝑖 ∈ 𝑉 ⊆ 𝐹 C(𝑉 ). We will say that 𝑓(𝑣𝑖) is a C-expression. In

25



this language, the linear maps

𝐹 C𝐹 C𝑉
𝜇−→ 𝐹 C𝑉, 𝑉

𝜂−→ 𝐹 C𝑉 and 𝐹 C𝑉
𝜖−→ 𝑉,

constituting the augmented monad 𝐹 C on V may be described as follows: 𝜇 collapses a C-

expression in C-expressions into a single C-expression; 𝜂 sends a vector 𝑣 to the C-expression

𝑣; and 𝜖 projects a C-expression onto those summands to which no (non-trivial) operations

have been applied. For 𝑋 ∈ C, the comonad structure maps in C,

𝐹 C𝐹 C𝑋
Δ←− 𝐹 C𝑋 and 𝑋

𝜌←− 𝐹 C𝑋,

are as follows: on an expression 𝑓(𝑥𝑖), Δ = 𝐹 C𝜂 returns the same expression 𝑓(𝑥𝑖) in which

the 𝑥𝑖 ∈ 𝑋 are viewed as elements of 𝐹 C𝑋, and 𝜌 is the evaluation map equivalent to the

C-structure on 𝑋.

2.2. The functor 𝑄C of indecomposables

Using the augmentation 𝜖 : 𝐹 C −→ id of monads on V, any 𝑉 ∈ V becomes an 𝐹 C-algebra,

i.e. an object of C. We denote this functor 𝐾C : V −→ C; it sends 𝑉 ∈ V to the trivial object

on 𝑉 , which is 𝑉 equipped with coaction map the projection 𝜖 : 𝐹 C𝑉 −→ 𝑉 . Whenever we

say trivial in this thesis, we will mean having no non-zero operations, and not equal to zero.

In each of our examples, 𝐾C has a left adjoint, 𝑄C : C −→ V, which sends 𝑋 ∈ C to the

quotient of 𝑋 by the image of its non-trivial operations. The functor 𝑄C sends 𝑋 ∈ C to the

coequalizer in V of 𝜌, 𝜖 : 𝐹 C𝑋 −→ 𝑋.

Note that 𝐹 C is a section of 𝑄C, since 𝑄C𝐹 C is adjoint to 𝑈C𝐾C = id.

2.3. Quillen’s model structure on 𝑠C and the bar construction

For any of the algebraic categories C appearing in this thesis we use Quillen’s simplicial

model category structure on the category 𝑠C of simplicial objects of C [48], [42], [3]. In

this structure, the weak equivalences (fibrations) are the maps which are weak equivalences

(fibrations) of simplicial abelian groups, so that every object is fibrant.

A simplicial object 𝑋 ∈ 𝑠C is almost free if there are subspaces 𝑉𝑛 ⊆ 𝑋𝑛 for each 𝑛 ≥ 0

such that the composite 𝐹 C𝑉𝑛 −→ 𝐹 C𝑋𝑛
𝜌−→ 𝑋𝑛 is an isomorphism for all 𝑛, and such that

the subspaces 𝑉𝑛 are preserved by all of the degeneracies and face maps of 𝑋 except for 𝑑0.

An almost free object is cofibrant, and every cofibrant object is a retract of an almost free

object [42, §3].

There is a richer notion, that of an almost free map, which is a map 𝑋 −→ 𝑌 in 𝑠C
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such that 𝑌𝑛 contains a subspace 𝑉𝑛 for each 𝑛 such that the 𝑉𝑛 are preserved by all faces

and degeneracies except for 𝑑0, and such that the natural map 𝑋𝑛 ⊔ 𝐹 C(𝑉𝑛) −→ 𝑌𝑛 is an

isomorphism for each 𝑛. An almost free map is a cofibration, and every cofibration is a

retract of an almost free map.

A cofibrant replacement functor for 𝑠C is an endofunctor 𝑓 of 𝑠C equipped with a natural

acyclic fibration 𝜖 : 𝑓 ⇒ id such that the image of 𝑓 consists only of cofibrant objects. One

classical such functor is the standard comonadic simplicial bar construction arising from the

𝐹 C ⊣ 𝑈C adjunction. As a functor 𝐵C : C −→ 𝑠C it is defined by iterated application of the

comonad 𝐹 C to 𝑋 ∈ C:

𝐵C
𝑠𝑋 = (𝐹 C)𝑠+1𝑋,

with face maps given by 𝑑𝑖 = (𝐹 C)𝑖𝜌, and degeneracies by 𝑠𝑖 = (𝐹 C)𝑖Δ. This object is almost

free, with 𝐵C
𝑠𝑋 generated by its subspace 𝑉𝑠 = (𝐹 C)𝑠𝑋, moreover, it is standard [4, §4] that

the augmentation 𝐵C𝑋 −→ 𝑋 is an acyclic fibration. This functor may be prolonged to a

functor 𝐵C : 𝑠C −→ 𝑠𝑠C, and by taking the diagonal we obtain an endofunctor 𝐵C of 𝑠C. A

standard spectral sequence argument shows that this endofunctor is a cofibrant replacement

functor.

2.4. Categories of graded F2-vector spaces and linear dualiza-

tion

In this section we introduce notation for the key categories of graded vector spaces. We will

write V for a generic category of graded vector spaces or for the category of ungraded vector

spaces as convenient.

Write V
𝑞
𝑟 for the category of vector spaces with 𝑟 non-negative homological gradings and

𝑞 non-negative cohomological gradings, so that an object 𝑉 of V𝑞𝑟 decomposes as

𝑉 =
⨁︁

𝑠𝑟,...,𝑠1,𝑡𝑞 ,...,𝑡1≥0

𝑉
𝑡𝑞 ,...,𝑡1
𝑠𝑟,...,𝑠1 .

The category V
𝑞
𝑟 is equipped with a tensor product:

(𝑈 ⊗ 𝑉 )
𝑡𝑞 ,...,𝑡1
𝑠𝑟,...,𝑠1 =

⨁︁
𝑠′𝑖+𝑠

′′
𝑖 =𝑠𝑖, 𝑡

′
𝑗+𝑡

′′
𝑗 =𝑡𝑗

𝑈
𝑡′𝑞 ,...,𝑡

′
1

𝑠′𝑟,...,𝑠
′
1
⊗ 𝑉 𝑡′′𝑞 ,...,𝑡

′′
1

𝑠′′𝑟 ,...,𝑠
′′
1
.

We will often discuss maps between graded vector spaces which do not preserve de-

grees. Although we could encode such maps as grading-preserving maps between appropri-

ate suspensions, it will not be helpful to be so systematic. For example, we will often write

𝑉 ⊗ 𝑉 −→ 𝑉 for a map which in fact adds one to certain gradings of 𝑉 , and will avoid
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confusion by explicitly stating the effect of such a map on degrees.

We will often need to consider the linear dual of a vector space 𝑉 , and the standard

symbol, 𝑉 *, will cause ambiguity, due to our already intensive use of superscripts. Instead

we opt for a modifier written prefix, defining the dualization functor D : (V𝑞𝑟)op −→ V𝑟𝑞 by:

(D𝑉 )𝑠𝑟,...,𝑠1𝑡𝑞 ,...,𝑡1
:= hom(𝑉

𝑡𝑞 ,...,𝑡1
𝑠𝑟,...,𝑠1 ,F2).

We will shortly define cohomology functors 𝐻*
C𝑋 := D𝐻C

*𝑋, and we will use the position of

the asterisk to indicate which of homology and cohomology we mean. This is not precisely

an exception to our convention, but was worth mentioning.

Often, the vector spaces we are interested in will support an extra grading, the quadratic

grading, so called because certain operations derived from an underlying quadratic operation

tend to double this extra grading. We do not think of the quadratic grading as either

homological or cohomological, so we write it prefix:

𝑉 =
⨁︀

𝑘≥1 𝑞𝑘𝑉.

We write qV𝑞𝑟 for the category of objects of V𝑞𝑟 equipped with this extra grading.

A common pattern for us will be to consider vector spaces with 𝑟 non-negative homo-

logical gradings and a single strictly positive cohomological grading:

𝑉 =
⨁︁

𝑠𝑟,...,𝑠1≥0, 𝑡≥1

𝑉 𝑡
𝑠𝑟,...,𝑠1 ,

and we write V+
𝑟 for the category of such objects. For the rest of this chapter we will often

use gradings of this type, simply because they will be used so extensively later in the thesis.

Similarly, there is a category V𝑟+, and dualization is a functor D : (V+
𝑟 )

op −→ V𝑟+.

2.5. The Dold-Kan correspondence

In this thesis we will use each of the following five chain complexes in ch+V
+
𝑟 associated

with a simplicial graded vector-space 𝑉 ∈ 𝑠V+
𝑟 :

𝐶𝑛𝑉 := 𝑉𝑛 with differential 𝑑 =
∑︀𝑛

𝑖=0 𝑑𝑖;

𝑁𝑛𝑉 :=
⋂︀

0<𝑖≤𝑛 ker (𝑑𝑖 : 𝑉𝑛 −→ 𝑉𝑛−1) with differential 𝑑 = 𝑑0;

𝑁−
𝑛 𝑉 :=

⋂︀
0≤𝑖<𝑛 ker (𝑑𝑖 : 𝑉𝑛 −→ 𝑉𝑛−1) with differential 𝑑 = 𝑑𝑛;

Deg𝑛𝑉 :=
∑︀

0≤𝑖<𝑛 im(𝑠𝑖 : 𝑉𝑛−1 −→ 𝑉𝑛) with differential 𝑑 =
∑︀𝑛

𝑖=0 𝑑𝑖.

𝑁÷
𝑛 𝑉 := 𝑉𝑛/Deg𝑛𝑉 with differential 𝑑 =

∑︀𝑛
𝑖=0 𝑑𝑖.
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There are evident inclusions of𝑁*𝑉 and𝑁−
* 𝑉 into 𝐶*𝑉 , and a projection of 𝐶*𝑉 onto𝑁÷

* 𝑉 ,

and all of these maps are weak equivalences. Moreover, the composite 𝑁*𝑉 −→ 𝑁÷
* 𝑉 is an

isomorphism (as is the composite from 𝑁−
* 𝑉 ). It will be helpful to have an explicit formula

for the composite

𝐶*𝑉 −→ 𝑁÷
𝑛 𝑉
∼= 𝑁𝑛𝑉.

Lemma 2.1. The normalization map

nml = (id + 𝑠0𝑑1)(id + 𝑠1𝑑2) · · · (id + 𝑠𝑛−1𝑑𝑛) : 𝑉𝑛 −→ 𝑉𝑛

is an idempotent chain complex endomorphism with image 𝑁*𝑉 and kernel the degenerate

𝑛-simplices of 𝑉 , so that there is a commuting diagram

𝑁𝑛𝑉 // // 𝐶𝑛𝑉
nml
ww '' ''

𝑁𝑛𝑉 // //
∼=

44𝐶𝑛𝑉 // // 𝑁÷
𝑛 𝑉

Proof. It is obvious that nml restricts to the identity on 𝑁𝑛𝑉 , and that (nml− id) has image

consisting of degenerate simplices. By the simplicial identities, for 1 ≤ 𝑖 ≤ 𝑛:

𝑑𝑖(id + 𝑠𝑖−1𝑑𝑖) = 𝑑𝑖 + 𝑑𝑖𝑠𝑖−1𝑑𝑖 = 𝑑𝑖 + id 𝑑𝑖 = 0.

As for 1 ≤ 𝑗 < 𝑖, we also have

𝑑𝑖(id + 𝑠𝑗−1𝑑𝑗) = 𝑑𝑖 + 𝑠𝑗−1𝑑𝑖−1𝑑𝑗 = (id + 𝑠𝑗−1𝑑𝑗)𝑑𝑖,

this proves that 𝑑𝑖 ∘ nml = 0 for 1 ≤ 𝑖 ≤ 𝑛, or that nml has image inside 𝑁𝑛𝑉 . Thus nml is

an idempotent with image 𝑁𝑛𝑉 . As 𝑁𝑛𝑉 −→ 𝑁÷
𝑛 𝑉 is as isomorphism, the rest is easy.

Each 𝑁𝑛𝑉 retains the internal gradings of 𝑉 , and the functor 𝑁* appears in the cele-

brated Dold-Kan correspondence [34, §III.2]:

Proposition 2.2 (The Dold-Kan correspondence). There is an adjoint equivalence of cat-

egories:

𝑁* : 𝑠V
+
𝑟 � ch+V

+
𝑟 : Γ,

under which the homotopy groups of 𝑉 ∈ 𝑠V+
𝑟 (as a simplicial set) are naturally isomorphic

to the homology groups of 𝑁*𝑉 :

(𝜋𝑛𝑉 )𝑡𝑠𝑟,...,𝑠1
∼= (𝐻𝑛𝑁*𝑉 )𝑡𝑠𝑟,...,𝑠1 .
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A cycle in 𝑁𝑛𝑉 is an element 𝑥 ∈ 𝑉𝑛 such that 𝑑𝑖𝑥 = 0 for 0 ≤ 𝑖 ≤ 𝑛. We write 𝑍𝑁𝑛𝑉

for this group of cycles, referring to elements of 𝑍𝑁*𝑉 as normalized cycles. Note that

𝑍𝑁−
* 𝑉 = 𝑍𝑁*𝑉 is the same group of normalized cycles.

For 𝑥 a cycle in any of the four homotopy equivalent chain complexes calculating 𝜋*𝑉 ,

we will write 𝑥 for the equivalence class of 𝑥 in 𝜋*𝑉 .

It will often be helpful to remove the notational distinction between the chain complex

dimension 𝑛 and the other homological dimensions 𝑠𝑟, . . . , 𝑠1. That is, we may view 𝜋*𝑉 as

a single object of V+
𝑟+1, defined by

(𝜋*𝑉 )𝑡𝑠𝑟+1,...,𝑠1 := (𝜋𝑠𝑟+1𝑉 )𝑡𝑠𝑟,...,𝑠1 .

Now for any collection of indices 𝑠𝑟+1, . . . , 𝑠1 ≥ 0 and 𝑡 ≥ 1, define:

K𝑡
𝑠𝑟+1,𝑠𝑟,...,𝑠1 = Γ

(︁
· · · 0oo F2{𝑧}oo 0oo 0oo · · ·

)︁
,oo

degrees: 𝑠𝑟+1−1 𝑠𝑟+1 𝑠𝑟+1+1 𝑠𝑟+1+2

𝐶K𝑡
𝑠𝑟+1,𝑠𝑟,...,𝑠1 = Γ

(︁
· · · 0oo F2{𝑑ℎ}oo F2{ℎ}oo 0oo · · ·

)︁
.oo

Here 𝑧 and ℎ denote are both to lie in internal cohomological grading 𝑡 and homological

gradings 𝑠𝑟, . . . , 𝑠1. There is an evident inclusion 𝚤𝑛 : K𝑡
𝑠𝑟+1,𝑠𝑟,...,𝑠1 −→ 𝐶K𝑡

𝑠𝑟+1,𝑠𝑟,...,𝑠1 . For

any 𝑉 ∈ 𝑠V+
𝑟 , we can identify the subspaces of cycles and boundaries with hom-sets:

hom𝑠V+
𝑟
(K𝑡

𝑠𝑟+1,...,𝑠1 , 𝑉 ) ∼= (𝑍𝑁𝑠𝑟+1𝑉 )𝑡𝑠𝑟,...,𝑠1 and

hom𝑠V+
𝑟
(𝐶K𝑡

𝑠𝑟+1,...,𝑠1 , 𝑉 ) ∼= (𝑁𝑠𝑟+1+1𝑉 )𝑡𝑠𝑟,...,𝑠1 .

Under these isomorphisms the chain complex differential 𝑁𝑠𝑟+1+1𝑉 −→ 𝑍𝑁𝑠𝑟+1𝑉 corre-

sponds to 𝚤𝑛*. In fact, K𝑡
𝑠𝑟+1,...,𝑠1 represents 𝜋*(−)𝑡𝑠𝑟+1,...,𝑠1 in the homotopy category of 𝑠V+

𝑟 :

in a category of simplicial vector spaces, the distinction between spheres and Eilenberg-Mac

Lane spaces disappears.

A dual theory exists for cosimplicial vector spaces 𝑈 . We mention the cochain complexes

𝐶𝑛𝑈 := 𝑈𝑛 with differential 𝑑 =
∑︀𝑛+1

𝑖=0 𝑑
𝑖;

𝑁𝑛𝑈 := 𝑈𝑛/
∑︀

0<𝑖≤𝑛 im(𝑑𝑖 : 𝑈𝑛−1 −→ 𝑈𝑛) with differential 𝑑 = 𝑑0;

𝑁𝑛
⊆𝑈 :=

⋂︀
0≤𝑖≤𝑛−1 ker (𝑠

𝑖 : 𝑈𝑛 −→ 𝑈𝑛−1) with differential 𝑑 =
∑︀𝑛+1

𝑖=0 𝑑
𝑖.

There are chain complex maps whose composite is an isomorphism:

𝑁𝑛𝑈 ←− 𝐶𝑛𝑈 ←− 𝑁𝑛
⊆𝑈,
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and an explicit normalization map

nml = (id + 𝑑𝑛𝑠𝑛−1) · · · (id + 𝑑2𝑠1)(id + 𝑑1𝑠0) : 𝐶𝑛𝑈 −→ 𝑁𝑛
⊆𝑈

with properties dual to the simplicial version. The cohomology of any of these three equiv-

alent cochain complexes defines the cohomotopy 𝜋*𝑈 of 𝑈 .

Homotopy and cohomotopy correspond under dualization as follows. If 𝑉 ∈ 𝑠V, then

𝐶*D𝑉 = D𝐶*𝑉 , and there is a natural isomorphism 𝜋*D𝑉 −→ D𝜋*𝑉 given by:

𝐻*𝐶*D𝑉 = 𝐻*D𝐶*𝑉 −→ D𝐻*𝐶*𝑉, 𝛼 ↦−→ “𝑣 ↦−→ 𝛼(𝑣)”.

2.6. Skeletal filtrations of almost free objects

Suppose that 𝑋 ∈ 𝑠C is almost free on generating subspaces 𝑉𝑠 ⊆ 𝑋𝑠. Miller [42, p. 55]

defines a filtration of 𝑋 by almost free subobjects

0 // // 𝐹0𝑋 // // 𝐹1𝑋 // // 𝐹2𝑋 // // · · · // // colim𝐹𝑚𝑋 = 𝑋

as follows. For each 𝑚, 𝑖 ≥ 0, write 𝐹𝑚𝑉𝑖 for the subspace of 𝑉𝑖 spanned by the degeneracies

of elements of 𝑉𝑗 such that 𝑗 ≤ min{𝑚, 𝑖}. Then write 𝐹𝑚𝑋 for the subobject of 𝑋 which

is almost free on the subobjects 𝐹𝑚𝑉𝑖. The inclusions of these subobjects are almost free

maps, and the colimit is evidently 𝑋.

Lemma 2.3. For each 𝑚 ≥ 0, nml(𝑉𝑚) ⊂ 𝑉𝑚, and 𝑉𝑚 has direct sum decomposition

𝑉𝑚 = (𝑉𝑚 ∩𝑁𝑚𝑋)⊕ (𝑉𝑚 ∩Deg𝑚𝑋),

natural in maps of almost free objects preserving the chosen almost free subspaces, and such

that 𝑉𝑚 ∩𝑁𝑚𝑋 = im
(︁
𝑉𝑚

nml−→ 𝑉𝑚

)︁
. Moreover, the map

(
∑︀𝑚−1

𝑖=0 𝑠𝑖) : 𝑉
⊕𝑚
𝑚−1 −→ 𝐹𝑚−1𝑉𝑚

is injective.

Proof. The final statement is implied by [42, Fact 3.9]. That nml preserves 𝑉𝑚 is clear from

its defining formula. The direct sum decomposition and the fact about 𝑉𝑚 ∩ 𝑁𝑚𝑋 both

follow from previous observations about the idempotent nml on 𝑋𝑚, in particular that it

has image 𝑁𝑚𝑋 and kernel Deg𝑚𝑋.
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2.7. Dold’s Theorem

According to Dold [22] (c.f. [17, Lemma 3.1]):

Theorem 2.4 (Dold’s Theorem). Suppose that 𝐹 : 𝑠V+
𝑟 −→ 𝑠V+

𝑟 is a functor preserving

weak equivalences, for example, the prolongation of an endofunctor of V+
𝑟 . Then there is a

functor F : V+
𝑟+1 −→ V+

𝑟+1 such that the following diagram commutes:

𝑠V+
𝑟

𝐹 //

𝜋*��

𝑠V+
𝑟

𝜋*��
V+
𝑟+1

F // V+
𝑟+1

Moreover, if 𝐹 is naturally equivalent to a composite 𝐹2 ∘𝐹1, then F is naturally isomorphic

to F2 ∘ F1.

The idea here is that the functor 𝜋* induces an equivalence between the homotopy category

of 𝑠V+
𝑟 and V+

𝑟+1. In fact, the inverse equivalence can be lifted to a functor into 𝑠V+
𝑟 , namely

𝑉 ↦−→ Γ𝑉, V+
𝑟+1 −→ 𝑠V+

𝑟 ,

where we view 𝑉 as a trivial chain complex. Then F can be constructed as F𝑉 := 𝜋*(𝐹Γ𝑉 ).

2.8. Homology and cohomology functors 𝐻C
* and 𝐻*C

In this thesis we will always define the C-homology of 𝑋 ∈ 𝑠C by the formula:

𝐻C
*𝑋 := 𝜋*(𝑄

C𝐵C𝑋) = 𝐻*𝑁*(𝑄
C𝐵C𝑋).

These homology functors are well defined, as the 𝑄C ⊣ 𝐾C adjunction is a Quillen adjunction

(that 𝐾C preserves fibrations and acyclic fibrations is immediate), and indeed we are free to

use any cofibrant replacement in place of 𝐵C𝑋.

It is not always entirely appropriate to call these functors homology. Indeed, Quillen [48,

§II.5] defines homology to be the left derived functors of the abelianization functor, and it

is not true in all of our examples that 𝑄C models the abelianization functor. Goerss [33, §4]

explains that this does occur when C is the category of non-unital commutative algebras,

but it does not occur when C is the category of restricted Lie algebras [21].

When C is monadic over V+
𝑟 , we may view the groups 𝐻C

*𝑋 together as an object of

V+
𝑟+1. That is, each homology group 𝐻C

𝑠𝑋 retains the gradings of 𝑋, and a new homological

grading is added (to the left of the existing homological gradings). We will sometimes avoid

substituting into the asterisk, writing (𝐻C
*𝑋)𝑡𝑠𝑟+1,...,𝑠1 in place of (𝐻C

𝑠𝑟+1
𝑋)𝑡𝑠𝑟,...,𝑠1 .
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We define the C-cohomology 𝐻*
C𝑋 of 𝑋 to be D(𝐻C

*𝑋), or equivalently the cohomotopy

groups 𝜋*D(𝑄C𝑋) of the dual cosimplicial object. As we dualize to obtain cohomology, the

cohomological gradings and homological gradings are swapped, and 𝐻*
C𝑋 may be viewed as

an object of V𝑟+1
+ .

Lemma 2.5. Suppose that 𝑋 ∈ 𝑠C is almost free with generating subspaces 𝑉𝑛 ⊆ 𝑋𝑛. Then

any homology class in 𝐻C
𝑛𝑋
∼= 𝜋𝑛𝑄

C𝑋 can be represented by the image in 𝑄C𝑋𝑛 of an

element of 𝑉𝑛 ∩𝑁𝑛𝑋.

Proof. This follows from Lemma 2.3 — simply represent the class in question by an element

of 𝑉𝑛, and then apply the natural map nml.

This lemma states that we may find representatives for any homology class in the subobject

𝑉𝑛 ∩ 𝑁𝑛𝑋 of 𝑋𝑛, while for other applications it will be preferable simply to pass to the

quotient 𝑉𝑛 of 𝑋𝑛. Trivially:

Lemma 2.6. Suppose that 𝑋 is almost free with generating subspaces 𝑉𝑛 ⊆ 𝑋𝑛. Then the

simplicial object {(𝑄C𝑋)𝑛} may be identified with the collection of vector spaces {𝑉𝑛}, using

the following composite as the zeroth face map of {𝑉𝑛}:

𝑉𝑛
𝑑0−→ 𝑋𝑛

∼= 𝐹 C𝑉𝑛−1
𝜖−→ 𝑉𝑛−1,

and using the other structure maps of 𝑋, which by assumption preserve the generating sub-

spaces, as the other structure maps of {𝑉𝑛}.

2.9. The action of Σ2 on 𝑉 ⊗2

For any vector space 𝑉 ∈ V, the tensor power 𝑉 ⊗2 := 𝑉 ⊗ 𝑉 has an action of Σ2 given by

the map 𝑇 interchanging the two factors. We will write 𝑆2𝑉 for the coinvariants and 𝑆2𝑉

for the invariants of this action:

𝑆2𝑉 := (𝑉 ⊗ 𝑉 )Σ2 := (𝑉 ⊗ 𝑉 )/Σ2;

𝑆2𝑉 := (𝑉 ⊗ 𝑉 )Σ2 := {𝑥 ∈ 𝑉 ⊗ 𝑉 |𝑥 = 𝑇𝑥}.

The trace map is the natural linear map

tr := (1 + 𝑇 ) : 𝑆2𝑉 −→ 𝑆2𝑉,

and we write

Λ2𝑉 := im(tr) ∼= 𝑆2𝑉/ker (tr)
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Thus, we may view Λ2𝑉 either as a subobject of 𝑆2𝑉 of as the quotient of 𝑆2𝑉 by the

subspace generated by elements of the form 𝑣 ⊗ 𝑣.

For any 𝑉 ∈ V there is a natural map

𝑆2D𝑉 −→ D𝑆2𝑉, 𝛼⊗ 𝛽 ↦−→ “𝑣 ⊗ 𝑤 ↦−→ 𝛼(𝑣)𝛽(𝑤)”.

It is an isomorphism when 𝑉 is finite-dimensional.

Suppose that 𝑉 and 𝑊 are F2-vector spaces, and 𝑝 : 𝑆2𝑉 −→ 𝑊 is a linear map. A

quadratic refinement of 𝑝 is a function 𝜎 : 𝑉 −→𝑊 satisfying, for 𝑣1, 𝑣2 ∈ 𝑉 and 𝛼 ∈ F2:

𝜎(𝑣1 + 𝑣2) = 𝜎(𝑣1) + 𝜎(𝑣2) + 𝑝(𝑣1 ⊗ 𝑣2) and 𝜎(𝛼𝑣1) = 𝛼2𝜎(𝑣1).

In fact, the second condition is redundant (over F2), and these conditions are equivalent to

the following condition. For any set 𝐵, define Λ2𝐵 to be the set of subsets of 𝐵 of cardinality

exactly two. The equivalent condition is that, for every collection of vectors 𝑣𝑏 ∈ 𝑉 and of

coefficients 𝛼𝑏 ∈ F2 indexed by a set 𝐵, in which all but finitely many of the 𝛼𝑏 are zero,

the following equation holds:

𝜎
(︁∑︁
𝑏∈𝐵

𝛼𝑏𝑣𝑏

)︁
=
∑︁
𝑏∈𝐵

𝛼2
𝑏𝜎(𝑣𝑏) +

∑︁
{𝑏,𝑐}∈Λ2𝐵

𝛼𝑏𝛼𝑐𝑝(𝑣𝑏 ⊗ 𝑣𝑐).

If 𝑓 : 𝑆2𝑉 −→ 𝑊 is a linear map, the function 𝑣 ↦−→ 𝑓(𝑣 ⊗ 𝑣) is a quadratic refinement of

tr ∘𝑓 , and indeed:

Proposition 2.7. For any linear map 𝑝 : 𝑆2𝑉 −→ 𝑊 , extensions of 𝑝 to a linear map

𝑓 : 𝑆2𝑉 −→𝑊 are in natural bijection with quadratic refinements of 𝑝.

Proof. Suppose that 𝑉 has basis {𝑣𝑏 | 𝑏 ∈ 𝐵}. Then 𝑆2𝑉 has basis the set

{tr(𝑣𝑏 ⊗ 𝑣𝑐) | {𝑏, 𝑐} ∈ Λ2𝐵} ∪ {𝑣𝑏 ⊗ 𝑣𝑏 | 𝑏 ∈ 𝐵}.

This is easy to check for 𝑉 finite dimensional, and extends to the infinite dimensional case

as 𝑆2 preserves filtered colimits, and we may calculate 𝑉 as the colimit

colim
𝐵′⊆𝐵

F2⟨𝐵′⟩ = 𝑉.

In particular, an extension 𝑓 of 𝑝 is determined by the quadratic refinement 𝑣 ↦−→ 𝑓(𝑣⊗ 𝑣).
Thus, as long as we can produce an extension 𝑓 with 𝜎(𝑣) = 𝑓(𝑣 ⊗ 𝑣) for any quadratic

refinement 𝜎 of 𝑝, we will have the natural construction we need.
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What remains to prove is that the linear map 𝑓 defined on this basis by

tr(𝑣𝑏 ⊗ 𝑣𝑐) ↦−→ 𝑝(𝑣𝑏 ⊗ 𝑣𝑐), 𝑣𝑏 ⊗ 𝑣𝑏 ↦−→ 𝜎(𝑣𝑏)

does in fact have the property that 𝑓(𝑣 ⊗ 𝑣) = 𝜎(𝑣) for all 𝑣 ∈ 𝑉 . Indeed, if we write 𝑣 in

terms of the chosen basis as 𝑣 =
∑︀

𝑏∈𝐵 𝛼𝑏𝑣𝑏, then

𝑣 ⊗ 𝑣 =
∑︁
𝑏∈𝐵

𝛼2
𝑏𝑣𝑏 +

∑︁
{𝑏,𝑐}∈Λ2𝐵

𝛼𝑏𝛼𝑐 tr(𝑣𝑏 ⊗ 𝑣𝑐),

and we can apply our definition of the linear map 𝑓 to this expansion directly, obtaining

𝑓(𝑣 ⊗ 𝑣) :=
∑︁
𝑏∈𝐵

𝛼2
𝑏𝜎(𝑣𝑏) +

∑︁
{𝑏,𝑐}∈Λ2𝐵

𝛼𝑏𝛼𝑐𝑝(𝑣𝑏 ⊗ 𝑣𝑐) = 𝜎(𝑣).

Corollary 2.8. There is a natural linear map
√
− : 𝑆2𝑉 −→ 𝑉 , the square root map,

uniquely determined by the requirements:

√
𝑣1 ⊗ 𝑣2 + 𝑣2 ⊗ 𝑣1 = 0,

√
𝑣 ⊗ 𝑣 = 𝑣 for all 𝑣1, 𝑣2, 𝑣 ∈ 𝑉 .

Proof. This map is the unique extension of 0 : 𝑆2𝑉 −→ 𝑉 corresponding to the quadratic

refinement id : 𝑉 −→ 𝑉 of 0.

The evocative square root symbol is doubly appropriate, as if 𝑉 is dual to a finite-dimensional

vector space 𝑈 ∈ V, the linear dual of the square root map,

D𝑉 −→ D𝑆2𝑉
∼=←− 𝑆2D𝑉

equals the squaring map 𝑈 −→ 𝑆2𝑈 , defined by 𝑢 ↦−→ 𝑢⊗ 𝑢.

2.10. Lie algebras in characteristic 2

As we work in characteristic 2, there is more than one available notion of a Lie algebra. An

𝑆(L )-algebra is a vector space 𝐿 equipped with a bracket 𝐿⊗𝐿 −→ 𝐿 satisfying the Jacobi

identity and the (anti)-symmetry condition [𝑥, 𝑦] = [𝑦, 𝑥]. A Lie algebra (or Λ(L )-algebra)

is a vector space 𝐿 equipped with a bracket 𝐿 ⊗ 𝐿 −→ 𝐿 satisfying the Jacobi identity

and the alternating condition [𝑥, 𝑥] = 0. Finally, a restricted Lie algebra [20, 13] (or Γ(L )-

algebra) is a Lie algebra equipped with a squaring or restriction function (−)[2] : 𝐿 −→ 𝐿,

satisfying the axioms

(𝑥1 + 𝑥2)
[2] = 𝑥

[2]
1 + 𝑥

[2]
2 + [𝑥1, 𝑥2] and [𝑥

[2]
1 , 𝑥2] = [𝑥1, [𝑥1, 𝑥2]].
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The alternating condition implies the (anti)-symmetry condition, and these three types of

Lie algebras form a hierarchy: a restricted Lie algebra is in particular a Lie algebra, and a

Lie algebra is in particular an 𝑆(L )-algebra.

We will write Lie for the category of ungraded Lie algebras, and Lier for the category

of ungraded restricted Lie algebras.

Fresse [31] explains how to construct the monads 𝑆(L ), Λ(L ) and Γ(L ) on V which

give rise to these structures, starting with the Lie operad L . For 𝑉 ∈ V, it is standard that

the functor

𝑆(L ) : 𝑉 ↦−→
⨁︁
𝑛≥1

(L (𝑛)⊗ 𝑉 ⊗𝑛)Σ𝑛

inherits the structure of a monad from the composition maps of L . Fresse observes that

the functor

Γ(L ) : 𝑉 ↦−→
⨁︁
𝑛≥1

(L (𝑛)⊗ 𝑉 ⊗𝑛)Σ𝑛

may also be equipped with a monad structure, such that the trace map 𝑆(L ) −→ Γ(L ) is

a map of monads, and that an intermediate monad may be defined by

Λ(L ) : 𝑉 ↦−→ im
(︀
tr : 𝑆(L )(𝑉 ) −→ Γ(L )(𝑉 )

)︀
.

These monads give rise to the three indicated forms of Lie algebras in characteristic 2. Each

of these functors supports a quadratic grading :

q𝑘(Γ(L )𝑉 ) := (L (𝑘)⊗ 𝑉 ⊗𝑘)Σ𝑘 , etc.,

and since L (2) is one-dimensional, there are natural identifications:

q2(𝑆(L )𝑉 ) ∼= 𝑆2𝑉, q2(Λ(L )𝑉 ) ∼= Λ2𝑉, and q2(Γ(L )𝑉 ) ∼= 𝑆2𝑉.

One can identify an 𝑆(L )-algebra with the corresponding map 𝑆2𝐿 −→ 𝐿, a Λ(L )-algebra

with the map Λ2𝐿 −→ 𝐿, and a Γ(L )-algebra with the map 𝑆2𝐿 −→ 𝐿, which is to say, for

instance, that a map 𝑆2𝑉 −→ 𝑉 admits at most one extension to a 𝑆(L )-algebra structure

map 𝑆(L )𝑉 −→ 𝑉 . By pulling back along the natural maps

𝑆2𝑉 −→ Λ2𝑉 −→ 𝑆2𝑉

one can demote a restricted Lie algebra to a Lie algebra, or a Lie algebra to an 𝑆(L )-algebra.

A restrictable ideal in a Lie algebra 𝐿 is a Lie ideal 𝐼 of 𝐿, equipped with a restriction
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function (−)[2] : 𝐼 −→ 𝐼, satisfying the following axioms, for 𝑥1, 𝑥2 ∈ 𝐼 and 𝑥3 ∈ 𝐿:

(𝑥1 + 𝑥2)
[2] = 𝑥

[2]
1 + 𝑥

[2]
2 + [𝑥1, 𝑥2] and [𝑥

[2]
1 , 𝑥3] = [𝑥1, [𝑥1, 𝑥3]].

In fact, let PRL denote the category of partially restricted Lie algebras, whose objects are

pairs of vector spaces (𝐿+, 𝐿0), equipped with a Lie algebra structure on 𝐿+⊕𝐿0 in which 𝐿+

is a restrictable ideal, and whose maps are Lie algebra maps preserving the decomposition

and commuting with the partial restrictions. This category is monadic over V × V, the

category of pairs of vector spaces, and the value of monad 𝐹PRL on (𝑉+, 𝑉0) is just an

appropriately chosen subalgebra of Γ(L )(𝑉+ ⊕ 𝑉0). We will refer to homogeneous elements

of 𝐿+ as restrictable, and homogeneous elements of 𝐿0 as non-restrictable.

In §7.1 we will define various categories of graded partially restricted Lie algebras, where

membership of the restrictable ideal is determined by the non-vanishing of certain gradings.

2.11. Non-unital commutative algebras

In this thesis we will work with non-unital commutative algebras except when we specify

otherwise. As for Lie algebras, there are three different notions of non-unital commutative

algebra available in characteristic 2. A commutative algebra (or 𝑆(C )-algebra) is a vector

space 𝐴 equipped with an associative commutative pairing 𝐴 ⊗ 𝐴 −→ 𝐴. We will work

with these often, and will write Com for the category of such algebras. In fact, we will so

often discuss simplicial non-unital commutative algebras that we will refer to them simply

as simplicial algebras.

An exterior algebra (or Λ(C )-algebra) is a commutative algebra 𝐴 with the property

that 𝑥2 = 0 for all 𝑥 ∈ 𝐴. A divided power algebra (or Γ(C )-algebra) is a commutative

algebra 𝐴 equipped with divided power operations, as described in [31, 1.2.2] or [33, §2]. In

characteristic 2, these operations are all determined by a single operation, the divided square

𝛾2 : 𝐴 −→ 𝐴, which satisfies

𝛾2(𝑥𝑦) = 𝑥2𝛾2(𝑦), 𝛾2(𝜆𝑥) = 𝜆2𝛾2(𝑥) and 𝛾2(𝑥+ 𝑦) = 𝛾2(𝑥) + 𝛾2(𝑦) + 𝑥𝑦.

Note that the second condition is in fact extraneous over F2, and that the last condition

implies that a divided power algebra is exterior. Thus, 𝛾2(𝑥𝑦) = 𝑥2𝛾2(𝑦) = 0.

There is a notion of a divided power ideal of a commutative algebra: an ideal 𝐼 of a

commutative algebra 𝐴 equipped with a compatible divided power structure on 𝐼. In this

case, 𝐼 is necessarily exterior, although for 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐼, 𝛾2(𝑥𝑦) = 𝑥2𝛾2(𝑦) need not be

zero.

Again, Fresse [31] explains how to construct the monads 𝐹Com := 𝑆(C ), Λ(C ) and
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Γ(C ) on V which give rise to these structures, using the commutative operad C instead of

L . Again, there is a quadratic grading definable on these three monads, and each monad is

generated in degree 2, so that a commutative algebra may be thought of as a map 𝑆2𝐿 −→ 𝐿,

an exterior algebra as a map Λ2𝐿 −→ 𝐿, and a divided power algebra as a map 𝑆2𝐿 −→ 𝐿.

The coproduct 𝐴⊔𝐵 in the category of non-unital commutative algebras is the direct sum

𝐴⊕ (𝐴⊗𝐵)⊕𝐵, with the obvious product. Moreover, the smash coproduct (to be defined

in general in §3.5) is simply 𝐴 Y𝐵 := 𝐴⊗𝐵. Indeed, coproducts and smash coproducts in

all three of the above categories are given by these formulae.

2.12. First quadrant cohomotopy spectral sequences

Suppose that 𝑉𝑝,𝑞 is a bisimplicial vector space, ungraded for now. We will follow the

standard conventions, those of [52], in defining the cohomotopy spectral sequence of 𝑉 ,

which calculates the cohomotopy of the diagonal |𝑉 | of 𝑉 . For more detail, see [52, §1.15].

There is a double chain complex 𝐶𝑝,𝑞𝑉 := 𝐶h
𝑝𝐶

v
𝑞 𝑉 = 𝑉𝑝,𝑞, where we have decorated the

functors 𝐶v and 𝐶h in order to distinguish them from the functor 𝐶** being introduced,

and to distinguish the coordinates — we will always refer to 𝑝 as the horizontal coordinate

and 𝑞 as the vertical coordinate. The total complex 𝑇𝑉 , along with one of its two canonical

increasing filtrations, is defined by

(𝑇𝑉 )𝑛 :=
𝑛⨁︁
𝑖=0

𝐶𝑖,𝑛−𝑖𝑉, 𝐹𝑝(𝑇𝑉 )𝑛 :=

𝑝⨁︁
𝑖=0

𝐶𝑖,𝑛−𝑖𝑉.

The dual total complex D𝑇𝑉 admits a decreasing filtration defined by

𝐹 𝑝D𝑇𝑉 := ker
(︀
D𝑇𝑉 −→−→ D𝐹𝑝−1𝑇𝑉

)︀
.

Correspondingly, 𝐻*(D𝑇𝑉 ) ∼= 𝜋*(D|𝑉 |) is equipped with a decreasing filtration. This fil-

tration is evidently finite (eventually stabilizing in any given dimension), exhaustive (having

union 𝐻*(D𝑇𝑉 )) and Hausdorff (having intersection zero), and one defines

[𝐸0𝜋
*(D|𝑉 |)]𝑝,𝑞 := 𝐹 𝑝𝜋𝑝+𝑞(D|𝑉 |)/𝐹 𝑝+1𝜋𝑝+𝑞(D|𝑉 |).

Then, there is a spectral sequence with

[𝐸2𝑉 ]𝑝,𝑞 = 𝜋𝑝h𝜋
𝑞
v(D𝑉 ),

and differential 𝑑𝑟 : [𝐸𝑟𝑉 ]𝑝,𝑞 −→ [𝐸𝑟𝑉 ]𝑝+𝑟,𝑞−𝑟+1 so that [𝐸𝑟+1𝑉 ] is the cohomology of the
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cochain complex ([𝐸𝑟𝑉 ]; 𝑑𝑟), and for each fixed 𝑝 and 𝑞,

[𝐸𝑟𝑉 ]𝑝,𝑞 stabilizes to [𝐸∞𝑉 ]𝑝,𝑞 ∼= [𝐸0𝜋
*(D|𝑉 |)]𝑝,𝑞 as 𝑟 →∞.

Typically, 𝑉 will admit an augmentation to a simplicial object 𝑉−1 ∈ 𝑠V, inducing a

weak equivalence |𝑉 | ∼−→ 𝑉−1. All of our augmentations are horizontal maps to a vertical

object, i.e. an augmentation is a simplicial (in 𝑞) map:

𝑑h0 : 𝑉0,𝑞 −→ 𝑉−1,𝑞 coequalizing 𝑑h0 , 𝑑
h
1 : 𝑉1,𝑞 −→ 𝑉0,𝑞.

In this case, we view the spectral sequence as a tool for the calculation of the cohomotopy

𝜋*(D𝑉−1), via isomorphisms

[𝐸∞𝑉 ]𝑝,𝑞 ∼= [𝐸0𝜋
*(D𝑉−1)]

𝑝,𝑞.

If 𝑉 is instead a bisimplicial graded vector space 𝑉 ∈ 𝑠𝑠V𝑐ℎ, then we may regard [𝐸𝑟𝑉 ]

as an element of Vℎ+2
𝑐 . That is:

[𝐸𝑟𝑉 ]𝑝,𝑞,𝑠ℎ,...,𝑠1𝑡𝑐,...,𝑡1
:= [𝐸𝑟(𝑉

𝑡𝑐,...,𝑡1
𝑠ℎ,...,𝑠1

)]𝑝,𝑞.

In our application of these conventions we will actually have 𝑉 ∈ V+
ℎ , and will write 𝑝 = 𝑠ℎ+2

and 𝑞 = 𝑠ℎ+1. We will even sometimes have a quadratic grading on 𝑉 , which will transfer

to a further grading on the spectral sequence, so our spectral sequences will appear in the

format

q𝑘[𝐸𝑟𝑉 ]
𝑠ℎ+2,...,𝑠1
𝑡 := [𝐸𝑟(q𝑘𝑉

𝑡
𝑠ℎ,...,𝑠1

)]𝑠ℎ+2,𝑠ℎ+1 .

2.13. Second quadrant homotopy spectral sequences

Suppose that

0 = T−1←−←−T0←−←−T1←−←−T2←−←−· · · ←−←−T∞

is a tower of surjections of chain complexes, with T∞ the inverse limit. Then T∞ has a

canonical decreasing filtration:

𝐹𝑚 = 𝐹𝑚T∞ := ker (T∞ −→ T𝑚−1)
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and we define, with the conventional suspensions:

[𝐸0]
𝑠 := Σ𝑠ker

(︀
T𝑠 −→ T𝑠−1

)︀
;

[𝐸1]
𝑠 := 𝐻*[𝐸0]

𝑠 = 𝐻*−𝑠ker
(︀
T𝑠 −→ T𝑠−1

)︀
.

From this data we may derive the following diagram, in which any pair of composable maps

that consists of a monomorphism then an epimorphism is a short exact sequence of chain

complexes:

· · ·

0 Σ−0[𝐸0]
0 Σ−1[𝐸0]

1 Σ−2[𝐸0]
2 Σ−3[𝐸0]

3

T∞
��
��

OOOO

𝐹 0

��
��

OOOO

𝐹 1

��
��

oooo

OOOO

𝐹 2

��
��

oooo

OOOO

𝐹 3

��
��

oooo

OOOO

T∞
����

T∞
����

T∞
����

T∞
����

T∞
����

0 T−1 T0
oooo T1

oooo T2
oooo

0
OO
OO

0
OO
OO

Σ−0[𝐸0]
0

OO
OO

Σ−1[𝐸0]
1

OO
OO

Σ−2[𝐸0]
2

OO
OO

· · ·

Taking homology, each short exact sequence of chain complexes creates a long exact se-

quence, and we obtain two exact couples (c.f. [29] or [41, §2.2]), which we juxtapose, using

dotted maps to indicate boundary homomorphisms:

· · ·

0 Σ−0𝐻[𝐸1]
0

))

Σ−1𝐻[𝐸1]
1

))

Σ−2𝐻[𝐸1]
2

))

Σ−3𝐻[𝐸1]
3

𝐻T∞

��

OO

𝐻𝐹 0

��

OO

𝐻𝐹 1

��

oo

OO

𝐻𝐹 2

��

oo

OO

𝐻𝐹 3

��

oo

OO

𝐻T∞

��

𝐻T∞

��

𝐻T∞

��

𝐻T∞

��

𝐻T∞

��
0 𝐻T−1

**

<<

𝐻T0
oo

**

<<

𝐻T1
oo

**

<<

𝐻T2
oo

<<

0

OO

0

OO

Σ−0𝐻[𝐸1]
0

OO

Σ−1𝐻[𝐸1]
1

OO

Σ−2𝐻[𝐸1]
2

OO

· · ·

The vertical boundary homomorphisms𝐻T𝑚 −→ Σ𝐻𝐹𝑚+1 in fact form a morphism of exact

couples (c.f. [29]), as follows from Verdier’s octahedral axiom (in the homotopy category of

chain complexes, c.f. [38, Appendix A.1]) or a diagram chase. Moreover, the two resulting

spectral sequences have the same 𝐸1-page, so that they are identical (c.f. [29, §6]). This

common spectral sequence is simply the spectral sequence of the decreasing filtration 𝐹𝑚 on

the complex T∞ (c.f. [41, §2.2], [7]). The intended target 𝐻T∞ has an exhaustive decreasing

filtration, defined in either of two equivalent ways:

𝐹𝑚(𝐻T∞) := im(𝐻𝐹𝑚 −→ 𝐻T∞) = ker (𝐻T∞ −→ 𝐻T𝑚−1),
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and one writes [𝐸0𝐻T∞]𝑠𝑡 = 𝐹 𝑠𝐻𝑡−𝑠T∞/𝐹
𝑠+1𝐻𝑡−𝑠T∞.

One context in which we may make these constructions is when given any sequence of

maps

0 = T−1 ←− T0 ←− T1 ←− · · ·

in 𝑠V. Such a tower may be converted into a homotopy equivalent tower of surjections

0 = T′
−1←−←−T′

0←−←−T′
1←−←−· · ·

and we may perform the above constructions with T𝑚 := 𝐶*T′
𝑚. Homotopy equivalent towers

will produce isomorphic spectral sequences from 𝐸1. From this perspective, a straightforward

way to give a map of spectral sequences that shifts filtration is simply to give a map of such

towers with the corresponding shift.

Suppose now that 𝑉 is an object of (𝑠V)Δ+ , the category of coaugmented cosimplicial

objects in the category of simplicial vector spaces. We think of the cosimplicial direction

as horizontal and the simplicial direction as vertical, so that the coaugmentation of 𝑉 is a

(horizontal) map from a (vertical) simplicial object 𝑉 −1 ∈ 𝑠V, i.e. a simplicial (in 𝑡) map:

𝑑0h : 𝑉 −1
𝑡 −→ 𝑉 0

𝑡 equalizing 𝑑0h, 𝑑
1
h : 𝑉 0

𝑡 −→ 𝑉 1
𝑡 .

There is a cochain-chain complex

(𝐶𝑉 )𝑠𝑡 := 𝐶𝑠h𝐶
v
𝑡 𝑉 = 𝑉 𝑠

𝑡 ,

with 𝑠 the horizontal and 𝑡 the vertical coordinate, whose differential is the sum of the hor-

izontal and vertical differentials. The total complex 𝑇𝑉 is a chain complex with a canonical

decreasing filtration, defined by

(𝑇𝑉 )𝑛 =
∏︀
𝑡−𝑠=𝑛𝐶𝑉

𝑠
𝑡 , 𝑑 = 𝑑h + 𝑑v, (𝐹𝑚𝑇𝑉 )𝑛 =

∏︀
𝑡−𝑠=𝑛
𝑠≥𝑚

𝐶𝑉 𝑠
𝑡 .

This filtration of 𝑇𝑉 corresponds to the tower of surjections of chain complexes defined by

(T𝑚𝑉 )𝑛 := (𝑇𝑉/𝐹𝑚+1𝑇𝑉 )𝑛 ∼=
∏︀
𝑡−𝑠=𝑛
𝑠≤𝑚

𝐶𝑉 𝑠
𝑡 ,

which has inverse limit T∞𝑉 = 𝑇𝑉 . Again, the two evident filtrations of 𝐻*(𝑇𝑉 ) =
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𝐻*(T∞𝑉 ) coincide, and the resulting spectral sequences coincide, satisfying

[𝐸0𝑉 ]𝑠𝑡 := 𝐶𝑠h𝐶
v
𝑡 𝑉, 𝑑0 = 𝑑v;

[𝐸1𝑉 ]𝑠𝑡 := 𝐶𝑠h𝜋
v
𝑡 𝑉, 𝑑1 = 𝑑h;

[𝐸2𝑉 ]𝑠𝑡 := 𝜋𝑠h𝜋
v
𝑡 𝑉.

The differential is of the form 𝑑𝑟 : [𝐸𝑟𝑉 ]𝑠𝑡 −→ [𝐸𝑟𝑉 ]𝑠+𝑟𝑡+𝑟−1, and as ever, [𝐸𝑟+1𝑉 ] is the

homology of the chain complex ([𝐸𝑟𝑉 ]; 𝑑𝑟). We will work with this spectral sequence in

detail, and will need the following explicit description of the higher pages:

[𝑍𝑟𝑉 ]𝑠𝑡 :=
{︀
𝑥 ∈ (𝐹 𝑠𝑇𝑉 )𝑡−𝑠

⃒⃒
𝑑𝑥 ∈ (𝐹 𝑠+𝑟𝑇𝑉 )𝑡−𝑠−1

}︀
;

[𝐸𝑟𝑉 ]𝑠𝑡 := [𝑍𝑟𝑉 ]𝑠𝑡/
(︀
𝑑
(︀
[𝑍𝑟−1𝑉 ]𝑠−𝑟+1

𝑡−𝑟+2

)︀
+ [𝑍𝑟−1𝑉 ]𝑠+1

𝑡+1

)︀
.

The spectral sequence will sometimes admit a vanishing line of slope 𝛼 on 𝐸2, i.e. there

will exist a constant 𝑐 such that:

[𝐸2𝑉 ]𝑠𝑡 = 0 for 𝑠 > 𝑐+ 𝛼(𝑡− 𝑠).

In this case, the filtration on 𝐻*(𝑇𝑉 ) is Hausdorff and finite, and for each fixed 𝑠 and 𝑡:

[𝐸𝑟𝑉 ]𝑠𝑡 stabilizes to [𝐸∞𝑉 ]𝑠𝑡
∼= [𝐸0𝐻*(𝑇𝑉 )]𝑠𝑡 as 𝑟 →∞.

The coaugmentation induces a map 𝑉 −1 ∼−→ Tot𝑉 where Tot𝑉 is the totalization of

𝑉 in the simplicial model category 𝑠V [34, VII.5]. Bousfield explains how this relates to the

totalization tower [34, VII.5] of 𝑉 :

Lemma 2.9 [7, Lemma 2.2]. There are natural chain maps 𝑁*Tot𝑚 𝑉 −→ T𝑚𝑉 for 𝑚 ≤ ∞
which induce an isomorphism of towers 𝜋*Tot𝑚 𝑉 −→ 𝐻*T𝑚𝑉 . In particular 𝐻*(𝑇𝑉 ) ∼=
𝜋*Tot𝑉 .

Not only then do we have a tower under T∞𝑉 ≃ 𝐶*Tot𝑉 , but Tot𝑉 accepts the

coaugmentation map from 𝑉 −1. Of course, the coaugmentation map need not be surjective,

but if we factor it as a composite

𝑉 −1 // ∼ // 𝑟(𝑉 −1) // // Tot𝑉

we may form the following diagram by demanding that the vertical composites be strict
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fiber sequences

· · ·

𝑟(𝑉 −1)
��
��

Fib0

��
��

Fib1

��
��

oooo Fib2

��
��

oooo Fib3

��
��

oooo

𝑟(𝑉 −1)

����

𝑟(𝑉 −1)

����

𝑟(𝑉 −1)

����

𝑟(𝑉 −1)

����

𝑟(𝑉 −1)

����
0 Tot−1 Tot0oooo Tot1oooo Tot2oooo

· · ·

and applying the functor 𝐶*.

We will in general hope that 𝑉 −1 −→ Tot𝑉 will be a weak equivalence, and to investigate

whether or not this is so, it will be helpful to be able to identify the fibers Fib𝑚 up to

homotopy. For this we recall a useful relationship between cosimplicial objects and cubical

diagrams, explained by Sinha in [53, Theorem 6.5], and expanded on by Munson-Volić [43].

We will only present that part of the theory that we need, and refer the reader to [35], [45]

or [43] for the theory of cubical diagrams and their homotopy total fibers. For 𝑛 ≥ 0 let

[𝑛] = {0, . . . , 𝑛}, and define P[𝑛] = {𝑆 ⊆ [𝑛]} to be the poset category whose morphisms are

the inclusions 𝑆 ⊆ 𝑆′, so that an (𝑛+ 1)-cubical diagram in 𝑠V is a functor P[𝑛] −→ 𝑠V.

Sinha describes a diagram of inclusions of categories

P[−1] 𝜏 //

ℎ−1 ++

P[0]
𝜏 //

ℎ0
##

P[1]
𝜏 //

ℎ1
{{

P[2]
𝜏 //

ℎ2ss

· · ·

Δ+

The augmented cosimplicial simplicial vector space 𝑉 : Δ+ −→ 𝑠V may be pulled back

along ℎ𝑚 to form an (𝑚 + 1)-cubical diagram ℎ*𝑚𝑉 . After noting that 𝑉 is Reedy fibrant

(c.f. [10, X.4.9]), Sinha explains that there are natural weak equivalences

Fib𝑚+1 ∼ hofib(𝑉 −1 −→ Tot𝑚𝑉 )
∼−→ hototfib(ℎ*𝑚𝑉 )

under which the inclusion Fib𝑚 ←− Fib𝑚+1 is identified with the map

hototfib(ℎ*𝑚𝑉 ) −→ hototfib(𝜏*ℎ*𝑚𝑉 ) = hototfib(ℎ*𝑚−1𝑉 ).

As ℎ*−1𝑉 is the 0-cube with value 𝑉 −1, the tower of homotopy total fibers is identified up

to homotopy with the tower of the Fib𝑚.
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Chapter 3

Homotopy operations and

cohomology operations

Let C be a category of universal graded algebras, monadic over V+
𝑟 . Our goal is to understand

construct operations on the homotopy and cohomology of an object of 𝑠C. In §3.2 and §3.3,

we set out dual frameworks in which these operations can be organized, and in 3.10 and

3.5, we describe some useful chain level operations that we will use to construct cohomology

operations in §6.

3.1. The spheres in 𝑠C and their mapping cones

Using the forgetful functor 𝑈C : C −→ V+
𝑟 , for any 𝑋 ∈ 𝑠C we may define the homotopy

groups 𝜋*𝑋 of 𝑋, which we view together as an object of V+
𝑟+1. By the definition of the

model structure on 𝑠C, the functor 𝜋* : 𝑠C −→ V+
𝑟+1 is homotopical, which is to say that it

inverts weak equivalences. For any set of indices 𝑡 ≥ 0 and 𝑠𝑟+1, . . . , 𝑠1 ≥ 0, write:

SC,𝑡𝑠𝑟+1,...,𝑠1 := 𝐹 CK𝑡
𝑠𝑟+1,...,𝑠1 ; and

𝐶SC,𝑡𝑠𝑟+1,...,𝑠1 := 𝐹 C𝐶K𝑡
𝑠𝑟+1,...,𝑠1

These are the spheres in 𝑠C and cones on spheres in 𝑠C respectively, and we write

sph(C) :=
{︀
SC,𝑡𝑠𝑟+1,...,𝑠1 | 𝑡 ≥ 0, 𝑠𝑟+1, . . . , 𝑠1 ≥ 0

}︀
for the set of spheres in 𝑠C. Note that we were very literal here — the spheres in 𝑠C are

precisely this set of objects, and not, say, the cofibrant objects in 𝑠C which are weakly

equivalent to some SC,𝑡𝑠𝑟+1,...,𝑠1 . For 𝑆 ∈ sph(C) we write 𝐶𝑆 for the corresponding cone.

For any 𝑆 ∈ sph(C), there is an evident cofibration 𝚤𝑛 : 𝑆 −→ 𝐶𝑆. Indeed, for any
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sphere 𝑆 = SC,𝑡𝑠𝑟+1,...,𝑠1 , 𝑆 contains a distinguished normalized cycle, the fundamental cycle:

𝑧 ∈ (𝑍𝑁𝑠𝑟+1𝑆)
𝑡
𝑠𝑟,...,𝑠1 ,

and the cone 𝐶𝑆 contains a distinguished normalized chain, the cone on 𝑧:

ℎ ∈ (𝑁𝑠𝑟+1+1𝐶𝑆)
𝑡
𝑠𝑟,...,𝑠1 ,

and 𝚤𝑛 is defined by the requirement that 𝚤𝑛(𝑧) = 𝑑0ℎ. For any 𝑋 ∈ 𝑠C, by adjunction:

hom𝑠C(SC,𝑡𝑠𝑟+1,...,𝑠1 , 𝑋) ∼= (𝑍𝑁𝑠𝑟+1𝑋)𝑡𝑠𝑟,...,𝑠1 and

hom𝑠C(𝐶SC,𝑡𝑠𝑟+1,...,𝑠1 , 𝑋) ∼= (𝑁𝑠𝑟+1+1𝑋)𝑡𝑠𝑟,...,𝑠1 ,

and indeed 𝚤𝑛* plays the same role as above, representing the differential of 𝑁*𝑋. Moreover,

in the homotopy category corresponding to the above model category structure, SC,𝑡𝑛,𝑠𝑟,...,𝑠1
represents 𝜋𝑛(−)𝑡𝑠𝑟,...,𝑠1 (c.f. [33, §1] or [3, §3.1.1]) which is why we refer to the objects

SC,𝑡𝑛,𝑠𝑟,...,𝑠1 as spheres.

3.2. Homotopy groups and C-Π-algebras

By virtue of the algebraic structure possessed by 𝑋 ∈ 𝑠C, the homotopy groups 𝜋*𝑋 possess

certain natural algebraic structure, that of a C-Π-algebra. Indeed, as any given homotopy

group is a representable functor on the homotopy category, natural 𝑁 -ary operations on

homotopy groups

(𝜋*𝑋)𝑡
1

𝑠1𝑟+1,...,𝑠
1
1
× · · · × (𝜋*𝑋)𝑡

𝑁

𝑠𝑁𝑟+1,...,𝑠
𝑁
1
−→ (𝜋*𝑋)𝑡𝑠𝑟+1,...,𝑠1 (3.1)

are in bijective correspondence with elements of the group

𝜋*

(︁
SC,𝑡

1

𝑠1𝑟+1,...,𝑠
1
1
⊔ · · · ⊔ SC,𝑡

𝑁

𝑠𝑁𝑟+1,...,𝑠
𝑁
1

)︁
𝑡
𝑠𝑟+1,...,𝑠1 . (3.2)

Blanc and Stover [3] define a new category of graded universal algebras, the category 𝜋C of

C-Π-algebras, monadic over V+
𝑟+1, whose objects are graded vector spaces 𝑉 ∈ V+

𝑟+1 with a

structure map

𝑉 𝑡1

𝑠1𝑟+1,...,𝑠
1
1
× · · · × 𝑉 𝑡𝑁

𝑠𝑁𝑟+1,...,𝑠
𝑁
1
−→ 𝑉 𝑡

𝑠𝑟+1,...,𝑠1 (3.3)

for every such homotopy class, satisfying certain natural compatibilities.

It is a standard formalism to encode these compatibilities as follows. A model [3] in

𝑠C is an almost free object of 𝑠C which is weakly equivalent to a coproduct of spheres (for
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example, 𝐹 CΓ𝑉 for any 𝑉 ∈ V+
𝑟+1 viewed as a chain complex with zero differential). A finite

model is a model in which this coproduct is finite. Let Π be the V-enriched category with

objects the finite models in 𝑠C, and morphisms

homΠ(𝑀,𝑀 ′) := homho(𝑠C)(𝑀,𝑀 ′).

Then the category of C-Π-algebras may be defined as the category of V-enriched functors

Πop −→ V that send finite coproducts into products (where by V we mean the category

of ungraded F2-vector spaces). The category of C-Π-algebras is monadic over V+
𝑟+1, with

forgetful functor 𝑈𝜋C defined on a functor 𝐴 ∈ 𝜋C by:

(𝑈𝜋C𝐴)𝑡𝑠𝑟+1,...,𝑠1 := 𝐴(SC,𝑡𝑠𝑟+1,...,𝑠1),

and each of the structure maps (3.3) on 𝑈𝜋C𝐴 is induced by the corresponding homotopy

class (3.2), viewed as a map in Π.

One obtains the free C-Π-algebra on a graded vector space 𝑉 ∈ V+
𝑟+1 using Dold’s

Theorem (2.4). That is, one views 𝑉 as a chain complex in ch+V
+
𝑟 with zero differential, and

applies the Dold-Kan correspondence and C-free functor, obtaining an object 𝐹 CΓ𝑉 ∈ 𝑠C,

and then

𝐹 𝜋C𝑉 = 𝜋*(𝐹
CΓ𝑉 ).

Moreover, as 𝐹 C is an augmented monad, so is 𝐹 𝜋C, via the map

𝐹 𝜋C𝑉 = 𝜋*(𝐹
CΓ𝑉 )

𝜋*𝜖−→ 𝜋*(Γ𝑉 ) = 𝐻*𝑉 = 𝑉,

and in particular, there is an adjunction 𝑄𝜋C ⊣ 𝐾𝜋C.

The theory above has the upshot that understanding the category 𝜋C is equivalent to

calculating the homotopy groups of the finite models. In many cases, this can be performed

by calculating the homotopy of individual spheres, and then using a Hilton-Milnor Theorem

(c.f. §5.5) or Künneth Theorem (c.f. Proposition 5.5) to bootstrap up to a calculation on all

finite models.

Lemma 3.1. For any model 𝐴 in 𝑠C, the Hurewicz map 𝜋*𝐴 −→ 𝜋*𝑄
C𝐴 descends to an

isomorphism

𝛾 : 𝑄𝜋C𝜋*𝐴 −→ 𝜋*𝑄
C𝐴 ∼= 𝐻C

*𝐴.

Proof. 𝐴 is (cofibrant and) homotopic to a coproduct of spheres, and as such may be taken

to be equal to a coproduct of spheres. As 𝜋*𝐴 is free on generators in correspondence

with the sphere summands, 𝑄𝜋C𝜋*𝐴 is simply the vector space with basis their fundamental

classes, which is isomorphic to 𝐻C
*𝐴.
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3.3. Cohomology groups and C-𝐻*-algebras

It will in general be preferable for us to consider algebraic structure on cohomology, rather

than coalgebraic structure on homology: algebra is in general a more familiar subject than

coalgebra, and cohomology has the advantage that it consists of representable functors.

Another advantage is that the theory of cohomology and C-𝐻*-algebras is dual to the theory

of homotopy groups and C-Π-algebras, and §3.3 can be (and has been) obtained from §3.2 by

appropriate dualization. On the other hand, using cohomology groups has the disadvantages

associated with double-dualization.

For any set of indices 𝑡 ≥ 0 and 𝑠𝑟+1, . . . , 𝑠1 ≥ 0, write:

KC,𝑡
𝑠𝑟+1,...,𝑠1 := 𝐾CK𝑡

𝑠𝑟+1,...,𝑠1 ; and

𝐶KC,𝑡
𝑠𝑟+1,...,𝑠1 := 𝐾C𝐶K𝑡

𝑠𝑟+1,...,𝑠1

The KC,𝑡
𝑠𝑟+1,...,𝑠1 are the Eilenberg-Mac Lane objects in 𝑠C. In the homotopy category of 𝑠C,

the object KC,𝑡
𝑛,𝑠𝑟,...,𝑠1 represents the contravariant functor 𝐻𝑛

C (−)
𝑠𝑟,...,𝑠1
𝑡 : 𝑠C −→ V, c.f. [33,

Proposition 4.3].

By virtue of the algebraic structure possessed by 𝑋, the cohomology groups 𝐻*
C𝑋 possess

certain natural algebraic structure, that of a C-𝐻*-algebra. As for C-Π-algebras, natural 𝑁 -

ary operations on cohomology groups

(𝐻*
C𝑋)

𝑠1𝑟+1,...,𝑠
1
1

𝑡1
× · · · × (𝐻*

C𝑋)
𝑠𝑁𝑟+1,...,𝑠

𝑁
1

𝑡𝑁
−→ (𝐻*

C𝑋)
𝑠𝑟+1,...,𝑠1
𝑡 (3.4)

are in bijective correspondence with elements of the group

𝐻*
C

(︁
KC,𝑡1

𝑠1𝑟+1,...,𝑠
1
1
× · · · ×KC,𝑡𝑁

𝑠𝑁𝑟+1,...,𝑠
𝑁
1

)︁
𝑠𝑟+1,...,𝑠1
𝑡 . (3.5)

The category of C-𝐻*-algebras, monadic over V𝑟+1
+ , has objects graded vector spaces 𝑉 ∈

V𝑟+1
+ with a structure map

𝑉
𝑠1𝑟+1,...,𝑠

1
1

𝑡1
× · · · × 𝑉 𝑠𝑁𝑟+1,...,𝑠

𝑁
1

𝑡𝑁
−→ 𝑉

𝑠𝑟+1,...,𝑠1
𝑡 (3.6)

for every such cohomology class, satisfying certain natural compatibilities.

The formalism required to express these compatibilities is as follows. A generalized

Eilenberg-Mac Lane object, or GEM, in 𝑠C is an almost free object of 𝑠C which is weakly

equivalent to a product of Eilenberg-Mac Lane objects KC,𝑡
𝑠𝑟+1,...,𝑠1 . A finite GEM is a GEM

in which this product is finite. Let K be the V-enriched category with objects the finite
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GEMs in 𝑠C, and morphisms

homK(𝑀,𝑀 ′) := homho(𝑠C)(𝑀,𝑀 ′).

Then the category of C-𝐻*-algebras may be defined as the category of V-enriched functors

K −→ V that preserve finite products. The category of C-𝐻*-algebras is monadic over V𝑟+1
+ ,

with forgetful functor defined on a functor ℎ : K −→ V by:

(𝑈𝐻Cℎ)
𝑠𝑟+1,...,𝑠1
𝑡 := ℎ(KC,𝑡

𝑠𝑟+1,...,𝑠1),

and each of the structure maps (3.6) on 𝑈𝐻Cℎ is induced by the corresponding cohomology

class (3.5), viewed as a map in K.

One obtains the free C-𝐻*-algebra on a graded vector space 𝑉 ∈ V𝑟+1
+ of finite type as

follows. One views D𝑉 as a chain complex in ch+V
+
𝑟 with zero differential, and applies the

Dold-Kan correspondence and 𝐾C, obtaining an object 𝐾CΓD𝑉 ∈ 𝑠C. Then:

𝐹𝐻C𝑉 = 𝐻*
C𝐾

CΓD𝑉.

Moreover, 𝐹𝐻C is an augmented monad: one applies 𝐻*
C to the natural collapse map

𝐹 CΓ𝑉 −→ 𝐾CΓ𝑉 , to obtain

𝐾𝐻C𝑉 ∼= 𝐻*
C𝐹

CΓD𝑉 ←− 𝐻*
C𝐾

CΓD𝑉 =: 𝐹𝐻C𝑉.

and in particular, there is an adjunction 𝑄𝐻C ⊣ 𝐾𝐻C.

These definitions simplify when we apply them to the dual of a vector space 𝑈 ∈ V+
𝑟+1

of finite type:

𝐹𝐻C(D𝑈) := 𝜋*D𝑄C𝑐𝐾CΓD2𝑈
∼=←− 𝜋*D𝑄C𝑐𝐾CΓ𝑈

∼=−→ D𝜋*𝑄
C𝑐𝐾CΓ𝑈

suggesting that the functor 𝐹𝐻C is altogether of the wrong variance. It is preferable to work

with the functor

𝐶𝐻C−coalg𝑈 := 𝜋*𝑄
C𝑐𝐾CΓ𝑈

discussed in §3.7.

To dualize a paragraph from §3.2: the theory above has the upshot that understanding

the category 𝐻C is equivalent to calculating the cohomology groups of finite GEMs. In

many cases, this can be performed by calculating the cohomology of individual Eilenberg-

Mac Lane objects, and then using a Hilton-Milnor Theorem (c.f. [33, §11] and §6.6) or

Künneth Theorem (c.f. Theorems 6.15 and 14.6) to bootstrap up to a calculation on all
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finite GEMs.

3.4. The reverse Adams spectral sequence

We will now give a description of Miller’s reverse Adams spectral sequence [42, §4], which

was used by Goerss [33, Chapter V] to calculate the cohomology of Eilenberg-Mac Lane

objects in 𝑠Com.

Suppose that 𝑋 ∈ 𝑠C, and consider the bisimplicial object 𝑄C(𝐵C
𝑝𝑋)𝑞 ∈ 𝑠𝑠V+

𝑛 . There is

a first quadrant cohomotopy spectral sequence

[𝐸2𝑄
C𝐵C𝑋]𝑝,𝑞,𝑠𝑛,...,𝑠1𝑡 = 𝜋𝑝h𝜋

𝑞
v(D𝑄

C𝐵C𝑋)𝑠𝑛,...,𝑠1𝑡

converging to 𝐻*
C𝑋 := 𝜋𝑝+𝑞D𝑄C|𝐵C𝑋|. For each fixed 𝑝,

𝜋*(D𝑄C𝐵C
𝑝𝑋) ∼= D𝜋*(𝑄

C𝐵C
𝑝𝑋)

∼= D𝑄𝜋C𝜋*(𝐵
C
𝑝𝑋)

∼= D𝑄𝜋C𝐵𝜋C
𝑝 𝜋*(𝑋),

where the second isomorphism is that of Lemma 3.1, so that

[𝐸2𝑄
C𝐵C𝑋]𝑝,𝑞,𝑠𝑛,...,𝑠1𝑡

∼= (𝐻𝑝
𝜋C𝜋*𝑋)𝑞,𝑠𝑛,...,𝑠1𝑡 .

When C = Com, this is precisely the spectral sequence used by Goerss in [33, Chapter V]

to calculate the cohomology of Eilenberg-Mac Lane objects in 𝑠Com. In this thesis, we will

use this spectral sequence only for certain low-dimensional calculations. Goerss equipped

the reverse Adams spectral sequence with certain spectral sequence operations [33, §14],

work which can be framed using the external operations, due to Singer, reprised in §13.

In this thesis we study a Bousfield-Kan spectral sequence (BKSS), which is also known

as an unstable Adams spectral sequence, for the category Com. The operations defined in

§11 for this spectral sequence make for another point of comparison. Loosely, we find that

the operations on the BKSS are in a sense Koszul dual to the operations on the reverse

Adams spectral sequence.

3.5. The smash coproduct

For 𝑋1 and 𝑋2 objects of any algebraic category, for example C, 𝜋C or 𝐻C (to be defined

shortly), we define the smash coproduct 𝑋1 Y𝑋2 to be the kernel of the natural map 𝑋1 ⊔
𝑋2 −→ 𝑋1 × 𝑋2. When 𝑋1 = 𝑋2 = 𝑋, 𝑋 Y 𝑋 has a natural action of Σ2, and we write
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𝑋 YΣ2 𝑋 for the subobject of invariant elements under this action.

When 𝑋1 and 𝑋2 are objects of 𝑠C, taking this strict fiber is in fact homotopically

correct, since the map 𝑋1 ⊔𝑋2 −→ 𝑋1 ×𝑋2 is always a fibration, and indeed:

Proposition 3.2. For 𝑋1 and 𝑋2 in 𝑠C, the natural C-Π-algebra map

𝜋*(𝑋1 ×𝑋2) −→ 𝜋*𝑋1 × 𝜋*𝑋2

is an isomorphism. If 𝑋1 and 𝑋2 are models in 𝑠C, the natural C-Π-algebra map

𝜋*𝑋1 ⊔ 𝜋*𝑋2 −→ 𝜋*(𝑋1 ⊔𝑋2)

is an isomorphism, and there is an isomorphism of short exact sequences:

0 // 𝜋*𝑋1 Y 𝜋*𝑋2
//

∼= ��

𝜋*𝑋1 ⊔ 𝜋*𝑋2
//

∼= ��
∼= ��

𝜋*𝑋1 × 𝜋*𝑋2
//

∼= ��

0

0 // 𝜋*(𝑋1 Y𝑋2) // 𝜋*(𝑋1 ⊔𝑋2) // 𝜋*(𝑋1 ×𝑋2) // 0

Proof. The first claim is easy: the forgetful functor is a right adjoint, and 𝜋* preserves

products (of vector spaces). Consider the commuting diagram

0 // 𝜋*𝑋1 Y 𝜋*𝑋2
// 𝜋*𝑋1 ⊔ 𝜋*𝑋2

//

𝑖��

𝜋*𝑋1 × 𝜋*𝑋2
//

∼= ��

0

𝜋*(𝑋1 Y𝑋2) // 𝜋*(𝑋1 ⊔𝑋2) // 𝜋*(𝑋1 ×𝑋2)

in which the top row is a short exact sequence, and the bottom row is just a three term

excerpt of the homotopy long exact sequence of the fiber sequence defining 𝑋1 Y 𝑋2. If 𝑖

were an isomorphism, the bottom row would also be short exact, and a simple diagram chase

would show that 𝑖 restricts to the isomorphism we desire.

If 𝑋1 and 𝑋2 are models, the displayed map 𝑖 is an isomorphism, since both source and

target represent the free C-Π-algebra on generators corresponding to the sphere summands

of 𝑋1 and 𝑋2 taken together.

3.6. Cofibrant replacement via the small object argument

The homotopy of an object 𝑋 of 𝑠C was defined simply by application of the forgetful functor

𝑈C : C −→ V, a definition which is tautologically homotopically correct. On the other hand,

in order to define the homology 𝐻C
*𝑋, as the left Quillen functor 𝑄C does not preserve all

weak equivalences, we must perform a cofibrant replacement before applying 𝑄C. While the

comonadic bar construction 𝐵C described in §2.3 suffices to define the groups 𝐻C
*𝑋, it lacks
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the structure that we will need at various points in this thesis.

Radulescu-Banu’s innovation [49] was to explain that the cofibrant replacement functor

𝑐 : 𝑠C −→ 𝑠C constructed by Quillen’s small object argument [48], which by design already

possesses a natural acyclic fibration 𝜖 : 𝑐 −→ id, in fact admits the full structure of a

comonad, with diagonal 𝛽 : 𝑐 −→ 𝑐𝑐. As explained by Blumberg and Riehl [4, Remark 4.12]:

Proposition 3.3. The endofunctor 𝑄C𝑐𝐾C of 𝑠V admits the structure of a comonad, via

the maps

𝑄C𝑐𝐾C 𝑄C(𝛽)−→ 𝑄C𝑐𝑐𝐾C 𝑄C𝑐(𝜂)−→ 𝑄C𝑐𝐾C𝑄C𝑐𝐾C and 𝑄C𝑐𝐾C 𝑄C(𝜖)−→ 𝑄C𝐾C ∼= id,

where 𝜂 denotes the unit of the 𝑄C ⊣ 𝐾C adjunction.

The functor 𝑐 of the small object argument depends on the choice of sets of generating

cofibrations and acyclic cofibrations. It will be helpful in our applications to include in the

set of generating cofibrations the following important cofibrations:

(1) the inclusion of 0 into any sphere SC,𝑡𝑠𝑟+1,...,𝑠1 ;

(2) the cofibration SC𝑡 ⊔ SC𝑡′ −→ 𝐽𝑡,𝑡′ defined in §11.5;

(3) the cofibration SC𝑡 −→ Θ𝑡,𝑖 defined in §11.7; and

(4) for each cofibration 𝐴 −→ 𝐵 just mentioned, the map Δ1 ⊗ 𝐴 −→ Δ1 ⊗ 𝐵 formed

using the standard closed simplicial model category structure [48, II.4] on 𝑠C.

It will be helpful to have included these maps, because of the following facts about the

small object argument functor 𝑐𝑋. It is constructed as the colimit of a (transfinite) sequence

of cofibrations:

0 = 𝑐0𝑋 // //++

++

𝑐1𝑋 // //

##

𝑐2𝑋 // //

{{

𝑐3𝑋 // //

ss

· · ·

𝑋

and given an element 𝑓 : 𝐴 −→ 𝐵 of the chosen set of generating cofibrations and a

commuting square

𝐴 //
��
𝑓��

𝑐𝑛𝑋

��
𝐵 // 𝑋

there is a canonical choice of map 𝐵 −→ 𝑐𝑛+1𝑋 making

𝐴 //
��

𝑓

��

𝑐𝑛𝑋

��
𝑐𝑛+1𝑋

��
𝐵 //

77

𝑋

52



commute. Indeed, the map 𝑐𝑛𝑋 −→ 𝑐𝑛+1𝑋 is constructed by attaching a copy of 𝐵 along

the image of 𝐴 in 𝑐𝑛𝑋, for each such commuting square.

We will use this canonical lift later, and so establish a little notation. There is a function

hom𝑠Com(SC𝑡 , 𝑋) −→ hom𝑠Com(SC𝑡 , 𝑐1𝑋)

denoted 𝛼 ↦−→ ̃︀𝛼, natural in 𝑋 ∈ 𝑠C, and which provides a section of

hom𝑠Com(SC𝑡 , 𝑐𝑋)
𝜖*−→ hom𝑠Com(SC𝑡 , 𝑋).

We define ̃︀𝛼 to be the canonical lift corresponding to the square

0 //
��
��

𝑐0𝑋 := 0

��
SC𝑡

𝛼 // 𝑋

Finally, we note that Radulescu-Banu’s construction has a convenient (albeit not crucial)

consequence for the construction of homotopy cofibers in 𝑠C. Quillen’s small object argument

actually provides a functorial factorization

𝑋 // // 𝑐fac(𝑔)
∼ // // 𝑌

of any map 𝑔 : 𝑋 −→ 𝑌 in 𝑠C, and in this notation, one might say that we have been writing

𝑐𝑋 as shorthand for 𝑐fac(0 −→ 𝑋). There is a commuting square

0 // //

��

𝑐𝑌

𝑐𝑋
𝑐𝑔 // 𝑐𝑌

which by functoriality induces a commuting diagram (ignoring the dotted map):

0 // //

��

𝑐𝑐𝑌
𝜖𝑐𝑌 // //

𝑚 ��

𝑐𝑌

𝑐𝑋 // // 𝑐fac(𝑐𝑔) ∼
// // 𝑐𝑌

𝛽

gg

Radulescu-Banu’s diagonal 𝛽 is the dotted map in this diagram, and as it is a comonad

diagonal 𝜖𝑐𝑌 ∘ 𝛽 = id𝑐𝑌 , so that 𝑚 ∘ 𝛽 is a section of the acyclic fibration 𝑐fac(𝑐𝑔)
∼−→−→ 𝑐𝑌 .

We may define the homotopy cofiber of 𝑔 as the pushout

𝑐𝑋 // //

��

𝑐fac(𝑐𝑔)

��
0 // hocof(𝑔)
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and by virtue of the construction just given:

Proposition 3.4. There is a construction in 𝑠C of the homotopy cofiber hocof(𝑔) of a map

𝑔 : 𝑋 −→ 𝑌 , implemented by natural maps

𝑐𝑋
𝑐𝑔−→ 𝑐𝑌 −→ hocof(𝑔).

This is in contrast to the standard situation, where there is at best a natural zig-zag, even

from 𝑐𝑌 to hocof(𝑔).

3.7. Homology groups and C-𝐻*-coalgebras

There is a commuting diagram

𝑠V+
𝑟

𝑄C𝑐𝐾C

//

𝜋*��

𝑠V+
𝑟

𝜋*��
V+
𝑟+1

𝐶𝐻C−coalg
// V+
𝑟+1

in which we are using Dold’s Theorem (2.4) to define 𝐶𝐻C−coalg, the cofree C-𝐻*-coalgebra

comonad. By Proposition 3.3 and the naturality of Dold’s Theorem, this is a comonad

on V+
𝑟+1. A C-𝐻*-coalgebra is simply a coalgebra over this monad, i.e. any ℎ ∈ V+

𝑟+1

equipped with a coaction map ℎ −→ 𝐶𝐻C−coalgℎ satisfying the standard compatibilities.

The homology 𝐻C
*𝑋 of 𝑋 ∈ 𝑠C is a C-𝐻*-coalgebra with coaction map

𝜋*(𝑄
C𝑐𝑋)

𝜋*(𝑄C(𝛽))−→ 𝜋*(𝑄
C𝑐𝑐𝑋)

𝜋*(𝑄C𝑐(𝜂))−→ 𝜋*(𝑄
C𝑐𝐾C𝑄C𝑐𝑋) = 𝐶𝐻C−coalg(𝜋*(𝑄

C𝑐𝑋)).

If 𝑋 ∼ 𝐾C𝑉 for some 𝑉 ∈ 𝑠V+
𝑟 , then 𝐻C

*𝑋
∼= 𝐶𝐻C−coalg(𝜋*(𝑉 )), and the coaction map of

𝐻C
*𝑋 is none other than the diagonal map of the comonad.

The comparison maps of §3.3 give the dual of a C-𝐻*-algebra of finite type a C-𝐻*-algebra

structure.

Proposition 3.5. If 𝑉 ∈ V and 𝑋,𝑋 ′ ∈ 𝐻C−coalg are of finite type, then there are natural

isomorphisms:

D𝐶𝐻C−coalg𝑉 ∼= 𝐹𝐻CD𝑉 ;

𝑄𝐻CD𝑋 ∼= DPr𝐻C−coalg𝑋;

D(𝑋 ×𝑋 ′) ∼= D𝑋 ⊔D𝑋 ′;

D(𝑋 Z𝑋 ′) ∼= D𝑋 YD𝑋 ′;

where the primitives Pr𝐻C−coalg𝑋 are defined §3.8, and the smash product 𝑋 Z𝑋 ′ in §3.9.
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3.8. The Hurewicz map, primitives and homology completion

For any 𝑋 ∈ 𝑠C, there is a map 𝜋*𝑋 −→ 𝐻C
*𝑋, the Hurewicz map, defined as the composite

𝜋*𝑋 ∼= 𝜋*(𝑐𝑋) −→ 𝜋*(𝑄
C𝑐𝑋).

Indeed, the Hurewicz map provides a coaugmentation of the comonad 𝐶𝐻C−coalg, the natural

transformation 𝑎 : id −→ 𝐶𝐻C−coalg of endofunctors of V+
𝑟+1 defined by

𝑉 ∼= 𝜋*(𝑐𝐾
CΓ𝑉 ) −→ 𝜋*(𝑄

C𝑐𝐾CΓ𝑉 ) = 𝐹 𝜋C𝑉.

One reading of this observation is:

Lemma 3.6. If 𝑋 ∈ 𝑠C is in the image of 𝐾C, then 𝑄C𝑋 = 𝑈C𝑋, and the Hurewicz map

of 𝑋 is a section of the composite

𝐻C
*𝑋 := 𝜋*𝑄

C𝑐𝑋
(𝑄𝜖)*−→ 𝜋*𝑄

C𝑋 = 𝜋*𝑋.

Given that the comonad 𝐶𝐻C−coalg has a coaugmentation, we may define the primitives

of a C-𝐻*-coalgebra 𝐻 as the equalizer (in 𝑠V):

Pr𝐻C−coalg(𝐻) //𝐻
𝑎 //

coact
//𝐶𝐻 .

We will briefly defer the proof of:

Proposition 3.7. The Hurewicz map 𝜋*𝑋 −→ 𝐻C
*𝑋 factors through Pr𝐻C−coalg(𝐻C

*𝑋),

and if 𝑋 is GEM, the map 𝜋*𝑋 −→ Pr𝐻C−coalg(𝐻C
*𝑋) is an isomorphism. In particular,

for any 𝑉 ∈ V+
𝑟+1, Pr

𝐻C−coalg(𝐶𝐻C−coalg𝑉 ) ∼= 𝑉 .

Radulescu-Banu [49] has constructed a cosimplicial resolution X∙ of an object 𝑋 ∈ 𝑠C
by GEMs, and defined the homology completion of 𝑋 to be the totalization 𝑋^ := Tot(X∙).

This construction is the analogue of Bousfield and Kan’s 𝑅-completion functor on simpli-

cial sets [12], a construction that has proven extremely useful in classical homotopy theory.

There is an additional difficulty, however, in constructing the cosimplicial resolution X∙,

which is not present in the classical context: since not all simplicial algebras are cofibrant,

the naïve cosimplicial resolution (with the coaugmentation drawn dashed)

𝑋 // 𝐾C𝑄C𝑋 oo (𝐾C𝑄C)2𝑋//
//

oo
oo

(𝐾C𝑄C)3𝑋 · · · .//
//
//

fails to be homotopically correct, and as 𝑄C𝐾C = id, fails to hold any interest whatsoever.
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Radulescu-Banu’s innovation was to explain that the cofibrant replacement functor 𝑐 :

𝑠C −→ 𝑠C constructed by Quillen’s small object argument [48] admits a comonad diagonal

𝛽 : 𝑐 −→ 𝑐𝑐 (already used in §3.7) and can thus be mixed into the cosimplicial resolution,

making it homotopically correct.

In detail, the diagonal is needed in order to define the coface maps in Radulescu-Banu’s

resolution, the coaugmented cosimplicial object

X∙ : 𝑐𝑋 // 𝑐𝐾C𝑄C𝑐𝑋 oo 𝑐(𝐾C𝑄C𝑐)2𝑋//
//

oo
oo

𝑐(𝐾C𝑄C𝑐)3𝑋 · · · .//
//
//

Instead of simply using the unit and counit of the adjunction respectively, one uses the

composites discussed in §3.7:

𝑐
𝛽−→ 𝑐𝑐

𝑐𝜂𝑐−→ 𝑐𝐾C𝑄C𝑐 and 𝑄C𝑐𝐾C 𝑄𝜖𝐾−→ 𝑄C𝐾C −→ id.

By an application of Dold’s Theorem (2.4), if 𝑋 −→ 𝑌 is a weak equivalence, so is

X𝑠 −→ Y𝑠 for each 𝑠. Both X and Y, being group-like, are automatically Reedy fibrant

(cf. [10, X.4.9]), so that the map of completions 𝑋^ −→ 𝑌^ is a weak equivalence. This

construction is explained and generalized by Blumberg and Riehl [4, §4].

Comments in [4, §4] show that the coaugmented cosimplicial C-𝐻*-coalgebra 𝐻C
*X

∙ is

weakly equivalent to its coaugmentation 𝐻C
*𝑋 as a vector space (c.f. §4.1), which starts to

explain the title homology completion. One says that 𝑋 is homology complete when the map

𝑐𝑋 −→ 𝑋^ := Tot(X∙) is an equivalence.

In Theorem 4.4 we specialize to the case when C is either the category Com of ungraded

non-unital commutative algebras the category Lier of ungraded restricted Lie algebras, and

prove that the completion 𝑋^ is weakly equivalent to 𝑋 when 𝑋 is connected. Analogous

results for topological Quillen homology may be found in [18].

A question analogous to questions studied in [18] and [2010arXiv1001.1556H] is

whether the homotopy category of connected objects of 𝑠C is equivalent to the homotopy

category of cosimplicial 𝑄C𝑐𝐾C-coalgebras. We have not investigated this question.

Proof of Proposition 3.7. The maps 𝑑0, 𝑑1 : X0 −→ X1 induce respectively the coaugmen-

tation and coaction maps for 𝜋*X0 = 𝐻C
*𝑋 on homotopy, while 𝑑0 : X−1 −→ X0 induces

the Hurewicz map. The very existence of this diagram then shows that the Hurewicz map

factors through the primitives. The observation that this cosimplicial object has extra code-

generacies when 𝑋 = 𝐾C𝑉 (c.f. [4, §4]) completes the proof.
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3.9. The smash product of homology coalgebras

For 𝑋1, 𝑋2 ∈ 𝐻C−coalg connected homology coalgebras, we define the smash product 𝑋1 Z

𝑋2 to be the cokernel of the natural map 𝑋1 ⊔𝑋2 −→ 𝑋1 ×𝑋2.

The theory changes a little in form after passing from homotopy to homology, and in

order to obtain a result analogous to Proposition 3.2, we must introduce the left derived

smash product in C. For 𝐴1 and 𝐴2 in 𝑠C, the natural map 𝐴1 ⊔ 𝐴2 −→ 𝐴1 × 𝐴2 is a

surjection, and so in general very far from a cofibration. We define the left derived smash

product 𝐴1 ZL 𝐴2 to be the homotopy cofiber of this map. In light of Proposition 3.4, there

are natural maps

𝑐(𝐴1 ⊔𝐴2) −→ 𝑐(𝐴1 ×𝐴2) −→ 𝐴1 Z
L 𝐴2,

and this cofiber sequence induces a homology long exact sequence (c.f. [33, Proposition 4.6]).

The following result and its proof are dual to Proposition 3.2 and its proof.

Proposition 3.8. For 𝑋1 and 𝑋2 in 𝑠C, the natural C-𝐻*-coalgebra map

𝐻C
* (𝑋1 ⊔𝑋2)←− 𝐻C

*𝑋1 ⊔𝐻C
*𝑋2

is an isomorphism. If 𝑋1 and 𝑋2 are GEMs in 𝑠C, the natural C-𝐻*-coalgebra map

𝐻C
*𝑋1 ×𝐻C

*𝑋2 ←− 𝐻C
* (𝑋1 ×𝑋2)

takes part in an isomorphism of short exact sequences:

0 oo 𝐻C
*𝑋1 Z𝐻C

*𝑋2
oo

∼=
OO

𝐻C
*𝑋1 ×𝐻C

*𝑋2
oo

∼=
OO

∼=
OO

𝐻C
*𝑋1 ⊔𝐻C

*𝑋2
oo

∼=
OO

0

0 oo 𝐻C
* (𝑋1 ZL 𝑋2) oo 𝐻C

* (𝑋1 ×𝑋2) oo 𝐻C
* (𝑋1 ⊔𝑋2) oo 0

3.10. The quadratic part of a C-expression

In this thesis, we will often use a method of constructing cohomology operations used by

Goerss in [33, §5], and here we will set up a framework that can be applied to each case. We

continue to suppose that C is an algebraic category, monadic over V, a category of graded

vector spaces, satisfying the assumptions of §2.1.

For 𝑉 ∈ V, the diagonal map Δ : 𝑉 −→ 𝑉 ⊕ 𝑉 of 𝑉 induces a diagonal map 𝐹 C𝑉 −→
𝐹 C(𝑉 ⊕ 𝑉 ) ∼= (𝐹 C(𝑉 ))⊔2, and writing 𝑖1 and 𝑖2 for the two summand inclusions 𝐹 C(𝑉 ) −→
(𝐹 C(𝑉 ))⊔2, consider the map

(𝐹 C(Δ) + 𝑖1 + 𝑖2) : 𝐹
C𝑉 −→ (𝐹 C𝑉 )⊔2.
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This map factors through (𝐹 C𝑉 )Y2, and is symmetric. We name this factoring the cross

terms:

cr : 𝐹 C𝑉 −→ (𝐹 C𝑉 ) YΣ2 (𝐹 C𝑉 ),

as it measures the non-linearity in an expression in 𝐹 C𝑉 . We will give an example in each

of the categories Com, Lie and Lier, in each case using subscripts to denote membership

of the first or second copy of 𝑉 :

Com : cr(𝑣𝑤) = (𝑣1 + 𝑣2)(𝑤1 + 𝑤2) + 𝑣1𝑤1 + 𝑣2𝑤2 = 𝑣1𝑤2 + 𝑤1𝑣2;

Lie : cr([𝑣, 𝑤]) = [𝑣1 + 𝑣2, 𝑤1 + 𝑤2] + [𝑣1, 𝑤1] + [𝑣2, 𝑤2] = [𝑣1, 𝑤2] + [𝑤1, 𝑣2];

Lier : cr(𝑣[2]) = 𝑣
[2]
1 + 𝑣

[2]
2 + (𝑣1 + 𝑣2)

[2] = [𝑣1, 𝑣2].

For certain categories of interest to us we will define a decomposition map, natural and

symmetric in 𝑋1, 𝑋2 ∈ C:

𝑗C : 𝑄C(𝑋1 Y𝑋2) −→ 𝑄C(𝑋1)⊗𝑄C(𝑋2).

When C = Com, 𝑋1 Y 𝑋2
∼= 𝑋1 ⊗ 𝑋2 and 𝑄(𝑋1 Y 𝑋2) ∼= 𝑄𝑋1 ⊗ 𝑄𝑋2, and we choose

the identity map of this object as decomposition map 𝑗Com . In other words, the map 𝑗Com

is defined by 𝑥1𝑥2 ↦−→ 𝑥1 ⊗ 𝑥2 whenever 𝑥1 ∈ 𝑋1 and 𝑥2 ∈ 𝑋2.

When C = Lie or C = Lier, we define the decomposition map by

𝑗L(𝑛) : [𝑥1, · · · , 𝑥𝑎][2
𝑟] ↦−→

⎧⎨⎩𝑥1 ⊗ 𝑥2, if 𝑟 = 0, 𝑎 = 2, 𝑧1 ∈ 𝑋1, 𝑧2 ∈ 𝑋2,

0, otherwise,

where by [𝑥1, · · · , 𝑥𝑎][2
𝑟] we mean the 𝑟-fold restriction (𝑟 = 0 when C = Lie) of some

bracketing of various 𝑥1, . . . , 𝑥𝑎 from 𝑋1 and 𝑋2, with at least one 𝑧𝑘 must lie in each of 𝑋1

and 𝑋2. Any element of the smash coproduct may be written as a sum of such expressions,

so there is at most one map 𝑗Com satisfying this equation. That this map is well defined is

less obvious, but nonetheless routine.

Finally, we define the quadratic part map quC to be the composite

quC :
(︁
𝐹 C𝑉

cr−→ (𝐹 C𝑉 )Y2 −→ 𝑄C((𝐹 C𝑉 ) YΣ2 (𝐹 C𝑉 ))
𝑗C−→ 𝑆2(𝑄C𝐹 C𝑉 ) = 𝑆2𝑉

)︁
.

Lemma 3.9. Suppose 𝑉 ∈ V. Then:

(1) quCom is the composite 𝐹Com𝑉 −→−→ 𝑆2𝑉
tr−→ 𝑆2𝑉 ;

(2) quLie is the composite 𝐹Lie𝑉 −→−→ Λ2𝑉
tr−→ 𝑆2𝑉 ;

(3) quLier is the projection 𝐹Lier𝑉 −→−→ 𝑆2𝑉 .

58



Proof. These are simple observations, and an example is more useful than a proof: consider

the expression 𝑒 := 𝑢+ 𝑣𝑤 + 𝑥𝑦2 ∈ 𝐹Com𝑉 where 𝑢, 𝑣, 𝑤, 𝑥, 𝑦 are in 𝑉 . Then

cr(𝑒) = 𝑣1𝑤2 + 𝑤1𝑣2 + 𝑥1𝑦
2
2 + 𝑦21𝑥2, and

quC(𝑒) := 𝑗Com(cr(𝑒))

= 𝑣1 ⊗ 𝑤2 + 𝑤1 ⊗ 𝑣2 + 𝑥1 ⊗ 𝑦22 + 𝑦21 ⊗ 𝑥2

= 𝑣1 ⊗ 𝑤2 + 𝑤1 ⊗ 𝑣2 ∈ 𝑆2(𝑄Com𝐹Com𝑉 ).

Parts (2) and (3) are a light modification of a part of Proposition 7.5.

In each category of interest to us, the following equation of maps 𝐹 C𝐹 C𝑉 −→ 𝑆2𝑉 will

always be satisfied:

quC ∘ 𝜇𝑉 = quC ∘ 𝜖𝐹C𝑉 + quC ∘ 𝐹 C𝜖𝑉 ,

where 𝜇 and 𝜖 stand for the multiplication and augmentation of the augmented monad

𝑈C𝐹 C. This is another expression of homogeneity in the relations defining C, which states

that if 𝑓(𝑔𝑖) is a C-expression in various C-expressions 𝑔𝑖(𝑣𝑖𝑗), then

qu(𝑓𝑔𝑖)(𝑣𝑖𝑗) = qu(𝑓𝜖(𝑔𝑖))(𝑣𝑖𝑗) + 𝜖(𝑓)(qu(𝑔𝑖)(𝑣𝑖𝑗)).

For an example when C = Com, we specify an expression 𝑓(𝑔1, 𝑔2, 𝑔3) := 𝑔1𝑔2+𝑔3 ∈ 𝐹 C𝐹 C𝑉

in expressions 𝑔𝑖 := 𝑣𝑖1𝑣𝑖2 + 𝑣𝑖3 ∈ 𝐹 C𝑉 for each 𝑖 = 1, 2, 3. Then

qu(𝑓𝑔𝑖)(𝑣𝑖𝑗) = qu((𝑣11𝑣12 + 𝑣13)(𝑣21𝑣22 + 𝑣23) + (𝑣31𝑣32 + 𝑣33)) = tr(𝑣13 ⊗ 𝑣23 + 𝑣31 ⊗ 𝑣32),

qu(𝑓𝜖(𝑔𝑖))(𝑣𝑖𝑗) = qu((𝑣13)(𝑣23) + (𝑣33)) = tr(𝑣13 ⊗ 𝑣23), and

𝜖(𝑓)(qu(𝑔𝑖)(𝑣𝑖𝑗)) = qu(𝑣31𝑣32 + 𝑣33) = tr(𝑣31 ⊗ 𝑣32).
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Chapter 4

The Bousfield-Kan spectral sequence

In this chapter, we will write C for any category of universal graded F2-algebras satisfying the

standing assumptions of §2.1. The Bousfield-Kan spectral sequence of 𝑋 ∈ 𝑠C is the second

quadrant homotopy spectral sequence (c.f. §2.13) of Radulescu-Banu’s resolution X ∈ 𝑐𝑠C of

𝑋 recalled in §3.8. The key objective of this thesis is to understand this spectral sequence

when C = Com.

Our first step, in §4.1, is to identify the 𝐸2-page as appropriate derived functors. Before

we turn to the calculation of these derived functors in later chapters, we consider the con-

vergence target, TotX =: 𝑋 .̂ From §4.2 to the end of this section, we will give a proof of

Theorem 4.4 — that the completion 𝑋^ is weakly equivalent to 𝑋 when C is either Com or

Lier and 𝑋 is connected.

Although Theorem 4.4 alone does not fully resolve the question of the convergence of the

BKSS, we will prove in §15.2 that if 𝑋 ∈ 𝑠Com is a connected object with 𝐻*
Com of finite

type, the spectral sequence supports a vanishing line at 𝐸2, so that there are no convergence

problems whatsoever when 𝑋 ∈ 𝑠Com is connected.

4.1. Identification of 𝐸1 and 𝐸2

In light of §3.6 and §3.7, applying the functor 𝐻C
* to X yields the monadic cobar resolution

of 𝐻C
*𝑋 in the category 𝐻C−coalg, obtained by repeated application of the monad on

𝐻C−coalg of the adjunction

𝑈𝐻C−coalg : 𝐻C−coalg� V1 : 𝐶
𝐻C−coalg.
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In more detail, we have a map of coaugmented cosimplicial objects

𝑐𝑋 //

����

𝑐𝐾C𝑄C𝑐𝑋 oo

����

𝑐(𝐾C𝑄𝑐C)2𝑋//
//

oo
oo

����

· · ·////
//

𝑄C𝑐𝑋 // 𝑄C𝑐𝐾C𝑄C𝑐𝑋 oo 𝑄C𝑐(𝐾C𝑄C𝑐)2𝑋//
//

oo
oo · · ·////

//

and if we abbreviate the monad 𝐶𝐻C−coalg𝑈𝐻C−coalg on 𝐻C−coalg to 𝐶, applying 𝜋* to this

diagram we obtain a cosimplicial Hurewicz map:

𝜋*X
∙ : 𝜋*𝑋 //

��

𝜋*X
0 oo

∼=
��

𝜋*X
1//

//
oo
oo

∼=
��

· · ·////
//

Pr(𝐻C
*𝑋

∙) : Pr(𝐻C
*𝑋) //
��
��

Pr(𝐶𝐻C
*𝑋) oo
��
��

Pr(𝐶2𝐻C
*𝑋)//

//
oo
oo

��
��

· · ·////
//

𝐻C
*𝑋

∙ : 𝐻C
*𝑋 // 𝐶𝐻C

*𝑋 oo 𝐶2𝐻C
*𝑋//

//
oo
oo · · ·////

//

The indicated maps are isomorphisms since each X𝑠 for 𝑠 ≥ 0 is a GEM, thanks to Propo-

sition 3.7. In particular, we see that:

[𝐸1X]
𝑠
𝑡
∼= (Pr𝐻C−coalg(𝐶𝑠+1𝐻C

*𝑋))𝑡;

[𝐸2X]
𝑠
𝑡
∼= ((R𝑠 Pr𝐻C−coalg)𝐻C

*𝑋)𝑡.

Corollaries 6.9 and 6.17 and Proposition 3.5 show that

Theorem 4.1. If C is either Com or Lier, and 𝑋 is connected with 𝐻*
C𝑋 of finite type,

then 𝐻*
CX

𝑠 is of finite type for each 𝑠, and:

[𝐸1X]
𝑠
𝑡
∼= (𝐶*D𝑄𝐻C𝐵𝐻C𝐻*

C𝑋)𝑠𝑡 ;

[𝐸2X]
𝑠
𝑡
∼= (𝐻*

𝐻C𝐻
*
C𝑋)𝑠𝑡 .

4.2. The Adams tower

Bousfield and Kan defined the Bousfield-Kan spectral sequence, or unstable Adams spectral

sequence, of a simplicial set in two different ways. Their earlier approach [9] was to define

the derivation of a functor with respect to a ring. This approach constructs the Adams

tower over the simplicial set in question, and lends itself well to connectivity analyzes.

Their latter approach, [12], to give a cosimplicial resolution of a simplicial set by simplicial

𝑅-modules, lends itself more to the analysis of the 𝐸2-page, and is directly analogous to

Radulescu-Banu’s construction described in §3.8.

Since the release of [9] and [12], the relationship between the two approaches has been
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clarified by the introduction of cubical homotopy theory [35]. In this section we will define

the Adams tower of a simplicial algebra using a construction analogous to Bousfield and Kan

in [9], and then to relate it to Radulescu-Banu’s construction using the theory of cubical

diagrams.

For brevity, write 𝐾 := 𝐾C and 𝑄 := 𝑄C. For any functor 𝐹 : 𝑠C −→ 𝑠C, we define

the 𝑟th derivation 𝑅𝑟𝐹 of 𝐹 with respect to homology as follows. The definition is recursive,

and again involves repeated application of the cofibrant replacement functor 𝑐:

(𝑅0𝐹 )(𝑋) := 𝐹 (𝑐𝑋),

(𝑅𝑠𝐹 )(𝑋) := hofib
(︀
(𝑅𝑠−1𝐹 )(𝑐𝑋)

(𝑅𝑠−1𝐹 )(𝜂𝑐𝑋)−−−−−−−−−→ (𝑅𝑠−1𝐹 )(𝐾𝑄𝑐𝑋)
)︀
,

where 𝜂 is the unit of the adjunction𝑄 ⊣ 𝐾, i.e. the natural surjection onto indecomposables,

and hofib is any fixed functorial construction of the homotopy fiber. These functors fit into

a tower via the following composite natural transformations:

𝛿 :

(︂
(𝑅𝑠𝐹 )(𝑋) −→ (𝑅𝑠−1𝐹 )(𝑐𝑋)

(𝑅𝑠−1𝐹 )(𝜖)−→ (𝑅𝑠−1𝐹 )(𝑋)

)︂
.

We have thus constructed a tower

· · · // (𝑅2𝐹 )𝑋 // (𝑅1𝐹 )𝑋 // (𝑅0𝐹 )𝑋 = 𝐹𝑐𝑋,

which is natural in the object 𝑋 and the functor 𝐹 . The functors 𝑅𝑟𝐹 are homotopical as

long as 𝐹 preserves weak equivalences between cofibrant objects. Employing the shorthand

𝑅𝑠𝑋 := (𝑅𝑠id)𝑋,

we define the Adams tower of 𝑋 to be the tower

· · · // 𝑅2𝑋 // 𝑅1𝑋 // 𝑅0𝑋 = 𝑐𝑋.

For example, (𝑅2𝐹 )(𝑋) is constructed by the following diagram in which every compos-

able pair of parallel arrows is defined to be a homotopy fiber sequence.

(𝑅2𝐹 )(𝑋)

��
(𝑅1𝐹 )(𝑐𝑋) //

��

𝐹𝑐𝑐𝑐𝑋 //

��

𝐹𝑐𝐾𝑄𝑐𝑐𝑋

��
(𝑅1𝐹 )(𝐾𝑄𝑐𝑋) // 𝐹𝑐𝑐𝐾𝑄𝑐𝑋 // 𝐹𝑐𝐾𝑄𝑐𝐾𝑄𝑐𝑋
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In general, (𝑅𝑛+1𝐹 )(𝑋) is the homotopy total fiber of an (𝑛+ 1)-cubical diagram:

(𝑅𝑛+1𝐹 )(𝑋) := hototfib
(︀
(𝑅�𝑛+1𝐹 )𝑋

)︀
.

See [35], [45] or [43] for the general theory of cubical diagrams. Before defining the cubical

diagram (𝑅�𝑛+1𝐹 )𝑋, we set notation: for 𝑛 ≥ 0 let [𝑛] = {0, . . . , 𝑛}, and define P[𝑛] =

{𝑆 ⊆ [𝑛]} to be the poset category whose morphisms are the inclusions 𝑆 ⊆ 𝑆′. Then an

(𝑛 + 1)-cube in 𝑠C is a functor P[𝑛] −→ 𝑠C, and the (𝑛 + 1)-cubical diagram (𝑅�𝑛+1𝐹 )𝑋 :

P[𝑛] −→ 𝑠C is the functor defined on objects by:

𝑆 ↦−→ 𝐹𝑐(𝐾𝑄)𝜒𝑛𝑐(𝐾𝑄)𝜒𝑛−1𝑐 · · · 𝑐(𝐾𝑄)𝜒0𝑐𝑋 where 𝜒𝑖 :=

⎧⎨⎩1, if 𝑖 ∈ 𝑆;

0, if 𝑖 /∈ 𝑆,

such that for 𝑆 ⊆ 𝑆′, the map ((𝑅�𝑛+1𝐹 )𝑋)(𝑆) −→ ((𝑅�𝑛+1𝐹 )𝑋)(𝑆′) is given by applying

the counit 𝜂 : 1 −→ 𝐾𝑄 in those locations indexed by 𝑆′ ∖ 𝑆.

Radulescu-Banu defines the homology completion of 𝑋 to be the totalization

𝑋^ := Tot(X∙) = holim(Tot𝑛(X∙)),

and the BKSS to be the spectral sequence of the Tot tower

· · · −→ Tot𝑛(X∙) −→ Tot𝑛−1(X
∙) −→ · · ·

under 𝑐𝑋. Our goal in this section is to prove

Proposition 4.2. There is a natural zig-zag of weak equivalences of towers

{𝑅𝑛+1𝑋}𝑛 ≃ {hofib(𝑐𝑋 −→ Tot𝑛(X∙))}𝑛 .

That is, the Tot tower induces the Adams tower by taking homotopy fibers, and thus the

spectral sequence of the Tot tower coincides with the spectral sequence of the Adams tower.

As X−1 equals 𝑐𝑋, the tower hofib(X−1 −→ Tot𝑛X∙) appearing in §2.13 is one of the

towers in Proposition 4.2. This proposition explains the relevance of the Adams tower to

the cosimplicial resolution, and thus its relevance to the BKSS which was defined as the

spectral sequence of this cosimplicial object.

Proof of Proposition 4.2. By the discussion of the Tot tower in §2.13, it will suffice to con-

struct a weak equivalence ℎ*𝑛X∙ −→ (𝑅�𝑛 id)(𝑋) of (𝑛+1)-cubes. The (𝑛+1)-cubical diagram
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ℎ*𝑛X
∙ is defined on objects by

(ℎ*𝑛X
∙)(𝑆) := 𝑐(𝐾𝑄𝑐)𝜒𝑛(𝐾𝑄𝑐)𝜒𝑛−1 · · · (𝐾𝑄𝑐)𝜒0𝑋 where 𝜒𝑖 :=

⎧⎨⎩1, if 𝑖 ∈ 𝑆,

0, if 𝑖 /∈ 𝑆,

and the map (ℎ*𝑛X
∙)(𝑆) −→ (ℎ*𝑛X

∙)(𝑆 ⊔ {𝑖}), for 𝑖 /∈ 𝑆, may be described as follows. Let 𝑗

be the smallest element of 𝑆 ⊔ {𝑛+ 1} exceeding 𝑖, so that

(ℎ*𝑛X
∙)(𝑆) :=

⎧⎨⎩𝑐(𝐾𝑄𝑐)𝜒𝑛 · · · (𝐾𝑄𝑐)𝜒𝑗+1(𝐾𝑄𝑐)(𝐾𝑄𝑐)𝜒𝑖−1 · · · (𝐾𝑄𝑐)𝜒0𝑋, if 𝑗 ≤ 𝑛;

𝑐(𝐾𝑄𝑐)𝜒𝑖−1 · · · (𝐾𝑄𝑐)𝜒0𝑋, if 𝑗 = 𝑛+ 1.

In the expression for either case, we have distinguished one of the applications of 𝑐 with an

underline, and the map to (ℎ*𝑛X
∙)(𝑆 ⊔ {𝑖}) is induced by the composite 𝑐 −→ 𝑐𝑐 −→ 𝑐𝐾𝑄𝑐

of the diagonal of the comonad 𝑐 with the unit of the monad 𝐾𝑄.

We now define maps (ℎ*𝑛X
∙)(𝑆) −→ ((𝑅�𝑛+1id)𝑋)(𝑆) for 𝑆 = {𝑗0 < 𝑗1 < · · · < 𝑗𝑟} ⊆

{0, . . . , 𝑛}. The only difference between the domain and codomain is that in ((𝑅�𝑛+1id)𝑋)(𝑆),

all 𝑛+2 applications of 𝑐 are present, whereas in (ℎ*𝑛X
∙)(𝑆), only 𝑟+2 appear. The required

map is then

𝛽𝑛−𝑗𝑟𝐾𝑄𝛽𝑗𝑟−𝑗𝑟−1−1𝐾𝑄𝛽𝑗𝑟−1−𝑗𝑟−2−1𝐾𝑄 · · ·𝐾𝑄𝛽𝑗1−𝑗0−1𝐾𝑄𝛽𝑗0𝑋,

which is to say that we apply the iterated diagonal the appropriate number of times in each

𝑐 appearing in the domain. As 𝛽 is coassociative, this definition is unambiguous, and the

resulting maps assemble to a weak equivalence of (𝑛+ 1)-cubes.

4.3. Connectivity estimates and homology completion

In this section we will make the following connectivity estimates in the Adams tower:

Proposition 4.3. Suppose that C is one of the categories Com or Lier, that 𝑋 ∈ 𝑠C is

connected, and that 𝑡 ≥ 1 and 𝑞 ≥ 2. Then there is some 𝑓(𝑞, 𝑡) ≥ 𝑡 such that the map

𝜋𝑞(𝑅𝑓(𝑞,𝑡)𝑋) −→ 𝜋𝑞(𝑅𝑡𝑋) is zero.

Propositions 4.2 and 4.3 together imply the following conjecture of Radulescu-Banu:

Theorem 4.4. If either C = Com or C = Lier and 𝑋 ∈ 𝑠C is connected, then 𝑋 is naturally

equivalent to its homology completion 𝑋 .̂

Proof of Theorem 4.4. The fiber sequences 𝑅𝑛+1𝑋 −→ 𝑐𝑋 −→ Tot𝑛X∙ fit together into a
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tower of fiber sequences. Taking homotopy limits, one obtains a natural fiber sequence

holim(𝑅𝑛𝑋) −→ 𝑐𝑋 −→ 𝑋 .̂

We need to show that holim(𝑅𝑛𝑋) has zero homotopy groups. Applying [34, Proposition

6.14], there is a short exact sequence

0 −→ lim1𝜋𝑞+1(𝑅𝑛𝑋) −→ 𝜋𝑞(holim(𝑅𝑛𝑋)) −→ lim𝜋𝑞(𝑅𝑛𝑋) −→ 0.

Proposition 4.3 implies that for each 𝑞, the tower {𝜋𝑞(𝑅𝑛𝑋)}𝑛 has zero inverse limit and

satisfies the Mittag-Leffler condition (c.f. [10, p. 264]), so that the lim1 groups appearing

also vanish.

The application of the small object argument functor 𝑐 adds to the difficulty of proving

the connectivity estimates of Proposition 4.3. We circumvent the difficulty of working with

𝑐 by shifting to the standard bar construction 𝐵C on 𝑠C, which we abbreviation to 𝑏.

We define recursively a somewhat less homotopical version R𝑠𝐹 of the derivations 𝑅𝑠𝐹 :

(R0𝐹 )(𝑋) := 𝐹 (𝑋),

(R𝑠𝐹 )(𝑋) := ker ((R𝑠−1𝐹 )(𝑏𝑋)
(R𝑠−1𝐹 )(𝜂𝑏𝑋)−−−−−−−−−→ (R𝑠−1𝐹 )(𝐾𝑄𝑏𝑋)).

There are three differences between this definition and that of 𝑅𝑠𝐹 : here, there is one fewer

cofibrant replacement applied, we use 𝑏 instead of 𝑐, and we take strict fibers, not homotopy

fibers. While these functors are not generally homotopical, we define the modified Adams

tower of 𝑋 to be the tower

· · · 𝛿 // R2𝑋
𝛿 // R1𝑋

𝛿 // R0𝑋 = 𝑋,

where R𝑠𝑋 is again shorthand for (R𝑠id)𝑋, and the tower maps 𝛿 are defined as before.

Proposition 4.5. There is a natural zig-zag of weak equivalences of towers between the

Adams tower of 𝑋 and the modified Adams tower of 𝑋. In particular, the modified Adams

tower is homotopical.

Proof. Let CR(sC) be the category of cofibrant replacement functors in 𝑠C. That is, an object

of CR(sC) is a pair, (𝑓, 𝜖), such that 𝑓 : 𝑠C −→ 𝑠C is a functor whose image consists only

of cofibrant objects, and 𝜖 : 𝑓 ⇒ id is a natural acyclic fibration. Morphisms in CR(sC) are

natural transformations which commute with the augmentations. For any (𝑓, 𝜖) ∈ CR(sC)
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we obtain an alternative definition of the derivations of a functor 𝐹 : 𝑠C −→ 𝑠C:

(𝑅𝑓0𝐹 )(𝑋) := 𝐹 (𝑓𝑋), (𝑅𝑓𝑠𝐹 )(𝑋) := hofib((𝑅𝑓𝑠−1𝐹 )(𝑓𝑋) −→ (𝑅𝑓𝑠−1𝐹 )(𝐾𝑄𝑓𝑋)).

These functors are natural in 𝑓 , so that a morphism in CR(sC) induces a weak equivalence

of towers. Our proposed zig-zag of towers is:

𝑅𝑠 = 𝑅𝑐𝑠id←− 𝑅𝑏∘𝑐𝑠 id −→ 𝑅𝑏𝑠id
𝛾𝑠←− R𝑠𝑏

R𝑠𝜖−→ R𝑠id = R𝑠

The maps with domain 𝑅𝑏∘𝑐𝑠 id are induced by the maps 𝜖𝑐 : 𝑏 ∘ 𝑐 −→ 𝑐 and 𝑏𝜖 : 𝑏 ∘ 𝑐 −→ 𝑏

and are evidently natural weak equivalences of towers. The map 𝛾0 : (R0𝑏)𝑋 −→ (𝑅𝑏0id)𝑋

is the identity of 𝑏𝑋, and the map R0𝜖 : (R0𝑏)𝑋 −→ (𝑅𝑏0id)𝑋 is 𝜖 : 𝑏𝑋 −→ 𝑋. Thereafter,

𝛾𝑠 and R𝑠𝜖 are defined recursively:

(R𝑠+1id)𝑋 := ker ((R𝑠id)(𝑏𝑋) −→ (R𝑠id)(𝐾𝑄𝑏𝑋))

(R𝑠+1𝑏)𝑋 := ker ((R𝑠𝑏)(𝑏𝑋) −→ (R𝑠𝑏)(𝐾𝑄𝑏𝑋))

incl.��

induced by (R𝑠𝜖,R𝑠𝜖)
OO

hofib((R𝑠𝑏)(𝑏𝑋) −→ (R𝑠𝑏)(𝐾𝑄𝑏𝑋))
induced by (𝛾𝑠,𝛾𝑠)��

(𝑅𝑏𝑠+1)𝑋 := hofib((𝑅𝑏𝑠id)(𝑏𝑋) −→ (𝑅𝑏𝑠id)(𝐾𝑄𝑏𝑋))

Lemma 4.6 shows that the kernels taken are actually kernels of surjective maps, and by

induction on 𝑠, the maps 𝛾𝑠 and R𝑠𝜖 are weak equivalences.

The connectivity result will rely on the observation that any element in the 𝑠th level of

the modified tower maps down to an (𝑠+1)-fold expression in 𝑋. In order to formalize this,

when C = Com, we let 𝑃 𝑠 : 𝑠C −→ 𝑠C be the “𝑠th power” functor, the prolongation of the

endofunctor 𝑌 ↦−→ 𝑌 𝑠 of C, where 𝑌 𝑠 = im(mult : 𝑌 ⊗𝑠 −→ 𝑌 ). When C = Com, we define

𝑃 𝑠 := Γ𝑠, the 𝑠th term in the lower central series filtration (c.f. [13]). Then we have:

Lemma 4.6. Suppose that either C = Com or C = Lier. The functors R𝑟, R𝑟𝑏 and R𝑟𝑃
𝑠

preserve surjective maps and there is a commuting diagram of functors:

· · · // R𝑟 //

��

· · · // R2
//

��

R1
//

��

R0

· · · // // 𝑃 𝑟+1 // // · · · // // 𝑃 3 // // 𝑃 2 // // id

Proof. As 𝑏 and 𝑃 𝑠 preserve surjections, we need only check the claims about R𝑟𝑋 for
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𝑋 ∈ 𝑠C, which is constructed as the subobject

R𝑟𝑋 :=
𝑟⋂︁
𝑖=1

ker
(︀
𝑏𝑟−𝑖𝜂𝑏𝑖 : 𝑏𝑟𝑋 −→ 𝑏𝑟−𝑖𝐾𝑄𝑏𝑖𝑋

)︀
of 𝑏𝑟𝑋. For the rest of this proof only we write 𝐹 as shorthand for 𝐹 C. In dimension 𝑛, this

is the following subset of (𝑏𝑟𝑋)𝑛 := (𝐹𝑛+1)𝑟𝑋𝑛:

(R𝑟𝑋)𝑛 :=

𝑟⋂︁
𝑖=1

ker
(︁
𝐹 (𝑟−𝑖)(𝑛+1)𝜂𝐹 𝑖(𝑛+1) : (𝐹𝑛+1)𝑟𝑋𝑛 −→ (𝐹𝑛+1)𝑟−𝑖𝐾𝑄(𝐹𝑛+1)𝑖𝑋𝑛

)︁
.

Whichever of Com or Lier we are working with, it is possible to construct monomial

bases for 𝐹𝑉 once a basis of 𝑉 has been chosen. For given 𝑛 and 𝑟, first choose a basis of

𝑋𝑛; build from it a monomial basis of 𝐹𝑋𝑛; build from this a monomial basis of 𝐹 2𝑋𝑛; etc.

Continue until we have a monomial basis of 𝐹 𝑟(𝑛+1)𝑋𝑛 = (𝑏𝑟𝑋)𝑛. The effect of the map

𝐹 (𝑟−𝑖)(𝑛+1)𝜂𝐹 𝑖(𝑛+1) on monomials is either to annihilate them or leave them unchanged,

depending on whether any non-trivial constructions were employed at the ((𝑛+1)𝑖)th stage.

Thus, the subset (R𝑟𝑋)𝑛 has basis those iterated monomials in which some non-trivial

construction was used in the ((𝑛 + 1)𝑖)th for 1 ≤ 𝑖 ≤ 𝑟. The image of such a monomial in

𝑋𝑛 lies in 𝑃 𝑟.

To see that R𝑟 preserves surjections: if 𝑓 : 𝑋 −→ 𝑌 is a surjection, choose a basis

𝐵 ⊔ 𝐵′ of 𝑋𝑛 for which 𝑓 maps the 𝐵 bijectively onto a basis of 𝑌𝑛 and 𝐵′ maps to zero.

We may continue this pattern at each stage of the construction of iterated monomial bases

of 𝐹 𝑟(𝑛+1)𝑋𝑛 and 𝐹 𝑟(𝑛+1)𝑌𝑛. That is, we may choose a basis 𝐶 ⊔ 𝐶 ′ of 𝐹 𝑟(𝑛+1)𝑋𝑛 such

that the monomials in 𝐶 only involve the elements of 𝐵 and map under 𝑓 bijectively onto a

basis of 𝐹 𝑟(𝑛+1)𝑌𝑛, and such that each monomial in 𝐶 ′ involves some element of 𝐵′, and so

vanishes under 𝑓 . This pattern is further preserved in passing to the monomial bases just

derived for (R𝑟𝑋)𝑛 and (R𝑟𝑌 )𝑛, proving the claim that R𝑟 preserves surjections.

We are now able to state and prove the key connectivity result in detail:

Lemma 4.7. Suppose that 𝑋 ∈ 𝑠C is connected, 𝑡 ≥ 1 and 𝑠 ≥ 2. If C = Com, then

(R𝑡𝑃
𝑠)(𝑋) is (𝑠− 𝑡)-connected. If C = Lier, then (R𝑡𝑃

𝑠)(𝑋) is (log2(𝑠)+ 1− 𝑡)-connected.

Proof. We will prove this by induction on 𝑡. The induction step is simple: by Lemma 4.6,

there is a short exact sequence:

0 // (R𝑡𝑃
𝑠)(𝑋) // (R𝑡−1𝑃

𝑠)(𝑏𝑋) // (R𝑡−1𝑃
𝑠)(𝐾𝑄𝑏𝑋) // 0.

Now both 𝑏𝑋 and 𝐾𝑄𝑏𝑋 are connected, as they have 𝜋0(𝑏𝑋) = 𝜋*𝑋 is zero by assumption,

and 𝜋0(𝐾𝑄𝑏𝑋) = 𝑄𝜋*𝑋. By induction we can bound the connectivity of (R𝑡−1𝑃
𝑠)(𝑏𝑋)
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and (R𝑡−1𝑃
𝑠)(𝐾𝑄𝑏𝑋), and the associated long exact sequence shows that (R𝑡𝑃 𝑠)(𝑋) has a

connectivity bound at most one degree lower.

For the base case, 𝑡 = 1, as 𝑃 𝑠(𝐾𝑄−) = 0 for 𝑠 ≥ 2:

(R1𝑃
𝑠)𝑋 := ker (𝑃 𝑠(𝑏𝑋) −→ 𝑃 𝑠(𝐾𝑄𝑏𝑋)) = 𝑃 𝑠(𝑏𝑋).

When C = Lier, a modification [13, 4.3] of a theorem of Curtis [19, §5] states that 𝑃 𝑠(𝑏𝑋)

is log2(𝑠)-connected. When C = Com, we must demonstrate then that 𝑃 𝑠(𝑏𝑋) is (𝑠 − 1)-

connected. For this we use a truncation of Quillen’s fundamental spectral sequence, as

presented in [33, Theorem 6.2]: the filtration

𝑃 𝑠(𝑏𝑋) ⊃ 𝑃 𝑠+1(𝑏𝑋) ⊃ 𝑃 𝑠+2(𝑏𝑋) ⊃ · · ·

of 𝑃 𝑠(𝑏𝑋) yields a convergent spectral sequence [𝐸0𝑃
𝑠(𝑏𝑋)]𝑝𝑞 =⇒ 𝜋𝑞(𝑃

𝑠(𝑏𝑎)), with:

[𝐸0𝑃
𝑠(𝑏𝑋)]𝑝𝑞 =

⎧⎨⎩𝑁𝑞

(︀
(𝑄Com𝑏𝑋)⊗𝑝Σ𝑝

)︀
, if 𝑝 ≥ 𝑠;

0, if 𝑝 < 𝑠.

As 𝜋0(𝑄Com𝑏𝑋) = 𝑄Com(𝜋0𝑏𝑋) = 𝑄Com(0) = 0, the 𝑡 = 1 result follows from [24, Satz

12.1]: if 𝑉 is a connected simplicial vector space then 𝑉 ⊗𝑝
Σ𝑝

is (𝑝− 1)-connected.

Before we can give the proof of Proposition 4.3, we need the following twisting lemma,

analogous to that of [9]. Before stating it, we note that (R𝑠R𝑡)𝑋 and R𝑠+𝑡𝑋 are equal by

construction.

Lemma 4.8. The maps R𝑖𝛿 : R𝑛𝑋 −→ R𝑛−1𝑋 are homotopic for 0 ≤ 𝑖 < 𝑛.

Proof. We may reindex the twisting lemma as follows: the maps

R𝑠𝛿,R𝑠−1𝛿 : R𝑠+𝑡𝑋 −→ R𝑠+𝑡−1𝑋

are homotopic whenever 𝑠, 𝑡 ≥ 1. Now R𝑠+𝑡𝑋 is constructed as the subalgebra

R𝑠+𝑡𝑋 :=
𝑠+𝑡⋂︁
𝑖=1

ker
(︀
𝑏𝑠+𝑡−𝑖𝜂𝑏𝑖 : 𝑏𝑠+𝑡𝑋 −→ 𝑏𝑠+𝑡−𝑖𝐾𝑄𝑏𝑖𝑋

)︀
of the iterated bar construction 𝑏𝑠+𝑡𝑋, and for 0 ≤ 𝑖 < 𝑠 + 𝑡, R𝑖𝛿 is the restriction of the

map 𝑏𝑖𝜖𝑏𝑠+𝑡−𝑖−1 : 𝑏𝑠+𝑡𝑋 −→ 𝑏𝑠+𝑡−1𝑋. Proposition 4.9 gives an explicit simplicial homotopy

between the maps 𝑏𝑠𝜖𝑏𝑡−1 and 𝑏𝑠−1𝜖𝑏𝑡. Moreover, the naturality of the construction of

Proposition 4.9 implies that this homotopy does indeed restrict to a homotopy of maps

R𝑠+𝑡𝑋 −→ R𝑠+𝑡−1𝑋.
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Now that we have the twisting lemma, Proposition 4.3 follows:

Proof of Proposition 4.3. By Proposition 4.5, it is enough to prove that for any 𝑞 ≥ 0 and

𝑡 ≥ 1, 𝜋𝑞(R𝑓(𝑞,𝑡)𝑋) −→ 𝜋𝑞(R𝑡𝑋) is zero for some 𝑓(𝑞, 𝑡) ≥ 𝑡. Apply R𝑡− to the diagram

of functors constructed in 4.6 and apply the result to 𝑋 to obtain a commuting diagram of

functors

R𝑓(𝑞,𝑡)𝑋
R𝑡𝛿 //

��

· · · R𝑡𝛿 // R𝑡+1𝑋
R𝑡𝛿 //

��

R𝑡𝑋

R𝑡𝑃
𝑓(𝑞,𝑡)−𝑡+1𝑋 // · · · // R𝑡𝑃

2𝑋 // R𝑡𝑃
1𝑋

By the twisting lemma, 4.8, the composite along the top row is homotopic to the map of

interest, and factors through R𝑡𝑃
𝑓(𝑞,𝑡)−𝑡+1𝑋. If we choose 𝑓(𝑞, 𝑡) = 2𝑡+𝑞−1 when C = Com

and 𝑓(𝑞, 𝑡) = 2𝑡+𝑞−1 + 𝑡− 1 when C = Lier, then Lemma 4.7 shows that R𝑡𝑃
𝑓(𝑞,𝑡)−𝑡+1𝑋 is

𝑞-connected.

4.4. Iterated simplicial bar constructions

We will now state and prove a useful result on iterated simplicial bar constructions, used

in the proof of the twisting lemma. The result here applies in general in the category C of

algebras over a monad. Establishing notation, for any simplicial object 𝑋 in C, we will write

𝑑𝑋𝑖,𝑞 : 𝑋𝑞 −→ 𝑋𝑞−1 and 𝑠𝑋𝑖,𝑞 : 𝑋𝑞 −→ 𝑋𝑞+1

for the 𝑖th face and degeneracy maps out of 𝑋𝑞. Suppose that 𝐺 and 𝐺′ are endofunctors

of C, that Φ : 𝐺 −→ 𝐺′ is a natural transformation, and that 𝐶,𝐶 ′ ∈ C are objects. Write

[Φ] : homC(𝐶,𝐶
′) −→ homC(𝐺𝐶,𝐺

′𝐶 ′) for the operator sending 𝑚 : 𝐶 −→ 𝐶 ′ to the

diagonal composite in the commuting square

𝐺𝐶
Φ𝐶 //

𝐺𝑚 �� [Φ]𝑚
))

𝐺′𝐶
𝐺′𝑚��

𝐺𝐶 ′
Φ𝐶′

// 𝐺′𝐶 ′

There is an (augmented) simplicial endofunctor, b ∈ 𝑠(CC), derived from the unit and counit

of the adjunction:

id (𝐹 C)1d0,0oo s0,0 // (𝐹 C)2
d0,1oo
d1,1oo

s0,1 //
s1,1 // (𝐹

C)3 · · ·d1,2oo
d0,2oo

d2,2oo

The simplicial bar construction 𝑏 = 𝐵C on 𝑠C is the diagonal of the bisimplicial object

obtained by levelwise application of b. That is, for 𝑋 ∈ 𝑠C, 𝑏𝑋 is the simplicial object with
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(𝑏𝑋)𝑞 := (𝐹 C)𝑞+1𝑋𝑞, and with

𝑑𝑏𝑋𝑖,𝑞 := [d𝑖,𝑞]𝑑
𝑋
𝑖,𝑞.

The augmentation 𝜖 : 𝑏 −→ id is defined on level 𝑞 by

𝜖𝑞 = d0,0d0,1 · · · d0,𝑞 : (𝐹 C)𝑞+1 −→ id.

We can now construct the simplicial homotopy needed for the twisting lemma, 4.8.

Proposition 4.9. The natural transformations 𝜖𝑏 and 𝑏𝜖 from 𝑏2 : 𝑠C −→ 𝑠C to 𝑏 : 𝑠C −→
𝑠C are naturally simplicially homotopic.

Proof. Write 𝐾 = 𝑏2𝑋 and 𝐿 = 𝑏𝑋 for the source and target of these maps respectively.

Noting the formulae

[d𝑖𝑞]
2 = [d𝑞+𝑖,2𝑞 ∘ d𝑖,2𝑞+1] and [s𝑖𝑞]

2 = [s𝑞+𝑖+2,2𝑞+2 ∘ s𝑖,2𝑞+1],

we can describe the simplicial structure maps in 𝐾 and 𝐿 as follows:

𝑑𝐿𝑖𝑞 = [d𝑖𝑞]𝑑
𝑋
𝑖𝑞

𝑠𝐿𝑖𝑞 = [s𝑖𝑞]𝑠
𝑋
𝑖𝑞

𝑑𝐾𝑖𝑞 = [d𝑞+𝑖,2𝑞 ∘ d𝑖,2𝑞+1]𝑑
𝑋
𝑖𝑞

𝑠𝐾𝑖𝑞 = [s𝑞+𝑖+2,2𝑞+2 ∘ s𝑖,2𝑞+1]𝑠
𝑋
𝑖𝑞

We can now state an explicit simplicial homotopy between the two maps of interest. Using

precisely the notation of [40, §5], we define ℎ𝑗𝑞 : 𝐾𝑞 −→ 𝐿𝑞+1, for 0 ≤ 𝑗 ≤ 𝑞, by the formula

ℎ𝑗𝑞 := [d𝑗+1,𝑞+2 ∘ · · · ∘ d𝑗+1,2𝑞+1]𝑠
𝑋
𝑗𝑞.

We first check that these maps satisfy the defining identities for the notion of simplicial

homotopy, numbered (1)-(5) as in [40, §5]. Each identity can be checked in two parts (a)-

(b):

(1) We must check that 𝑑𝐿𝑖,𝑞+1ℎ𝑗,𝑞 = ℎ𝑗−1,𝑞−1𝑑
𝐾
𝑖,𝑞 whenever 0 ≤ 𝑖 < 𝑗 ≤ 𝑞, i.e.:

(a) 𝑑𝑋𝑖,𝑞+1𝑠
𝑋
𝑗,𝑞 = 𝑠𝑋𝑗−1,𝑞−1𝑑

𝑋
𝑖,𝑞, and

(b) d𝑖,𝑞+1d𝑗+1,𝑞+2 · · · d𝑗+1,2𝑞+1 = d𝑗,𝑞+1 · · · d𝑗,2𝑞−1d𝑞+𝑖,2𝑞d𝑖,2𝑞+1.

(2) We must check that 𝑑𝐿𝑗+1,𝑞+1ℎ𝑗,𝑞 = 𝑑𝐿𝑗+1,𝑞+1ℎ𝑗+1,𝑞 whenever 0 ≤ 𝑗 ≤ 𝑞 − 1, i.e.:

(a) 𝑑𝑋𝑗+1,𝑞+1𝑠
𝑋
𝑗,𝑞 = 𝑑𝑋𝑗+1,𝑞+1𝑠

𝑋
𝑗+1,𝑞, and

(b) d𝑗+1,𝑞+1d𝑗+1,𝑞+2 · · · d𝑗+1,2𝑞+1 = d𝑗+1,𝑞+1d𝑗+2,𝑞+2 · · · d𝑗+2,2𝑞+1.
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(3) We must check that 𝑑𝐿𝑖,𝑞+1ℎ𝑗,𝑞 = ℎ𝑗,𝑞−1𝑑
𝐾
𝑖−1,𝑞 whenever 0 ≤ 𝑗 < 𝑖− 1 ≤ 𝑞, i.e.:

(a) 𝑑𝑋𝑖,𝑞+1𝑠
𝑋
𝑗,𝑞 = 𝑠𝑋𝑗,𝑞−1𝑑

𝑋
𝑖−1,𝑞, and

(b) d𝑖,𝑞+1d𝑗+1,𝑞+2 · · · d𝑗+1,2𝑞+1 = d𝑗+1,𝑞+1 · · · d𝑗+1,2𝑞−1d𝑞+𝑖−1,2𝑞d𝑖−1,2𝑞+1.

(4) We must check that 𝑠𝐿𝑖,𝑞+1ℎ𝑗,𝑞 = ℎ𝑗+1,𝑞+1𝑠
𝐾
𝑖,𝑞 whenever 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑞, i.e.:

(a) 𝑠𝑋𝑖,𝑞+1𝑠
𝑋
𝑗,𝑞 = 𝑠𝑋𝑗+1,𝑞+1𝑠

𝑋
𝑖,𝑞, and

(b) s𝑖,𝑞+1d𝑗+1,𝑞+2 · · · d𝑗+1,2𝑞+1 = d𝑗+2,𝑞+3 · · · d𝑗+2,2𝑞+3s𝑞+𝑖+2,2𝑞+2s𝑖,2𝑞+1.

(5) We must check that 𝑠𝐿𝑖,𝑞+1ℎ𝑗,𝑞 = ℎ𝑗,𝑞+1𝑠
𝐾
𝑖−1,𝑞 whenever 0 ≤ 𝑗 < 𝑖 ≤ 𝑞 + 1, i.e.:

(a) 𝑠𝑋𝑖,𝑞+1𝑠
𝑋
𝑗,𝑞 = 𝑠𝑋𝑗,𝑞+1𝑠

𝑋
𝑖−1,𝑞, and

(b) s𝑖,𝑞+1d𝑗+1,𝑞+2 · · · d𝑗+1,2𝑞+1 = d𝑗+1,𝑞+3 · · · d𝑗+1,2𝑞+3s𝑞+𝑖+1,2𝑞+2s𝑖−1,2𝑞+1.

Each of these equations follows from the simplicial identities, proving that the ℎ𝑗𝑞 form a

homotopy. Finally, we check that this homotopy is indeed a homotopy between the two

maps of interest:

𝑑𝐿0,𝑞+1ℎ0,𝑞 = [d0,𝑞+1d1,𝑞+2 · · · d1,2𝑞+1](𝑑
𝑋
0,𝑞+1𝑠

𝑋
0𝑞)

= [d0,𝑞+1d0,𝑞+2 · · · d0,2𝑞+1]id𝑋𝑞

is the action of 𝜖(𝑏𝑋) in level 𝑞, and similarly,

𝑑𝐿𝑞+1,𝑞+1ℎ𝑞,𝑞 = [d𝑞+1,𝑞+1d𝑞+1,𝑞+2 · · · d𝑞+1,2𝑞+1](𝑑
𝑋
𝑞+1,𝑞+1𝑠

𝑋
𝑞𝑞)

= [d𝑞+1,𝑞+1d𝑞+1,𝑞+2 · · · d𝑞+1,2𝑞+1]id𝑋𝑞

is the action of 𝑏𝜖𝑋 in level 𝑞.
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Chapter 5

Constructing homotopy operations

5.1. Higher simplicial Eilenberg-Mac Lane maps

In what follows, we will often have a natural map 𝐺 whose domain and codomain both

support a switch map 𝑇 , obtained by interchanging tensor factors. Furthermore, we will

so often use the expression 𝑇𝐺𝑇 that we introduce the shorthand 𝜔𝐺 := 𝑇𝐺𝑇 . Although

this notation is potentially ambiguous, whenever we write 𝜎𝐺𝐻, for functions 𝐺 and 𝐻, we

mean (𝜎𝐺)𝐻, not 𝜎(𝐺𝐻).

Let {∇𝑘} be a higher simplicial Eilenberg-Mac Lane map [26, §3], i.e. a collection of

maps

∇𝑘 : (𝐶𝑈 ⊗ 𝐶𝑉 )𝑖+𝑘 −→ 𝑁(𝑈 ⊗ 𝑉 )𝑖 defined for 0 ≤ 𝑘 ≤ 𝑖

natural in simplicial vector spaces 𝑈 and 𝑉 , such that for 𝑘 ≥ 0, the identity

(1 + 𝜔)∇𝑘 = 𝜑𝑘 +

⎧⎨⎩∇𝑘−1𝜕 + 𝜕∇𝑘−1, if 𝑘 ≥ 1,

∇, if 𝑘 = 0,

holds on classes of simplicial dimension at least 2𝑘, where:

(1) ∇ : 𝐶𝑈⊗𝐶𝑉 −→ 𝑁(𝑈×𝑉 ) is the Eilenberg-Mac Lane shuffle map, also known as the

Eilenberg-Zilber map, a chain homotopy equivalence inducing the identity in simplicial

dimension zero; and

(2) 𝜑𝑘 is the map (𝐶𝑈 ⊗𝐶𝑉 )𝑖+𝑘 −→ 𝑁(𝑈 ⊗𝑉 )𝑖 which vanishes except on 𝑈𝑘⊗𝑉𝑘, where

its value is just the projection 𝑈𝑘 ⊗ 𝑉𝑘 −→ 𝑁(𝑈 ⊗ 𝑉 )𝑘.

Note that as 𝜑0 commutes with symmetry isomorphisms, so does ∇.
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5.2. External unary homotopy operations

In this section we recall the definition of certain homotopy operations with domain 𝜋*𝑉 for

any 𝑉 ∈ 𝑠V, implicit in [26, §4] (c.f. [8, 6], [14]) and explicit in [33, §3], using the functions

𝑎 ↦−→ ∇𝑛−𝑖(𝑎⊗ 𝑎), 𝑁𝑛𝑉 −→ 𝑁𝑛+𝑖(𝑆2𝑉 ).

By postcomposing with the maps 𝑆2𝑉 −→ Λ2𝑉 −→ 𝑆2𝑉 , we obtain functions from 𝑁𝑛𝑉

to 𝑁𝑛+𝑖(Λ
2𝑉 ) and 𝑁𝑛+𝑖(𝑆

2𝑉 ).

Proposition 5.1 [26, Lemma 4.1], [33, §3]. These functions descend to well defined homo-

topy operations:

𝛿ext
𝑖 : 𝜋𝑛𝑉 −→ 𝜋𝑛+𝑖(𝑆2𝑉 ), defined when 2 ≤ 𝑖 ≤ 𝑛,

𝜆ext
𝑖 : 𝜋𝑛𝑉 −→ 𝜋𝑛+𝑖(Λ

2𝑉 ), defined when 1 ≤ 𝑖 ≤ 𝑛,

𝜎ext
𝑖 : 𝜋𝑛𝑉 −→ 𝜋𝑛+𝑖(𝑆

2𝑉 ), defined when 1 ≤ 𝑖 ≤ 𝑛.

The function 𝑁𝑛𝑉 −→ 𝑁𝑛(𝑆
2𝑉 ) given by 𝑎 ↦−→ 𝑎⊗ 𝑎 yields a well defined homotopy oper-

ation 𝜎ext
0 : 𝜋𝑛𝑉 −→ 𝜋𝑛(𝑆

2𝑉 ). These operations are linear whenever 𝑖 < 𝑛. For all 𝑛 ≥ 0,

the map 𝜎ext
𝑛 : 𝜋𝑛𝑉 −→ 𝜋2𝑛(𝑆

2𝑉 ) satisfies

𝜎ext
𝑛 (𝑥+ 𝑦) = 𝜎ext

𝑛 (𝑥) + 𝜎ext
𝑛 (𝑦) + (1 + 𝑇 )∇(𝑥⊗ 𝑦) for 𝑥, 𝑦 ∈ 𝑍𝑁𝑛𝑉 .

Proof. Although all of the operations are defined in the cited references, we will be a little

more explicit about the definition of 𝜎ext
0 , and the final equation of the proposition.

As described in [33, §3], we might choose to define 𝜎ext
0 using a universal example, for

which the cycle

𝑧 ⊗ 𝑧 ∈ 𝑍𝑁𝑛(𝑆
2K𝑛) ∼= F2

is the only possible representative, demonstrating that the formula 𝑎 ↦−→ 𝑎⊗ 𝑎 yields the

correct (well defined) operation. To check that 𝜎ext
0 : 𝜋0𝑉 −→ 𝜋0𝑆

2𝑉 satisfies the stated

equation, we need only check that it holds on 𝑧1 + 𝑧2 ∈ 𝑍𝑁0(K0 ⊕K0) ∼= F2 ⊕ F2. But

𝜎ext
0 (𝑧1 + 𝑧2)− 𝜎ext

0 (𝑧1)− 𝜎ext
0 (𝑧2) = 𝑧1 ⊗ 𝑧2 + 𝑧2 ⊗ 𝑧1 = (1 + 𝑇 )∇(𝑧1 ⊗ 𝑧2),

as ∇ is the identity in dimension zero.

To explain the equation when 𝑛 ≥ 1, as 𝜎ext
𝑛 (𝑥) := (1 + 𝑇 )∇0(𝑥⊗ 𝑥), we obtain

𝜎ext
𝑛 (𝑥+ 𝑦)− 𝜎ext

𝑛 (𝑥)− 𝜎ext
𝑛 (𝑦) = (1 + 𝑇 )∇0(1 + 𝑇 )(𝑥⊗ 𝑦)
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and using the symmetry 𝑇
(︀
(1 + 𝑇 )(𝑥⊗ 𝑦)

)︀
= (1 + 𝑇 )(𝑥⊗ 𝑦) and the fact that 𝜑0 vanishes

on (1 + 𝑇 )(𝑥⊗ 𝑦),

(1 + 𝑇 )∇0(1 + 𝑇 )(𝑥⊗ 𝑦) = (1 + 𝜔∇0)(1 + 𝑇 )(𝑥⊗ 𝑦) = ∇(1 + 𝑇 )(𝑥⊗ 𝑦).

5.3. External binary homotopy operations

We will now give an account of various natural external homotopy operations, most of

which are binary operations, induced by the Eilenberg-Mac Lane shuffle map ∇ : 𝑁*(𝑉 )⊗
𝑁*(𝑉 ) −→ 𝑁*(𝑉 ⊗ 𝑉 ), which is also known as the Eilenberg-Zilber map. These operations

are well known, but we make a point of giving them the following unified treatment:

Proposition 5.2. There is a natural commuting diagram:

𝑆2(𝜋*𝑉 )
̃︀∇ //

proj��

𝜋*(𝑆2𝑉 )
𝜋*(proj)��

Λ2(𝜋*𝑉 )
̃︀∇ //

incl��

𝜋*(Λ
2𝑉 )
𝜋*(incl)��

𝑆2(𝜋*𝑉 )
̃︀∇ // 𝜋*(𝑆

2𝑉 )

For cycles 𝑥, 𝑦 ∈ 𝑍𝑁*(𝑉 ) and 𝑧 ∈ 𝑍𝑁𝑛(𝑉 ), the upper horizontal is determined by

𝑥⊗ 𝑦 ↦−→ 𝑥⊗ 𝑦,

and the lower horizontal is determined by

𝑥⊗ 𝑦 + 𝑦 ⊗ 𝑥 ↦−→ ∇(𝑥⊗ 𝑦 + 𝑦 ⊗ 𝑥) and 𝑧 ⊗ 𝑧 ↦−→ 𝜎ext
𝑛 (𝑧).

Proof. During this proof, write ̃︀∇𝑈 , ̃︀∇𝑀 and ̃︀∇𝐿 for the upper, middle and lower horizontal

maps. We must demonstrate: that ̃︀∇𝑈 is well defined; that

ker (𝜋*(proj) ∘ ̃︀∇𝑈 ) ⊇ ker (proj),

so that there is a unique map ̃︀∇𝑀 for which the upper square commutes; and that one

may extend the composite 𝜋*(tr) ∘ ̃︀∇𝑈 along the trace map 𝑆2(𝜋*𝐴) −→ 𝑆2(𝜋*𝐴) using the

operations 𝜎ext
𝑛 . A simple diagram chase would then reveal that the bottom square must

also commute.

As ∇ is a chain map, it produces a well defined map (𝜋*𝑉 )⊗2 −→ 𝜋*(𝑉
⊗2), and the fact

that ∇ = 𝜔∇ implies that this map descends to a well defined map ∇𝑈 .

The kernel of the projection 𝑆2(𝜋*𝑉 ) −→ Λ2(𝜋*𝑉 ) is spanned by classes of the form

75



𝑥 ⊗ 𝑥, and the image under 𝜋*(proj) ∘ ̃︀∇𝑈 of such a class equals 𝑥⊗ 𝑥 which is zero as

𝑥⊗ 𝑥 ∈ Λ2𝑉 is zero. This proves the inclusion of kernels.

Finally, to extend the composite 𝜋*(tr) ∘ ̃︀∇𝑈 to 𝑆2(𝜋*𝑉 ), we simply need the operations

𝜎ext
𝑛 to satisfy the equations of Proposition 2.7, which are part of Proposition 5.1.

5.4. Homotopy operations for simplicial commutative algebras

Suppose that 𝐴 ∈ 𝑠Com is a simplicial non-unital commutative algebra, with multiplication

map 𝜇 : 𝑆2𝐴 −→ 𝐴. Then by composition with the map 𝜋*(𝜇) : 𝜋*(𝑆2𝐴) −→ 𝜋*𝐴, one

obtains unary operations:

𝛿𝑖 := 𝜋*(𝜇) ∘ 𝛿ext
𝑖 : 𝜋𝑛𝐴 −→ 𝜋𝑛+𝑖𝐴, defined when 2 ≤ 𝑖 ≤ 𝑛,

and a pairing

𝜇 := 𝜋*(𝜇) ∘ ̃︀∇ : 𝑆2(𝜋*𝐴) −→ 𝜋*𝐴.

Proposition 5.3 [26]. These operations have the following properties:

(1) the pairing 𝜇 equips 𝜋*𝐴 with the structure of a non-unital commutative algebra;

(2) the ideal
⨁︀

𝑛≥1 𝜋𝑛𝐴 is an exterior algebra;

(3) the ideal
⨁︀

𝑛≥2 𝜋𝑛𝐴 is a divided power algebra, with divided square given by the top

𝛿-operation, i.e. 𝑥 ↦−→ 𝛿𝑛𝑥 for 𝑥 ∈ 𝜋𝑛𝐴;

(4) the non-top operations, 𝛿𝑖 : 𝜋𝑛𝐴 −→ 𝜋𝑛+𝑖𝐴 for 2 ≤ 𝑖 < 𝑛, are linear;

(5) for 𝑥 ∈ 𝜋𝑛𝐴, 𝑦 ∈ 𝜋𝑚𝐴 and 2 ≤ 𝑖 ≤ 𝑛

𝛿𝑖(𝑥𝑦) =

⎧⎨⎩𝑦2𝛿𝑖(𝑥), if 𝑚 = 0;

0, otherwise;

(6) the 𝛿-Adem relations hold: if 𝛿𝑖𝛿𝑗𝑥 is defined, and 𝑖 < 2𝑗, then

𝛿𝑖𝛿𝑗𝑥 :=

⌊(𝑖+𝑗)/3⌋∑︁
𝑠=⌈(𝑖+1)/2⌉

(︂
𝑗 + 𝑠− 𝑖− 1

𝑗 − 𝑠

)︂
𝛿𝑖+𝑗−𝑠𝛿𝑠𝑥.

A few comments are in order. Firstly, the proposition distinguishes between the top and

non-top 𝛿-operations, as they have rather different behaviour — this will be a recurring

pattern. Secondly, it is not immediately obvious that the 𝛿-Adem relations make sense, in

that it is not obvious that every term in the right hand side is defined. This does indeed

happen, by Lemma 5.4 (to follow).
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We may define an associative unital algebra Δ to be the algebra generated by 𝛿𝑖 for

𝑖 ≥ 2, subject to relations

𝛿𝑖𝛿𝑗 :=

⌊(𝑖+𝑗)/3⌋∑︁
𝑠=⌈(𝑖+1)/2⌉

(︂
𝑗 + 𝑠− 𝑖− 1

𝑗 − 𝑠

)︂
𝛿𝑖+𝑗−𝑠𝛿𝑠 when 𝑖 < 2𝑗.

We will say that a sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1) of integers 𝑖𝑗 ≥ 2 is 𝛿-admissible if 𝑖𝑗+1 ≥ 2𝑖𝑗

for 1 ≤ 𝑗 < ℓ. For any sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1), write 𝛿𝐼 for the composite 𝛿𝑖ℓ · · · 𝛿𝑖1 .
This 𝛿-Adem relation allows us to write any 𝛿𝐼 in Δ as a sum of composites 𝛿𝐽 in which

𝐽 is 𝛿-admissible. In fact, it follows from [33, Proposition 2.7] that the algebra Δ has an

admissible basis, consisting of those 𝛿𝐼 = 𝛿𝑖ℓ · · · 𝛿𝑖1 with 𝐼 a 𝛿-admissible sequence.

It then makes sense to make the following definition. Suppose that 𝐼 is any non-empty

sequence of integers at least 2, and 𝐽 is a sequence of integers no less than two. Then we will

say that 𝐼 produces 𝐽 in Δ, denoted 𝐼 Δ→ 𝐽 , if 𝛿𝐽 appears with non-zero coefficient when 𝛿𝐼
is written in the 𝛿-admissible basis of Δ. In this case, 𝐽 must be 𝛿-admissible and 𝐼 must

be 𝛿-inadmissible unless 𝐽 = 𝐼.

Proposition 5.3 does not state that 𝜋*𝐴 is a left module over Δ, since the 𝛿-operations

are not always defined (or even linear). We define

𝑚(𝐼) := max{(𝑖1), (𝑖2 − 𝑖1), (𝑖3 − 𝑖2 − 𝑖1), . . . , (𝑖ℓ − · · · − 𝑖1)},

following the convention that max(∅) = −∞, for any sequence 𝐼 of integers 𝑖𝑗 ≥ 2 (or more

generally, for any sequence of non-negative integers). The intent of this definition is that

the composite 𝛿𝐼 , by which we mean

𝜋𝑛𝐴
𝛿𝑖1−→ 𝜋𝑛+𝑖1𝐴

𝛿𝑖2−→ · · ·
𝛿𝑖ℓ−→ 𝜋𝑛+𝑖1+···+𝑖ℓ𝐴,

is defined if and only if 𝑛 ≥ 𝑚(𝐼). Note that when 𝐼 is a non-empty 𝛿-admissible sequence,

𝑚(𝐼) = 𝑖ℓ − 𝑖ℓ−1 − · · · − 𝑖1 =: 𝑒(𝐼),

the Serre excess of 𝐼. Moreover, if 𝐼 is 𝛿-admissible, then for any expression 𝛿𝑖ℓ · · · 𝛿𝑖1𝑥 there

is some 𝑘 with 0 ≤ 𝑘 ≤ ℓ such that each of the 𝑘 operations 𝛿𝑖ℓ · · · 𝛿𝑖ℓ−𝑘+1
are acting as top

operations, and each of the remaining ℓ− 𝑘 are acting as non-top operations.

The following lemma assures us that the 𝛿-Adem relations make sense as they appear in

(6).

Lemma 5.4. If 𝐼 Δ→ 𝐽 , then 𝑚(𝐼) ≥ 𝑚(𝐽).

Proof. It is enough to show this result when 𝐼 and 𝐽 are distinct and have length two, in
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light of the evident algorithm for expressing 𝛿𝐼 in terms of admissible composites. In the

length two case it can be checked directly from the format of the 𝛿-Adem relation, and the

inequality is in fact strict (unless 𝐼 is itself 𝛿-admissible).

Finally, one should note that these operations generate all of the operations in the

category 𝜋Com, and that all of the relations between the operations in 𝜋Com are implied

by those presented here. Goerss [33, §2] presents this information as follows. First, he

observes that there is a Künneth Theorem available:

Proposition 5.5. Suppose that 𝐴1 and 𝐴2 are models in 𝑠Com. Then 𝜋*(𝐴1⊔𝐴2), which is

the coproduct of 𝜋*𝐴1 and 𝜋*𝐴2 in 𝜋Com, may be calculated as the non-unital commutative

algebra coproduct of 𝜋*𝐴1 and 𝜋*𝐴2.

After giving the calculation on a single sphere, the homotopy of finite models (which is

the structure defining the category 𝜋Com) will be determined by this proposition, and the

calculation for a single sphere is the following:

Proposition 5.6 [33, Proposition 2.7]. For 𝑛 ≥ 0, let 𝚤𝑛 be the fundamental class in

𝜋𝑛(SCom
𝑛 ). There are isomorphisms of non-unital commutative algebras:

𝜋*(SCom
0 ) ∼= 𝑆(C )[𝚤0] = 𝐹Com [𝚤0];

𝜋*(SCom
𝑛 ) ∼= Λ(C )[𝛿𝐼(𝚤𝑛) | 𝐼 is 𝛿-admissible, 𝑒(𝐼) ≤ 𝑛] for 𝑛 ≥ 1;

𝜋*(SCom
𝑛 ) ∼= Γ(C )[𝛿𝐼(𝚤𝑛) | 𝐼 is 𝛿-admissible, 𝑒(𝐼) < 𝑛] for 𝑛 ≥ 2.

5.5. Homotopy operations for simplicial Lie algebras

Suppose that 𝐿 ∈ 𝑠Lie is a simplicial Lie algebra with bracket [ , ] : Λ2𝐿 −→ 𝐿. There are

unary operations

𝜆𝑖 := 𝜋*([ , ]) ∘ 𝜆ext
𝑖 : 𝜋𝑛𝐿 −→ 𝜋𝑛+𝑖𝐿, defined when 1 ≤ 𝑖 ≤ 𝑛,

which we write on the right as 𝑥 ↦−→ 𝑥𝜆𝑖, and a bracket

[ , ] := 𝜋*([ , ]) ∘ ̃︀∇ : Λ2(𝜋*𝐿) −→ 𝜋*𝐿.

Alternatively, one can suppose that 𝐿 ∈ 𝑠Lier is a simplicial restricted Lie algebra with

bracket [ , ] : 𝑆2𝐿 −→ 𝐿, and construct operations:

𝜆𝑖 := 𝜋*([ , ]) ∘ 𝜎ext
𝑖 : 𝜋𝑛𝐿 −→ 𝜋𝑛+𝑖𝐿, defined when 0 ≤ 𝑖 ≤ 𝑛, and

[ , ] := 𝜋*([ , ]) ∘ ̃︀∇ : 𝑆2(𝜋*𝐿) −→ 𝜋*𝐿.
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Proposition 5.7 [13], [20, §8]. For 𝐿 ∈ 𝑠Lie, these operations satisfy:

(1) the bracket gives 𝜋*𝐿 the structure of a Lie algebra;

(2) the ideal
⨁︀

𝑛≥1 𝜋𝑛𝐿 is a restricted Lie algebra, with restriction given by the top 𝜆-

operation, i.e. 𝑥[2] = 𝜆𝑛𝑥 for 𝑥 ∈ 𝜋𝑛𝐿;

(3) the non-top operations, 𝜆𝑖 : 𝜋𝑛𝐿 −→ 𝜋𝑛+𝑖𝐿 for 1 ≤ 𝑖 < 𝑛, are linear;

(4) for 𝑥 ∈ 𝜋*𝐿, 𝑦 ∈ 𝜋𝑛𝐿 and 1 ≤ 𝑖 ≤ 𝑛:

[𝑥, 𝑦𝜆𝑖] =

⎧⎨⎩[𝑦, [𝑥, 𝑦]], if 𝑖 = 𝑛;

0, otherwise;

(5) the Λ-Adem relations hold: if 𝑥𝜆𝑗𝜆𝑖 is defined, and 𝑖 > 2𝑗, then

𝑥𝜆𝑗𝜆𝑖 =

(𝑖−2𝑗)/2−1∑︁
𝑘=0

(︂
𝑖− 2𝑗 − 2− 𝑘

𝑘

)︂
𝑥𝜆𝑖−𝑗−1−𝑘𝜆2𝑗+1+𝑘.

For 𝐿 ∈ 𝑠Lier, we may omit ((1)), modify ((2)) to state that the whole of 𝜋*𝐿 is restricted,

and modify ((3))-((5)) to include 𝜆0.

Similar comments apply as for commutative algebras, for example, one needs Lemma

5.8 (to follow) to understand why this unstable relation makes sense.

The well known Λ-algebra is the unital associative algebra generated by 𝜆𝑖 for 𝑖 ≥ 0,

subject to relations

𝜆𝑗𝜆𝑖 =

(𝑖−2𝑗)/2−1∑︁
𝑘=0

(︂
𝑖− 2𝑗 − 2− 𝑘

𝑘

)︂
𝜆𝑖−𝑗−1−𝑘𝜆2𝑗+1+𝑘 for 𝑖 > 2𝑗.

We say that a sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1) of non-negative integers is Λ-admissible if 𝑖𝑗+1 ≤ 2𝑖𝑗

for 1 ≤ 𝑗 < ℓ. For any sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1), if we write 𝜆𝐼 for the element 𝜆𝑖1 · · ·𝜆𝑖ℓ
in Λ, then the Λ-algebra has the evident admissible basis, and we may make sense of the

symbol 𝐼 Λ→ 𝐽 . Note that the ordering of the generators in 𝜆𝐼 is opposite the ordering for

the 𝛿𝐼 , to be consistent with the fact that we write the 𝜆-operations on 𝜋*𝐿 on the right.

Thus, we may think of 𝜆𝐼 as the composite operator

𝜋𝑛𝐿
𝜆𝑖1−→ 𝜋𝑛+𝑖1𝐿

𝜆𝑖2−→ · · ·
𝜆𝑖ℓ−→ 𝜋𝑛+𝑖1+···+𝑖ℓ𝐿,

again defined only when 𝑚(𝐼) ≤ 𝑛, so that 𝜋*𝐿 is not a right module over Λ. We will say,

however, that it is an unstable partial right Λ-module. Note that when 𝐼 is a non-empty

Λ-admissible sequence, 𝑚(𝐼) = 𝑖1, not the Serre excess, reflecting the observation that when

𝑥𝜆𝑖1 · · ·𝜆𝑖ℓ is a Λ-admissible composite, the top (i.e. restriction) operations which appear
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are applied first. The following lemma assures us that the Λ-Adem relations make sense in

(5).

Lemma 5.8. If 𝐼 Λ→ 𝐽 , then 𝑚(𝐼) ≥ 𝑚(𝐽), and 𝐽 does not contain zero unless 𝐼 does.

These operations generate all of the operations in each of the categories 𝜋Lie and 𝜋Lier,

and the relations presented here are sufficient, as:

Proposition 5.9 ([20, Theorem 8.8 and proof], [13]). For 𝑉 ∈ V1, choose a homogeneous

basis of 𝑉 , and construct from it a monomial basis 𝐵 of Λ(L )𝑉 (such as any choice of Hall

basis). Then:

𝐹 𝜋Lie𝑉 = F2

{︂
𝜆𝐼𝑏

⃒⃒⃒⃒
𝑏 ∈ 𝐵𝑡, 𝐼 Λ-admissible with 𝑚(𝐼) ≤ 𝑡,

𝐼 does not contain 0

}︂
and;

𝐹 𝜋Lier𝑉 = F2

{︂
𝜆𝐼𝑏

⃒⃒⃒⃒
𝑏 ∈ 𝐵𝑡, 𝐼 Λ-admissible with 𝑚(𝐼) ≤ 𝑡,
𝐼 does not contain 0 when 𝑡 = 0

}︂
= F2

{︂
𝜆𝐼
(︀
𝑏[2

𝑟]
)︀ ⃒⃒⃒⃒ 𝑏 ∈ 𝐵𝑡, 𝐼 Λ-admissible with 𝑚(𝐼) < 𝑡,

𝑟 ≥ 0

}︂
.

For the sake of interest, we can emulate Goerss’ method of calculating the cohomology

of GEMs in 𝑠Com (c.f. §6.6, [32] and [33, §11]) by giving a Hilton-Milnor decomposition

for the calculation of the free Lie-Π-algebra on a finite-dimensional object of V1, using

[50, Proposition 3.1]. For any 𝑖 ≥ 0, write Σ𝑖F2 ∈ V1 for a one-dimensional vector space

concentrated in homological dimension 𝑖. For any finite collection of indices 𝑖1, . . . , 𝑖𝑛 ≥ 0,

we would like to calculate:

𝐹 𝜋Lie(Σ𝑖1F2 ⊕ · · · ⊕ Σ𝑖𝑛F2) = 𝜋*𝐹
Lie(K𝑖1 ⊕ · · · ⊕K𝑖𝑛).

and we obtain a decomposition of 𝜋*𝐹Lie(K𝑖1 ⊕· · ·⊕K𝑖𝑛) as follows. For any monomial 𝑏 is

the free Lie algebra on {𝑥1, . . . , 𝑥𝑛} and any collection of 𝑛 vector spaces 𝐴1, . . . , 𝐴𝑛, there

is a corresponding tensor product 𝑤𝑏(𝐴1, . . . , 𝐴𝑛). For example, one defines

𝑤[[𝑥2,𝑥1],𝑥3] := 𝐴2 ⊗𝐴1 ⊗𝐴3.

Moreover, for each monomial 𝑏 there is an evident function

𝑤𝑏(𝐴1, . . . , 𝐴𝑛) −→ 𝐹Lie(𝐴1 ⊕ · · · ⊕𝐴𝑛),

given in our example by 𝑎2 ⊗ 𝑎1 ⊗ 𝑎3 ↦−→ [[𝑎2, 𝑎1], 𝑎3].

Iteration of the procedure described in [44, §4.3], using the formula of [50, Proposition

3.1], we obtain a Hall basis 𝐵 of the free Lie algebra on {𝑥1, . . . , 𝑥𝑛}, with the property that
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the resulting map

⨁︁
𝑏∈𝐵

𝐹Lie𝑤𝑏(𝐴1, . . . , 𝐴𝑛) −→ 𝐹Lie(𝐴1 ⊕ · · · ⊕𝐴𝑛)

is an isomorphism, natural in 𝐴1, . . . , 𝐴𝑛. Thus, there is an isomorphism in 𝑠V1:⨁︁
𝑏∈𝐵

𝐹Lie𝑤𝑏(K𝑖1 , . . . ,K𝑖𝑛) −→ 𝐹Lie(K𝑖1 ⊕ · · · ⊕K𝑖𝑛).

Moreover, if we follow [33, §11] by writing 𝑗𝑘(𝑏) for the number of appearances of 𝑥𝑘 in the

monomial 𝑏, there is a homotopy equivalence

𝑤𝑏(K𝑖1 , . . . ,K𝑖𝑛) ≃ K∑︀𝑛
𝑘=1 𝐽𝑘(𝑏)𝑖𝑘

.

Thus, on homotopy there is a decomposition:

⨁︁
𝑏∈𝐵

𝐹 𝜋LieΣ(
∑︀𝑛

𝑘=1 𝑗𝑘(𝑏)𝑖𝑘)F2
∼=−→ 𝐹 𝜋Lie(Σ𝑖1F2 ⊕ · · · ⊕ Σ𝑖𝑛F2),

under which the fundamental class of a summand on the left maps to the corresponding Lie

bracket of fundamental classes on the right. This proves the first part of Proposition 5.9.
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Chapter 6

Constructing cohomology operations

6.1. Higher cosimplicial Alexander-Whitney maps

Let {𝐷𝑘} be a special cosimplicial Alexander-Whitney map [55, Proposition 5.2], i.e. maps

𝐷𝑘 : (𝐶𝑅⊗ 𝐶𝑆)𝑖+𝑘 −→ 𝐶(𝑅⊗ 𝑆)𝑖 for 𝑖, 𝑘 ≥ 0,

natural in cosimplicial vector spaces 𝑅,𝑆, with the properties:

(1) 𝑑𝐷𝑘 +𝐷𝑘𝑑 = (1 + 𝜔)𝐷𝑘−1 for 𝑘 ≥ 1;

(2) 𝐷0 is a chain homotopy equivalence inducing the identity in dimension zero;

(3) the restriction of 𝐷𝑘 to 𝐶𝑖𝑅⊗ 𝐶𝑗𝑆 is zero unless 𝑖 ≥ 𝑘 and 𝑗 ≥ 𝑘; and

(4) 𝐷𝑘 maps 𝐶𝑘𝑅⊗ 𝐶𝑘𝑆 identically onto 𝐶𝑘(𝑅⊗ 𝑆).

It is a natural convention to define 𝐷𝑘 = 0 for all 𝑘, 𝑖 ∈ Z, in which case the relation

𝑑𝐷𝑘 +𝐷𝑘𝑑 = (1 + 𝜔)𝐷𝑘−1 holds for any 𝑘.

Maps dual to these are described in detail, under the name special cup-𝑘 product, by

Singer in [52, Definitions 1.91 and 1.94], and were developed originally in [23]. Indeed, we

will use these maps later, and denote them

(𝐷𝑘)⋆ : 𝐶(𝑈 ⊗ 𝑉 )𝑖 −→ (𝐶𝑈 ⊗ 𝐶𝑉 )𝑖+𝑘 for 𝑖, 𝑘 ≥ 0,

natural in 𝑈, 𝑉 ∈ 𝑠V. The sense in which these maps are dual to the 𝐷𝑘 is captured in the

following commuting diagram (for 𝑖, 𝑘 ≥ 0):

(𝐶D𝑈 ⊗ 𝐶D𝑉 )𝑖+𝑘
𝐷𝑘

//

��

𝐶(D𝑈 ⊗D𝑉 )𝑖

��
(D(𝐶𝑈 ⊗ 𝐶𝑉 ))𝑖+𝑘

((𝐷𝑘)⋆)* // (D𝐶(𝑈 ⊗ 𝑉 ))𝑖
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This is the first instance of a notational convention we will use occasionally in what follows.

We consider the operations 𝐷𝑘 to be ‘of primary interest’ in this thesis, and so we prefer

not to adorn the symbol 𝐷𝑘. However, we would like to have access to operations (𝐷𝑘)⋆ of

which the 𝐷𝑘 are the duals in the sense of the above commuting square, and not the other

way around. So, we use a star as opposed to an asterisk when writing (𝐷𝑘)⋆.

6.2. External unary cohomotopy operations

In this section we recall the definition of certain cohomotopy operations with domain 𝜋*𝑈

for any 𝑈 ∈ 𝑐V, using the functions

𝛼 ↦−→ 𝐷𝑛−𝑖(𝛼⊗ 𝛼) +𝐷𝑛−𝑖+1(𝛼⊗ 𝑑𝛼), 𝐶𝑛𝑈 −→ 𝐶𝑛+𝑖(𝑆2𝑈).

The same arguments as in [52, §1.12] show that

Proposition 6.1. These functions descend to well defined linear operations:

Sq𝑘ext : 𝜋
𝑛𝑈 −→ 𝜋𝑛+𝑘(𝑆2𝑈), zero unless 0 ≤ 𝑘 ≤ 𝑛.

If 𝑈 = D𝑉 for some 𝑉 ∈ 𝑠V, then we may use the natural transformation 𝑆2D −→ D𝑆2

to form the following composite, also denoted Sq𝑘ext:

𝜋𝑛D𝑉
Sq𝑘ext−→ 𝜋𝑛+𝑘𝑆2D𝑉 −→ 𝜋𝑛+𝑘D𝑆2𝑉.

This will be part of the process we use shortly to define cohomology operations.

6.3. Linearly dual homotopy operations

Whenever 𝑉 ∈ 𝑠V has 𝜋*𝑉 of finite type, the linear maps Sq𝑘ext : 𝜋𝑛D𝑉 −→ 𝜋𝑛+𝑘D𝑆2𝑉

induce dual operators

𝜋*(𝑆
2𝑉 ) −→ 𝜋*−𝑘𝑉.

Following [33, §3], one can do much better than just this observation, giving a direct defini-

tion of such operations, valid for any 𝑉 ∈ 𝑠V, whose duals are the Sq𝑘ext.

Again, the cohomotopy operation Sq𝑘ext is of primary interest, and we prefer to allow it

its standard symbol (albeit with the attached subscript). On the other hand, we are about

to produce a homotopy operation of which it is the dual, so we will use a star and not an

asterisk. That is, for any 𝑉 ∈ 𝑠V, there is an operation

(Sq𝑘ext)
⋆ : 𝜋*(𝑆

2𝑉 ) −→ 𝜋*−𝑘𝑉
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such that the following diagram commutes:

𝜋𝑛+𝑘D𝑆2𝑉 𝜋𝑛D𝑉
((Sq𝑘ext)

⋆)*oo

Sq𝑘ext
ss

𝜋𝑛+𝑘𝑆2D𝑉

OO

In order to define these precursor homotopy operations, Goerss [33, Proposition 3.7]

observes that any element of 𝑥 ∈ 𝜋𝑚(𝑆2𝑉 ) can be written as a sum

𝑥 =
∑︁
𝑗

𝜋*(1 + 𝑇 )(𝑦𝑗 ⊗ 𝑧𝑗) +
∑︁

0≤𝑘≤⌊𝑚/2⌋
𝜎𝑘(𝑤𝑘),

where 𝑤𝑘 ∈ 𝜋𝑚−𝑘𝑉 for 0 ≤ 𝑘 ≤ ⌊𝑚/2⌋, and 𝑦𝑗 , 𝑧𝑗 ∈ 𝜋*𝑉 , and that we may define:

(Sq𝑘ext)
⋆(𝑥) := 𝑤𝑘.

One might only need to determine the operations (Sq𝑘ext)
⋆ for 𝑘 < 𝑚/2, so that when

𝑚 is even we may ignore the dual of the top operation, (Sq𝑚/2ext )⋆. In this case, it is more

convenient to rewrite the key equation as:

𝑥 = ̃︀∇(𝑣) + ∑︁
0≤𝑘<𝑚/2

𝜎𝑘(𝑤𝑘),

where 𝑣 ∈ (𝑆2(𝜋*𝑉 ))𝑚 and 𝑤𝑘 ∈ 𝜋𝑚−𝑘𝑉 for 0 ≤ 𝑘 < 𝑚/2.

6.4. External binary cohomotopy operations

Again, the arguments of [52, §1.12] imply:

Proposition 6.2. Suppose that 𝑈 ∈ 𝑐V. Then there is a pairing

𝜇ext : 𝑆2(𝜋
*𝑈) −→ 𝜋*(𝑆2𝑈),

defined by 𝑥⊗ 𝑦 ↦−→ 𝐷0(𝑥⊗ 𝑦), with the property that 𝜇ext(𝛼⊗ 𝛼) = Sq𝑘ext𝛼 for 𝛼 ∈ 𝜋𝑘𝑈 .

Unsurprisingly, these bear relation to the homotopy operation ̃︀∇ : 𝜋*𝑆
2𝑉 −→ 𝑆2𝜋*𝑉 ,

via a commuting diagram, for any 𝑉 ∈ 𝑠V:

D𝜋*𝑆
2𝑉

(̃︀∇)*oo D𝑆2𝜋*𝑉

𝜋*𝑆2D𝑉

OO

𝑆2𝜋
*D𝑉

𝜇extoo

OO

We might have denoted ̃︀∇ by 𝜇⋆ext, but decided against the idea.
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6.5. Chain level structure for cohomology operations; the maps

𝜉C and 𝜓C

We will now give generalizations of Goerss’ constructions in [33, §5] which often yield useful

structure on the complexes calculating C-cohomology. Suppose that 𝑋 ∈ 𝑠C is almost free,

with 𝑉𝑠 ⊆ 𝑋𝑠 the freely generating subspace. Then for each 𝑠, the functor

HomC(𝑋𝑠,−) ∼= HomV(𝑉𝑠, 𝑈
C−)

is naturally an F2-vector space. Writing 𝜙𝑠 = 𝐹 C(Δ) : 𝑋𝑠 −→ 𝑋𝑠 ⊔ 𝑋𝑠, the addition

operation on HomC(𝑋𝑠,−) is given by (𝑓, 𝑔) ↦−→ (𝑓 ⊔ 𝑔) ∘ 𝜙𝑠. Now let 𝜉C be the sum of

((𝑑0 ⊔ 𝑑0)𝜙𝑠) and (𝜙𝑠−1𝑑0) in the F2-vector space HomC(𝑋𝑠, 𝑋𝑠−1 ⊔𝑋𝑠−1). It is completely

formal to check that 𝜉C maps to zero in the group

HomC(𝑋𝑠, 𝑋𝑠−1 ×𝑋𝑠−1) = HomC(𝑋𝑠, 𝑋𝑠−1)×HomC(𝑋𝑠, 𝑋𝑠−1),

and thus 𝜉C factors through a unique map 𝜉C : 𝑋𝑠 −→ 𝑋𝑠−1 Y𝑋𝑠−1. Furthermore, 𝜉C enjoys

the symmetry 𝜏𝜉C = 𝜉C, and it is again formal to verify the analogue of [33, Lemma 5.5]:

Lemma 6.3. When the equation quC ∘ 𝜇𝑉 = quC ∘ 𝜖𝐹C𝑉 + quC ∘ 𝐹 C𝜖𝑉 of §3.10 is satisfied,

the map 𝑄C𝜉C induces a chain map of degree −1 on normalized complexes:

𝑁𝑠(𝑄
C𝑋) −→ 𝑁𝑠−1((𝑄

C(𝑋 Y𝑋))Σ2).

The composite

𝜓C :

(︂
𝑁𝑠(𝑄

C𝑋)
𝑄C𝜉C−→ 𝑁𝑠−1((𝑄

C(𝑋 Y𝑋))Σ2)
𝑗C−→ 𝑁𝑠−1(𝑆

2(𝑄C𝑋))

)︂
,

is essentially quC, in that if 𝑣 ∈ 𝑉𝑠 ∩𝑁𝑠𝑋 represents an element of 𝑁𝑠𝑄
C𝑋, writing 𝑑0𝑣 =

𝑓(𝑤𝑗) for 𝑤𝑗 ∈ 𝑉𝑠−1, we have 𝜓C(𝑣) = quC(𝑓)(𝑤𝑗) ∈ 𝑆2(𝑉𝑠−1).

The typical use of this structure is to define cohomology operations using the external

cohomotopy operations defined above, i.e. natural operations on 𝐻*
C𝑋 = 𝜋*(D(𝑄C𝐵C𝑋))

defined by the composites:

𝐻𝑛1
C 𝑋 ⊗𝐻𝑛2

C 𝑋
𝜇ext−→ 𝜋𝑛1+𝑛2D(𝑆2(𝑄C𝐵C𝑋))

𝜓*
C−→ 𝐻𝑛1+𝑛2+1

C 𝑋,

𝐻𝑛
C𝑋

Sq𝑘ext−→ 𝜋𝑛+𝑘D(𝑆2(𝑄C𝐵C𝑋))
𝜓*
C−→ 𝐻𝑛+𝑘+1

C 𝑋.

These operations are the duals of natural homology co-operations, defined using the maps
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of §6.3 and §5.3:

(𝑆2𝐻C
*𝑋)𝑛

̃︀∇←− 𝜋𝑛(𝑆2(𝑄C𝐵C𝑋))
𝜓*
C←− 𝐻C

𝑛+1𝑋,

𝐻C
𝑛(𝑋)

(Sq𝑘ext)
⋆

←− 𝜋𝑛+𝑘(𝑆
2(𝑄C𝐵C𝑋))

𝜓*
C←− 𝐻C

𝑛+𝑘+1(𝑋).

Instead of proving Lemma 6.3, we will prove the more general:

Proposition 6.4. Suppose that 𝜃 : 𝐹 C𝑉 −→ 𝐺𝑉 is a natural transformation from 𝐹 C to

another endofunctor 𝐺 of V satisfying the condition:

𝜃 ∘ 𝜇𝑉 = 𝜃 ∘ 𝜖𝐹C𝑉 + 𝜃 ∘ 𝐹 C𝜖𝑉 : 𝐹 C𝐹 C𝑉 −→ 𝐺𝑉.

Write ̃︀𝜃 : 𝑄C𝑋𝑠 −→ 𝐺(𝑄C𝑋𝑠−1) for the following

𝑄C𝑋𝑠
∼=−→ 𝑉𝑠

𝑑0−→ 𝐹 C𝑉𝑠−1
𝜃−→ 𝐺𝑉𝑠−1

∼=−→ 𝐺(𝑄C𝑋𝑠−1).

Then 𝑑0 ∘ ̃︀𝜃 = ̃︀𝜃 ∘ (𝑑0 + 𝑑1), and 𝑑𝑗 ∘ ̃︀𝜃 = ̃︀𝜃 ∘ 𝑑𝑗+1 for 𝑗 ≥ 1, so that ̃︀𝜃 restricts to a degree

−1 chain map on 𝑁𝑠𝑄
C𝑋 −→ 𝑁𝑠−1𝑄

C𝑋 and also on 𝐶𝑠𝑄
C𝑋 −→ 𝐶𝑠−1𝑄

C𝑋.

Note that ̃︀𝜃 depends on the almost free structure chosen.

Proof. In order to see that 𝑑𝑗 ∘ ̃︀𝜃 = ̃︀𝜃 ∘ 𝑑𝑗+1 for 𝑗 ≥ 1, we examine the diagram

𝑉𝑠
𝑑0 //

𝑑𝑗+1��

𝐹 C𝑉𝑠−1
𝜃 //

𝑑𝑗��

𝐺𝑉𝑠−1
∼= //

𝑑𝑗��

𝐺𝑄C𝑋𝑠−1

𝐺𝑄C(𝑑𝑗)��
𝑉𝑠−1

𝑑0 // 𝐹 C𝑉𝑠−2
𝜃 // 𝐺𝑉𝑠−2

∼= // 𝐺𝑄C𝑋𝑠−2

The dotted vertical arrows are available since 𝑋 is almost free. That the left square com-

mutes is a simplicial identity, and the center square commutes by naturality of 𝜃. In order

to show that 𝑑0 ∘ ̃︀𝜃 = ̃︀𝜃 ∘ (𝑑0 + 𝑑1), we use the following diagram, which commutes except

for the leftmost square:

𝑉𝑠
𝑑0 //

𝑑1+𝜖∘𝑑0 ��

𝐹 C𝑉𝑠−1
𝜃 //

𝐹C(𝜖∘𝑑0)��

𝐺𝑉𝑠−1
∼= //

𝐺(𝜖∘𝑑0)��

𝐺𝑄C𝑋𝑠−1

𝐺𝑄C(𝑑0)��
𝑉𝑠−1

𝑑0 // 𝐹 C𝑉𝑠−2
𝜃 // 𝐺𝑉𝑠−2

∼= // 𝐺𝑄C𝑋𝑠−2

To show that the outer rectangle commutes, it is enough to see that the two composites

𝑉𝑠 −→ 𝐹 C𝑉𝑠−2 are coequalized by 𝜃. Using the simplicial identity 𝑑0𝑑1 = 𝑑0𝑑0, we are

trying to show that 𝜃𝑑0𝑑0 + 𝜃𝑑0𝜖𝑑0 and 𝜃𝐹 C(𝜖𝑑0)𝑑0 are the same map from 𝑉𝑠 to 𝐺𝑉𝑠−2.

Even more, we will show that 𝜃𝑑0+ 𝜃𝑑0𝜖 and 𝜃𝐹 C(𝜖𝑑0) are the same map 𝐹 C𝑉𝑠−1 to 𝐺𝑉𝑠−2.
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Starting with an expression 𝑓(𝑣𝑖) in various 𝑣𝑖 ∈ 𝑉𝑠−1, we calculate 𝜃𝑑0𝑓(𝑣𝑖) = 𝜃(𝑓𝑑0𝑣𝑖),

𝜃𝑑0𝜖𝑓(𝑣𝑖) = 𝜃(𝜖(𝑓)(𝑑0𝑣𝑖)) and 𝜃𝐹 C(𝜖𝑑0)(𝑓(𝑣𝑖)) = 𝜃(𝑓)(𝜖(𝑑0𝑣𝑖)). That these three terms add

to zero was the requirement specified for 𝜃.

6.6. Cohomology operations for simplicial commutative alge-

bras

Goerss [33, §5] defines cohomology operations, natural in 𝐴 ∈ 𝑠Com:

𝑃 𝑖 = 𝜓*
Com ∘ Sq𝑖ext : 𝐻𝑛

Com𝐴 −→ 𝐻𝑛+𝑖+1
Com 𝐴; and

[ , ] = 𝜓*
Com ∘ 𝜇ext : 𝐻𝑛

Com𝐴⊗𝐻𝑚
Com𝐴 −→ 𝐻𝑛+𝑚+1

Com 𝐴.

He also defines a natural operation 𝛽 : 𝐻0
Com𝐴 −→ 𝐻1

Com𝐴. Note that as a result of the use

of 𝜓*
Com , these operations have a grading shift.

Proposition 6.5 [33, §5]. These operations have the following properties:

(1) the bracket gives 𝐻*
Com𝐴 the structure of an 𝑆(L )-algebra (with grading shift);

(2) the operation 𝛽 acts as a restriction defined only in dimension zero, so that for 𝑥, 𝑦 ∈
𝐻0

Com𝐴 and 𝑧 ∈ 𝐻*
Com𝐴:

𝛽(𝑥+ 𝑦) = 𝛽(𝑥) + 𝛽(𝑦) = [𝑥, 𝑦], and [𝛽(𝑥), 𝑧] = [𝑥, [𝑥, 𝑧]];

(3) the self-bracket operation on 𝐻*
Com𝐴 equals the top 𝑃 -operation:

𝑃𝑛𝑥 = [𝑥, 𝑥] for 𝑥 ∈ 𝐻𝑛
Com𝐴;

(4) if 𝑥 ∈ 𝐻𝑛
Com𝐴, then 𝑃 𝑖𝑥 = 0 unless 2 ≤ 𝑖 ≤ 𝑛;

(5) every 𝑃 -operation is linear;

(6) there holds the following Cartan formula: for all 𝑥, 𝑦 ∈ 𝐻*
Com𝐴 and 𝑖 ≥ 0,

[𝑥, 𝑃 𝑖𝑦] = 0;

(7) the 𝑃 -Adem relations hold: if 𝑖 ≥ 2𝑗, then

𝑃 𝑖𝑃 𝑗𝑥 =

𝑖+𝑗−2∑︁
𝑠=𝑖−𝑗+1

(︂
2𝑠− 𝑖− 1

𝑠− 𝑗

)︂
𝑃 𝑖+𝑗−𝑠𝑃 𝑠𝑥.

In this case, (7) does state that 𝐻*
Com𝐴 is a left module over P, the Steenrod algebra for

commutative algebras over F2 of P-algebra. This is the unital associative algebra generated
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by symbols 𝑃 𝑖 for 𝑖 ≥ 0, modulo the two sided ideal generated by 𝑃 0, 𝑃 1, and the evident

𝑃 -Adem relations.

A sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1) of integers 𝑖𝑗 ≥ 2 is 𝑃 -admissible if 𝑖𝑗+1 < 2𝑖𝑗 for 1 ≤ 𝑗 < ℓ.

For any sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1), write 𝑃 𝐼 for the monomial 𝑃 𝑖ℓ · · ·𝑃 𝑖1 in P. It follows from

[33, Theorem I] that P has an admissible basis, consisting of those 𝑃 𝐼 = 𝑃 𝑖ℓ · · ·𝑃 𝑖1 with 𝐼 a

𝑃 -admissible sequence. Again, we will say that 𝐼 produces 𝐽 in P, denoted 𝐼 P→ 𝐽 if, when

𝑃𝐼 is written in the 𝑃 -admissible basis of P, 𝑃𝐽 appears with non-zero coefficient. In this

case, unless 𝐽 = 𝐼, 𝐽 is 𝑃 -admissible and 𝐼 is 𝑃 -inadmissible.

We define

𝑚(𝐼) := max{(𝑖1), (𝑖2 − 𝑖1 − 1), (𝑖3 − 𝑖2 − 𝑖1 − 2), . . . , (𝑖ℓ − · · · − 𝑖1 − ℓ+ 1)},

for a rather different purpose than in §5.4 and §5.5: although the composite

𝑃 𝐼 :
(︀
𝐻𝑛

Com𝐴
𝑃 𝑖1−→ 𝐻𝑛+𝑖1+1

Com 𝐴
𝑃 𝑖2−→ · · · 𝑃

𝑖ℓ−→ 𝐻𝑛+𝑖1+···+𝑖ℓ+ℓ
Com 𝐴

)︀
is always defined, it is forced to be zero (by (4) alone) except when 𝑛 ≥ 𝑚(𝐼).

As in §5.4 and §5.5, if a non-empty sequence 𝐼 is 𝑃 -admissible, we can identify which

term is largest in the maximum defining 𝑚(𝐼), and calculate that 𝑚(𝐼) = 𝑖1. More explicitly,

in a non-vanishing admissible expression 𝑃 𝑖ℓ · · ·𝑃 𝑖1𝑥, for 𝑥 ∈ 𝐻𝑛
Com𝐴, the only 𝑃 -operations

that can be a top operation is 𝑃 𝑖1 .

The following result shows that whenever an expression 𝑃 𝐽𝑥 is forced to be zero by (4)

and we reduce 𝑃 𝐽𝑥 to a sum of 𝑃 -admissible composites, then (4) forces all of the resulting

summands to be zero.

Lemma 6.6. If 𝐼 P→ 𝐽 , then 𝑚(𝐽) ≥ 𝑚(𝐼), with strict inequality when 𝐼 and 𝐽 are distinct

and of length two.

The main theorem of Goerss’ memoir is that these operations generate all of the opera-

tions in the category 𝐻Com, and that all the relations between them are implied by those

presented here. In [33, Chapter V], Goerss shows that the listed operations completely cap-

ture the cohomology of an object KCom
𝑛 . He proves a Hilton-Milnor Theorem [32], which he

uses in [33, §11] to bootstrap up to a calculation of the cohomology of any GEM in 𝑠Com,

namely [33, Theorem I]. The result states that whenever 𝑉 ∈ V1, is a vector space of finite

type, not only is 𝐹Com𝑉 generated by 𝑉 under the operations of Proposition 6.5, it is as

large as is conceivable given the relations presented. We will present, in Proposition 6.8, a

partial version of his result.

It is interesting to observe that P, the Steenrod algebra for commutative algebras, is in

fact Koszul dual (c.f. [46]) to Δ, the algebra which possesses an unstable partial left action
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on the homotopy of a simplicial algebra. Indeed, Goerss calculates P as the Koszul dual of

Δ, using a reverse Adams spectral sequence due to Miller [42] (c.f. §3.4). We will explore

this duality further when we consider the Bousfield-Kan spectral sequence.

6.7. The categories W(0) and U(0)

Suppose that 𝐴 ∈ 𝑠Com is connected, i.e. that 𝜋0𝐴 = 0. Then 𝐻0
Com𝐴 = 𝑄Com𝜋0𝐴 = 0,

so that the operation 𝛽 can be ignored. This is a convenient by-product of working with

the cohomology of connected objects, although the real reason that we do so is that doing

so avoid completion and convergence problems. If we say that 𝑉 ∈ V1 is connected when

𝑉 0 = 0, we may identify the full subcategory of V1 on the connected objects with V+.

Goerss’ result proves that the monad 𝐹𝐻Com on V1 preserves V+ (and indeed it is a

general fact that no non-trivial natural cohomology operations decrease dimension). We

will write W(0) for the category of connected Com-𝐻*-algebras, so that the monad 𝐹W(0)

is simply the restriction of 𝐹𝐻Com to V+. The way that we will report Goerss’ result here

is to explain how the monad 𝐹W(0) may be constructed on objects of V+ of finite type.

Let the category of unstable P-modules, denoted U(0), be the category whose objects are

V+
0 -graded P-modules in which 𝑃 𝑖 acts with grading 𝑖+ 1 by everywhere defined maps

𝑃 𝑖 : 𝑉 𝑛 −→ 𝑉 𝑛+𝑖+1

which equal zero unless 2 ≤ 𝑖 ≤ 𝑛. Recall that we have already imposed the 𝑃 -Adem

relations and set 𝑃 0 and 𝑃 1 to be zero in P.

Proposition 6.7. The monad 𝐹U(0) may be defined by

𝐹U(0)𝑉 := (P⊗ 𝑉 ) /F2{𝑃 𝐼 ⊗ 𝑣 | 𝑉 ∈ 𝑉 𝑛, 𝑚(𝐼) > 𝑛}

= (P⊗ 𝑉 ) /F2{𝑃 𝐼 ⊗ 𝑣 | 𝑉 ∈ 𝑉 𝑛, 𝑚(𝐼) > 𝑛, 𝐼 is 𝑃 -admissible}.

Proof. This follows from Goerss’ [33, Theorem I] and Lemma 6.6.

Now an object of W(0) is in particular an object of U(0). It is also a (degree shifted)

𝑆(L )-algebra. Thus, there is a natural map

𝐹U(0)𝐹𝑆(L )𝑉 −→ 𝐹W(0)𝑉.

This map is not an isomorphism, but it follows from [33, Theorem I] that it is surjective.

Moreover, our final reading of Goerss’ result is:
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Proposition 6.8. For 𝑉 ∈ V+ of finite type, 𝐹W(0)𝑉 ∈ V+ is the coequalizer:

coeq

(︃
P⊗ 𝐹𝑆(L )𝑉

sb1 //
sb2

// P⊗ 𝐹𝑆(L )𝑉 // // 𝐹U(0)𝐹𝑆(L )𝑉

)︃
,

where the maps sb1 and sb2 are defined on P⊗ (𝐹𝑆(L )𝑉 )𝑚 by

sb1(𝑃
𝐼 ⊗ 𝑥) = 𝑃 𝐼 ⊗ [𝑥, 𝑥] and sb2(𝑃

𝐼 ⊗ 𝑥) = 𝑃 𝐼𝑃𝑚 ⊗ 𝑥.

Choose a homogeneous basis of 𝑉 , construct from it a monomial basis of Λ(L )𝑉 (such as

any choice of Hall basis), and then lift these monomials in the evident way to a collection 𝐵

of elements of 𝑆(L )𝑉 . Then a basis of 𝐹W(0)𝑉 is

{︀
𝑃 𝐼𝑏

⃒⃒
𝑏 ∈ 𝐵, 𝑚(𝐼) ≤ |𝑏|, 𝐼 is 𝑃 -admissible

}︀
.

Corollary 6.9. Suppose that 𝑉 ∈ V+ is of finite type. Then so is 𝐹W(0)𝑉 .

The following observations will be useful for the calculation of the cohomology of objects

of W(0).

Lemma 6.10. The monads 𝐹U(0) and 𝐹W(0) on V+ may be promoted to monads on the

category qV+, by insisting that quadratic gradings add when taking brackets and double when

applying 𝑃 -operations.

It is typical to think of 𝑉 ∈ V+ as an object of qV+ concentrated in quadratic grading one

when considering 𝐹W(0)𝑉 .

An object of W(0) is in particular an object of U(0), and (as all of the 𝑃 -operations are

linear), we can define a functor 𝑄U(0) : W(0) −→ V+
0 which takes the quotient by the image

of the 𝑃 -operations. Moreover:

Lemma 6.11. For 𝑋 ∈ W(0), the vector space 𝑄U(0)𝑋 ∈ V+ inherits a (grading shifted)

Lie algebra structure from the bracket of 𝑋, yielding a factorization:

𝑄W(0) = 𝑄Λ(L ) ∘𝑄U(0) :
(︀
W(0) −→ Λ(L ) −→ V+

0

)︀
.

Moreover the composite 𝑄U(0) ∘ 𝐹W(0) equals the free construction 𝐹L(0).

Proof. One checks that the bracket is well defined in the quotient, and that taking the

quotient by the top 𝑃 -operation imposes the relation [𝑥, 𝑥] = 0, to create a Λ(L )-algebra

from the pre-existing 𝑆(L )-algebra structure. The final claim follows from Proposition

6.8.
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6.8. Cohomology operations for simplicial (restricted) Lie al-

gebras

A standard definition of the cohomology of a simplicial Lie algebra 𝐿 ∈ 𝑠Lie or 𝑠Lier is

presented in [47] as follows. Let 𝑈𝐿 be the simplicial primitively Hopf algebra obtained

by applying the universal enveloping algebra functor levelwise, or the restricted universal

enveloping algebra functor when working in 𝑠Lier. Applying the Eilenberg-Mac Lane sus-

pension functor ([47, §2.3], [42, §5] or [40, p. 87]), one defines (using a subscript �̄� to avoid

confusion):

𝐻*
�̄�𝐿 :=

⎧⎨⎩𝜋*D�̄�𝑈𝐿, if * > 0;

0, if * = 0.

We discuss universal enveloping algebra functors in Appendix A.1. The suspension �̄�

destroys the associative algebra structure but leaves a simplicial cocommutative coalgebra

structure on �̄�𝑈𝐿, with diagonal we denote by Δ. Homotopy operations for simplicial

cocommutative coalgebras are well known, being the mode of definition of the cup product

and Steenrod operations present in the category K discussed in §1.1 of unstable algebras

over the Steenrod algebra, and can be constructed using Propositions 6.1 and 6.2:

Sq𝑘 := Δ* ∘ Sq𝑘ext :
(︀
𝜋𝑛D(�̄�𝑈𝐿)

Sq𝑘ext−→ 𝜋𝑛+𝑘D𝑆2(�̄�𝑈𝐿)
Δ*
−→ 𝜋𝑛+𝑘D(�̄�𝑈𝐿)

)︀
;

𝜇 := Δ* ∘ 𝜇ext :
(︀
𝑆2(𝜋

*D(�̄�𝑈𝐿))𝑛
𝜇ext−→ 𝜋𝑛𝑆2D(�̄�𝑈𝐿) −→ 𝜋𝑛D𝑆2(�̄�𝑈𝐿)

Δ*
−→ 𝜋𝑛D(�̄�𝑈𝐿)

)︀
.

The operations here make 𝐻*
�̄�
𝐿 a module over the homogeneous Steenrod algebra discussed

in §1.3, which is the usual mod 2 Steenrod algebra ‘with Sq0 set to zero’. That is, the

homogeneous Steenrod algebra is the unital associative algebra A generated by symbols Sq𝑗

for 𝑗 ≥ 1, subject to the homogeneous Sq-Adem relation:

Sq𝑖Sq𝑗 =

⌊𝑖/2⌋∑︁
𝑘=1

(︂
𝑗 − 𝑘 − 1

𝑖− 2𝑘

)︂
Sq𝑖+𝑗−𝑘Sq𝑘 for 𝑖 < 2𝑗.

We only ever work with the homogeneous Steenrod algebra and the homogeneous Sq-Adem

relation, and so may omit the word homogeneous if we desire.

This algebra is Koszul dual to the opposite of the Λ-algebra (c.f. 5.5). There is an index

shift in this duality, so that Sq𝑖 corresponds to 𝜆𝑖−1 for 𝑖 ≥ 1 [46, §7.1].

In [47], Priddy concentrates on simplicial restricted Lie algebras 𝐿, and works out all of

the natural operations on 𝐻*
�̄�

and the relations between them. Moreover, he gives a spectral

sequence argument showing that the two notions of cohomology are isomorphic, with a shift

in degree arising from the use of �̄� : 𝐻𝑛
�̄�
𝐿 ∼= 𝐻𝑛−1

Lier𝐿 for 𝑛 ≥ 1.
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For our purposes it is better to work in the framework set out in §6.5, giving an alternative

definition of Priddy’s operations. This alternative definition will fit more readily into the

spectral sequence arguments we intend to make.

For now, let C stand either for Lier or Lie. Our definition of the cohomology operations

is:

Sq𝑘 := 𝜓*
C ∘ Sq𝑘−1

ext : 𝐻𝑛
C𝐿

Sq𝑘−1
ext−→ 𝜋𝑛+𝑘−1D(𝑆2(𝑄C𝐵C𝐿))

𝜓*
C−→ 𝐻𝑛+𝑘

C 𝐿,

𝜇 := 𝜓*
C ∘ 𝜇ext : (𝑆2𝐻*

C𝐿)
𝑛 𝜇ext−→ 𝜋𝑛D(𝑆2(𝑄C𝐵C𝐿))

𝜓*
C−→ 𝐻𝑛+1

C 𝐿.

We will check the properties of these operations using a spectral sequence argument similar

to Priddy’s, although we will need to give a richer construction of the spectral sequence in

order to extract information about the operations. This work will be deferred until Appendix

A, and will prove:

Proposition 6.12. There are commuting diagrams:

𝐻𝑛
C𝐿
∼=��

𝜓*
C
∘Sq𝑘−1

ext // 𝐻𝑛+𝑘
C 𝐿

∼=��

𝐻𝑛1
C 𝐿⊗𝐻𝑛2

C 𝐿
∼=��

𝜓*
C
∘𝜇ext // 𝐻𝑛1+𝑛2+1

C 𝐿
∼=��

𝐻𝑛+1
�̄�

𝐿
Δ*∘Sq𝑘ext // 𝐻𝑛+𝑘+1

�̄�
𝐿 𝐻𝑛1+1

�̄�
𝐿⊗𝐻𝑛2+1

�̄�
𝐿

Δ*∘𝜇ext // 𝐻𝑛1+𝑛2+2
�̄�

𝐿

That is, the two definitions of Sq𝑘 coincide, as do the two definitions of 𝜇.

Given the use of suspension �̄� , one expects the notion of top Steenrod operation to be

different to that in other settings, and in this context we say that Sq𝑛+1 : 𝐻𝑛
C𝐿 −→ 𝐻2𝑛+1

C 𝐿

is the top operation.

Proposition 6.13 [47, §5.3]. These operations have the following properties:

(1) the product 𝜇 gives 𝐻*
C𝐿 the structure of a commutative algebra (with grading shift);

(2) the squaring operation on 𝐻*
C𝐿 equals the top Steenrod operation:

Sq𝑛+1𝑥 = 𝑥2 for 𝑥 ∈ 𝐻𝑛
C𝐿;

(3) if 𝑥 ∈ 𝐻𝑛
C𝐿, then Sq𝑖𝑥 = 0 unless 1 ≤ 𝑖 ≤ 𝑛+ 1;

(4) every Steenrod operation is linear;

(5) the Cartan formula holds: for all 𝑥, 𝑦 ∈ 𝐻*
C𝐿 and 𝑖 ≥ 0,

Sq𝑖h(𝑥𝑦) =
∑︀𝑖−1

𝑘=1(Sq
𝑘𝑥)(Sq𝑖−𝑘𝑦);

(6) the homogeneous Sq-Adem relations hold, making 𝐻*
C𝐿 a left A-module.
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This fact follows from Proposition A.3. We will also use the following calculation:

Proposition 6.14. If C = Lie (as opposed to Lier), then Sq1 = 0. In particular, for

𝑥 ∈ 𝐻0
Lie𝑋, 𝑥2 = 0.

Proof. It is enough to prove this for the universal example 𝚤𝑛 ∈ 𝐻*
LieK

Lie
𝑛 . The reverse

Adams spectral sequence (§3.4) is of the form

𝐸𝑝,𝑞2 = (𝐻𝑝
𝜋LieK

𝜋Lie
0,𝑛 )𝑞 =⇒ 𝐻𝑝+𝑞

Lie K
Lie
𝑛 .

The point now is that K𝜋Lie
0,𝑛 , which is just a constant object in 𝑠(𝜋Lie) with value a one-

dimensional Lie algebra in internal dimension 𝑛, is actually free as an object of 𝜋Lie below

internal dimension 𝑛+ 1. This is simply because there is no 𝜆0 operation defined in 𝜋Lie.

One may thus construct pas-à-pas a simplicial resolution of K𝜋Lie
0,𝑛 (a process described in

[1]) which in positive simplicial dimension is concentrated in internal dimension at least

𝑛 + 1, implying that 𝐸𝑝,𝑞2 = 0 when 𝑝 ≥ 1 and 𝑞 ≤ 𝑛. Moreover, 𝐸0,𝑞
2 = 0 unless 𝑞 = 𝑛,

showing that 𝐻𝑛+1
Lie KLie

𝑛 = 0. This group contains Sq1𝚤𝑛.

A sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1) of integers 𝑖𝑗 ≥ 1 is Sq-admissible if 𝑖𝑗+1 ≥ 2𝑖𝑗 for 1 ≤ 𝑗 < ℓ.

For any sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1), write Sq𝐼 for the monomial Sq𝑖ℓ · · · Sq𝑖1 . The homogeneous

Steenrod algebra has the expected admissible basis, and we say that 𝐼 produces 𝐽 in A,

denoted 𝐼 Sq→ 𝐽 if Sq𝐽 appears in the Sq-admissible expansion of Sq𝐼 .

We use the function 𝑚 defined in §5.4, this time noting that the composite

Sq𝐼 :
(︀
𝐻𝑛

Com𝐴
Sq𝑖1−→ 𝐻𝑛+𝑖1

Com 𝐴
Sq𝑖2−→ · · · Sq

𝑖ℓ

−→ 𝐻𝑛+𝑖1+···+𝑖ℓ
Com 𝐴

)︀
is forced to be zero by (3) alone except when 𝑛 ≥ 𝑚(𝐼)− 1.

If a non-empty sequence 𝐼 is Sq-admissible, we have

𝑚(𝐼) = 𝑒(𝐼) = 𝑖ℓ − 𝑖ℓ−1 − · · · − 𝑖1,

the Serre excess of 𝐼. We now have enough notation available to describe the category

𝐻Lier, using Priddy’s calculations. The results are similar to those in §5.4 on the category

𝜋Com. There is again a Künneth Theorem:

Proposition 6.15. Suppose that 𝐾1 and 𝐾2 are finite GEMs in 𝑠Lier. Then 𝐻*
Lier𝐾1 and

𝐻*
Lier𝐾2 in 𝐻Lier are of finite type, and their coproduct 𝐻*

Lier(𝐾1 × 𝐾2) in 𝐻Lier may

be calculated as the non-unital (grading shifted) commutative algebra coproduct of 𝐻*
Lier𝐾1

and 𝐻*
Lier𝐾2.
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Proof. We rely on Proposition 6.12 and the following calculation:

𝐻*
�̄� (𝐾1 ×𝐾2) := 𝜋*D�̄�𝑈(𝐾1 ×𝐾2)

∼= 𝜋*D�̄� (𝑈𝐾1 ⊗ 𝑈𝐾2)

∼= 𝜋*D(�̄�𝑈𝐾1 ⊗ �̄�𝑈𝐾2)

∼= D(𝜋*�̄�𝑈𝐾1 ⊗ 𝜋*�̄�𝑈𝐾2)

⊇ 𝐻*
�̄�𝐾1 ⊗𝐻*

�̄�𝐾2.

This containment is in fact an equality when 𝐻*
�̄�
𝐾1 and 𝐻*

�̄�
𝐾2 are both of finite type, in

which case 𝐻*
�̄�
(𝐾1 × 𝐾2) is also of finite type, and the isomorphism is proved. Thus, by

induction on the total number of factors KLier
𝑛 of 𝐾1 and 𝐾2, we only need to check that

𝐻*
�̄�
KLier
𝑛 is of finite type for any 𝑛 ≥ 0. This is implied by a calculation of Priddy [47, 6.1]

which we recall in Proposition 6.16.

After giving the calculation on a single Eilenberg-Mac Lane object, the cohomology of finite

GEMs, and thus the category 𝐻Lier is determined by Proposition 6.15 and the Cartan

formula. The structure defining 𝜋Lier is then well understood in light of:

Proposition 6.16 [47, 6.1]. For 𝑛 ≥ 0, let 𝚤 be the fundamental class in 𝐻𝑛
Lier(K

Lier
𝑛 ).

Then, as non-unital (degree shifted) commutative algebras:

𝐻𝑛
Lier(K

Lier
𝑛 ) ∼= 𝑆(C )

[︀
Sq𝐼 𝚤

⃒⃒
𝐼 is Sq-admissible, 𝑒(𝐼) ≤ 𝑛

]︀
.

Corollary 6.17. Suppose that 𝑉 ∈ V+ is of finite type. Then so is 𝐹𝐻Lier𝑉 . That is, the

restriction of the monad 𝐹𝐻Lier𝑉 on V1 to V+ preserves objects of finite type.

The case of simplicial Lie algebras mimics that of simplicial commutative algebras: for

Lie algebras, the homogeneous Steenrod algebra acts on cohomology, and is Koszul dual to

the opposite of the Λ-algebra, which possesses an unstable partial left action on homotopy.

Further material on the cohomology of Lie algebras is deferred to Appendix A.
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Chapter 7

Homotopy operations for partially

restricted Lie algebras

7.1. The categories L(𝑛) of partially restricted Lie algebras

For each 𝑛 ≥ 0, we will be interested in certain categories of Lie algebras monadic over V+
𝑛 ,

with a grading shift. Broadly, a V+
𝑛 -graded Lie algebra is a graded vector space 𝐿 ∈ V+

𝑛

with a structure map Λ2𝐿 −→ 𝐿 which shifts gradings as follows

𝐿𝑡𝑠𝑛,...,𝑠1 ⊗ 𝐿
𝑡′

𝑠′𝑛,...,𝑠
′
1
−→ 𝐿𝑡+𝑡

′+1
𝑠𝑛+𝑠′𝑛,...,𝑠1+𝑠

′
1
.

If we wished to be precise we could view the Lie operad as an operad in (V+
𝑛 ,⊗) such that

L (𝑟) = (L (𝑟))𝑟−1
0,...,0,

and then a V+
𝑛 -graded Lie algebra would be an algebra over the corresponding monad Λ(L )

on V+
𝑛 . In our context, the Lie operad arises as the Koszul dual of the commutative operad,

through the constructions in [33, §5], and the use of the operadic bar construction (c.f.

[30, §3]) explains the shift. See [30, §5.3.4] for a discussion of Koszul duality of operads in

positive characteristic. From this point forward we will simply think of such a Lie algebra

as a vector space 𝐿 ∈ V+
𝑛 with a map Λ2𝐿 −→ 𝐿 shifting degrees as described.

A V+
𝑛 -graded partially restricted Lie algebra is to be a V+

𝑛 -graded Lie algebra such that

certain graded parts admit a restriction operation. Specifically, there is to be defined a

restriction operation

(−)[2] : 𝐿𝑡𝑠𝑛,...,𝑠1 −→ 𝐿2𝑡+1
2𝑠𝑛,...,2𝑠1

whenever not all of 𝑠𝑛, . . . , 𝑠1 are zero. We will denote the category of such objects L(𝑛).
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It is monadic over V+
𝑛 , with an adjunction

𝐹L(𝑛) : V+
𝑛 � L(𝑛) : 𝑈L(𝑛).

The monad of this adjunction may be constructed as an appropriately chosen submonad

of Γ(L ) : V+
𝑛 −→ V+

𝑛 (with L shifted as above), containing Λ(L ). As such, the free

construction 𝐹L(𝑛)𝑉 admits a quadratic grading as in §2.10, which we denote q𝑘𝐹
L(𝑛)𝑉 .

7.2. Homotopy operations for 𝑠L(𝑛)

We will now state precisely how much of the structure given in §5.5 carries over to our new

setting. If 𝐿 ∈ 𝑠L(𝑛), we may restrict the structure map [ , ] : 𝐹L(𝑛)𝐿 −→ 𝐿 to a map

[ , ] : q2𝐹
L(𝑛)𝐿 −→ 𝐿, with Λ2𝐿 ⊆ Σ−1q2𝐹

L(𝑛)𝐿 ⊆ 𝑆2𝐿,

where the desuspension acts in the cohomological degree 𝑡. Only certain of the external

homotopy operations 𝜋*𝑉 −→ 𝜋*𝑆
2𝑉 defined in §5.2 factor through 𝜋*Σ

−1q2𝐹
L(𝑛)𝑉 , and

similarly for the operations of §5.3. One readily checks that the operations that factor in

this way are:

𝜎ext
𝑖 : 𝜋𝑛𝑉 −→ 𝜋𝑛+𝑖(Σ

−1q2𝐹
L(𝑛)𝑉 )

defined only when 0 ≤ 𝑖 ≤ 𝑛 and 𝑖, 𝑠1, . . . , 𝑠𝑛 are not all zero, and

̃︀∇ : q2𝐹
L(𝑛+1)(𝜋*𝑉 ) −→ 𝜋*(q2𝐹

L(𝑛)𝑉 ).

The resulting operations on 𝜋*𝐿, for 𝐿 ∈ 𝑠L(𝑛), are right 𝜆-operations

(−)𝜆𝑖 :
(︁
(𝜋𝑠𝑛+1𝐿)

𝑡
𝑠𝑛,...,𝑠1

𝜎𝑖−→ (𝜋𝑠𝑛+1+𝑖(Σ
−1q2𝐹

L(𝑛)𝐿))2𝑡2𝑠𝑛,...,2𝑠1
𝜋*([ , ])−→ (𝜋𝑠𝑛+1+𝑖𝐿)

2𝑡+1
2𝑠𝑛,...,2𝑠1

)︁
defined whenever 0 ≤ 𝑖 ≤ 𝑠𝑛+1 and not all of 𝑖, 𝑠𝑛, . . . , 𝑠1 equal zero, and a bracket:

[ , ] :
(︁
(𝜋*𝐿)

𝑡
𝑠𝑛+1,...,𝑠1 ⊗ (𝜋*𝐿)

𝑡′

𝑠′𝑛+1,...,𝑠
′
1
−→ (q2𝐹

L(𝑛+1)𝜋*𝐿)
𝑡+𝑡′+1
𝑠𝑛+1+𝑠′𝑛+1,...,𝑠1+𝑠

′
1̃︀∇−→ (𝜋*q2𝐹

L(𝑛)𝐿)𝑡+𝑡
′

𝑠𝑛+1+𝑠′𝑛+1,...,𝑠1+𝑠
′
1

𝜋*([ , ])−→ (𝜋*𝐿)
𝑡+𝑡′+1
𝑠𝑛+1+𝑠′𝑛+1,...,𝑠1+𝑠

′
1

)︁
.

We have written the bracket as a map from (𝜋*𝐿)
⊗2 to clarify the degree shift, but nev-

ertheless, the top 𝜆-operation, whenever it is defined, acts as a restriction for this bracket.

Indeed, this set of natural operations satisfies the evident modification of Proposition 5.7

(c.f. Proposition 7.1).
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7.3. The category U(𝑛+1) of unstable partial right Λ-modules

For 𝑛 ≥ 0, let U(𝑛+1) denote the category of unstable partial right Λ-modules, the algebraic

category whose objects are vector spaces 𝑉 ∈ V+
𝑛+1 equipped with linear right 𝜆-operations

(−)𝜆𝑖 : 𝑉 𝑡
𝑠𝑛+1,𝑠𝑛,...,𝑠1 −→ 𝑉 2𝑡+1

𝑠𝑛+1+𝑖,2𝑠𝑛,...,2𝑠1

defined whenever 0 ≤ 𝑖 < 𝑠𝑛+1 and not all of 𝑖, 𝑠𝑛, . . . , 𝑠1 are zero, satisfying the unstable

Λ-Adem relations of Proposition 5.7(5).

We have shown that an object of 𝜋L(𝑛) is in particular an object of U(𝑛 + 1), indeed,

the U(𝑛 + 1)-structure on 𝜋*𝐿 consists solely of its non-top 𝜆-operations, which are linear

as required.

7.4. The category W(𝑛+ 1) of L(𝑛)-Π-algebras

For 𝑛 ≥ 0, let W(𝑛 + 1) denote the algebraic category whose objects are V+
𝑛+1-graded

vector spaces which are simultaneously an object of U(𝑛 + 1) and of L(𝑛 + 1), such that

the compatibilities of Proposition 5.7 are satisfied. Explained another way, an object of

W(𝑛+ 1) is such a vector space with the bracket and all of the 𝜆-operations (both top and

non-top) described in §7.2, subject to the compatibilities of Proposition 5.7.

This category has a number of useful properties, following from the calculations of [13],

primarily:

Proposition 7.1. The operations defined in §7.2 generate the set of natural operations on

the homotopy of simplicial objects of L(𝑛) and satisfy the compatibilities of Proposition 5.7.

The category W(𝑛+1) is isomorphic to the category 𝜋L(𝑛) of L(𝑛)-Π-algebras. The monad

𝐹W(𝑛+1) on V+
𝑛+1 factors as a composite 𝐹U(𝑛+1) ∘ 𝐹L(𝑛+1), with monad structure arising

from a distributive law [2] of monads on V+
𝑛+1.

Proof. All of these facts are easy to prove after observing that, for 𝑊 ∈ 𝑠V a coproduct of

spheres, 𝜋*(𝐹L(𝑛)𝑊 ) embeds in 𝜋*(Γ(L )𝑊 ), which, along with 𝜋*(Λ(L )𝑊 ), is described

in Proposition 5.9 (although by Λ(L ) and Γ(L ) we mean the shifted monads of §7.1). In

order to make this observation, let write 𝑊0 for
⨁︀

𝑡≥1𝑊
𝑡
0,...,0, the non-restrictable part of

𝑊 . This is actually a sub-coproduct of 𝑊 , the coproduct of those summands of 𝑊 which

lie in homological dimension (0, . . . , 0). There is a commuting diagram of simplicial vector
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spaces, containing two short exact sequences:

0 // 𝐹L(𝑛)𝑊
𝛼 // Γ(L )𝑊 𝜌𝛾

++ ++
𝛾����

Γ(L )𝑊0
Λ(L )𝑊0

// 0

0 // Λ(L )𝑊0
𝛽 // Γ(L )𝑊0

𝜌 33 33

where 𝛼 and 𝛽 are inclusions and 𝛾 and 𝜌 are epimorphisms. On homotopy groups: 𝛽* is

injective (its source and target are well understood), so that 𝜌* is surjective. Thus 𝛾* is

surjective (after all, 𝛾 is an isomorphism in those internal degrees in which its codomain in

non-zero), implying that (𝜌𝛾)* is surjective. This implies that 𝛼* is injective, as hoped.

The following two lemmas are the direct analogues of Lemmas 6.10 and 6.11:

Lemma 7.2. For 𝑛 ≥ 0, the monads 𝐹U(𝑛+1) and 𝐹W(𝑛+1) on V+
𝑛+1 may be promoted to

monads on the category qV+
𝑛+1 by requiring that quadratic gradings add when taking brackets

and double when applying 𝜆-operations. The same holds for L(𝑛) for 𝑛 ≥ 0.

7.5. The factorization 𝑄L(𝑛) ∘𝑄U(𝑛) of 𝑄W(𝑛)

For 𝑛 ≥ 0, we define

𝑄U(𝑛+1) :=
(︁
W(𝑛+ 1)

forget−→ U(𝑛+ 1)
𝑄U(𝑛+1)

−→ V+
𝑛+1

)︁
.

That is, for 𝑋 ∈W(𝑛+1) we may take the quotient by the image of the non-top 𝜆-operations

(which are linear, so that this operation is well defined). In fact, it is not hard to see that,

for 𝑋 ∈W(𝑛+1), 𝑄U(𝑛+1)𝑋 retains the structure of an object of L(𝑛+1), so that we may

view 𝑄U(𝑛+1) as a functor W(𝑛+ 1) −→ L(𝑛+ 1).

Lemma 7.3. For 𝑛 ≥ 0 and 𝑋 ∈ W(𝑛+ 1), 𝑋 is in particular an object of L(𝑛+ 1), and

the vector space 𝑄U(𝑛+1)𝑋 retains this structure, yielding a factorization:

𝑄W(𝑛+1) = 𝑄L(𝑛+1) ∘𝑄U(𝑛+1) :
(︀
W(𝑛+ 1) −→ L(𝑛+ 1) −→ V+

𝑛+1

)︀
.

Moreover the composite 𝑄U(𝑛+1) ∘ 𝐹W(𝑛+1) equals the free construction 𝐹L(𝑛+1).

Proof. Similar to the proof of Lemma 6.11, using the observation from the proof of Propo-

sition 7.1 that 𝜋*(𝐹L(𝑛)𝑊 ) ⊆ 𝜋*(𝐹Γ(L )𝑊 ).

This differs from the definition of 𝑄U(0) −→ L(0), in which one takes the quotient by

all the 𝑃 -operations. Indeed, the category W(0) differs from the categories W(𝑛 + 1) (for
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𝑛 ≥ 0) in a number of ways, primarily because W(0) is a category of cohomology algebras

while the W(𝑛+ 1) are categories of Π-algebras. If 𝑋 ∈W(0) and 𝑌 ∈W(𝑛+ 1):

(1) 𝑌 is a Lie algebra, while 𝑋 is only an 𝑆(L )-algebra;

(2) the 𝑃 -operations on 𝑋 are always defined and vanish when out of range, while the 𝜆

operations are simply undefined when out of range;

(3) the top 𝑃 -operation is the self-bracket and thus is linear, while the top 𝜆-operation is

the restriction and thus a quadratic refinement of the bracket.

Nevertheless, the two regimes share the following common ground:

Corollary 7.4. For all 𝑛 ≥ 0, there are algebraic categories W(𝑛) and U(𝑛), a forgetful

functor 𝑈 ′ : W(𝑛) −→ U(𝑛), and a functor 𝑄U(𝑛) : W(𝑛) −→ L(𝑛), such that

𝑈L(𝑛) ∘𝑄U(𝑛) = 𝑄U(𝑛) ∘ 𝑈 ′, 𝑄W(𝑛) = 𝑄L(𝑛) ∘𝑄U(𝑛) and 𝑄U(𝑛) ∘ 𝐹W(𝑛) = 𝐹L(𝑛).

7.6. Decomposition maps for L(𝑛) and W(𝑛)

Here we will introduce decomposition maps for the categories L(𝑛) and W(𝑛), and calculate

the resulting quadratic part maps. The definitions are simple enough, and the reader can

verify that each is well defined. For any 𝑛 ≥ 0, the following formulae define decomposition

maps 𝑗C : 𝑄C(𝑋 Y 𝑌 ) −→ 𝑄C𝑋 ⊗𝑄C𝑌 :

𝑗W(0) : 𝑃
𝑖ℓ · · ·𝑃 𝑖1 [𝑧1, · · · , 𝑧𝑎] ↦−→

⎧⎨⎩𝑧1 ⊗ 𝑧2, if ℓ = 0, 𝑎 = 2, 𝑧1 ∈ 𝑋, 𝑧2 ∈ 𝑌,

0, otherwise.

𝑗W(𝑛+1) : [𝑧1, · · · , 𝑧𝑎]𝜆𝑖1 · · ·𝜆𝑖ℓ ↦−→

⎧⎨⎩𝑧1 ⊗ 𝑧2, if ℓ = 0, 𝑎 = 2, 𝑧1 ∈ 𝑋, 𝑧2 ∈ 𝑌,

0, otherwise.

𝑗L(𝑛) : [𝑧1, · · · , 𝑧𝑎][2
𝑟] ↦−→

⎧⎨⎩𝑧1 ⊗ 𝑧2, if 𝑟 = 0, 𝑎 = 2, 𝑧1 ∈ 𝑋, 𝑧2 ∈ 𝑌,

0, otherwise.

Proposition 7.5. Suppose 𝑉 ∈ V+
𝑛 . Then:

(1) quL(𝑛) is the composite 𝐹L(𝑛)𝑉 −→−→ q2𝐹
L(𝑛)𝑉 ⊆ Σ𝑆2𝑉 ;

(2) quW(𝑛) is the composite 𝐹W(𝑛)𝑉 −→−→ 𝐹L(𝑛)𝑉 −→−→ q2𝐹
L(𝑛)𝑉 ⊆ Σ𝑆2𝑉 .

Proof. Consider the case W(𝑛+ 1) for 𝑛 ≥ 0. As quC vanishes except on quadratic grading
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2, one only checks terms [𝑥, 𝑦], 𝑥[2], and 𝑥𝜆𝑖 (a U(𝑛+ 1)-operation, not the restriction):

quW(𝑛+1)([𝑥, 𝑦]) = 𝑗W(𝑛+1)([𝑥1 + 𝑥2, 𝑦1 + 𝑦2] + [𝑥1, 𝑦1] + [𝑥2, 𝑦2])

= 𝑗W(𝑛+1)([𝑥1, 𝑦2] + [𝑥2, 𝑦1]) = 𝑥⊗ 𝑦 + 𝑦 ⊗ 𝑥,

which is precisely the representation of [𝑥, 𝑦] in q2𝐹
L(𝑛+1)𝑉 ⊆ Σ(𝑉 ⊗2). Similarly, quW(𝑛+1)(𝑥𝜆𝑖)

vanishes (as U(𝑛 + 1)-operations are linear), while quW(𝑛+1)(𝑥
[2]) equals 𝑥 ⊗ 𝑥 as desired.

The other cases, including the case of W(0), are barely any different.
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Chapter 8

Operations on W(𝑛)- and

U(𝑛)-cohomology

8.1. Vertical 𝛿-operations on 𝐻*W(0) and 𝐻*U(0)

We will now define natural homomorphisms for 𝑉 ∈ V+

𝜃𝑖 : (𝐹
W(0)𝑉 )𝑡+𝑖+1 −→ 𝑉 𝑡, for 2 ≤ 𝑖 < 𝑡.

There are natural homomorphisms into the quadratic grading 2 part of 𝐹W(0)𝑉 :

𝑃 𝑖 : 𝑉 𝑡 −→ q2(𝐹
W(0)𝑉 )𝑡+𝑖+1, for 2 ≤ 𝑖 < 𝑡

[ , ] : (𝑆2𝑉 )𝑡 −→ q2(𝐹
W(0)𝑉 )𝑡+1,

and for given 𝑚 ≥ 1, the degree 𝑚, quadratic grading 2 part q2(𝐹
W(0)𝑉 )𝑚 decomposes as

q2(𝐹
W(0)𝑉 )𝑚 = im

(︀
(𝑆2𝑉 )𝑚−1 [,]−→ q2𝐹

W(0)𝑉
)︀
⊕

⨁︁
2≤𝑖<(𝑚−1)/2

im
(︀
𝑉 𝑚−𝑖−1 𝑃 𝑖

−→ q2𝐹
W(0)𝑉

)︀
.

Moreover, each map 𝑃 𝑖 : 𝑉 𝑡 −→ q2(𝐹
W(0)𝑉 )𝑡+𝑖+1 appearing in this decomposition is an

isomorphism onto its image, so that for 2 ≤ 𝑖 < 𝑡 we may construct 𝜃𝑖 as the composite

𝜃𝑖 :

(︂
(𝐹W(0)𝑉 )𝑡+𝑖+1 proj−→−→ (q2𝐹

W(0)𝑉 )𝑡+𝑖+1 proj−→−→ im(𝑃 𝑖)
(𝑃 𝑖)−1

−→ 𝑉 𝑡

)︂
.

Here we have projected onto the quadratic filtration 2 part, and then further onto the relevant

summand in its natural decomposition. Note that although 𝑃 𝑡 : 𝑉 𝑡 −→ q2(𝐹
W(0)𝑉 )2𝑡+1 is

a non-trivial linear map when 𝑡 ≥ 2, its image is entangled with the image of the bracket,

and we are not able to split it off. Thus we are not able to improve on the bounds 2 ≤ 𝑖 < 𝑡.
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Proposition 8.1. There is a linear map 𝜃⋆𝑖 : 𝑉𝑡 −→ (𝐶𝐻Com−coalg𝑉 )𝑡+𝑖+1 for 2 ≤ 𝑖 < 𝑡,

natural in 𝑉 ∈ V+, such that the following diagram commutes:

D((𝐶𝐻Com−coalg𝑉 )𝑡+𝑖+1) D𝑉
(𝜃⋆𝑖 )

*
//

(𝐹W(0)D𝑉 )𝑡+𝑖+1

OO
𝜃𝑖

33

Proof. When 𝑉 is of finite type, as 𝐹W(0) preserves vector spaces of finite type, we may

simply define 𝜃⋆𝑖 to be the dual of 𝜃𝑖. This is natural on vector spaces of finite type, and any

vector space is the filtered colimit of such.

In fact, whenever 𝑡 ≥ 2 we may define a non-linear function

𝜃⋆𝑡 : 𝑉𝑡 −→ (𝐶𝐻Com−coalg𝑉 )2𝑡+1

which completes the collection of functions 𝜃⋆𝑖 , but not by this method: we use the upcoming

Proposition 11.14 to define this top 𝜃⋆𝑖 . That we need to do this is a disadvantage of working

with cohomology algebras, as opposed to homology coalgebras.

Proposition 8.2. Suppose that 𝑋 ∈ 𝑠W(0) is almost free, so that we may identify 𝐻*
W(0)𝑋

with 𝜋*D𝑄W(0)𝑋. Then for 2 ≤ 𝑖 < 𝑡, the chain map ̃︀𝜃𝑖 of Proposition 6.4 induces a linear

operation

𝛿v𝑖 : (𝐻*
W(0)𝑋)𝑠𝑡 −→ (𝐻*

W(0)𝑋)𝑠+1
𝑡+𝑖+1.

These operations are natural in maps preserving the generating subspaces, and satisfy the

unstable 𝛿-Adem relation of Proposition 5.3((6)).

If 𝑋 is of finite type, this statement may be amended to include a (potentially non-linear)

operation

𝛿v𝑡 : (𝐻*
W(0)𝑋)0𝑡 −→ (𝐻*

W(0)𝑋)12𝑡+1

induced by the function 𝜃⋆𝑡 .

For any 𝑋 ∈ 𝑠W(0), the bar construction 𝐵W(0)𝑋 of 𝑋 has a natural almost free structure,

so that Proposition 8.2 may be used to construct natural operations on 𝐻*
W(0)𝑋.

Proof of Proposition 8.2. The finite type assumption is needed in order to define the oper-

ation 𝛿v𝑡 , as it is not induced by a chain map on 𝑁*𝑄
W(0)𝑋. Instead, it is induced by the

potentially non-linear function

̃︀𝜃⋆𝑡 : (𝑁0 Pr𝐻Com−coalg D𝑋)𝑡 −→ (𝑁1 Pr𝐻Com−coalg D𝑋)2𝑡+1
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induced by the function 𝜃⋆𝑡 defined using Proposition 11.14. We will give the proof that

the operations 𝛿v𝑖 with 2 ≤ 𝑖 < 𝑡 are well defined and satisfy the 𝛿-Adem relations, in the

cohomological variance. By working with homology coalgebras, and thus avoiding double-

dualization, the proof given below extends to encompass the extra operation 𝛿v𝑡 in dimension

zero. This exercise is left to the reader.

The conditions of Proposition 6.4 are satisfied with 𝜃 = 𝜃𝑖 and 𝐺 is the identity functor.

The condition

𝜃 ∘ 𝜇𝑉 = 𝜃 ∘ 𝜖𝐹C𝑉 + 𝜃 ∘ 𝐹 C𝜖𝑉 : 𝐹 C𝐹 C𝑉 −→ 𝑉

just states that given an iterated expression in 𝐹 C𝐹 C𝑉 , the two obvious ways to produce a

summand of the form 𝑃 𝑖𝑣 under the map 𝜇 : 𝐹 C𝐹 C𝑉 −→ 𝐹 C𝑉 are the only ways, due to

the homogeneity of the 𝑃 -Adem relations.

It just remains to prove the 𝛿-Adem relations, which we will do using the technique of

[46], the point being that the algebra of 𝛿-operations is Koszul dual to P. For this, we define

a map 𝜃𝑖𝑗 , whenever 𝑖 < 2𝑗, 2 ≤ 𝑗 < 𝑡 and 2 ≤ 𝑖 < 𝑡+ 𝑗 + 1:

𝜃𝑖𝑗 :

(︂
(𝐹W(0)𝑉 )𝑡+𝑖+𝑗+2 proj−→−→ (q4𝐹

W(0)𝑉 )𝑡+𝑖+𝑗+2 proj−→−→ im(𝑃 𝑖,𝑗)
(𝑃 𝑖,𝑗)−1

−→ 𝑉 𝑡

)︂
,

where we have split off the image of 𝑃 𝑖,𝑗 = 𝑃 𝑖𝑃 𝑗 as before. This is possible since neither

𝑃 𝑗 nor 𝑃 𝑖 are entangled with the bracket in these ranges. We may identify 𝑄W(0)𝑋𝑠 with

𝑉𝑠, at the cost of replacing 𝑑0 with 𝜖 ∘ 𝑑0, as in Lemma 2.6. Define ̃︁𝜃𝑖𝑗 to be the composite

𝑉𝑠+1
𝑑0−→ 𝐹𝑉𝑠

𝜃𝑖𝑗−→ 𝑉𝑠. This will be the nullhomotopy giving the 𝛿-Adem relation. As in the

proof of Proposition 6.4, we have 𝑑𝑘 ∘ ̃︁𝜃𝑖𝑗 = ̃︁𝜃𝑖𝑗 ∘ 𝑑𝑘+1 for 𝑘 ≥ 1, and ̃︁𝜃𝑖𝑗 has nullhomotopy

the sum

𝜖𝑑0̃︁𝜃𝑖𝑗 +̃︁𝜃𝑖𝑗(𝜖𝑑0 + 𝑑1) = (𝜖𝑑0𝜃𝑖𝑗 + 𝜃𝑖𝑗𝑑0𝜖+ 𝜃𝑖𝑗𝑑0)𝑑0.

The 𝛿-Adem relation will follow from

𝜃𝑖𝑗𝑑0 =
(︁
𝜖𝑑0𝜃𝑖𝑗 + 𝜃𝑖𝑗𝑑0𝜖+

∑︀
(𝛼,𝛽)

P→(𝑖,𝑗) 𝜃𝛽𝑑0𝜃𝛼

)︁
: 𝐹𝑉𝑠+1 −→ 𝑉𝑠,

This identity states the following: if 𝑉 ∈ V+
0 , and 𝑓(𝑔𝑘) is a nested W(0)-expression with

𝑔𝑘 ∈ 𝐹W(0)𝑉 and 𝑓(𝑔𝑘) ∈ 𝐹W(0)𝐹W(0)𝑉 , then if we write 𝑑0 : 𝐹W(0)𝐹W(0)𝑉 −→ 𝐹W(0)𝑉

for the monad product map, there are only three ways that one may obtain expressions of

the form 𝑃 𝑖𝑃 𝑗𝑣 in 𝑑0(𝑓(𝑔𝑘)): for some 𝑘, 𝑔𝑘 = 𝑃 𝑖𝑃 𝑗𝑣, and 𝑓 adds no further operations

to this term; 𝑓 = 𝑃 𝑖𝑃 𝑗𝑔𝑘 for some 𝑘 for which 𝑔𝑘 = 𝑣 is a unit expression; or for some 𝑘,

𝑔𝑘 = 𝑃 𝛽𝑣, and 𝑓 has 𝑃𝛼(𝑔𝑘) as a summand. In this last case, after applying 𝑑0, we may

need to rearrange the composite 𝑃𝛼𝑃 𝛽𝑣 using the 𝑃 -Adem relations, and we sum over those

(𝛼, 𝛽) producing a summand 𝑃 𝑖𝑃 𝑗𝑣.
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This shows that the proposed nullhomotopy equals

∑︀
(𝛼,𝛽)

P→(𝑖,𝑗)
̃︀𝜃𝛽 ∘̃︁𝜃𝛼,

and as Goerss [33] constructs the 𝑃 -algebra as the Koszul dual, in the sense of [46], of the

Δ-algebra, so that (𝛼, 𝛽)
P→ (𝑖, 𝑗) if and only if (𝑖, 𝑗) Δ→ (𝛼, 𝛽), so that the nullhomotopy

equals the desired sum: ∑︀
(𝑖,𝑗)

Δ→(𝛼,𝛽)
̃︀𝜃𝛽 ∘̃︁𝜃𝛼.

The same constructions work in the category 𝑠U(0) of simplicial unstable P-modules, the

only difference being that when we define 𝜃𝑖, we need not worry about Lie algebra structures,

and we can define a map

𝜃𝑖 : (𝐹
U(0)𝑉 )𝑡+𝑖+1 −→ 𝑉 𝑡

whenever 2 ≤ 𝑖 ≤ 𝑡, so that there is one more operation available on 𝐻*
U(0) than on 𝐻*

W(0),

at least in dimensions 𝑠 > 0.

It will be useful to encode this structure in a definition. Write Mv(1) for the algebraic

category whose objects are vector spaces 𝑀 ∈ V1
+ with left 𝛿-operations

𝛿v𝑖 :𝑀 𝑠
𝑡 −→𝑀 𝑠+1

𝑡+𝑖+1, defined whenever 2 ≤ 𝑖 ≤ 𝑡,

satisfying unstable 𝛿-Adem relations analogous to those of (6) in Proposition 5.3.

Proposition 8.3. Suppose that 𝑋 ∈ 𝑠U(0) is almost free. Then the chain maps ̃︀𝜃𝑖 of

Proposition 6.4 give 𝐻*
U(0)𝑋 the structure of an object of Mv(1), natural in maps preserving

the generating subspaces. In fact, Mv(1) is the category of U(0)-𝐻*-algebras.

See §9 for further discussion of this fact, and Proposition 9.1 for a restatement. It is not

true that 𝐻*
W(0) is an object of Mv(1), a fact that we emphasize because 𝐻*

W(𝑛) will be an

object of Mv(𝑛+ 1) for 𝑛 ≥ 1 (under definitions made in §8.2).

In order to give a basis for a free object in Mv(1), for a sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1) of

integers 𝑖𝑗 ≥ 2, we use the function

𝑚(𝐼) := max{(𝑖1), (𝑖2 − 𝑖1 − 1), (𝑖3 − 𝑖2 − 𝑖1 − 2), . . . , (𝑖ℓ − · · · − 𝑖1 − ℓ+ 1)},

of §6.6, following the convention that max(∅) = −∞, and the notion of 𝛿-admissibility from

§5.4: each 𝑖𝑗 ≥ 2 and 𝑖𝑗+1 ≥ 2𝑖𝑗 for 1 ≤ 𝑗 < ℓ.

Lemma 8.4. For 𝑉 ∈ V1
+ with homogeneous basis 𝐵, a basis of 𝐹Mv(1)𝑉 is

{𝛿v𝐼 𝑏 | 𝑏 ∈ 𝐵𝑠
𝑡 , 𝐼 𝛿-admissible with 𝑚(𝐼) ≤ 𝑡} .
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We will often apply such results as these when 𝑉 is concentrated in degrees 𝑉 0
𝑡 . At this

point we introduce a notational abuse, identifying V+ with the full subcategory of V1
+ with

objects concentrated in these degrees. The effect of this will be that we will be able to write

𝐹Mv(1)𝑉 for 𝑉 ∈ V+. Restricting Lemma 8.4 to such cases:

Corollary 8.5. For 𝑉 ∈ V+ with homogeneous basis 𝐵, a basis of 𝐹Mv(1)𝑉 ∈ V1
+ is

{𝛿v𝐼 𝑏 | 𝑏 ∈ 𝐵𝑡, 𝐼 𝛿-admissible with 𝑚(𝐼) ≤ 𝑡} .

8.2. Vertical Steenrod operations for 𝐻*W(𝑛) and 𝐻*U(𝑛) when

𝑛 ≥ 1

For 𝑉 ∈ V+
𝑛 , we will define natural homomorphisms

𝜃𝑖 : (𝐹W(𝑛)𝑉 )2𝑡+1
𝑠𝑛+𝑖−1,2𝑠𝑛−1,...,2𝑠1

−→ 𝑉 𝑡
𝑠𝑛,...,𝑠1 ,

which are defined for all 𝑖, 𝑠1, . . . , 𝑠𝑛 ≥ 0 and 𝑡 ≥ 1, but are zero except when 1 ≤ 𝑖 ≤ 𝑠𝑛

and not all of 𝑖−1, 𝑠𝑛−1, . . . , 𝑠1 are zero. These are rather easier to define than in the 𝑛 = 0

case investigated in §8.1, as the monad 𝐹W(𝑛) is a simple composite 𝐹U(𝑛)𝐹L(𝑛) of monads

when 𝑛 ≥ 1. Indeed, there are natural monomorphisms

(−)𝜆𝑖−1 : 𝑉
𝑡
𝑠𝑛,...,𝑠1 −→ (q2𝐹

W(𝑛)𝑉 )2𝑡+1
𝑠𝑛+𝑖−1,2𝑠𝑛−1,...,2𝑠1

defined only when 1 ≤ 𝑖 ≤ 𝑛 and 𝑖− 1, 𝑠𝑛−1, . . . , 𝑠1 are not all zero, and an inclusion

incl : q2𝐹L(𝑛)𝑉 −→ q2𝐹
W(𝑛)𝑉.

As in the 𝑛 = 0 case, the images of the listed maps are linearly independent and span

the quadratic grading 2 part of 𝐹W(𝑛)𝑉 . We define 𝜃𝑖 to be zero unless 1 ≤ 𝑖 ≤ 𝑛 and

𝑖− 1, 𝑠𝑛−1, . . . , 𝑠1 are not all zero, in which case we define it as the composite:

𝜃𝑖 :
(︁
(𝐹W(𝑛)𝑉 )2𝑡+1

𝑠𝑛+𝑖−1,2𝑠𝑛−1,...,2𝑠1

proj∘proj−→−→ im(𝜆𝑖−1)
(𝜆𝑖−1)

−1

−→ 𝑉 𝑡
𝑠𝑛,...,𝑠1

)︁
.

One can give exactly the same definitions for the free construction in U(𝑛), producing

functions 𝜃𝑖 : 𝐹U(𝑛)𝑉 −→ 𝑉 which are zero under the same conditions as for W(𝑛).

Write Mv(𝑛 + 1) for the algebraic category whose objects are vector spaces 𝑀 ∈ V𝑛+1
+

with left Steenrod operations

Sq𝑖v :𝑀
𝑠𝑛+1,...,𝑠1
𝑡 −→𝑀

𝑠𝑛+1+1,𝑠𝑛+𝑖−1,2𝑠𝑛−1,...,2𝑠1
2𝑡+1 ,
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which are zero except when 1 ≤ 𝑖 ≤ 𝑠𝑛 and not all of 𝑖− 1, 𝑠𝑛−1, . . . , 𝑠1 are zero, and which

satisfy the homogeneous Sq-Adem relations. Note that in an object of Mv(2), Sq1v = 0.

In the present case (𝑛 ≥ 1) there is no disparity between the unstableness conditions on

W(𝑛)- and U(𝑛)-cohomology, so that the analogue of Propositions 8.2 and 8.3 is:

Proposition 8.6. Suppose that 𝑋 ∈ 𝑠C is almost free, where C stands for either W(𝑛) or

U(𝑛) with 𝑛 ≥ 1. Then the chain maps ̃︀𝜃𝑖 of Proposition 6.4 give 𝐻*
C𝑋 the structure of

an object of Mv(𝑛 + 1), natural in maps of almost free objects preserving the generating

subspaces. Again, Mv(𝑛+ 1) is the category of U(𝑛)-𝐻*-algebras.

In order to give a basis for a free object in Mv(𝑛+ 1), for a sequence 𝐼 = (𝑖ℓ, . . . , 𝑖1) of

integers 𝑖𝑗 ≥ 1, we define

𝑚(𝐼) := max{(𝑖1), (𝑖2 − 𝑖1 + 1), (𝑖3 − 𝑖2 − 𝑖1 + 2), . . . , (𝑖ℓ − · · · − 𝑖1 + (ℓ− 1))}.

Recall that 𝐼 is Sq-admissible if each 𝑖𝑗 ≥ 1 and 𝑖𝑗+1 ≥ 2𝑖𝑗 for 1 ≤ 𝑗 < ℓ.

Lemma 8.7. For 𝑉 ∈ V𝑛+1
+ with homogeneous basis 𝐵, a basis of 𝐹Mv(𝑛+1)𝑉 is{︂

Sq𝐽v𝑏

⃒⃒⃒⃒
𝑏 ∈ 𝐵𝑠𝑛+1,...,𝑠1

𝑡 , 𝐽 Sq-admissible with 𝑚(𝐽) ≤ 𝑠𝑛,
if 𝑠𝑛−1= · · ·=𝑠1=0 then 𝐽 does not contain 1

}︂
.

Performing the same abuse of notation as in Corollary 8.5:

Corollary 8.8. For 𝑉 ∈ V𝑛+ with homogeneous basis 𝐵, a basis of 𝐹Mv(𝑛+1)𝑉 ∈ V𝑛+1
+ is{︂

Sq𝐽v𝑏

⃒⃒⃒⃒
𝑏 ∈ 𝐵𝑠𝑛,...,𝑠1

𝑡 , 𝐽 Sq-admissible with 𝑚(𝐽) ≤ 𝑠𝑛,
if 𝑠𝑛−1= · · ·=𝑠1=0 then 𝐽 does not contain 1

}︂
.

8.3. Horizontal Steenrod operations and a product for 𝐻*W(𝑛)

For any 𝑛 ≥ 0, we will construct operations on the homology 𝐻*
W(𝑛) arising from the 𝑆(L )-

algebra structure or Lie algebra structures.

Indeed, suppose that 𝑋 ∈ 𝑠W(𝑛) is almost free. Then 𝑄U(𝑛)𝑋 ∈ 𝑠L(𝑛) is also almost

free, on essentially the same generating subspaces. Thus, the cohomotopy of 𝑄W(𝑛)𝑋 =

𝑄L(𝑛)𝑄U(𝑛)𝑋 is an instance of simplicial partially restricted Lie algebra cohomology. Coho-

mology operations of this type are discussed in §6.8 and Appendix A. In the present context,

we have two equivalent definitions, one using 𝜓L(𝑛) and one using 𝜓W(𝑛), and until Appendix
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A, we will use 𝜓W(𝑛), defining operations

Sq𝑗h :

(︂
𝐻𝑛

W(𝑛)(𝑋)
Sq𝑗−1

ext−→ 𝜋𝑛+𝑗−1D𝑆2𝑄W(𝑛)𝑋
𝜓*
W(𝑛)−→ 𝐻𝑛+𝑗

W(𝑛)(𝑋)

)︂
and

𝜇 :

(︂
𝐻𝑛1

W(𝑛)(𝑋)⊗𝐻𝑛2

W(𝑛)(𝑋)
𝜇ext−→ 𝜋𝑛1+𝑛2D𝑆2𝑄W(𝑛)𝑋

𝜓*
W(𝑛)−→ 𝐻𝑛1+𝑛2+1

W(𝑛) (𝑋)

)︂
.

In more detail:

Proposition 8.9. Fix 𝑛 ≥ 0. For 𝑋 ∈ 𝑠W(𝑛), there are natural operations

Sq𝑗h : (𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡 −→ (𝐻*

W(𝑛)𝑋)
𝑠𝑛+1+𝑗,2𝑠𝑛,...,2𝑠1
2𝑡+1 ,

𝜇 : (𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡 ⊗ (𝐻*

W(𝑛)𝑋)𝑝𝑛+1,...,𝑝1
𝑞 −→ (𝐻*

W(𝑛)𝑋)
𝑠𝑛+1+𝑝𝑛+1+1,𝑠𝑛+𝑝𝑛,...,𝑠1+𝑝1
𝑡+𝑞+1

with the following properties

(1) the product 𝜇 gives 𝐻*
C𝐿 the structure of a (grading shifted) 𝑆(C )-algebra;

(2) the squaring operation on 𝐻*
C𝐿 equals the top Steenrod operation:

Sq𝑠𝑛+1+1𝑥 = 𝑥2 for 𝑥 ∈ (𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡 ;

(3) if 𝑥 ∈ (𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡 , then Sq𝑖𝑥 = 0 unless 1 ≤ 𝑖 ≤ 𝑠𝑛+1 + 1 and not all of

𝑖− 1, 𝑠𝑛, . . . , 𝑠1 equal zero;

(4) if 𝑛 = 0 then Sq1 ≡ 0, and Sq2𝑥 = 0 for 𝑥 ∈ (𝐻*
W(0)𝑋)𝑠1𝑡 with 𝑡 ≥ 2;

(5) every Steenrod operation is linear;

(6) the Cartan formula holds: for all 𝑥, 𝑦 ∈ 𝐻*
C𝐿 and 𝑖 ≥ 0,

Sq𝑖h(𝑥𝑦) =
∑︀𝑖−1

𝑘=1(Sq
𝑘𝑥)(Sq𝑖−𝑘𝑦);

(7) the homogeneous Sq-Adem relations hold, making 𝐻*
C𝐿 a left A-module.

Proof. Almost everything here follows from Proposition A.3, which demonstrates that the

operations we are discussing here coincide with those defined on 𝐻*
�̄�

(c.f. Propositions 6.12

and 6.13). The same technique used to prove Proposition 6.14 proves the new part of (3).

For (4), when 𝑛 = 0, (3) shows that Sq1𝑥 = 0. On the other hand, to see why Sq2𝑥 = 0

when 𝑡 ≥ 2 is more difficult, especially since we have not determined the category of W(0)-

Π-algebras. Nonetheless, as in the proof of Proposition 6.14, we will prove this for the

universal example 𝚤𝑠𝑡 ∈ 𝐻*
W(0)K

W(0),𝑡
𝑠 . The reverse Adams spectral sequence (§3.4) can be

equipped with a quadratic grading if we view the generator of KW(0),𝑡
𝑠 as lying in quadratic
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grading one, and is of the form

q𝑘𝐸
𝑝,𝑞
2 = q𝑘(𝐻

𝑝
𝜋W(0)K

𝜋W(0),𝑡
0,𝑠 )𝑞𝑇 =⇒ q𝑘(𝐻

𝑝+𝑞
W(0)K

W(0),𝑡
𝑠 )𝑇 .

As Sq2𝚤𝑠𝑡 ∈ q2(𝐻
𝑠+2
W(0)K

W(0),𝑡
𝑠 )2𝑡+1, we need to determine

q2(𝐻
2
𝜋W(0)K

𝜋W(0),𝑡
0,𝑠 )𝑠2𝑡+1 and q2(𝐻

1
𝜋W(0)K

𝜋W(0),𝑡
0,𝑠 )𝑠+1

2𝑡+1,

and as in the proof of Proposition 6.14, we need to see how far F2{𝚤𝑡𝑠} is from being free in

𝜋W(0). Fortunately, we only need to answer this question in quadratic grading two, and

𝐹 𝜋W(0)(F2{𝚤𝑡𝑠}) = 𝜋*(SW(0),𝑡
𝑠 ) = 𝜋*(𝐹

W(0)K𝑡
𝑠).

Now if 𝑡 ≥ 2, q2𝐹W(0)𝑉 naturally decomposes as

q2𝐹
W(0)𝑉 = q2𝐹

𝑆(L )𝑉 ⊕ 𝑃 2𝑉 ⊕ · · · ⊕ 𝑃 𝑡−1𝑉,

and we calculate, by Proposition 5.6:

q2𝐹
𝜋W(0)(F2{𝚤𝑡𝑠})2𝑡+1 = F2{𝜆2𝚤𝑡𝑠, 𝜆3𝚤𝑡𝑠, . . . , 𝜆𝑠𝚤𝑡𝑠}

That is, there are two missing 𝜆-operations, 𝜆0 and 𝜆1, in the functor 𝐹𝑆(L ), and the

presence of the operations 𝑃 2, . . . , 𝑃 𝑡−1 do not effect q2𝐹 𝜋W(0)(F2{𝚤𝑡𝑠}) in internal dimension

2𝑡 + 1. We now have enough information to proceed as in the proof of Proposition 6.14,

since 𝜆𝑘𝚤𝑡𝑠 ∈ q2𝐹
𝜋W(0)(F2{𝚤𝑡𝑠})2𝑡+1

𝑠+𝑘 for 2 ≤ 𝑘 ≤ 𝑠.

For 𝑛 ≥ 0, write Mh(𝑛 + 1) for the algebraic category whose objects are vector spaces

𝑀 ∈ V𝑛+1
+ with left Steenrod operations and a commutative pairing satisfying the conditions

of Proposition 8.9. We have simply shown that 𝐻*
W(𝑛) takes values in Mh(𝑛 + 1) — it is

certainly not true that Mh(𝑛+1) is the category of W(𝑛)-𝐻*-algebras, as we have also seen

that 𝐻*
W(𝑛) takes values in Mv(𝑛+ 1).

Note that the unstableness condition implies that 𝑥2 = 0 whenever 𝑥 ∈𝑀0,...,0
𝑡 . Indeed

Proposition 8.10. Suppose that 𝑛 ≥ 1, and that 𝑉 ∈ V𝑛+1
+ has homogeneous basis 𝐵. Then

𝐹Mh(𝑛+1)𝑉 is the quotient of the non-unital commutative algebra

𝑆(C )

[︂
Sq𝐽h𝑏

⃒⃒⃒⃒
𝑏 ∈ 𝐵𝑠𝑛+1,...,𝑠1

𝑡 , 𝐽 Sq-admissible with 𝑒(𝐽) ≤ 𝑠𝑛+1,

if 𝑠𝑛 = · · · = 𝑠1 = 0 then 𝐽 does not contain 1

]︂

by the relation 𝑏2 = 0 if 𝑏 ∈ 𝐵0,...,0
𝑡 . Here, 𝑒(𝐽) := 𝑗ℓ − 𝑗ℓ−1 − · · · 𝑗1 is the Serre excess of 𝐽 .
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Proof. By [47, 6.1], the true free object is a quotient of what we propose. It is in fact equal

to what we propose, because the two-sided ideal in the homogeneous Steenrod algebra A

generated by Sq1h is spanned by those admissible sequences ending in Sq1h, so that forcing

Sq1ℎ = 0 in the relevant degrees has no unintended consequences.

Corollary 8.11. Suppose that 𝑛 ≥ 1. For 𝑉 ∈ V𝑛+ with homogeneous basis 𝐵. Then

𝐹Mh(𝑛+1)𝑉 ∈ V𝑛+1
+ is the non-unital commutative algebra coproduct

𝑆(C )

[︂
𝑏

⃒⃒⃒⃒
𝑏 ∈ 𝐵𝑠𝑛,...,𝑠1

𝑡

𝑠𝑛, . . . , 𝑠1 not all zero

]︂
⊔ Λ(C )

[︁
𝑏
⃒⃒⃒
𝑏 ∈ 𝐵0,...,0

𝑡

]︁
.

8.4. Relations between the horizontal and vertical operations

It will be helpful to be able to reduce expressions in the various available operations to a

standard format,

∏︀
𝑘 Sq

𝐽𝑘
h 𝛿

v
𝐼𝑘
𝑥𝑘 when 𝑛 = 0, or

∏︀
𝑘 Sq

𝐽𝑘
h Sq𝐼𝑘v 𝑥𝑘 when 𝑛 ≥ 1,

which is possible, thanks to:

Proposition 8.12. Suppose that 𝑥, 𝑦 ∈ 𝐻*
W(0)𝑋. If Sq𝑗h𝑥 ∈ (𝐻*

W(0)𝑋)𝑠𝑡 , then 𝛿v𝑖 Sq
𝑗
h𝑥 = 0

for 2 ≤ 𝑖 < 𝑡, and if 𝑥𝑦 ∈ (𝐻*
W(0)𝑋)𝑠𝑡 , then 𝛿v𝑖 (𝑥𝑦) = 0 for 2 ≤ 𝑖 < 𝑡.

Suppose that 𝑛 ≥ 1 and 𝑥, 𝑦 ∈ 𝐻*
W(𝑛)𝑋. Then Sq𝑖vSq

𝑗
h𝑥 = 0 and Sq𝑖v(𝑥𝑦) = 0.

Proof. For the case 𝑛 = 0, suppose that 𝑋 ∈ 𝑠W(0) is almost free on generating subspaces

𝑉𝑠. It is enough to prove that the composite

𝑁𝑠+1(𝑄
W(0)𝑋𝑠+2)

𝑡+𝑖+1 ̃︀𝜃𝑖−→ 𝑁𝑠(𝑄
W(0)𝑋𝑠+1)

𝑡 𝜓W(𝑛)−→ 𝑁𝑠−1(𝑆
2(𝑄W(0)𝑋𝑠))

𝑡−1

is nullhomotopic, using a similar method to that used in the proof of Proposition 8.2. For

any 𝑉 ∈ V+
0 , there is a natural composite

(𝑆2𝑉 )𝑡−1 [ , ]−→
𝛼

(q2𝐹
W(0)𝑉 )𝑡

𝑃 𝑖

−→
𝛽

(𝐹
(4)
W(0)𝑉 )𝑡+𝑖+1,

whose maps we have labeled 𝛼 and 𝛽 for convenience. The map 𝛽|im(𝛼) is not a monomor-

phism when 𝑖 = 𝑡− 1 is even, as in this case, for any 𝑣 ∈ 𝑉 𝑖/2,

𝑃 𝑖[𝑣, 𝑣] = 𝑃 𝑖𝑃 𝑖/2𝑣 =
∑︀3𝑖/2−2

𝑘=𝑖/2+1

(︀2(𝑘−𝑖/2)−1
𝑘−𝑖/2

)︀
𝑃 3𝑖/2−𝑘𝑃 𝑘𝑣 = 0,

as each expression 𝑃 𝑘𝑣 in the sum vanishes by the unstableness condition. However,

ker (𝛽|im(𝛼)) is contained in ker (quW(0)), and im(𝛽 ∘ 𝛼) does naturally split off as a direct
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summand of (𝐹 (4)
W(0)𝑉 )𝑡+𝑖+1. We write ℎ𝑖 for the composite:

ℎ𝑖 :
(︁
(𝐹W(0)𝑉 )𝑡+𝑖+1 proj−→−→ (im(𝛽 ∘ 𝛼))𝑡+𝑖+1 𝛽−1

−→ im(𝛼)

ker (𝛽) ∩ im(𝛼)

quW(0)−→ (𝑆2𝑉 )𝑡−1
)︁
.

Identifying 𝑄W(0)𝑋𝑠 with 𝑉𝑠 as in the proof of Proposition 8.2, the nullhomotopy associated

with the composite ̃︀ℎ𝑖 : (𝑉𝑠+1
𝑑0−→ 𝐹𝑉𝑠

ℎ𝑖−→ 𝑉𝑠) is the sum

(𝜖𝑑0ℎ𝑖 + ℎ𝑖𝑑0𝜖+ ℎ𝑖𝑑0)𝑑0,

and the relation we seek will follow from the identity

ℎ𝑖𝑑0 =
(︁
𝜖𝑑0ℎ𝑖 + ℎ𝑖𝑑0𝜖+ quW(0)𝑑0𝜃𝑖

)︁
: 𝐹𝑉𝑠+1 −→ 𝑉𝑠,

as then 𝜓W(0)
̃︀𝜃𝑖 = quW(0)𝑑0𝜃𝑖𝑑0 = 𝑑0 ̃︀ℎ𝑖 + ̃︀ℎ𝑖𝑑0. This identity states the following: if 𝑉 ∈

V+
0 , and 𝑓(𝑔𝑘) ∈ 𝐹W(0)𝐹W(0)𝑉 is a nested W(0)-expression in various expressions 𝑔𝑘 ∈

𝐹W(0)𝑉 , then if we write 𝑑0 : 𝐹W(0)𝐹W(0)𝑉 −→ 𝐹W(0)𝑉 for the monad product map, there

are only three ways that one may obtain summands of the form 𝑃 𝑖[𝑣1, 𝑣2] in 𝑑0(𝑓(𝑔𝑘)) ∈
(𝐹W(0)𝑉 )𝑡+𝑖+1: for some 𝑘, 𝑔𝑘 = 𝑃 𝑖[𝑣1, 𝑣2], and 𝑓 adds no further operations to this term;

𝑓 = 𝑃 𝑖[𝑔𝑘1 , 𝑔𝑘2 ], where 𝑔𝑘1 = 𝑣1 and 𝑔𝑘2 = 𝑣2 are unit expressions; or for some 𝑘, 𝑔𝑘 = [𝑣1, 𝑣2],

and 𝑓 has 𝑃 𝑖(𝑔𝑘) as a summand.

For the case 𝑛 ≥ 0, the proof only becomes easier, the main difference being that in the

corresponding composite:

(q2𝐹
L(𝑛))𝑡−1−→

𝛼
(q2𝐹

W(0)𝑉 )𝑡
𝜆𝑖−1−→
𝛽

(𝐹
(4)
W(0)𝑉 )𝑡+𝑖−1,

both 𝛼 and 𝛽|im(𝛼) are monomorphisms.

8.5. The categories Mhv(𝑛+ 1)

For 𝑛 ≥ 1, let Mhv(𝑛+1) be the following algebraic category, monadic over V𝑛+1
+ . An object

of Mhv(𝑛 + 1) is a vector space 𝑉 ∈ V𝑛+1
+ which is simultaneously an object of Mv(𝑛 + 1)

and of Mh(𝑛+ 1), and in which

Sq𝑖v(𝑥𝑦) = 0 and Sq𝑖v(Sq
𝑗
h(𝑥)) = 0 for all 𝑥, 𝑦 ∈ 𝑉 .

By Proposition 8.12, for 𝑛 ≥ 1 and 𝑋 ∈W(𝑛), 𝐻*
W(𝑛)𝑋 is naturally an object of Mhv(𝑛+1).

We will prove in Corollary 14.7 that for 𝑛 ≥ 1, Mhv(𝑛+ 1) is the category 𝐻Com of W(𝑛)-

cohomology algebras.
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The corresponding facts are not true for 𝑛 = 0, so we do not even define a category

Mhv(1).

For any 𝑛 ≥ 1, the monad 𝐹Mhv(𝑛+1) factors as 𝐹Mh(𝑛+1)𝐹Mv(𝑛+1), with the evident

distributive law of monads, and combining Corollary 8.8 and Proposition 8.10:

Corollary 8.13. For 𝑛 ≥ 1 and 𝑉 ∈ V𝑛+ with homogeneous basis 𝐵, 𝐹Mhv(𝑛+1)𝑉 is the

quotient of the non-unital commutative algebra

𝑆(C )

⎡⎢⎣Sq𝐽hSq𝐼v𝑏
⃒⃒⃒⃒
⃒⃒⃒ 𝑏 ∈ 𝐵

𝑠𝑛,...,𝑠1
𝑡 , 𝐼, 𝐽 Sq-admissible with 𝑚(𝐼) ≤ 𝑠𝑛, 𝑒(𝐽) ≤ ℓ𝐼
if 𝑠𝑛−1= · · ·=𝑠1=0 then 𝐼 does not contain 1
if 𝑠𝑛= · · ·=𝑠1=0 then 𝐽 does not contain 1

⎤⎥⎦
by the relation 𝑏2 = 0 if 𝑏 ∈ 𝐵0,...,0

𝑡 .

Although we do not define Mhv(1), it will be useful to have a description of the composite

𝐹Mh(1)𝐹Mv(1). Combining Corollary 8.5 and Proposition 8.10:

Corollary 8.14. For 𝑉 ∈ V+ with homogeneous basis 𝐵, 𝐹Mh(1)𝐹Mv(1)𝑉 is isomorphic to

the non-unital commutative algebra coproduct

𝑆(C )

[︂
Sq𝐽h𝛿

v
𝐼 𝑏

⃒⃒⃒⃒
𝑏 ∈ 𝐵𝑡, 𝐼 non-empty, 𝛿-admissible with 𝑚(𝐼) ≤ 𝑡,

𝐽 Sq-admissible with 𝑒(𝐽) ≤ ℓ𝐼, and 1 /∈ 𝐽

]︂
⊔ Λ(C ) [𝑏 | 𝑏 ∈ 𝐵] .

For elements 𝑏1, . . . , 𝑏𝑁 of 𝐵 with 𝑏𝑘 ∈ 𝐵𝑡𝑘 and appropriate sequences 𝐼𝑘, 𝐽𝑘, we have

∏︀𝑁
𝑘=1 Sq

𝐽𝑘
h 𝛿

v
𝐼𝑘
𝑏𝑘 ∈

(︀
𝐹Mh(1)𝐹Mv(1)𝑉

)︀−1+
∑︀

𝑘(𝑛𝐽𝑘+ℓ𝐼𝑘+1)

−1+
∑︀

𝑘(2
ℓ𝐽𝑘+ℓ𝐼𝑘 (𝑡𝑘+1))

.

8.6. Compressing sequences of Steenrod operations

The following theorem creates a model for the convergence of a spectral sequence which we

will discuss in §13. One should think of 𝐹Mhv(𝑛+1)𝑉 as the 𝐸∞-page of a first quadrant

cohomotopy spectral sequence and 𝐹Mh(𝑛)𝑉 as the cohomotopy of the total complex.

Theorem 8.15. Suppose that 𝑛 ≥ 1 and 𝑉 ∈ V𝑛+. Then there is a decreasing filtration on

𝐹Mh(𝑛)𝑉 , the target filtration, and an isomorphism

𝑓 : (𝐹Mhv(𝑛+1)𝑉 )
𝑠𝑛+1,...,𝑠1
𝑡

∼=−→ [𝐸0𝐹
Mh(𝑛)𝑉 ]

𝑠𝑛+1,...,𝑠1
𝑡 ,

defined by requiring that 𝑓(Sq𝐼v𝑣) = Sq𝐼h𝑣 for 𝑣 ∈ 𝑉 , that 𝑓(𝑤1𝑤2) = 𝑓(𝑤1)𝑓(𝑤1) for 𝑤1, 𝑤2 ∈
𝐹Mhv(𝑛+1)𝑉 , and that

𝑓(Sq𝑗h𝑤) = Sq𝑗+𝑠𝑛h 𝑓(𝑤) for 𝑤 ∈ (𝐹Mhv(𝑛+1)𝑉 )
𝑠𝑛+1,...,𝑠1
𝑡 .
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Proof. The proposed map 𝑓 is not a well defined map to 𝐹Mh(𝑛)𝑉 since the Adem relations

between the Sqh are not preserved by the proposed map 𝑓 . Write 𝑊 (𝑉 ) for the quotient of

𝑆(C )[A⊗𝐹Mv(𝑛+1)𝑉 ] by the horizontal unstableness relations and Cartan formula, so that

𝐹Mhv(𝑛+1)𝑉 is obtained from 𝑊 (𝑉 ) by taking the quotient by the two-sided ideal generated

by the horizontal Adem relations. Then may define a map 𝑓 : 𝑊 (𝑉 ) −→ 𝐹Mh(𝑛)𝑉 by

requiring the same of 𝑓 as of 𝑓 . There is a decreasing filtration on 𝑊 (𝑉 ), given by

𝐹 𝑝𝑊 (𝑉 ) =
⨁︁

𝑠𝑛+1≥𝑝

⨁︁
𝑠𝑛,...,𝑠1≥0

⨁︁
𝑡≥1

𝑊 (𝑉 )
𝑠𝑛+1,...,𝑠1
𝑡

and we define the target filtration on the target by 𝐹 𝑝(𝐹Mh(𝑛)𝑉 ) := 𝑓(𝐹 𝑝𝑊 (𝑉 )).

The map 𝑓 fails to descend to a well-defined map 𝐹Mhv(𝑛+1)𝑉 −→ 𝐹Mh(𝑛)𝑉 , because it

does not annihilate the Adem relations. However, we will show that it does send them into

higher filtration, so that 𝑓 induces a well defined map 𝑓 as advertised: if 𝑤 ∈𝑊 (𝑉 )
𝑠𝑛+1,...,𝑠1
𝑡

and 𝑖 < 2𝑗, then

𝑓
(︁
Sq𝑖hSq

𝑗
h𝑤 −

∑︀⌊𝑖/2⌋
𝑘=0

(︀
𝑗−𝑘−1
𝑖−2𝑘

)︀
Sq𝑖+𝑗−𝑘h Sq𝑘h𝑤

)︁
:= Sq𝑖+2𝑠𝑛

h Sq𝑗+𝑠𝑛h 𝑓(𝑤)−
∑︀⌊𝑖/2⌋

𝑘=0

(︀
𝑗−𝑘−1
𝑖−2𝑘

)︀
Sq𝑖+𝑗−𝑘+2𝑠𝑛

h Sq𝑘+𝑠𝑛h 𝑓(𝑤)

= Sq𝑖+2𝑠𝑛
h Sq𝑗+𝑠𝑛h 𝑓(𝑤)−

∑︀⌊(𝑖+2𝑠𝑛)/2⌋
𝑘=𝑠𝑛

(︀
𝑗+𝑠𝑛−𝑘−1
𝑖+2𝑠𝑛−2𝑘

)︀
Sq

(𝑖+2𝑠𝑛)+(𝑗+𝑠𝑛)−𝑘
h Sq𝑘h𝑓(𝑤)

=
∑︀𝑠𝑛−1

𝑘=0

(︀
𝑗+𝑠𝑛−𝑘−1
𝑖+2𝑠𝑛−2𝑘

)︀
Sq

(𝑖+2𝑠𝑛)+(𝑗+𝑠𝑛)−𝑘
h Sq𝑘h𝑓(𝑤)

=:
∑︀𝑠𝑛−1

𝑘=0

(︀
𝑗+𝑠𝑛−𝑘−1
𝑖+2𝑠𝑛−2𝑘

)︀
𝑓(Sq

𝑖+𝑗+2(𝑠𝑛−𝑘)+1
h Sq𝑘v𝑤),

which is in filtration 𝑠𝑛+1 + 𝑖+ 𝑗 + 2(𝑠𝑛 + 1− 𝑘) > 𝑠𝑛+1 + 𝑖+ 𝑗 (the second equation holds

by simply shifting the dummy variable 𝑘, the third by an Adem relation in the codomain).

What remains is to show that 𝑓 is an isomorphism as in the theorem statement, which

we approach simply by choosing a set of multiplicative generators for both the domain and

codomain. The domain is generated by those expressions Sq𝐼hSq
𝐽
v𝑣, for 𝑣 ∈ 𝑉 𝑠𝑛,...,𝑠1

𝑡 running

through a basis of 𝑉 , and appropriate Sq-admissible sequences 𝐽 and 𝐼. The codomain

is generated by expressions Sq𝐾h 𝑣, for 𝑣 ∈ 𝑉 𝑠𝑛,...,𝑠1
𝑡 running through a basis of 𝑉 , and

appropriate Sq-admissible sequences 𝐾. It is a combinatorial exercise in the properties of

admissible sequences to show that these sets of generators are put in bijection by 𝑓 , and

this bijection sends polynomial generators to polynomial generators and exterior generators

to exterior generators.
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Chapter 9

Koszul complexes calculating

U(𝑛)-homology

We will now discuss the Koszul resolutions that one may use to calculate 𝐻U(𝑛)
* 𝑋 for 𝑋 a

(non-simplicial) object of U(𝑛) or W(𝑛) of finite type, using Priddy’s technique [46], adapted

to an unstable context, as in [20] and [33, Chapter V].

9.1. The Koszul complex and co-Koszul complex

Write 𝑁÷
* and 𝐶* for the chain complexes 𝑁÷

* 𝑄
U(𝑛)𝐵U(𝑛)𝑋 and 𝐶*𝑄

U(𝑛)𝐵U(𝑛)𝑋. We will

use the convenient bar notation after which the bar construction is named, c.f. [28, §7].

Suppose that 𝑛 = 0, then the vector space 𝑁÷
𝑠 is spanned by[︁

𝑃 𝑖𝑘𝑠+···+𝑘1 · · ·𝑃 𝑖𝑘𝑠−1+···+𝑘1+1

⃒⃒⃒
· · ·
⃒⃒⃒
𝑃 𝑖𝑘2+𝑘1 · · ·𝑃 𝑖𝑘1+1

⃒⃒⃒
𝑃 𝑖𝑘1 · · ·𝑃 𝑖1

]︁
𝑥,

where 𝑥 ∈ 𝑋, the expressions in each of the 𝑟 spaces are 𝑃 -admissible, and none of the

spaces is empty (so that 𝑘𝑗 > 0 for 1 ≤ 𝑗 ≤ 𝑠). Such an expression represents an element

of the repeated free construction 𝑄U(𝑛)𝐵
U(𝑛)
𝑠 𝑋 ∼= (𝐹U(0))𝑠𝑋, with the requirement that no

space be empty reflecting having taken the quotient by degenerate simplices. In particular,

this expression equals zero unless 𝑚(𝑖𝑘𝑠+···𝑘1 , . . . , 𝑖1) ≤ |𝑥|.
When 𝑛 ≥ 1, the vector space 𝑁÷

* is spanned by expressions

𝑥
[︁
𝜆𝑖1 · · ·𝜆𝑖𝑘1

⃒⃒⃒
𝜆𝑖𝑘1+1

· · ·𝜆𝑖𝑘2+𝑘1

⃒⃒⃒
· · ·
⃒⃒⃒
𝜆𝑖𝑘𝑠−1+···+𝑘1+1

· · ·𝜆𝑖𝑘𝑠+···+𝑘1

]︁
,

again without empty spaces, and subject to an admissibility condition. However, these

expressions are only defined when every 𝜆-operation appearing is defined. That is, if 𝑥 ∈
𝑋𝑡
𝑠𝑛,...,𝑠1 , then we require 𝑚(𝑖𝑘𝑠+···𝑘1 , . . . , 𝑖1) ≤ 𝑠𝑛, and for no 𝜆0 to appear if 𝑠𝑛−1 = · · · =

115



𝑠1 = 0.

Each of these complexes admits an increasing filtration, the length filtration, with 𝐹ℓ𝑁÷
𝑠

generated by those terms in which 𝑖𝑘𝑠+···+𝑘1 ≤ ℓ for each term, which is to say that there

are at most ℓ generators appearing in the 𝑠 free constructions in 𝐶𝑠 = 𝑄U(𝑛)𝐵
U(𝑛)
𝑠 𝑋 ∼=

(𝐹U(𝑛))𝑠𝑋. Note that 𝐹𝑠−1𝑁
÷
𝑠 = 0.

Write 𝐸𝑟ℓ,𝑠 for the spectral sequence of the filtered complex 𝑁÷
* 𝑋, so that 𝐸0

ℓ,𝑝 is the

associated graded complex. As 𝐹𝑠−1𝑁
÷
𝑠 = 0, 𝐸𝑟ℓ,𝑠 = 0 for ℓ < 𝑠, and 𝐸0

𝑠,𝑠 is the subspace

𝐹𝑠𝑁
÷
𝑠 of 𝑁÷. Priddy [46, Proof of Theorem 5.3] shows that 𝐸1

ℓ,𝑠 = 0 for ℓ > 𝑠. Thus, the

groups

𝐾U(𝑛)
𝑠 𝑋 := 𝐸1

𝑠,𝑠, equipped with 𝑑1 : 𝐸1
𝑠,𝑠 −→ 𝐸1

𝑠−1,𝑠−1

form a subcomplex of 𝑁÷
* , the Koszul complex, whose inclusion is a homotopy equivalence,

and 𝐸1
𝑠𝑠 is the preimage of 𝐹𝑠−1𝑁

÷
𝑠−1 under

𝑑 : 𝐹𝑠𝑁
÷
𝑠 −→ 𝐹𝑠𝑁

÷
𝑠−1.

Rather than determining these groups directly, Priddy works with their duals, 𝐾*
U(𝑛)𝑋,

which form a cochain complex with homology 𝐻*
U(𝑛)𝑋. In fact, Priddy’s theory shows that

the cochain complex 𝐾*
U(𝑛)𝑋, the co-Koszul complex, is actually a differential unstable left

module over the same operations as its cohomology 𝐻*
U(𝑛)𝑋, and indeed that this (partial)

module is free. More precisely, 𝐾U(𝑛)
0 𝑋 = 𝑋, and 𝐾*

U(𝑛)𝑋 is free on the subspace 𝑋* of

𝐾0
U(𝑛)𝑋:

Proposition 9.1. Suppose that 𝑛 ≥ 0, and 𝑋 is an object of U(𝑛) of finite type. The chain

maps ̃︀𝜃𝑖 (̃︀𝜃𝑖 when 𝑛 = 0) on 𝐶*𝑄
U(𝑛)𝐵U(𝑛)𝑋 restrict to the subcomplex 𝐾U(𝑛)

* 𝑋, and induce

an Mv(𝑛 + 1)-structure on 𝐾*
U(𝑛)𝑋 which commutes with the differentials. The inclusion

D𝑋 ∼= 𝐾0
U(𝑛)𝑋 ⊆ 𝐾

*
U(𝑛)𝑋 induces an isomorphism 𝐹Mv(𝑛+1)(D𝑋) −→ 𝐾*

U(𝑛)𝑋. Moreover,

this Mv(𝑛+1)-structure on 𝐾*
U(𝑛) induces the Mv(𝑛+1)-structure on 𝐻*

U(𝑛)𝑋 of Propositions

8.3 and 8.6.

Although it is easier to calculate the co-Koszul complex, we will need to understand the

Koszul complex itself in order to calculate the W(𝑛 + 1)-structure of 𝐻U(𝑛)
* . For this, we

will introduce a little notation:

Proposition 9.2. Suppose that 𝑋 ∈ U(0) has homogeneous basis 𝐵. Then 𝐾
U(0)
* 𝑋 has

basis {︀
𝛿v⋆𝐼 𝑏

⃒⃒
𝑏 ∈ 𝐵𝑡, 𝐼 𝛿-admissible with 𝑚(𝐼) ≤ 𝑡

}︀
,
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where we define, for any 𝑥 ∈ 𝑋𝑡 and 𝐼 𝛿-admissible with 𝑚(𝐼) ≤ 𝑡:

𝛿v⋆𝐼 𝑥 :=
∑︁
𝐾

Δ→𝐼

[︁
𝑃 𝑘ℓ
⃒⃒⃒
· · ·
⃒⃒⃒
𝑃 𝑘1

]︁
𝑥 for 𝑥 ∈ 𝑋𝑡.

If 𝑋 is of finite type, there is a basis {𝛿v𝐼 (𝑏*)} of 𝐾*
U(0)𝑋 constructed using the isomorphism

of Proposition 9.1, Corollary 8.5 and the basis {𝑏*} of D𝑋 dual to 𝐵. The bases {𝛿v𝐼 (𝑏*)}
and {𝛿v⋆𝐼 𝑏} are dual.

The differential of 𝐾U(0)
* 𝑋 is given by the formula:

𝑑(𝛿v⋆𝐼 𝑥) =
∑︁
𝐾

Δ→𝐼
(𝑘ℓ,...,𝑘2)Δ-admis.

𝛿v⋆(𝑘ℓ,...,𝑘2)(𝑃
𝑘1𝑥),

summing over those 𝐾 = (𝑘ℓ, . . . , 𝑘1) such that (𝑘ℓ, . . . , 𝑘2) is 𝛿-admissible, and yet 𝐾 Δ→ 𝐼.

Note that the sum defining 𝛿v⋆𝐼 𝑥 is finite, simply because the Δ-algebra is graded by the

sum of indices. We may assign 𝛿v⋆𝐼 𝑥 = 0 for 𝑥 ∈ 𝑋𝑡 and 𝑚(𝐼) > 𝑡, if we wish, since:

Lemma 9.3. If 𝐼 Δ→ 𝐽 , then 𝑚(𝐼) ≥ 𝑚(𝐽). This inequality is strict if 𝐼 and 𝐽 have length

2.

In fact, this lemma ensures that the sum defining 𝛿v⋆𝐼 𝑥 is finite. That is, any 𝐾 with 𝐾 Δ→ 𝐼

must have 𝑚(𝐾) ≥ 𝑚(𝐼) 𝛿-Adem relations only decrease 𝑚. Indeed, we may further restrict

the two sums appearing in this proposition be requiring that 𝑚(𝐾) ≤ 𝑡 in each case, but

this has no effect. Dually, in the co-Koszul complex, the operations 𝛿v𝑖 are undefined when

out of range.

Proof of Proposition 9.2. Firstly, we may assume that 𝑋 is of finite type, as any object of

U(0) is the union of its subobjects of finite type, and the functor 𝐾U(0)
* preserves unions.

It is enough to check that 𝛿v⋆𝐼 𝑏 is in fact a member of 𝑁−
* , not just of 𝐶*, as then the

collection 𝛿v⋆𝐼 𝑏 will evidently be the dual basis to the 𝛿v𝐼 (𝑏
*): in the sum defining 𝛿v⋆𝐼 𝑏, the

only 𝛿-admissible sequence 𝐾 appearing is 𝐾 = 𝐼.

Using [46, Lemma 3.2], to check that 𝛿v⋆𝐼 𝑏 ∈ 𝑁−
* , we only need to check that 𝑑(𝛿v⋆𝐼 𝑏) ∈

𝐹𝑠−1𝐶𝑠−1. To check this membership condition is to check that 𝛿v⋆𝐼 𝑏 pairs to zero with

im(𝑑* : D(𝐹𝑠𝑁𝑠−1) −→ D(𝐹𝑠𝑁𝑠)). Priddy’s proof shows that D(𝐹𝑠𝑁𝑠) is spanned by

functionals [(𝑃 𝑘𝑠)*| · · · |(𝑃 𝑘1)*]𝑏*, which pair with the 𝛿v⋆𝐼 𝑐 according to:(︁
[(𝑃 𝑘𝑠)*| · · · |(𝑃 𝑘1)*]𝑏*

)︁
(𝛿v⋆𝐼 𝑐) = 𝑏*(𝑐) · (𝛿𝐼 coeff. of 𝛿𝐾 ∈ Δ written in admissibles) .

However, the image of 𝑑*, as determined by Priddy, is spanned by the space of ‘𝛿-Adem

relations’ (see [46, Theorem 2.5 and proof]), and these tautologically evaluate to zero on any
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𝛿v⋆𝐼 𝑏.

The same analysis applies in the 𝑛 ≥ 1 case. Although we write the bar construction

on the right, we end up with a left action of the homogeneous Steenrod algebra, as the

homogeneous Steenrod algebra is Koszul dual to the opposite of the Λ-algebra with an index

shift.

Proposition 9.4. Suppose that 𝑛 ≥ 1 and 𝑋 ∈ U(𝑛) has homogeneous basis 𝐵. Then

𝐾
U(𝑛)
* 𝑋 has basis{︂

Sq𝐽⋆v 𝑏

⃒⃒⃒⃒
𝑏 ∈ 𝐵𝑡

𝑠𝑛,...,𝑠1 , 𝐽 Sq-admissible with 𝑚(𝐽) ≤ 𝑠𝑛,
if 𝑠𝑛−1= · · ·=𝑠1=0 then 𝐽 does not contain 1

}︂
.

where we only define

Sq𝐽⋆v 𝑏 :=
∑︁
𝐾

Sq→𝐽

𝑏 [𝜆𝑘1−1|· · ·|𝜆𝑘ℓ−1]

when 𝐽 and 𝑏 satisfy the conditions on 𝑚(𝐽) and on the appearance of 1 in 𝐽 . If 𝑋 is of

finite type, this basis is dual to the {Sq𝐽v𝑏*} basis of 𝐾*
U(𝑛)𝑋 constructed using Proposition

9.1, Corollary 8.8 and the basis {𝑏*} of D𝑋 dual to 𝐵. The differential of 𝐾U(𝑛)
* 𝑋 is given

by the formula:

𝑑(Sq𝐽⋆v 𝑥) =
∑︁
𝐾

Sq→𝐽
(𝑘ℓ,...,𝑘2) Sq-admis.

Sq(𝑘ℓ,...,𝑘2)⋆v (𝑥𝜆𝑘1−1),

summing over 𝐾 = (𝑘ℓ, . . . , 𝑘1) such that (𝑘ℓ, . . . , 𝑘2) is Sq-admissible and yet 𝐾 Sq→ 𝐽 .

As part of the omitted analysis, we would use 5.8, and the fact that the Λ-algebra and the

homogeneous Steenrod algebra are Koszul dual, to show:

Lemma 9.5. If 𝐼 and 𝐽 are sequences of non-negative integers (of any length), such that

𝐽
Sq→ 𝐼, then 𝑚(𝐽) ≤ 𝑚(𝐼), and if 1 appears in 𝐽 , it must also appear in 𝐼.

This implies that all the summands in the above definition of Sq𝐽⋆v 𝑥 are indeed defined.

9.2. The W(𝑛+ 1)-structure on 𝐻
U(𝑛)
* 𝑋

Suppose that 𝑋 ∈ W(𝑛) for some 𝑛 ≥ 0. The form of the bases of 𝐾U(𝑛)
* 𝑋 given in

Propositions 9.2 and 9.4 imply:

Corollary 9.6. The Koszul complex 𝐾U(𝑛)
* 𝑋 is naturally a subcomplex of 𝑁−𝑄U(𝑛)𝐵U(𝑛)𝑋.

There are thus two monomorphic quasi-isomorphisms of chain complexes with homology is

𝐻
U(𝑛)
* 𝑋, and we denote their composite 𝚥:

𝚥 :
(︁
𝐾

U(𝑛)
* 𝑋 ⊆ 𝑁−

* 𝑄
U(𝑛)𝐵U(𝑛)𝑋 ⊆ 𝑁−

* 𝑄
U(𝑛)𝐵W(𝑛)𝑋

)︁
.
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The key upshot of Corollary 9.6 is that cycles in the Koszul complex map to normalized

cycles under 𝚥.

Now 𝐻
U(𝑛)
* 𝑋 is an object of W(𝑛 + 1), since it can be calculated as the homotopy of

𝑄U(𝑛)𝐵W(𝑛)𝑋 ∈ 𝑠L(𝑛), and this structure will be needed for the composite functor spectral

sequences discussed in §12. We will go some way to calculating this structure in this section.

Our method will be to take cycles in the Koszul complex, map them into the large complex

using 𝚥, perform the operations in question, and then homotope the outcome back into the

Koszul complex.

We will need a little notation for elements of the various bar constructions. We will label

the 𝑠+ 1 free constructions in 𝐵W(𝑛)
𝑠 𝑋 with subscripts in angle brackets:

𝐵W(𝑛)
𝑠 𝑋 = 𝐹

W(𝑛)
⟨−1⟩ 𝐹

W(𝑛)
⟨0⟩ · · ·𝐹W(𝑛)

⟨𝑠−1⟩𝑋

so that we can then indicate in which free construction operations are being performed. For

example, when 𝑛 = 0 and 𝑥, 𝑦 ∈ 𝑋, 𝐵W(0)
2 𝑋 contains an element

[𝑃 𝑖⟨0⟩𝑥, 𝑃
𝑗
⟨1⟩𝑦]⟨−1⟩ := [𝜂𝑃 𝑖𝜂2𝑥, 𝜂2𝑃 𝑗𝜂𝑦]

where we write 𝜂 : id −→ 𝐹W(𝑛) for the unit of the monad on V+
𝑛 (omitting the forgetful

functor). That is: we apply 𝑃 𝑗 , not to 𝑦 ∈ 𝑋, but rather to 𝜂𝑦, the corresponding generator

of 𝐹W(𝑛)
⟨1⟩ 𝑋; we apply 𝑃 𝑖 to 𝜂2𝑥, a generator of 𝐹W(𝑛)

⟨0⟩ 𝐹
W(𝑛)
⟨1⟩ 𝑋; the bracket is taken in the

outermost free construction in 𝐵W(0)
2 𝑋 := 𝐹

W(𝑛)
⟨−1⟩ 𝐹

W(𝑛)
⟨0⟩ 𝐹

W(𝑛)
⟨1⟩ 𝑋.

With this notation in hand, the map 𝚥 is induced by the assignment

[𝑃 𝑖𝑠 | · · · |𝑃 𝑖1 ]𝑥 ↦−→ 𝑃 𝑖𝑠⟨0⟩𝑃
𝑖𝑠−1
⟨1⟩ · · ·𝑃

𝑖1
⟨𝑠−1⟩𝑥 (if 𝑛 = 0),

𝑥[𝜆𝑖1 | · · · |𝜆𝑖𝑠 ] ↦−→ 𝑥𝜆𝑖1⟨𝑠−1⟩ · · ·𝜆𝑖𝑠−1⟨1⟩𝜆𝑖𝑠⟨0⟩ (if 𝑛 ≥ 1).

Before making calculations, we recall the formulae of [20, §8] for the Lie algebra homotopy

operations discussed in §5.5. Let Sh𝑝𝑞 be the set of (𝑝, 𝑞)-shuffles, that is, pairs (𝛼, 𝛽) where

𝛼 = (𝛼𝑝−1, . . . , 𝛼0) and 𝛽 = (𝛽𝑞−1, . . . , 𝛽0) are disjoint monotonically decreasing sequences

that together partition the set {0, . . . , 𝑝 + 𝑞 − 1}. Let 𝑠𝛼 denote the iterated degeneracy

operator 𝑠𝛼𝑝−1 · · · 𝑠𝛼0 . Finally, let Sh÷2
𝑖𝑖 denote the subset of Sh𝑖𝑖 consisting of those shuffles

(𝛼, 𝛽) ∈ Sh𝑖𝑖 such that 𝛽𝑖−1 = 2𝑖 − 1. The formulae of [20, §8], for 𝑧 ∈ 𝑍𝐾𝑝(𝑋) and
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𝑤 ∈ 𝑍𝐾𝑞(𝑋) cycles representing classes 𝑧, 𝑤 ∈ 𝐻U(𝑛)
* 𝑋, are as follows:

[𝑧, 𝑤] is represented by
∑︁

(𝛼,𝛽)∈Sh𝑝𝑞

[𝑠𝛽(𝚥𝑧), 𝑠𝛼(𝚥𝑤)]⟨−1⟩ ∈ 𝑄U(𝑛)𝐵
W(𝑛)
𝑝+𝑞 𝑋;

𝑧𝜆𝑖 is represented by
∑︁

(𝛼,𝛽)∈Sh÷2
𝑖𝑖

[𝑠𝛽(𝚥𝑧), 𝑠𝛼(𝚥𝑧)]⟨−1⟩ ∈ 𝑄U(𝑛)𝐵
W(𝑛)
𝑝+𝑖 𝑋, (0 < 𝑖 ≤ 𝑝);

𝑧𝜆0 is represented by (𝑧)
[2]
⟨−1⟩ ∈ 𝑄

U(𝑛)𝐵W(𝑛)
𝑝 𝑋, (when defined).

It will be important to understand these sums. Suppose that 𝑧 ∈ 𝑍𝐾U(𝑛)
𝑝 𝑋 (for 𝑛 ≥ 1).

Then 𝑧 may be written as a sum of terms of the form 𝑥𝜆𝑖1⟨𝑝−1⟩ · · ·𝜆𝑖𝑝⟨0⟩, and

Lemma 9.7. If (𝛼, 𝛽) ∈ Sh𝑝𝑞, then 𝑠𝛽(𝑥𝜆𝑖1⟨𝑝−1⟩ · · ·𝜆𝑖𝑝⟨0⟩) = 𝑥𝜆𝑖1⟨𝛼𝑝−1⟩ · · ·𝜆𝑖𝑝⟨𝛼0⟩.

We will also need the following consequence of the simplicial identities:

Lemma 9.8. Choose 𝑖 ≥ 1 and 𝛼 = (𝛼𝑝−1, . . . , 𝛼0) with 𝛼𝑝−1 > · · · > 𝛼0 ≥ 0.

(1) If neither 𝑖− 1 nor 𝑖− 2 appear in 𝛼, then 𝑑𝑖−1𝑠𝛼 = 𝑠𝛼′𝑑𝑖′ for some 𝛼′ and 𝑖′.

(2) If exactly one of 𝑖 − 1 and 𝑖 − 2 appears in 𝛼, then 𝑑𝑖−1𝑠𝛼 does not depend on which

of 𝑖− 1 and 𝑖− 2 appeared in 𝛼.

Proposition 9.9. The 𝜋L(𝑛) bracket 𝐻U(𝑛)
𝑝 𝑋⊗𝐻U(𝑛)

𝑞 𝑋 −→ 𝐻
U(𝑛)
𝑝+𝑞 𝑋 vanishes except when

𝑝 = 𝑞 = 0. The Lie algebra structure on 𝐻
U(𝑛)
0 𝑋 is induced by that on 𝑋: if 𝑧, 𝑤 ∈ 𝑋

represent 𝑧, 𝑤 ∈ 𝐻U(𝑛)
0 𝑋, then [𝑥, 𝑦] is represented by the cycle [𝑥, 𝑦] ∈ 𝑍𝐶0(𝑄

U(𝑛)𝐵W(𝑛)𝑋).

This theorem shows that 𝐻U(𝑋)
* is trivial in positive dimensions as a Lie algebra, but

nonetheless, the restriction need not be trivial (c.f. Propositions 9.11 and 9.12).

Proof. We will give the proof for 𝑛 ≥ 1, but it works the same way for 𝑛 = 0. In fact, when

𝑛 = 0 we can ignore all discussion of top and non-top operations.

Use the abbreviation B := 𝑄U(𝑛)𝐵W(𝑛)𝑋 ∈ 𝑠L(𝑛). Then B is almost free on the subspaces

𝑉𝑠 = 𝐹
W(𝑛)
⟨0⟩ · · ·𝐹W(𝑛)

⟨𝑠−1⟩𝑋. Choose representatives 𝑧 ∈ 𝑍𝐾U(𝑛)
𝑝 𝑋 and 𝑤 ∈ 𝑍𝐾U(𝑛)

𝑞 𝑋. For any

(𝛼, 𝛽) ∈ Sh𝑝𝑞, the elements 𝑠0𝑠𝛽(𝚥𝑧) and 𝑠0𝑠𝛼(𝚥𝑤) of B𝑝+𝑞+1 both lie in 𝑉𝑝+𝑞+1, and it is

only a minor abuse of notation to define:

𝑎 :=
∑︁

(𝛼,𝛽)∈Sh𝑝𝑞

[𝑠0𝑠𝛽(𝚥𝑧), 𝑠0𝑠𝛼(𝚥𝑤)]⟨0⟩ ∈ 𝐶𝑝+𝑞+1B.

What we mean here is that the bracket of the elements 𝑠0𝑠𝛽(𝚥𝑧) and 𝑠0𝑠𝛼(𝚥𝑤) of

𝑉𝑝+𝑞+1 = 𝐹
W(𝑛)
⟨0⟩ · · ·𝐹W(𝑛)

⟨𝑠−1⟩𝑋 ⊆ 𝐹
W(𝑛)
⟨−1⟩ 𝐹

W(𝑛)
⟨0⟩ · · ·𝐹W(𝑛)

⟨𝑠−1⟩𝑋 = 𝐵W(𝑛)
𝑠 𝑋

is taken in the free construction 𝐹W(𝑛)
⟨0⟩ .
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Using the simplicial identity 𝑑0𝑠0 = id, we have 𝑑0𝑎 =
∑︀

[𝑠𝛽(𝚥𝑧), 𝑠𝛼(𝚥𝑤)]⟨−1⟩, the rep-

resentative given for [𝑧, 𝑤]. Moreover, we will find that 𝑑𝑖𝑎 = 0 for 𝑖 > 0, except when

𝑝 = 𝑞 = 0, in which case 𝑑1𝑎 = [𝑥, 𝑦]. Thus, in either case, 𝑎 is the required homotopy in

𝐶*B.

Using the simplicial identity 𝑑1𝑠0 = id, we have 𝑑1𝑎 =
∑︀

[𝑠𝛽(𝚥𝑧), 𝑠𝛼(𝚥𝑤)]⟨0⟩. Now for

every pair (𝛼, 𝛽) indexing this sum, unless 𝑝 = 𝑞 = 0, one of 𝛼 or 𝛽, say 𝛽, will contain

0. Then by Lemma 9.7, every summand in 𝑠𝛼(𝚥𝑧) is in the image of some non-top 𝜆𝑖⟨0⟩,

and as [𝑥𝜆𝑖, 𝑦] = 0 whenever 𝜆𝑖 is not a top operation, the entire expression vanishes in the

construction 𝐹W(𝑛)
⟨0⟩ .

What remains is to show that 𝑑𝑖𝑎 = 0 for 2 ≤ 𝑖 ≤ 𝑝+ 𝑞 + 1. As 𝑑𝑖𝑠0 = 𝑠0𝑑𝑖−1 for 𝑖 ≥ 2:

𝑑𝑖𝑎 =
∑︁

[𝑠0𝑑𝑖−1𝑠𝛽(𝚥𝑧), 𝑠0𝑑𝑖−1𝑠𝛼(𝚥𝑤)]⟨0⟩.

For this, we will define an involution 𝜌𝑖 of the set Sh𝑝𝑞 indexing the sum, for 2 ≤ 𝑖 ≤ 𝑝+𝑞+1.

If 𝛼 and 𝛽 do not each contain exactly one of 𝑖−1 and 𝑖−2, then 𝜌𝑖 fixes (𝛼, 𝛽). Otherwise,

𝜌𝑖 interchanges the positions of 𝑖 − 1 and 𝑖 − 2 in (𝛼, 𝛽). To avoid confusion, we note that

𝜌𝑝+𝑞+1 is the identity, as neither 𝛼 nor 𝛽 ever contain 𝑝+ 𝑞.

If (𝛼, 𝛽) is a fixed point of 𝜌𝑖, then one of 𝛼 and 𝛽, say 𝛼, contains neither of 𝑖 and 𝑖− 1.

Then by Lemma 9.8(2), 𝑑𝑖−1𝑠𝛼(𝚥𝑤) = 𝑠𝛼′𝑑𝑖′(𝚥𝑤) = 0, as 𝚥𝑤 ∈ 𝑍𝑁−
* B. Thus, the summands

corresponding to fixed points vanish. On the other hand, given a shuffle (𝛼, 𝛽) which is

not fixed by 𝜌𝑖, Lemma 9.8?? shows that the summand corresponding to (𝛼, 𝛽) equals the

summand corresponding to 𝜌𝑖(𝛼, 𝛽), so these two summands cancel with each other.

In order to state our calculation of 𝜆0 of 𝐻U(0)
* 𝑋 for 𝑋 ∈W(0), define

adm+(Δ, 𝑡) := {𝐼 | 𝐼 a non-empty 𝛿-admissible sequence with 𝑚(𝐼) ≤ 𝑡} .

Lemma 9.10. There is an injective function T𝑡 : adm+(Δ, 𝑡) −→ adm+(Δ, 𝑡) given by

𝐼 = (𝑖ℓ, . . . , 𝑖1)
T𝑡↦−→ (𝑡+ 𝑛𝐼 + ℓ, 𝑖ℓ, . . . , 𝑖1).

Proof. This is indeed a well defined injective endomorphism of the set adm+(Δ, 𝑡), in that

it preserves admissibility and the condition 𝑚(𝐼) ≤ 𝑡. The claim about 𝑚(𝐼) holds by

definition. For 𝛿-admissibility, as 𝑚(𝐼) ≤ 𝑡,

𝑖ℓ ≤ ℓ− 1 + 𝑖ℓ−1 + · · ·+ 𝑖1 + 𝑡
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which (even) implies the (strict) inequality

2𝑖ℓ < ℓ+ 𝑖ℓ + · · ·+ 𝑖1 + 𝑡.

Proposition 9.11. Suppose that 𝑛 ≥ 0, 𝑧 ∈ (𝑍𝐾
U(𝑛)
𝑠𝑛+1𝑋)𝑡𝑠𝑛,...,𝑠1 and 1 ≤ 𝑘 ≤ 𝑠𝑛+1, so that

𝑧𝜆𝑘 is defined. Then 𝑧𝜆𝑘 = 0 unless 𝑛 = 0 and 𝑘 = 1.

When 𝑛 = 0, 𝑘 = 1 and 𝑠1 ≥ 1, 𝜆1 may be defined at the level of the Koszul complex as

follows. The generic cycle 𝑧 ∈ (𝑍𝐾
U(0)
𝑠1 𝑋)𝑡 may be written as a sum

𝑧 =
∑︀

𝑗 𝛿
v⋆
𝐼𝑗
𝑥𝑗 , with 𝑥𝑗 ∈ 𝑋𝑡𝑗 and 𝐼𝑗 ∈ adm+(Δ, 𝑡𝑗) of length 𝑠1.

Then 𝑧𝜆1 is represented by the cycle

∑︀
𝑗 𝛿

v⋆
(T𝑡𝑗 𝐼𝑗)

𝑥𝑗 ∈ (𝑍𝐾
U(0)
𝑠1+1𝑋)2𝑡+1.

Proof. We will first prepare for the calculation of 𝜆1 in case 𝑛 = 0, abbreviating 𝑠1 to 𝑠. Note

that each T𝑡𝑗 appends the same integer, 𝑡, to 𝐼𝑗 . Write 𝑒 for the proposed representative∑︀
𝑗 𝛿

v⋆
(T𝑡𝑗 𝐼𝑗)

𝑥𝑗 of 𝑧𝜆1. Our first claim is that 𝑒 = 𝑃 𝑡⟨0⟩𝑠0(𝚥𝑧), since

∑︁
𝑗,𝐾

Δ→(T𝑡𝑗 𝐼𝑗)

[︁
𝑃 𝑘𝑠+1

⃒⃒⃒
· · ·
⃒⃒⃒
𝑃 𝑘1

]︁
𝑥𝑗 =

∑︁
𝑗,𝐻

Δ→𝐼𝑗

[︁
𝑃 𝑡
⃒⃒⃒
𝑃 ℎ𝑠

⃒⃒⃒
· · ·
⃒⃒⃒
𝑃 ℎ1

]︁
𝑥𝑗 .

The first of these two sums a priori contains more terms. However, the extra terms all vanish,

by the unstableness condition. More precisely: if (𝑘𝑠+1, . . . , 𝑘1)
Δ→ T𝑡𝑗𝐼𝑗 and 𝑘𝑠+1 ̸= 𝑡, then

𝑚(𝑘𝑠+1, . . . , 𝑘1) > 𝑡𝑗 , so that
[︀
𝑃 𝑘𝑠+1

⃒⃒
· · ·
⃒⃒
𝑃 𝑘1

]︀
𝑥𝑗 = 0. To understand this observation, as 𝛿-

Adem relations cannot increase𝑚 (Lemma 9.3), we may reduce to the case where (𝑘𝑠, . . . , 𝑘1)

is already 𝛿-admissible, 𝑡 ̸= 𝑘𝑠+1, and (𝑘𝑠+1, 𝑘𝑠)
Δ→ (𝑡, 𝑘𝑠+1 + 𝑘𝑠 − 𝑡), where::

𝑚(𝑘𝑠+1, . . . , 𝑘1) ≥ 𝑚(𝑘𝑠+1, 𝑘𝑠)− (𝑘𝑠−1 + 1)− · · · − (𝑘1 + 1)

> 𝑚(𝑡, 𝑘𝑠+1 + 𝑘𝑠 − 𝑡)− (𝑘𝑠−1 + 1)− · · · − (𝑘1 + 1)

≥ 2𝑡− (𝑘𝑠+1 + · · ·+ 𝑘1 + 𝑠)

= 2𝑡− (𝑡+ 𝑖𝑠 + · · ·+ 𝑖1 + 𝑠) = 𝑡𝑗 .

where: the two non-strict inequalities are by definition of 𝑚; the strict inequality follows

from Lemma 9.3; the first equation holds as Δ is graded by the sum of the indices; and the

second equation holds as 𝑡 is the dimension of 𝛿v⋆𝐼𝑗 𝑥𝑗 .

With this in hand, we return the general case, 1 ≤ 𝑘 ≤ 𝑝 and 𝑛 ≥ 0, our goal being

to produce a nullhomotopy, except when 𝑛 = 0 and 𝑘 = 1, when we need a homotopy to
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𝑃 𝑡⟨0⟩𝑠0(𝚥𝑧). We proceed as in the previous proof, defining

𝑎 :=
∑︁

(𝛼,𝛽)∈Sh÷2
𝑘𝑘

[𝑠0𝑠𝛽(𝚥𝑧), 𝑠0𝑠𝛼(𝚥𝑧)]⟨0⟩ ∈ 𝐶𝑝+𝑘+1B2𝑡+1
2𝑠𝑛,...,2𝑠1

.

Then 𝑑0𝑎 is the representative for 𝑧𝜆𝑘, and 𝑑1𝑎 = 0 as in the previous proof (and there is

no analogue here of the special case 𝑝 = 𝑞 = 0). Now consider the same involutions 𝜌𝑖 as

in the previous proof, now acting on Sh𝑘𝑘. When 2 ≤ 𝑖 < 2𝑘, 𝜌𝑖 preserves Sh÷2
𝑘𝑘. When

2𝑘 < 𝑖 ≤ 𝑝 + 𝑘 + 1, 𝜌𝑖 is the identity, so preserves Sh÷2
𝑘𝑘 trivially. Thus, 𝑑𝑖𝑎 = 0 for all

2 ≤ 𝑖 ≤ 𝑝+ 𝑘 + 1 with 𝑖 ̸= 2𝑘, as the summands corresponding to fixed points vanish, and

the cancellations still all occur within the smaller sum

𝑑𝑖𝑎 =
∑︁

(𝛼,𝛽)∈Sh÷2
𝑘𝑘

[𝑠0𝑑𝑖−1𝑠𝛽(𝚥𝑧), 𝑠0𝑑𝑖−1𝑠𝛼(𝚥𝑧)]⟨0⟩.

To address the question of 𝑑2𝑘, we define an alternative involution ̃︀𝜌2𝑘 of Sh𝑘𝑘 as follows.

If 𝛼 and 𝛽 do not each contain exactly one of 2𝑘 − 2 and 2𝑘 − 1, then ̃︀𝜌2𝑘 fixes (𝛼, 𝛽).

Otherwise, we define ̃︀𝜌2𝑘(𝛼, 𝛽) := 𝜌2𝑘(𝛽, 𝛼), which is to say that ̃︀𝜌2𝑘 swaps everything but

2𝑘 − 2 and 2𝑘 − 1.

Now the summands in this formula exhibit a symmetry not present in the previous proof:

𝑧 is repeated. This symmetry, along with Lemma 9.8??, shows that all the summands

corresponding to shuffles not fixed by ̃︀𝜌2𝑘 cancel out. When 𝑘 > 1, the fixed points of ̃︀𝜌2𝑘
are only those shuffles in which one of 𝛼 and 𝛽 contains neither 2𝑘 − 2 nor 2𝑘 − 1, and

the corresponding summands vanish, by 9.8(2), as in previous arguments. When 𝑘 = 1,

however, ̃︀𝜌2𝑘 has an extra fixed point, the shuffle ((0), (1)), which fails to differ from its

image under ̃︀𝜌2𝑘. In this case, then:

𝑑2𝑎 = [𝑠0𝑑1𝑠1(𝚥𝑧), 𝑠0𝑑1𝑠0(𝚥𝑧)]⟨0⟩

= [𝑠0(𝚥𝑧), 𝑠0(𝚥𝑧)]⟨0⟩

=

⎧⎨⎩0, if 𝑛 ≥ 1,

𝑃 𝑡⟨0⟩𝑠0(𝚥𝑧), if 𝑛 = 0.

That is, if 𝑛 ≥ 1, this self-bracket vanishes (an object of W(𝑛) for 𝑛 ≥ 1 is a Lie algebra),

while if 𝑛 = 0, the self-bracket is equal to the top 𝑃 -operation, in this case 𝑃 𝑡.

In sum, we have shown that 𝑑0𝑎 = 0 represents 𝑧𝜆𝑖, and that 𝑑𝑖𝑎 = 0 whenever 1 ≤ 𝑖 ≤
𝑝+ 𝑘 + 1, except when 𝑘 = 1, 𝑖 = 2 and 𝑛 = 0, in which case 𝑑2𝑎 = 𝑒, as hoped.

Proposition 9.12. Suppose that 𝑛 ≥ 1, and 𝑧 ∈ (𝑍𝐾
U(𝑛)
𝑠𝑛+1𝑋)𝑡𝑠𝑛,...,𝑠1 where not all of

𝑠𝑛, . . . , 𝑠1 equal zero. If 𝑠𝑛+1 = 0 then 𝑧𝜆0 is represented by 𝑧𝜆𝑠𝑛 ∈ 𝑋2𝑡+1
2𝑠𝑛,...,2𝑠1

.
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Suppose instead that 𝑠𝑛+1 > 0, and consider a cycle

𝑧 =
∑︀

𝑗 Sq
𝐼𝑗⋆
v 𝑥𝑗 ∈ (𝑍𝐾

U(𝑛)
𝑠𝑛+1𝑋)𝑡𝑠𝑛,...,𝑠1 ,

for various 𝑥𝑗 ∈ 𝑋 and Sq-admissible sequences 𝐼𝑗 = (𝑖𝑗,𝑠𝑛+1 , . . . , 𝑖𝑗,1). Suppose further that

for each summation index 𝑗, 𝑥𝑗𝜆𝑖−1 = 0 whenever 𝑖 ≥ 𝑖𝑗,1. Then 𝑧𝜆0 = 0.

Proof. Write 𝑝 := 𝑠𝑛+1. The same homotopy 𝑎 as in the previous cases shows that ̃︀𝑧𝜆0
is represented by (𝑧)

[2]
⟨0⟩ = 𝑧𝜆𝑠𝑛⟨0⟩ when 𝑝 > 0, and by 𝑧𝜆𝑠𝑛 ∈ 𝑋 when 𝑝 = 0, so that

we may restrict to the case 𝑝 > 0. Then, 𝑧𝜆𝑠𝑛⟨0⟩ is the image of the following element of

𝑍𝐹𝑝+1𝑁
÷
𝑝 𝑄

U(𝑛)𝐵U(𝑛)𝑋:

𝐸 =
∑︁

𝑗,𝐾
Sq→𝐼𝑗

𝑥𝑗
[︀
𝜆𝑘1−1

⃒⃒
· · ·
⃒⃒
𝜆𝑘𝑝−1−1

⃒⃒
𝜆𝑘𝑝−1𝜆𝑠𝑛

]︀
=

∑︁
𝑗,𝐾

Sq→𝐼𝑗

∑︁
(𝛼,𝛽)

Sq→(𝑠𝑛+1,𝑘𝑝)

𝑥𝑗
[︀
𝜆𝑘1−1

⃒⃒
· · ·
⃒⃒
𝜆𝑘𝑝−1−1

⃒⃒
𝜆𝛽−1𝜆𝛼−1

]︀
,

where the second equation holds by the Koszul duality of the Λ-algebra and the homogeneous

Steenrod algebra. As homogeneous Sq-Adem relations move Sq-inadmissible sequences to-

wards Sq-admissibility, when 𝑝 ≥ 2 we have 𝑘1 ≥ 𝑖𝑗,1 in each summand, and when 𝑝 = 1 we

have 𝛽 ≥ 𝑖𝑗,1 in each summand.

Dualizing Priddy’s work, namely [46, Proof of Theorem 5.3], gives a sequence of homo-

topies which move this cycle into 𝐹𝑝𝑁÷
𝑝 . Indeed, given an expression

𝑒 = 𝑦
[︀
𝜆𝑔1−1

⃒⃒
· · ·
⃒⃒
𝜆𝑔𝑟−2−1

⃒⃒
𝜆𝑔𝑟−1−1𝜆𝑔𝑟−1

⃒⃒
𝜆𝑔𝑟+1−1

⃒⃒
· · ·
⃒⃒
𝜆𝑔𝑝+1−1

]︀
∈ 𝐹𝑝+1𝑁

÷
𝑝 ,

(with the composite 𝜆𝑔𝑟−1−1𝜆𝑔𝑟−1 Λ-admissible), define:

Γ(𝑒) :=

⎧⎨⎩𝑦
[︀
𝜆𝑔1−1

⃒⃒
· · ·
⃒⃒
𝜆𝑔𝑟−1−1

⃒⃒
𝜆𝑔𝑟−1

⃒⃒
· · ·
⃒⃒
𝜆𝑔𝑝+1−1

]︀
, if (𝑔𝑝+1, . . . , 𝑔𝑟) is Sq-admissible;

0, otherwise.

If we further define Γ to be zero on 𝐹𝑝𝑁÷
𝑝 , then Γ : 𝐹𝑝+1𝑁

÷
𝑝 −→ 𝐹𝑝+1𝑁

÷
𝑝+1 may be used as

a chain homotopy to compress 𝐸 ∈ 𝑍𝐹𝑝+1𝑁
÷
𝑝 into 𝑍𝐹𝑝𝑁÷

𝑝 :

(id + 𝑑Γ)𝑢𝐸 stabilizes to an element of 𝑍𝐹𝑝𝑁÷
𝑝 as 𝑢 −→∞.

As we repeatedly apply (id+𝑑Γ) to this 𝑒, because 𝑎1 ≥ 𝑏1 whenever (𝑏2, 𝑏1)
Λ→ (𝑎2, 𝑎1), the

very leftmost 𝜆-operation in any of the expressions that appear is 𝜆𝑚−1 for some 𝑚 ≥ 𝑔1,

and every term in (id + 𝑑Γ)𝑢𝑒 ∈ 𝑍𝐹𝑝𝑁÷
𝑝 will be of the form 𝑦𝜆𝑚−1[ · · · ] for some 𝑚 ≥ 𝑔1.

Applying these observations in the very specific circumstances of this proposition, along
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with the earlier observation that in the sum defining the cycle 𝐸 we always have 𝑘1 ≥ 𝑖𝑗,1

(or 𝛽 ≥ 𝑖𝑗,1 if 1), one derives that (id + 𝑑Γ)𝑢𝐸 = 0, so that 𝐸 is nullhomotopic.
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Chapter 10

Operations on second quadrant

homotopy spectral sequences

In this chapter we will produce various external operations on second quadrant homotopy

spectral sequences. That is, for 𝑋 ∈ 𝑐𝑠V, we will produce operations from [𝐸𝑟𝑋] to each of

[𝐸𝑟𝑆2𝑋] and [𝐸𝑟Λ
2𝑋]

This approach leaves open a number of possibilities. If 𝑋 ∈ 𝑐𝑠Com, then the structure

map 𝜇 : 𝑆2𝑋 −→ 𝑋 induces a spectral sequence map [𝐸𝑟𝑆
2𝑋] −→ [𝐸𝑟𝑋], and so the

external operations induce internal operations on [𝐸𝑟𝑋]. If 𝑋 is a Lie algebra we may apply

the analogous technique [ , ] : Λ2𝑋 −→ 𝑋. In §11, we will use these external operations in

another way to produce operations on the BKSS of a commutative algebra or Lie algebra —

the construction will involve a shift in filtration, which is conceivable given that Radulescu-

Banu’s resolution is a resolution by GEMs.

A number of authors have written about spectral sequence operations in a variety of

settings. Singer’s work [52] on first quadrant cohomology spectral sequences will be used

extensively in §13.1, and has been extended by Turner [55]. Perhaps the closest recent

examples are due to Hackney [37] and [36], who works out the operations available on the

homotopy spectral sequence of a cosimplicial 𝐸∞- or 𝐸𝑛-space respectively, using Bousfield

and Kan’s universal examples [9]. We will be working with cosimplicial simplicial vector

spaces, and so we are able to develop a direct approach, mirroring Dwyer’s work in second

quadrant cohomotopy spectral sequences [25].

Dwyer’s work makes an interesting point of comparison with ours. In both cases: prod-

ucts, Steenrod operations and higher divided powers (as in [25] and §5.4) are produced on

the spectral sequence; one set of operations is not present in the target; the other set of

operations is present in the target, but the unstableness conditions on the target and on 𝐸2

do not agree; and differentials are constructed between the two varieties to simultaneously
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rectify these disparities. Between Dwyer’s theory and the theory presented here, the roles

of the two types of operations are interchanged.

10.1. Operations with indeterminacy

On pages higher than the 𝐸2-page, some of the ‘operations’ [𝐸𝑟𝑋] −→ [𝐸𝑟𝑆2𝑋] that we

would like to use will in fact fail to be well defined, and in this section we will introduce the

language which we will use in such situations.

We will make use of the notion of a (potentially) multi-valued function 𝑓 : 𝐷 −→ 𝐶,

which is just a relation 𝑓 ⊂ 𝐷×𝐶 such that for all 𝑥 ∈ 𝐷 there exists some 𝑦 ∈ 𝐶 for which

(𝑥, 𝑦) ∈ 𝑓 . We may drop the modifier potentially, with the understanding that we do not

insist that a multi-valued function fail to be a function. If a multi-valued function turns out

to be an actual function, we will call it single-valued. For 𝑥 ∈ 𝐷, the set of values of 𝑓(𝑥)

is {𝑦 ∈ 𝐶 | (𝑥, 𝑦) ∈ 𝑓}.
In all of our examples, 𝐷 and 𝐶 will be vector spaces. A multi-valued function 𝑓 : 𝐷 −→

𝐶 has linear indeterminacy if it is essentially a map 𝐷 −→ 𝐶/𝐼 for some subspace 𝐼 of 𝐶.

That is if there exists a subspace 𝐼 of 𝐶 such that for all 𝑥 ∈ 𝐷, the set of values of 𝑓(𝑥)

is a coset of 𝐼 in 𝐶. Such a function is linear if 𝑓(𝑥+ 𝑦) is the sum of the cosets 𝑓(𝑥) and

𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝐷. Almost all of the multi-valued functions we encounter are linear, and

all of the exceptions are operations at 𝐸0 or 𝐸1 or top 𝛿-operations (c.f. §10.5 and §11.3).

In this chapter, multi-valued functions will arise in two ways. An operation [𝐸𝑟𝑉 ] −→
[𝐸𝑟𝑆2𝑉 ] with indeterminacy disappearing by 𝐸𝑟′ will be an actual function

[𝐸𝑟𝑉 ] −→ [𝐸𝑟𝑆
2𝑉 ]/[𝐵𝑟,𝑟′𝑆

2𝑉 ],

where [𝐵𝑟,𝑟′𝑆
2𝑉 ] ⊆ [𝐸𝑟𝑆

2𝑉 ] is the subgroup consisting of those elements which survive to

[𝐸𝑟𝑆
2𝑉 ] and represent zero there. We view such operations as linear multi-valued functions

[𝐸𝑟𝑉 ] −→ [𝐸𝑟𝑆
2𝑉 ],

and the external Steenrod operations that we will define in §10.4 will be examples. On the

other hand, we will define in §10.5 external 𝛿-operations which will sometimes be multi-

valued, and will almost always be linear with linear indeterminacy.

10.2. Maps of mixed simplicial vector spaces

For mixed simplicial vector spaces𝑋,𝑌 ∈ 𝑐𝑠V, we will write 𝐶(𝑋⊗𝑌 ) for the double complex

associated with the levelwise tensor product of 𝐶(𝑋 ⊗ 𝑌 ), so that 𝐶(𝑋 ⊗ 𝑌 )𝑠𝑡 = 𝑋𝑠
𝑡 ⊗ 𝑌 𝑠

𝑡 .
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We will write 𝐶(𝑋 ⊗v 𝑌 ) for the double complex with 𝐶(𝑋 ⊗v 𝑌 )𝑠𝑡 =
⨁︀

𝑡′+𝑡′′=𝑡𝑋
𝑠
𝑡′ ⊗𝑋𝑠

𝑡′′ .

The following vector space maps are given by prolonging 𝐷𝑘, ∇, ∇𝑘 and 𝜑𝑘 wherever these

maps are defined, and by zero elsewhere:

𝐷𝑘 : (𝐶𝑋 ⊗ 𝐶𝑌 )𝑠+𝑘𝑡 −→ 𝐶(𝑋 ⊗v 𝑌 )𝑠𝑡 (zero unless 0 ≤ 𝑘 ≤ 𝑠)

∇ : 𝐶(𝑋 ⊗v 𝑌 )𝑠𝑡 −→ 𝐶(𝑋 ⊗ 𝑌 )𝑠𝑡 (no condition)

∇𝑘 : 𝐶(𝑋 ⊗v 𝑌 )𝑠𝑡+𝑘 −→ 𝐶(𝑋 ⊗ 𝑌 )𝑠𝑡 (zero unless 0 ≤ 𝑘 ≤ 𝑡)

𝜑𝑘 : 𝐶(𝑋 ⊗v 𝑌 )𝑠𝑡+𝑘 −→ 𝐶(𝑋 ⊗ 𝑌 )𝑠𝑡 (zero unless 𝑘 = 𝑡 ≥ 0)

We have just committed to regarding ∇𝑘 as zero where it is not defined. This is certainly

not a natural convention, and it has somewhat untidy results, for instance:

Lemma 10.1. Suppose that 𝑧 ∈ 𝐶(𝑋 ⊗v 𝑌 )𝑠𝑡 . Then

(𝑑∇𝑘 +∇𝑘𝑑)𝑧 = ((1 + 𝜔)∇𝑘+1 + 𝜑𝑘+1)𝑧

whenever 𝑘 ≥ 0 and 𝑡 does not equal either of 2𝑘 and 2𝑘 + 1.

As discussed earlier, we will write 𝑇 for any symmetry isomorphism, write “𝜔𝐺” as

shorthand for the function 𝑇𝐺𝑇 , and whenever we write 𝜔𝐺𝐻, we will mean (𝜔𝐺)𝐻. We

will also use the notation

𝑋⊗2 𝜌−→ 𝑆2𝑋 and 𝑋⊗2 𝜌′−→ Λ2

for the projection onto coinvariants and further onto the exterior quotient. Until §10.5, the

operations that we will produce into each of [𝐸𝑟𝑆2𝑋] and [𝐸𝑟Λ
2𝑋] will be essentially the

same.

10.3. An external spectral sequence pairing 𝜇ext

The easiest and most standard of our constructions is that of an external product, using the

chain-level formula

𝑥⊗ 𝑦 ↦−→ 𝜌∇𝐷0(𝑥⊗ 𝑦).

Both ∇ and 𝐷0 are chain maps, and filtrations add under ∇𝐷0, and thus:

Proposition 10.2. The map 𝜌∇𝐷0(𝑥⊗ 𝑦) : 𝐶𝑋 ⊗ 𝐶𝑋 −→ 𝐶𝑋 induces a pairing

𝜇ext : [𝐸𝑟𝑋]𝑠𝑡 ⊗ [𝐸𝑟𝑋]𝑠
′
𝑡′ −→ [𝐸𝑟𝑆2𝑋]𝑠+𝑠

′

𝑡+𝑡′
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for each 𝑟, satisfying the Leibniz formula. For 𝑟 ≥ 2, this map descends to the symmetric

quotient 𝑆2[𝐸𝑟𝑋]. Under the identifications [𝐸2𝑋]𝑠𝑡
∼= 𝜋𝑠h𝜋

v
𝑡𝑋 and [𝐸2𝑆2𝑋]𝑠𝑡

∼= 𝜋𝑠h𝜋
v
𝑡 𝑆2𝑋,

𝜇ext corresponds to the composite

𝑆2𝜋
*
h𝜋

v
*𝑋

𝜇ext−→ 𝜋*h(𝑆2𝜋
v
*𝑋)

𝜋*
h(

̃︀∇)
−→ 𝜋*h𝜋

v
*𝑆2𝑋.

10.4. External spectral sequence operations Sq𝑖ext

Consider the chain-level map:

SQ𝑖,𝑠 : 𝑥 ↦−→ 𝜌∇(𝐷𝑠−𝑖(𝑥⊗ 𝑥) +𝐷𝑠−𝑖+1(𝑥⊗ 𝑑𝑥)).

We will use these maps to define external Steenrod operations Sq𝑖ext, the behaviour of which

is rather different on 𝐸1 than on later pages. Thus, we will state two separate Propositions

that we will prove together.

Proposition 10.3. Suppose that 𝑟 ≥ 2. The chain level operation SQ𝑖,𝑠 defines a linear

operation with indeterminacy vanishing by 𝐸2𝑟−2:

Sq𝑖ext : [𝐸𝑟𝑋]𝑠𝑡 −→ [𝐸𝑟𝑆2𝑋]𝑠+𝑖2𝑡 .

Now suppose that 𝑥 ∈ [𝐸𝑟𝑋]𝑠𝑡 . Sq𝑖ext𝑥 = 0 unless min{𝑡, 𝑟} ≤ 𝑖 ≤ 𝑠, and this vanish-

ing occurs without indeterminacy. In any case, Sq𝑖ext𝑥 survives to [𝐸2𝑟−1𝑆2𝑋]𝑠+𝑖2𝑡 , and the

following equation holds in [𝐸2𝑟−1𝑆2𝑋]𝑠+𝑖+2𝑟−1
2𝑡+2𝑟−2 (without indeterminacy):

𝑑2𝑟−1(Sq
𝑖
ext𝑥) = Sq𝑖+𝑟−1

ext (𝑑𝑟𝑥).

The top operation Sq𝑠ext𝑥 is equal to the product-square 𝜇ext(𝑥 ⊗ 𝑥), and in particular

has no indeterminacy. As for the only potentially non-zero Sq0ext operation:

Sq0ext : [𝐸𝑟𝑋]𝑠0 −→ [𝐸𝑟𝑆2𝑋]𝑠0 is induced by 𝑋 squaring−→ 𝑆2𝑋.

At 𝐸2, there is no indeterminacy, and the operation Sq𝑘ext corresponds to the composite:

𝜋𝑠h𝜋
v
𝑡𝑋

Sq𝑖ext−→ 𝜋𝑠+𝑖h 𝑆2(𝜋
v
𝑡𝑋)

𝜋𝑠+𝑖
h (̃︀∇)
−→ 𝜋𝑠+𝑖h 𝜋v2𝑡𝑆2𝑋.

The condition min{𝑡, 𝑟} ≤ 𝑖 ≤ 𝑠 may be replaced with min{𝑡 + 1, 𝑟} ≤ 𝑖 ≤ 𝑠 after

composing with [𝐸𝑟𝑆2𝑋]𝑠+𝑖2𝑡 −→ [𝐸𝑟Λ
2𝑋]𝑠+𝑖2𝑡 .
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Proposition 10.4. At 𝐸1, the chain level operation SQ𝑖,𝑠 defines an operation

Sq𝑖ext : [𝐸𝑟𝑋]𝑠𝑡 −→ [𝐸𝑟𝑆2𝑋]𝑠+𝑖2𝑡

which commutes with the differential 𝑑1. Suppose that 𝑥 ∈ [𝐸1𝑋]𝑠𝑡 . The top operation Sq𝑠ext𝑥

need not equal the product-square 𝜇ext(𝑥 ⊗ 𝑥) on 𝐸1, and Sq𝑠+1
ext 𝑥 need not vanish, instead

equalling 𝜇ext(𝑥⊗𝑑1𝑥) on 𝐸1. The operations need not be linear and have no indeterminacy.

At least for 𝑖 > 𝑠+ 1, Sq𝑖ext𝑥 = 0. Sq1h𝑥 is zero whenever 𝑡 ≥ 1. Sq0h𝑥 = 0 for all 𝑡.

Proof of Propositions 10.3 and 10.4. Choose a representative 𝑥 ∈ [𝑍𝑟𝑋]𝑠𝑡 of the class of

interest. We readily check that SQ𝑖,𝑠(𝑥) has filtration at least 𝑠+ 𝑖:

filt(𝜌∇𝐷𝑠−𝑖(𝑥⊗ 𝑥) ≥ 𝑠+ 𝑠− (𝑠− 𝑖) = 𝑠+ 𝑖,

filt(𝜌∇𝐷𝑠−𝑖+1(𝑥⊗ 𝑑𝑥) ≥ 𝑠+ (𝑠+ 𝑟)− (𝑠− 𝑖+ 1) = 𝑠+ 𝑖+ (𝑟 − 1).

Thus, we may view SQ𝑖,𝑠(𝑥) as an element of [𝑍0𝑆2𝑋]𝑠+𝑖2𝑡 . A straightforward calculation

shows that

𝑑(SQ𝑖,𝑠(𝑥)) = 𝜌∇𝐷𝑠−𝑖+1(𝑑𝑥⊗ 𝑑𝑥) = SQ𝑖+𝑟−1,𝑠+𝑟(𝑑𝑥),

and as 𝑥 ∈ [𝑍𝑟𝑋]𝑠𝑡 :

filt(𝑑(SQ𝑖,𝑠(𝑥))) ≥ (𝑠+ 𝑟) + (𝑠+ 𝑟)− (𝑠− 𝑖+ 1) = (𝑠+ 𝑖) + (2𝑟 − 1),

so that SQ𝑖,𝑠(𝑥) ∈ [𝑍2𝑟−1𝑆2𝑋]𝑠+𝑖2𝑡 . This demonstrates the survival property, along with the

formula commuting the Sq𝑖ext with spectral sequence differentials.

The next step is to examine the non-linearity of the operation SQ𝑖,𝑠, which we do using

formulae analogous to [52, (1.111) and (1.112)]. That is, for 𝑥, 𝑥′ ∈ [𝑍𝑟𝑋]𝑠𝑡 , one calculates

NL(𝑥, 𝑥′) := SQ𝑖,𝑠(𝑥) + SQ𝑖,𝑠(𝑥′) + SQ𝑖,𝑠(𝑥+ 𝑥′)

= 𝑑𝜌∇[𝐷𝑠−𝑖+2(𝑥⊗ 𝑑𝑥′) +𝐷𝑠−𝑖+1(𝑥′ ⊗ 𝑥)] + 𝜌∇𝐷𝑠−𝑖+2(𝑑𝑥⊗ 𝑑𝑥′).

The first two terms of NL(𝑥, 𝑥′) are the boundaries of chains in filtrations satisfying

filt(𝜌∇𝐷𝑠−𝑖+2(𝑥⊗ 𝑑𝑥′)) ≥ 𝑠+ 𝑠+ 𝑟 − (𝑠− 𝑖+ 2) = (𝑠+ 𝑖− 𝑟 + 1) + 2(𝑟 − 2) + 1,

filt(𝜌∇𝐷𝑠−𝑖+1(𝑥′ ⊗ 𝑥)) ≥ 𝑠+ 𝑠− (𝑠− 𝑖+ 1) = (𝑠+ 𝑖− 𝑟 + 1) + (𝑟 − 2),

so that they vanish in [𝐸𝑟𝑋]𝑠+𝑖2𝑡 whenever 𝑟 ≥ 2. Moreover

filt(𝜌∇𝐷𝑠−𝑖+2(𝑑𝑥⊗ 𝑑𝑥′)) ≥ 2(𝑠+ 𝑟)− (𝑠− 𝑖+ 2) = 𝑠+ 𝑖+ 2(𝑟 − 1),
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so that the final term also vanishes in [𝐸𝑟𝑋]𝑠+𝑖2𝑡 when 𝑟 ≥ 2. When 𝑟 ≥ 2, this proves that

whatever indeterminacy these operations are subject to is linear, and that the operations

themselves are linear.

To examine the indeterminacy, as a representative of a class in [𝐸𝑟𝑋]𝑠𝑡 , 𝑥 is only deter-

mined up to boundaries of 𝑦 ∈ [𝑍𝑟−1𝑋]𝑠−𝑟+1
𝑡−𝑟+2 and elements of [𝐸𝑟−1𝑋]𝑠+1

𝑡+1 . The latter are

irrelevant, as their effect on the value of SQ𝑖,𝑠 is restricted to high filtration. The boundaries

𝑑𝑦 are more problematic, but if we define

BC(𝑥, 𝑦) := 𝜌∇[𝐷𝑠−𝑖−1(𝑦 ⊗ 𝑦) +𝐷𝑠−𝑖(𝑦 ⊗ 𝑑𝑦) +𝐷𝑠−𝑖+1(𝑑𝑦 ⊗ 𝑥)]

then this chain has boundary

𝑑(BC(𝑥, 𝑦)) = 𝜌∇[𝐷𝑠−𝑖−1(𝑑𝑦 ⊗ 𝑦 + 𝑦 ⊗ 𝑑𝑦) +𝐷𝑠−𝑖(𝑑𝑦 ⊗ 𝑑𝑦) +𝐷𝑠−𝑖+1(𝑑𝑦 ⊗ 𝑑𝑥)]

+ 𝜌∇[0 +𝐷𝑠−𝑖−1(𝑦 ⊗ 𝑑𝑦 + 𝑑𝑦 ⊗ 𝑦) +𝐷𝑠−𝑖(𝑑𝑦 ⊗ 𝑥+ 𝑥⊗ 𝑑𝑦)]

= 𝜌∇[𝐷𝑠−𝑖(𝑑𝑦 ⊗ 𝑥+ 𝑥⊗ 𝑑𝑦 + 𝑑𝑦 ⊗ 𝑑𝑦) +𝐷𝑠−𝑖+1(𝑑𝑦 ⊗ 𝑑𝑥)]

= SQ𝑖,𝑠(𝑥)− SQ𝑖,𝑠(𝑥+ 𝑑𝑦).

That is, BC(𝑥, 𝑦) is a bounding chain for this difference, and

filt(BC(𝑥, 𝑦)) ≥ 2(𝑠− 𝑟 + 1)− (𝑠− 𝑖− 1) = (𝑠+ 𝑖)− (2𝑟 − 3),

so that Sq𝑖ext𝑥 has indeterminacy vanishing by [𝐸2𝑟−2𝑆2𝑋]𝑠+𝑖2𝑡 as claimed. When 𝑖 = 𝑠,

this result may be improved to filt(BC(𝑥, 𝑦)) ≥ 2𝑠 − (𝑟 − 1), as in this case the lowest

filtration summand in fact vanishes — this is one explanation of why the top square has no

indeterminacy.

When 𝑖 ≥ 𝑠+ 2, we have SQ𝑖(𝑥) = 0, and even with 𝑖 = 𝑠+ 1:

SQ𝑠+1,𝑠(𝑥) = 𝜌∇𝐷0(𝑥⊗ 𝑑𝑥) ∈ 𝐹 2𝑠+𝑟,

so that Sq𝑠+1
ext 𝑥 vanishes when 𝑟 ≥ 2, and Sq𝑠+1

ext 𝑥 = 𝜇ext(𝑥 ⊗ 𝑑1𝑥) when 𝑟 = 1, without

indeterminacy in both cases.

We must also check that Sq𝑖ext𝑥 vanishes (without indeterminacy) when 𝑖 < min{𝑡, 𝑟}.
For this we use the filtration preserving operations DEL𝑖 to be defined in §10.5. Suppose

Proposition 10.7 states that

𝑑(DEL𝑡−𝑖+1(𝑥)) + DEL𝑡−𝑖+1(𝑑𝑥) = SQ𝑖,𝑠(𝑥)
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as long as 2 ≤ 𝑡− 𝑖+ 1 ≤ 𝑡+ 1 (which is satisfied whenever 𝑖 < 𝑡). Moreover, if 𝑖 < 𝑟, then

DEL𝑡−𝑖+1(𝑑𝑥) ∈ 𝐹 𝑠+𝑟 ⊂ 𝐹 𝑠+𝑖+1 and DEL𝑡−𝑖+1(𝑥) ∈ 𝐹 𝑠,

so that this equation states that SQ𝑖,𝑠(𝑥) = 0 in [𝐸𝑟𝑋]𝑠+𝑖2𝑡 , without indeterminacy.

For the statement about the top operation, one calculates that

SQ𝑠,𝑠(𝑥)− 𝜌∇𝐷0(𝑥⊗ 𝑥) = 𝜌∇𝐷1(𝑥⊗ 𝑑𝑥) ∈ 𝐹 2𝑠+𝑟−1,

which exceeds filtration 2𝑠 when 𝑟 ≥ 2.

For the statement about Sq0ext𝑥 when 𝑡 = 0, using the specialness assumption:

SQ0,𝑠(𝑥)− 𝜌∇𝐷𝑠(𝑥⊗ 𝑥) = 𝜌∇𝐷𝑠+1(𝑥⊗ 𝑑𝑥) ∈ 𝐹 𝑠+1,

so that (using the assumption that {𝐷𝑘} is special):

SQ0,𝑠(𝑥) ≡ 𝜌∇𝐷𝑠(𝑥𝑠𝑡 ⊗ 𝑥𝑠𝑡 ) (mod 𝐹 𝑠+1)

= 𝜌(𝜑0 + (1+𝜔)∇0)(𝑥
𝑠
𝑡 ⊗v 𝑥

𝑠
𝑡 ) (𝑥𝑠𝑡 ⊗v 𝑥

𝑠
𝑡 ∈ 𝐶(𝑋 ⊗v 𝑋)𝑠2𝑡)

= 𝜌𝜑0(𝑥
𝑠
𝑡 ⊗v 𝑥

𝑠
𝑡 ) ∈ 𝐶(𝑋 ⊗Σ2 𝑋)𝑠𝑡 .

The statements about [𝐸𝑟Λ
2𝑋]𝑠+𝑖2𝑡 follow similarly, replacing DEL𝑖 with LAM𝑖.

10.5. External spectral sequence operations 𝛿ext𝑖

For any 𝑘 (positive or otherwise) write D𝑘 : (𝐶(𝑋)⊗𝐶(𝑌 ))𝑖 −→ 𝐶(𝑋 ⊗𝑌 )𝑖−𝑘 for the map:

D𝑟(𝑧) =
∑︁

𝛼−𝛽=𝑟
∇𝛼𝜔𝛼𝐷𝛽(𝑧).

Lemma 10.5. If 𝑥 ∈ 𝐹𝑠𝐶𝑛(𝑋) and 𝑦 ∈ 𝐹𝑠′𝐶𝑛′(𝑋), then

D𝑘(𝑥⊗ 𝑦) ∈ 𝐹max{𝑠,𝑠′}𝐶𝑛+𝑛′−𝑘(𝑋 ⊗𝑋).

Proof. We may assume that 𝑥 and 𝑦 are each homogeneous, with 𝑥 ∈ 𝑋𝑠
𝑡 and 𝑦 ∈ 𝑌 𝑠′

𝑡′ . As

{𝐷𝑘} is special, 𝐷𝛽(𝑥⊗ 𝑦) = 0 unless 𝛽 ≤ min{𝑠, 𝑠′}, in which case

filt(𝐷𝛽(𝑥⊗ 𝑦)) ≥ 𝑠+ 𝑠′ − 𝛽 ≥ 𝑠+ 𝑠′ −min{𝑠, 𝑠′} = max{𝑠, 𝑠′}.
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Lemma 10.6. For all 𝑘 (positive or otherwise) the equation:

(𝑑D𝑘 + D𝑘𝑑)(𝑧) = ((1 + 𝜔)D𝑘+1 +∇𝜔𝐷−𝑘−1)(𝑧)

holds when 𝑧 ∈ (𝐶𝑋 ⊗ 𝐶𝑋)𝑁 with 𝑁 > 2(𝑘 + 1). When 𝑁 = 2(𝑘 + 1),

(𝑑D𝑘 + D𝑘𝑑)(𝑧) = ((1 + 𝜔)D𝑘+1 +∇𝜔𝐷−𝑘−1 +
∑︀

𝛼 𝜑𝛼𝜔
𝛼+1𝐷𝛼−𝑘−1)(𝑧).

Proof. We may assume that 𝑧 is homogeneous, 𝑧 ∈ (𝐶𝑋⊗𝐶𝑋)𝑠𝑡 with 𝑁 = 𝑡− 𝑠 ≥ 2(𝑘+1).

Choose 𝛼 and 𝛽 such that 𝛼− 𝛽 = 𝑘. Then (𝜔𝛼𝐷𝛽(𝑧)) ∈ 𝐶(𝑋 ⊗v 𝑌 )𝑠−𝛽𝑡 .

We will need to apply Lemma 10.1 to calculate, for 𝛼− 𝛽 = 𝑘:

(𝑑∇𝛼 +∇𝛼𝑑)(𝜔𝛼𝐷𝛽(𝑧)) = ((1 + 𝜔)∇𝛼+1 + 𝜑𝛼+1)(𝜔
𝛼𝐷𝛽(𝑧)),

but Lemma 10.1 does not apply when 𝑡 = 2𝛼 + 𝑒 for 𝑒 ∈ {0, 1}. Fortunately, in that case

𝐷𝛽(𝑧) is zero, so the equation holds by default: after all, if 𝑡 = 2𝛼+𝑒, our assumed inequality

on 𝑁 implies:

𝛽 =
𝑡− 𝑒
2
− 𝑘 ≥ 𝑡− 𝑒

2
− 𝑡− 𝑠− 2

2
=
𝑠+ 2− 𝑒

2
>
𝑠

2
.

After these observations and under our conventions on the ∇𝛼 and 𝐷𝛽 , all but one of

the following manipulations is totally formal:

(𝑑D𝑘 + D𝑘𝑑)(𝑧) :=
∑︁

𝛼−𝛽=𝑘

(︁
𝑑∇𝛼𝜔𝛼𝐷𝛽 +∇𝛼𝜔𝛼𝐷𝛽𝑑

)︁
(𝑧)

=
∑︁

𝛼−𝛽=𝑘

(︁
(𝑑∇𝛼 +∇𝛼𝑑)𝜔𝛼𝐷𝛽 +∇𝛼𝜔𝛼(𝑑𝐷𝛽 +𝐷𝛽𝑑)

)︁
(𝑧)

=
∑︁

𝛼−𝛽=𝑘, 𝛼≥0

((1+𝜔)∇𝛼+1 + 𝜑𝛼+1)𝜔
𝛼𝐷𝛽(𝑧) +

∑︁
𝛼−𝛽=𝑘

∇𝛼𝜔𝛼(1+𝜔)𝐷𝛽−1(𝑧)

=
∑︁

𝛼−𝛽=𝑘+1, 𝛼≥1

((1+𝜔)∇𝛼 + 𝜑𝛼)𝜔
𝛼−1𝐷𝛽(𝑧) +

∑︁
𝛼−𝛽=𝑘+1

∇𝛼𝜔𝛼(1+𝜔)𝐷𝛽(𝑧)

Using the identity (1 + 𝜔)∇0 + 𝜑0 = ∇ for the first equation, and the observation that

(1 + 𝜔)𝐹𝜔𝐺+ 𝐹 (1 + 𝜔)𝐺 = (1 + 𝜔)(𝐹𝐺) for the second (with 𝐹 = ∇𝛼 and 𝐺 = 𝜔𝛼𝐷𝛽):

(𝑑D𝑘 + D𝑘𝑑)(𝑧)−∇𝜔𝐷−𝑘−1(𝑧) =
∑︁

𝛼−𝛽=𝑘+1

(︁
((1 + 𝜔)∇𝛼 + 𝜑𝛼)𝜔𝜔

𝛼𝐷𝛽 +∇𝛼(1 + 𝜔)𝜔𝛼𝐷𝛽
)︁
(𝑧)

=
∑︁

𝛼−𝛽=𝑘+1

(︁
(1 + 𝜔)(∇𝛼𝜔𝛼𝐷𝛽) + 𝜑𝛼𝜔

𝛼+1𝐷𝛽
)︁
(𝑧)

= (1 + 𝜔)D𝑘+1(𝑧) +
∑︁
𝛼

𝜑𝛼𝜔
𝛼+1𝐷𝛼−𝑘−1(𝑧)
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When the strict inequality 𝑡−𝑠 > 2(𝑘+1) holds, due to the application of 𝜑𝛼, each summand

𝜑𝛼𝜔
𝛼+1𝐷𝛼−𝑘−1(𝑧) is zero unless 𝑡 = 2𝛼, but in that case, 𝑠 = 2𝛼−𝑁 < 2(𝛼− 𝑘 − 1), and

then 𝐷𝛼−𝑘−1(𝑧) vanishes as {𝐷𝑘} is special.

We will be able to define (sometimes multi-valued) operations (for 𝑟 ≥ 0):

𝛿ext
𝑖 : [𝐸𝑟𝑋]𝑠𝑡 −→ [𝐸𝑟𝑆2𝑋]𝑠𝑡+𝑖 for 2 ≤ 𝑖 ≤ max{𝑛, 𝑡− (𝑟 − 1)};

𝜆ext
𝑖 : [𝐸𝑟𝑋]𝑠𝑡 −→ [𝐸𝑟Λ

2𝑋]𝑠𝑡+𝑖 for 1 ≤ 𝑖 ≤ max{𝑛, 𝑡− (𝑟 − 1)};

using the chain-level maps DEL𝑖 : 𝐶*𝑋 −→ 𝐶*𝑆2𝑋 and LAM𝑖 : 𝐶*𝑋 −→ 𝐶*Λ
2𝑋:

DEL𝑖(𝑥) := 𝜌 (D𝑛−𝑖(𝑥⊗ 𝑥) + D𝑛−𝑖−1(𝑑𝑥⊗ 𝑥));

LAM𝑖(𝑥) := 𝜌′(D𝑛−𝑖(𝑥⊗ 𝑥) + D𝑛−𝑖−1(𝑑𝑥⊗ 𝑥));

where we write 𝑛 := 𝑡 − 𝑠 in each formula. Except when 𝑖 < 2, we can work just with the

DEL𝑖, as in §5.2. Lemma 10.5 shows immediately that these maps preserve filtration, in the

sense that DEL𝑖(𝑥) ∈ 𝐹 𝑠𝐶𝑛+𝑖(𝑋 ⊗𝑋) whenever 𝑥 ∈ 𝐹 𝑠𝐶𝑛𝑋. Moving forward we will need

a formula for the boundary of DEL𝑖(𝑥):

Proposition 10.7. For 2 ≤ 𝑖 ≤ 𝑡+ 1 and 𝑥 ∈ [𝑍0𝑋]𝑠𝑡 :

𝑑(DEL𝑖(𝑥)) + DEL𝑖(𝑑𝑥) = SQ𝑡−𝑖+1,𝑠(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SQ𝑡−𝑖+1,𝑠(𝑥), if 𝑛+ 1 ≤ 𝑖 ≤ 𝑡+ 1;

𝜌∇𝐷0(𝑥⊗ 𝑑𝑥), if 𝑖 = 𝑛;

0, if 𝑖 < 𝑛.

The same equations hold for LAM𝑖 in the extended range 1 ≤ 𝑖 ≤ 𝑡+ 1.

Proof. We may apply Lemma 10.6 to calculate 𝑑D𝑛−𝑖(𝑥⊗ 𝑥) and 𝑑D𝑛−𝑖−1(𝑑𝑥⊗ 𝑥), since

|𝑥⊗ 𝑥| = 2𝑛 > 2(𝑛− 𝑖+ 1) and |𝑑𝑥⊗ 𝑥| = 2𝑛− 1 > 2(𝑛− 𝑖− 1 + 1) when 𝑖 ≥ 2.

Note that the first inequality fails when 𝑖 = 1, which will explain the lack of 𝛿ext
1 . We can

work around this difficulty when defining 𝜆ext
1 (the final step of this proof). Returning to

DEL𝑖 for 𝑖 ≥ 2:

𝑑(DEL𝑖(𝑥)) + DEL𝑖(𝑑𝑥) = 𝜌𝑑
(︁
D𝑛−𝑖(𝑥⊗ 𝑥) + D𝑛−𝑖−1(𝑑𝑥⊗ 𝑥)

)︁
+ 𝜌D𝑛−𝑖−1(𝑑𝑥⊗ 𝑑𝑥)

= 𝜌
{︁
𝑑D𝑛−𝑖(𝑥⊗ 𝑥)

}︁
+ 𝜌
{︁
𝑑D𝑛−𝑖−1(𝑑𝑥⊗ 𝑥)) + D𝑛−𝑖−1(𝑑(𝑑𝑥⊗ 𝑥))

}︁
= 𝜌
{︁
D𝑛−𝑖𝑑(𝑥⊗ 𝑥) + (1 + 𝜔)D𝑛−𝑖+1(𝑥⊗ 𝑥) +∇𝜔𝐷𝑖−𝑛−1(𝑥⊗ 𝑥)

}︁
+ 𝜌
{︁
(1 + 𝜔)D𝑛−𝑖(𝑑𝑥⊗ 𝑥) +∇𝜔𝐷𝑖−𝑛(𝑑𝑥⊗ 𝑥)

}︁
,
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where we used braces to indicate the two applications of Lemma 10.6. Everything cancels

except for 𝜌∇(𝐷𝑖−𝑛−1(𝑥⊗ 𝑥) +𝐷𝑖−𝑛(𝑥⊗ 𝑑𝑥)) which equals SQ𝑡−𝑖+1,𝑠(𝑥). We have studied

this expression above, explaining the three cases.

If 𝑖 = 1, Lemma 10.6 yields an extra term, and if we write 𝑥 as the sum
∑︀

𝑇 𝑥
𝑇−𝑛
𝑇 of its

homogeneous parts, as {𝐷𝑘} is special, this term is:

𝜌(
∑︀

𝛼 𝜑𝛼𝜔
𝛼+1𝐷𝛼−𝑛(𝑥⊗ 𝑥)) = 𝜌(

∑︀
𝑇 𝑥

𝑇−𝑛
𝑇 ⊗ 𝑥𝑇−𝑛𝑇 ) ∈ 𝑆2𝑋.

Although this term need not vanish, its image in Λ2𝑋 certainly does, so that LAM1 satisfies

the desired equation.

Suppose now that 𝑥 ∈ [𝐸𝑟𝑋]𝑠𝑡 . In light of the above calculation, when 𝑛 < 𝑖 ≤ 𝑡 + 1,

the purpose of 𝛿ext
𝑖 (𝑥) will be to support a 𝑑𝑡−𝑖+1-differential to Sq𝑡−𝑖+1

ext (𝑥). Thus, we would

not expect to be able to define 𝛿ext
𝑖 (𝑥) when 𝑡 − 𝑖 + 1 < 𝑟; indeed, the following result will

construct 𝛿ext
𝑖 (𝑥) whenever 𝑖 ≤ 𝑡− (𝑟 − 1).

Moreover, Sq𝑡−𝑖+1
ext (𝑥) has indeterminacy vanishing by [𝐸2(𝑟−1)𝑆2𝑋]𝑠+𝑡−𝑖+1

2𝑡 , and we should

expect that whenever 𝑡− 𝑖+ 1 < 2(𝑟 − 1), 𝛿ext
𝑖 (𝑥) will be multi-valued, but that the set of

values for 𝛿ext
𝑖 (𝑥) will map onto the set of values for Sq𝑡−𝑖+1

ext (𝑥) under 𝑑𝑡−𝑖+1. We are not

saying that we expect the indeterminacy of 𝛿ext
𝑖 (𝑥) to vanish by a certain page, but rather

that we expect the multiple values of 𝛿ext
𝑖 (𝑥) to all fail to be permanent cycles together.

Note that when 𝑟 ≤ 2, there is no indeterminacy whatsoever in either set of operations.

Proposition 10.8. Suppose that 𝑟 ≥ 0. The chain-level map DEL𝑖 produces a multi-valued

operation

𝛿ext
𝑖 : [𝐸𝑟𝑋]𝑠𝑡 −→ [𝐸𝑟𝑆2𝑋]𝑠𝑡+𝑖 defined when 2 ≤ 𝑖 ≤ max{𝑛, 𝑡− (𝑟 − 1)}.

If 𝑟 ≥ 1 and 𝑖 < 𝑡 then this function is linear with linear indeterminacy. This operation is

single-valued whenever 2 ≤ 𝑖 ≤ max{𝑛 + 1, 𝑡 + 1 − 2(𝑟 − 1)}, and at 𝐸1 may be identified

with the operation of §5.2:

𝜋v𝑡 (𝑋
𝑠)

𝛿ext
𝑖−→ 𝜋v𝑡+𝑖𝑆2(𝑋

𝑠).

Suppose that 𝑟 ≥ 1 and 𝑥 ∈ [𝐸𝑟𝑋]𝑠𝑡 , and suppose that 𝛿ext
𝑖 (𝑥) is defined. Then 𝛿ext

𝑖 (𝑑𝑟𝑥)

is defined and

𝑑𝑟𝛿
ext
𝑖 (𝑥) + 𝛿ext

𝑖 (𝑑𝑟𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sq𝑡−𝑖+1

ext (𝑥), if 𝑖 > 𝑡− 𝑠 and 𝑟 = 𝑡− 𝑖+ 1;

𝜇ext(𝑥⊗ 𝑑𝑟𝑥), if 𝑖 = 𝑡− 𝑠, 𝑠 = 0 and 𝑟 ≥ 2;

0, otherwise.
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If 𝑖 ≤ max{𝑛+1, 𝑡+1− 2(𝑟− 1)}, so that 𝛿ext
𝑖 𝑥 is single-valued, then 𝛿ext

𝑖 𝑑𝑟𝑥 is also single-

valued, and this equation holds exactly. When 𝑖 > 𝑡 − 𝑠 and 𝑟 = 𝑡 − 𝑖 + 1 the set of values

of the left hand side coincides with the set of values of the right hand side. Otherwise, this

equation holds modulo the indeterminacy of the left hand side.

For 𝑟 ≥ 1, the only potentially nonlinear operations are

𝛿ext
𝑡 : [𝐸1𝑋]𝑠𝑡 −→ [𝐸1𝑋]𝑠2𝑡 and 𝛿ext

𝑡 : [𝐸𝑟𝑋]0𝑡 −→ [𝐸𝑟𝑋]02𝑡. (10.1)

They have no indeterminacy and satisfy 𝛿ext
𝑡 (𝑥+ 𝑦) = 𝛿ext

𝑡 (𝑥) + 𝛿ext
𝑡 (𝑦) + 𝜇ext(𝑥⊗ 𝑦).

The same conclusions hold for LAM𝑖, producing operations 𝜆ext
𝑖 , and the inequality 2 ≤ 𝑖

can be replaced with 1 ≤ 𝑖 in this case.

This proposition necessarily contains rather a lot of information. One upshot that we would

like to point out is that if 𝑥 ∈ [𝐸∞𝑋]𝑠𝑡 and 𝑡− 𝑠 > 0, then 𝜇ext(𝑥⊗ 𝑥) = 0 ∈ [𝐸∞𝑆2𝑋]2𝑠+1
2𝑡+1 ,

because of the differential

𝑑𝑠 : 𝛿
ext
𝑡−𝑠+1𝑥 ↦−→ Sq𝑠ext𝑥 = 𝜇ext(𝑥⊗ 𝑥).

That is, although 𝜇ext(𝑥⊗ 𝑥) need not equal zero on the 𝐸2-page, the 𝐸∞-page mimics an

exterior algebra in positive dimension. The fact that this top Steenrod operation has no

indeterminacy (c.f. Proposition 10.3) should be compared with the fact that 𝛿ext
𝑡−𝑠+1𝑥 has no

indeterminacy.

Proof. Suppose that 𝑥 ∈ [𝑍𝑟𝑋]𝑠𝑡 . Then Proposition 10.7 shows that 𝑑DEL𝑖(𝑥) ∈ 𝐹 𝑠+𝑟𝐶(𝑆2𝑋)

as long as 𝑖 ≤ max{𝑛, 𝑡− (𝑟 − 1)}, so that DEL𝑖(𝑥) ∈ [𝑍𝑟𝑋]𝑠𝑡+𝑖. Proposition 10.8 then pro-

vides the formula for 𝑑𝑟𝛿ext
𝑖 (𝑥) + 𝛿ext

𝑖 (𝑑𝑟𝑥) (modulo whatever indeterminacy we find).

Let us begin with the operations 𝛿ext
𝑖 : [𝐸1𝑋]𝑠𝑡 −→ [𝐸1𝑆2𝑋]𝑠𝑡+𝑖. Due to the assumption

that {𝐷𝑘} is special, for any 𝑥, 𝑦 ∈ 𝐹 𝑠𝐶𝑋, D𝑘(𝑥⊗𝑦) ≡ ∇𝑘𝜔𝑘𝐷0(𝑥⊗𝑦) modulo 𝐹 2𝑠+1𝑋, and

due to Lemma 10.5, we can ignore the horizontal component of the differential 𝑑𝑥 appearing

in the definition of DEL𝑖(𝑥). The resulting operations have leading term which is almost

identical to the definition of the operations 𝛿ext
𝑖 of §5.2, which we already understand well.

The only difference is the 𝜔 operator that appears, but this does not affect the resulting

operation, by [26, Lemma 4.1]. This calculation at 𝐸1 also demonstrates the expression

for 𝛿ext
𝑡 (𝑥 + 𝑦) for the operations in (10.1): such an equation is known from §5.2, and as

[𝐸𝑟𝑋]0𝑡 ⊆ [𝐸1𝑋]0𝑡 for 𝑟 ≥ 1, this equation persists for all of the operations of (10.1).

Next, suppose that 2 ≤ 𝑖 ≤ 𝑡, and that 𝑥, 𝑥′ ∈ [𝑍𝑟𝑋]𝑠𝑡 , and define:

NL′(𝑥, 𝑥′) := DEL𝑖(𝑥) + DEL𝑖(𝑥′) + DEL𝑖(𝑥+ 𝑥′)
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By a calculation using Lemma 10.6 (similar to the calculation of 𝑑𝐻 that follows shortly):

𝑑(NL′(𝑥, 𝑥′)) = 𝑑𝜌[D𝑛−𝑖−1(𝑥⊗ 𝑥′) + D𝑛−𝑖−2(𝑥⊗ 𝑑𝑥′)]

+ 𝜌[D𝑛−𝑖−2(𝑑𝑥⊗ 𝑑𝑥′) +∇𝜔𝐷𝑖−𝑛(𝑥⊗ 𝑥′) +∇𝜔𝐷𝑖−𝑛+1(𝑥⊗ 𝑑𝑥′)]

The terms on the first line are zero in [𝑍𝑟𝑋]𝑠𝑡+𝑖, as they are the boundaries of chains of

filtration at least 𝑠. The three remaining terms lie in filtration exceeding 𝑠 as long as 𝑖 < 𝑡.

Thus, whatever indeterminacy these operations are subject to is linear, and the operations

themselves are linear.

We will now examine the extent to which DEL𝑖 induces a well defined operation with

domain [𝐸𝑟𝑋]𝑠𝑡 for 𝑟 ≥ 1. We may assume that 𝑠 > 0, as the operations on 𝐸1 were shown

earlier to be well defined, and [𝐸𝑟𝑋]0𝑡 ⊆ [𝐸1𝑋]0𝑡 for 𝑟 ≥ 1. This implies that 𝑡 − 𝑖 ≥
1 whenever 𝑖 = 𝑛. To examine the indeterminacy in 𝛿ext

𝑖 𝑥 is to examine the difference

DEL𝑖(𝑥)−DEL𝑖(𝑥+ 𝑑𝑦) for 𝑦 ∈ [𝑍𝑟−1𝑋]𝑠−𝑟+1
𝑡−𝑟+2 , and by Lemma 10.6, we have the following

three equations:

𝑑D𝑛−𝑖+1(𝑦 ⊗ 𝑦) = D𝑛−𝑖+1𝑑(𝑦 ⊗ 𝑦) + (1+𝜔)D𝑛−𝑖+2(𝑦 ⊗ 𝑦) +∇𝜔𝐷−(𝑛−𝑖+2)(𝑦 ⊗ 𝑦);

𝑑D𝑛−𝑖(𝑑𝑦 ⊗ 𝑦) = D𝑛−𝑖(𝑑𝑦 ⊗ 𝑑𝑦) + (1+𝜔)D𝑛−𝑖+1(𝑑𝑦 ⊗ 𝑦) +∇𝜔𝐷−(𝑛−𝑖+1)(𝑑𝑦 ⊗ 𝑦);

𝑑D𝑛−𝑖−1(𝑥⊗ 𝑑𝑦) = D𝑛−𝑖−1(𝑑𝑥⊗ 𝑑𝑦) + (1+𝜔)D𝑛−𝑖(𝑥⊗ 𝑑𝑦) +∇𝜔𝐷−(𝑛−𝑖)(𝑥⊗ 𝑑𝑦).

(As in the proof of Proposition 10.7, there are extra terms which appear when 𝑖 = 1, but

they are annihilated by the application of 𝜌′.) We define the following chain:

𝐻(𝑥, 𝑦) := 𝜌(D𝑛−𝑖−1(𝑥⊗ 𝑑𝑦) + D𝑛−𝑖(𝑑𝑦 ⊗ 𝑦) + D𝑛−𝑖+1(𝑦 ⊗ 𝑦)),

and note, by Lemma 10.5, that 𝐻(𝑥, 𝑦) ∈ 𝐹 𝑠−𝑟+1𝐶𝑛+𝑖+1(𝑆2𝑋). The three equations above

show that

𝑑(𝐻(𝑥, 𝑦)) = DEL𝑖(𝑥)−DEL𝑖(𝑥+ 𝑑𝑦) + 𝑇1 + 𝑇2 + 𝑇3,

where

𝑇1 := 𝜌∇(𝐷𝑖−𝑛−2(𝑦 ⊗ 𝑦)) ∈ 𝐹 𝑠+(𝑡−𝑖)−2(𝑟−2) equals zero when 𝑖 ≤ 𝑛+ 1;

𝑇2 := 𝜌∇(𝐷𝑖−𝑛−1(𝑦 ⊗ 𝑑𝑦)) ∈ 𝐹 𝑠+(𝑡−𝑖)−(𝑟−2) equals zero when 𝑖 ≤ 𝑛;

𝑇3 := 𝜌∇(𝐷𝑖−𝑛(𝑑𝑦 ⊗ 𝑥)) ∈ 𝐹 𝑠+(𝑡−𝑖) equals zero when 𝑖 ≤ 𝑛− 1.

As 𝑡− 𝑖 ≥ 1, 𝑇3 ∈ 𝐹 𝑠+1 can be ignored. As we have supposed that the operation 𝛿ext
𝑖 can be

defined on 𝑥, we must have either 𝑖 ≤ 𝑛, in which case 𝑇2 = 0, or 𝑖 ≤ 𝑡− (𝑟 − 1), in which

case 𝑇2 ∈ 𝐹 𝑠+1 can be ignored. 𝑇3 is assured either to vanish or to lie in 𝐹 𝑠+1 exactly when
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𝑖 ≤ max{𝑛+ 1, 𝑡+ 1− 2(𝑟 − 1)}, in which case, we have shown that 𝛿ext
𝑖 𝑥 is single-valued.

In every case we may summarize the situation as follows. There is some𝐻(𝑥, 𝑦) ∈ 𝐹 𝑠−𝑟+1

such that

𝑑(𝐻(𝑥, 𝑦)) = DEL𝑖(𝑥)−DEL𝑖(𝑥+ 𝑑𝑦) + BC(𝑥, 𝑦),

where BC(𝑥, 𝑦) := 𝑇1 + 𝑇2 + 𝑇3 is an example of the bounding chain appearing in the proof

of Propositions 10.3 and 10.4, so that

𝑑(DEL𝑖(𝑥))− 𝑑(DEL𝑖(𝑥+ 𝑑𝑦)) ≡ SQ𝑡−𝑖+1,𝑠(𝑥)− SQ𝑡−𝑖+1,𝑠(𝑥+ 𝑑𝑦) (mod 𝐹 𝑠+𝑡−𝑖+2),

and the set of values of 𝛿ext
𝑖 𝑥 maps onto the set of values Sq𝑡−𝑖+1

ext 𝑥 under 𝑑𝑡−𝑖+1.

Proposition 10.9. Suppose that 𝑋 ∈ (𝑠V)Δ+ , i.e. that 𝑋 admits a coaugmentation from

some 𝑋−1 ∈ 𝑠V. For 2 ≤ 𝑖 ≤ 𝑡 − 𝑠, the operations 𝛿ext
𝑖 : [𝐸∞𝑋]𝑠𝑡 −→ [𝐸∞𝑆

2𝑋]𝑠+1
𝑡+𝑖+1 agree

with the homotopy operations 𝛿ext
𝑖 : 𝜋𝑡−𝑠(𝑋

−1) −→ 𝜋𝑡−𝑠+𝑖(𝑆
2(𝑋−1)). Similarly, the external

pairing at 𝑆2[𝐸∞𝑋] −→ [𝐸∞𝑆2𝑋] agrees with ̃︀∇ : 𝑆2𝜋*(𝑋
−1) −→ 𝜋*(𝑆2(𝑋

−1)).

The same conclusions hold for the 𝜆𝑖 for 1 ≤ 𝑖 ≤ 𝑡− 𝑠.

Proof. We will only prove the statement about 𝛿ext
𝑖 , as the statement about products is

easier and more standard. We need to show that the following diagram commutes whenever

2 ≤ 𝑖 ≤ 𝑛:

𝑍𝐶𝑛(𝑋)
DEL𝑖 //

𝑑0h

OO
𝑍𝐶𝑛(𝑆2𝑋)

𝑑0h

OO

𝑍𝐶𝑛(𝑋
−1)

𝑧 ↦−→𝜌(∇𝑛−𝑖(𝑧⊗𝑧))
// 𝑍𝐶𝑛(𝑆2(𝑋

−1))

We calculate

DEL𝑖(𝑑0h𝑧) := 𝜌D𝑛−𝑖(𝑑0h𝑧 ⊗ 𝑑0h𝑧) + 𝜌D𝑛−𝑖−1(𝑑
0
h𝑧 ⊗ 𝑑(𝑑0h𝑧))

= 𝜌∇𝑛−𝑖𝜔𝑛−𝑖𝐷0(𝑑0h𝑧 ⊗ 𝑑0h𝑧) + 𝜌D𝑛−𝑖−1(𝑑
0
h𝑧 ⊗ 0)

= 𝜌∇𝑛−𝑖(𝑑0h𝑧 ⊗v 𝑑
0
h𝑧) = 𝑑0h(𝜌∇𝑛−𝑖(𝑧 ⊗ 𝑧)),

where we have used the assumption that {𝐷𝑘} is special in both the second and third

equations, and 𝑑(𝑑0h𝑧) = 0 since 𝑧 ∈ 𝑍𝐶𝑛(𝑋−1) is a (vertical) cycle, and 𝑑0h equalizes 𝑑0h and

𝑑1h.
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10.6. Internal operations on [𝐸𝑟𝑋] for 𝑋 ∈ 𝑐𝑠Com

Suppose that 𝑋 ∈ 𝑐𝑠Com is a cosimplicial simplicial commutative non-unital F2-algebra.

We may define operations:

𝛿𝑖 :
(︁
[𝐸𝑟𝑋]𝑠𝑡

𝛿ext
𝑖−→ [𝐸𝑟q2𝐹

Com𝑋]𝑠𝑡+𝑖
𝜇*−→ [𝐸𝑟𝑋]𝑠𝑡+𝑖

)︁
,

Sq𝑗 :
(︁
[𝐸𝑟𝑋]𝑠𝑡

Sq𝑗ext−→ [𝐸𝑟q2𝐹
Com𝑋]𝑠+𝑗2𝑡

𝜇*−→ [𝐸𝑟𝑋]𝑠+𝑗2𝑡

)︁
,

𝜇 :
(︁
[𝐸𝑟𝑋]𝑠𝑡 ⊗ [𝐸𝑟𝑋]𝑠

′
𝑡′

𝜇ext−→ [𝐸𝑟q2𝐹
Com𝑋]𝑠+𝑠

′

𝑡+𝑡′
𝜇*−→ [𝐸𝑟𝑋]𝑠+𝑠

′

𝑡+𝑡′

)︁
,

with the 𝛿𝑖 multi-valued functions, defined when 2 ≤ 𝑖 ≤ max{𝑛, 𝑡 − (𝑟 − 1)}, and single-

valued whenever 2 ≤ 𝑖 ≤ min{𝑛 + 1, 𝑡 + 1 − 2(𝑟 − 1)}, and the Sq𝑗 multi-valued functions

with indeterminacy vanishing by 𝐸2𝑟−2, and which equal zero unless min{𝑡, 𝑟} ≤ 𝑗 ≤ 𝑠.
These operations will not be used in rest of this thesis, as they will equal zero in the case

of interest to us, namely when 𝑋 ∈ 𝑐𝑠Com is a GEM in each cosimplicial level. Nonetheless,

we hope they are of some independent interest.

Numerous properties of these operations follow directly from the earlier results, namely

Propositions 10.2, 10.3, 10.4 10.8 and 10.9. In addition, we have

Proposition 10.10. The operations 𝛿𝑖 : [𝐸1𝑋]𝑠𝑡 −→ [𝐸1𝑋]𝑠𝑡+𝑖 are (the restriction of) the

homotopy operations of §5.4 applied to the homotopy of the simplicial algebra 𝑋𝑠. Moreover,

for each 𝑠, 𝜋v*𝑋𝑠 is a graded commutative algebra (again, c.f. §5.4), and the operations 𝜇 and

Sq𝑗 on 𝐸2 are the standard operations on the cohomotopy of the cosimplicial commutative

algebra 𝜋v*𝑋𝑠. As such, the operations Sq𝑗 make [𝐸2𝑋] is an unstable left module over the

homogeneous Steenrod algebra, and satisfy the evident unstableness condition and the Cartan

formula.

If 𝑥 ∈ [𝐸1𝑋]𝑠𝑡 and 2 ≤ 𝑖 ≤ 2𝑡 (so that the 𝛿ext
𝑖 operation that follows is defined), then

𝛿𝑖Sq
𝑗𝑥 = 0 ∈ [𝐸1𝑋]𝑠+𝑗2𝑡+𝑖. If also 𝑦 ∈ [𝐸1𝑋]𝑠

′
𝑡′ , and 2 ≤ 𝑖 < 𝑡+ 𝑡′, then 𝛿𝑖(𝑥𝑦) = 0.

Proof of Proposition 10.10. Everything here is straightforward, and we will present the cal-

culation 𝛿𝑖Sq
𝑗𝑥 = 0 as an example. Suppose that 𝑥 ∈ [𝑍1𝑋]𝑠𝑡 and 2 ≤ 𝑖 ≤ 2𝑡. This

condition implies that 𝑡 > 0, and for our current purpose we can assume that 𝑥 ∈ 𝑋𝑠
𝑡 , so

that 𝑑v𝑥 = 0. Then Sq𝑗ext𝑥 is represented by the image of 𝐷𝑠−𝑗(𝑥 ⊗ 𝑥) +𝐷𝑠−𝑗+1(𝑥 ⊗ 𝑑h𝑥)
under the composite

𝑁 𝑠+𝑗(𝑁𝑡𝑋 ⊗𝑁𝑡𝑋)
𝑁𝑠+𝑗(̃︀∇)−→ 𝑁 𝑠+𝑗𝑁2𝑡(𝑋 ⊗Σ2 𝑋)

𝜇−→ 𝑁 𝑠+𝑗𝑁2𝑡(𝑋)
𝛿𝑖−→ 𝑁 𝑠+𝑗𝑁2𝑡+𝑖(𝑋),

and Proposition 5.3 states that the final 𝛿-operation annihilates products of positive dimen-

sional classes, so that this composite is zero.

140



As a final note here, suppose that 𝑋 ∈ 𝑐𝑠Lie (or 𝑐𝑠Lier). We may define operations:

𝜆𝑖 :
(︁
[𝐸𝑟𝑋]𝑠𝑡

𝜆ext
𝑖−→ [𝐸𝑟q2𝐹

Lie𝑋]𝑠𝑡+𝑖
[,]*−→ [𝐸𝑟𝑋]𝑠𝑡+𝑖

)︁
,

𝑃 𝑗−1 :
(︁
[𝐸𝑟𝑋]𝑠𝑡

Sq𝑗ext−→ [𝐸𝑟q2𝐹
Lie𝑋]𝑠+𝑗2𝑡

[,]*−→ [𝐸𝑟𝑋]𝑠+𝑗2𝑡

)︁
,

[ , ] :
(︁
[𝐸𝑟𝑋]𝑠𝑡 ⊗ [𝐸𝑟𝑋]𝑠

′
𝑡′

𝜇ext−→ [𝐸𝑟q2𝐹
Lie𝑋]𝑠+𝑠

′

𝑡+𝑡′
[,]*−→ [𝐸𝑟𝑋]𝑠+𝑠

′

𝑡+𝑡′

)︁
,

with the 𝜆𝑖 multi-valued functions, defined when 1 ≤ 𝑖 ≤ max{𝑛, 𝑡 − (𝑟 − 1)} and single-

valued whenever 1 ≤ 𝑖 ≤ min{𝑛+1, 𝑡+1− 2(𝑟− 1)}. It should be possible to state versions

of all of the above results in this case. The author guesses that the operations 𝑃 𝑘 will form

an unstable left action of the 𝑃 -algebra (the Steenrod algebra for commutative F2-algebras,

as in §6.6) but has not worked out the details.
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Chapter 11

Operations in the Bousfield-Kan

spectral sequence

In this chapter we will define operations on the BKSS for an object 𝑋 ∈ 𝑠C whenever C

is any of the categories Com, Lie or Lier. We will always write X for Radulescu-Banu’s

resolution of 𝑋 ∈ 𝑠C, the coaugmented cosimplicial simplicial object defined by

X𝑠𝑡 = (𝑐(𝐾C𝑄C𝑐)𝑠+1𝑋)𝑡.

11.1. An alternate definition of the Adams tower

We will now give an alternate definition of the Adams tower of §4.2, using the techniques of

[11], which is more suited for the definition of spectral sequence operations in our setting.

For 𝑍 ∈ VΔ+ , the category of coaugmented cosimplicial vector spaces, Bousfield and

Kan write 𝑉 𝑍 for a “path-like construction” [11, §3.1] obtained by shifting 𝑍 down and

forgetting the 0th coface and codegeneracy. That is, (𝑉 𝑍)𝑠 := (𝑉 𝑍)𝑠+1, and:

(︀
(𝑉 𝑍)𝑠

𝑑𝑖−→ (𝑉 𝑍)𝑠+1
)︀
:=
(︀
𝑍𝑠+1 𝑑𝑖+1

−→ 𝑍𝑠+2
)︀

(︀
(𝑉 𝑍)𝑠

𝑠𝑖−→ (𝑉 𝑍)𝑠−1
)︀
:=
(︀
𝑍𝑠+1 𝑠𝑖+1

−→ 𝑍𝑠
)︀

The unused coface 𝑑0 induces a map 𝑣 : 𝑍 −→ 𝑉 𝑍 in VΔ+ .

For 𝑌 ∈ 𝑠V, the standard simplicial path fibration (c.f. [12, p. 82]) produces a con-

tractible simplicial vector space Λ𝑌 ∈ 𝑠V by shifting down and restricting to a kernel:

Λ𝑌𝑠 = ker
(︀
𝑑𝑠+1 · · · 𝑑1 : 𝑌𝑠+1 −→ 𝑌0

)︀
.

We forget the 0th face and degeneracy as before, and this time, the unused face map 𝑑0
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induces a fibration 𝜆 : Λ𝑌 −→ 𝑌 .

Each of these constructions can be prolonged to an endofunctor of (𝑠C)Δ+ , endofunctors

which are necessary for a key construction of Bousfield and Kan [11]. Define an endofunctor

𝑅1 of the category (𝑠C)Δ+ of augmented cosimplicial objects in 𝑠C, using the pullback (for

𝑊 ∈ (𝑠C)Δ+):

𝑅1𝑊 //

𝛿��

Λ𝑉𝑊
𝜆��

𝑊
𝑣 // 𝑉𝑊

Then one can form a tower in (𝑠C)Δ+ , (writing 𝑅𝑛 := 𝑅1 ∘ · · ·𝑅1):

· · · // 𝑅2𝑊 // 𝑅1𝑊 // 𝑅0𝑊 𝑊.

Restricting to augmentations, there is a tower of fiber sequences in 𝑠C:

· · · // (𝑅2𝑊 )−1 //

𝑑0��

(𝑅1𝑊 )−1

𝑑0��

// (𝑅0𝑊 )−1

𝑑0��

𝑊−1

(𝑅2𝑊 )0 (𝑅1𝑊 )0 (𝑅0𝑊 )0

Bousfield and Kan [11, §3.3 and §4.2] note that this tower equals the Adams tower {𝑅𝑛𝑋}
when 𝑊 = X is Radulescu-Banu’s resolution of 𝑋 ∈ 𝑠C. They also explicitly perform the

resulting identification of the 𝐸1-page of the spectral sequence of this tower with 𝑁 𝑠
⊆𝜋𝑡𝑊 ,

using iterates of the connecting map

𝜋𝑡(𝑊
𝑠) = 𝜋𝑡(𝑉𝑊

𝑠−1)
𝜕conn−→ 𝜋𝑡−1(𝑅

1𝑊 )𝑠−1

of the fiber sequence (𝑅1𝑊 )𝑠−1 −→𝑊 𝑠−1 −→ 𝑉𝑊 𝑠−1, which has the property:

Proposition 11.1 [11, Proposition 5.2]. The following composite involving the connecting

map 𝜕conn induces (for each fixed 𝑡) an isomorphism of cochain complexes:

𝑁 𝑠
⊆𝜋𝑡𝑊 ⊆ 𝑁 𝑠−1

⊆ 𝜋𝑡𝑉𝑊
𝜕conn−→ 𝑁 𝑠−1

⊆ 𝜋𝑡−1(𝑅
1𝑊 ).

Note that the inclusion in this theorem can be strict — the subspace 𝑁 𝑠
⊆𝜋𝑡𝑊 of 𝐶𝑠𝜋𝑡𝑊 𝑠 is

defined by the vanishing of the maps 𝑠0, . . . , 𝑠𝑠−1 : 𝜋𝑡𝑊
𝑠 −→ 𝜋𝑡𝑊

𝑠−1, while𝑁 𝑠−1
⊆ 𝜋𝑡(𝑉𝑊 )𝑠−1

is defined by the vanishing only of 𝑠1, . . . , 𝑠𝑠−1 : 𝜋𝑡𝑊
𝑠 −→ 𝜋𝑡𝑊

𝑠−1, as 𝑠0 is forgotten in

passing to 𝑉𝑊 .

If we declare the spectral sequence an object 𝑊 ∈ 𝑐𝑠C to be the spectral sequence of the

tower

· · · // (𝑅2𝑊 )−1 // (𝑅1𝑊 )−1 // (𝑅0𝑊 )−1
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then the spectral sequence of 𝑅1X maps to the spectral sequence of X, with a filtration shift,

via the map of towers:

· · · // (𝑅2𝑅1X)−1 //

=��

(𝑅1𝑅1X)−1 //

=��

(𝑅0𝑅1X)−1

=��
· · · // (𝑅3X)−1 // (𝑅2X)−1 // (𝑅1X)−1 // (𝑅0X)−1

That is, there are spectral sequence maps which at 𝐸1 are isomorphisms of the form

[𝐸1𝑅
1X]𝑠𝑡

∼=−→ [𝐸1X]
𝑠+1
𝑡+1 .

Under Bousfield and Kan’s identification of 𝐸1, this isomorphism is the inverse of the com-

posite of Proposition 11.1.

A reasonable goal is to create a natural factorization

𝑅1X

𝛿��
q2𝐹

CX

77

// X

of the structure map of X through 𝛿, as X is a GEM levelwise. This will be possible up to a

natural zig-zag, by a construction which uses the structure of Radulescu-Banu’s resolution

specifically.

11.2. A modification of the functor 𝑅1

Not only does

(𝑉 X)𝑠𝑡 = (𝑐(𝐾C𝑄C𝑐)𝑠+2𝑋)𝑡 ∈ 𝑐𝑠C

have cosimplicial and simplicial structure maps, but there is a cosimplicial simplicial algebra

structure on the object 𝑉 X obtained by omitting the leftmost replacement 𝑐:

(𝑉 X)𝑠𝑡 = ((𝐾C𝑄C𝑐)𝑠+2𝑋)𝑡 ∈ 𝑐𝑠C.

That is, we do not need the outermost cofibrant replacement in order to define the cosim-

plicial structure maps 𝑉 X, as in passing from X to 𝑉 X one discards 𝑑0. There is a 𝑐𝑠C-map

𝜖 : 𝑉 X −→ 𝑉 X which is a weak equivalence in each cosimplicial level. Finally, the composite

𝑣 := 𝜖 ∘ 𝑣 :
(︁
X

𝑣−→ 𝑉 X
𝜖−→−→ 𝑉 X

)︁
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is, in each cosimplicial degree, a fibration in 𝑠C since it is defined in cosimplicial degree 𝑠 by

the formula

𝑣 = 𝜂 : 𝑐(𝐾C𝑄C𝑐)𝑠+2𝑋 −→ 𝐾C𝑄C𝑐(𝐾C𝑄C𝑐)𝑠+2𝑋.

The object 𝑉 X has two key advantages: 𝑣 is a fibration in each cosimplicial level, and 𝑉 X

is a trivial object in 𝑠C (i.e. it is in the image of 𝐾C). This second property implies that 𝑉 X

is an abelian group object in 𝑠C in each cosimplicial level, as every vector space is a group

object, and 𝐾C is a right adjoint. In other words, since all the structure maps in 𝑉 X are

trivial, they commute with vector space addition. We write

add : 𝑉 X× 𝑉 X −→ 𝑉 X

for the group operation. Under the identifications arising from Propositions 3.5 and 3.8, the

map add induces the expected abelian group and cogroup structures on 𝐻C
* 𝑉 X and 𝐻*

C𝑉 X:

𝐻C
* 𝑉 X×𝐻C

* 𝑉 X −→ 𝐻C
* 𝑉 X;

𝐻*
C𝑉 X ⊔𝐻*

C𝑉 X←− 𝐻*
C𝑉 X.

The observation that 𝑣 is a fibration leads us to define 𝑅1
X to be the strict fiber

𝑅
1
X //

𝛿��

0

��
X

𝑣 // // 𝑉 X

There is a commuting diagram in 𝑐𝑠C (in which double-headed arrows denote maps which

are fibrations in 𝑠C in each cosimplicial level):

0

��

// Λ𝑉 X
𝜆����

Λ𝑉 X
Λ(𝜖)

oo

𝜆����
𝑉 X 𝑉 X 𝑉 X𝜖

oooo

X

𝑣
OOOO

X

𝑣
OOOO

X

𝑣
OO

pullbacks: 𝑅
1
X

𝐸1-eq // ̃︀𝑅1X 𝑅1X
𝐸1-eqoo

producing a zig-zag of 𝐸1-equivalences between 𝑅
1
X and 𝑅1X. In each cosimplicial level,

each of the objects in the top row is contractible, yielding homotopy long exact sequences,
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and the resulting connecting homomorphisms commute:

𝜋𝑡(𝑅
1
X) 𝜋𝑡+1(𝑉 X)

𝜕connoo

𝜋𝑡(𝑅
1X)

zig-zag ∼=

𝜋𝑡+1(𝑉 X)

∼=
OO

𝜕connoo

so that there are isomorphisms of spectral sequences (starting from 𝐸1):

[𝐸𝑟𝑅
1
X]𝑠𝑡

∼= //

∼=��

[𝐸𝑟
̃︀𝑅1X]𝑠𝑡
∼=��

[𝐸𝑟
̃︀𝑅1X]𝑠𝑡
∼=��

∼=oo

[𝐸𝑟X]
𝑠+1
𝑡+1 [𝐸𝑟X]

𝑠+1
𝑡+1 [𝐸𝑟X]

𝑠+1
𝑡+1

11.3. Definition and properties of the BKSS operations

Whichever of the three categories of interest C we are working in, there is a factorization

𝑅
1
X

𝛿��
q2𝐹

CX

77

// X

induced by
𝑅

1
X //

𝛿��

0

��
q2𝐹

CX

77

// X
𝑣 // // 𝑉 X

where the composite q2𝐹
CX −→ 𝑉 X must vanish as it factors through the structure map

q2𝐹
C𝑉 X −→ 𝑉 X, which is zero since 𝑉 X is a trivial object. We denote by

𝐿 : [𝐸𝑟q2𝐹
CX]𝑠𝑡 −→ [𝐸𝑟X]

𝑠+1
𝑡+1

the resulting map of spectral sequences. Using the isomorphisms

𝑆2𝑉 ∼= q2𝐹
Com𝑉, Λ2𝑉 ∼= q2𝐹

Lie𝑉, 𝑆2𝑉 ∼= q2𝐹
Lier𝑉,

and the various external spectral sequence operations from [𝐸𝑟𝑉 ] to each of [𝐸𝑟𝑆2𝑉 ],

[𝐸𝑟Λ
2𝑉 ] and [𝐸𝑟𝑆

2𝑉 ], we are now able to define numerous spectral sequence operations

on [𝐸𝑟X]
𝑠
𝑡 in each case. When C = Com, we define:

𝛿v𝑖 :
(︁
[𝐸𝑟X]

𝑠
𝑡

𝛿ext
𝑖−→ [𝐸𝑟q2𝐹

CX]𝑠𝑡+𝑖
𝐿−→ [𝐸𝑟X]

𝑠+1
𝑡+𝑖+1

)︁
,

Sq𝑗h :
(︁
[𝐸𝑟X]

𝑠
𝑡

Sq𝑗−1
ext−→ [𝐸𝑟q2𝐹

CX]𝑠+𝑗−1
2𝑡

𝐿−→ [𝐸𝑟X]
𝑠+𝑗
2𝑡+1

)︁
,

𝜇 :
(︁
[𝐸𝑟X]

𝑠
𝑡 ⊗ [𝐸𝑟X]

𝑠′
𝑡′

𝜇ext−→ [𝐸𝑟q2𝐹
CX]𝑠+𝑠

′

𝑡+𝑡′
𝐿−→ [𝐸𝑟X]

𝑠+𝑠′+1
𝑡+𝑡′+1

)︁
,

with the 𝛿v𝑖 multi-valued functions, defined when 2 ≤ 𝑖 ≤ max{𝑛, 𝑡 − (𝑟 − 1)}, and single-

valued whenever 𝑖 ≤ min{𝑛+ 1, 𝑡+ 1− 2(𝑟 − 1)}, and the Sq𝑗 multi-valued functions with

indeterminacy vanishing by 𝐸2𝑟−2, and which equal zero unless min{𝑡, 𝑟} < 𝑗 ≤ 𝑠 + 1. All
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of the functions that are defined on 𝐸2 are single-valued, so it makes sense to state

Proposition 11.2. When C = Com, under the identification [𝐸2X]
𝑠
𝑡
∼= 𝐻*

W(0)𝐻
*
Com𝑋, the

operations just defined coincide with the W(0)-cohomology operations defined in §8.

We will prove this result in §11.9. It implies that from the 𝐸2-page onward the operations

just defined have the properties cataloged in Propositions 8.2, 8.9 and 8.12 — the 𝛿v𝑖 satisfy

the 𝛿-Adem relations, the Sq𝑗h and 𝜇 satisfy the properties of such operations on Lie algebra

cohomology, and there is a commutation relation between the 𝛿v and the Sqh and 𝜇. These

relations persist to relations on the higher pages (modulo appropriate indeterminacy), but

evidently do not hold on 𝐸1.

The following results follow from Propositions 10.2, 10.3, 10.4, 10.8 and 10.9 respectively,

for 𝑋 ∈ 𝑠Com and X ∈ 𝑐𝑠Com its Radulescu-Banu resolution:

Corollary 11.3 (of Proposition 10.2). The pairing 𝜇 satisfies the Leibniz formula. For

𝑟 ≥ 2, 𝜇 descends to the symmetric quotient 𝑆2[𝐸𝑟X].

Corollary 11.4 (of Proposition 10.3). Suppose that 𝑟 ≥ 2. The operations

Sq𝑖h : [𝐸𝑟X]
𝑠
𝑡 −→ [𝐸𝑟𝑆2X]

𝑠+𝑖
2𝑡+1

have indeterminacy vanishing by [𝐸2𝑟−2X]
𝑠+𝑖
2𝑡+1 (and thus no indeterminacy at 𝐸2). They

are linear maps with linear indeterminacy. Now suppose that and 𝑥 ∈ [𝐸𝑟X]
𝑠
𝑡 . Sq𝑖h𝑥 = 0

unless min{𝑡, 𝑟} < 𝑖 ≤ 𝑠 + 1, and this vanishing occurs without indeterminacy. In any

case, Sq𝑖h𝑥 survives to [𝐸2𝑟−1X]
𝑠+𝑖
2𝑡+1, and the following equation in [𝐸2𝑟−1X]

𝑠+𝑖+2𝑟−1
2𝑡+2𝑟−1 holds

(without indeterminacy):

𝑑2𝑟−1(Sq
𝑖
h𝑥) = Sq𝑖+𝑟−1

h (𝑑𝑟𝑥).

The notion of top operation has shifted: Sq𝑠+1
h 𝑥 is the top operation, it equals the

product-square 𝑥×𝑥, and in particular, has no indeterminacy. Finally, Sq0h𝑥 = 0, Sq1h𝑥 = 0

when 𝑡 > 0, and Sq2h𝑥 = 0 when 𝑡 > 1.

Corollary 11.5 (of Proposition 10.4). At 𝐸1, the operations Sq𝑖h : [𝐸1X]
𝑠
𝑡 −→ [𝐸1𝑆2X]

𝑠+𝑖
2𝑡+1

have no indeterminacy, and 𝑑1 commutes with Sq𝑖h for each 𝑖. They need not be linear.

Suppose that 𝑥 ∈ [𝐸1X]
𝑠
𝑡 . The top operation Sq𝑠+1

h 𝑥 need not equal the product-square 𝑥× 𝑥
on 𝐸1, and Sq𝑠+2

h 𝑥 need not vanish, instead equalling 𝑥× 𝑑1𝑥 on 𝐸1. At least for 𝑖 > 𝑠+ 2,

Sq𝑖h𝑥 = 0. Finally, Sq0h𝑥 = 0, and Sq1h𝑥 = 0 when 𝑡 > 0.

Corollary 11.6 (of Proposition 10.8). Fix 𝑟 ≥ 1. The potentially multi-valued function

𝛿v𝑖 : [𝐸𝑟X]
𝑠
𝑡 −→ [𝐸𝑟X]

𝑠+1
𝑡+𝑖+1, defined when 2 ≤ 𝑖 ≤ max{𝑛, 𝑡− (𝑟 − 1)},
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is linear with linear indeterminacy whenever 𝑖 < 𝑡. It is a single-valued operation when

𝑖 ≤ max{𝑛+ 1, 𝑡+ 1− 2(𝑟 − 1)}.
Suppose that 𝑥 ∈ [𝐸𝑟X]

𝑠
𝑡 , and suppose that 𝛿v𝑖 (𝑥) is defined. Then 𝛿v𝑖 (𝑑𝑟𝑥) is defined and

𝑑𝑟𝛿
v
𝑖 (𝑥) + 𝛿v𝑖 (𝑑𝑟𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sq𝑡−𝑖+2

h (𝑥), if 𝑖 > 𝑡− 𝑠 and 𝑟 = 𝑡− 𝑖+ 1;

𝜇(𝑥⊗ 𝑑𝑟𝑥), if 𝑖 = 𝑡− 𝑠, 𝑠 = 0 and 𝑟 ≥ 2;

0, otherwise.

If 𝑖 ≤ max{𝑛, 𝑡+1− 2(𝑟− 1)}, so that 𝛿v𝑖 𝑥 is single-valued, then 𝛿v𝑖 𝑑𝑟𝑥 is also single-valued,

and this equation holds exactly. When 𝑖 > 𝑡− 𝑠 and 𝑟 = 𝑡− 𝑖+1 the set of values of the left

hand side coincides with the set of values of the right hand side. Otherwise, this equation

holds modulo the indeterminacy of the left hand side.

The only potentially nonlinear operations are

𝛿v𝑡 : [𝐸1X]
𝑠
𝑡 −→ [𝐸1X]

𝑠
2𝑡 and 𝛿v𝑡 : [𝐸𝑟X]

0
𝑡 −→ [𝐸𝑟X]

0
2𝑡.

They have no indeterminacy and satisfy 𝛿v𝑡 (𝑥+ 𝑦) = 𝛿v𝑡 (𝑥) + 𝛿v𝑡 (𝑦) + 𝜇(𝑥⊗ 𝑦).

Corollary 11.7 (of Proposition 10.9). For 2 ≤ 𝑖 ≤ 𝑡 − 𝑠, the operations 𝛿v𝑖 : [𝐸∞X]𝑠𝑡 −→
[𝐸∞X]𝑠+1

𝑡+𝑖+1 agree with the homotopy operations 𝛿𝑖 : 𝜋𝑡−𝑠𝑋 −→ 𝜋𝑡−𝑠+𝑖𝑋 on the target of the

spectral sequence. Similarly, the product at [𝐸∞X] agrees with the product on the target.

It seems likely to the author that this is a complete description of the natural operations

on the BKSS in 𝑠Com.

Although we do not use the following operations in this thesis (as we do not consider the

BKSS for simplicial Lie algebras in detail), we note that when C = Lie or C = Lier there

are operations:

𝜆v𝑖 :
(︁
[𝐸𝑟𝑋]𝑠𝑡

𝜆ext
𝑖−→ [𝐸𝑟q2𝐹

C𝑋]𝑠𝑡+𝑖
𝐿−→ [𝐸𝑟𝑋]𝑠+1

𝑡+𝑖+1

)︁
,

𝑃 𝑗h :
(︁
[𝐸𝑟𝑋]𝑠𝑡

Sq𝑗ext−→ [𝐸𝑟q2𝐹
C𝑋]𝑠+𝑗2𝑡

𝐿−→ [𝐸𝑟𝑋]𝑠+𝑗+1
2𝑡+1

)︁
,

[ , ] :
(︁
[𝐸𝑟𝑋]𝑠𝑡 ⊗ [𝐸𝑟𝑋]𝑠

′
𝑡′

𝜇ext−→ [𝐸𝑟q2𝐹
C𝑋]𝑠+𝑠

′

𝑡+𝑡′
𝐿−→ [𝐸𝑟𝑋]𝑠+𝑠

′+1
𝑡+𝑡′+1

)︁
,

with the 𝜆v𝑖 multi-valued functions, defined when 1 ≤ 𝑖 ≤ max{𝑛, 𝑡 − (𝑟 − 1)}, and single-

valued whenever 𝑖 ≤ min{𝑛 + 1, 𝑡 + 1 − 2(𝑟 − 1)}, and the 𝑃 𝑗h multi-valued functions with

indeterminacy vanishing by 𝐸2𝑟−2, and which equal zero unless min{𝑡, 𝑟} ≤ 𝑗 ≤ 𝑠. We will

not be able to prove a version of Proposition 11.2 in the present work, since we have not

derived a version of §8 for the categories 𝑠Lie and 𝑠Lier. Nonetheless, these operations will

satisfy analogues of Corollaries 11.3-11.7.

149



The purpose of rest of this chapter is to give the necessary constructions to prove Propo-

sition 11.2, so that in the following, we will work only in the category C = Com. However,

the constructions, including of the following two- and three-cell complexes, generalize to the

categories of Lie algebras.

11.4. A chain-level construction 𝜉⋆res inducing 𝜉𝐻C

Let C = Com. In §6.5, we defined

𝜉𝐻C : 𝐵𝑠+1
𝐻C 𝐻

*
C𝑋 −→ 𝐵𝑠

𝐻C𝐻
*
C𝑋 Y𝐵

𝑠
𝐻C𝐻

*
C𝑋,

and in §8.3 we used this map to define Steenrod operations and a product on 𝐻*
𝐻C𝐻

*
C𝑋.

We will now construct, at the level of Radulescu-Banu’s resolution, a map

𝜉⋆res : X
𝑠 ZL X𝑠 −→ 𝑉 X𝑠,

which, under the isomorphisms of Theorem 4.1 and Proposition 3.8, induces the map 𝜉𝐻C

on cohomology:

𝐻*
C(X

𝑠 ZL X𝑠) 𝐻*
C(𝑉 X𝑠)

(𝜉⋆res)
*

oo

𝐵𝑠
C𝐻

*
C𝑋 Y𝐵

𝑠
C𝐻

*
C𝑋

∼=
OO

𝐵𝑠+1
C 𝐻*

C𝑋
𝜉𝐻Coo

∼=
OO

We will need to abbreviate a little for the sake of compactness. Fix a cosimplicial degree

𝑠. Write X for X𝑠, 𝑉 for 𝑉 X𝑠, 𝑉 for 𝑉 X𝑠, dots for categorical products, and superscripts

for categorical self-products. There is a diagram

X ZL X

𝜉⋆res
++𝑐(X2)

OO
𝜉
⋆
res

,,
𝑐(𝜖,id)∘𝛽

//

(𝜖,id)
))

𝑐(X2·𝑐(X2))
𝑐(𝑣2·𝑐(add∘𝜖2))

//

𝜖��

𝑐(𝑉
2·X)

𝑐(add·𝑣)
//

𝜖��

𝑐(𝑉 ·𝑉 )
𝑐(add)

//

𝜖��

𝑉
𝜖
��

𝑐(X ⊔ X)

OO

X2·𝑐(X2)
𝑣2·𝑐(add∘𝜖2) // 𝑉

2·X add·𝑣 // 𝑉 ·𝑉 add // 𝑉

in which we define 𝜉⋆res to be the composite of the horizontal solid arrows. The sub-diagram

consisting of solid and dotted arrows strictly commutes, and we will define 𝜉⋆res to be the

unique map up to homotopy such that the full diagram homotopy commutes, after showing

that the composite 𝑐(X⊔X) −→ 𝑉 is null. The maps defined here need a little clarification,
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during which we will resume writing cosimplicial degrees:

𝑐(𝜖, 𝐼𝑑) ∘ 𝛽 :
(︀
𝑐(X𝑠)2

𝛽−→ 𝑐𝑐(X𝑠)2
𝑐(id,id)−→ 𝑐(𝑐(X𝑠)2 · 𝑐(X𝑠)2) 𝑐(𝜖·id)−→ 𝑐((X𝑠)2 · 𝑐(X𝑠)2)

)︀
𝑐(add ∘ 𝜖2) :

(︀
𝑐((X𝑠)2)

𝑐(𝜖2)−→ 𝑐((𝑉 X𝑠−1)2)
𝑐(add)−→ 𝑐(𝑉 X𝑠−1) = X𝑠

)︀
.

Fortunately, the fact that the diagram (without the dashed arrow) commutes is obvious: the

small triangle commutes by counitality of 𝛽, and the three squares commute by naturality

of 𝜖 : 𝑐 −→ id.

Proposition 11.8. The map 𝜉⋆res induces the map 𝜉𝐻C on cohomology, and descends to a

map 𝜉⋆res : X ZL X −→ 𝑉 as suggested by the dashed arrow above. This map induces the map

𝜉⋆𝐻C on homology.

Proof. Under the isomorphisms of Propositions 3.5 and 3.8, if we apply 𝜋*(D𝑄C(−)) to the

solid maps in this diagram, we obtain (abbreviating 𝐻*
C to 𝐻):

(𝐻X)Y2

𝜉𝐻C

oo

(𝐻X)⊔2
���� 𝜉𝐻C

qq
(id,id)
oo (𝐻X)⊔2⊔(𝐻X)⊔2

𝑑0⊔𝑑0⊔𝜙𝑠

oo (𝐻𝑉 )⊔2⊔𝐻X
𝜙𝑠+1⊔𝑑0
oo 𝐻𝑉 ⊔𝐻𝑉 𝜙𝑠+1

oo 𝐻𝑉

𝐻X×𝐻X

��
��

One observes that the horizontal composite is the very definition of 𝜉𝐻C. We know from

§6.5 that 𝜉𝐻C factors through the smash coproduct, which is how we were able to fill in the

dashed arrow on cohomology.

In order to obtain a map 𝜉⋆res, it is enough to check that the composite 𝑐(X⊔X) −→ 𝑉 is

null. However, as 𝑉 is a GEM, a map into 𝑉 is null if and only if it is zero on cohomology.

We have just stated that the map 𝜉𝐻C factors through (𝐻X)Y2, which is to say that the

composite 𝐻𝑉 −→ 𝐻X×𝐻X is zero.

This map 𝜉
⋆
res is very rich, but it will be important to note that postcomposition with

𝜖 destroys much of that richness. That is, reading off the dotted portion of the above

commuting diagram:

Lemma 11.9. The map 𝜖 ∘ 𝜉⋆res equals the following sum in hom𝑠V(𝑐(X
2), 𝑉 ):

(︀
𝑣 ∘ 𝑐(add) ∘ 𝑐(𝜖2)

)︀
+
(︀
𝑣 ∘ 𝜋1 ∘ 𝜖

)︀
+
(︀
𝑣 ∘ 𝜋2 ∘ 𝜖

)︀
,

where the 𝜋𝑖 are the two projections X×2 −→ X.
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11.5. A three-cell complex with non-trivial bracket

Let C = Com, and fix 𝑡, 𝑡′ ≥ 1. There is a map SC𝑡+𝑡′ −→ SC𝑡 ⊔ SC𝑡′ sending the fundamental

class 𝑧𝑡+𝑡′ to the shuffle product of the two fundamental classes in the codomain:

𝑧𝑡+𝑡′ ↦−→ 𝜇(∇(𝑧𝑡 ⊗ 𝑧𝑡′)),

where 𝜇 is the structural pairing in Com. Consider the complex 𝐽𝑡,𝑡′ formed as the pushout:

SC𝑡+𝑡′ //
��
��

SC𝑡 ⊔ SC𝑡′
��
��

𝐶SC𝑡+𝑡′ // 𝐽𝑡,𝑡′

The left vertical is evidently almost free (and thus a cofibration), and thus its pushout, the

map SC𝑡 ⊔ SC𝑡′ −→ 𝐽𝑡,𝑡′ , is almost free. The generating subspace 𝑉𝑡+𝑡′+1 ⊆ (𝐽𝑡,𝑡′)𝑡+𝑡′+1 has a

(𝑡+𝑡′+1)-dimensional generator ℎ𝑡,𝑡′ , the image of the cone class ℎ in (SC𝑡+𝑡′)𝑡+𝑡′+1 (c.f. §2.5).

Moreover, the object 𝐽𝑡,𝑡′ is cofibrant, and ℎ𝑡,𝑡′ becomes a cycle in 𝑄C𝐽𝑡,𝑡′ , since 𝑑𝑖ℎ𝑡,𝑡′ = 0

for 𝑖 ≥ 1, and 𝑑0ℎ𝑡,𝑡′ := 𝑧𝑡+𝑡′ , which we have identified with the decomposable element

𝜇(∇(𝑧𝑡 ⊗ 𝑧𝑡′)) in passing to the pushout.

The homology long exact sequence shows that 𝐻*𝐽𝑡,𝑡′ is three-dimensional, containing

classes 𝑧𝑡, 𝑧𝑡′ and ℎ𝑡,𝑡′ . Moreover, there is a co-operation Δ on𝐻C
* dual to the 𝑆(L ) structure

map on cohomology, and we prove:

Proposition 11.10. Under Δ : 𝐻C
* 𝐽𝑡,𝑡′ −→ (𝑆2𝐻C

* 𝐽𝑡,𝑡′)*−1, ℎ𝑡,𝑡′ ↦−→ 𝑧𝑡 ⊗ 𝑧𝑡′ + 𝑧𝑡′ ⊗ 𝑧𝑡. All

other co-operations on 𝐻C
* 𝐽𝑡,𝑡′ are zero.

Proof. The representative 𝑔 has the property that 𝑑0(𝑔) = 𝜇(∇(𝑧𝑡 ⊗ 𝑧𝑡′)) and 𝑑𝑖(𝑔) = 0 for

𝑖 > 0. By Lemma 6.3 and the description of quC in §3.10:

𝜓C(𝑔) = quC(𝜇(∇(𝑧𝑡 ⊗ 𝑧𝑡′))) = tr(∇(𝑧𝑡 ⊗ 𝑧𝑡′))) ∈ (𝑆2𝑄C𝐽𝑡,𝑡′)𝑡+𝑡′ .

11.6. A chain level construction of 𝑗⋆𝐻C

Let C = Com. We can use the cofibration just defined to construct, at the chain level, the

image under

𝑗⋆𝐻C : Pr𝐻C−coalg
𝑡 (𝐻𝑌 )⊗ Pr𝐻C−coalg

𝑡′ (𝐻𝑍) −→ Pr𝐻C−coalg
𝑡+𝑡′+1 (𝐻𝑌 Z𝐻𝑍)

of a tensor product 𝛼 ⊗ 𝛽 of spherical homology classes. Abbreviating 𝐻C
* to 𝐻 and

Pr𝐻C−coalg to Pr:
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Proposition 11.11. There is a function

𝐹 : hom𝑠C(SC𝑡 , 𝑌 )× hom𝑠C(SC𝑡′ , 𝑍) −→ hom𝑠C(𝐽𝑡,𝑡′ , 𝑐(𝑌 × 𝑍)),

natural in 𝑌,𝑍 ∈ 𝑠C, such that the function

𝐹 : hom𝑠C(SC𝑡 , 𝑌 )× hom𝑠C(SC𝑡′ , 𝑍) −→ 𝜋𝑡+𝑡′+1(𝑄
C𝑐(𝑌 × 𝑍)) =: 𝐻C

𝑡+𝑡′+1(𝑌 × 𝑍)

defined by 𝐹 (𝛼, 𝛽) := 𝐻C
* (𝐹 (𝛼, 𝛽))(ℎ𝑡,𝑡′) makes the following diagram commute:

hom𝑠C(SC𝑡 ,𝑌 )×
hom𝑠C(SC𝑡′ ,𝑍)

𝐹��

hur⊗2
// Pr(𝐻𝑌 )𝑡 ⊗ Pr(𝐻𝑍)𝑡′

id+𝑇

ww

𝑗⋆𝐻C // Pr(𝐻𝑌 Z𝐻𝑍)𝑡+𝑡′+1
��
��

𝐻𝑡+𝑡′+1(𝑌 × 𝑍) //

Δ��

(𝐻𝑌 ×𝐻𝑍)𝑡+𝑡′+1
// //

Δ��

(𝐻𝑌 Z𝐻𝑍)𝑡+𝑡′+1

(𝑆2𝐻(𝑌 × 𝑍))𝑡+𝑡′ // (𝑆2(𝐻𝑌 ×𝐻𝑍))𝑡+𝑡′

The south-westerly arrow in this diagram is composite of the tensor product of the maps

Pr(𝐻C
* 𝑌 )𝑡 ⊆ 𝐻C

𝑡 𝑌 −→ 𝐻C
𝑡 (𝑌 × 𝑍) and Pr(𝐻C

*𝑍)𝑡 ⊆ 𝐻C
𝑡 𝑍 −→ 𝐻C

𝑡 (𝑌 × 𝑍)

followed by (id + 𝑇 ) : (𝐻C
* (𝑌 × 𝑍))⊗2 −→ 𝑆2𝐻C

* (𝑌 × 𝑍).

Proof. The value of 𝐹 on (𝛼, 𝛽) is defined as follows. Construct canonical lifts (c.f. §3.6):

𝑐1(𝑌 × 𝑍)
��

SC𝑡

(̃𝛼,0) 77

(𝛼,0)
// 𝑌 × 𝑍

and
𝑐1(𝑌 × 𝑍)

��
SC𝑡

(̃0,𝛽) 77

(0,𝛽)
// 𝑌 × 𝑍

and then form the commuting diagram

SC𝑡+𝑡′
𝜇(∇(𝑧𝑡⊗𝑧𝑡′ ))//

��
��

SC𝑡 ⊔ SC𝑡′
��
��

(̃𝛼,0)⊔(̃0,𝛽)// 𝑐1(𝑌 × 𝑍)

��
𝐶SC𝑡+𝑡′ //

0

22𝐽𝑡,𝑡′ // 𝑌 × 𝑍

The reason that the zero map 𝐶SC𝑡+𝑡′ −→ 𝑌 ×𝑍 makes the outer square commute is that the

composite SC𝑡+𝑡′ −→ 𝑌 × 𝑍 vanishes, as it sends 𝑧𝑡+𝑡′ to 𝜇(∇((𝛼, 0)⊗ (0, 𝛽))) = 0 ∈ 𝑌 × 𝑍.

Corresponding to the right square is a map 𝐽𝑡,𝑡′ −→ 𝑐2(𝑌 ×𝑍), and the composite with

the cofibration 𝑐2(𝑌 × 𝑍) −→ 𝑐(𝑌 × 𝑍) is 𝐹 (𝛼, 𝛽). This function 𝐹 is evidently natural in

𝑌 and 𝑍, and so then is 𝐹 .

The required commuting diagram consists of a square, a triangle and a hexagon. The
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square commutes as the horizontal arrows are maps in 𝐻C−coalg, and we can see that

the triangle commutes because we understand the 𝐻C−coalg structure of 𝐻*(𝐽𝑡,𝑡′) (and

𝐻C
* (𝐹 (𝛼, 𝛽)) is a map of C-𝐻*-coalgebras). As all of the maps in the hexagon are natural,

we may check that it commutes on the universal example alone:

(𝑧𝑡, 𝑧𝑡′) ∈ hom𝑠C(SC𝑡 , SC𝑡 )× hom𝑠C(SC𝑡′ , S
C
𝑡′).

That is, it is enough to check that the following hexagon, with a one element set at the top

left entry, commutes:

{(𝑧𝑡, 𝑧𝑡′)}
𝐹��

hur⊗2
// Pr𝑡(𝐻SC𝑡 )⊗ Pr𝑡′(𝐻SC𝑡′)

𝑗⋆𝐻C // Pr𝑡+𝑡′+1(𝐻SC𝑡 Z𝐻SC𝑡′)
�� inc��

𝐻𝑡+𝑡′+1(SC𝑡 × SC𝑡′)
𝑟 // (𝐻SC𝑡 ×𝐻SC𝑡′)𝑡+𝑡′+1

proj // // (𝐻SC𝑡 Z𝐻SC𝑡′)𝑡+𝑡′+1

In this diagram, 𝑗⋆𝐻C and inc are isomorphisms of 1-dimensional vector spaces, so it is enough

to check that 𝑟(𝐹 (𝑧𝑡, 𝑧𝑡′)) does not lie in the kernel of proj, i.e.:

𝑟(𝐹 (𝑧𝑡, 𝑧𝑡′)) /∈ (𝐻SC𝑡 ⊔𝐻SC𝑡′)𝑡+𝑡′+1 = 𝐻𝑡+𝑡′+1SC𝑡 ⊕𝐻𝑡+𝑡′+1SC𝑡′ = 0,

yet Δ(𝑟(𝐹 (𝑧𝑡, 𝑧𝑡′))) = 𝑧𝑡⊗𝑧𝑡′+𝑧𝑡′⊗𝑧𝑡 ̸= 0, using the commuting square and triangle already

established.

We record here a useful calculation:

Lemma 11.12. For 𝛼 : SC𝑡 −→ X𝑠 and 𝛽 : SC𝑡′ −→ X𝑠, the composite

SC𝑡 ⊔ SC𝑡′ −→ 𝐽𝑡,𝑡′
𝐹 (𝛼,𝛽)−→ 𝑐(X𝑠 × X𝑠)

𝑐(add∘(𝜖2))−→ X𝑠

equals ̃︁𝜖𝛼 ⊔̃︁𝜖𝛽. In particular, (𝑐(add ∘ (𝜖2)) ∘ 𝐹 (𝛼, 𝛽))(𝜇∇(𝑧𝑡 ⊗ 𝑧𝑡′)) = 𝜇(∇(̃︁𝜖𝛼⊗̃︁𝜖𝛽)).
Proof. We may calculate the restrictions to the two summands individually, and by symme-

try, we need only consider:

SC𝑡 // // 𝐽𝑡,𝑡′
𝐹 (𝛼,𝛽)// 𝑐(X𝑠·X𝑠)

𝑐(𝜖×𝜖) // 𝑐(𝑉 X𝑠−1·𝑉 X𝑠−1)
𝑐(add) // 𝑐(𝑉 X𝑠−1)= X𝑠.

The composite 𝐽𝑡,𝑡′ −→ 𝑐(𝑉 X𝑠−1·𝑉 X𝑠−1) equals 𝐹 (𝜖𝛼, 𝜖𝛽), due to the naturality of 𝐹 . By

definition of 𝐹 , the composite SC𝑡 −→ 𝑐(𝑉 X𝑠−1·𝑉 X𝑠−1) equals (̃𝜖𝛼, 0). The naturality of the

operation 𝛼 ↦−→ ̃︀𝛼 finishes the proof.
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11.7. A two-cell complex with non-trivial 𝑃 𝑖 operation

Let C = Com. In this section, we give a construction of a two-cell complex whose cohomology

has a 𝑃 𝑖 connecting the two cells. Fix 𝑡, 𝑖 with 2 ≤ 𝑖 ≤ 𝑡. There is a map SC𝑡+𝑖 −→ SC𝑡 defined

by

𝑧𝑡+𝑖 ↦−→ 𝜇(∇𝑡−𝑖(𝑧𝑡 ⊗ 𝑧𝑡)),

where 𝜇 is the structural pairing in C. Consider the complex Θ𝑡,𝑖 formed as the pushout:

SC𝑡+𝑖 //
��
��

SC𝑡
��
��

𝐶SC𝑡+𝑖 // Θ𝑡,𝑖

By the same observations as made in §11.5, this map is a cofibration, and 𝐻C
*Θ𝑡,𝑖 has

cohomology spanned by 𝑧𝑡 and ℎ𝑡,𝑖 in dimension 𝑡 + 𝑖 + 1. For dimension reasons, 𝑧𝑡 is

primitive. On the other hand:

Proposition 11.13. In 𝐻*
CΘ𝑡,𝑖, 𝑃 𝑖𝑧*𝑡 = ℎ*𝑡,𝑖.

Proof. We will calculate the action of (𝑃 𝑗)* and Δ on ℎ𝑡,𝑖. By the same methods as in the

proof of Proposition 11.10:

𝜓C(𝑔) = tr(∇𝑡−𝑖(𝑧𝑡 ⊗ 𝑧𝑡))) ∈ (𝑆2𝑄CΘ𝑡,𝑖)𝑡+𝑖,

which represents 𝜎ext
𝑖 𝑧𝑡. so that the defining equation

(𝜓C)*(ℎ𝑡,𝑖) =
∑︀

𝑗 𝜋*(1 + 𝑇 )(𝑦𝑗 ⊗ 𝑧𝑗) +
∑︀

𝑘 𝜎𝑘((𝑃
𝑘)*ℎ𝑡,𝑖)

degenerates to 𝜎𝑖((𝑃 𝑘)*ℎ𝑡,𝑖) = 𝜎ext
𝑖 𝑧𝑡.

11.8. A chain level construction of 𝜃⋆𝑖

Let C = Com, and recall the linear maps

𝜃⋆𝑖 : 𝑉𝑡 −→ (𝐶𝐻Com−coalg𝑉 )𝑡+𝑖+1 defined when 2 ≤ 𝑖 < 𝑡

of Proposition 8.1. After stating Proposition 8.1, we explained that we would define a

non-linear function

𝜃⋆𝑡 : 𝑉𝑡 −→ (𝐶𝐻Com−coalg𝑉 )2𝑡+1 defined when 2 ≤ 𝑡
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using the Proposition 11.14. Thus, in the following proposition, the final statement holds

by definition when 𝑖 = 𝑡.

Proposition 11.14. For 2 ≤ 𝑖 ≤ 𝑡, there is a function

𝐺 : hom𝑠V(K𝑡,𝑊 ) −→ hom𝑠C(Θ𝑡,𝑖, 𝑐𝐾
C𝑊 ),

natural in 𝑊 ∈ 𝑠V, and satisfying 𝐺(𝛼)(𝑧𝑡) = ̃︀𝛼, such that the function

𝐺 : hom𝑠V(K𝑡,𝑊 ) −→ 𝜋𝑡+𝑖+1(𝑄
C𝑐𝐾C𝑊 ) =: 𝐻𝑡+𝑖+1(𝐾

C𝑊 )

defined by 𝐺(𝛼) := 𝐻*(𝐺(𝛼))(ℎ) descends to a function

𝐺 : 𝜋𝑡𝑊 −→ 𝐻𝑡+𝑖+1(𝐾
C𝑊 ),

and, whenever 2 ≤ 𝑖 ≤ 𝑡, 𝐺 equals the composite

𝜋𝑡𝑊
𝜃⋆𝑖−→ 𝐶𝐻C−coalg(𝜋*𝑊 )𝑡+𝑖+1

∼= 𝐻𝑡+𝑖+1(𝐾
C𝑊 ).

Proof. The value of 𝐺 on 𝛼 is defined as follows. There is a commuting diagram

SC𝑡+𝑖 𝜇∇𝑡−𝑖(𝑧𝑡⊗𝑧𝑡)
//

��
��

SC𝑡
��
��

̃︀𝛼 // 𝑐1(𝐾𝑊 )

��
𝐶SC𝑡+𝑖 //

0

33Θ𝑡,𝑖
// 𝐾𝑊

Corresponding to the right square is a map Θ𝑡,𝑖 −→ 𝑐2(𝐾𝑊 ), and the composite with the

cofibration 𝑐2(𝐾𝑊 ) −→ 𝑐(𝐾𝑊 ) is 𝐺(𝛼). This function 𝐺 is evidently natural in 𝑊 , and so

then is 𝐺. In order to check that the resulting function 𝐺 descends to 𝜋𝑡𝑊 , suppose that

𝛼1, 𝛼2 ∈ hom𝑠V(K𝑡,𝑊 ) are homotopic. Choose a homotopy 𝑎 : Δ1 ⊗K𝑡 −→𝑊 between 𝛼1

and 𝛼2. Using the generating cofibrations included in §3.6 and the same technique as used

to define 𝐺(𝛼) produces a homotopy Δ1 ⊗Θ𝑡,𝑖 −→ 𝑐𝐾C𝑊 between 𝐺(𝛼1) and 𝐺(𝛼2).

The calculation of 𝐺 is vacuous when 𝑖 = 𝑡, since 𝐺 was used to define 𝜃⋆𝑡 . when 2 ≤ 𝑖 < 𝑡

is natural in 𝑊 ∈ 𝑠V, so may be checked on the universal example 𝑧𝑡 ∈ hom𝑠V(K𝑡,K𝑡). As

𝐺(𝑧) is a map of C-𝐻*-coalgebras:

(𝑃 𝑗)*𝐺(𝑧𝑡) =

⎧⎨⎩0, if 𝑗 ̸= 𝑖, 2 ≤ 𝑗 ≤ (𝑡+ 𝑖)/2;

hur(𝑧𝑡), if 𝑗 = 𝑖.

Moreover, Δ𝐺(𝑧𝑡) vanishes since 𝑖 < 𝑡. These conditions suffice to identify 𝐺(𝑧𝑡), as, by
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construction, 𝐺(𝑧𝑡) lies in quadratic grading 2 of the cofree construction:

𝐺(𝑧𝑡) ∈ q2𝐻𝑡+𝑖+1(KC
𝑡 ) = q2𝐶

𝐻C−coalg{𝑧𝑡}.

11.9. Proof of Proposition 11.2

Let C = Com. Proposition 11.2 follows immediately from the following two commutative

diagrams. In each, the bottom row is that used to define the cohomology operations on the

derived functors with which the 𝐸2-page can be identified, and the top composite is that

used to define the spectral sequence operations (after applying 𝑁*
h and using the inverse of

the composite of Proposition 11.1).

The commutative diagrams that follow are necessarily large, and at various points

throughout the following two Propositions and their proofs we will use the following ab-

breviations: X for X𝑠, 𝑉 X for 𝑉 X𝑠, 𝑉 X for 𝑉 X𝑠, 𝑅1
X for 𝑅1

X𝑠, 𝐻 for 𝐻C
* , 𝜋* for 𝜋v* , 𝑄 for

𝑄C and Pr for Pr𝐻C−coalg.

Proposition 11.15. There is a commuting diagram (writing t = 𝑡+ 𝑡′):

𝜋v𝑡 (X
𝑠)⊗ 𝜋v𝑡′(X𝑠)

hur⊗2∼=

��

̃︀∇ // 𝜋vt (q2𝐹
CX𝑠)

𝜇 // 𝜋vt (𝑅
1
X𝑠) 𝜋vt+1(𝑉 X𝑠)

𝜕connoo

𝜋vt (𝑅
1X𝑠)

zig-zag ∼=

𝜋vt+1(𝑉 X𝑠)

∼=
OO

𝜕connoo

hur⊗2∼= ��
Pr𝑡(𝐻X𝑠)⊗ Pr𝑡′(𝐻X𝑠)

𝑗⋆𝐻C // Prt+1(𝐻X𝑠 Z𝐻X𝑠)
𝜉⋆𝐻C // Prt+1(𝐻𝑉 X𝑠)

Proposition 11.16. Whenever 2 ≤ 𝑖 ≤ 𝑡 there is a commuting diagram

𝜋v𝑡 X
𝑠

𝛿ext
𝑖 //

hur⊗2∼=
��

𝜋v𝑡+𝑖(q2𝐹
CX𝑠)

𝜇 // 𝜋v𝑡+𝑖(𝑅
1
X𝑠) 𝜋v𝑡+𝑖+1(𝑉 X𝑠)

𝜕conn

oo

hur⊗2∼=
��

Pr𝑡(𝐻X𝑠)
𝜃⋆𝑖 // (𝐶𝐻C−coalg(Pr(𝐻X𝑠)))𝑡+𝑖+1 𝐻C

𝑡+𝑖+1X
𝑠 Pr𝑡+𝑖+1(𝐻𝑉 X𝑠)

Proof of Proposition 11.15. It will help to modify and augment this diagram a little. Indeed,
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for each cardinality one subset {(𝛼, 𝛽)} ⊆ hom𝑠C(SC𝑡 ,X)× hom𝑠C(SC𝑡′ ,X), there is a diagram:

{(𝛼, 𝛽)}

𝑗⋆𝐻C
∘(hur⊗2)

��

̃︀∇ //

𝐹

��

𝜋t(q2𝐹
CX)

𝜇* // 𝜋t(𝑅
1
X) 𝜋t+1(𝑉 X)

𝜕connoo

zig-zag∼=𝜋t+1(𝑄𝑉 X)
=

55

Prt+1(𝐻X Z𝐻X)
𝜉⋆𝐻C //

��
��

Prt+1(𝐻𝑉 X)
��
��

(𝐻X Z𝐻X)t+1 𝜋t+1𝑄(cof)
𝜋*(𝑄𝜉res) // 𝜋t+1𝑄𝑉 X

𝜋*(𝑄𝜖)

OO

𝐻t+1𝑉 X

(𝐻X×𝐻X)t+1

OOOO

𝜋t+1𝑄𝑐(X× X)

OOOO

𝜋*(𝑄𝜉res)

44

Although all of the arrows in this modified diagram have already been defined, we’ve dec-

orated some of them for emphasis. It will be enough to check that for each (𝛼, 𝛽), this

modified diagram commutes, since the collection of such (𝛼, 𝛽) will exhaust all of the pure

tensors in 𝜋𝑡(X) ⊗ 𝜋𝑡′(X). What we need to prove is that the large rectangle consisting of

wavy and solid arrows commutes.

The composite of the dotted maps equals the composite of the wavy maps, by results

above. That is, Proposition 11.11 states that the two composites {(𝛼, 𝛽)} −→ (𝐻XZ𝐻X)t+1

are equal. The content of Proposition 11.8 is that the small triangle and square at the bottom

of the diagram each commute, and the two composites Prt+1(𝐻X Z𝐻X) −→ 𝐻t+1𝑉 X are

equal. Finally, the two composites Prt+1(𝐻𝑉 X) −→ 𝜋t+1(𝑉 X) are equal, by Lemma 3.6.

Thus the image of (𝛼, 𝛽) under either the wavy or the dotted composite equals the image

of ℎ𝑡,𝑡′ ∈ 𝜋t+1(𝑄𝐽𝑡,𝑡′) under the composite

𝑄𝐽𝑡,𝑡′
𝑄𝐹 (𝛼,𝛽)−→ 𝑄𝑐(X× X)

𝑄𝜉res−→ 𝑄𝑉 X
𝑄𝜖−→ 𝑄𝑉 X = 𝑉 X,

which, by Lemma 11.9, decomposes as the sum of the three maps 𝑣 ∘ 𝑐(add) ∘ 𝑐(𝜖2) ∘𝐹 (𝛼, 𝛽)
and 𝑣 ∘ 𝜋𝑖 ∘ 𝜖 ∘ 𝐹 (𝛼, 𝛽) for 𝑖 = 1 and 2. The composite 𝜋1 ∘ 𝜖 ∘ 𝐹 (𝛼, 𝛽) : 𝐽𝑡,𝑡′ −→ X, by

construction of 𝐹 , is the (dashed) map out of the pushout in the diagram:

SCt 𝜇∇(𝑧𝑡⊗𝑧𝑡′ )
//

��
��

SC𝑡 ⊔ SC𝑡′
��
��

𝛼⊔0

((
𝐶SCt //

0

33𝐽𝑡,𝑡′ // X

Now ℎ𝑡,𝑡′ is in the image of the map 𝐶SCt −→ 𝐽𝑡,𝑡′ , and so maps to zero under the dashed

map to X. Similarly, the composite 𝜋2 ∘ 𝜖 ∘ 𝐹 (𝛼, 𝛽) vanishes on ℎ𝑡,𝑡′ . Thus, the image of
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(𝛼, 𝛽) under the dotted composite is represented by

𝐴 := (𝑣 ∘ 𝑐(add ∘ 𝜖2) ∘ 𝐹 (𝛼, 𝛽))(ℎ𝑡,𝑡′).

Consider the following commuting diagram:

ℎ𝑡,𝑡′ ∈𝑄𝐽𝑡,𝑡′
𝑄𝐹 (𝛼,𝛽) // 𝑄𝑐(X× X)

𝑄𝑐(add∘𝜖2)// 𝑄X
𝑄𝑣 // 𝑄𝑉 X∋ 𝐴

ℎ𝑡,𝑡′ ∈ 𝐽𝑡,𝑡′
𝐹 (𝛼,𝛽) //

OOOO

𝑑0 ��

𝑐(X× X)
𝑐(add∘𝜖2) //

OOOO

𝑑0 ��

X
𝑣 // //

OOOO

𝑑0��

𝑉 X∋ 𝐴

𝜇∇(𝑧𝑡 ⊗ 𝑧𝑡′) ∈ 𝐽𝑡,𝑡′
𝐹 (𝛼,𝛽) // 𝑐(X× X)

𝑐(add∘𝜖2) // X∋ 𝜇(∇(̃︁𝜖𝛼⊗̃︁𝜖𝛽))
The element ℎ𝑡,𝑡′ ∈ 𝑁v

t+1(𝐽𝑡,𝑡′) may been used to populate the whole diagram as shown. To

understand the images of ℎ𝑡,𝑡′ at either end of the bottom row, note that 𝑑0ℎ𝑡,𝑡′ = 𝜇∇(𝑧𝑡⊗𝑧𝑡′)
by construction, and Lemma 11.12 states that under the maps of bottom row, 𝜇∇(𝑧𝑡 ⊗ 𝑧𝑡′)
maps to 𝜇(∇(̃︁𝜖𝛼⊗̃︁𝜖𝛽)).

The data in the bottom right corner of this diagram demonstrates that 𝜕conn𝐴 ∈ 𝜋t(𝑅
1
X)

is represented by 𝜇(∇(̃︁𝜖𝛼⊗̃︁𝜖𝛽)), which suffices, as 𝛼 ∼ ̃︁𝜖𝛼 and 𝛽 ∼̃︁𝜖𝛽.

Proof of Proposition 11.16. Choose a representative 𝛼 ∈ hom𝑠C(SC𝑡 ,X). Then, setting 𝑊 =

𝑄X𝑠−1 in Proposition 11.14, we obtain a map 𝐺(𝜖𝛼) : Θ𝑡,𝑖 −→ X such that (𝜃⋆𝑖 ∘ hur)(𝛼) is

represented by

(𝑣 ∘𝐺(𝜖𝛼))(ℎ𝑡,𝑖) ∈ 𝑁v
𝑡+𝑖+1(𝑉 X).

We populate the following commuting diagram using the element ℎ𝑡,𝑖 ∈ 𝑁v
𝑡+𝑖+1(Θ𝑡,𝑖):

ℎ𝑡,𝑖 ∈𝑁v
𝑡+𝑖+1Θ𝑡,𝑖

𝑑0 ��

𝐺(𝜖𝛼) // 𝑁v
𝑡+𝑖+1X

𝑑0 ��

𝑣 // 𝑁v
𝑡+𝑖+1(𝑉 X)∋ (𝜂 ∘𝐺(𝜖𝛼))(ℎ𝑡,𝑖)

𝜇∇𝑡−𝑖(𝑧𝑡 ⊗ 𝑧𝑡) ∈𝑍𝑁v
𝑡+𝑖Θ𝑡,𝑖

𝐺(𝜖𝛼) // 𝑍𝑁v
𝑡+𝑖X∋ 𝜇∇𝑡−𝑖(̃︁𝜖𝛼⊗̃︁𝜖𝛼)

Here, the value of 𝑑0ℎ𝑡,𝑖 is known by definition of Θ𝑡,𝑖, and the fact that𝐺(𝜖𝛼)(𝑧𝑡) = ̃︁𝜖𝛼 allows

us to calculate (𝐺(𝜖𝛼) ∘ 𝑑0)(ℎ𝑡,𝑖). Finally, in order to calculate 𝜕conn(𝜃
⋆
𝑖 ∘ hur)(𝛼), we find

a preimage under 𝑁v
𝑡+𝑖+1X

𝑣−→ 𝑁v
𝑡+𝑖+1𝑉 X of the representative (𝜂 ∘𝐺(𝜖𝛼))(ℎ𝑡,𝑖), and then

apply the differential 𝑑0. We may use the preimage 𝐺(𝜖𝛼), which maps to 𝜇∇𝑡−𝑖(̃︁𝜖𝛼⊗̃︁𝜖𝛼) ∈
𝑁v
𝑡+𝑖𝑅

1
X under 𝑑0. This is homotopic to 𝜇∇𝑡−𝑖(𝛼⊗ 𝛼), which represents 𝜇𝛿ext

𝑖 (𝛼).

159



160



Chapter 12

Composite functor spectral sequences

It will be important for us to identify the derived functors 𝐻*
W(0)𝑋 := D(L*𝑄

W(0)𝑋) for

𝑋 ∈ W(0), in order to determine the 𝐸2-page of the BKSS for a connected simplicial

commutative algebra. More generally, we will now present a spectral sequence whose goal

is to calculate 𝐻*
W(𝑛)𝑋 for 𝑋 ∈ W(𝑛). This will be a CFSS analogous to Miller’s spectral

sequence in [42, §2]. The factorization of 𝑄W(𝑛) we will use is of course

𝑄W(𝑛) =

(︂
W(𝑛)

𝑄U(𝑛)

−→ L(𝑛)
𝑄L(𝑛)

−→ V+
𝑛

)︂

There is an added challenge in this context — indeed, the available factorization of 𝑄W(𝑛)

is through a non-abelian category. Thus, the standard technology for CFSSs does not

apply, and we must use Blanc and Stover’s methods [3]. They observe that the left derived

functors L*𝑄
U(𝑛)𝑋 are calculated as the homotopy groups of a simplicial object in L(𝑛),

namely 𝑄U(𝑛)𝐵W(𝑛)𝑋, and as such, they have the structure of a L(𝑛)-Π-algebra. That is,

they form an object of W(𝑛+1). After verifying that the functor 𝑄U(𝑛) satisfies the requisite

acyclicity condition (indeed it preserves free objects), one may apply [3, Theorem 4.4]: there

is a spectral sequence, with 𝐸𝑟 ∈ V+
𝑛+2,

[𝐸2
G𝑋]𝑡𝑠𝑛+2,...,𝑠1 = ((𝐻

W(𝑛+1)
* )(L*𝑄

U(𝑛))𝑋)𝑡𝑠𝑛+2,...,𝑠1 =⇒ ((𝐻
W(𝑛)
* )𝑋)𝑡𝑠𝑛+2+𝑠𝑛+1,𝑠𝑛,...,𝑠1

If 𝑈W,U : W −→ U is the forgetful functor, resulting from the fact that an object of W(𝑛) is

in particular an object of U(𝑛):

Proposition 12.1. For 𝑋 ∈ 𝑠W(𝑛), the groups L*𝑄
U(𝑛)𝑋 are isomorphic to 𝐻U(𝑛)

* 𝑈W
U 𝑋,

the U(𝑛)-homology of the object of 𝑠U(𝑛) underlying 𝑋.

Proof. We may take 𝑋 to be almost free in 𝑠W(𝑛), and calculate L*𝑄
U(𝑛)𝑋 simply as

𝜋*𝑄
U(𝑛)𝑋. Then 𝑋, viewed as an object of 𝑠U(𝑛), is levelwise free, but potentially not
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almost free. We need to show then that 𝜋*𝑄U(𝑛)𝑋 does indeed calculate 𝐻U(𝑛)
* 𝑋 whenever

𝑋 ∈ 𝑠U(𝑛) is levelwise free, which is to say that the map 𝑄U(𝑛)𝐵U(𝑛)𝑋 −→ 𝑄U(𝑛)𝑋 is a

weak equivalence in 𝑠V. For this, 𝑄U(𝑛)𝐵U(𝑛)𝑋 is the diagonal of the bisimplicial vector

space 𝑄U(𝑛)𝐵
U(𝑛)
𝑞 𝑋𝑝, and we use the spectral sequence arising from filtering by 𝑝. As 𝑋 is

levelwise free, the 𝐸1-page is isomorphic to the chain complex 𝑁𝑝(𝑄
U(𝑛)𝑋), concentrated in

𝑞 = 0.

We will prefer to work with the dual spectral sequence, which has 𝐸𝑟 ∈ V𝑛+2
+ :

[𝐸G
2 𝑋]

𝑠𝑛+2,...,𝑠1
𝑡 = ((𝐻*

W(𝑛+1))(𝐻
U(𝑛)
* )𝑋)

𝑠𝑛+2,...,𝑠1
𝑡 =⇒ [𝐸0𝐻

*
W(𝑛)𝑋]

𝑠𝑛+2,...,𝑠1
𝑡

These two spectral sequences are respectively the homotopy and cohomotopy spectral se-

quences of a certain object of 𝑠𝑠V+
𝑛 , with which we will need to work directly. Indeed, in

§12.1, we will define a comonad G on 𝑠L(𝑛), and, for 𝑋 ∈W(𝑛), we will use the object

𝑄L(𝑛)𝐵G𝐿 ∈ 𝑠𝑠V+
𝑛 where 𝐿 := 𝑄U(𝑛)𝐵W(𝑛)𝑋 ∈ 𝑠L(𝑛).

The identification of 𝐸G
2 follows from Lemma 3.1 and Propositions 12.1 and 12.2.

Before we do, we will recall Blanc and Stover’s constructions, and imbue them with

certain extra structure that will be reflected in the spectral sequence.

12.1. The Blanc-Stover comonad in categories monadic over

F2-vector spaces

Fix an algebraic category C, monadic over a category of graded F2-vector spaces V. As

we are working over a category of vector spaces, rather than a category of graded sets, we

can find further structure on the following comonad on 𝑠C defined by Blanc and Stover.

While they use the notation ‘𝑊 ’ in [3] and ‘V ’ in [54], we will use the symbol ‘G ’ to avoid

notational confusion. In our context, Blanc-Stover’s comonad G , applied to 𝐿 ∈ 𝑠C, is the

pushout ∐︀
𝑆∈sph(C)
𝑦:𝐶𝑆→𝐿

𝑆𝑦∘𝚤𝑛 //

��

∐︀
𝑆∈sph(C)
𝑥:𝑆→𝐿

𝑆𝑥

��∐︀
𝑆∈sph(C)
𝑦:𝐶𝑆→𝐿

𝐶𝑆𝑦 // G𝐿

The subscripts are just notation to distinguish multiple copies of 𝑆 and 𝐶𝑆 for each sphere

𝑆 ∈ sph(C). The top horizontal map sends the sphere 𝑆𝑦∘𝚤𝑛 isomorphically onto itself. The

left vertical map is the coproduct of copies of the inclusion 𝚤𝑛 : 𝑆 −→ 𝐶𝑆. The effect of

taking this pushout is to modify the coproduct 𝑆𝑥 of spheres by attaching the cone on 𝑆𝑥
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once for each nullhomotopy of 𝑥 ∈ 𝐿.

It will be useful to write ℎ𝑦 for the image in 𝑁*G𝐿 of ℎ ∈ 𝑁*𝐶𝑆𝑦, and similarly, 𝑧𝑥 for

image in 𝑍𝑁*G𝐿 of 𝑧 ∈ 𝑍𝑁*𝑆𝑥. Indeed, recalling the discussion in §3.1, the data of 𝑆 ∈
sph(C) with a map 𝑆 −→ 𝐿 is equivalent to the data of a homogeneous normalized cycle of 𝐿,

and similarly, 𝑆 ∈ sph(C) with a map 𝐶𝑆 −→ 𝐿 is equivalent to a homogeneous normalized

chain of 𝐿 which is not in dimension zero. From this viewpoint, if we write hg(𝑍𝑁*𝐿) for

the homogeneous normalized cycles and hg(𝑁≥1𝐿) for the homogeneous normalized chains

of 𝐿 not in dimension zero, the pushout may be written as

∐︀
𝑦∈hg(𝑁≥1𝐿)

𝑆𝑑𝑦 //

��

∐︀
𝑥∈hg(𝑍𝑁*𝐿)

𝑆𝑥

��∐︀
𝑦∈hg(𝑁≥1𝐿)

𝐶𝑆𝑦 // G𝐿

We will now show that G𝐿 is homotopy equivalent to a coproduct of spheres. Indeed,

let

hg(𝐵𝑁*𝐿) = im
(︀
𝑑 : hg(𝑁≥1𝐿) −→ hg(𝑍𝑁*𝐿)

)︀
,

and choose a section 𝑓 of the surjection 𝑑 : hg(𝑁≥1𝐿)−→−→ hg(𝐵𝑁*𝐿). Then G𝐿 contains a

contractible subobject, the pushout

∐︀
𝑥∈hg(𝐵𝑁*𝐿)

𝑆𝑥 //

��

∐︀
𝑥∈hg(𝐵𝑁*𝐿)

𝑆𝑥

��∐︀
𝑥∈hg(𝐵𝑁*𝐿)

𝐶𝑆𝑓(𝑥) // 𝐶0

whose inclusion is a cofibration. Then

G𝐿/𝐶0
∼=

⎛⎝ ⨆︁
𝑦∈hg(𝑁≥1𝐿)∖im(𝑓)

𝐶𝑆𝑦/𝑆

⎞⎠ ⊔
⎛⎝ ⨆︁
𝑥∈hg(𝑍𝑁*𝐿)∖hg(𝐵𝑁*𝐿)

𝑆𝑥

⎞⎠
where we have written ‘𝐴/𝐵’ for the pushout of a cofibration 𝐵 −→ 𝐴 along the map

𝐵 −→ 0, using the cofibrations 𝐶0 −→ G𝐿 and 𝚤𝑛 : 𝑆 −→ 𝐶𝑆𝑦. As 𝐶𝑆/𝑆 is isomorphic to

the sphere of one dimension higher than 𝑆 (consider the construction of §2.5), this shows

that G𝐿 is homotopic to a coproduct of spheres.

The promised comonad structure maps 𝜖 : G𝐿 −→ 𝐿 and Δ : G𝐿 −→ G 2𝐿 are deter-

mined by:

𝜖(ℎ𝑥) = 𝑥, 𝜖(𝑧𝑦) = 𝑦, Δ(ℎ𝑥) = ℎℎ𝑥 , and Δ(𝑧𝑦) = 𝑧𝑧𝑦 for 𝑥 ∈ 𝑁𝑛+1𝐿 and 𝑦 ∈ 𝑍𝑁𝑛𝐿.

We would like to find a subspace of 𝜋*(G𝐿) which freely generates it as a C-Π-algebra. Even
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better, we have the following rendition of an observation used in [3, Proof of Theorem 4.2].

We give the proof since we will need to be explicit about some parts of it in what follows.

Proposition 12.2. For 𝐿 ∈ 𝑠C, 𝜋*(𝐵G𝐿) is an almost free (monadic over V) simplicial

C-Π-algebra weakly equivalent to 𝜋*𝐿.

This differs from the observation in [3, Proof of Theorem 4.2], in that we show that all the

structure maps of 𝜋*(𝐵G𝐿) ∈ 𝑠𝜋C except for 𝑑0 preserve vector spaces of generators, rather

than sets of generators.

Proof. That the augmentation to 𝜋*𝐿 is a weak equivalence follows from Stover’s result [54,

2.7]. The only change from Blanc-Stover is that 𝜋*(𝐵G𝐿) is almost free over the category

V, rather than the category of pointed sets.

During this proof, for any set 𝐴 we will write F2{𝐴} for the vector space generated

by the symbols 𝑎 for 𝑎 ∈ 𝐴. Suppose that 𝑀 ∈ 𝑠L(𝑛). There is a natural map 𝑑* :

F2{hg(𝑁≥1𝑀)} −→ F2{hg(𝑍𝑁*𝑀)}, and a natural monomorphism 𝛼 : ker (𝑑*) −→ 𝜋*(G𝑀),

defined by

𝛼(𝑥1 − 𝑥0) = ℎ𝑥1 − ℎ𝑥0 , for 𝑥1, 𝑥2 ∈ 𝑁≥1𝑀 with 𝑑𝑥1 = 𝑑𝑥2.

Moreover, there is a natural map 𝛽 : F2{hg(𝑍𝑁*𝑀)} −→ 𝜋*(G𝑀) (which is not monomor-

phic) defined by

𝛽(𝑥) = 𝑧𝑥, for 𝑥 ∈ hg(𝑍𝑁*𝑀).

From the above expression for G𝑀/𝐶0, one sees that im(𝛼) and im(𝛽) are linearly inde-

pendent subspaces of 𝜋*(G𝑀), and that 𝜋*(G𝑀) is free on im(𝛼) ⊕ im(𝛽). Moreover, if

𝑀 −→ 𝑀 ′ is a map in 𝑠L(𝑛), then the generating subspaces are preserved by the induced

map 𝜋*G𝑀 −→ 𝜋*G𝑀 ′.

Applying this analysis to 𝜋*𝐵
G𝐿 ∈ 𝑠𝜋C, every face and degeneracy map except for

𝑠0 and 𝑑0 preserves the generators. In order to check that 𝑠0 preserves generators, we

must see that the comonad diagonal of G sends the subspaces im(𝛼𝐿) and im(𝛽𝐿) into

the subspaces im(𝛼G𝐿) and im(𝛽G𝐿). That im(𝛽𝐿) maps into im(𝛽G𝐿) is immediate. For

im(𝛼𝐿), the image of ℎ𝑥1 −ℎ𝑥0 under the diagonal is ℎℎ𝑥1 −ℎℎ𝑥0 , which is in im(𝛼G𝐿), since

𝑑ℎ𝑥1 = 𝑧𝑑𝑥1 = 𝑧𝑑𝑥0 = 𝑑ℎ𝑥0 .

12.2. A chain-level diagonal on the G construction

We have seen, for 𝑀 ∈ 𝑠C, that 𝜋*(G𝑀) is a free object in 𝜋C. As such, there is a diagonal

𝜙𝜋C : 𝜋*(G𝑀) −→ 𝜋*(G𝑀) ⊔ 𝜋*(G𝑀).
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In this section, we will describe how 𝜙𝜋C is the map on homotopy induced by a morphism

𝜙G : G𝑀 −→ G𝑀 ⊔ G𝑀 in 𝑠C, and construct a map 𝜉G related to the map 𝜉𝜋C of §6.5.

In order to construct a map 𝜙G , each 𝑆 ∈ sph(C) equals 𝑆 = 𝐹 CK for some K as in §2.5

(with indices omitted), and we construct a commuting diagram:

𝑆
𝜙1 //

𝚤𝑛��

𝑆 ⊔ 𝑆
𝚤𝑛⊔𝚤𝑛��

𝐶𝑆
𝜙2 // 𝐶𝑆 ⊔ 𝐶𝑆

by applying 𝐹 C to
K Δ //

𝚤𝑛��

K⊕K
𝚤𝑛⊔𝚤𝑛��

𝐶K Δ // 𝐶K⊕ 𝐶K

The maps 𝜙1 and 𝜙2 can then be applied respectively to all of the sphere and cone classes

appearing in G𝑀 . To understand the effect of 𝜙G on homotopy, it is enough to identify

where the generators of 𝜋*(G𝑀) are sent in 𝜋*(G𝑀) ⊔ 𝜋*(G𝑀), which is easy. The theory

of this map mimics that presented in §6.5, as intended, and we list some of its properties

here, with proofs omitted.

Lemma 12.3. G𝑀 is naturally a (strict) commutative cogroup object, having comultiplica-

tion map 𝜙G , counit map 0 : G𝑀 −→ 0, and inverse map id : G𝑀 −→ G𝑀 . In particular,

hom(G𝑀,−) takes values in F2-vector spaces.

Writing � for the group operation on hom𝑠C(G𝑀,𝑀 ′), we have the following:

Lemma 12.4. For maps 𝑓, 𝑔 : G𝑀 −→𝑀 ′ we have

𝑄C(𝑓 � 𝑔) = (𝑄C𝑓 +𝑄C𝑔) : 𝑄C(G𝑀) −→ 𝑄C𝑀 ′.

Proof. It is enough to check that 𝑄C(𝜙G ) : 𝑄
C(G𝑀) −→ 𝑄C(G𝑀⊔G𝑀) equals the diagonal

map 𝑄C(G𝑀) −→ 𝑄C(G𝑀) ⊕ 𝑄C(G𝑀). For this, 𝑄C converts all the colimits involved in

the construction of G𝑀 to direct sums of simplicial vector spaces, and 𝑄C𝜙1 and 𝑄C𝜙2 are

both precisely the diagonal map.

Now let 𝜉G denote the following composite:

𝜉G : G 2𝑀
𝜙G−→ (G 2𝑀)⊔2

𝑎⊔𝑏−→ (G𝑀)⊔2

where 𝑎, 𝑏 : G 2𝑀 −→ (G𝑀)⊔2 are the composites

𝑎 : G 2𝑀
𝜙G // (G 2𝑀)⊔2

𝜖⊔2
// (G𝑀)⊔2

𝑏 : G 2𝑀
𝜖 // (G𝑀)

𝜙G // (G𝑀)⊔2

Thanks to Lemma 12.5, 𝜉G factors through the smash coproduct, defining a natural map

𝜉G : G 2𝑀 −→ (G𝑀)Y2.
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Lemma 12.5. The composite G 2𝑀
𝜉G−→ (G𝑀)⊔2 −→ (G𝑀)×2 is zero.

Proof. This follows from the observation that both composites (id ⊔ 0)𝜉G and (0 ⊔ id)𝜉G

equal 𝜖 : G 2𝑀 −→ G𝑀 .

The desired property for 𝜉G is then the following lemma (involving the natural isomor-

phism 𝑖 of Proposition 3.2, and the almost free structure given in Proposition 12.2).

Lemma 12.6. For 𝐿 ∈ 𝑠C, we have (𝑖 ∘ 𝜉𝜋C) = 𝜋*(𝜉G ), i.e. a commuting diagram:

𝜋*(𝐵
G
𝑠 𝐿)

𝜋*(𝜉G ) //

𝜉𝜋C
++

𝜋*((𝐵
G
𝑠−1𝐿)

Y2)

(𝜋*(𝐵
G
𝑠−1𝐿))

Y2

𝑖 ∼=
OO

Proof. In view of the short exact sequences of Proposition 3.2, this is equivalent to (𝑖∘𝜉𝜋C) =
𝜋*(𝜉G ) : 𝜋*(G

𝑠+1𝐿) −→ 𝜋*((G 𝑠𝐿)⊔2), which holds as (𝑖 ∘ 𝜙𝜋C) = 𝜋*(𝜙G ).

Lemma 12.7. (𝑑𝑖)
Y2𝜉G = 𝜉G 𝑑𝑖+1 for 𝑖 ≥ 1, and (𝑑0)

Y2𝜉G = (𝜉G 𝑑0) � (𝜉G 𝑑1), so that the

map 𝑄C𝜉G induces a degree (−1, 0) bicomplex map:

𝑁*𝑁*(𝑄
C𝐵G

∙ 𝐿)𝑠𝑛+2,𝑠𝑛+1 −→ 𝑁*𝑁*(𝑄
C((𝐵G

∙ 𝐿)
Y2))𝑠2−1,𝑠1 .

As in §6.5, we will use the composite double complex map

𝜓G := 𝑗L(𝑛)∘𝑄L(𝑛)𝜉G : 𝑁h
*𝑁

v
* (𝑄

L(𝑛)𝐵G𝐿)𝑡+1
𝑠𝑛+2,...,𝑠1 −→ 𝑁h

*𝑁
v
* (𝑆

2(𝑄L(𝑛)𝐵G𝐿))𝑡𝑠𝑛+2−1,𝑠𝑛+1,...,𝑠1

in what follows.

12.3. Quadratic grading

We will say that an object 𝑋 ∈ C, where C is any of W(𝑛), U(𝑛) or L(𝑛), is quadratically

graded if the underlying vector space of 𝑋 is equipped with a quadratic grading such that

the action map 𝐹 C𝑋 −→ 𝑋 preserves quadratic gradings (i.e. is a map in qV+
𝑟 ). Recall that

𝐹 C is in fact a monad on qV+
𝑛 , by Lemmas 6.10 and 7.2. There are evident categories of

quadratically graded objects in these three categories, which we write as qW(𝑛), qU(𝑛) or

qL(𝑛), and the various homology and cohomology functors can be enriched to functors

𝐻C
* : 𝑠(qC) −→ qV+

𝑛+1 and 𝐻*
C : 𝑠(qC) −→ qV𝑛+1

+ .

Similarly, the categories Mv(𝑛 + 1) and Mh(𝑛 + 1), in which 𝐻*
W(𝑛) takes values, can both

be enriched in this way, and if 𝑋 ∈ qW(𝑛) then 𝐻*
W(𝑛)𝑋 is an object of qMv(𝑛 + 1) and
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qMh(𝑛+ 1), and 𝐻U(𝑛)
* 𝑋 is an object of qW(𝑛+ 1).

Thus, if 𝑋 ∈ qW(𝑛) then the CFSS

[𝐸G
2 𝑋]

𝑠𝑛+2,...,𝑠1
𝑡 = ((𝐻*

W(𝑛+1))(𝐻
U(𝑛)
* )𝑋)

𝑠𝑛+2,...,𝑠1
𝑡 =⇒ [𝐸0𝐻

*
W(𝑛)𝑋]

𝑠𝑛+2,...,𝑠1
𝑡

has both 𝐸2 and target quadratically graded. Because all of the cohomology and homotopy

operations constructed in §§5-8 are formed at the chain level using quadratic operations, it

is not hard to check

Proposition 12.8. If 𝑋 ∈ qW(𝑛) then the CFSS is quadratically graded:

q𝑘[𝐸
G
2 𝑋]

𝑠𝑛+2,...,𝑠1
𝑡 = q𝑘(𝐻

*
W(𝑛+1))(𝐻

U(𝑛)
* )𝑋)

𝑠𝑛+2,...,𝑠1
𝑡 =⇒ q𝑘[𝐸0𝐻

*
W(𝑛)𝑋]

𝑠𝑛+2,...,𝑠1
𝑡 .

12.4. The edge homomorphism and edge composite

For 𝑋 ∈ 𝑠W(𝑛), the spectral sequence

[𝐸G
2 𝑋]

𝑠𝑛+2,...,𝑠1
𝑡 = ((𝐻*

W(𝑛+1))(𝐻
U(𝑛)
* )𝑋)

𝑠𝑛+2,...,𝑠1
𝑡 =⇒ [𝐸0𝐻

*
W(𝑛)𝑋]

𝑠𝑛+2,...,𝑠1
𝑡

has edge homomorphism

(𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡 −→−→ [𝐸0𝐻

*
W(𝑛)𝑋]

0,𝑠𝑛+1,...,𝑠1
𝑡

∼= [𝐸G
∞𝑋]

0,𝑠𝑛+1,...,𝑠1
𝑡 ⊆ [𝐸G

2 𝑋]
0,𝑠𝑛+1,...,𝑠1
𝑡

which we may compose with the inclusion

[𝐸G
2 𝑋]

0,𝑠𝑛+1,...,𝑠1
𝑡 = (D(𝑄W(𝑛+1)𝐻

U(𝑛)
* 𝑋))

𝑠𝑛+1,...,𝑠1
𝑡 ⊆ (𝐻*

U(𝑛)𝑋)
𝑠𝑛+1,...,𝑠1
𝑡 .

to form the edge composite:

(𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡 −→ (𝐻*

U(𝑛)𝑋)
𝑠𝑛+1,...,𝑠1
𝑡

Proposition 12.9. Suppose that 𝑛 ≥ 1. Then the edge composite commutes with the vertical

Steenrod operations of Proposition 8.6:

(𝐻*
W(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡

Sq𝑖v //

edge comp.��

(𝐻*
W(𝑛)𝑋)

𝑠𝑛+1+1,𝑠𝑛+𝑖−1,2𝑠𝑛−1,...,2𝑠1
2𝑡+1

edge comp.��

(𝐻*
U(𝑛)𝑋)

𝑠𝑛+1,...,𝑠1
𝑡

Sq𝑖v // (𝐻*
U(𝑛)𝑋)

𝑠𝑛+1+1,𝑠𝑛+𝑖−1,2𝑠𝑛−1,...,2𝑠1
2𝑡+1

Setting 𝑛 = 0, suppose that 2 ≤ 𝑖 < 𝑡. The same composite commutes with the 𝛿v-operations
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of Propositions 8.2 and 8.3:

(𝐻*
W(0)𝑋)𝑠𝑡

𝛿v𝑖 //

edge comp.��

(𝐻*
W(0)𝑋)𝑠+1

𝑡+𝑖+1

edge comp.��
(𝐻*

U(0)𝑋)𝑠𝑡
𝛿v𝑖 // (𝐻*

U(0)𝑋)𝑠+1
𝑡+𝑖+1

Proof. For this proof, we will suppress the ‘(𝑛)’ notation, as the proof is the same for all

𝑛 ≥ 0. We will also suppress all internal gradings, and write * for the grading 𝑠𝑛+1. The

edge composite is dual to

𝐻W
* 𝑋 := 𝜋*(𝑄

W|𝐵W𝑋|)
𝑑h0←− 𝜋h0𝜋v*(𝑄L𝐵G𝑄U|𝐵W𝑋|) 𝑧−←− 𝜋*(𝑄U|𝐵W𝑋|) ∼= 𝐻U

* 𝑋.

Abbreviating further by setting 𝐷 := 𝑄U|𝐵W𝑋| and 𝐶 := 𝑄L𝐵G𝑄U|𝐵W𝑋|, the map 𝑧−

sends the class of 𝑥 ∈ 𝑍𝑁*𝐷 to 𝑧𝑥 ∈ 𝜋h0𝜋
v
*𝐶. This assignment does not produce a well

defined map 𝜋*𝐷 −→ 𝑁h
0 𝜋

v
*𝐶, as if 𝑦 ∈ 𝑍𝑁*𝐷 represents the same class as 𝑥, 𝑧𝑦 need

not equal 𝑧𝑥 in 𝑁h
0 𝜋

v
*𝐶: we only know that 𝑧𝑥−𝑦 = 0 ∈ 𝑁h

0 𝜋
v
*𝐶. Fortunately, the element

𝑧𝑧𝑥−𝑧𝑦 − 𝑧𝑧𝑥−𝑦 ∈ 𝑁h
1 𝜋

v
*𝐶 provides a homotopy between 𝑧𝑥−𝑦 and 𝑧𝑥 − 𝑧𝑦 in 𝑁h

0 𝜋
v
*𝐶:

𝑑h0
(︀
𝑧𝑧𝑥−𝑧𝑦 − 𝑧𝑧𝑥−𝑦

)︀
= 𝑧𝑥 − 𝑧𝑦 − 𝑧𝑥−𝑦, and 𝑑h1

(︀
𝑧𝑧𝑥−𝑧𝑦 − 𝑧𝑧𝑥−𝑦

)︀
= 𝑧𝑥−𝑦 − 𝑧𝑥−𝑦 = 0,

so that the map 𝑧− is well defined.

We may model the final isomorphism as follows. Write 𝑈W
U : W −→ U for the forgetful

functor. For any 𝑉 ∈ V+
𝑛 , there is a natural inclusion 𝐹U𝑉 −→ 𝑈W

U 𝐹
W𝑉 in the category U,

adjoint to the inclusion 𝑉 −→ 𝐹W𝑉 . This morphism yields an inclusion of bar constructions,

a weak equivalence |𝐵U𝑈W
U 𝑋| −→ 𝑈W

U |𝐵W𝑋| in 𝑠U. Suppressing the forgetful functors, for

𝑋 ∈ W, we have a weak equivalence 𝑄U|𝐵U𝑋| −→ 𝑄U|𝐵W𝑋| inducing the isomorphism.

Our conclusion is then that the entire composite 𝐻U
* 𝑋 −→ 𝐻W

* 𝑋 is the map on homotopy

induced by the composite

𝑄U|𝐵U𝑋| −→ 𝑄U|𝐵W𝑋| −→−→ 𝑄W|𝐵W𝑋|,

and the operations we are considering are easily understood in relation to this map.

12.5. An equivalent reverse Adams spectral sequence

It happens that the CFSS recently defined actually coincides with an instance of Miller’s

reverse Adams spectral sequence used Goerss [33, Chapter V] (c.f. §3.4). This seems to the

author to be somewhat of a coincidence, as in [33], the reverse Adams spectral sequence
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appears for quite different reasons than in the present work. We continue using Blanc

and Stover’s resolution, for two reasons. Firstly, that resolution more closely reflects out

intention in constructing the spectral sequence in question, and secondly, the techniques we

use here may be generalizable to other contexts in which the Blanc-Stover resolution is used.

Proposition 12.10. The CFSS applied to 𝑋 ∈ 𝑠W(𝑛) coincides with the reverse Adams

spectral sequence applied to 𝐿 := 𝑄U(𝑛)𝐵W(𝑛)𝑋 ∈ 𝑠L(𝑛).

Before proving this fact, we should remove any confusion about the convergence targets of

these spectral sequences. Indeed, the reverse Adams spectral sequence has target

𝜋*D𝑄L(𝑛)𝐵L(𝑛)𝐿 ∼= 𝜋*D𝑄L(𝑛)𝐿 = 𝜋*D𝑄W(𝑛)𝐵W(𝑛)𝑋 =: 𝐻*
W(𝑛)𝑋,

where the isomorphism follows from the same acyclicity condition needed to define the CFSS.

Thus the targets coincide, as hoped.

Proof. We will use the Dwyer-Kan-Stover 𝐸2 model structure on the category 𝑠𝑠C, which

originated in [27] for bisimplicial sets, and is reinterpreted for objects of 𝑠𝑠C in [3, §4.1.1].

Viewing 𝐿 as a constant object in 𝑠𝑠L(𝑛), each of 𝐵L(𝑛)
𝑝 𝐿𝑞 and 𝐵G𝐿 admits an 𝐸2-weak

equivalence to 𝐿. Moreover, each is cofibrant. Indeed, 𝐵G𝐿 is cofibrant by construction,

while we must check that 𝐵L(𝑛)
𝑝 𝐿𝑞 is M-free, in the sense of [3, §4.1.1].

For this, we use Lemma 2.3. That is, for each 𝑞, the horizontal simplicial object

(𝐵
L(𝑛)
𝑝 𝐿𝑞)𝑝,𝑞 := 𝐵

L(𝑛)
𝑝 𝐿𝑞 has an obvious structure of almost free simplicial (in 𝑝) object,

and the generating subspaces are preserved by the vertical simplicial maps. Thus, Lemma

2.3 yields decompositions

𝑉𝑝 = im
(︁
𝑉𝑝−1

𝑠h0−→ 𝑉𝑝

)︁
⊕ · · · ⊕ im

(︁
𝑉𝑝−1

𝑠h𝑝−1−→ 𝑉𝑝

)︁
⊕
(︁
𝑉𝑝 ∩𝑁h

𝑝𝐵
L(𝑛)
𝑝 𝐿𝑞

)︁
.

To show that 𝑉𝑝 is M-free, we need to decompose each 𝑉𝑝 into a coproduct of objects

K𝑡
𝑠𝑛+1,...,𝑠1 ∈ 𝑠V+

𝑛 , up to homotopy, and ensure that the degeneracies are induced up to

homotopy by sphere inclusions. The decompositions of 𝑉𝑝 just provided make this a simple

task. Suppose that 𝑉𝑝−1 already has chosen decomposition as a sum of objects K𝑡
𝑠𝑛+1,...,𝑠1

up to homotopy. Then if we choose such a decomposition of 𝑉𝑝 ∩𝑁h
𝑝𝐵

L(𝑛)
𝑝 𝐿𝑞, and use the

𝑝 inclusions 𝑠h𝑖 : 𝑉𝑝−1 −→ 𝑉𝑝 to induce decompositions of the other summands of 𝑉𝑝 using

the decomposition of 𝑉𝑝−1, we have the decomposition up to homotopy that we need.

Now, by factoring the map 0 −→ 𝐿 by a cofibration followed by an acyclic fibration

𝐵 −→ 𝐿 in the 𝐸2 model structure, we can form the solid maps in a diagram in which each
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object ‘𝐵’ is cofibrant:

𝐵

∼ '' ''

𝐵
L(𝑛)
𝑝 𝐿𝑞

∼��

∼oo

𝐵G𝐿 ∼
//

∼
OO

𝐿

By the lifting axiom (of cofibrations against acyclic fibrations) we can find the dotted maps,

weak equivalences making the diagram commute. The theory presented in [27] then explains

that the three resulting spectral sequences coincide. The spectral sequence arising from

𝐵
L(𝑛)
𝑝 𝐿𝑞 is the reverse Adams spectral sequence of 𝐿 in 𝑠L(𝑛), and that arising from 𝐵G𝐿

is the CFSS of 𝑋 ∈ 𝑠W(𝑛).
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Chapter 13

Operations in composite functor

spectral sequences

Singer [52] developed a useful theory of products and Steenrod operations in the first quad-

rant cohomology spectral sequence arising from a bisimplicial cocommutative coalgebra.

Goerss used this theory in [33, §14] in his calculation of the category 𝐻Com. In the appli-

cations we have in mind, the bisimplicial object

𝑄L(𝑛)𝐵G𝑄U(𝑛)𝐵W(𝑛)𝑋

will not be a coalgebra. Instead the situation will resemble more the situation of §6.5, where

there was a linear map 𝜓C : 𝑄C𝑋𝑠 −→ 𝑆2(𝑄C𝑋𝑠−1) for any almost free object 𝑋 ∈ 𝑠C, but

certainly not a coalgebra map.

The lack of an underlying coalgebra structure will not stop us from applying Singer’s

techniques after we make the appropriate modifications. The idea is to externalize Singer’s

operations, so that for every bisimplicial vector space 𝑉 , there are various external operations

of type:

[𝐸𝑟𝑉 ] −→ [𝐸𝑟′𝑆
2𝑉 ] (𝑟′ ≥ 𝑟) and 𝑆2[𝐸𝑟𝑉 ] −→ [𝐸𝑟𝑆

2𝑉 ],

(which we will discuss shortly) compatible at 𝐸∞ with external operations of type:

𝐻*(D(𝑇𝑉 )) −→ 𝐻*(D(𝑇𝑆2𝑉 )) and 𝑆2𝐻*(D(𝑇𝑉 )) −→ 𝐻*(D(𝑇𝑆2𝑉 )).

When 𝑉 is in fact a bisimplicial cocommutative coalgebra, one recovers Singer’s theory by

composing with the map of spectral sequences induced by the coproduct:

[𝐸𝑟𝑆
2𝑉 ] −→ [𝐸𝑟𝑉 ].
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In §10.1 we discussed spectral sequences with indeterminacy, and multi-valued functions.

They reappear in Singer’s theory, as some of the operations are constructed as (actual) linear

functions [𝐸𝑟𝑉 ] −→ [𝐸𝑟′𝑆
2𝑉 ] between different spectral sequence pages. Such an operation

is equivalent to an external operation [𝐸𝑟𝑉 ] −→ [𝐸𝑟𝑆
2𝑉 ] with indeterminacy 𝑟′ which also

satisfies a survival property.

13.1. External spectral sequence operations of Singer

We now summarize some key aspects of Singer’s work in [52], in particular Theorems 2.15,

2.16, 2.17 and 2.22, and Proposition 2.21. Fix 𝑉 ∈ 𝑠𝑠V with a (horizontal) augmentation

𝑑0h : 𝑉 −→ 𝑉−1. The key construction is that of chain level operations:

𝑆𝑘 : D(𝑇𝑉 ) −→ D(𝑇𝑆2𝑉 )

inducing external operations as in the bottom row of the following diagrams:

𝜋𝑚(D(𝑉−1))
Sq𝑘ext //

��

𝜋𝑚+𝑘(D(𝑆2𝑉−1))

��

𝑆2𝜋
*(D(𝑉−1))

𝜇ext //

��

𝜋*(D(𝑆2𝑉−1))

��
𝐻𝑚(D(𝑇𝑉 ))

Sq𝑘ext // 𝐻𝑚+𝑘(D(𝑇𝑆2𝑉 )) 𝑆2𝐻
*(D(𝑇𝑉 ))

𝜇ext // 𝐻*(D(𝑇𝑆2𝑉 ))

The top rows are the operations arising from the singly (vertically) simplicial object 𝑉−1,

as in §6.2. Singer studies the effect of 𝑆𝑘 on filtration in detail, determining that it induces

the following operations. For all 𝑝, 𝑞 ≥ 0 and all 𝑟 ≥ 2, there are well-defined vector space

homomorphisms:

Sq𝑘ext : [𝐸𝑟𝑉 ]𝑝,𝑞 −→ [𝐸𝑟𝑆
2𝑉 ]𝑝,𝑞+𝑘, if 0 ≤ 𝑘 ≤ 𝑞;

Sq𝑘ext : [𝐸𝑟𝑉 ]𝑝,𝑞 −→ [𝐸𝑟+𝑘−2𝑆
2𝑉 ]𝑝+𝑘−𝑞,2𝑞, if 𝑞 ≤ 𝑘 ≤ 𝑞 + 𝑟 − 2;

Sq𝑘ext : [𝐸𝑟𝑉 ]𝑝,𝑞 −→ [𝐸2𝑟−2𝑆
2𝑉 ]𝑝+𝑘−𝑞,2𝑞, if 𝑞 + 𝑟 − 2 ≤ 𝑘;

which commute with the differentials (in the appropriate, somewhat complicated sense, c.f.

[52, Theorem 2.17]), and an external (not ‘exterior’) commutative product operation which

satisfies the Leibniz rule:

𝜇ext : [𝐸𝑟𝑉 ]𝑝1,𝑞1 ⊗ [𝐸𝑟𝑉 ]𝑝2,𝑞2 −→ [𝐸𝑟𝑆
2𝑉 ]𝑝1+𝑝2,𝑞1+𝑞2 .

Note that the second and third operations are from 𝐸𝑟 −→ 𝐸𝑟′ , sometimes with 𝑟′ ≥ 𝑟,

which is to say that these operations have indeterminacy disappearing by 𝐸𝑟′ , and the

implied survival property.
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Those operations with domain [𝐸2𝑉 ] have no indeterminacy, and we reindex them as

follows:

Sq𝑘v,ext = Sq𝑘ext : [𝐸2𝑉 ]𝑝,𝑞 −→ [𝐸2𝑆
2𝑉 ]𝑝,𝑞+𝑘, if 0 ≤ 𝑘 ≤ 𝑞,

Sq𝑘v,ext = 0, if 𝑘 > 𝑞,

Sq𝑘h,ext = Sq𝑞+𝑘ext : [𝐸2𝑉 ]𝑝,𝑞 −→ [𝐸2𝑆
2𝑉 ]𝑝+𝑘,2𝑞, if 0 ≤ 𝑘.

Under the identification [𝐸2𝑉 ]𝑝,𝑞 = 𝜋𝑝h𝜋
𝑞
v(D𝑉 ), the operations Sq𝑘v,ext are obtained by ap-

plying 𝜋𝑝h to the linear maps of §6.2:

𝜋𝑞v(D𝑉 )
Sq𝑘ext−→ 𝜋𝑞+𝑘v (𝑆2D𝑉 ) −→ 𝜋𝑞+𝑘v (D𝑆2𝑉 ).

On the other hand, the operation Sq𝑘h,ext equals the composite:

𝜋𝑝h𝜋
𝑞
vD𝑉

Sq𝑘ext−→ 𝜋𝑝+𝑘h (𝑆2𝜋
*
vD𝑉 )2𝑞

𝜋𝑝+𝑘
h (𝜇ext)−→ 𝜋𝑝+𝑘h 𝜋2𝑞v 𝑆2D𝑉 −→ 𝜋𝑝+𝑘h 𝜋2𝑞v D𝑆2𝑉,

and the pairing 𝜇ext : 𝑆2([𝐸2𝑉 ]) −→ [𝐸2𝑆
2𝑉 ] equals:

𝑆2𝜋*h𝜋
*
vD𝑉

𝜇ext−→ 𝜋*h(𝑆2𝜋
*
vD𝑉 )

𝜋*
h(𝜇ext)−→ 𝜋*h𝜋

*
v𝑆2D𝑉 −→ 𝜋*h𝜋

*
vD𝑆

2𝑉.

These operations on 𝐸2 determine the operations at each 𝐸𝑟, 𝑟 > 2. The operations

Sq𝑘ext commute with differentials as appropriate. Finally, the Sq𝑘ext stabilize to well defined

maps on 𝐸∞, and there is a commuting diagram

[𝐸∞𝑉 ]𝑝,𝑞
Sq𝑘ext //

∼=��

[𝐸∞𝑆
2𝑉 ]𝑝,𝑞+𝑘

∼=��
[𝐸0𝐻

*(D(𝑇𝑉 ))]𝑝,𝑞
Sq𝑘ext // [𝐸0𝐻

*(D(𝑇𝑆2𝑉 ))]𝑝,𝑞+𝑘

whenever 0 ≤ 𝑘 ≤ 𝑞, and a commuting diagram

[𝐸∞𝑉 ]𝑝,𝑞
Sq𝑘ext //

∼=��

[𝐸∞𝑆
2𝑉 ]𝑝+𝑘−𝑞,2𝑞

∼=��
[𝐸0𝐻

*(D(𝑇𝑉 ))]𝑝,𝑞
Sq𝑘ext // [𝐸0𝐻

*(D(𝑇𝑆2𝑉 ))]𝑝+𝑘−𝑞,2𝑞

whenever 𝑞 ≤ 𝑘 (which summarizes also Singer’s computation of how the Sq𝑘ext interact with

the filtration on cohomology).
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13.2. Application to composite functor spectral sequences

In order to use Singer’s constructions in the present work, we will use the map of double

complexes:

𝜓G = 𝑗L(𝑛) ∘𝑄L(𝑛)𝜉G : 𝑁𝑝+1𝑁𝑞(𝑄
L(𝑛)𝐵G𝐿)𝑡+1

𝑠𝑛,...,𝑠1 −→ 𝑁𝑝𝑁𝑞(𝑆
2(𝑄L(𝑛)𝐵G𝐿))𝑡𝑠𝑛,...,𝑠1

to define a spectral sequence map

[𝐸2𝑆
2(𝑄L(𝑛)𝐵G𝐿)]𝑝,𝑞,𝑠𝑛,...,𝑠1𝑡

(𝜓G )*−→ [𝐸G
2 𝑋]𝑝+1,𝑞,𝑠𝑛,...,𝑠1

𝑡+1 .

We then define internal spectral sequence operations

Sq𝑘 = 𝜓*
G ∘ Sq𝑘−1

ext : [𝐸G
𝑟 𝑋]𝑝,𝑞,𝑠𝑛,...,𝑠1𝑡 −→ [𝐸G

𝑟 𝑋]𝑝+1,𝑞+𝑘−1,2𝑠𝑛,...,2𝑠1
2𝑡+1 (0 ≤ 𝑘 − 1 ≤ 𝑞),

Sq𝑘 = 𝜓*
G ∘ Sq𝑘−1

ext : [𝐸G
𝑟 𝑋]𝑝,𝑞,𝑠𝑛,...,𝑠1𝑡 −→ [𝐸G

𝑟+𝑘−𝑞−1𝑋]𝑝+𝑘−𝑞,2𝑞,2𝑠𝑛,...,2𝑠12𝑡+1 (𝑞 ≤ 𝑘 − 1 ≤ 𝑞 + 𝑟 − 2),

Sq𝑘 = 𝜓*
G ∘ Sq𝑘−1

ext : [𝐸G
𝑟 𝑋]𝑝,𝑞,𝑠𝑛,...,𝑠1𝑡 −→ [𝐸G

2𝑟−2𝑋]𝑝+𝑘−𝑞,2𝑞,2𝑠𝑛,...,2𝑠12𝑡+1 (𝑞 + 𝑟 − 2 ≤ 𝑘 − 1).

which at 𝐸2 we may write (dropping internal degrees) as:

Sq𝑘v = 𝜓*
G ∘ Sq𝑘−1

v,ext = 𝜓*
G ∘ Sq𝑘−1

ext : 𝐸𝑝,𝑞2 −→ 𝐸𝑝+1,𝑞+𝑘−1
2 if 0 ≤ 𝑘 − 1 ≤ 𝑞,

Sq𝑘h = 𝜓*
G ∘ Sq𝑘−1

h,ext = 𝜓*
G ∘ Sq

𝑞+𝑘−1
ext : 𝐸𝑝,𝑞2 −→ 𝐸𝑝+𝑘,2𝑞2 if 0 ≤ 𝑘 − 1 ≤ 𝑝.

Similarly, we define a pairing:

𝜇 = 𝜓*
G ∘ 𝜇ext : [𝐸G

𝑟 𝑋]𝑝,𝑞,𝑠𝑛,...,𝑠1𝑡 ⊗ [𝐸G
𝑟 𝑋]

𝑝′,𝑞′,𝑠′𝑛,...,𝑠
′
1

𝑡′ −→ [𝐸G
𝑟 𝑋]

𝑝+𝑝′+1,𝑞+𝑞′,𝑠𝑛+𝑠′𝑛,...,𝑠1+𝑠
′
1

𝑡+𝑡′+1

The reader might now guess the key results:

Theorem 13.1. At 𝐸2
∼= 𝐻*

W(𝑛+1)𝐻
U(𝑛)
* 𝑋, the operations Sq𝑘h and 𝜇 defined here are equal

to the Mh(𝑛+ 2)-operations of the same name defined on W(𝑛+ 1)-cohomology in §8.3.

Theorem 13.2. At 𝐸2
∼= 𝐻*

W(𝑛+1)𝐻
U(𝑛)
* 𝑋, the operations Sq𝑘v defined here are equal to the

Mv(𝑛+ 2)-operations of the same name defined on W(𝑛+ 1)-cohomology in §8.2.

Theorem 13.3. At 𝐸∞ ∼= [𝐸0𝐻
*
W(𝑛)𝑋], the operations Sq𝑘 are compatible with the Mh(𝑛+

1)-operations of the same name defined on W(𝑛)-cohomology in §8.3.
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13.3. Proofs of Theorems 13.1-13.3

Proof of Theorem 13.1. This proof relies on a commuting diagram, in which we employ the

notation 𝐿 = 𝑄U(𝑛)𝐵W(𝑛)𝑋 ∈ 𝑠L(𝑛), and abbreviate using L = L(𝑛) and W = W(𝑛+ 1).

(𝑁h
𝑝 𝜋

v
*𝑄

L𝐵G𝐿)⊗2 (𝑁h
𝑝𝑄

W𝜋v*𝐵
G𝐿)⊗2𝑁h

* (𝛾)
⊗2

oo

𝑁h
𝑝+𝑘−1((𝜋

v
*𝑄

L𝐵G𝐿)⊗2)

(𝐷𝑝−𝑘+1
h )⋆

OO

𝑁h
𝑝+𝑘−1((𝑄

W𝜋v*𝐵
G𝐿)⊗2)

(𝐷𝑝−𝑘+1
h )⋆

OO

𝑁h
* (𝛾

⊗2)oo

𝑁h
𝑝+𝑘−1𝜋

v
*((𝑄

L𝐵G𝐿)⊗2)

𝑁h
* (𝐷

0
v)

⋆
OO

𝑁h
𝑝+𝑘𝜋

v
*𝑄

L𝐵G𝐿

𝜋v
*(𝜓G )

OO

𝑁h
𝑝+𝑘𝑄

W𝜋v*𝐵
G𝐿

𝜓W

OO

𝑁h
* (𝛾)oo

All of the horizontal maps are the isomorphisms of Lemma 3.1. By [52, Theorem 2.23]

(summarized in §13.1), the left hand vertical composite is that used to define the horizontal

operations Sq𝑘h on 𝐸2. On the other hand, the right vertical was used in §8.3 to define the

Mh(𝑛 + 2)-operations on the W(𝑛 + 1)-cohomology groups with which the 𝐸2-page can be

identified. Thus, if the diagram commutes, we are done. If we replace the maps (𝐷𝑗
h)
⋆ in

the top square with (𝐷0
h)
⋆, the same proof applies for 𝜇.

What remains is to prove that the bottom square commutes. It may be expanded into

the eight maps in the outer square of the following larger commuting diagram:

𝜋v*((𝑄
LG 𝑝+𝑘𝐿)⊗2)

(𝐷0
v)

⋆
// (𝜋v*𝑄

LG 𝑝+𝑘𝐿)⊗2 (𝑄W𝜋v*G
𝑝+𝑘𝐿)⊗2

𝛾⊗2
oo

𝜋v*𝑄
L((G 𝑝+𝑘𝐿)Y2)

𝜋v
*(𝑗L)

OO

𝑄W𝜋v*((G
𝑝+𝑘𝐿)Y2)

𝛾oo 𝑄W((𝜋v*G
𝑝+𝑘𝐿)Y2)

𝑗W

OO

𝑄W(𝑖)oo

𝜋v*𝑄
LG 𝑝+𝑘+1𝐿

𝜋v
*𝑄

L(𝜉G )

OO

𝑄W𝜋v*G
𝑝+𝑘+1𝐿

𝛾oo

𝑄W𝜋v
*(𝜉G )

OO

𝑄W𝜋v*G
𝑝+𝑘+1𝐿

𝑄W(𝜉W)

OO

=oo

The bottom left square commutes by naturality of 𝛾, while the bottom right square is

an instance of Lemma 12.6. What remains is to check that the hexagon commutes. For

notational convenience, write 𝐴 = G 𝑝+𝑘𝐿 ∈ 𝑠L, br : 𝐴⊗2 −→ 𝐴Y2 for the L-bracket, and

br : (𝜋v*𝐴)⊗2 −→ (𝜋v*𝐴)
Y2 for the W-bracket on homotopy.

The source in the hexagon is then 𝑄W((𝜋v*𝐴)
Y2), the smash product being the coproduct

in W = 𝜋L of two copies of 𝜋v*𝐴. Any element of 𝑄W((𝜋v*𝐴)
Y2) can be represented by a

sum
∑︀

𝑘 br(𝑥𝑘 ⊗ 𝑦𝑘) + 𝐸, with the 𝑥𝑘 (resp. 𝑦𝑘) representatives of elements 𝑥𝑘 in the first

(resp. second) copy of 𝜋v*𝐴 and, 𝐸 a sum of at least three-fold brackets of elements in the

two copies. This extra term 𝐸 is annihilated by both 𝑗W and 𝜋v*(𝑗) ∘ 𝛾 ∘ 𝑄W(𝑖), so can be
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ignored. One calculates:

(𝛾⊗2 ∘ 𝑗W)(
∑︀

𝑘 br(𝑥𝑘 ⊗ 𝑦𝑘) + 𝐸) =
∑︀

𝑘 𝑥𝑘 ⊗ 𝑦𝑘.

On the other hand, the map 𝑄W(𝑖) is induced by the Eilenberg-Mac Lane map shuffle map

∇v as in Proposition 5.2, and

∑︀
𝑘 br(𝑥𝑘 ⊗ 𝑦𝑘)

𝛾∘𝑄W(𝑖)↦−→
∑︀

𝑘 br(∇v(𝑥𝑘 ⊗ 𝑦𝑘))
𝜋v
*(𝑗L)↦−→

∑︀
𝑘(∇v(𝑥𝑘 ⊗ 𝑦𝑘))

(𝐷0
v)

⋆

↦−→
∑︀

𝑘 𝑥𝑘 ⊗ 𝑦𝑘.

The last mapping follows from the fact that (𝐷0
v)
⋆ ∘ ∇v = id, as {𝐷𝑘} is special.

Proof of Theorem 13.2. We again employ the notation 𝐿 = 𝑄U(𝑛)𝐵W(𝑛)𝑋 ∈ 𝑠L(𝑛), and

abbreviate using L = L(𝑛) and W = W(𝑛+1). Further, write B for the object 𝐵W
𝑚𝜋

v
*𝐿 ∈ 𝑠W.

Write 𝑉𝑚 for the subspace (𝐹W)𝑚 ⊆ B of generators, and 𝑉 ′
𝑚 := 𝑉𝑚∩𝑁h

𝑚B. For each 𝑚 ≥ 0,

write 𝐹𝑚B for the 𝑚-skeleton of B (c.f. §2.6), which is almost free on subspaces 𝐹𝑚𝑉𝑚 ⊆ 𝑉𝑚.

We must identify the operations Sq𝑖v = 𝜓*
G ∘ Sq

𝑖−1
v,ext with the W-cohomology operations

Sq𝑖v defined in §8.2 using the maps 𝜃𝑖. However, the 𝜃𝑖 are defined on the bar construction,

while 𝜓*
G is defined on the Blanc-Stover resolution. In order to make the comparison, we

will need to choose a sufficiently explicit weak equivalence of resolutions of 𝜋v*𝐿 in 𝑠W

𝜒 : B −→ 𝜋v*(𝐵
G𝐿).

In order to define 𝜒, we recursively define its restriction to the skeleta 𝐹𝑚B. Lemma 2.3

implies that in order to extend a (horizontal simplicial) map 𝜒𝑚−1 : 𝐹𝑚−1B −→ 𝜋v*(𝐵
G𝐿)

to a map 𝜒𝑚 : 𝐹𝑚B −→ 𝜋v*(𝐵
G𝐿), we need only to specify the values of 𝜒𝑚 on 𝑉 ′

𝑚. That

is, we only need to choose a lift in the diagram

𝑉 ′
𝑚

𝜒𝑚 //

𝑑h0��

𝑁h
𝑚𝜋

v
*(𝐵

G𝐿)

𝑑h0��
𝑍𝑁h

𝑚−1B
𝜒𝑚−1 // 𝑍𝑁h

𝑚−1𝜋
v
*(𝐵

G𝐿)

However, in order to actually carry out this process, we will need to record some chain level

information, and we will construct maps into 𝑁v
*𝐵

G𝐿, rather than just 𝜋v*𝐵G𝐿.

It is best to view the domain and codomain of the proposed map 𝜒 as augmented

(horizontal) simplicial objects, and start by defining 𝜒−1 to be the identity of 𝜋v*𝐿. Then

for 𝑚 ≥ 0, we will recursively construct functions 𝜒𝑚 : 𝑉 ′
𝑚 −→ 𝑍𝑁v

*𝐵
G
𝑚𝐿, with the property

that im(𝜒𝑚) is contained in the span of the classes 𝑧𝑤 for 𝑤 ∈ 𝑍𝑁v
*𝐵

G
𝑚−1𝐿, so that there is
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a commuting diagram:

𝑉 ′
𝑚

𝜒𝑚 //

𝜒𝑚 ��

𝑍𝑁v
*𝐵

G
𝑚𝐿

����
𝑁h
𝑚𝜋

v
*𝐵

G𝐿 // // 𝜋v*𝐵
G
𝑚𝐿

In order to do this, one may choose a basis of 𝑉 ′
𝑚, and then for each basis element 𝑣 ∈ 𝑉 ′

𝑚,

choose a W-expression 𝑒 for 𝑑h0𝑣, so that

𝑑h0𝑣 = 𝑒(𝑠h𝛼𝑗
𝑤𝑗) ∈ 𝑍𝑁h

𝑚−1B is a W-expression in various 𝑠h𝛼𝑗
𝑤𝑗 ∈ 𝑉𝑚−1,

with 𝑤𝑗 ∈ 𝑉 ′
𝑛𝑗

for integers 𝑛𝑗 ≤ 𝑚− 1 and degeneracy operators 𝑠𝛼𝑗 : 𝑉
′
𝑛𝑗
−→ 𝑉𝑚−1. Then,

from the cycles 𝑠h𝛼𝑗
𝜒𝑛𝑗

(𝑤𝑗) ∈ 𝑍𝑁v
*𝐵

G
𝑚−1𝐿, form a cycle

𝑒rep(𝑠h𝛼𝑗
𝜒𝑛𝑗

(𝑤𝑗)) ∈ 𝑍𝑁v
* (𝐵

G
𝑚−1𝐿),

using the explicit formulae of [20, §8] (which is a normalized cycle, as these formulae preserve

the normalized subcomplex), so that

𝑒rep(𝑠h𝛼𝑗
𝜒𝑛𝑗

(𝑤𝑗)) = 𝑒
(︁
𝑠h𝛼𝑗

𝜒𝑛𝑗
(𝑤𝑗)

)︁
∈ 𝜋v*(𝐵G

𝑚−1𝐿)

= 𝑒
(︁
𝑠h𝛼𝑗

𝜒𝑛𝑗 (𝑤𝑗)
)︁

= 𝜒𝑚−1(𝑑
h
0𝑣) ∈ 𝑍𝑁h

𝑚−1𝜋
v
*(𝐵

G𝐿).

Our definition of 𝜒𝑚(𝑣) is

𝜒𝑚(𝑣) := 𝑧𝑒rep(𝑠h𝛼𝑗
𝜒𝑛𝑗

(𝑤𝑗)) ∈ 𝑍𝑁
v
*𝐵

G
𝑚𝐿.

To check that the class of 𝜒𝑚(𝑣) in 𝜋v*(𝐵
G
𝑚𝐿) is in fact in 𝑁h

𝑚𝜋
v
*(𝐵

G𝐿), for 1 ≤ 𝑖 ≤ 𝑚 (c.f.

[54, Lemma 2.7]):

𝑑h𝑖 𝜒𝑚(𝑣) = 𝑧𝑑h𝑖−1𝑒
rep(𝑠h𝛼𝑗

𝜒𝑛𝑗
(𝑤𝑗))

, and 𝑑h𝑖−1𝑒
rep(𝑠h𝛼𝑗

𝜒𝑛𝑗
(𝑤𝑗)) = 𝑑h𝑖−1𝜒𝑚−1(𝑑

h
0𝑣) = 0.

By construction of the comonad G , 𝑑h𝑖 𝜒𝑚(𝑣) must itself be null. Thus 𝜒𝑚 does induce a

map 𝜒𝑚 : 𝑉 ′
𝑚 −→ 𝑁h

𝑚𝜋
v
*(𝐵

G𝐿), completing the construction of 𝜒.

Recall that the operations of §8.2 are the maps induced on cohomology by the degree -1

endomorphism 𝜃𝑖 of the chain complex 𝑁h
* (𝑄

W𝐵W𝜋v*𝐿):

𝜃𝑖 : 𝑁h
𝑝+1(𝑄

W𝐵W𝜋v*𝐿)
2𝑡+1
𝑞+𝑖−1,2𝑠𝑛,...,2𝑠1

−→ 𝑁h
𝑝 (𝑄

W𝐵W𝜋v*𝐿)
𝑡
𝑞,𝑠𝑛,...,𝑠1 .

If we write 𝑉 = 𝑄L𝐵G𝐿 for the double complex yielding the spectral sequence, our goal is
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to identify these operations with the spectral sequence operations

𝜓*
G ∘ Sq𝑖−1

v,ext :
(︁
[𝐸2𝑉 ]𝑝,𝑞

Sq𝑖−1
v,ext−→ [𝐸2𝑆

2𝑉 ]𝑝,𝑞+𝑖−1 𝜓*
G−→ [𝐸2𝑉 ]𝑝+1,𝑞+𝑖−1

)︁
using the equivalence 𝑄W𝜒 in 𝑠V induced by 𝜒 and the isomorphism 𝛾:

𝑄W𝜒 :
(︁
𝑄W𝐵W𝜋v*𝐿

𝑄W𝜒−→ 𝑄W𝜋v*(𝐵
G )

𝛾−→ 𝜋v*(𝑉 )
)︁
.

The composite 𝜓*
G ∘Sq

𝑖−1
v,ext has been identified as the dual of the composite in the bottom

row of

𝑁h
𝑝+1(𝑄

W𝐵W𝜋v*𝐿)𝑞+𝑖−1
𝜃𝑖 //

𝑄W𝜒��

𝑁h
𝑝 (𝑄

W𝐵W𝜋v*𝐿)𝑞

𝑄W𝜒��
𝑁h
𝑝+1(𝜋

v
*𝑉 )𝑞+𝑖−1

𝜓G // 𝑁h
𝑝 (𝜋

v
*𝑆

2𝑉 )𝑞+𝑖−1

(Sq𝑖−1
v,ext)

⋆

// 𝑁h
𝑝 (𝜋

v
*𝑉 )𝑞

so that it is enough to prove that this diagram commutes for 1 ≤ 𝑖 ≤ 𝑞.

Given the equations in S6.3 defining the operations (Sq𝑖−1
v,ext)

⋆, it will suffice to show that

the composite

(𝑄W𝐵W
𝑝+1𝜋

v
*𝐿)𝑞+𝑖−1

𝑄W𝜒−→ (𝜋v*𝑄
L𝐵G

𝑝+1𝐿)𝑞+𝑖−1
𝜓G−→ (𝜋v*𝑆

2𝑄L𝐵G
𝑝 𝐿)𝑞+𝑖−1

equals the sum of the composite

(𝑄W𝐵W
𝑝+1𝜋

v
*𝐿)𝑞+𝑖−1

𝜓W−→ (𝑆2𝑄W𝐵W
𝑝 𝜋

v
*𝐿)𝑞+𝑖−1

𝑆2(𝑄W𝜒)−→ (𝑆2𝜋v*𝑄
L𝐵G

𝑝 𝐿)𝑞+𝑖−1
̃︀∇−→ (𝜋v*𝑆

2𝑄L𝐵G
𝑝 𝐿)𝑞+𝑖−1

and those composites, for 1 ≤ 𝑖 ≤ 𝑞,

(𝑄W𝐵W
𝑝+1𝜋

v
*𝐿)𝑞+𝑖−1

𝜃𝑖−→ (𝑄W𝐵W
𝑝 𝜋

v
*𝐿)𝑞

𝑄W𝜒−→ (𝜋v*𝑄
L𝐵G

𝑝 𝐿)𝑞
𝜎𝑖−1−→ (𝜋v*𝑆

2𝑄L𝐵G
𝑝 𝐿)𝑞+𝑖−1,

that are actually defined (these fail to be defined when 𝑖 = 1 in internal degrees satisfying

𝑠𝑛 = · · · = 𝑠1 = 0).‘non-zero when 𝑖 = 1’?

By Lemma 2.5, we may represent any homology class of interest by an element 𝐸 =∑︀
𝑘 𝑣𝑘, where the 𝑣𝑘 ∈ 𝑉 ′

𝑝+1 are elements of the basis chosen while defining 𝜒. We wrote

each 𝑣𝑘 as a W-expression 𝑒𝑘 in various 𝑢𝑘𝑗 ∈ 𝑉𝑝:

𝑣𝑘 := 𝑒𝑘(𝑢𝑘𝑗) ∈ (𝑉 ′
𝑝+1)𝑞+𝑖−1 ⊆ 𝐹W𝑉𝑝,
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so that 𝑑h0𝑣 = 𝑒𝑘(𝑢𝑘𝑗), and defined 𝜒(𝑣𝑘) by the formula

𝜒(𝑣𝑘) = 𝑧𝑒rep𝑘 𝜒(𝑢𝑘𝑗)
.

That each 𝜒(𝑢𝑘𝑗) is a sum of the classes 𝑧𝑎 implies that

𝜓G (𝜒(𝑣𝑘)) = quL(𝑒
rep
𝑘 )(𝜒(𝑢𝑘𝑗)).

Taking quL(𝑒
rep
𝑘 ) extracts the part of 𝑒rep𝑘 corresponding to the quadratic grading 2 part

of 𝑒𝑘, in q2𝐹
W. That is, we may write 𝑒𝑘 ∈ 𝐹W𝑉𝑝 as

𝑒𝑘 = quW(𝑒𝑘)(𝑢𝑘𝑗) +
∑︀

1≤𝑖≤𝑞 𝜆𝑖−1(𝜃
𝑖𝑒𝑘)(𝑢𝑘𝑗) + 𝑤 ∈ 𝐹W𝑉𝑝,

where 𝑤 ∈ 𝐹W𝑉𝑝 is the quadratic grading ̸= 2 part of 𝑒𝑘, if we view quW(𝑒𝑘) ∈ 𝑆2𝑉𝑝 as an

element of 𝐹W𝑉𝑝 via the inclusion 𝐹L(𝑛+1)𝑉𝑝 −→ 𝐹W(𝑛+1)𝑉𝑝, and then

𝜓G (𝜒(𝑣𝑘)) = quL

(︁̃︀∇(quW(𝑒𝑘))(𝜒(𝑢𝑘𝑗)) +
∑︁

𝜎𝑖−1(𝜃
𝑖𝑒𝑘)(𝜒(𝑢𝑘𝑗))

)︁
= ̃︀∇(quW(𝑒𝑘))(𝜒(𝑢𝑘𝑗)) +

∑︁
𝜎𝑖−1(𝜃

𝑖𝑒𝑘)(𝜒(𝑢𝑘𝑗))

=
(︁̃︀∇ ∘ 𝑆2(𝑄W𝜒) ∘ 𝜓W +

∑︁
𝜎𝑖−1 ∘𝑄W𝜒 ∘ 𝜃𝑖

)︁
(𝑣𝑘).

We were able to discard the application of quL as its argument already has quadratic grading

2. This formula is exactly what we needed to check in order to use the equations in S6.3.

Proof of Theorem 13.3. Write 𝐿 = 𝑄U(𝑛)𝐵W(𝑛)𝑋 ∈ 𝑠L(𝑛), L = L(𝑛) and W = W(𝑛) (not

W(𝑛+ 1)). We only need to show that the diagram of chain complexes

𝑇𝑚(𝑄
L𝐵G𝐿)

𝜓G //

𝜖𝑑h0 ��

𝑇𝑚−1(𝑆
2(𝑄L𝐵G𝐿))

𝜖𝑑h0 ��
𝑁𝑚(𝑄

L𝐿)
𝜓W // 𝑁𝑚−1(𝑆

2(𝑄L𝐿))

commutes up to homotopy (recall that 𝜓G reduces filtration by one). The augmentation

maps 𝑑h0 are induced by the augmentation of G :

𝜖 :
(︀
𝑁h

0𝑁
v
* (𝑄

L𝐵G𝐿) = 𝑁v
*𝑄

LG𝐿
𝜖−→ 𝑁v

*𝑄
L𝐿
)︀
.

We may understand 𝑁v
*𝑄

LG𝐿 using the pushout square of chain complexes (obtained by
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applying 𝑁v
* ∘𝑄L to that defining G ):

⨁︀
𝑦∈hg(𝑁≥1𝐿)

F2{𝑧𝑑𝑦} //

��

⨁︀
𝑥∈hg(𝑍𝑁*𝐿)

F2{𝑧𝑥}

��⨁︀
𝑦∈hg(𝑁≥1𝐿)

F2{ℎ𝑦, 𝑧𝑑𝑦} // 𝑁v
*𝑄

LG𝐿

which shows that 𝑁v
*𝑄

LG𝐿 is the following complex (with differential ℎ𝑦 ↦−→ 𝑧𝑑v0𝑦):

𝑁v
*𝑄

LG𝐿 =
⨁︀

𝑦∈hg(𝑁≥1𝐿)
F2{ℎ𝑦} ⊕

⨁︀
𝑥∈hg(𝑍𝑁*𝐿)

F2{𝑧𝑥}

We will use the notation

𝐿𝑡 := 𝑄U𝐵W
𝑡 𝑋

∼= 𝐹L
⟨−1⟩𝐹

W
⟨0⟩ · · ·𝐹

W
⟨𝑡−1⟩𝑋𝑡

so that we may write the basis elements of 𝑁𝑚𝑄
LG𝑄U𝐵W𝑋 in the form

𝑧𝑓⟨−1⟩(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

)) and ℎ𝑓⟨−1⟩(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

)),

where the ℎ𝑖1𝑖2 are various elements of 𝐹W
⟨1⟩ · · ·𝐹

W
⟨𝑚−1⟩𝑋𝑚, each 𝑔𝑖1 is a W-expression 𝑔𝑖1(ℎ𝑖1𝑖2)

in certain of the ℎ𝑖1𝑖2 , and finally, 𝑓 is some L-expression in the various 𝑔𝑖1 . For brevity we

will write 𝑘𝑓⟨−1⟩(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

)) for either of 𝑧𝑓⟨−1⟩(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

)) and ℎ𝑓⟨−1⟩(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

)).

A chain homotopy Φ : 𝑇𝑚(𝑄
L𝐵G𝐿) −→ 𝑁𝑚(𝑆

2(𝑄W𝐵W𝑋)) is constructed as follows.

Let Φ be zero except on 𝑁h
0𝑁

v
𝑚(𝑄

L𝐵G𝐿) = 𝑁v
𝑚𝑄

LG𝑄U𝐵W𝑋, where it is defined by

𝑘𝑓⟨−1⟩(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

)) ↦−→ quL(𝑓)(𝑔
⟨0⟩
𝑖1 (ℎ⟨1⟩𝑖1𝑖2)).

This definition makes sense (and yields a non-trivial map) because 𝑓 is an operator in

𝑄U𝐹W = 𝐹L. The chain map 𝑑Φ+ Φ𝑑 is a sum of three terms:

(a) 𝑑 ∘ Φ : 𝑁h
0𝑁

v
𝑚(𝑄

L𝐵G𝐿)
Φ−→ 𝑁𝑚(𝑆

2(𝑄L𝐿))
𝑑−→ 𝑁𝑚−1(𝑆

2(𝑄L𝐿))

(b) Φ ∘ 𝑑v : 𝑁h
0𝑁

v
𝑚(𝑄

L𝐵G𝐿)
𝑑v−→ 𝑁h

0𝑁
v
𝑚−1(𝑄

L𝐵G𝐿)
Φ−→ 𝑁𝑚−1(𝑆

2(𝑄L𝐿))

(c) Φ ∘ 𝑑h : 𝑁h
1𝑁

v
𝑚−1(𝑄

L𝐵G𝐿)
𝑑h−→ 𝑁h

0𝑁
v
𝑚−1(𝑄

L𝐵G𝐿)
Φ−→ 𝑁𝑚−1(𝑆

2(𝑄L𝐿))

We calculate

(𝑑 ∘ Φ)(𝑘𝑓(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

))) = 𝑑(quL(𝑓)(𝑔
⟨0⟩
𝑖1 (ℎ⟨1⟩𝑖1𝑖2)))

= quL(𝑓)(𝑔𝑖1(ℎ
⟨0⟩
𝑖1𝑖2))

= quL(𝑓)(𝜖(𝑔𝑖1)(ℎ
⟨0⟩
𝑖1𝑖2)),
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(the last equation holds as we calculate in 𝑆2(𝑄L𝐿)), and

(Φ ∘ 𝑑v)(𝑘𝑓(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

))) =

⎧⎨⎩Φ(𝑘𝑓(𝑔𝑖1 )(ℎ
⟨0⟩
𝑖1𝑖2

))), if ‘𝑘’ stands for ‘ℎ’,

Φ(0), if ‘𝑘’ stands for ‘𝑧’,

= quL(𝑓(𝑔𝑖1))(ℎ
⟨0⟩
𝑖1𝑖2) (in either case).

By the equation of §3.10, the sum of these two terms is quL(𝜖𝑓(𝑔𝑖1))(ℎ⟨0⟩𝑖1𝑖2), which is exactly

the formula for (𝜓W ∘ 𝜖)(𝑘𝑓(𝑔⟨0⟩𝑖1
(ℎ⟨1⟩𝑖1𝑖2

))).

It remains to show that Φ∘𝑑h coincides with 𝜖⊗2∘𝜓W. These two maps are only non-zero

on the graded part 𝑁h
1𝑁

v
𝑚−1(𝑄

L𝐵G𝐿) ⊆ 𝑄LG 2𝐿 of 𝑇𝑚(𝑄L𝐵G𝐿), and an element therein is

a linear combination

𝐾 :=
∑︀

𝑗 𝑘𝑒𝑗
(︀
𝑠𝛼𝑗𝑖0

𝑘
𝑓𝑗𝑖0

𝑔⟨0⟩
𝑗𝑖0𝑖1

ℎ⟨1⟩
𝑗𝑖0𝑖1𝑖2

)︀
which satisfies the equation 𝑑h1(𝐾) = 0, i.e.:

𝑑h1(𝐾) =
∑︀

𝑗 𝑘𝑒𝑗(𝑓𝑗𝑖0 )
(︁
𝑠𝛼𝑗𝑖0

𝑔⟨0⟩𝑗𝑖0𝑖1
ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁ = 0 in 𝑁𝑚−1𝑄
LG𝐿.

There is a map

𝑁𝑚−1𝑄
LG𝐿 ⊆ F2{hg(𝑁𝑚−1𝐿)} ⊕ F2{hg(𝑍𝑁𝑚−1𝐿)} −→ 𝑁𝑚−1𝑆

2𝑄L𝐿

defined on generators using the function

𝑁𝑚−1𝐿 ⊆ 𝐹L(𝐹W)𝑚−1𝑋
quL−→ 𝑆2(𝐹W)𝑚−1𝑋 ∼= 𝑆2𝑄L𝐿.

This map sends 𝑑h1(𝐾) = 0 to

∑︀
𝑗 quL(𝑒𝑗(𝑓𝑗𝑖0))

(︁
𝑠𝛼𝑗𝑖0

𝑔⟨0⟩𝑗𝑖0𝑖1
ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁
= 0,

which by the equation of §3.10, gives an equation in 𝑁𝑚−1𝑆
2𝑄L𝐿:

∑︀
𝑗 quL(𝑒𝑗(𝜖(𝑓𝑗𝑖0)))

(︁
𝑠𝛼𝑗𝑖0

𝑔⟨0⟩𝑗𝑖0𝑖1
ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁
=
∑︀

𝑗 quL(𝜖(𝑒𝑗)(𝑓𝑗𝑖0))
(︁
𝑠𝛼𝑗𝑖0

𝑔⟨0⟩𝑗𝑖0𝑖1
ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁
.

The proof is completed upon noting that the left hand side of this equation equals (𝜖⊗2 ∘
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𝜓G )(𝐾), while the right hand side equals (Φ ∘ 𝑑h)(𝐾). We calculate:

(𝜖⊗2 ∘ 𝜓G )(𝐾) = 𝜖⊗2
(︁∑︀

𝑗 quL(𝑒𝑗)
(︁
𝑠𝛼𝑗𝑖0

𝑘𝑓𝑗𝑖0𝑔
⟨0⟩
𝑗𝑖0𝑖1

ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁)︁
=
∑︀

𝑗 quL(𝑒𝑗)
(︁
𝑠𝛼𝑗𝑖0

𝜖(𝑓𝑗𝑖0)𝑔
⟨0⟩
𝑗𝑖0𝑖1

ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁
=
∑︀

𝑗 quL(𝑒𝑗(𝜖(𝑓𝑗𝑖0)))
(︁
𝑠𝛼𝑗𝑖0

𝑔⟨0⟩𝑗𝑖0𝑖1
ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁
= LHS,

and

𝑑h(𝐾) =
∑︀

𝑗 𝑒𝑗

(︁
𝑠𝛼𝑗𝑖0

𝑘𝑓𝑗𝑖0𝑔
⟨0⟩
𝑗𝑖0𝑖1

ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁
=
∑︀

𝑗 𝜖(𝑒𝑗)
(︁
𝑠𝛼𝑗𝑖0

𝑘𝑓𝑗𝑖0𝑔
⟨0⟩
𝑗𝑖0𝑖1

ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁
(in 𝑁v

𝑚−1𝑄
LG𝐿)

Φ(𝑑h(𝐾)) =
∑︀

𝑗 𝜖(𝑒𝑗)
(︁
quL(𝑓𝑗𝑖0)(𝑠𝛼𝑗𝑖0

𝑔⟨0⟩𝑗𝑖0𝑖1
ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2)

)︁
(relevant 𝑠𝛼𝑗𝑖0

are id)

=
∑︀

𝑗 quL(𝜖(𝑒𝑗)(𝑓𝑗𝑖0))
(︁
𝑠𝛼𝑗𝑖0

𝑔⟨0⟩𝑗𝑖0𝑖1
ℎ⟨1⟩𝑗𝑖0𝑖1𝑖2

)︁
= RHS.

To explain further the third equation, note that 𝑁v
𝑚−1𝑄

LG𝐿 is spanned by the classes 𝑘···,

and none of their degeneracies. Thus, all of the degeneracies 𝑠𝛼𝑗𝑖0
appearing in the second

line that have not already been annihilated during the application of 𝜖 must be the identity.

Thus, they can be carried harmlessly through to the end of the calculation, as shown.
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Chapter 14

Calculations of W(𝑛)-cohomology and

the BKSS 𝐸2-page

In this section, we will calculate the value of 𝐻*
W(𝑛)𝑋 for certain objects 𝑋 of W(𝑛) of finite

type. In each subsection, we will write 𝑉(𝑛) = D𝑋, so that 𝑋 has underlying vector space

dual to 𝑉(𝑛) ∈ V𝑛+. In fact, we will reinstate the upper asterisk for linear dualization, writing

D𝑉(𝑛) := 𝑉 *
(𝑛), and recursively define:

𝑉(𝑘+1) := 𝐻*
U(𝑘)𝑉

*
(𝑘) and 𝑉 *

(𝑘+1) := 𝐻
U(𝑘)
* 𝑉 *

(𝑘) for 𝑘 ≥ 𝑛.

In this way, for each 𝑘 ≥ 𝑛, 𝑉 *
(𝑘+1) is an object of W(𝑘+1), vector space dual to 𝑉(𝑘+1) ∈ V𝑘+1

+ ,

which itself has the structure of an object of Mv(𝑘+1). Having all of this data will allow us

to draw conclusions about 𝐻*
W(𝑛)𝑉

*
(𝑛), using, for each 𝑘 ≥ 𝑛, the (𝑘+1)st composite functor

spectral sequence:

[𝐸
(𝑘+1)
2 ]

𝑠𝑘+2,...,𝑠1
𝑡 := (𝐻*

W(𝑘+1)𝑉
*
(𝑘+1))

𝑠𝑘+2,...,𝑠1
𝑡 =⇒ (𝐻*

W(𝑘)𝑉
*
(𝑘))

𝑠𝑘+2+𝑠𝑘+1,𝑠𝑘,...,𝑠1
𝑡 .

The first CFSS, which calculates 𝐻*
W(0) from 𝐻*

W(1), will appear in §14.5.

14.1. When 𝑋 ∈W(𝑛) is one-dimensional and 𝑛 ≥ 1

Let 𝑋 = 𝑉 *
(𝑛) ∈W(𝑛) be a one dimensional object of W(𝑛), dual to a one-dimensional vector

space 𝑉(𝑛) ∈ V𝑛+, with non-zero element 𝑣 ∈ (𝑉(𝑛))
𝑆𝑛,...,𝑆1

𝑇 . Write 𝑣* ∈ 𝑋𝑇
𝑆𝑛,...,𝑆1

for the non-

zero element of 𝑋. As every W(𝑛)-operation changes degrees, 𝑋 is necessarily trivial. We

distinguish two cases: when 𝑣 is restrictable and when 𝑣 is not restrictable. Recall that 𝑣 is

said to be restrictable when 𝑣[2] is defined, i.e. when 𝑆𝑛, . . . , 𝑆1 are not all zero.
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Proposition 14.1. For each 𝑘 ≥ 𝑛,

𝑉(𝑘) = 𝐹Mv(𝑘)𝐹Mv(𝑘−1) · · ·𝐹Mv(𝑛+1)𝑉(𝑛),

and 𝑉 *
(𝑘) is a trivial object of W(𝑘).

Proof. The proof is by induction, with the case 𝑘 = 𝑛 simply our standing assumptions.

If the statement holds for 𝑉(𝑘), then Proposition 9.4 shows that the Koszul complex cal-

culating 𝑉(𝑘+1) has zero differentials, as 𝑉(𝑘) has trivial W(𝑘)-structure, so that 𝑉(𝑘+1) =

𝐹Mv(𝑘+1)𝑉(𝑘). This has trivial W(𝑘 + 1)-structure, by the results of §9.2.

Our next step is to calculate, for 𝑘 ≥ 𝑛, the groups:

[𝐸
(𝑘+1)
2 ]

𝑠𝑘+2,0,𝑠𝑘,...,𝑠1
𝑡 := (𝐻*

W(𝑘+1)𝑉
*
(𝑘+1))

𝑠𝑘+2,0,𝑠𝑘,...,𝑠1
𝑡

∼= (𝐻
𝑠𝑘+2

L(𝑘) 𝑉
*
(𝑘))

𝑠𝑘,...,𝑠1
𝑡 .

The isomorphism shown here follows from the observation that in dimension 𝑠𝑘+1 = 0, an

object of W(𝑘 + 1) is nothing more than an object of L(𝑘). More precisely, consider the

functor −0 : V+
𝑘+1 −→ V+

𝑘 given by

(𝑌0)
𝑡
𝑠𝑘,...,𝑠1

:= 𝑌 𝑡
0,𝑠𝑘,...,𝑠1

.

Then −0 induces a functor −0 : W(𝑘 + 1) −→ L(𝑘), such that, for all 𝑌 ∈W(𝑘 + 1):

(𝐹W(𝑘+1)(𝑌 ))0 ∼= 𝐹L(𝑘)(𝑌0) and (𝑄W(𝑘+1)𝑌 )0 ∼= 𝑄L(𝑘)(𝑌0),

so that (𝑄W(𝑘+1)𝐵W(𝑘+1)𝑌 )0 ∼= (𝑄L(𝑘)𝐵L(𝑘)𝑌0) for any 𝑌 ∈ 𝑠W(𝑘 + 1), and thus:

Proposition 14.2. Suppose that 𝑌 ∈ 𝑠W(𝑘 + 1), where 𝑘 ≥ 0. Then

(𝐻*
W(𝑘+1)𝑌 )

𝑠𝑘+2,0,𝑠𝑘,...,𝑠1
𝑡

∼= (𝐻
𝑠𝑘+2

L(𝑘) 𝑌0)
𝑠𝑘,...,𝑠1
𝑡 .

Returning to the calculation at hand, we may identify a part of the 𝐸2-page with the

Chevalley-Eilenberg-May complex of Appendix A.3:

Proposition 14.3. For each 𝑘 ≥ 𝑛, there is an isomorphism of commutative algebras:

[𝐸
(𝑘+1)
2 ]

𝑠𝑘+2,0,𝑠𝑘,...,𝑠1
𝑡

∼= (D�̄� ′(𝑉 *
(𝑘)))

𝑠𝑘+2,𝑠𝑘,...,𝑠1
𝑡 .

When 𝑣 ∈ 𝑉(𝑛) is restrictable, D�̄� ′(𝑉 *
(𝑘)) = 𝑆(C )[𝑉(𝑘)], the free non-unital commutative

algebra. When 𝑣 ∈ 𝑉(𝑛) is not restrictable, 𝑉(𝑘) = F2{𝑣} is one-dimensional, and D�̄� ′(𝑉 *
(𝑘))

is the one-dimensional exterior algebra Λ(C )[𝑣]. In either case, for each individual value of
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the grading 𝑡, the group ⨁︁
𝑠𝑘+2,𝑠𝑘,...,𝑠1

[𝐸
(𝑘+1)
2 ]

𝑠𝑘+2,0,𝑠𝑘,...,𝑠1
𝑡

is finite-dimensional.

Proof. The only further observation necessary to prove this isomorphism is that if 𝑣 ∈ 𝑉(𝑛) is

restrictable, every element of the trivial partially restricted Lie algebra 𝑉(𝑘) is in restrictable

degree, and that if 𝑣 ∈ 𝑉(𝑛) is not restrictable, each 𝑉(𝑘) is one-dimensional, concentrated

in non-restrictable degree. For the finiteness property, one simply notes that the 𝑉(𝑘) have

such a property, and that there is a degree shift in the algebra structure.

Consider the diagram:

𝐻*
W(𝑛+1)𝐻

U(𝑛)
* 𝑉 *

(𝑛)

𝑔𝑛+1
ow

𝐻*
W(𝑛+2)𝐻

U(𝑛+1)
* 𝑉 *

(𝑛+1)

𝑔𝑛+2
nv

𝐻*
W(𝑛)𝑉

*
(𝑛) 𝐻*

W(𝑛+1)𝑉
*
(𝑛+1) 𝐻*

W(𝑛+2)𝑉
*
(𝑛+2)

· · ·
𝐹Mhv(𝑛+1)𝑉(𝑛)

𝜌𝑛
OO

𝐹Mhv(𝑛+2)𝑉(𝑛+1)

𝜌𝑛+1

OO

𝑓𝑛+1
ow

𝐹Mhv(𝑛+3)𝑉(𝑛+2)

𝜌𝑛+2

OO

𝑓𝑛+2
nv

𝐹Mh(𝑛+1)𝑉(𝑛+1) 𝐹Mh(𝑛+2)𝑉(𝑛+2) 𝐹Mh(𝑛+3)𝑉(𝑛+3)

For each 𝑘 ≥ 𝑛, the map 𝜌𝑘 is induced by the inclusion 𝑉(𝑘) ∼= 𝐻0
W(𝑘)𝑉

*
(𝑘) ⊆ 𝐻

*
W(𝑘)𝑉

*
(𝑘) (which

exists as 𝑉(𝑘) is trivial) and the 𝐹Mhv(𝑘+1)-operations defined on 𝐻*
W(𝑘)𝑉(𝑘). (Note that 𝜌𝑘

is a graded map, since the effect of these operations on dimensions is the same in its domain

and codomain.)

The double arrow 𝑔𝑘+1, representing the convergence of the (𝑘+1)st CFSS [𝐸
(𝑘+1)
2 ] =⇒

𝐻*
W(𝑘)𝑉

*
(𝑘), is in truth shorthand for the function

[𝐸(𝑘+1)
∞ ]

𝑠𝑘+2,...,𝑠1
𝑡 −→ [𝐸0𝐻

*
W(𝑘)𝑉

*
(𝑘)]

𝑠𝑘+2,...,𝑠1
𝑡

so that 𝑔𝑘+1 may only be defined on the permanent cycles within [𝐸
(𝑘+1)
2 ], and lands in the

associated graded of 𝐻*
W(𝑘)𝑉

*
(𝑘).

Similarly, we employ the double arrow 𝑓𝑘+1 as shorthand for the function of Theorem

8.15, which is defined on the entirety of 𝐹Mh(𝑘+2)𝐹Mv(𝑘+2)𝑉(𝑘+1), but whose true codomain

is the graded object 𝐸0(𝐹
Mh(𝑘+1)𝑉(𝑘+1)) associated with the target filtration defined in

Theorem 8.15.

Theorem 14.4. For each 𝑘 ≥ 𝑛, im(𝜌𝑘+1) consists of permanent cycles and 𝜌𝑘 preserves the

target filtrations, so that it is possible to form the composites 𝑔𝑘+1 ∘ 𝜌𝑘+1 and 𝐸0(𝜌𝑘) ∘ 𝑓𝑘+1.

These composites are equal, and moreover, 𝜌𝑘 is an isomorphism. In particular, for 𝑘 ≥ 𝑛,

the (𝑘 + 1)st CFSS collapses at 𝐸2.
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Before giving the proof, we remark that in some dimensions, 𝜌𝑘 is already known to be

an isomorphism:

Proposition 14.5. For 𝑘 ≥ 𝑛, 𝜌𝑘 is an isomorphism in dimension 𝑠𝑘 = 0:

𝜌𝑘 : (𝐹
Mh(𝑘+1)𝐹Mv(𝑘+1)𝑉(𝑘))

𝑠𝑘+1,0,𝑠𝑘−1,...,𝑠1
𝑡

∼=−→ (𝐻*
W(𝑘)𝑉

*
(𝑘))

𝑠𝑘+1,0,𝑠𝑘−1,...,𝑠1
𝑡 .

Proof. In this dimension, 𝜌𝑘 factors as

(𝐹Mh(𝑘+1)𝐹Mv(𝑘+1)𝑉(𝑘))
𝑠𝑘+1,0,𝑠𝑘−1,...,𝑠1
𝑡 = (𝐹Mh(𝑘+1)𝐹Mv(𝑘+1)𝑉 0

(𝑘))
𝑠𝑘+1,0,𝑠𝑘−1,...,𝑠1
𝑡

= (𝐹Mh(𝑘+1)𝑉 0
(𝑘))

𝑠𝑘+1,0,𝑠𝑘−1,...,𝑠1
𝑡

∼= (D�̄� ′((𝑉 *
(𝑘))0))

𝑠𝑘+1,0,𝑠𝑘−1,...,𝑠1
𝑡

∼= (𝐻*
W(𝑘)𝑉

*
(𝑘))

𝑠𝑘+1,0,𝑠𝑘−1,...,𝑠1
𝑡

Here, we are viewing 𝑉 0
(𝑘), the subspace of 𝑉(𝑘) in degree 𝑠𝑘 = 0, as an object of V𝑘+1

+

in order to apply 𝐹Mv(𝑘+1). The inclusion 𝐹Mh(𝑘+1)𝐹Mv(𝑘+1)𝑉 0
(𝑘) ⊆ 𝐹Mh(𝑘+1)𝐹Mv(𝑘+1)𝑉(𝑘)

restricts to the identity in degree 𝑠𝑘 = 0, explaining the first equation. The second equation

is similar: any non-trivial Mv(𝑘 + 1)-operation lands outside degree 𝑠𝑘 = 0. The first

isomorphism follows from Corollary 8.11, which ensures that 𝐹Mh(𝑘+1)𝑉 0
(𝑘) is a quotient of

the polynomial algebra on 𝑉 0
(𝑘), and indeed, the same quotient as D�̄� ′(D(𝑉 0

(𝑘))). The second

isomorphism is Proposition 14.3, since (𝑉 *
(𝑘))0 = 𝑉 *

(𝑘−1).

Proof of Theorem 14.4. For each 𝑘 ≥ 𝑛, we will use the diagram

𝐻*
W(𝑘)𝑉

*
(𝑘)

edge composite
,,

𝐻*
W(𝑘+1)𝐻

U(𝑘)
* 𝑉 *

(𝑘)𝑔𝑘+1

ks 𝐻*
U(𝑘)𝑉

*
(𝑘)𝑖1

oo 𝑉(𝑘)𝑖2oo

𝑗2ww

𝑖0
rr

𝐹Mh(𝑘+1)𝐹Mv(𝑘+1)𝑉(𝑘)

𝜌𝑘
OO

𝑊 (𝐹Mv(𝑘+1)𝑉(𝑘))

OO

𝑓𝑘+1oooo

𝜌𝑘+1

OO

𝐹Mv(𝑘+1)𝑉(𝑘)
𝑗1oo

where 𝑊 (𝐹Mv(𝑘+1)𝑉(𝑘)) is the object introduced in the proof of Theorem 8.15, so that there

is a quotient map

𝑊 (𝐹Mv(𝑘+1)𝑉(𝑘))−→−→ 𝐹Mh(𝑘+2)𝐹Mv(𝑘+2)𝐹Mv(𝑘+1)𝑉(𝑘).

Here, the maps 𝑗1, 𝑗2 are the evident inclusions of generators, while the maps 𝑖0, 𝑖1, 𝑖2 are

the inclusions arising because 𝑉(𝑘) is trivial.

We may define

𝑐 := (𝜌𝑘 ∘ 𝑓𝑘+1 ∘ 𝑗1) : 𝐹Mv(𝑘+1)𝑉(𝑘) −→ 𝐻*
W(𝑘)𝑉

*
(𝑘),
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without the need to pass to any associated graded objects. By construction of 𝑓𝑘+1, 𝑐 is

induced by the inclusion 𝑖0 and the Mv(𝑘 + 1)-structure of 𝐻*
W(𝑘)𝑉

*
(𝑘).

The edge composite is the composite of a surjection, a monomorphism 𝑚1, and an

isomorphism 𝑚2 (with inverse 𝑖1):

𝐻*
W(𝑘)𝑉

*
(𝑘)−→−→ [𝐸0𝐻

*
W(𝑘)𝑉

*
(𝑘)]

0 ∼= [𝐸(𝑘+1)
∞ ]0

𝑚1−→ [𝐸
(𝑘+1)
2 ]0

𝑚2−→ 𝐻*
U(𝑘)𝑉

*
(𝑘).

Moreover, 𝑐 is a section of the edge composite, since both maps are compatible with Mv(𝑘+

1)-structures (Proposition 12.9), and their composite is the identity on 𝑉(𝑘) ⊆ 𝐹Mv(𝑘+1)𝑉(𝑘).

In particular, the edge composite is a surjection, so that 𝑚1 is an isomorphism. That is,

every class in im(𝑖1) is a permanent cycle. Singer’s work (c.f. §13.1) then shows that im(𝜌𝑘+1)

consists of permanent cycles, as permanent cycles are preserved by the 𝐹Mhv(𝑘+2)-operations

on [𝐸
(𝑘+1)
2 ].

Any section of 𝐻*
W(𝑘)𝑉

*
(𝑘)−→−→ [𝐸

(𝑘+1)
∞ ]0 ∼= [𝐸

(𝑘+1)
2 ]0 will realize, up to filtration, the

restriction of 𝑔𝑘+1 to [𝐸
(𝑘+1)
∞ ]0 ⊂ [𝐸

(𝑘+1)
∞ ], so we choose

𝐸0,*
2,(𝑘+1)

𝑚2−→ 𝐻*
U(𝑘)𝑉

*
(𝑘)
∼= 𝐹Mv(𝑘+1)𝑉(𝑘)

𝑐−→ 𝐻*
W(𝑘)𝑉

*
(𝑘).

In particular, 𝑔𝑘+1 ∘ 𝜌𝑘+1 ∘ 𝑗1 = 𝑔𝑘+1 ∘ 𝑖1 = 𝑐 ∘𝑚2 ∘ 𝑖1 = 𝑐, up to filtration. More precisely,

𝑔𝑘+1 ∘ 𝜌𝑘+1 ∘ 𝑗1 equals the composite

𝐹Mv(𝑘+1)𝑉(𝑘)
𝑐−→ 𝐻*

W(𝑘)𝑉
*
(𝑘)−→−→ [𝐸0𝐻

*
W(𝑘)𝑉

*
(𝑘)]

0.

Now the target filtrations on the domain and codomain of 𝜌𝑘 are induced by the filtrations on

the domain and codomain of 𝜌𝑘+1 by cohomological dimension 𝑠𝑘+2, and 𝜌𝑘+1 is a graded

map. Thus, for any 𝑤 ∈ 𝐹 𝑝𝑊 (𝐹Mv(𝑘+1)𝑉(𝑘)), we must see that 𝜌𝑘(𝑓𝑘+1(𝑤)) coincides

with 𝑔𝑘+1(𝜌𝑘+1(𝑤)) modulo 𝐹 𝑝+1𝐻*
W(𝑘)𝑉

*
(𝑘), as this will prove both that 𝜌𝑘 preserves target

filtrations and that 𝑔𝑘+1 ∘ 𝜌𝑘+1 = 𝐸0(𝜌𝑘) ∘ 𝑓𝑘+1. However, this coincidence follows from the

fact that 𝑐 = 𝑔𝑘+1 ∘ 𝜌𝑘+1 ∘ 𝑗1, as 𝑊 (𝐹Mv(𝑘+1)𝑉(𝑘)) is generated by im(𝑗1) under 𝐹Mhv(𝑘+2)-

operations, and the definition of 𝑓𝑘+1 is modelled on the interaction of 𝑔𝑘+1 with these

operations, as studied by Singer (c.f. §13.1).

What remains is to show that the maps 𝜌𝑘 are isomorphisms. Suppose that

𝑥(𝑘) ∈ [𝐸
(𝑘)
2 ]

𝑠𝑘𝑘+1,...,𝑠
𝑘
1

𝑡 = (𝐻*
W(𝑘)𝑉

*
(𝑘))

𝑠𝑘𝑘+1,...,𝑠
𝑘
1

𝑡 .

Now 𝑥(𝑘) is detected by some permanent cycle 𝑥(𝑘+1) ∈ [𝐸
(𝑘+1)
2 ], which is detected by some
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permanent cycle 𝑥(𝑘+2) ∈ [𝐸
(𝑘+2)
2 ], and so on, giving a sequence of elements

𝑥(𝑟) ∈ [𝐸
(𝑟)
2 ]

𝑠𝑟𝑟+1,...,𝑠
𝑟
1

𝑡 = (𝐻*
W(𝑟)𝑉

*
(𝑟))

𝑠𝑟𝑟+1,...,𝑠
𝑟
1

𝑡 for 𝑟 ≥ 𝑘,

where 𝑠𝑟𝑟+1 + 𝑠𝑟𝑟 = 𝑠𝑟−1
𝑟 and 𝑠𝑟𝑖 = 𝑠𝑟−1

𝑖 for 1 ≤ 𝑖 ≤ 𝑟 − 1 and 𝑟 > 𝑘.

We will say that 𝑥(𝑘) has iterated filtration at least (𝑠𝑘+1
𝑘+2, 𝑠

𝑘+2
𝑘+3, 𝑠

𝑘+3
𝑘+4, . . .) whenever a se-

quence of such classes 𝑥(𝑟) exists, and partially order the set of possible iterated filtrations

lexicographically. Then 𝑥(𝑟) only determines 𝑥(𝑘) modulo elements of 𝐸2,(𝑘) of higher iterated

filtration.

Simply because these gradings are always non-negative, it is inevitable that 𝑠𝑟𝑟 = 0 for

some 𝑟 ≥ 𝑘, so that by Proposition 14.5, 𝑥(𝑟) = 𝜌𝑟𝑦(𝑟) for some 𝑦(𝑟) ∈ 𝐹Mh(𝑟+1)𝐹Mv(𝑟+1)𝑉(𝑟).

Moreover, one only needs to examine finitely many sequences of gradings, each of the form

(𝑠𝑟𝑟+1, 0, 𝑠
𝑟
𝑟−1, . . . , 𝑠

𝑟
𝑘+1, 𝑠

𝑘
𝑘, . . . , 𝑠

𝑘
1) where 𝑠𝑘𝑘+1 = 𝑠𝑟𝑟+1 + 𝑠𝑟𝑟−1 + 𝑠𝑟𝑟−2 + · · ·+ 𝑠𝑟𝑘+1.

This, along with Proposition 14.3, shows that (𝐻*
W(𝑘)𝑉

*
(𝑘))

𝑠𝑘𝑘+1,...,𝑠
𝑘
1

𝑡 is finite dimensional for

each given value of 𝑡.

By the commutativity established above, 𝑥(𝑘) ≡ 𝜌𝑘𝑓𝑘+1 · · · 𝑓𝑟−1𝑓𝑟(𝑦(𝑟)), modulo higher

iterated filtration. As this congruence holds in a group which is finite dimensional for each

given 𝑡, this establishes the surjectivity of 𝜌𝑘, and that every one of the spectral sequences

is degenerate. Thus, we have shown that all of the maps 𝑔𝑘 are in fact isomorphisms, or

rather that in the following commuting square, for any 𝑘 ≥ 𝑛, 𝑔𝑘+1 is an isomorphism:

[𝐸0𝐻
*
W(𝑘)𝑉

*
(𝑘)] 𝐻*

W(𝑘+1)𝐻
U(𝑘)
* 𝑉 *

(𝑘)∼=

𝑔𝑘+1oo

[𝐸0𝐹
Mh(𝑘+1)𝑉(𝑘+1)]

𝐸0(𝜌𝑘)
OOOO

𝐹Mh(𝑘+2)𝐹Mv(𝑘+2)𝐹Mv(𝑘+1)𝑉(𝑘)∼=

𝑓𝑘+1oo

𝜌𝑘+1
OOOO

For each 𝑘, 𝜌𝑘 is injective if and only if 𝐸0(𝜌𝑘) is injective. This holds by repeated application

of the snake lemma, using the fact that 𝜌𝑘 is surjective, and the observation that for any

given value of the grading 𝑡, the group (𝐹Mh(𝑘+1)𝑉(𝑘+1))𝑡 is finite dimensional, so that the

filtrations of both the domain and codomain of 𝜌𝑘 are eventually zero in each degree 𝑡. More

specifically,

𝜌𝑘 : (𝐹
Mh(𝑘+1)𝑉(𝑘+1))

𝑠𝑘+1,...,𝑠1
𝑡 −→ (𝐻*

W(𝑘)𝑉
*
(𝑘))

𝑠𝑘+1,...,𝑠1
𝑡

is injective if and only if

𝐸0(𝜌𝑘) : [𝐸0𝐹
Mh(𝑘+1)𝑉(𝑘+1)]

𝑠′𝑘+2,𝑠
′
𝑘+1,𝑠𝑘,...,𝑠1

𝑡 −→ [𝐸0𝐻
*
W(𝑘)𝑉

*
(𝑘)]

𝑠′𝑘+2,𝑠
′
𝑘+1,𝑠𝑘,...,𝑠1

𝑡

is injective whenever 𝑠′𝑘+2 + 𝑠′𝑘+1 = 𝑠𝑘+1. As in the argument for surjectivity, in order to
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check that all the 𝜌𝑘 are injective, we now only need to check that every map

(𝐹Mh(𝑟+1)𝐹Mv(𝑟+1)𝑉(𝑟))
𝑠𝑟𝑟+1,0,𝑠

𝑟
𝑟−1,...,𝑠

𝑟
1

𝑡
𝜌𝑟−→ (𝐻*

W(𝑟)𝑉
*
(𝑟))

𝑠𝑟𝑟+1,0,𝑠
𝑟
𝑟−1,...,𝑠

𝑟
1

𝑡

is injective, which is part of Proposition 14.5.

14.2. A Künneth Theorem for W(𝑛)-cohomology

This is an opportune moment to prove:

Theorem 14.6. Suppose that 𝑋,𝑌 ∈W(𝑛) are of finite type, with 𝑛 ≥ 0. Then

𝐻*
W(𝑛)(𝑋 × 𝑌 ) ∼= 𝐻*

W(𝑛)(𝑋) ⊔𝐻*
W(𝑛)(𝑌 ),

where the coproduct is of non-unital commutative algebras.

Proof. This follows from the Künneth Theorem (6.15) adapted to 𝑠L(𝑘), and the observation

that 𝐻U(𝑘)
* (𝑍 × 𝑍 ′) ∼= 𝐻

U(𝑘)
* 𝑍 × 𝐻

U(𝑘)
* 𝑍 ′, using the techniques of the proof of Theorem

14.4.

Theorems 14.4 and 14.6 together imply:

Corollary 14.7. For 𝑛 ≥ 1, the category Mhv(𝑛+ 1) is the category 𝐻W(𝑛) of W(𝑛)-𝐻*-

algebras.

14.3. A two-dimensional example in W(2)

In this section, we suppose that 𝑇 ≥ 1, and let 𝑋 = 𝑉 *
(2) ∈ W(2) be the two-dimensional

object of W(2) spanned by non-zero classes

𝑣*0 ∈ (𝑉 *
(2))

𝑇
0,1 and 𝑣*1 ∈ (𝑉 *

(2))
2𝑇+1
0,2

such that 𝑣*1 = 𝑣*0𝜆0 = (𝑣*0)
[2], and with all other operations trivial.

Proposition 14.8. For all 𝑘 ≥ 2, 𝑉 *
(𝑘) is two-dimensional, spanned by

𝑣*0 ∈ (𝑉 *
(𝑘))

𝑇
0,...,0,1 and 𝑣*1 ∈ (𝑉 *

(𝑘))
2𝑇+1
0,...,0,2,

with 𝑣*1 = (𝑣*0)
[2] the only non-trivial operation.

Proof. An induction as in the proof of Proposition 14.1, using the fact that at each stage,

the only non-trivial 𝜆-operation is a top operation, and thus does not yield a differential in
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𝐾
U(𝑘)
* 𝑉(𝑘). One also uses Propositions 9.9, 9.11 and 9.12 to calculate the W(𝑘+1)-structure

of 𝑉(𝑘+1) at each stage.

Proposition 14.9. For each 𝑘 ≥ 2,

(𝐻*
W(𝑘+1)𝑉

*
(𝑘+1))

𝑠𝑘+2,0,𝑠𝑘,...,𝑠1
𝑡

∼= (𝐻
𝑠𝑘+2

L(𝑘) 𝑉
*
(𝑘))

𝑠𝑘,...,𝑠1
𝑡

∼= (𝑆(C )[𝑣21] ⊔ Λ(C )[𝑣0])
𝑠𝑘+2,𝑠𝑘,...,𝑠1
𝑡 .

These groups are zero unless 𝑠𝑘 = · · · = 𝑠2 = 0.

Proof. One performs this calculation in the Chevalley-Eilenberg-May complex D�̄� ′(𝑉 *
(𝑘)),

which by Proposition A.9 is the differential graded algebra F2[𝑣0, 𝑣1] with differential

𝑑(𝑣0) = ([2]
√
𝑣0)

2 = 0, 𝑑(𝑣1) = ([2]
√
𝑣1)

2 = 𝑣20.

By a greatly simplified version of the proof of Theorem 14.4:

Corollary 14.10. For each 𝑘 ≥ 2, (𝐸2,(𝑘+1))
𝑠𝑘+2,𝑠𝑘+1,...,𝑠1
𝑡 is zero unless 𝑠𝑘+1 = · · · 𝑠2 = 0,

so that the spectral sequence 𝐸2,(𝑘+1) =⇒ 𝐻*
W(𝑘)𝑉

*
(𝑘) collapses, and in particular,

𝐻*
W(2)𝑉

*
(2)
∼= 𝑆(C )[𝑣21] ⊔ Λ(C )[𝑣0].

14.4. An infinite-dimensional example in W(1)

In this section, we suppose that 𝑆, 𝑇 ≥ 1, and let 𝑋 = 𝑉 *
(1) ∈ W(1) be the infinite dimen-

sional object of W(1) spanned by non-zero classes

𝑣*𝑗 ∈ (𝑉 *
(1))

2𝑗(𝑇+1)−1
𝑆+𝑗 for 𝑗 ≥ 0,

such that 𝑣*𝑗+1 = 𝑣*𝑗𝜆1 for 𝑗 ≥ 0, and all other operations are trivial.

Proposition 14.11. The Koszul complex 𝐾U(1)
* 𝑉 *

(1) has basis

{︀
Sq𝐽⋆v (𝑣*𝑗 )

⃒⃒
𝑗 ≥ 0, 𝐽 is Sq-admissible, 𝑚(𝐽) ≤ 𝑆 + 𝑗 and 1 /∈ 𝐽

}︀
and all differentials zero except for:

Sq(𝑖ℓ,...,𝑖2,2)⋆v (𝑣*𝑗 ) ↦−→ Sq(𝑖ℓ,...,𝑖2)⋆v (𝑣*𝑗+1).

Proof. The basis given for the Koszul complex is just a reading of Proposition 9.4, but we
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must think a little about the differentials. As 𝜆1 is the only non-zero operation:

𝑑(Sq𝐽⋆v (𝑣*𝑗 )) =
∑︁

(𝑘ℓ,...,𝑘2,2)
Sq→𝐽

(𝑘ℓ,...,𝑘2) Sq-admis.

Sq(𝑘ℓ,...,𝑘2)⋆v (𝑣*𝑗+1).

Consider a sequence (𝑘ℓ, . . . , 𝑘2, 2) corresponding to a summand of this formula. Supposing

that ℓ ≥ 2 and Sq𝑘2v Sq2v is not Sq-admissible, it follows that 𝑘2 is either 3 or 2, so that Sq𝑘2v Sq2v

is either zero or Sq3vSq
1
v. As 𝐽 does not contain 1, and the two-sided ideal in A generated

by Sq1h is spanned by those admissible sequences ending in Sq1h, it cannot happen that

(𝑘ℓ, . . . , 𝑘2, 2)
Sq→ 𝐽 . Thus, the only summand appearing is that in which (𝑘ℓ, . . . , 𝑘2, 2) = 𝐽 ,

confirming our description of the differential.

Proposition 14.12. When 𝑆 ≥ 2, 𝑉 *
(2) := 𝐻

U(1)
* 𝑉 *

(1) is the subquotient

F2

{︁
Sq𝐽⋆v (𝑣*𝑗 )

⃒⃒⃒
𝑗 ≥ 0, 𝐽 is Sq-admissible, 𝑚(𝐽) ≤ 𝑆 + 𝑗 and 1, 2 /∈ 𝐽

}︁
F2

{︁
Sq𝐽⋆v (𝑣*𝑗 )

⃒⃒⃒
𝑗 ≥ 1, 𝐽 is Sq-admissible, 𝑚(𝐽) ≤ 𝑆 + 𝑗 and 1, 2, 3 /∈ 𝐽

}︁
of 𝐾U(1)

* 𝑉 *
(1). Equivalently, 𝑉(2) is the subquotient of 𝐹Mv(2)𝑉(1) in which we restrict to the

sub-Mv(2)-object generated by the elements

{𝑣0, Sq2v𝑣1, Sq3v𝑣1, Sq2v𝑣2, Sq3v𝑣2, Sq2v𝑣3, Sq3v𝑣3, . . .}

and in which we set Sq2v𝑣𝑗 to zero for all 𝑗 ≥ 0. As an object of W(2), 𝑉 *
(2) is trivial.

Proposition 14.13. When 𝑆 = 1, 𝑉 *
(2) := 𝐻

U(1)
* 𝑉 *

(1) is the subquotient

F2

{︁
Sq𝐽⋆v (𝑣*𝑗 )

⃒⃒⃒
𝑗 ≥ 0, 𝐽 is Sq-admissible, 𝑚(𝐽) ≤ 𝑆 + 𝑗 and 1, 2 /∈ 𝐽

}︁
F2

{︁
Sq𝐽⋆v (𝑣*𝑗 )

⃒⃒⃒
𝑗 ≥ 2, 𝐽 is Sq-admissible, 𝑚(𝐽) ≤ 𝑆 + 𝑗 and 1, 2, 3 /∈ 𝐽

}︁
of 𝐾U(1)

* 𝑉 *
(1). Equivalently, 𝑉(2) is the subquotient of 𝐹Mv(2)𝑉(1) in which we restrict to the

sub-Mv(2)-object generated by the elements

{𝑣0, 𝑣1,Sq2v𝑣2,Sq3v𝑣2,Sq2v𝑣3,Sq3v𝑣3, . . .}

and in which we set Sq2v𝑣𝑗 to zero for all 𝑗 ≥ 1. As an object of W(2), 𝑉 *
(2) admits a single

non-zero operation, 𝜆0 : 𝑣*0 ↦−→ 𝑣*1, and so decomposes as the direct sum of F2{𝑣*0, 𝑣*1} with a

trivial object D(𝑉 ′
(2)), dual to 𝑉 ′

(2), the subquotient of 𝐹Mv(2)𝑉(1) in which we restrict to the

sub-Mv(2)-object generated by {Sq2v𝑣2, Sq3v𝑣2, Sq2v𝑣3, Sq3v𝑣3, . . .} and set Sq2v𝑣𝑗 to zero for all

𝑗 ≥ 2.
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Proof of Propositions 14.12 and 14.13. For any 𝑆 ≥ 1, taking the homology of this differen-

tial provides the formula for 𝑉 *
(2), and dualizing provides that for 𝑉(2). In order to determine

𝑉 *
(2) as an object of W(2), note first that 9.9 and 9.11 show that all operations are zero except

perhaps for 𝜆0. Consider the operation 𝜆0 applied to a cycle of the form Sq𝐽⋆v (𝑣*𝑗 ) ∈ 𝐾
U(1)
* 𝑉 *

(1)

with 𝐽 ̸= ∅ (so that 1, 2 /∈ 𝐽). As 𝐽 ends in an integer no less than 3, and as 𝜆1 is the only

non-zero operation in 𝑉 *
(1), the second part of Proposition 9.12 implies that Sq𝐽⋆v (𝑣*𝑗 )𝜆0 = 0.

In the case 𝐽 = ∅, Proposition 9.12 states that (Sq∅⋆v (𝑣*𝑗 ))𝜆0 ∈ 𝑉 *
(2) is represented by

(Sq∅⋆v (𝑣*𝑗𝜆𝑆+𝑗)), which is zero unless 𝑗 = 0 and 𝑆 = 1. Thus the only non-zero operation on

𝑉 *
(2) is 𝑣*0𝜆0 = 𝑣*1 in the case 𝑆 = 1.

Theorem 14.14. The spectral sequence 𝐻*
W(2)𝑉

*
(2) =⇒ 𝐻*

W(1)𝑉
*
(1) collapses, with

[𝐸
(2)
2 ] = 𝐻*

W(2)𝑉
*
(2)
∼=

⎧⎨⎩𝐹Mh(3)𝐹Mv(3)𝑉(2), if 𝑆 ≥ 2;

𝐹Mh(3)𝐹Mv(3)𝑉 ′
(2) ⊔ 𝑆(C )[𝑣21] ⊔ Λ(C )[𝑣0], if 𝑆 = 1.

Proof. The calculations of [𝐸
(2)
2 ] follow from Theorems 14.4 and 14.6, Propositions 14.8,

14.12 and 14.13 and Corollary 14.10. What remains is to prove the collapsing result in each

case.

Suppose that 𝑆 ≥ 2. The first point is to observe that the generators 𝑣0 and Sq3v𝑣𝑗

(𝑗 ≥ 1) of 𝑉(2) under Mv(2)-operations are all permanent cycles in (𝐻*
W(2)𝑉(2))

0**
* . For

𝑣0 ∈ [𝐸
(2)
2 ]00𝑆𝑇 , this is obvious. It is less obvious for Sq3v𝑣𝑗 (𝑗 ≥ 1), which has only one

opportunity to support a differential:

Sq3v𝑣𝑗 ∈ [𝐸
(2)
2 ]0,1,2+𝑆+𝑗

2𝑗+1(𝑇+1)−1

𝑑2−→ [𝐸
(2)
2 ]2,0,2+𝑆+𝑗

2𝑗+1(𝑇+1)−1
.

Fortunately, this target group is zero, due to the constraint that 𝑠2 = 0. To see this, note

that this group is spanned by three-fold products of classes in [𝐸
(2)
2 ]00** , namely:

𝑣𝑗1𝑣𝑗2𝑣𝑗3 ∈ [𝐸
(2)
2 ]2,0,3𝑆+𝑗1+𝑗2+𝑗3

(2𝑗1+2𝑗2+2𝑗3 )(𝑇+1)−1
,

and if this target group is non-zero, these indices must coincide. In order that 2𝑗+1 equals

2𝑗1 + 2𝑗2 + 2𝑗3 it must happen that 𝑗1, 𝑗2, 𝑗3 equal 𝑗, 𝑗 − 1, 𝑗 − 1 (in some order), but then

2+𝑆+ 𝑗 = 3𝑆+ 𝑗1+ 𝑗2+ 𝑗3 implies that 𝑆+ 𝑗 = 2. This is impossible, as 𝑆 ≥ 2 and 𝑗 ≥ 1.

Next, we can derive that Sq𝐽v𝑣𝑗 is a permanent cycle for all Sq-admissible 𝐽 and 𝑗 ≥ 0

such that 𝐽 has final entry 3 when 𝑗 > 0. For this, we will use Proposition 12.9, that there
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is a commuting diagram:

(𝐻*
W(1)𝑉

*
(1))

𝑠2,𝑠1
𝑡

Sq𝑖v //

edge hom��

(𝐻*
W(1)𝑉

*
(1))

𝑠2+1,𝑠1+𝑖−1
2𝑡+1

edge hom��

[𝐸
(2)
2 ]0,𝑠2,𝑠1𝑡 [𝐸

(2)
2 ]0,𝑠2+1,𝑠1+𝑖−1

2𝑡+1

(𝑉(2))
𝑠2,𝑠1
𝑡

Sq𝑖v // (𝑉(2))
𝑠2+1,𝑠1+𝑖−1
2𝑡+1

As we have shown that the classes 𝑣0 and Sq3v𝑣𝑗 (𝑗 ≥ 1) are all permanent cycles, they are

in the image of the edge homomorphism. Then this diagram shows that all of 𝑉(2) is in

the image of the edge homomorphism, so that every element of 𝑉(2) is a permanent cycle.

Finally, as 𝐸2 is (freely) generated by 𝑉(2) under the Mhv(3)-operations, and we understand

how these operations interact with the differential, this shows that the spectral sequence

collapses.

Suppose instead that 𝑆 = 1. Then rather that having generators 𝑣0 and Sq3v𝑣𝑗 (𝑗 ≥ 1) as

before, 𝐸2 has generators 𝑣0, 𝑣21 and Sq3v𝑣𝑗 (𝑗 ≥ 2). Note that Sq3v𝑣1 = 0 when 𝑆 = 1. That

𝑣21 ∈ [𝐸
(2)
2 ]1,0,44𝑇−3 cannot support differentials is obvious, while for 𝑗 ≥ 2, the same degree

argument as before shows that Sq3v𝑣𝑗 is also a permanent cycle. The same argument with

the edge homomorphism shows that every element of 𝑉 ′
(2) is a permanent cycle, so 𝐸2 is again

generated by permanent cycles under the Mhv(3)-operations, completing the proof.

Corollary 14.15. If 𝑆 ≥ 2, then 𝐻*
W(1)𝑉

*
(1) is isomorphic, as a vector space in V2

+, to the

subquotient of 𝐹Mh(2)𝐹Mv(2)𝑉(1) generated by the elements

{𝑣0, Sq2v𝑣1, Sq3v𝑣1, Sq2v𝑣2, Sq3v𝑣2, Sq2v𝑣3, Sq3v𝑣3, . . .}

and subject to relations generated by Sq2v𝑣𝑗 = 0 for all 𝑗 ≥ 0. Under Mhv(2)-operations,

𝐻*
W(1)𝑉

*
(1) is generated by 𝑣0, Sq3v𝑣1, Sq

3
v𝑣2, etc.

If 𝑆 = 1, then 𝐻*
W(1)𝑉

*
(1) ∈ V2

+ is isomorphic, as a vector space in V2
+, to the commutative

algebra coproduct

subquo ⊔ 𝑆(C )[𝑣21] ⊔ Λ(C )[𝑣0],

where 𝑣21 ∈ (𝐻*
W(1)𝑉

*
(1))

1,22

22(𝑇+1)−1
, and subquo is the subquotient of 𝐹Mh(2)𝐹Mv(2)𝑉(1) gener-

ated by the elements

{Sq2v𝑣2,Sq3v𝑣2,Sq2v𝑣3,Sq3v𝑣3, . . .}

and subject to relations generated by Sq2v𝑣𝑗 = 0 for all 𝑗 ≥ 2. Under this isomorphism,

𝐻*
W(1)𝑉

*
(1) is generated by 𝑣0, 𝑣21, Sq

3
v𝑣2, Sq

3
v𝑣3, et cetera, under the Mhv(2)-operations.
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Proof. Suppose first that 𝑆 ≥ 2. Consider the elements

𝑣0 ∈ (𝑉(2))
0,𝑆
𝑇 , Sq𝑗v𝑣0 ∈ (𝑉(2))

1,𝑆+𝑗−1
2(𝑇+1)−1 (𝑗 ≥ 2), and Sq3v𝑣𝑖 ∈ (𝑉(2))

1,𝑆+𝑖+2
2𝑖+1(𝑇+1)−1

(𝑖 ≥ 1).

These elements span (𝑉(2))
0,*
* and (𝑉(2))

1,*
* , and can all be distinguished by their internal

degrees, so the restrictions

(𝐻*
W(1)𝑉

*
(1))

0,*
* −→−→ [𝐸

(2)
2 ]0,0,** = (𝑉(2))

0,*
* , (𝐻*

W(1)𝑉
*
(1))

1,*
* −→−→ [𝐸

(2)
2 ]0,1,** = (𝑉(2))

1,*
*

of the edge composite (c.f. Proposition 12.9) are isomorphisms. We write

ℎ : (𝑉(2))
0,*
* ⊕ (𝑉(2))

1,*
* −→ 𝐻*

W(1)𝑉
*
(1)

for the injection obtained by adding their inverse maps. Use the basis of 𝑉(2) arising from

Propositions 14.12 and 8.8 to extend ℎ to a vector space map 𝐻 : 𝑉(2) −→ 𝐻*
W(1)𝑉

*
(1) by the

rule 𝐻(Sq𝑗v𝑥) = Sq𝑗v𝐻(𝑥). Although 𝐻 is not a map in Mv(2), it does induce the vector

space isomorphism required for the proposition.

Suppose instead that 𝑆 = 1. The same argument produces a map subquo −→ 𝐻*
W(1)𝑉

*
(1).

The difference is that we must find candidates for 𝑣21 and 𝑣0 in 𝐻*
W(1)𝑉

*
(1). We send 𝑣0 to

the unique non-zero element of (𝐻*
W(1)𝑉

*
(1))

0,1
𝑇 and 𝑣21 to the unique non-zero element of

(𝐻*
W(1)𝑉

*
(1))

1,4
4(𝑇+1)−1.

14.5. The Bousfield-Kan 𝐸2-page for a sphere

Let 𝑋 = 𝑉 *
(0) ∈W(0) be a one dimensional object of W(0), dual to a one-dimensional vector

space 𝑉(0) ∈ V0
+, with non-zero element 𝚤 ∈ (𝑉(0))𝑇 . Write 𝚤* ∈ 𝑋𝑇 for the non-zero element

of 𝑋.

As every W(0)-operation changes degrees, 𝑋 is necessarily trivial. Moreover, it is

quadratically graded, by setting 𝚤* ∈ q1𝑋
𝑇 . By Proposition 12.8, the first CFSS will admit

a quadratic grading.

Recall the function T𝑇 : adm+(Δ, 𝑇 ) −→ adm+(Δ, 𝑇 ) of §9.2. In view of the strict in-

equality derived during the proof of Lemma 9.10, it need not be true that 𝐼 = T𝑖−1−𝑗
𝑇 (𝑖𝑗+1, . . . , 𝑖1)

whenever 𝐼 = (𝑖ℓ, . . . , 𝑖1) ∈ adm+(Δ, 𝑇 ) satisfies (𝑖𝑗+1, . . . , 𝑖1) = T𝑇 (𝑖𝑗 , . . . , 𝑖1). Neverthe-

less, we may use T𝑇 to decompose adm+(Δ, 𝑇 ). Define:

admirr
+ (Δ, 𝑇 ) := adm+(Δ, 𝑇 ) ∖ im(T𝑇 : adm+(Δ, 𝑇 ) −→ adm+(Δ, 𝑇 )),

the set of sequences in adm+(Δ, 𝑇 ) not in the image of T𝑇 , so that we may decompose
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adm+(Δ, 𝑇 ) as the disjoint union

adm+(Δ, 𝑇 ) =
⨆︁

𝐼∈admirr
+ (Δ,𝑇 )

{︀
𝐼,T𝑇 𝐼,T

2
𝑇 𝐼, . . .

}︀
.

Proposition 14.16. 𝑉 *
(1) := 𝐻

U(0)
* 𝑉 *

(0) has basis {𝚤*} ⊔ {𝛿v⋆𝐼 𝚤* | 𝐼 ∈ adm+(Δ, 𝑇 )} and all

W(1)-operations trivial except for 𝜆1, which is defined (only when ℓ(𝐼) ≥ 1) by

𝛿v⋆𝐼 𝚤
* 𝜆1↦−→ 𝛿v⋆T𝑇 𝐼

𝚤*.

Thus, as an object of W(1), 𝑉 *
(1) decomposes as a direct sum

F2{𝚤*} ⊕
⨁︁

𝐼∈admirr
+ (Δ,𝑇 )

F2

{︁
𝛿v⋆𝐼 (𝚤*𝜆𝑗1) | 𝑗 ≥ 0

}︁
.

Proof. The basis of the Koszul complex was described in Proposition 9.2, and the Koszul

differential is zero as 𝑋 is trivial. The 𝜆-operations were calculated in Proposition 9.11.

Now we have put considerable effort into calculating 𝐻*
W(1) of each summand in this

decomposition: Theorem 14.4 proves that

𝐻*
W(1)(F2{𝚤*}) ∼= 𝐹Mh(2)𝐹Mv(2)(F2{𝚤}) ∼= Λ(C )(𝚤),

while Propositions 14.12 and 14.13 calculate

𝐻*
W(1)

(︁
F2

{︁
(𝛿v⋆𝐼 𝚤

*)𝜆𝑗1 | 𝑗 ≥ 0
}︁)︁

for 𝐼 ∈ admirr
+ (Δ, 𝑇 ).

With a view to calculating the first CFSS, we catalogue a collection of generators of [𝐸(1)
2 ]

under the Mhv(2)-operations. The fundamental class 𝚤 ∈ q1[𝐸
(1)
2 ]0,0𝑇 is an exterior generator

(arising in Theorem 14.4). Moreover, for all 𝐼 ∈ admirr
+ (Δ, 𝑇 ), there are further generators,

arising in Corollary 14.15:

𝛿v𝐼 𝚤 ∈ q2ℓ𝐼 [𝐸
(1)
2 ]0,ℓ𝐼𝑇+𝑛𝐼+ℓ𝐼 (14.1)

Sq3v𝛿
v
T𝑗
𝑇𝐼
𝚤 ∈ q21+ℓ𝐼+𝑗 [𝐸

(1)
2 ]1,2+ℓ𝐼+𝑗

2𝑗+1(𝑇+𝑛𝐼+ℓ𝐼+1)−1
(when 𝑗 ≥ 1, but not 𝑗 = ℓ𝐼 = 1), (14.2)

(𝛿vT𝑇 𝐼
𝚤)2 ∈ q23 [𝐸

(1)
2 ]1,4

22(𝑇+𝑛𝐼+ℓ𝐼+1)−1
(when ℓ𝐼 = 1), (14.3)

where they are referred to as 𝑣0, Sq3v𝑣𝑗 and 𝑣21 respectively. Note that this final generator,

(𝛿vT𝑇 𝐼
𝚤)2, has the same degrees as the generator Sq3v𝛿

v
T𝑗
𝑇𝐼
𝚤 that is missing when 𝑗 = ℓ𝐼 = 1.
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Theorem 14.17. The first CFSS collapses at 𝐸2:

[𝐸
(1)
2 ] = 𝐻*

W(1)𝑉
*
(1) =⇒ 𝐻*

W(0)𝑉
*
(0).

Proof. The fundamental class is a permanent cycle, so to prove that the spectral sequence

collapses, it is enough to show that no classes

𝑥 ∈ q2ℓ𝐼 [𝐸
(1)
2 ]0,ℓ𝐼𝑇+𝑛𝐼+ℓ𝐼 or 𝑦 ∈ q21+ℓ𝐼+𝑗 [𝐸

(1)
2 ]1,2+ℓ𝐼+𝑗

2𝑗+1(𝑇+𝑛𝐼+ℓ𝐼+1)−1

can support a differential, 𝐼 a non-empty 𝛿-admissible sequence.

To see this, all one needs to have learned about the entire 𝐸2-page is that it is a sub-

quotient (in which 𝚤2 = 0) of the polynomial algebra on symbols

Sq𝐴h Sq
𝐵
v 𝛿

v
𝐶 𝚤 ∈ q2ℓ𝐴+ℓ𝐵+ℓ𝐶 [𝐸

(1)
2 ]

ℓ𝐵+𝑛𝐴,2ℓ𝐴(𝑛𝐵−ℓ𝐵+ℓ𝐶)

2ℓ𝐴+ℓ𝐵(𝑇+𝑛𝐶+ℓ𝐶+1)−1
,

in which 𝐵 is Sq-admissible, B does not contain 1 or 2, if 𝐶 is empty then so is 𝐵, and if 𝐵

is empty then so is 𝐴. These conditions imply that 𝑛𝐵 − 2ℓ𝐵 ≥ 2ℓ𝐵 − 1.check

If for 𝑟 ≥ 2 there is a differential 𝑑𝑟 supported by 𝑦, then 𝑑𝑟𝑦 must be a sum of products

of 𝑁 ≥ 1 such classes. The generic such monomial may be written as:

∏︀𝑁
𝑘=1 Sq

𝐴𝑘
h Sq𝐵𝑘

v 𝛿v𝐶𝑘
𝚤 ∈ q∑︀ 2ℓ𝐴𝑘+ℓ𝐵𝑘+ℓ𝐶𝑘 [𝐸

(1)
2 ]

∑︀
(ℓ𝐵𝑘+𝑛𝐴𝑘)+𝑁−1,

∑︀
2ℓ𝐴𝑘 (𝑛𝐵𝑘−ℓ𝐵𝑘+ℓ𝐶𝑘)

−1+
∑︀

2ℓ𝐴𝑘+ℓ𝐵𝑘 (𝑇+𝑛𝐶𝑘+ℓ𝐶𝑘+1)

in which ℓ𝐶𝑘 = 0 for at most one 𝑘. We derive the following constraints:

∑︀
(ℓ𝐵𝑘 + 𝑛𝐴𝑘) ≥ 4−𝑁, (14.4)

log2(𝑁) + 1
𝑁

∑︀
𝑘 [ℓ𝐴𝑘 + ℓ𝐵𝑘 + ℓ𝐶𝑘] ≥ 1 + ℓ𝐼 + 𝑗, (14.5)

4 + ℓ𝐼 + 𝑗 =
∑︀

𝑘 [ℓ𝐵𝑘 + 𝑛𝐴𝑘] +𝑁 − 1 +
∑︀

𝑘

[︀
2ℓ𝐴𝑘(𝑛𝐵𝑘 − ℓ𝐵𝑘 + ℓ𝐶𝑘)

]︀
, (14.6)

log2(𝑁) ≥
∑︀

𝑘

(︀
(2ℓ𝐴𝑘 − 1

𝑁 )ℓ𝐶𝑘 +
[︀(︀
2ℓ𝐴𝑘(𝑛𝐵𝑘 − ℓ𝐵𝑘)− 1

𝑁 ℓ𝐵𝑘
)︀
− 1

𝑁 (ℓ𝐴𝑘)
]︀)︀
. (14.7)

The inequality (14.4) is just the requirement that 𝑟 ≥ 2, while (14.5) results from the

observation that 𝑑𝑟 preserves the quadratic grading and the convexity of the exponential

function. Equation (14.6) holds since the total degree of the differential is one, and (14.7) is

derived by rearranging the sum of (14.4), (14.5) and (14.6). (14.7) is a very strong inequality,

since the expression 2ℓ𝐴𝑘(𝑛𝐵𝑘 − ℓ𝐵𝑘) − 1
𝑁 ℓ𝐵𝑘 is at least 2ℓ𝐵𝑘 − 1

𝑁 , and 𝑛𝐵𝑘 − ℓ𝐵𝑘 ≥ 2 if

ℓ𝐵𝑘 ̸= 0. Thus, in (14.7), each expression in square brackets is always non-negative, is at

least 2− 1
𝑁 when ℓ𝐵𝑘 ̸= 0, and exceeds 2− 1

𝑁 if ℓ𝐵𝑘 ≥ 2 or ℓ𝐴𝑘 ̸= 0.

When 𝑁 = 1 or 𝑁 = 3, log2(𝑁) < 2 − 1
𝑁 , so that (14.7) implies that ℓ𝐵𝑘 = 0 for all

𝑘, violating (14.4). When 𝑁 ≤ 2, log2(𝑁) ≤ 2 − 1
𝑁 , so that (14.7) implies that ℓ𝐵𝑘 ̸= 0
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for at most one 𝑘, with ℓ𝐵𝑘 = 1, violating (14.4). When 𝑁 ≥ 4, all but at most one of the

summands (2ℓ𝐴𝑘 − 1
𝑁 )ℓ𝐶𝑘 in (14.7) is at least 3

4 , and as 3
4(𝑁 − 1) ≥ log2(𝑁) when 𝑁 ≥ 4,

(14.7) is violated. Thus 𝑦 ∈ 𝐸2 is a permanent cycle.

Performing the same calculations for 𝑑𝑟𝑥, we find that the inequality (14.7) is unchanged,

while (14.4) is replaced by

∑︀
(ℓ𝐵𝑘 + 𝑛𝐴𝑘) ≥ 3−𝑁. (14.8)

The argument is unchanged when 𝑁 = 1 or 𝑁 ≥ 4, while if 2 ≤ 𝑁 ≤ 3 we may still draw

the same conclusions from (14.7). When 𝑁 = 2, we may assume that ℓ𝐵1 = 1 and ℓ𝐵2 = 0,

and although (14.8) is not violated, (14.7) is violated as ℓ𝐶1 ̸= 0. When 𝑁 = 3, we must

have ℓ𝐶𝑘 = 0 for each 𝑘, and the following equations must be satisfied

ℓ𝐼 − 1 = ℓ𝐶1 + ℓ𝐶2 + ℓ𝐶3, 2ℓ𝐼 = 2ℓ𝐶1 + 2ℓ𝐶2 + 2ℓ𝐶3 .

As in the proof of Theorem 14.14, these equations imply that ℓ𝐶1, ℓ𝐶2, ℓ𝐶3 equal ℓ𝐼−1, ℓ𝐼−
2, ℓ𝐼 − 2, in some order. The first equation then implies that ℓ𝐼 = 2, implying that ℓ𝐶𝑘 = 0

for more than one 𝑘, which we have prohibited. Thus 𝑥 ∈ 𝐸2 is a permanent cycle.

This theorem has the following corollary, stated in this form due to potential hidden

extensions:

Corollary 14.18. Suppose that 𝑋 = SCom
𝑇 for 𝑇 ≥ 1. Then the BKSS 𝐸2-page [𝐸2X]

∼=
𝐻*

W(0)(𝐻
*
Com𝑋) is isomorphic, as a vector space in V1

+, to the Mh(1)-subquotient of 𝐹Mh(1)𝐹Mv(1){𝚤}
generated by the fundamental class 𝚤 and the elements

{𝛿v𝐼 𝚤,Sq2h𝛿vT1
𝑇𝐼
𝚤,Sq3h𝛿

v
T1
𝑇𝐼
𝚤,Sq2h𝛿

v
T2
𝑇𝐼
𝚤,Sq3h𝛿

v
T2
𝑇𝐼
𝚤, . . .} for 𝐼 ∈ admirr

+ (Δ, 𝑇 ),

and subject to relations generated under Mh(1)-operations by

{Sq2h𝛿v𝐼 𝚤,Sq2h𝛿vT1
𝑇𝐼
𝚤,Sq2h𝛿

v
T2
𝑇𝐼
𝚤,Sq2h𝛿

v
T3
𝑇𝐼
𝚤, . . .} for 𝐼 ∈ admirr

+ (Δ, 𝑇 ).

Proof. This follows from the collapsing of the first CFSS, our knowledge of the generators 𝚤

and (14.1)-(14.3) of [𝐸(1)
2 ], and a few observations in the low-dimensional cases.

When ℓ𝐼 = 0: in 𝐹Mh(1)𝐹Mv(1){𝚤}, by unstableness of the horizontal Steenrod operations,

Sq2h𝚤 = 0, Sq3h𝚤 = 0 and 𝚤2 = Sq1h𝚤 = 0, so that 𝚤 contributes no more to this subquotient

than it did as an exterior generator of [𝐸(1)
2 ].

When ℓ𝐼 = 1: in 𝐹Mh(1)𝐹Mv(1){𝚤}, the generators (14.3) satisfy (𝛿vT𝑇 𝐼
𝚤)2 = Sq3h𝛿

v
T𝑇 𝐼

𝚤, and

taking the quotient by Sq2h𝛿
v
T𝑇 𝐼

𝚤 ensures that these generators produce no more material
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in 𝐹Mh(1)𝐹Mv(1){𝚤} than the polynomial algebras arising in the 𝑆 = 1 case of Corollary

14.15.

14.6. An alternative Bousfield-Kan 𝐸1-page

We will now suggest a somewhat artificial 𝐸1-page for the BKSS for a sphere 𝑋 = SCom
𝑇 for

𝑇 ≥ 1, but one that will be motivated by the conjectures and calculations of §16. Define:

adm(A>1, 𝑠) := {𝐽 | 𝐽 a Sq-admissible sequence with 𝑚(𝐼) ≤ 𝑠+ 1, 1 /∈ 𝐽} ;

admirr(A>1, 𝑠) := {𝐽 | 𝐽 a Sq-admissible sequence with 𝑒(𝐼) ≤ 𝑠, 1 /∈ 𝐽} ;

adm(Δ, 𝑇 ) := {𝐼 | 𝐼 a 𝛿-admissible sequence with 𝑚(𝐼) ≤ 𝑇} .

The difference between adm(Δ, 𝑇 ) and adm+(Δ, 𝑇 ) is just that we have removed the require-

ment that 𝐼 be non-empty. The following lemma explains the sense in which admirr(A>1, 𝑠)

is the subset of irreducible sequences in adm(A>1, 𝑠).

Lemma 14.19. There is an injective function S𝑡 : adm(A>1, 𝑠) −→ adm(A>1, 𝑠) given by

𝐽 = (𝑗ℓ, . . . , 𝑗1)
S𝑠↦−→ (𝑠+ 𝑛𝐽 + 1, 𝑗ℓ, . . . , 𝑗1).

Moreover, admirr(A>1, 𝑠) = adm(A>1, 𝑠) ∖ im(S𝑠), and

adm(A>1, 𝑠) =
⨆︀
𝐽∈admirr(A>1,𝑠)

{𝐽,S𝑠𝐽,S
2
𝑠𝐽, . . .}.

The proof is similar to that of Lemma 9.10, but the outcome is a little different. Indeed,

Lemma 14.19 shows that if a Mh(1)-expression Sq𝐽h𝑥 contains a top Steenrod operation,

then all of the Steenrod operations following it are also top operations.

Define

[𝐸′
1X] := F2

{︂∏︀𝑁
𝑘=1 Sq

𝐽𝑘
h 𝛿

v
𝐼𝑘
𝚤

⃒⃒⃒⃒
𝐼𝑘 ∈ adm(Δ, 𝑇 ), 𝐽𝑘 ∈ adm(A>1, ℓ𝐼𝑘)

(𝐽𝑘, 𝐼𝑘) ̸= (𝐽𝑘′ , 𝐼𝑘′) unless 𝑘′ = 𝑘

}︂
, (14.9)

and define a differential on [𝐸′
1X] by:

(14.10) setting 𝑑1𝚤 = 0;

(14.11) requiring that 𝑑1 distributes across the monomials in (14.9) according to the Leibniz

rule;

(14.12) requiring, for 𝑥 ∈ [𝐸′
1X]

𝑠
𝑡 , that Sq𝑠+2

h 𝑥 = 𝑥𝑑1𝑥 and Sq𝑗h𝑥 = 0 for 𝑗 > 𝑠+ 2;

(14.13) requiring, for 𝑥 ∈ [𝐸′
1X]

𝑠
𝑡 , that 𝑑1Sq

𝑗
h𝑥 = Sq𝑗h𝑑1𝑥;
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(14.14) requiring, for 𝑥 ∈ [𝐸′
1X]

𝑠
𝑡 , that 𝑑1𝛿v𝑖 𝑥 =

⎧⎨⎩𝛿v𝑖 𝑑1𝑥, if 2 ≤ 𝑖 < 𝑡;

𝛿v𝑖 𝑑1𝑥+ Sq2h𝑥, if 2 ≤ 𝑖 = 𝑡;

(14.15) enforcing the equation 𝛿v𝑖 Sq
𝑗
h = 0;

(14.16) enforcing the Sq-Adem relations and the identity Sq1h = 0;

(14.17) whenever a summand in the image of 𝑑1 violates the requirement that the factors

Sq𝐽𝑘h 𝛿
v
𝐼𝑘
𝚤 be unique, applying the unstableness condition

(Sq𝐽𝑘h 𝛿
v
𝐼𝑘
𝚤)2 = SqSℓ𝐼𝑘

𝐽𝑘
h 𝛿v𝐼𝑘 𝚤.

Note that (14.12), (14.16) and (14.17) imply that 𝚤2 = 0 and Sq2h𝚤 = 0. The key point is

that we do not want the differential to be determined by manipulations such as:

𝑑1(Sq
5
h𝛿

v
(22,10,5,2)𝚤) “=” 𝑑1((𝛿v(22,10,5,2)𝚤)

2) “=” 2(𝛿v(22,10,5,2)𝚤)(𝑑1𝛿
v
(22,10,5,2)𝚤) = 0,

which is why the phrasing of (14.11) and (14.17) is so restrictive. Indeed, when we define

in §11 operations on the Bousfield-Kan spectral sequence, the top Steenrod operation will

not equal the product square at 𝐸1, but only at 𝐸2, and we are mimicking this behaviour

in our definition of [𝐸′
1X].

Let us calculate the proposed differential applied to a generator Sq𝐽h𝛿
v
𝐼 𝚤 of [𝐸′

1X] with

𝐼 ̸= ∅. Suppose that 𝐼 = (𝑖ℓ𝐼 , . . . , 𝑖1), with 𝛿v𝑖𝑎 acting as a top operation at precisely the

indices 𝑎 = 𝑎𝑛, . . . , 𝑎1. Then we calculate,

𝑑1Sq
𝐽
h𝛿

v
𝐼 𝚤 = Sq𝐽h𝑑1𝛿

v
𝐼 𝚤

=
∑︀𝑛

𝑚=1 Sq
𝐽
h𝛿

v
(𝑖ℓ𝐼 ,...,𝑖𝑎𝑚+1)

Sq2h𝛿
v
(𝑖𝑎𝑚−1,...,𝑖1)

𝚤

=

⎧⎨⎩Sq𝐽hSq
2
h𝛿

v
(𝑖ℓ𝐼−1,...,𝑖1)

𝚤, 𝛿v𝑖ℓ𝐼 a top operation, 2, 3 /∈ 𝐽 , ℓ𝐼 ≥ 2;

0, otherwise.

The first equation holds by (14.13), and the second holds by (14.10) and (14.14). To explain

the third equation, all of the 𝑛 summands vanish by (14.15), except perhaps for the 𝑚 = 𝑛

summand, which need not vanish when 𝑎𝑛 = 𝑖ℓ𝐼 . Even this summand may still vanish, as

(14.16) implies that Sq𝐽hSq
2
h vanishes unless it is already Sq-admissible.

Although the definition of this complex seemed complicated, the differential ends up

being quite simple. Indeed, one deduces that, writing 𝐽 = (𝑗ℓ𝐽 , . . . , 𝑗1):

if 𝐽 ∈ adm(A>1, 𝑠) is non-empty and 2, 3 /∈ 𝐽, then (𝑗ℓ𝐽 , . . . , 𝑗1, 2) ∈ admirr(A>1, 𝑠− 1).
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From this, we conclude that if 𝐽 is non-empty:

Sq𝐽h𝛿
v
𝐼 𝚤 is a cycle if and only if 𝐼 ∈ admirr

+ (Δ, 𝑇 ) or 𝐽 contains 2 or 3, (14.18)

and if 𝐽 is empty but 𝐼 is non-empty:

𝛿v𝐼 𝚤 is a cycle if and only if 𝐼 ∈ admirr
+ (Δ, 𝑇 ). (14.19)

(Recall that admirr
+ (Δ, 𝑇 ) contains all of the length one sequences (𝑖) for 2 ≤ 𝑖 ≤ 𝑇 ). We

can combine all of this information into the following observation, valid for any 𝐼, 𝐽 :

Sq𝐽h𝛿
v
𝐼 𝚤 is a cycle if and only if 𝐼 = ∅ or 𝐼 ∈ admirr

+ (Δ, 𝑇 ) or 𝐽 contains 2 or 3. (14.20)

The determination of the homology of [𝐸′
1X] will follow from a generalization of this cal-

culation made in §16.2, in particular Proposition 16.3. While the calculations in §16.2 are

contingent on Conjectures 1 and 2, the statements are independent of these conjectures

insofar as they apply to [𝐸′
1X]. As a result, we can state the following:

Corollary 14.20 (of Proposition 16.3). The homology of [𝐸′
1X] is isomorphic, as a vector

space, to [𝐸2X] as calculated in Corollary 14.18.

Proof. The isomorphism of vector spaces 𝐻*[𝐸
′
1X] −→ [𝐸2X] sends the class of one of

the cycles Sq𝐽h𝛿
v
𝐼 𝚤 of (14.20) to the element Sq𝐽h𝛿

v
𝐼 𝚤 of the subquotient of 𝐹Mh(1)𝐹Mv(1){𝚤}

identified in Corollary 14.18. Proposition 16.3 provides a basis of 𝐻*[𝐸
′
1X] which can be

compared directly with that of the subquotient.
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Chapter 15

A May-Koszul spectral sequence for

W(0)-cohomology

15.1. The quadratic filtration and resulting spectral sequence

Suppose that𝑋 ∈ 𝑠W(𝑛) for 𝑛 ≥ 0, and write QBX ∈ 𝑠V+
𝑛 for the simplicial bar construction

calculating 𝐻W(𝑛)
* 𝑋:

(𝑄W(𝑛)𝐵W(𝑛)𝑋)𝑠 ∼= (𝐹W(𝑛))𝑠𝑋𝑠.

We may view the vector space UW(𝑛)𝑋 as being quadratically graded, concentrated in

quadratic grading 1, and as explained in §12.3, the monad 𝐹W(𝑛) may be promoted to a

monad on qV+
𝑛 , so that QBX is quadratically graded in each simplicial degree individually.

We derive from these gradings the quadratic filtration, the following increasing filtration

of 𝑁*QBX ∈ ch+V
+
𝑛 :

𝐹𝑚𝑁*QBX =
⨁︀

𝑘≤𝑚 q𝑘𝑁*QBX.

This definition is the direct analogue of Priddy’s definition [46]. It appears difficult to use

his techniques to calculate, say, 𝐻*
W(0)𝐻

*
ComSCom

𝑇 directly, as the bar construction in W(0)

grows so much faster than the bar construction in a category of modules, and the resulting

spectral sequence is not degenerate. Nonetheless, the quadratic filtration is in finite in each

internal degree:

Lemma 15.1. Suppose that 𝑛 ≥ 0, 𝑋 ∈ 𝑠W(𝑛), and 𝑘 ≥ 0. Then for any 𝑠𝑘, . . . , 𝑠1 ≥ 0

and 𝑡 ≥ 1,

(𝐹2𝑡−1𝑁*QBX)𝑡𝑠𝑘,...,𝑠1 = (𝑁*QBX)𝑡𝑠𝑘,...,𝑠1 .

Proof. This follows from the observation that every possible unary (resp. quadratic) op-

eration increases 𝑡 by at least one and doubles quadratic gradings (resp. adds quadratic

gradings). It is obvious in dimension 𝑡 = 1, as there can have been no non-trivial operations
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applied in this dimension (the grading 𝑡 is always non-negative). The full statement follows

by induction on 𝑡.

Moreover, there is an isomorphism

[𝐸0𝑁*QBX] ∼= 𝑁*𝑄
W(𝑛)𝐵W(𝑛)𝐾W(𝑛)𝑈W(𝑛)𝑋

of chain complexes, so that:

Proposition 15.2. The cohomotopy spectral sequence of the quadratic filtration is a strongly

convergent spectral sequence, the May-Koszul spectral sequence:

[𝐸MK
1 𝑁*QBX]𝑚,𝑠𝑛,...,𝑠1𝑡

∼= q𝑚(𝐻
*
W(𝑛)𝐾

W(𝑛)𝑈W(𝑛)𝑋)𝑠𝑛,...,𝑠1𝑡 =⇒ (𝐻*
W(𝑛)𝑋)𝑠𝑛,...,𝑠1𝑡 .

If 𝜋*𝑋 is of finite type, the 𝐸1-page may be rewritten as:

[𝐸MK
1 𝑁*QBX]𝑚,𝑠𝑛,...,𝑠1𝑡

∼= q𝑚(𝐹
𝐻W(𝑛)D(𝜋*𝑋))𝑠𝑛,...,𝑠1𝑡 ,

which reduces when 𝑛 ≥ 1 to:

[𝐸MK
1 𝑁*QBX]𝑚,𝑠𝑛,...,𝑠1𝑡

∼= q𝑚(𝐹
Mhv(𝑛+1)D(𝜋*𝑋))𝑠𝑛,...,𝑠1𝑡 .

Notes that all of the spectral sequence operations defined in §8 respect the quadratic filtration

— the unary operations double quadratic filtrations while the pairing operations sum then.

We leave it to the interested reader to derive the resulting theory of operations in the May-

Koszul spectral sequence from this fact, for any 𝑛 ≥ 0.

15.2. A vanishing line on the Bousfield-Kan 𝐸2-page

It is possible to obtain by the following method a vanishing line of slope 4/5 whenever 𝜋1𝑋

is of finite type. In the interest of brevity however, we prove only the following:

Theorem 15.3. If 𝑋 ∈ 𝑠Com is connected (with 𝜋*𝑋 not necessarily of finite type) then

the BKSS admits a vanishing line on 𝐸2 of slope 1 and intercept 0:

[𝐸2X]
𝑠
𝑡 = 0 whenever 𝑠 ≥ 1 · (𝑡− 𝑠).

Proof. We will prove that the right derived functors

((R𝑠 Pr𝐻Com−coalg)𝑊 )𝑡

202



have such a vanishing line for any 𝑊 ∈ 𝐻Com−coalg with 𝑊0 = 0. Any such 𝑊 is the

union of its finite-dimensional subobjects, as all of the structure maps in W(0) increase the

degree 𝑡, so it is enough to prove this Proposition for finite-dimensional 𝑊 . Then, by passing

to duals, it is enough to produce a vanishing line in the isomorphic vector space

𝐻*
W(0)D𝑊.

This group is calculated by the May-Koszul spectral sequence whose 𝐸1-page is given by

[𝐸MK
1 ]𝑚,𝑠𝑡

∼= q𝑚(𝐻
*
W(0)𝐾

W(0)𝑈W(0)D𝑊 )𝑠𝑡 .

Now 𝐾W(0)𝑈W(0)D𝑊 decomposes as a product (for various 𝑇𝑖 ≥ 1):

𝐾
W(0),𝑇1
0 × · · · ×𝐾W(0),𝑇𝑁

0 ,

so if we can prove that

(𝐻*)𝑠𝑡 := (𝐻*
W(0)𝐾

W(0),𝑇
0 )𝑠𝑡 = 0 whenever 𝑠 ≥ 𝑡− 𝑠,

the same will be true for 𝐻*
W(0)D𝑊 by Theorem 14.6. However, we have already calculated

these groups in Corollary 14.18, and found that (𝐻*)𝑠𝑡 is spanned by the image of 𝚤 ∈ (𝐻*)0𝑇

under various Mv(1)- and Mh(1)-operations. All of these operations preserve the half-plane

specified by 𝑠 < 𝑡− 𝑠.
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Chapter 16

The Bousfield-Kan spectral sequence

for SCom
𝑇

For any 𝑇 ≥ 1, let 𝑋 = SCom
𝑇 , so that we may write [𝐸𝑟X] for the Bousfield-Kan spectral

sequence of the sphere SCom
𝑇 . In this chapter we will give conjectures which will allows us

to construct a complete system of differentials in [𝐸𝑟X], that would explain the convergence

of [𝐸2X] (whose underlying vector space was calculated in Corollary 14.18) to

𝜋*(SCom
𝑇 ) ∼= Λ(C )[𝛿𝐼 𝚤 | 𝐼 ∈ adm𝑒(Δ, 𝑇 )].

Here 𝚤 ∈ 𝜋𝑇 (SCom
𝑇 ) is the fundamental class (c.f. Proposition 5.6), and we write

adm𝑒(Δ, 𝑇 ) := {𝐼 | 𝐼 is 𝛿-admissible, 𝑒(𝐼) ≤ 𝑇}.

16.1. Some conjectures on the 𝐸1-level structure

In order to construct all of the differentials needed, we will assume from this point on:

Conjecture 1. It is possible to modify the definitions of the spectral sequence operations 𝜇,

Sq𝑗h and 𝛿v𝑖 defined in §11.3 in order that the Sq-Adem relations and the relations 𝛿v𝑖 Sq
𝑗
h = 0

hold on 𝐸1 (without compromising the existing properties of these operations summarized in

Proposition 11.2 and Corollaries 11.3-11.7).

That is, we will replace the operations defined in §11.3 with their conjectural counterpart

(without no change of notation).

Recall the alternative Bousfield-Kan 𝐸1-page defined in §14.6, written [𝐸′
1X]

𝑠
𝑡 . There

was already a map of vector spaces [𝐸′
1X] −→ [𝐸1X] in V1

+ defined by

[𝐸′
1X] ∋

∏︀𝑁
𝑘=1 Sq

𝐽𝑘
h 𝛿

v
𝐼𝑘
𝚤 ↦−→

∏︀𝑁
𝑘=1 Sq

𝐽𝑘
h 𝛿

v
𝐼𝑘
𝚤 ∈ [𝐸1X],
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and using the conjectural definitions of the operations on [𝐸1X], it is a map of chain com-

plexes. Indeed, we may calculate the differential in [𝐸1X] exactly as we calculated in §14.6.

Thus, there is an induced map [𝐸′
2X] −→ [𝐸2X] (where we write [𝐸′

2X] for the homology of

the chain complex [𝐸′X]). From now on, we will also assume:

Conjecture 2. The induced map [𝐸′
2X] −→ [𝐸2X] is an isomorphism (of vector spaces).

This conjecture is not so unreasonable, since by Corollary 14.18 there is an isomorphism

of vector spaces [𝐸′
2X] −→ [𝐸2X] given by mapping an element of [𝐸′

2X] to the element of

[𝐸2X] of the same name, under the calculation of [𝐸2X] given by Corollary 14.18. In any

case, we assume no more than the stated conjectures.

16.2. The resulting differentials

We will now analyze the differentials 𝑑𝑟 applied to the various terms Sq𝐽h𝛿
v
𝐼 𝚤. Define functions

ℓ, 𝑛, 𝑒 : adm(Δ, 𝑇 ) −→ {0, 1, 2, . . .}

which evaluate on a sequence 𝐼 = (𝑖𝑙, . . . , 𝑖1) as follows:

ℓ(𝐼) := 𝑙; 𝑛(𝐼) := 𝑖1 + · · ·+ 𝑖𝑙; 𝑒(𝐼) := 𝑖𝑙 − 𝑖𝑙−1 − · · · − 𝑖1 = 2𝑖𝑙 − 𝑛(𝐼).

Define a function

𝑎 : adm(Δ, 𝑇 ) −→ Z

by 𝑎(𝐼) := ℓ(𝐼)− 1− (𝑒(𝐼)− 𝑇 ). Now write G for the set of (𝐽, 𝐼) involved in the definition

of [𝐸′
1X]:

G := {(𝐽, 𝐼) | 𝐼 ∈ adm(Δ, 𝑇 ), 𝐽 ∈ adm(A>1, ℓ(𝐼))}.

We may decompose G into three subsets:

G𝑒 := {(∅, 𝐼) | 𝐼 ∈ adm𝑒(Δ, 𝑇 )},

G′ := {(𝐽, 𝐼) ∈ G ∖ G𝑒 | 𝐽 = (𝑗ℓ(𝐽), . . . , 𝑗1), ℓ(𝐽) = 0 or 𝑎(𝐼) + 3− 𝑗1 < 0},

G′′ := {(𝐽, 𝐼) ∈ G ∖ G𝑒 | 𝐽 = (𝑗ℓ(𝐽), . . . , 𝑗1), ℓ(𝐽) > 0 and 𝑎(𝐼) + 3− 𝑗1 ≥ 0}.

Every class 𝛿v𝐼 𝚤 for (∅, 𝐼) ∈ G𝑒 is a permanent cycle. On the other hand, we will prove:

Proposition 16.1. Assuming Conjectures 1 and 2, there is a bijective map 𝑔 : G′ −→ G′′

such that if 𝑔(𝐽, 𝐼) = (𝐽 ′, 𝐼 ′) then there is a differential 𝑑𝑟 : Sq𝐽h𝛿
v
𝐼 𝚤 ↦−→ Sq𝐽

′
h 𝛿

v
𝐼′𝚤.

The class 𝛿𝐼 𝚤 is a permanent cycle if 𝐼 ∈ adm𝑒(Δ, 𝑇 ). On the other hand, using

Conjecture 1 we may mimic the calculation of 𝑑1Sq𝐽h𝛿
v
𝐼 𝚤 made in §14.6. We find that if
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𝐼 ∈ adm(Δ, 𝑇 ) ∖ adm𝑒(Δ, 𝑇 ), 𝛿𝐼 𝚤 survives to 𝐸𝑎(𝐼)+1, at which point

𝑑𝑎(𝐼)+1 : 𝛿𝐼 𝚤 ↦−→ Sq
𝑎(𝐼)+2
h 𝛿𝐼−𝚤, (16.1)

where we write 𝐼− for the sequence (𝑖ℓ(𝐼)−1, . . . , 𝑖1) obtained by removing the outermost

entry of 𝐼.

For an element 𝐽 ∈ adm(A>1, 𝑠) with 𝐽 = (𝑗ℓ(𝐽), . . . , 𝑗1), and any 𝑛 ≥ 2 − 𝑗1 we will

write Φ𝑛𝐽 for the sequence

Φ𝑛𝐽 := (𝑗ℓ(𝐽) + 2ℓ(𝐽)−1𝑛, . . . , 𝑗2 + 2𝑛, 𝑗1 + 𝑛) ∈ adm(A>1, 𝑠+ 𝑛).

Then there is a differential, obtained by applying Sq𝐽h to the 𝑑𝑎(𝐼)+1-differential (16.1):

𝑑2ℓ(𝐽)𝑎(𝐼)+1 : Sq
𝐽
h𝛿𝐼 𝚤 ↦−→ SqΦ𝑎(𝐼)𝐽

h Sq
𝑎(𝐼)+2
h 𝛿𝐼−𝚤 = Sq𝐽

+

h 𝛿𝐼−𝚤,

where 𝐽+ := (𝑗ℓ(𝐽) + 2ℓ(𝐽)−1𝑎(𝐼), . . . , 𝑗2 + 2𝑎(𝐼), 𝑗1 + 𝑎(𝐼), 𝑎(𝐼) + 2). We define the map 𝑔

to send this (𝐽, 𝐼) to (𝐽+, 𝐼−) whenever (𝐽, 𝐼) ∈ G′.

Proof of Proposition 16.1. Firstly, we should check that 𝑔 is well defined. Suppose first that

𝐽 = ∅. Then we must have 𝑒(𝐼) > 𝑇 , so that

𝑎(𝐼) + 2 = ℓ(𝐼)− 1− (𝑒(𝐼)− 𝑇 ) + 2 ≤ ℓ(𝐼−) + 1,

a condition required for 𝐽+ to have any chance of lying in adm(A>1, ℓ(𝐼
−)). After this

initial check, it is easy to check the condition required of 𝑚(𝐽+). Thus, (𝐽, 𝐼) ∈ G ∖ G𝑒. We

must also check that 𝑎(𝐼−) + 3− (𝑎(𝐼) + 2) ≥ 0, i.e. that 𝑎(𝐼−)− 𝑎(𝐼) ≥ −1, which reduces

to the tautological condition 𝑒(𝐼) ≥ 𝑒(𝐼−). Thus 𝑔 is well defined.

The injectivity of 𝑔 is obvious, but we must check its surjectivity. Suppose for this

purpose that (𝐽, 𝐼) ∈ G′′, so that 𝑎(𝐼)+3− 𝑗1 ≥ 0. We will begin by producing a differential

𝑑𝑗1−1 : 𝛿
v
𝐼+𝚤 ↦−→ Sq𝑗1h 𝛿

v
𝐼 𝚤

with 𝐼+ a 𝛿-admissible sequence (𝑖ℓ(𝐼)+1, 𝑖ℓ(𝐼), . . . , 𝑖1). For this, we need 𝑒(𝐼+) ≥ 𝑒(𝐼) (to

ensure admissibility of 𝐼+) and 𝑎(𝐼+) = 𝑗1−2, but we are otherwise unconstrained, as 𝑗1 ≥ 2,

and the demand 𝑎(𝐼+) ≥ 0 will ensure that the additional 𝛿𝑖ℓ(𝐼)+1
is defined. Focusing on

the constraint 𝑎(𝐼+) = 𝑗1 − 2:

ℓ(𝐼+)− 1− (𝑒(𝐼+)− 𝑇 ) = 𝑗1 − 2 ⇐⇒ 𝑒(𝐼+)− 𝑒(𝐼) = 𝑎(𝐼) + 3− 𝑗1,

but we have assumed that 𝑎(𝐼) + 3− 𝑗1 is non-negative, so we have no difficulty satisfying
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this constraint.

Now we use the sequence Φ−𝑎(𝐼+)𝐽
− where 𝐽− := (𝑗ℓ(𝐽), . . . , 𝑗2), producing the required

differential

𝑑2ℓ(𝐽)−1𝑎(𝐼+)+1 : Sq
Φ−𝑎(𝐼+)𝐽−

h 𝛿v𝐼+𝚤 −→ Sq𝐽h𝛿𝐼 𝚤,

as long as either 𝐽− is empty or 𝑎(𝐼+) + 3 − (𝑗2 − 𝑎(𝐼+)) < 0. If 𝐽− is non-empty, then

the second condition reduces to the condition that the concatenation Φ𝑎(𝐼+)Φ−𝑎(𝐼+)𝐽
− ⋆

(𝑎(𝐼+) + 2) be Sq-admissible, but this concatenation is 𝐽 itself.

Proposition 16.2. Assuming Conjectures 1 and 2, the differentials given in Proposition

16.1, along with those arising from them by taking products and applying the Leibniz formula,

are a complete set of differentials for the BKSS for this sphere.

Proof. Although the 𝐸𝑟-page of the spectral sequence is not an exterior algebra for any

finite 𝑟, we are working in a spectral sequence of commutative F2-algebras. As such, the

differential is not sensitive to the difference between the polynomial algebra 𝑆(C )[𝑥] and

the exterior algebra Λ(C )[𝑥, 𝑥2, 𝑥4, 𝑥8 . . .] where 𝑥2𝑖 is placed in the dimension of 𝑥2𝑖 . In

this setting, the upshot is that the 𝐸𝑟-page is isomorphic as a chain complex to an infinite

coproduct of exterior algebras, starting with

[𝐸′
1]
∼=

⨆︁
(𝐽,𝐼)∈G

Λ(C )[Sq𝐽𝑘h 𝛿
v
𝐼𝑘
𝚤].

We rely on the properties of the Steenrod operations to allow us to deal with terms of the

form 𝑥×𝑥. Whatever the explanation, the differentials given in Proposition 16.1 are enough

to eliminate all summands except for

[𝐸∞] ∼=
⨆︁

(∅,𝐼)∈G𝑒

Λ(C )[𝛿v𝐼𝑘 𝚤],

which really is isomorphic as an algebra to the target 𝜋*(SCom
𝑇 ).

Filtering the sets G′ and G′′ by the length of the differentials associated with their ele-

ments, so that

G′
𝑟 := {(𝐽, 𝐼) ∈ G′ | if 𝑔(𝐽, 𝐼) = (𝐽 ′, 𝐼 ′) then 𝑛(𝐽 ′) + ℓ(𝐼 ′) ≥ 𝑛(𝐽) + ℓ(𝐼) + 𝑟},

and G′′
𝑟 := im(𝑔|G′

𝑟
), the proofs of Propositions 16.1 and 16.2 also prove:

Proposition 16.3. Assuming Conjectures 1 and 2, there is an isomorphism of chain com-
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plexes, for 𝑟 ≥ 2:

[𝐸𝑟]
∼=

⨆︁
(𝐽,𝐼)∈G

Λ(C )[Sq𝐽𝑘h 𝛿
v
𝐼𝑘
𝚤] ⊔

⨆︁
(𝐽,𝐼)∈G′

𝑟

Λ(C )[Sq𝐽𝑘h 𝛿
v
𝐼𝑘
𝚤] ⊔

⨆︁
(𝐽,𝐼)∈G′′

𝑟

Λ(C )[Sq𝐽𝑘h 𝛿
v
𝐼𝑘
𝚤].

Moreover, the complete calculation of the BKSS for a finite connected model in 𝑠Com

now follows simply by taking the coproduct of non-unital differential graded algebras at each

page, with the appropriate grading shifts, for example:

[𝐸𝑟(SCom
𝑇1 ⊔ SCom

𝑇2 )] ∼= [𝐸𝑟SCom
𝑇1 ] ⊔ [𝐸𝑟SCom

𝑇2 ].
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Appendix A

Cohomology operations for Lie

algebras

In this appendix, we will prove that Priddy’s definitions of cohomology operations for sim-

plicial (restricted) Lie algebras coincides with our own. There are three settings which we

are interested in: the categories 𝑠Lie, 𝑠Lier and 𝑠L(𝑛) for 𝑛 ≥ 0. We will work in the third

setting in this appendix, as the proofs in the other two cases are strictly simpler.

A.1. The partially restricted universal enveloping algebra

For the following discussion, we will need one last category of graded vector spaces, V−
𝑛 , an

object of which is simply the direct sum of an object 𝑉 of V+
𝑛 and a vector space 𝑉 −1

0,...,0:

𝑉 = 𝑉 −1
0,...,0 ⊕

⨁︁
𝑡≥1

⨁︁
𝑠𝑛,...,𝑠1≥0

𝑉 𝑡
𝑠𝑛,...,𝑠1 ∈ V−

𝑛 .

Denote by A(𝑛) the following category of graded augmented associative algebras. An object

of A(𝑛) is a graded vector space 𝐴 ∈ V−
𝑛 such that 𝐴−1

0,...,0 = F2⟨1⟩ is one-dimensional,

spanned by the unit of an associative unital pairing

𝐴𝑡𝑠𝑛,...,𝑠1 ⊗𝐴
𝑞
𝑝𝑛,...,𝑝1 −→ 𝐴𝑡+𝑞+1

𝑠𝑛+𝑝𝑛,...,𝑠1+𝑝1 .

That is, 𝐴−1
0,...,0 is not part of the data of 𝐴, but only a graded piece added to hold the unit.

Such an algebra is certainly augmented, and the augmentation ideal may be viewed as a

forgetful functor 𝐼 : A(𝑛) −→ L(𝑛), which sends 𝐴 to the partially restricted Lie algebra

⨁︁
𝑡≥1

⨁︁
𝑠𝑛,...,𝑠1≥0

𝐴𝑡𝑠𝑛,...,𝑠1 ,
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with bracket [𝑥, 𝑦] := 𝑥𝑦 − 𝑦𝑥, and restriction operation 𝑥[2] := 𝑥2 whenever 𝑥 ∈ 𝐴𝑡𝑠𝑛,...,𝑠1
and not all of 𝑠𝑛, . . . , 𝑠1 zero.

The composite forgetful functor A(𝑛)
𝐼−→ L(𝑛) −→ V+

𝑛 has a left adjoint, none other

than the free associative algebra functor 𝐹A(𝑛) (also known as the tensor algebra functor).

The multiplicative unit 1 is placed in 𝐴−1
0,...,0, as is appropriate given the grading shift.

Moreover, the functor 𝐼 has a left adjoint, 𝑈 ′, the partially restricted universal enveloping

algebra functor, with 𝑈 ′𝐿 obtained as the quotient of 𝐹A(𝑛)𝐿 by the two-sided ideal generated

by any [𝑥, 𝑦] − 𝑥𝑦 − 𝑦𝑥 and by 𝑥[2] − 𝑥2 with 𝑥 of restrictable degree. Indeed, there is a

composite of adjunctions

V+
𝑛

𝐹L(𝑛)
//
L(𝑛)

forget
oo

𝑈 ′
//
A(𝑛),

𝐼
oo

showing that 𝑈 ′ ∘ 𝐹L(𝑛) ∼= 𝐹A(𝑛). As in the non-restricted and fully restricted case, 𝑈 ′𝐿 is

naturally a Hopf algebra, having diagonal defined by the requirement Δ𝑥 = 1 ⊗ 𝑥 + 𝑥 ⊗ 1

for 𝑥 ∈ 𝐿 ⊆ 𝑈 ′𝐿, and:

Lemma A.1 (PBW Theorem). If 𝐿 ∈ L(𝑛), then there is a natural increasing filtration

of 𝑈 ′𝐿, the Lie filtration (by powers of ⟨1⟩ ⊕ im(𝐿 −→ 𝑈 ′(𝐿))), and the associated graded

algebra is naturally isomorphic to F2[𝐿0]⊗𝐸[𝐿 ̸=0], where 𝐿 = 𝐿0⊕𝐿 ̸=0 is the decomposition

of 𝐿 into the sum of its subspaces of in non-restrictable and restrictable degrees respectively.

Here, F2[−] and 𝐸[−] denote the (shifted, unital) polynomial and exterior algebra func-

tors respectively, which differ from 𝑆(C ) and Λ(C ) only by the addition of the unit in

(F2[−])−1
0,...,0 and (𝐸[−])−1

0,...,0. The unit 1⊗ 1 of this tensor product is in (F2[−]⊗𝐸[−])−1
0,...,0,

as the product has a +1-shift in the cohomological dimension.

Lemma A.2. The prolonged functor 𝑈 ′ : 𝑠L(𝑛) −→ 𝑠A(𝑛) preserves weak equivalences.

Proof. Suppose that 𝐿 −→ 𝐿′ is a weak equivalence in 𝑠L(𝑛). The Lie filtration makes

𝐶*(𝑈
′𝐿) −→ 𝐶*(𝑈

′𝐿′) a map of filtered commutative differential graded algebras, so there

is an induced map of the resulting spectral sequences. By Lemma A.1, the 𝐸0-page of

the spectral sequence for 𝑈 ′𝐿 is the differential graded algebra 𝐶*(F2[𝐿0] ⊗ 𝐸[�̸�=0]). By

Dold’s Theorem (2.4), the 𝐸1-page is a functor (determined by the results of §5.4) of 𝜋*(𝐿0)

and 𝜋*(�̸�=0). As the induced maps 𝜋*(𝐿0) −→ 𝜋*(𝐿
′
0) and 𝜋*(𝐿 ̸=0) −→ 𝜋*(𝐿

′
̸=0) are

isomorphisms, the map of spectral sequences is an isomorphism from 𝐸1.

A.2. The proof of Proposition 6.12

In this section we will demonstrate Proposition A.3, which is stated for partially restrictedread through

Lie algebras 𝐿 ∈ 𝑠L(𝑛), but can be reinterpreted for objects of 𝑠Lie or 𝑠Lier as necessary.

From this result, Propositions 6.12 and 8.9 follow.
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Let 𝐿 ∈ 𝑠L(𝑛) be almost free on a fixed choice of subspaces 𝑉𝑝 ⊆ 𝐿𝑝. We will use a

bisimplicial model for �̄�𝑈 ′𝐿:

B𝑝𝑞 := �̄�𝑞𝑈
′𝐿𝑝 = (𝑈 ′𝐿𝑝)

⊗𝑞 ∈ 𝑠𝑠V−
𝑛 ,

which in each simplicial level 𝑝 is the standard simplicial bar construction for calculation of

Tor𝑈
′𝐿𝑝(F2,F2) (c.f. [46, §1]). There are natural equivalences

𝐶*|B| ≃ Tot(𝐶*𝐶*B) = Bar(𝐶*𝑈
′𝐿) ≃ 𝐶*�̄�𝑈 ′𝐿,

so that 𝜋*D|B| ∼= 𝐻*
�̄�
𝐿. Here, we have written Bar for the bar construction of [28, §7], and

the final equivalence is the homomorphism of [28, Theorem 20.1]. What is a little less well

known is that there is a natural weak equivalence of simplicial coalgebras underlying this

equivalence of chain complexes, given in [15, Theorem 1.1]. A simple construction of such a

map |B| −→ �̄�𝑈 ′𝐿 is, in simplicial level 𝑛:

𝑑0 ⊗ 𝑑∘20 ⊗ · · · ⊗ 𝑑∘𝑛0 : (𝑈 ′𝑋𝑛)
⊗𝑛 −→ 𝑈 ′𝑋𝑛−1 ⊗ · · · ⊗ 𝑈 ′𝑋0,

where we use the conventions of [42, §5] to define �̄� .

As such, the operations defined by Priddy on 𝐻*
�̄�

correspond, under this equivalence,

to those that we define on 𝜋*D|B| by the formulae

Sq𝑘 :
(︀
𝜋𝑛D|B| Sq

𝑘
ext−→ 𝜋𝑛+𝑘D𝑆2|B|

Δ*
B−→ 𝜋𝑛+𝑘D|B|

)︀
;

𝜇 :
(︀
𝑆2(𝜋

*D|B|) 𝜇ext−→ 𝜋*𝑆2D|B| −→ 𝜋*D𝑆2|B|
Δ*

B−→ 𝜋*D|B|
)︀
.

where ΔB is the bisimplicial cocommutative coalgebra diagonal:

ΔB :

(︂
�̄�(𝑈 ′𝐿)

�̄�(Δ)−→ �̄�(𝑈 ′𝐿⊗ 𝑈 ′𝐿) ∼= �̄�(𝑈 ′𝐿)⊗ �̄�(𝑈 ′𝐿)

)︂
.

Thus, we may forget the functor �̄� , and restrict our attention to the object B with this

coalgebra map. We are also going to use the simplicial chain complex Q ∈ 𝑠 ch+V−
𝑛 :

Q∙* :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑄L(𝑛)𝐿∙, if * = 1;

F2{1}, if * = 0;

0, otherwise.

with zero differentials in each simplicial level. Of course, we mean that 1 ∈ (Q0,0)
−1
0,...,0.

There is a map of simplicial chain complexes 𝑟 : 𝑁v
* B∙ −→ Q∙*, defined in level 𝑝 by the
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identification 𝑁v
0 B𝑝 = F2{1} = Q𝑝0 and the composite:

𝑁v
1 B𝑝 = 𝐼𝑈 ′𝐿𝑝−→−→ 𝐼𝑈 ′𝐿𝑝/(𝐼𝑈

′𝐿𝑝)
2 ∼= 𝑄L(𝑛)𝐿𝑝.

Proposition A.3. The composite

𝑁*|B| ≃ Tot(𝑁h
*𝑁

v
* B)

𝑟−→ Tot(𝑁h
* Q∙*) = F2 ⊕ Σ𝑁*𝑄

L(𝑛)𝐿

is a weak equivalence of chain complexes under which the operations on 𝜋*D|B| defined

using ΔB correspond to the operations Sq𝑘 := 𝜓L(𝑛) ∘ Sq𝑘−1
ext and 𝜇 := 𝜓L(𝑛) ∘ 𝜇ext on

𝜋*(D(𝑄L(𝑛)𝐿)) =: 𝐻*
L(𝑛)𝐿.

We will prove this proposition using the external spectral sequence operations of §13.1

in the spectral sequence of B. By 𝐸2, the only interesting non-zero entries of this spectral

sequence lie on the horizontal line 𝑞 = 1, so that Singer’s operations will prove very un-

interesting without modification. Our method will be to perform such a modification by

using the chain homotopy ℎ (defined shortly) to shift the horizontal operations one higher

in filtration. The shifted homotopy operations will preserve the line 𝑞 = 1, and will abut to

operations on 𝐸∞ that satisfy the same relations as those on |B|. As the abutment filtration

is trivial, they must satisfy the same relations at 𝐸2. Finally, we will note that what we

have produced at 𝐸2 is the definition of the Steenrod operations from §6.8.

As 𝐿 is levelwise free, the evident map 𝐹A(𝑛)𝑉𝑝 −→ 𝑈 ′𝐿𝑝 is an isomorphism for each

𝑝, and we define a vertical homotopy ℎ : 𝑁v
* B𝑝 −→ 𝑁v

*+1B𝑝 by the following formulae (in

which the 𝑣𝑖𝑗 are taken to be in 𝑉𝑝 ⊆ 𝐿𝑝 ⊆ 𝑈 ′𝐿𝑝):

ℎ𝑞 : 𝑁
v
𝑞 �̄�𝑈

′𝐿𝑝 −→ 𝑁v
𝑞+1�̄�𝑈

′𝐿𝑝

[𝑣𝑖1 | · · · |𝑣𝑖𝑘−1⏟  ⏞  
length 1 bars

|𝑣𝑖𝑘𝑣𝑖𝑘+1
· · · | · · · ] ↦−→ [𝑣𝑖1 | · · · |𝑣𝑖𝑘 |𝑣𝑖𝑘+1

· · · | · · · ]

[𝑣𝑖1 | · · · |𝑣𝑖𝑞 ] ↦−→ 0.

This homotopy is of the same type as that used in §8, §9 and [46, Proof of Theorem 5.3], and

commutes with all of the horizontal simplicial structure except 𝑑h0 , so that 𝑑hℎ𝑞 + ℎ𝑞𝑑
h =

𝑑h0ℎ𝑞 + ℎ𝑞𝑑
h
0 .

Lemma A.4. Under the map (Id + ℎ𝑞−1𝑑
v + 𝑑vℎ𝑞) : 𝑁

v
𝑞 �̄�𝑈

′𝐿𝑝 −→ 𝑁v
𝑞 �̄�𝑈

′𝐿𝑝,

[𝑣𝑖1 · · · | · · · | · · · 𝑣𝑖𝑟 ] ↦−→ 0 unless 𝑟 = 𝑞 = 1, in which case

[𝑣𝑖1 ] ↦−→ [𝑣𝑖1 ].
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Lemma A.5. The composite

𝑁h
𝑝𝑁

v
2 B ΔB−→ 𝑁h

𝑝𝑁
v
2 (B⊗B)

(𝐷0
v)

⋆

−→ 𝑁h
𝑝 (𝑁

v
1 B⊗𝑁v

1 B)
𝑟⊗𝑟−→ 𝑁h

𝑝 (Q∙1 ⊗Q∙1)

vanishes except on terms [𝑥|𝑦] with 𝑥 and 𝑦 generators of 𝐿𝑝, which have image 𝑥⊗ 𝑦.

Proof. A generic element of the domain is a sum of terms [𝑥1 · · ·𝑥𝐼 |𝑦1 · · · 𝑦𝐽 ], with 𝑥1, . . . , 𝑥𝐼
and 𝑦1, . . . , 𝑦𝐽 in 𝑉𝑝 ⊆ 𝐿𝑝. This element maps under ΔB to the following sum, taken over

all sequences of exponents 𝑎1, . . . , 𝑎𝐼 , 𝑏1, . . . , 𝑏𝐽 ∈ {0, 1}:∑︁[︁
𝑥𝑎11 · · ·𝑥

𝑎𝐼
𝐼

⃒⃒⃒
𝑦𝑏11 · · · 𝑦

𝑏𝐽
𝐽

]︁
⊗
[︁
𝑥1−𝑎11 · · ·𝑥1−𝑎𝐼𝐼

⃒⃒⃒
𝑦1−𝑏11 · · · 𝑦1−𝑏𝐽𝐽

]︁
∈ 𝑁h

𝑝𝑁
v
2 (B⊗B),

and (𝐷0
v)
⋆ annihilates all terms except for those in which all 𝑎𝑖 are 1 and all 𝑏𝑗 are 0, leaving

[︀
𝑥1 · · ·𝑥𝐼

]︀
⊗
[︀
𝑦1 · · · 𝑦𝐼

]︀
∈ 𝑁h

𝑝 (𝑁
v
1 B⊗𝑁v

1 B).

Finally, 𝑟 ⊗ 𝑟 annihilates this term unless 𝐼 = 𝐽 = 1.

Lemma A.6. The composite

𝑁h
𝑝+1𝑁

v
1 B ΔB−→ 𝑁h

𝑝+1𝑁
v
1 (B⊗B)

(𝐷1
v)

⋆

−→ 𝑁h
𝑝+1(𝑁

v
1 B⊗𝑁v

1 B)
𝑟⊗𝑟−→ 𝑁h

𝑝+1(Q∙1 ⊗Q∙1)

vanishes except on terms [𝑥𝑦] with 𝑥 and 𝑦 generators of 𝐿𝑝+1, which have image 𝑥⊗𝑦+𝑦⊗𝑥.

Proof. A generic element of the domain is a sum of terms [𝑥1 · · ·𝑥𝐼 ], with 𝑥1, . . . , 𝑥𝐼 in

𝑉𝑝+1 ⊆ 𝐿𝑝+1. This element maps under ΔB to

∑︁[︁
𝑥𝑎11 · · ·𝑥

𝑎𝐼
𝐼

]︁
⊗
[︁
𝑥1−𝑎11 · · ·𝑥1−𝑎𝐼𝐼

]︁
.

As {𝐷𝑘} was chosen to be a special 𝑘-cup product, (𝐷1
v)
⋆ acts as the identity in this case.

Finally, 𝑟 ⊗ 𝑟 annihilates this term unless 𝐼 = 2 and 𝑎1 ̸= 𝑎2.

Lemma A.7. There is a commuting diagram:

𝑁h
𝑛+𝑘𝑁

v
1 B

𝑑h0ℎ𝑛+𝑘+ℎ𝑛+𝑘−1𝑑
h
0 //

𝑟��

𝑁h
𝑛+𝑘−1𝑁

v
2 B

(𝐷0
v)

⋆∘ΔB // 𝑁h
𝑛+𝑘−1(𝑁

v
1 B⊗𝑁v

1 B)

𝑟⊗𝑟��
𝑁h
𝑛+𝑘𝑄

L(𝑛)𝐿
𝑄L(𝑛)(𝜉L(𝑛)) // 𝑁h

𝑛+𝑘−1𝑄
L(𝑛)(𝐿 Y 𝐿)

𝑗L(𝑛) // 𝑁h
𝑛+𝑘−1(𝑄

L(𝑛)𝐿⊗𝑄L(𝑛)𝐿)

Proof. Write LHS = (𝑟⊗ 𝑟) ∘ (𝐷0
v)
⋆ ∘ΔB ∘ (𝑑h0ℎ+ ℎ𝑑h0) and RHS = 𝜓L(𝑛) ∘ 𝑟. Consider first

an element 𝑒 = [𝑣1𝑣2 · · · 𝑣𝑏] of 𝑁h
𝑛+𝑘𝑁

v
1 B with 𝑏 ≥ 2. By definition, 𝑟 vanishes on such an

element, so that RHS(𝑒) = 0. Lemma A.5 states that the map (𝑟⊗ 𝑟) ∘ (𝐷0
v)
⋆ ∘ΔB vanishes
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except on expressions of the form [𝑢|𝑤] for 𝑢,𝑤 ∈ 𝑉𝑛+𝑘−1. However, the expressions of

this form appearing in 𝑑h0ℎ(𝑒) coincide with such expressions in ℎ𝑑h0(𝑒), so that there is a

cancellation, and LHS(𝑒) = 0 as hoped.

Next, consider an element [𝑣] of 𝑁h
𝑛+𝑘𝑁

v
1 B. As ℎ[𝑣] = 0, and in light of Lemma A.5,

LHS([𝑣]) equals the quadratic part of 𝑑h0𝑣, after writing 𝑑h0𝑣 as an expression in elements of

𝑉𝑛+𝑘−1. This is exactly the description given in Lemma 6.3 of RHS([𝑣]) = 𝜓L(𝑛)(𝑣).

Proof of Proposition A.3. Fix a cocycle 𝛼 ∈ D(𝑁𝑛𝑄
L(𝑛)𝐿). Then 𝛼 may be viewed an a

permanent cocycle in [𝑍∞D(Q∙*)]
𝑛,1 in the spectral sequence obtained by dualizing Q∙*.

Singer [52, (2.14)] defines an operator 𝑆𝑘 on the total cochain complex of a bisimplicial

coalgebra which induces the cohomology operation Sq𝑘ext. We will apply the chain-level

operator 𝑆𝑘 to the class 𝑟*𝛼 ∈ [𝑍∞B]𝑛,1. As 𝛼 is a permanent cycle, 𝑑(𝑟*𝛼) = 0, and

Singer’s expression simplifies to:

𝑆𝑘(𝑟*𝛼) := Δ*
B𝐾

*
𝑛+1−𝑘𝜑(𝑟

*𝛼⊗ 𝑟*𝛼) = 𝑇1 + 𝑇2, where:

𝑇1 := Δ*
B𝐷

0
v𝐷

𝑛+1−𝑘
h 𝜑(𝑟*𝛼⊗ 𝑟*𝛼) ∈ D(𝑁h

𝑛+𝑘−1𝑁
v
2 B)

𝑇2 := Δ*
B𝐷

1
v(𝑇𝐷

𝑛−𝑘
h 𝑇 )𝜑(𝑟*𝛼⊗ 𝑟*𝛼) ∈ D(𝑁h

𝑛+𝑘𝑁
v
1 B).

Our method will be to compress each of these terms into filtration one higher, using the

cochain homotopy ℎ* : D(𝑁h
*𝑁

v
* B) −→ D(𝑁h

*𝑁
v
*−1B). Using Lemma A.4:

(Id + 𝑑vℎ* + ℎ*𝑑v)𝑇1 = 0 and (Id + 𝑑vℎ* + ℎ*𝑑v)𝑇2 = 0.

The first equation holds as (Id + ℎ𝑑v + 𝑑vℎ) is zero on 𝑁v
2 B. For the second equation, on

𝑁v
1 B, (Id + ℎ𝑑v + 𝑑vℎ) is the projection onto terms of the form [𝑣], yet Lemma A.6 shows

that the composite

((𝑟 ⊗ 𝑟) ∘ (𝑇 (𝐷𝑛−𝑘
h )⋆𝑇 ) ∘ (𝐷1

v)
⋆ ∘ΔB) : 𝑁

h
𝑛+𝑘𝑁

v
1 B −→ 𝑁v

𝑛+𝑘(Q∙1 ⊗Q∙1)

vanishes except on terms of the form [𝑣𝑤] (recall that 𝑟 commutes with the horizontal

simplicial structure).

As 𝑑hℎ* + ℎ*𝑑h increases filtration, we have compressed 𝑆𝑘(𝑟*𝛼) to the filtration 𝑛+ 𝑘

expression (𝑑hℎ* + ℎ*𝑑h)𝑇1, modulo even higher filtration. The commuting diagram of

Lemma A.7 is the left square in a larger commuting diagram:

𝑁h
𝑛+𝑘𝑁

v
1 B

𝑟��

(𝐷0
v)

⋆∘ΔB∘(𝑑hℎ+ℎ𝑑h)// 𝑁h
𝑛+𝑘−1(𝑁

v
1 B⊗𝑁v

1 B)

𝑟⊗𝑟��

(𝐷𝑛+1−𝑘
h )⋆

// 𝑁h
𝑛𝑁

v
1 B⊗𝑁h

𝑛𝑁
v
1 B

𝑟⊗𝑟��
𝑁h
𝑛+𝑘𝑄

L(𝑛)𝐿
𝜓L(𝑛) // 𝑁h

𝑛+𝑘−1(𝑄
L(𝑛)𝐿⊗𝑄L(𝑛)𝐿)

(𝐷𝑛+1−𝑘
h )⋆

// 𝑁h
𝑛𝑄

L(𝑛)𝐿⊗𝑁h
𝑛𝑄

L(𝑛)𝐿
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Now D(𝑁h
𝑛𝑄

L(𝑛)𝐿⊗𝑁h
𝑛𝑄

L(𝑛)𝐿) contains the cocycle 𝜑(𝛼⊗ 𝛼), and pulling 𝜑(𝛼⊗ 𝛼) back

to D(𝑁h
𝑛+𝑘𝑁

v
1 B) along the lower composite yields 𝑟*𝜓*

L(𝑛)Sq
𝑘−1
ext (𝛼). Pulling back along the

upper composite yields the 𝐸2 representative of the shifted version of Singer’s operations.

Both spectral sequences collapse at 𝐸2 and induce trivial filtrations on their shared target, so

that understanding the shifted operations at 𝐸2 is equivalent to understanding the operations

on 𝜋*D|B|, which we do: they equal Priddy’s operations on 𝜋*�̄�𝑈 ′𝐿 [47, §5]. As 𝑟* is an 𝐸2-

equivalence, this proves the result. A simple modification proves the result for pairings.

A.3. The Chevalley-Eilenberg-May complex

Suppose that 𝑀 ∈ L(𝑛) is a partially restricted Lie algebra of finite type (not simplicial).

One can define a differential coalgebra, the Chevalley-Eilenberg-May complex, to be the

subcoalgebra �̄� ′(𝑀) := 𝐸[𝑀0] ⊗ Γ[𝑀 ̸=0] of the divided power Hopf algebra Γ[𝑀 ] with its

usual coalgebra structure (c.f. [39, p. 141]), graded as follows. The Hopf algebra Γ[𝑀 ] is to

be V+
𝑛+1-graded, with product and divided square operations

Γ[𝑀 ]𝑡𝑝,𝑠𝑛,...,𝑠1 ⊗ Γ[𝑀 ]𝑡
′

𝑝′,𝑠′𝑛,...,𝑠
′
1
−→ Γ[𝑀 ]𝑡+𝑡

′+1
𝑝+𝑝′+1,𝑠𝑛+𝑠′𝑛,...,𝑠1+𝑠

′
1
,

𝛾2 : Γ[𝑀 ]𝑡𝑝,𝑠𝑛,...,𝑠1 −→ Γ[𝑀 ]2𝑡+1
2𝑝+1,2𝑠𝑛,...,2𝑠1

,

generated by the subspace

Γ[𝑀 ]𝑡0,𝑠𝑛,...,𝑠1 =𝑀 𝑡
𝑠𝑛,...,𝑠1 ,

and we define �̄� ′(𝑀) to be the coaugmentation coideal of the subcoalgebra spanned by

those expressions

𝛾𝑟1(𝑦1) · · · 𝛾𝑟𝑚(𝑦𝑚) (with 𝑦1, . . . , 𝑦𝑚 ∈𝑀 homogeneous)

for which 𝑟𝑖 ≤ 1 when 𝑦𝑖 ∈ 𝑀0 (i.e. 𝑦𝑖 ∈ 𝑀 𝑡
0,...,0). The coalgebra structure map and

differential are the restriction to 𝐸[𝑀0]⊗Γ[𝑀 ̸=0] of those given in [39, p. 141] (after tensoring

the formula [39, (6.19)] down to a formula on 𝑋(𝑀), which kills the first term Σ𝑛𝑖=1𝑓𝑖𝑦𝑖).

This differs by a shift from the standard definitions, given in [16] in the unrestricted

setting, and given in [39] in the restricted setting. It also differs from those definitions in

that we have taken the coaugmentation coideal. Correspondingly, �̄� ′(𝑀) is a shift of the

homology (in the sense of [46]) of the associated graded algebra appearing in the partially

restricted PBW Theorem, Lemma A.1.

Now let 𝐿 = 𝐵L(𝑛)𝑀 ∈ 𝑠L(𝑛). Using the equation |B| = �̄�∙(𝑈
′𝑀) of simplicial coal-

gebras and May’s injection [39, Theorem 18 and (7.8)] of �̄� ′(𝑀) into the bar construction,
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there are maps:

Σ�̄� ′(𝑀) −→ 𝑁*�̄�∙(𝑈
′𝑀) ≃ Tot(𝑁h

*𝑁
v
* B)

𝑟−→ Tot(𝑁h
* Q∙*) = F2{1} ⊕ Σ𝑁*𝑄

L(𝑛)𝐿.

Now the first map, after the suspension Σ shift homological degree, is a degree preserving

map of differential coalgebras, both of which only have a shift in the cohomological degree

𝑡. In light of this discussion, Proposition A.3 implies Proposition A.8 (in which we move

back into the notation 𝑆(C ) and Λ(C ) for the non-unital commutative and exterior algebra

monads).

Proposition A.8. 𝐻*
L(𝑛)𝑀 may be calculated, as a non-unital commutative algebra, as

the cohomology algebra of the differential graded algebra D(�̄� ′(𝑀)), where D(�̄� ′(𝑀)) is the

non-unital commutative algebra D(�̄� ′(𝑀)) = Λ(C )[D𝑀0] ⊔ 𝑆(C )[D𝑀 ̸=0]. This algebra is

V𝑛+1
+ -graded, generated by its subspace

(D(�̄� ′(𝑀)))0,𝑠𝑛,...,𝑠1𝑡 = (D𝑀)𝑠𝑛,...,𝑠1𝑡 ,

and has grading shifted product

D(�̄� ′(𝑀))𝑝,𝑠𝑛,...,𝑠1𝑡 ⊗D(�̄� ′(𝑀))
𝑝′,𝑠′𝑛,...,𝑠

′
1

𝑡′ −→ D(�̄� ′(𝑀))
𝑝+𝑝′+1,𝑠𝑛+𝑠′𝑛,...,𝑠1+𝑠

′
1

𝑡+𝑡′+1 .

Recall that the coproduct 𝐴 ⊔ 𝐵 of non-unital commutative algebras is the direct sum

𝐴⊕ (𝐴⊗𝐵)⊕𝐵.

We are particularly interested in the case that 𝑀 is trivial as a Lie algebra, but may still

have non-zero restriction. In this case, the restriction is in fact a linear map, and we may

write [2]
√
− : D𝑀 −→ D𝑀 for its dual (a map which we consider to be everywhere defined,

but necessarily equal to zero on 𝑀0). Examination of [39, (6.19)] shows:

Proposition A.9. If 𝑀 has bracket zero, then the differential on the cohomological dif-

ferential graded algebra D(�̄� ′(𝑀)) is defined on generators 𝛼 ∈ D𝑀 ⊆ D(�̄� ′(𝑀)) by the

formula

𝛼 ↦−→ ( [2]
√
𝛼 )2.
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