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Abstract

We describe a cooperad structure on the simplicial bar construction on a reduced
operad of based spaces or spectra and, dually, an operad structure on the cobar
construction on a cooperad. We also show that if the homology of the original operad
(respectively, cooperad) is Koszul, then the homology of the bar (respectively, cobar)
construction is the Koszul dual. We use our results to construct an operad structure
on the partition poset models for the Goodwillie derivatives of the identity functor on
based spaces and show that this induces the ‘Lie’ operad structure on the homology
groups of these derivatives. We also extend the bar construction to modules over
operads (and, dually, to comodules over cooperads) and show that a based space
naturally gives rise to a right module over the operad formed by the derivatives of
the identity.
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Chapter 1

Introduction

The motivation for the work in this thesis was an attempt to understand the rela-
tionship between Tom Goodwillie’s calculus of homotopy functors ([9, 10, 11]) and
the theory of operads. Here we present an operad structure on the derivatives 1 of
the identity functor I on the category of based spaces.

One of the pieces of evidence that such a structure should exist is the calculation,
due to various people, of the homology of these derivatives. This homology is (up to
a suspension) the standard Lie operad for graded modules and the operad we present
here has the property that it induces this structure on homology.

Our construction relies on the ‘partition poset complex’ models for the derivatives
of the identity, as described by Arone and Mahowald [2]. They show that the deriva-
tives are the Spanier-Whitehead duals of certain finite complexes constructed from
the posets of partitions of finite sets. These complexes turn out to be precisely a stan-
dard simplicial bar construction on the operad P in based spaces given by P (n) = S0

for all n. The main result of this work is that such a bar construction has a natural
cooperad structure. Taking duals, we get an operad structure on the derivatives of
the identity (which in fact can be viewed as a cobar construction on the cooperad Q
in spectra with Q(n) = S, the sphere spectrum, for all n).

In the final part of the paper we look at ways to calculate the homology of the
bar and cobar constructions. To do this, we examine spectral sequences that arise
naturally from our definitions of these constructions. The E1 terms of these spec-
tral sequences turn out to be related to the bar constructions for algebraic operads
and hence to the theory of Koszul duality for operads introduced by Ginzburg and
Kapranov in [8]. Our main result is that if the homology of an operad P in spaces or
spectra is a Koszul operad (of graded modules), then the homology of the bar con-
struction B(P ) is its Koszul dual cooperad. This result provides another calculation
of the homology of the derivatives of the identity and shows that the induced operad
structure on that homology is indeed the ‘Lie’ operad structure referred to before.

1The Goodwillie derivatives of a homotopy functor are a sequence of spectra with actions by the
symmetric groups, but are only defined up to homotopy. By an operad structure on these derivatives,
we mean choices of models for these spectra in a suitable symmetric monoidal category, such as the
category of S-modules of EKMM [5], together with an operad structure on those models.
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1.1 Outline of the paper

We now give a more detailed description of the contents of the thesis. Chapter 2 is
concerned with preliminaries. In §2.1 we recall the notions of symmetric monoidal and
enriched categories and specify the categories we will be working with in this paper.
These are symmetric monoidal categories that are enriched, tensored and cotensored
over the category Top∗ of based compactly-generated spaces. It is to operads in these
categories that we refer when we say ‘topological operads’. We also require an extra
condition that relates the symmetric monoidal structure to the tensoring over Top∗.
This condition (see Definition 2.1.10) is crucial to our later constructions. The two
main examples of such categories are: (i) based spaces themselves and (ii) a suitable
symmetric monoidal category of spectra, such as that of EKMM [5].

In §2.2 we recall the definitions of operads and cooperads. We should stress that
the constructions of this thesis only apply to what we call reduced operads and co-
operads. These are P with P (0) = ∗ and P (1) = S, the unit of the symmetric
monoidal structure. The bar construction can still be defined for more general oper-
ads, but the cooperad structure described here does not seem to extend to such cases.
In this section we also define modules and comodules over operads and cooperads
respectively.

The real substance of the thesis appears in Chapter 3. It is here that we define
the bar and cobar constructions for operads and cooperads, and show that they have,
respectively, cooperad and operad structure. We start in §3.1 by defining the trees
that form the combinatorial heart of our constructions. It is not a coincidence that
these trees are the same species used by, for example, Getzler and Jones in their work
[7] on the bar constructions for algebraic operads and Koszul duality. We also describe
what we call a weighting on a tree (Definition 3.1.7), that is, a suitable assignment
of lengths to the edges of the tree. The spaces w(T ) of weightings are at the heart of
everything we do in this paper.

In §3.2 we give our description of the bar construction B(P ) on an operad P
in terms of such trees and show that what we have defined is isomorphic to the
standard simplicial bar construction on an operad. We then turn to our main result,
the existence of a cooperad structure on B(P ). This is given by the process of
‘ungrafting’ trees (see Definition 3.2.14 and beyond) and involves taking a weighted,
labelled tree and breaking it up into smaller trees. Finding the right way to weight
and label these smaller trees gives us the required cooperad structure maps. Our
description of this process occupies §3.2.3.

One of the advantages of the way we have set up the theory is that the cobar
construction on a cooperad is strictly dual to the bar construction on an operad. In
§3.3 we give the definitions and results dual to those of §3.3.

The short section §3.4 is devoted to a simple but key result (Proposition 3.4.4)
that relates the bar and cobar constructions via a duality functor that reduces to
Spanier-Whitehead duality in the case of spectra. This result says that, under the
right circumstances, the dual of the bar construction on an operad P is isomorphic
to the cobar construction on the dual of P . This allows us, later on, to identify the
derivatives of the identity as the cobar construction on a cooperad of spectra.
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Before turning to our main example and application, we deal in §3.5 with the two-
sided bar and cobar constructions. This includes the bar construction for a module
over an operad and, dually, for a comodule over a cooperad. This requires a fairly
simple generalization of much of the work we did in §§3.1-3.2, in particular, a more
general notion of tree (see Definition 3.5.1).

Chapter 4 is concerned with the main application of our work: to Goodwillie
calculus and the derivatives of the identity. In §4.1 we recall the basic notions of
the calculus of homotopy functors and the definition of the derivatives of a functor.
Then in §4.2 we complete the main aim of this paper. We identify the partition poset
complexes with a bar construction and deduce the existence of an operad structure
on the derivatives of the identity functor (Corollary 4.2.7). We also give examples of
modules over the resulting operad, including a module MX naturally associated to a
based space X.

Chapter 5 deals with the calculation of the homology of our bar and cobar con-
structions and the spectral sequences referred to above. Here we relate our topological
constructions to the corresponding algebraic constructions and Koszul duality for op-
erads. Our main result on this connection appears as Proposition 5.6.7. A more
substantial description of the contents of this chapter appears at its start.

11
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Chapter 2

Background on symmetric
monoidal categories and operads

In this chapter we describe the background necessary to make the constructions of the
rest of the thesis. The general setting for our results is that of symmetric monoidal
categories enriched over based topological spaces. In our first section (§2.1) we fix
definitions and notation for these categories. In the second part (§2.2) we introduce
the main objects of interest for the thesis: operads, cooperads, modules over operads
and comodules over cooperads.

The only point in this chapter where we depart from standard material is in
the definition of enriched symmetric monoidal categories or ‘symmetric monoidal V-
categories’ as we have called them (Definition 2.1.10). The ‘distributivity’ morphism
described there is a key component of the constructions made later in the thesis and
so we draw the reader’s attention to it now.

2.1 Symmetric monoidal and enriched categories

Definition 2.1.1 (Symmetric monoidal categories). A monoidal category con-
sists of:

• a (locally small) category V;

• a functor − ∧− : V × V → V;

• a unit object I;

• a natural isomorphism X ∧ (Y ∧ Z) ∼= (X ∧ Y ) ∧ Z;

• natural isomorphisms X ∧ I ∼= X ∼= I ∧ X;

such that the appropriate three coherence diagrams commute [15, §VII].
A symmetric monoidal category is a monoidal category together with:

• a natural isomorphism X ∧ Y ∼= Y ∧ X;

13



such that four additional coherence diagrams also commute. Our notation for a
symmetric monoidal category will be (V,∧, I) or just V with the rest of the structure
understood.

Remark 2.1.2. We will not give names to the associativity and commutativity iso-
morphisms in a symmetric monoidal category. When we write unbracketed expres-
sions such as

X ∧ Y ∧ Z

or unordered expressions such as ∧

a∈A

Xa

we mean one particular choice of ordering and bracketing, with different choices
related by the appropriate associativity and commutativity isomorphisms between
them.

Definition 2.1.3 (Closed symmetric monoidal categories). A closed symmetric
monoidal category is a symmetric monoidal category (V,∧, I) together with a functor

Vop × V → V; (X, Y ) (→ Map(X, Y )

and a natural isomorphisms of sets

HomV(X ∧ Y, Z) ∼= HomV(X, Map(Y, Z))

(HomV(X, Y ) denotes the set of morphisms from X to Y in the category V).

Remark 2.1.4. The natural isomorphism of sets in Definition 2.1.3 can be made into
an isomorphism within V. That is, in any closed symmetric monoidal category there
is a natural isomorphism:

Map(X ∧ Y, Z) ∼= Map(X, Map(Y, Z)).

See [4, 6.5.3] for details.

Definition 2.1.5 (Enriched categories). Let (V,∧, I) be a closed symmetric mon-
oidal category. A V-category or category enriched over V consists of:

• a class of objects C

• for each pair of objects C, D ∈ C, an object MapV(C, D) of V;

• composition morphisms

MapV(C, D) ∧ MapV(D, E) → MapV(C, E)

• identity morphisms
I → MapV(C, C)

14



that satisfy the appropriate conditions [4, 6.2.1].

Remark 2.1.6. Some basic observations about enriched categories from [4, 6.2]:

1. A Set-category is precisely a (locally small) category.

2. A V-category C has an underlying category whose objects are the objects of C
and whose morphisms C → D are the elements of the set HomV(I, MapV(C, D)),
where I is the unit object of V. We shall abuse notation and also write C for
this category.

3. A closed symmetric monoidal category V is enriched over itself with

MapV(X, Y ) := Map(X, Y ).

Definition 2.1.7 (Tensoring and cotensoring). Let C be a V-category. A ten-
soring of C over V is a functor

V × C → C; (X, C) (→ X ⊗ C

together with a natural isomorphism

MapV(X ⊗ C, D) ∼= Map(X, MapV(C, D)).

A cotensoring of C over V is a functor

Vop × C → C; (X, D) (→ MapC(X, D)

together with a natural isomorphism

MapV(C, MapC(X, D)) ∼= Map(X, MapV(C, D)).

Remark 2.1.8. Some basic observations about tensorings and cotensorings:

1. A closed symmetry monoidal category (V,∧, I) is tensored and cotensored over
itself with X ⊗ Y := X ∧ Y and MapV(X, Y ) := Map(X, Y ).

2. If C is tensored over V we have

(X ∧ Y ) ⊗ C ∼= X ⊗ (Y ⊗ C).

If C is cotensored over V we have

MapC(X ∧ Y, C) ∼= MapC(X, MapC(Y, C)).

Proposition 2.1.9 (Duality). Let C be a V-category. Then Cop has a natural en-
richment over V. If C is tensored, then Cop is cotensored and vice versa.

15



Proof. We define an enrichment on Cop by

MapV(Cop, Dop) := MapV(D, C)

where Cop is the object in Cop corresponding to C ∈ C. If −⊗− is a tensoring for C
then we get a cotensoring for Cop by setting

MapCop(X, Dop) := (X ⊗ D)op.

The required natural isomorphism comes from

MapV(Cop, MapCop(X, Dop)) = MapV(X ⊗ D, C)
∼= Map(X, MapV(D, C))

= Map(X, MapV(Cop, Dop)).

The vice versa part is similar.

We are interested in enriched categories that are also themselves symmetric mon-
oidal categories. The following definition contains the properties of these that we will
require in this paper.

Definition 2.1.10. Let (V,∧, I) be a closed symmetric monoidal category. A sym-
metric monoidal V-category consists of:

• a symmetric monoidal category (C,!, S) with C enriched, tensored and coten-
sored over V;

• a natural transformation

d : (X ∧ Y ) ⊗ (C !D) → (X ⊗ C) ! (Y ⊗ D);

satisfying axioms

• (associativity)

(X ∧ Y ∧ Z) ⊗ (C !D ! E) ((X ∧ Y ) ⊗ (C !D)) ! (Z ⊗ E)

(X ⊗ C) ! ((Y ∧ Z) ⊗ (D ! E)) (X ⊗ C) ! (Y ⊗ D) ! (Z ⊗ E)

!!
d

""

d

""

id!d

!!
id!d

commutes for all X, Y, Z ∈ V and C, D, E ∈ C;

• (unit) The following composite is the identity:

X ⊗ C ∼= (X ∧ I) ⊗ (C ! S) !!
d

(X ⊗ C) ! (I ⊗ S) ∼= X ⊗ C

for any X ∈ V and C ∈ C.

16



The transformation d (for ‘distribute’) is our way of relating the symmetric mon-
oidal structures in the two categories. It will be essential in making the bar construc-
tion of an operad into a cooperad (see Definition 3.2.26).

Remark 2.1.11. A closed symmetric monoidal category V is itself a symmetric
monoidal V-category by the symmetry isomorphism:

(X ∧ Y ) ∧ (C ∧ D) ∼= (X ∧ C) ∧ (Y ∧ D).

Proposition 2.1.12. Let C be a symmetric monoidal V-category. Then Cop is natu-
rally also a symmetric monoidal V-category.

Proof. We already know from Proposition 2.1.9 that Cop is enriched, tensored and
cotensored over V and there is a canonical symmetric monoidal structure on Cop

given by that on C. It therefore only remains to construct the map d. The tensoring
in Cop is given by the cotensoring in C. Therefore d for Cop corresponds to the following
map in C:

MapC(X, C) !MapC(Y, D) → MapC(X ∧ Y, C !D)

This would be adjoint to a map

(X ∧ Y ) ⊗ (MapC(X, C) !MapC(Y, D)) → C !D.

But we can construct such a map by first using d for C to get to

(X ⊗ MapC(X, C)) ! (Y ⊗ MapC(Y, D))

and then using the evaluation maps

X ⊗ MapC(X, C) → C, Y ⊗ MapC(Y, D) → D

and the naturality of !, we get the required map to C !D.

An important property of the categories that we work with in this paper is that
they are pointed (that is, they have a null object ∗ that is both initial and termi-
nal). The following proposition describes how null objects interact with symmetric
monoidal structures and enrichments.

Proposition 2.1.13. Let (V,∧, I) be a closed symmetric monoidal category that is
pointed with null object ∗. Then

∗ ∧ X ∼= ∗ ∼= Map(∗, X) ∼= Map(X, ∗)

for all X ∈ V. Let C be a category enriched over V. If C is tensored then

∗ ⊗ C

is an initial object in C for all C ∈ C. If C is cotensored then

MapC(∗, D)

17



is a terminal object in C for all D ∈ C. If C is both tensored and cotensored over V
then the initial and terminal objects are isomorphic and so C is itself pointed.

Proof. We have
HomV(∗ ∧ X, Y ) ∼= HomV(∗, Map(X, Y ))

which has one element for any X, Y . This tells us that ∗ ∧ X is initial and hence
isomorphic to ∗. The other isomorphisms in the first part of the proposition are
similar.

The tensoring functor −⊗C : V → C is a left adjoint so preserves an initial object.
Dually, the cotensoring functor MapC(−, D) : Vop → C is a right adjoint so preserves
the terminal object. If C is both tensored and cotensored, we get a map from the
terminal object to the initial object by

MapC(∗, D) → I ⊗ MapC(∗, D) → ∗⊗ MapC(∗, D).

The first map here is an example of a general isomorphism C → I ⊗C where I is the
unit object of V. The second map comes from I → ∗. A map from a terminal object
to an initial object must be an isomorphism. Therefore C is pointed.

Examples 2.1.14. The categories we will mainly be concerned with in this thesis
are the following.

1. Let Top∗ be the category of compactly generated based spaces and basepoint-
preserving continuous maps of [14]. Then Top∗ is a pointed closed symmet-
ric monoidal category under the usual smash product ∧, with unit S0 and
Map(X, Y ) equal to the space of basepoint-preserving maps X → Y .

2. Let Spec be the category of S-modules of EKMM [5]. Then (Spec,∧S, S) is
a symmetric monoidal Top∗-category, where S is the sphere spectrum and ∧S

is the smash product of S-modules [5, II.1.1]. The enrichment, tensoring and
cotensoring are described in [5, VII.2.8]. For d we have a natural isomorphism

d : (X ∧ Y ) ∧ (E ∧S F ) !!
∼=

(X ∧ E) ∧S (Y ∧ F )

given by the fact that X ∧ E ∼= (X ∧ S) ∧S E [5, II.1.4].

We will usually work with a general symmetric monoidal Top∗-category denoted
(C,!, S), but these examples will be foremost in our minds.

2.2 Operads, cooperads, modules and comodules

In this section (C,!, S) denotes a pointed symmetric monoidal category with null
object ∗. We will assume that C has all necessary limits and colimits and write the
coproduct in C as a wedge product using ∨.

Definition 2.2.1 (Symmetric sequences). A symmetric sequence in C is a functor
F from the category of nonempty finite sets and bijections to C. For each nonempty

18



finite set A, F (A) has an action by the symmetric group ΣA. We will write F (n) for
F ({1, . . . , n}). Note that our symmetric sequences (and hence our operads) do not
have an F (0) term because our indexing sets are nonempty. We will often write ‘finite
set’ when we mean ‘nonempty finite set’ and these will usually be labelled A, B, . . . .
We write CΣ for the category of symmetric sequences in C (whose morphisms are the
natural transformations).

There are several different but equivalent ways to define operads (see Markl-
Shnider-Stasheff [16] for a comprehensive guide). We will use the following definition.

Definition 2.2.2 (Operads). An operad in (C,!, S) is a symmetric sequence P
together with partial composition maps:

− ◦a − : P (A) ! P (B) → P (A ∪a B)

for each pair of finite sets A, B and each a ∈ A (where A∪a B denotes (A\{a})⨿B),
and a unit map

η : S → P (1).

The composition maps are natural in A and B and satisfy the following four axioms:

1.
P (A) ! P (B) ! P (C) P (A) ! P (B ∪b C)

P (A ∪a B) ! P (C) P (A ∪a B ∪b C)

!!

"" ""

!!

for all a ∈ A and b ∈ B. (Notice that (A ∪a B) ∪b C = A ∪a (B ∪b C).)

2.
P (A) ! P (B) ! P (C) P (A ∪a B) ! P (C)

P (A) ! P (C) ! P (B)

P (A ∪a′ C) ! P (B) P (A ∪a B ∪a′ C)

""

∼=

!!

""""

!!

for all a ̸= a′ ∈ A. (Notice that (A ∪a B) ∪a′ C = (A ∪a′ C) ∪a B.)

3.
P (A) P (A) ! P (1)

P (A ∪a {1})

!!
id!η

##!!!!!!!!!!!!!

∼=
""
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for all a ∈ A (the diagonal map is induced by the obvious bijection A →
A ∪a {1});

4.
P (A) P (1) ! P (A)

P ({1} ∪1 A)

!!
η!id

##!!!!!!!!!!!!!

id
""

A morphism of operads P → P ′ is a morphism of symmetric sequences that commutes
with the composition and unit maps in the obvious way. We write Op(C) for the
category of operads in C and their morphisms.

Definition 2.2.3 (Augmented and reduced operads). An augmentation of an
operad P is a map ε : P (1) → S such that the composite

S P (1) S!!
η

!!
ε

is the identity on S. An augmented operad is an operad together with an augmen-
tation. An operad P is reduced if the unit map η : S → P (1) is an isomorphism. A
reduced operad has a unique augmentation given by the inverse of the unit map. A
morphism of augmented operads is a morphism of operads that commutes with the
augmentation.

Remark 2.2.4. Operads are a generalization of monoids for the symmetric monoidal
category (C,!, S). A monoid A gives rise to an operad PA with PA(1) = A and
PA(n) = ∗ for n > 1. Conversely, given an operad P in the symmetric monoidal
category C, P (1) forms a monoid in C.

An alternative definition of an operad is based on a monoidal structure on the
category of symmetric sequences.

Definition 2.2.5 (Composition product of symmetric sequences). We define
the composition product of the two symmetric sequences M, N to be the symmetric
sequence M ◦ N with

M ◦ N(A) :=
∨

partitions λ of A

M(λ) !
∧̄

B∈λ

N(B).

By a partition of A we mean a set of disjoint nonempty subsets whose union is A.
(Note that our partitions are unordered.) A bijection A → A′ determines a bijection
between partitions of A and partitions of A′ in an obvious way. Thus we match up
the terms in the coproducts for M ◦ N(A) and M ◦ N(A′). If λ corresponds to λ′,
then in fact we have a bijection λ → λ′ and if B ∈ λ and B′ ∈ λ correspond under
this bijection then we in turn have B → B′. We use the effect of M and N on these
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bijections to get an isomorphism

M ◦ N(A) → M ◦ N(A′).

Thus M ◦ N becomes a symmetric sequence in C.

Definition 2.2.6 (Unit symmetric sequence). Let (C,!, S) be as previously a
pointed symmetric monoidal category. The unit symmetric sequence is the symmetric
sequence I given by

I(A) :=

{
S if |A| = 1;

∗ otherwise;

where ∗ is the null object of C.

Lemma 2.2.7. Let (C,!, S) be a pointed symmetric monoidal category. Then for
any symmetric sequence M there are natural isomorphisms

M ◦ I ∼= M ∼= I ◦ M.

Proof. For the finite set A, the only term that contributes to M ◦ I(A) comes from
the partition of A into singleton subsets. This makes it clear that M ◦ I ∼= M . The
only term that contributes to I ◦M(A) comes from the trivial partition of A into one
subset, that is A itself. It is clear from this that I ◦ M ∼= M .

To get a monoidal structure on the category of symmetric sequences, we also need
an associativity isomorphism. This does not exist in general, although it does in the
case of the following lemma.

Lemma 2.2.8. Let (C,!, S) be a pointed symmetric monoidal category in which !
commutes with finite coproducts. Then there are natural isomorphisms

L ◦ (M ◦ N) ∼= (L ◦ M) ◦ N

for any symmetric sequences L, M, N in C.

Proof. Using the hypothesis that ! commutes with finite coproducts, it is not hard
to see that each side is naturally isomorphic to the symmetric sequence (L ◦ M ◦ N)
given by

(L ◦ M ◦ N)(A) :=
∨

A"B"C

L(C) !
∧̄

c∈C

M(Bc) !
∧̄

b∈B

N(Ab)

where Bc is the inverse image of c under the surjection B " C and Ab is the inverse
image of b under the surjection A" B.

Proposition 2.2.9. Let (C,!, S) be a pointed symmetric monoidal category in which
! commutes with finite coproducts. Then the composition product ◦ is a monoidal
product on the category of symmetric sequences in C with unit object I and unit and
associativity isomorphisms given by Lemmas 2.2.7 and 2.2.8 respectively. In this case,
an operad in C is precisely a monoid for this monoidal product.
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Proof. It is easy to check that the axioms for a monoidal structure are satisfied. If P
is an operad in C, the operad compositions make up a map

P ◦ P → P

and the unit gives a map
I → P.

The operad axioms then translate into associativity and unit axioms for this to give
P the structure of a monoid under ◦.

Remark 2.2.10. If C is a closed symmetric monoidal category then ! has a right
adjoint and so preserves all colimits. In particular, the hypothesis of Lemma 2.2.8
holds and so we get our

Unfortunately, even when C is closed symmetric monoidal, its opposite category
Cop (with the standard symmetric monoidal structure) is unlikely to be closed. It
is similarly unlikely that the hypothesis of Lemma 2.2.8 will hold for Cop. Since we
want to dualize our results in order to deal with cooperads as well as operads, we
need to get round this hypothesis. For this, we notice that in general there are maps
of symmetric sequences

(L ◦ M ◦ N) → L ◦ (M ◦ N)

and
(L ◦ M ◦ N) → (L ◦ M) ◦ N

where (L ◦ M ◦ N) is defined as in the proof of Lemma 2.2.8. In general these are
not isomorphisms so we don’t get a monoidal structure on the category of symmetric
sequences. However, we can say what we mean by a monoid even in this case. The
following alternative characterization of an operad formalizes this.

Proposition 2.2.11. Let (C,!, S) be a pointed symmetric monoidal category. An
operad in C is equivalent to a symmetric sequence P together with maps

P ◦ P → P ; η : I → P

of symmetric sequences such that the following diagrams commute:

1. Associtivity:

(P ◦ P ) ◦ P P ◦ P

(P ◦ P ◦ P ) P

P ◦ (P ◦ P ) P ◦ P

!!

$$"""""""""""""%%##########

$$""""""""""

!!

%%#############

22



2. Left unit:

P P ◦ P

P
&&

$$
$$

$$
$$

$$
$$

1

!!
1◦η

""
%
%%
%%
%
%%
%

3. Right unit:

P P ◦ P

P
&&

$$
$$

$$
$$

$$
$$

1

!!
η◦1

""
%
%%
%%
%%
%
%

Remark 2.2.12. We will often refer to an operad P as a monoid with respect to the
composition product, even when we do not in fact have a monoidal structure. We
have similarly defined notions of an object with a right or left action of a monoid in
this generalized setting. These give us right and left modules over our operads.

Definition 2.2.13 (Modules over operads). A left module over the operad P is
a symmetric sequence M together with a left action of the monoid P , that is, a map

P ◦ M → M

such that

(P ◦ P ) ◦ M P ◦ M

(P ◦ P ◦ M) M

P ◦ (P ◦ M) P ◦ M

!!

$$""""""""""""""

$$""""""""""

%%##########

!!

%%##############

commutes and
M ∼= I ◦ M → P ◦ M → M

is the identity on M .

A right module over P is a symmetric sequence M with a right action of P , that
is a map

M ◦ P → M

satisfying corresponding axioms. A P -bimodule is a symmetric sequence M that is
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both a right and a left module over P such that

(P ◦ M) ◦ P M ◦ P

P ◦ M ◦ P M

P ◦ (M ◦ P ) P ◦ M

!!

''&&&&&&&&&&&&(('''''''''

''&&&&&&&&&

!!

((''''''''''''

commutes. Clearly, P itself is a P -bimodule.

Remark 2.2.14. It’s useful to have a slightly more explicit description of a module
over an operad. The action map for a left P -module M consists of maps

P (r) !M(A1) ! · · · !M(Ar) → M(A)

for every partition A =
∐r

i=1 Ai of a finite set A into nonempty subsets. Similarly, a
right module structure consists of maps

M(r) ! P (A1) ! · · · ! P (Ar) → M(A).

Remark 2.2.15. In the same way that operads are a generalization of monoids
in C, modules over those operads are generalization of modules over the monoids. A
module M over the monoid A gives rise to a module PM over the operad PA described
in Remark 2.2.4 with PM(n) = ∗ if n > 1 and PM(1) = M .

Remark 2.2.16. An augmentation for the operad P is equivalent to either a left or
right module structure on the unit symmetric sequence I.

The standard notion of an algebra over an operad is closely related to that of a
module. We briefly describe how this works.

Definition 2.2.17 (Algebras over an operad). An algebra over the operad P is
an object C ∈ C together with maps

P (A) !
∧̄

a∈A

C → C

that satisfy appropriate naturality, associativity and unit axioms.

We can think of a P -algebra as a left P -module concentrated in the M(0) term.
Unfortunately, in order for the bar and cobar constructions to work out, we are forced
in this paper to rule out modules with nontrivial M(0). However, the following result
allows us to treat algebras indirectly.

Lemma 2.2.18. Let C be an algebra over the operad P . Then there is a natural
left P -module structure on the symmetric sequence C with C(A) = C (with trivial
ΣA-action) for all finite sets A.
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Proof. The module structure map P ◦ C → C is easily constructed from the algebra
structure maps

P (A) !
∧̄

a∈A

C → C.

Definition 2.2.19 (Cooperads). The notion of cooperad is dual to that of operad,
that is, a cooperad in C is an operad in the opposite category Cop with the canonical
symmetric monoidal structure given by that in C. More explicitly, a cooperad consists
of a symmetric sequence Q in C together with cocomposition maps

Q(A ∪a B) → Q(A) !Q(B)

and a counit map
Q(1) → S

satisfying axioms dual to (1)-(4) of Definition 2.2.2. A morphism of cooperads is a
morphism of symmetric sequences that commutes with the cocomposition and counit
maps. A coaugmentation for a cooperad is a map S → Q(1) left inverse to the counit
map. A cooperad Q is reduced if the counit map is an isomorphism.

Remark 2.2.20. The description of an operad as a monoid for the composition
product of symmetric sequences naturally dualizes to cooperads. We define the dual
composition product ◦̂ of two symmetric sequences by replacing the coproduct in
Definition 2.2.5 with a product. That is:

M ◦̂ N(A) :=
∏

partitions λ of A

M(λ) !
∧̄

B∈λ

N(B).

If ! commutes with finite products (which is in general not likely) this is a monoidal
product of symmetric sequences (the result dual to Proposition 2.2.9) and a cooperad
is precisely a comonoid for this product. In general we can define the triple product
(L ◦̂M ◦̂N) by replacing coproduct with product in the definition given in the proof
of Lemma 2.2.8. We then have natural maps

(L ◦̂ M) ◦̂ N → (L ◦̂ M ◦̂ N)

and
L ◦̂ (M ◦̂ N) → (L ◦̂ M ◦̂ N)

which allow us to say what we mean by a comonoid in general. Thus we get the result
dual to Proposition 2.2.11, that a cooperad in C is a symmetric sequence Q together
with maps

Q → Q ◦̂ Q; ε : Q → I

such that the corresponding diagrams commute. In particular we have a coassocia-
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tivity diagram:

Q ◦̂ Q (Q ◦̂ Q) ◦̂ Q

Q (Q ◦̂ Q ◦̂ Q)

Q ◦̂ Q Q ◦̂ (Q ◦̂ Q)

!!

$$""""""""""%%#############

$$"""""""""""""

!!

%%##########

In [7] Getzler and Jones define a cooperad to be a comonoid for the composition
product ◦. In their case, ◦ and ◦̂ are equal because finite products are isomorphic to
finite coproducts in the category of chain complexes.

Definition 2.2.21 (Comodules over a cooperad). A left comodule C over the
cooperad Q is a left module over Q considered as an operad in Cop. More explicitly,
C is a symmetric sequence together with a left coaction of the comonoid Q, that is,
a map C → Q ◦̂ C. Equivalently, we have a collection of cocomposition maps

C(A) → Q(r) ! C(A1) ! · · · ! C(Ar)

for partitions A =
∐

i∈I Ai. Similarly a right comodule is a symmetric sequence C
with a right coaction C → C ◦̂ Q, or equivalently, cocomposition maps

C(A) → C(r) !Q(A1) ! · · · !Q(Ar).

A bicomodule is a symmetric sequence with compatible left and right comodule struc-
tures. The cooperad Q is itself a Q-bicomodule.

A coalgebra over a cooperad is the dual concept of an algebra over an operad
and the constant symmetric sequence with value equal to a Q-coalgebra is a left
Q-comodule.

26



Chapter 3

Bar and cobar constructions for
operads and cooperads

This chapter forms the heart of the thesis. We define the bar construction on a
reduced operad using trees and show that this is isomorphic to the realization of the
standard simplicial bar construction. We then construct the cooperad structure on
the bar construction, which yields the main result of the thesis (Theorem 3.2.29).
In later sections we dualize our result to the cobar construction on cooperads (§3.3)
and generalize to two-sided bar and cobar constructions for modules and comodules
(§3.5).

3.1 Spaces of trees

The key to finding a cooperad structure on the bar construction on an operad is its
reinterpretation in terms of trees. We use the same sorts of trees that arise in many
other places in relation to operads. See Getzler-Jones [7], Ginzburg-Kapranov [8] and
Markl-Shnider-Stasheff [16] for many examples. In this section, we describe these and
introduce the notion of a weighting on a tree which is central to our later definitions.

Definition 3.1.1 (Trees). A typical tree of the sort we want is shown in Figure 3-1.
It has a root element at the base, a single edge attached to the root, and no other
vertices with only one incoming edge. We encode these geometric requirements in the
following combinatorial definition. A tree T is a finite poset satisfying the following
conditions:

1. T has at least two elements: an initial (or minimal) element r, the root, and
another element b such that b ≤ t for all t ∈ T except r;

2. for any elements t, u, v ∈ T , if u ≤ t and v ≤ t, then either u ≤ v or v ≤ u;

3. for any t < u in T with t not equal to r, there is some v ∈ T such that t < v
but u ! v.

We picture a tree by its graph, whose vertices are the elements of T with an edge
between t and u if t < u and there is no v with t < v < u. An incoming edge
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to a vertex t is an edge corresponding to t < u. Condition (1) above ensures that
the tree has a root r with exactly one incoming edge (that connects it to b). The
second condition ensures that this graph is indeed a tree in the usual sense. The third
condition ensures that no vertices except the root have exactly one incoming edge.

More terminology: the maximal elements of the tree T will be called leaves. From
now on, by a vertex, we mean an element other than the root or a leaf (see Figure
3-1). A tree is binary if each vertex has precisely two incoming edges. The root edge
is the edge connected to the root element. The leaf edges are the edges connected to
the leaves. The other edges in the tree are internal edges. Given a vertex v of a tree,
we write i(v) for the set of incoming edges of the vertex v. We generally denote trees
with the letters T, U, . . . .

Remark 3.1.2. We stress that our trees are not allowed to have vertices with only
one incoming edge, as guaranteed by condition (3) of the definition. This reflects the
fact that we will deal only with reduced operads in this paper. See the beginning of
section §3.2 for more discussion of this.

leaves

vertices

root

Figure 3-1: Terminology for trees

Definition 3.1.3 (Labellings). A labelling of the tree T by a finite set A is a
bijection between A and the set of leaves of T . An isomorphism of A-labelled trees is
an isomorphism of the underlying trees that preserves the labelling. We denote the
set of isomorphism classes of A-labelled trees by T(A). For a finite set A, T(A) is
also finite. For a positive integer n, we write T(n) for the set T({1, . . . , n}).

Example 3.1.4. There is up to isomorphism only one tree with one leaf. It has a
single edge whose endpoints are the root and the leaf. Thus T(1) has one element. It
is easy to see that T(2) also only has one element: the tree with one vertex that has
two input edges. Figure 3-2 shows T(1), T(2), T(3).

Definition 3.1.5 (Edge collapse). Given a tree T and an internal edge e, denote
by T/e the tree obtained by colllapsing the edge e, identifying its endpoints. (In
poset terms, this is equivalent to removing from the poset the element corresponding
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1

T(2)T(1)

1 2 1 2 2 3 1 3 1 2

2

3 3

T(3)

1

Figure 3-2: Labelled trees with three or fewer leaves

to the upper endpoint of the edge.) If u and v are those endpoints, write u ◦ v for
the resulting vertex of T/e. Note that T/e has the same leaves as T so retains any
labelling. See Figure 3-3 for an example.

T/eT

b ca a b c

#u

v
e

u ◦ v

Figure 3-3: Edge collapse of labelled trees

Definition 3.1.6 (The categories T(A)). The process of collapsing edges gives us
a partial order on the set T(A) of isomorphism classes of A-labelled trees. We say
that T ≤ T ′ if T can be obtained from T ′ be collapsing a sequence of edges. We think
of the resulting poset as a category.

We now give our trees topological significance by introducing ‘weightings’ on them.
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Definition 3.1.7 (Weightings). A weighting on a tree T is an assignment of non-
negative ‘lengths’ to the edges of T in such a way that the ‘distance’ from the root
to each leaf is exactly 1. The set of weightings on a tree T is a subset of the space
of functions from the set of edges of T to the unit interval [0, 1] and we give it the
subspace topology. We denote the resulting space by w(T ). A tree together with a
weighting is a weighted tree.

Example 3.1.8. There is only one way to weight the unique tree T ∈ T(1) (the
single edge must have length 1), so w(T ) = ∗. For any n, T(n) contains a tree Tn

with a single vertex that has n incoming edges. For this tree we have w(Tn) = ∆1

the topological 1-simplex or unit interval. Figure 3-2 displays another shape of tree
with three leaves, one that has two vertices. For such a tree U , we have w(U) = ∆2,
the topological 2-simplex. Not all spaces of weightings are simplices, but we do have
the following result.

Lemma 3.1.9. Let T be a tree with n (internal) vertices. Then w(T ) is homeomor-
phic to the n-dimensional disc Dn. If n ≥ 1, the boundary ∂w(T ) is the subspace of
weightings for which at least one edge has length zero.

Proof. Suppose T has l leaves. Then it has n + l total edges and using the lengths of
the edges as coordinates we can think of w(T ) as a subset of Rn+l. For each leaf li of T
there is a condition on the lengths of the edges in a weighting that translates into an
affine hyperplane Hi in Rn+l. Then w(T ) is the intersection of all these hyperplanes
with [0, 1]n+l.

Now these hyperplanes all pass through the point that corresponds to the root
edge having length 1 and all other edges length zero. Therefore their intersection is
another affine subspace of Rn+l. To see that they intersect transversely, we check that
each Hi does not contain the intersection of the Hj for j ̸= i. Consider the point pi

in Rn+l that assigns length 1 to each leaf edge except that corresponding to leaf li,
and length 0 to all other edges (including the leaf edge for li). Since the equation for
the hyperplane Hj contains the length of exactly one leaf edge, this point pi is in

⋂

j ̸=i

Hj

but not in Hi. This shows that the Hi do indeed intersect transversely. Therefore
their intersection is an n-dimensional affine subspace V of Rn+l.

Finally, notice that, as long as n > 0, V passes through an interior point of
[0, 1]n+l, for example, the point where all edges except the leaf edges have length ε
for some small ε > 0 and the leaf edges then have whatever lengths they must have
to obtain a weighting. It then follows that w(T ) = V ∩ [0, 1]n+l is homeomorphic to
Dn. If n = 0, there is only one tree and its space of weightings is a single point, that
is, D0.

For the second statement, notice that the boundary of w(T ) is the intersection of
V with the boundary of the cube [0, 1]n+l. If a weighting includes an edge of length
zero, it lies in this boundary. Conversely, a weighting in this boundary must have
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some edge with length either 0 or 1. If the root edge has length 1, all other edges
must have length 0. If some other edge has length 1, the root edge must have length
0. In any case, some edge has length 0.

Definition 3.1.10 (The functors w(−) and w̄(−)). For each finite set A, the
assignment T (→ w(T ) determines a functor

w(−) : T(A) → Top

where Top is the category of unbased spaces. To see this we must define maps

w(T/e) → w(T )

whenever e is an internal edge in the A-labelled tree T . Given a weighting on T/e
we define a weighting on T by giving edges in T their lengths in T/e with the edge e
having length zero. This is an embedding of w(T/e) as a ‘face’ of the ‘simplex’ w(T ).
It’s easy to check that this defines a functor as claimed.

Let w0(T ) be the subspace of w(T ) containing weightings for which either the root
edge or some leaf edge has length zero. We set

w̄(T ) := w(T )/w0(T ).

This is a based space with basepoint given by the point to which w0(T ) has been
identified. If T is the tree with only one edge then w0(T ) is empty. We use the
convention that taking the quotient by the empty set is equivalent to adjoining a
disjoint basepoint. Therefore, w̄(T ) = S0.

The maps w(T/e) → w(T ) clearly map w0(T/e) to w0(T ) and so give us maps

w̄(T/e) → w̄(T ).

For each finite set A, these form a functor

w̄(−) : T(A) → Top∗

where Top∗ is the category of based spaces.

Example 3.1.11. Figure 3-4 displays the spaces w(T ) for T ∈ T(3) and how the
functor w(−) fits them together. Recall that the poset T(3) has four objects: one
minimal object (the tree with one vertex and three incoming edges) and three maximal
objects (three binary trees with two vertices). As the picture shows, the functor w(−)
embeds a 1-simplex for the minimal object as one of the 1-dimensional faces of a 2-
simplex for each of the maximal objects. The subspaces w0(T ) are outlined in bold.
Collapsing these we get the functor w̄(−) which embeds S1 (for the minimal object)
as the boundary of D2 (for each maximal object).
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Figure 3-4: Spaces of weightings of trees with three leaves

3.2 The bar constructions for a reduced operad

This is the central section of the thesis. It contains the definition of the bar construc-
tion in terms of trees (§3.2.1), the relation of this to the simplicial bar construction
(§3.2.2) and the construction of the cooperad structure (§3.2.3).

We will work in a fixed symmetric monoidal Top∗-category (C,!, S) where Top∗
is the category of based compactly-generated spaces and basepoint preserving maps.
Since Top∗ is pointed, Proposition 2.1.13 implies that C too is pointed. We denote
the null object in C also by ∗ and we assume that C has all limits and colimits. The
examples to bear in mind are C = Top∗ itself and C = Spec. We will use the notation
developed in §2.1 for the enrichment, tensoring and cotensoring of C over Top∗.

Before we start we should stress that the constructions in this paper only apply
to reduced operads (or cooperads). That is, those for which the unit (or counit) map
is an isomorphism. This is reflected in several places, most notably in the fact that
our trees are not allowed to have vertices with only one incoming edge (see Remark
3.1.2). It is a necessary condition for our construction of the cooperad structure on
B(P ).

3.2.1 Definition of the bar construction

We give two definitions of the bar construction for an operad. The first is somewhat
informal and relies on C being the category of based spaces, but captures how we
really think about these objects. The second is a precise formal definition as a coend
in the category C.
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Definition 3.2.1. Let P be a reduced operad in Top∗. The bar construction on P
is the symmetric sequence B(P ) defined as follows. A general point p in B(P )(A)
consists of:

• an isomorphism class of A-labelled trees: T ∈ T(A);

• a weighting of T ;

• for each (internal) vertex v of T , a point pv in the based space P (i(v)) (recall
that i(v) is the set of incoming edges of the vertex v);

subject to the following identifications:

• if pv is the basepoint in P (i(v)) for any v then p is identified with the basepoint
∗ ∈ B(P )(A);

• if the internal edge e has length zero, we identify p with the point q given by

– the tree T/e;

– the weighting on T/e in which an edge has the same length as the corre-
sponding edge of T in the weighting that makes up p;1

– qu◦v given by the image under the composition map

P (i(u)) ∧ P (i(v)) → P (i(u ◦ v))

of (pu, pv) (notice that i(u ◦ v) = i(u) ◦v i(v));

– qt = pt for the other vertices t of T/e;

• if a root or leaf edge has length zero, p is identified with ∗ ∈ B(P )(A).

A bijection σ : A → A′ gives us an isomorphism σ∗ : B(P )(A) → B(P )(A′) by
relabelling of the leaves of the tree. In this way, B(P ) becomes a symmetric sequence
in Top∗.

Example 3.2.2. Consider B(P )(1). There is only one tree with a single leaf and
only one weighting on it. It has no vertices so B(P )(1) does not depend at all on P .
With the basepoint (which is disjoint in this case because nothing is identified to it)
we get B(P )(1) = S0.

Next consider B(P )(2). Again there is only one tree, but this time it has a vertex
(with two incoming edges) and the space of ways to weight the tree is ∆1 = [0, 1].
Making all the identifications we see that

B(P )(2) = ΣP (2),

the (reduced) suspension of P (2).

1This is the inverse image under the injective map

w(T/e) → w(T )

of the weighting corresponding to p. The condition that e has length zero says precisely that this
weighting is in the image of this map.
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Definition 3.2.3 (The functors PA). A key ingredient of the general definition of
the bar construction is that an operad P in C determines a functor

PA(−) : T(A)op → C.

where T(A), as always, is the poset of isomorphism classes of A-labelled trees ordered
by edge collapse. For a tree T we define

PA(T ) :=
∧̄

vertices v in T

P (i(v))

where we recall that i(v) is the set of incoming edges to the vertex v. If e is an
internal edge in T with endpoints u and v then there is a partial composition map

P (i(u)) ! P (i(v)) → P (i(u ◦ v)).

Using this we get a map
PA(T ) → PA(T/e)

that makes PA(−) into a functor as claimed.

Recall from Definition 3.1.10 that we have a functor

w̄(−) : T(A) → Top∗

given by taking the space of weightings on a tree, modulo those for which a root or
leaf edge has length zero.

Definition 3.2.4 (Formal definition of the bar construction). The bar con-
struction of the reduced operad P is the symmetric sequence B(P ) defined by

B(P )(A) := w̄(−) ⊗T(A) PA(−) =

∫ T∈T(A)

w̄(T ) ⊗ PA(T ).

This is the coend in C of the bifunctor

w̄(−) ⊗ PA(−) : T(A) × T(A)op → C.

(See [15] for a full treatment of coends.) The definition of the coend is a colimit over
a category whose objects are morphisms in T(A) and we will write the coend above
as

colim
T≤T ′∈T(A)

w̄(T ) ⊗ PA(T ′)

when we need to manipulate it.
A bijection A → A′ induces an isomorphism of categories T(A) → T(A′) by the

relabelling of trees. If T (→ T ′ under this isomorphism then PA(T ) = PA(T ′) and
w̄(T ) = w̄(T ′). Therefore we get an induced isomorphism B(P )(A) → B(P )(A′).
This makes B(P ) into a symmetric sequence in C.
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Remark 3.2.5. To see that our two definitions of the bar construction are equivalent
when C = Top∗, recall that the coend is a quotient of the coproduct

∨

T∈T(A)

w̄(T ) ⊗ PA(T ).

That is, a point consists of a weighted tree together with elements of the P (i(v))
for vertices v subject to some identifications. The maps PA(T ) → PA(T/e) and
w̄(T/e) → w̄(T ) encode the identifications made in Definition 3.2.1.

Remark 3.2.6. Our definition of the bar construction is rather reminiscent of the
geometric realization of simplicial sets or spaces. This line of thought leads to the
definition of an arboreal object in C as a functor

T(A)op → C

in which T(A) plays the role of the simplicial indexing category ∆. With the spaces
of weightings w̄(T ) playing the role of the topological simplices, the bar construction
B(P ) can be thought of as the geometric realization of the arboreal object PA(−).
We hope to formalize and extend these ideas in future work.

Remark 3.2.7. The W -construction of Boardman and Vogt (also sometimes called
the bar construction) is defined in a very similar manner to B(P ). It uses slightly
different spaces of trees and produces an operad instead of a cooperad. See [17] for
details. Benoit Fresse has noticed a relationship between W (P ) and B(P ), namely
that

B(P ) = Σ Indec(W (P ))

where Σ is a single suspension (that is, tensoring with S1) and Indec denotes the
‘operadic indecomposables functor’.

Example 3.2.8 (The associative operad). Let Ass be the operad for associative
monoids in unbased spaces. This is given by

Ass(n) := Σn

(with the discrete topology and regular Σn-action). The composition maps are the
inclusions given by identifying

Σr × Σn1 × · · ·× Σnr

with a subgroup of Σn1+···+nr . We obtain an operad Ass+ in Top∗ by adding a disjoint
basepoint to each of the components of Ass. Let us calculate B(Ass+).

The points pv ∈ Ass+(i(v)) in Definition 3.2.1 can be thought of as determining
an order on the incoming edges to vertices of a tree. This allows us to identify a point
in B(Ass+)(n) with a planar weighted tree with leaves labelled 1, . . . , n. This breaks
B(Ass+)(n) up into a wedge of n! terms, each corresponding to an ordering of the
leaves of the trees involved.
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As we now show, each of these terms is an (n − 1)-sphere. Think of constructing
a planar weighted tree with leaves labelled in a fixed order (say, 1, . . . , n) by the
following method. Connect the first leaf to the root with an edge of length 1. Then
attach the second leaf at some point along the edge already drawn. Attach the third
leaf at some point along the path from the second leaf to the root, and so on. The
space of choices made in doing all this is [0, 1]n−1 and we obtain precisely the planar
weighted trees we want in this manner (see Figure 3-5). The root edge or a leaf edge
will have length zero if and only if at least one of our choices was either 0 or 1. Hence
the space we want is obtained by identifying the boundary of [0, 1]n−1 to a basepoint.
This gives Sn−1.

1 3 12 2 3

Figure 3-5: Constructing planar weighted trees

Therefore we have
B(Ass+)(n) = Sn−1 ∧ (Σn)+

where Σn acts trivially on the Sn−1 term and by translation on the non-basepoints of
(Σn)+.

We can also picture what happens for n = 3 in terms of sticking together the
spaces w̄(T ) ∧ AssA(T )+ for T ∈ T(3). The w̄(T ) are the quotients of the spaces
picture in Figure 3-4 by the subspaces outlined in bold. To make up B(Ass+)(3) we
need six copies of the 1-simplex (corresponding to the points in Ass(3)) and twelve
copies of the 2-simplex. (There are four points in Ass(2)×Ass(2) and three trees of
this type.) These fit together to form six disjoint copies of the space of Figure 3-6,
one for each permutation of 1, 2, 3. The type of tree used to form each part is shown.
When we collapse the bold subspaces to the basepoint we get a wedge of six copies
of S2 as expected.

3.2.2 Relation to the simplicial bar construction

In this section we show that B(P ) is isomorphic to the geometric realization of the
standard simplicial bar construction on the reduced operad P . This simplicial bar
construction can be defined for any augmented monoid in a monoidal category.2 We
have seen (Proposition 2.2.9) that under the right conditions an operad is just a
monoid for the monoidal product on the category of symmetric sequences given by

2See [16, II.2.3] for a discussion of different forms of the simplicial bar construction.
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1 2 3

1 2 3 1 2 3

Figure 3-6: One piece of B(Ass+)(3)

the composition product ◦. To define the simplicial bar construction in general (that
is, without the assumption that ! commutes with finite coproducts) we must say
what we mean by higher iterates of ◦. For this we use the following natural extension
of the three-way product of §2.2.

Definition 3.2.9 (Iterated composition product of symmetric sequences).
Let (C,!, S) be a pointed symmetric monoidal category. The composition of the
symmetric sequences M1, . . . , Mr is the symmetric sequence given by

(M1 ◦ · · · ◦ Mr)(A) :=
∨

Ar"..."A1

M1(A1) !
∧̄

a∈A1

M2(A2,a) ! · · · !
∧̄

a∈Ar−1

Mr(Ar,a)

where Ai,a is the inverse image of a under the surjection Ai " Ai−1.

Remark 3.2.10. There is a natural map from (M1 ◦ · · ·◦Mr) to any of the symmet-
ric sequences obtained by choosing ways to bracket this expression and using lower
iterates of ◦. All the ‘obvious’ diagrams relating these maps commute. If ! com-
mutes with finite coproducts in C then all these maps are isomorphisms and reflect
the associativity isomorphisms of the monoidal product ◦.

Definition 3.2.11 (Simplicial bar construction). Let P be a reduced operad in
C. The simplicial bar construction B•(P ) is the simplicial object in the category of
symmetric sequences on C with

Bk(P ) = P ◦ · · · ◦ P︸ ︷︷ ︸
k

.

For i = 1, . . . , k − 1 face maps

di : P ◦ · · · ◦ P︸ ︷︷ ︸
k

→ P ◦ · · · ◦ P︸ ︷︷ ︸
k−1

are given by

· · · ◦ P ◦ P ◦ · · · → · · · ◦ (P ◦ P ) ◦ · · · → · · · ◦ P ◦ . . .
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where we are using the operad composition P ◦P → P to compose the ith and i+1th

factors. The maps d0 and dk are given by applying the augmentation map P → I to
the first and last copies of P respectively. Degeneracy maps

sj : P ◦ · · · ◦ P︸ ︷︷ ︸
k

→ P ◦ · · · ◦ P︸ ︷︷ ︸
k+1

are given for j = 0, . . . , k by using the unit map I → P to insert a copy of P between
the jth and (j + 1)th factors:

· · · ◦ P ◦ P ◦ · · · ∼= · · · ◦ P ◦ I ◦ P ◦ · · · → · · · ◦ P ◦ P ◦ P ◦ · · · .

Remark 3.2.12. It is in fact sufficient for this definition that P be augmented.
However, we need P to be reduced to make the following identification of the simplicial
bar construction with B(P ) as defined previously.

Proposition 3.2.13. Let P be a reduced operad in C. Then the geometric realization3

of B•(P ) is isomorphic to the bar construction B(P ).

Proof. We give the proof for C = Top∗ (which is the only case we require in this
paper) based on the informal description of B(P ) in Definition 3.2.1. The same idea
could be used to write a proof that works for any C using the formal definition of
B(P ) as a coend.

The idea is that the iterated composition products that make up the simplicial
bar construction can be thought of in terms of sequences of partitions which in turn
are related to trees of the type we are using to define B(P ).

We first give an explicit description of the n-simplices in B•(P )(A). These are
given by the object

P ◦ · · · ◦ P︸ ︷︷ ︸
n

(A).

Delving into the definition of ◦ we can write this as a coproduct over all sequences of
partitions of the set A:

0̂ = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ λn = 1̂

where λ ≤ µ if λ is finer than µ (if two elements of A are in the same block in λ, they
are also in the same block in µ) and 0̂, 1̂ are the minimal and maximal partitions with
respect to this order. The terms in the coproduct are appropriate smash products of
the P (r). We get a factor of P (r) every time one of the blocks of one of the partitions
breaks up into r blocks in the next partition along.

A point in the geometric realization |B•(P )| can be represented by a point in the
topological n-simplex ∆n together with a choice of sequence of partitions as described
above and a point in the appropriate smash product of the spaces P (r).

3The geometric realization of a simplicial symmetric sequence is defined pointwise: |X |(A) =
|X(A)|. Note that a simplicial symmetric sequence is the same thing as a symmetric sequence of
simplicial objects.
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A sequence of partitions determines an A-labelled tree T as follows. Take a vertex
for each block of each λi for i = 0, . . . , n − 1. Add a root and a leaf for each element
of A. Two vertices are joined by an edge if they come from consecutive partitions of
the sequence and the block for one is contained in the block for the other. Finally
we add a root edge from the λ0 vertex to the root and a leaf edge from each leaf to
the corresponding λn−1 vertex. (Notice that vertices in this tree might have only one
input edge - let’s allow this for the moment.)

A point in ∆n determines a weighting on the tree we have just constructed. Think-
ing of ∆n as the subspace of Rn+1 with x0+· · ·+xn = 1 and xi ≥ 0, we get a weighting
by giving the root edge length x0, the edges connecting the vertices for λi−1 to the
vertices for λi length xi and the leaf edges length xn. We can now remove the vertices
with only one input edge, connecting their input and output edges. This gives us a
point in w(T ) for some tree T in the sense of Definition 3.1.1.

Finally notice that because P (1) = S0 (as P is reduced), the smash product of
spaces P (r) determined by the sequence of partitions is precisely PA(T ). Therefore
we actually obtain a point in B(P )(A).

It remains to show that this process sets up a homeomorphism between |B•(P )(A)|
and B(P )(A). There are a couple of key steps. Firstly the degeneracy maps in
the simplicial bar construction are isomorphisms on terms in the coproduct. These
correspond to inserting lots of vertices with one input edge in our trees, which are
then removed by the definition. So we only have to worry about the identifications
made by the face maps. But the face maps are given by removing partitions from
the sequences which corresponds to edge collapse. Hence the identifications made
in defining B(P ) are the same as those in defining the realization of B•(P ). This
completes the proof.

3.2.3 Cooperad structure on the bar construction

Up to this point, all we have done is identify the simplicial bar construction on a re-
duced operad in terms of trees. The main point of this thesis is that this identification
allows us to see that there is a cooperad structure on the bar construction. In this
section we describe this structure. The key to getting the cooperad cocomposition
maps is the process of grafting (or rather ungrafting) trees.

Definition 3.2.14 (Tree grafting). Let T be an A-labelled tree, U a B-labelled
tree and a an element of A. We define the grafting of U onto T at a to be the tree
T ∪a U obtained by identifying the root edge of U to the leaf edge of T corresponding
to a. Figure 3-7 below illustrates this process.

We denote the newly identified edge by ea. Every other edge of T ∪a U comes
either from T or from U . The vertices of T ∪a U are the vertices of T together with
the vertices of U (and they have the same number of incoming edges). Finally there
is a natural A∪a B-labelling of T ∪a U got by combining the labellings of T and of U .

We say that an A ∪a B-labelled tree is of type (A, B) if it is of the form T ∪a U
for an A-labelled tree T and a B-labelled tree U . The next lemma says that an
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(→

T

1 a 2 3

U

T ∪a U

1

2 3

Figure 3-7: Tree grafting

A ∪a B-labelled tree is a grafting in at most one way. This is trivial but crucial to
the construction of the cooperad structure maps below.

Lemma 3.2.15. For any A∪a B-labelled tree V there is at most one pair (T, U) such
that V = T ∪a U .

Proof. In the grafted tree T ∪a U the ‘upper’ endpoint of the edge ea is a vertex whose
‘parent leaves’ are labelled precisely by the elements of B. There can be at most one
such vertex v in V and cutting along the edge immediately below v produces the trees
T, U that make up V .

Definition 3.2.16 (Cocomposition maps for B(P )). We have to define maps

B(P )(A ∪a B) → B(P )(A) !B(P )(B) (3.2.17)

for finite sets A, B and a ∈ A. A point p in B(P )(A∪a B) consists of a weighted tree
V labelled by A ∪a B together with elements of pv ∈ P (i(v)) for vertices v of V . We
treat two cases:

1. If V is not of the form T ∪a U for an A-lablled tree T and a B-labelled tree U ,
then we will map p to the basepoint on the right-hand side of (3.2.17).

2. If V is of this form (that is, it is of type (A, B)) then things are more interesting.
Below we describe how the map (3.2.17) is defined in this case.

Since V is of type (A, B), Lemma 3.2.15 tells us that there is a unique A-labelled
tree T and a unique B-labelled tree U such that V = T ∪a U . We use these trees as
the basis for elements q ∈ B(P )(A) and r ∈ B(P )(B) respectively. What remains to
be seen is how the weighting and vertex labels of V determine weightings and vertex
labels for T and U .

The vertex labels are easy because the vertices of T ∪a U consist of the vertices of
each of T and U with the same numbers of input edges. Therefore we take

qv := pv ∈ P (i(v))
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for vertices v of T and
ru := pu ∈ P (i(v))

for vertices u of U .
The way in which a weighting on T ∪a U determines weightings on T and U is the

key part of our construction. This comes about via a map

w̄(T ∪a U) → w̄(T ) ∧ w̄(U) (3.2.18)

(recall that w̄(−) is the space of weightings on a tree with those that have zero length
root or leaf edges identified to a basepoint).

So take a weighting of T ∪a U . Define a weighting on T by giving the edges the
same lengths they had in T ∪a U and giving the leaf edge for a the necessary length
to make the root-leaf distances equal to 1. Next define a weighting on U by taking
the lengths from T ∪a U and scaling up by a constant factor to make the root-leaf
distances equal to 1 (the length of the root edge of U comes from the length of the
edge ea in T ∪a U). The scaling factor is the inverse of the total length of the U part
of T ∪a U . The only time this doesn’t work is if all the U-edges in T ∪a U (including
ea) are of length zero. However in that case the weighting we just defined on T has
a leaf edge of length zero and so is the basepoint in w̄(T ). This is almost enough to
define a map of the form (3.2.18). The only thing left to check is that if a leaf or
root edge of T ∪a U is of length zero then the same is true of either of the chosen
weightings on T and U . This is clear. Figure 3-8 illustrates a particular case of the
map (3.2.18).

T U

1 2 a3 3 1 2

x

y

z

x + y

z
y

x+y

x
x+y

(→

x
x + yx + y

T ∪a U

x
x+y

Figure 3-8: The map w̄(T ∪a U) → w̄(T ) ∧ w̄(U)

This completes the definition of the cooperad structure maps (3.2.17):

B(P )(A ∪a B) → B(P )(A) !B(P )(B)

given, in summary, by:

p = (V, {pv}) (→
{

q = (T, {pv}v∈T ), r = (U, {pv}v∈U ) if V = T ∪a U ;

∗ otherwise.

with the weightings on T, U given by the map (3.2.18) just constructed.
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We still have to check that these maps are well-defined. To see this we have to
look at the identifications made in the definition of B(P )(A ∪a B):

• if pv equals the basepoint in P (i(v)) for any vertex v ∈ V then the same will be
true of the corresponding vertex in either T or U . Hence such a p maps to the
basepoint;

• if an interior edge e of the tree V underlying the point p is of length zero, p is
identified with another point p′ as described in Defintion 3.2.1. We have various
possibilities:

1. V is not of the form T ∪a U in which case neither is V/e and both p and
p′ map to the basepoint;

2. V = T ∪a U and e corresponds to an internal edge of T . In this case, the
points q and q′ will be identified via the collapse of that edge, and the
points r and r′ will be equal. So p and p′ map to the same element of
B(P )(A) !B(P )(B);

3. V = T ∪a U and e corresponds to an internal edge of U . This is similar to
case (2);

4. V = T ∪a U and e is the edge ea obtained from identifying the root edge of
U with the a-leaf edge of T . In this case V/e is no longer of the form T ∪aU
and so p′ maps to the basepoint. But in the weighting on U determined
by that on T ∪a U the root edge has length scaled up from the length of
ea which is therefore zero. So the point r is the basepoint in B(P )(B) and
so p also maps to the basepoint.

• we have already checked in the definition of the map (3.2.18) that if a root or
leaf edge in p is of length zero, then the same is true of at least one of q and r.
Therefore such a p maps to the basepoint in B(P )(A) !B(P )(B).

This completes the check that our maps (3.2.17) are well-defined. The final piece of
the cooperad structure for B(P ) is a counit map B(P )(1) → S0. But we already saw
that B(P )(1) ∼= S0 (in the based space case) so our counit is this isomorphism. Note
that this means B(P ) turns out to be a reduced cooperad.

Example 3.2.19. The map

B(P )({1, 2, 3}) → B(P )({a, 3}) ∧ B(P )({1, 2})

is pictured in Figure 3-8. The left-hand side (with vertices labelled by elements of
P (2)) represents a point p of B(P )({1, 2, 3}). The two trees on the right-hand side
(with vertices labelled by those same elements in the obvious way) represent the image
of p in B(P )({a, 3}) ! B(P )({1, 2}). In this example, all points that are based on
trees of shapes other than that shown are mapped to the basepoint.

We will save for later the task of checking that these maps do indeed give us a
cooperad structure. First we translate Definition 3.2.16 into the category-theoretic
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language needed to define the cocomposition maps for a general C. To do this, we
notice that the ‘ungrafting’ process more-or-less makes our categories T(A) into a
cooperad of categories. To make this precise, we describe an ‘add a disjoint basepoint’
functor for categories.

Definition 3.2.20 (Categories with initial objects). Write Cat+ for the category
in which an object is a (small) category C+ together with an initial object ∗ such that
HomC+(X, ∗) is empty for all X ̸= ∗ and HomC+(∗, ∗) consists only of the identity
morphism. The morphisms in Cat+ are functors that preserve the initial objects.

There is a functor from the category Cat of all (small) categories to Cat+ given
by adding an initial object with the correct morphisms to a category C to obtain C+.
Note that every object in Cat+ can be obtained in this way, but not every morphism
in Cat+ is given by adding an initial object to a morphism in Cat.

Define a symmetric monoidal product ∧ on Cat+ by:

C+ ∧ D+ := C+ × D+/C+ ∨ D+.

where the wedge product is the disjoint union with the initial objects identified and
the quotient identifies this wedge product to the initial object of the smash product.
Notice that if C, D ∈ Cat then

C+ ∧ D+ = (C × D)+

The unit for this product is the category 1+ with two objects and a single morphism
between them.

In particular we write T(A)+ for the category formed by adding an initial object
to our poset of A-labelled trees T(A). The reason for making all these new definitions
is then the following result.

Proposition 3.2.21. The categories T(A)+ form a reduced cooperad in the Cat+.

Proof. The cocomposition maps have the form

T(A ∪a B)+ → T(A)+ ∧ T(B)+ = (T(A) × T(B))+

and are given by ‘ungrafting’ trees. Take V ∈ T(A∪a B). If V is a tree of type (A, B)
we map it to the pair (T, U) where T, U are the unique trees that graft together to
give V (see Lemma 3.2.15). If V is not of type (A, B) (or is the initial object) we
map it to the initial object of the right-hand side.

First we must check that we have indeed given a functor here. Suppose that
V ≤ V ′ in T(A∪A B). The only interesting case is when V is of type (A, B), so maps
to a pair (T, U) on the right-hand side. We have to show two things: that V ′ is also of
type (A, B) with decomposition (T ′, U ′) and then that T ≤ T ′ and U ≤ U ′. Well, let
ea be the edge in V at which the grafting took place. Since V is obtained from V ′ by
a sequence of edge collapses, ea must come from an edge ea′ in V ′ that is not collapsed
in this sequence. This edge breaks V ′ into two parts and we can write V ′ = T ′ ∪a′ U ′
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for some trees T ′, U ′ with some labellings (a priori, not necessarily by A and B).
But it is now clear that U ′ must yield U after undergoing some edge collapses. So
U ′ ∈ T(B) and U ≤ U ′. Similarly, T ′ ∈ T(A) and T ≤ T ′ (after relabelling a′ by a).

Notice that T(1)+ is isomorphic to the unit 1+ for the symmetric monoidal struc-
ture on Cat+. We take as unit map the (unique) isomorphism 1+ → T(1)+.

It still remains to check that the cooperad axioms do indeed hold for our cocom-
position maps. This is simple and we leave it to the reader.

Remark 3.2.22. The original categories T(A) in fact already form an operad in Cat
with composition maps given by grafting rather than ungrafting. This operad struc-
ture is effectively what is used by Boardman and Vogt to define their W -construction.

The next step is to show that the bar construction can be defined as a coend in
T(A)+ instead of T(A).

Lemma 3.2.23. Let P be a reduced operad in C. The functors w̄(−) and PA(−) on
T(A) naturally extend to functors

w̄(−) : T(A)+ → Top∗

and
PA(−) : (T(A)+)op → C

and we have

B(P )(A) =

∫ T∈T(A)+

w̄(T ) ⊗ PA(T ).

Proof. We set w̄(∗) = ∗Top∗ and PA(∗) = ∗C with the necessary definition on mor-
phisms (given by the fact that ∗Top∗ is an initial object in Top∗ and ∗C is a terminal
object in C). It is then clear that ∗ ∈ T(A)+ does not contribute anything to the
coend which therefore reduces to the previous definition of B(P )(A).

The maps (3.2.18) of Definition 3.2.16 are still the key ingredients in constructing
the cooperad maps for B(P ).

Lemma 3.2.24. The maps

w̄(T ∪a U) → w̄(T ) ∧ w̄(U)

previously defined form part of a natural transformation

T(A ∪a B)+

⇓ Top∗

T(A)+ ∧ T(B)+

""

))((((((( w̄(−)

**)))))))
w̄(−)∧w̄(−)

.
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Proof. The bottom functor here is defined in the obvious way on T(A) × T(B) and
sends ∗ to ∗. For V ∈ T(A ∪a B) not of type (A, B), the corresponding part of the
natural transformation is

w̄(V ) → ∗.

The only really interesting naturality square comes from V ≤ V ′ with V ′ of type
(A, B) and V not. The square that must commute in this case is

w̄(V ) w̄(V ′)

∗ w̄(T ′) ∧ w̄(U ′)
""

!!

""

!!

This is the content of part (4) of the checking we did towards the end of Definition
3.2.16: from any weighting on V , the weighting we get on V ′ will have length zero
for the edge connecting the T ′-part to the U ′-part. Hence the root edge of the cor-
responding weighting on U ′ will have length zero. So we map into the basepoint of
w̄(T ′) ∧ w̄(U ′).

We have a corresponding result for the functors PA(−) of Definition 3.2.4.

Lemma 3.2.25. Let P be a reduced operad in C. Then there is a natural transfor-
mation

T(A ∪a B)op
+

⇓ C

(T(A)+ ∧ T(B)+)op
""

))((((((((( PA∪aB(−)

**))))))))) PA(−)!PB(−)

Proof. In other words, given V ∈ T(A ∪a B) we have maps

PA∪aB(V ) → PA(T ) ! PB(U)

when V = T ∪a U . There are obvious isomorphisms that we take for these maps. The
naturality squares are easily seen to commute. Again the only one that seems like it
might be interesting is for V ≤ V ′ with V ′ of type (A, B) and V not. But in fact this
square just turns out to be

PA∪aB(V ′) PA∪aB(V )

PA(T ′) ! PB(U ′) ∗
""

!!

""

!!

which is not so interesting after all.
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Finally, we can define the cocomposition maps for the cooperad B(P ).

Definition 3.2.26 (Formal construction of cocomposition maps for B(P )).
Let P be a reduced operad in C and let B(P ) be the symmetric sequence of Definition
3.2.4. The cocomposition map

B(P )(A ∪a B) → B(P )(A) !B(P )(B)

is given by the following sequence of maps:

B(P )(A ∪a B) = colim
V ≤V ′∈T(A∪aB)+

w̄(V ) ⊗ PA∪aB(V ′)

→ colim
(T,U)≤(T ′,U ′)∈T(A)+∧T(B)+

(w̄(T ) ∧ w̄(U)) ⊗ (PA(T ′) ! PB(U ′))

→ colim
(T,U)≤(T ′,U ′)∈T(A)+∧T(B)+

(w̄(T ) ⊗ PA(T ′)) ! (w̄(U) ⊗ PB(U ′))

→
(

colim
T≤T ′∈T(A)+

w̄(T ) ⊗ PA(T ′)

)
!

(
colim

U≤U ′∈T(B)+
w̄(U) ⊗ PB(U ′)

)

= B(P )(A) !B(P )(B)
(3.2.27)

The first map here comes from combining the natural transformations of Lemmas
3.2.24 and 3.2.25. The second is given by the transformation d of Definition 2.1.10.
It is for precisely this reason that the axiom giving us d is necessary. The third map
is given by universal properties of colimits. This completes the construction of the
cooperad structure maps for B(P ).

The next task is to check that the maps we have described actually do make B(P )
into a cooperad. That is, we must check the duals of axioms (1)-(4) from Definition
2.2.2. The key step is to see that the maps (3.2.18) satisfy corresponding conditions.

Lemma 3.2.28. Let T, U, V be A-, B- and C-labelled trees respectively and let a, a′ ∈
A, b ∈ B. Let I denote the unique ∗-labelled tree. Recall that w̄(I) = S0. Then the
following diagrams commute:

1.
w̄(T ∪a U ∪b V ) w̄(T ∪a U) ∧ w̄(V )

w̄(T ) ∧ w̄(U ∪b V ) w̄(T ) ∧ w̄(U) ∧ w̄(V )
""

!!

""

!!

2.
w̄(T ∪a U ∪a′ V ) w̄(T ∪a U) ∧ w̄(V )

w̄(T ∪a′ V ) ∧ w̄(U) w̄(T ) ∧ w̄(U) ∧ w̄(V )
""

!!

""

!!
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3.
w̄(T ∪a I) w̄(T ) ∧ w̄(I)

w̄(T )

!!

##!!!!!!!!!!!!!!!!

∼=
""

4.

w̄(I ∪∗ T ) w̄(I) ∧ w̄(T )

w̄(T )

!!

##!!!!!!!!!!!!!!!!

∼=
""

Proof. The argument for diagram (1) is contained in Figure 3-9. A point in w̄(T ∪a

U ∪b V ) comes from a weighting of the grafted tree T ∪a U ∪b V . The top-left corner
of Figure 3-9 shows such a tree with some lengths labelled:

• u is the length of the root edge;

• v is the distance from the root vertex to the lower vertex of the edge that joins
U to T (there may be intermediate vertices along this route, we let v denote
the total distance);

• w is the length of the edge that joins U to T ;

• x is the distance from the upper vertex of that edge to the lower vertex of the
edge that joins V to U ;

• y is the length of the edge that joins V to U ;

• z is the remaining distance to any of the leaves of V .

Figure 3-9 shows that whichever way we map our weighted tree around diagram (1)
we get the same result. (Note that if y + z or w +x+ y + z equals to zero, then z = 0
and we are the basepoint in every corner of diagram (1).) We therefore conclude that
diagram (1) commutes.

Diagram (2) is similar to (1) but easier. For diagram (3), notice that the image
in w̄(T ) of a weighting of T ∪a I will be effectively the same weighting. The image in
w̄(I) = S0 will be the non-basepoint unless the leaf edge for a has length zero. But
if this is the case our starting point was the basepoint in w̄(T ∪a I). This shows that
the diagram commutes.

For diagram (4), the image in w̄(T ) of a weighting of I ∪∗ T will again be the very
same weighting (no scaling up is necessary). The image in w̄(I) = S0 will always be
the non-basepoint. Therefore this diagram also commutes.
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We are now in a position to state the main result of this paper.

Theorem 3.2.29. Let P be a reduced operad in the symmetric monoidal Top∗-
category C. The maps of Definition 3.2.16 make B(P ) into a reduced cooperad in
C.

Proof. We give the formal argument for the maps of Definition 3.2.26. To fit the
relevant diagrams onto a page we need some new notation. Let’s write

w̄(T, U) := w̄(T ) ∧ w̄(U)

and
PA,B(T ′, U ′) := PA(T ′) ! PB(U ′).

Figure 3-10 then shows the diagram that has to commute for the dual of axiom (1) of
Definition 2.2.2 to hold for B(P ). The key to showing that this commutes is putting

colim
T≤T ′∈T(A)+
U≤U ′∈T(B)+
V ≤V ′∈T(C)+

w̄(T, U, V ) ⊗ PA,B,C(T ′, U ′, V ′)

into the center of the square. We’ve connected this to the top and left sides of the
square using maps similar to the first map in Definition 3.2.26. We’ve connected it
to the right and bottom sides using maps of the form d from Definition 2.1.10. It’s
then enough to show that the four smaller squares commute.

The top-left square commutes because of diagram (1) in Lemma 3.2.28. The
bottom-left and top-right squares commute because of the naturality of the trans-
formations d. The bottom-right square commutes because it is an example of the
associativity axiom we required of our d transformations in 2.1.10.

This completes the verification of the dual of axiom (1) of Definition 2.2.2. For
axiom (2) the argument is similar, but using diagram (2) of Lemma 3.2.28. For the
duals of axioms (3) and (4) we use the unit axiom for the transformations d together
with diagrams (3) and (4) of Lemma 3.2.28. We leave the reader to fill in the details
of these proofs.

3.3 Cobar constructions for reduced cooperads

We now dualize to cooperads. The cobar construction for a cooperad is strictly dual
to the bar construction for an operad. More precisely, recall that a cooperad Q in
a category C is the same thing as an operad Qop in the opposite category Cop. The
cobar construction on Q is then defined to be the bar construction on Qop. This bar
construction is a cooperad in Cop and hence an operad in C. In symbols:

Ω(Q) := B(Qop)op.

It can be useful to have a more explicit description of the cobar construction.
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Definition 3.3.1 (Cobar construction on a cooperad). Being dual to the bar
construction, the cobar construction is defined as an end rather than a coend. Let Q
be a cooperad in C. Then for each finite set A, Q determines a functor

QA(−) : T(A) → C

by
QA(T ) = Q(i(v1)) ! · · · !Q(i(vn))

where v1, . . . , vn are the vertices of T . This is a functor because the cocomposition
maps for Q give us maps

QA(T/e) → QA(T ).

(Recall that the corresponding functor for an operad was defined on T(A)op.) The
cobar construction Ω(Q) is then the symmetric sequence with

Ω(Q)(A) := MapT(A)(w̄(−), QA(−)) =

∫

T(A)

MapC(w̄(T ), QA(T )).

This is the end of the bifunctor

T(A)op × T(A) → C

given by
(T, U) (→ MapC(w̄(T ), QA(U))

where MapC denotes the cotensoring structure for C over Top∗ (and hence the tensoring
structure for Cop).

Remark 3.3.2. The cobar construction Ω(Q) on a reduced cooperad Q in based
spaces is isomorphic to the totalization of a cosimplicial cobar construction that is
dual to the simplicial bar construction. The terms in this cosimplicial construction
are iterated versions of the dual composition product of Remark 2.2.20. The fact that
Ω(Q) is the totalization of this is dual to the result that B(P ) is the realization of
that simplicial bar construction.

The operad structure maps for Ω(Q) are dual to the cooperad maps for B(P ).
The following result is the dual of Proposition 3.2.29.

Corollary 3.3.3. Let Q be a reduced cooperad in a symmetric monoidal Top∗-category
C. Then the cobar construction Ω(Q) is a reduced operad in C.

3.4 Duality for operads and cooperads

In this section we examine how the bar and cobar constructions relate to the ‘duality’
functor

D : Topop
∗ → C; X (→ MapC(X, S)
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where S is the unit of the symmetric monoidal structure on C. The case to keep
in mind is C = Spec with S is the sphere spectrum, in which case this is Spanier-
Whitehead duality.

Lemma 3.4.1. Let Q be a cooperad of based spaces. Then DQ is an operad in C.

Proof. The composition maps for DQ are given by

MapC(Q(A), S) !MapC(Q(B), S) → MapC(Q(A) ∧Q(B), S) → MapC(Q(A∪a B), S).

The first map is the natural transformation constructed in Proposition 2.1.12 (it’s the
distributive map d for Cop). The second comes from the corresponding cocomposition
map for Q.

Remark 3.4.2. The dual of an operad need not in general be a cooperad because
the map d need not in general have an inverse. However when it does we have a nice
duality result connecting the bar and cobar constructions. For this to work we need
to put the following condition on the spaces that make up our operad.

Definition 3.4.3. Two based spaces X, Y are compatibly dualizable in C if the map

d : MapC(X, S) !MapC(Y, S) → MapC(X ∧ Y, S)

is an isomorphism.

Proposition 3.4.4. Let P be an operad in based spaces whose terms (that is, the
P (A) for finite sets A) are pairwise compatibly dualizable. Then DP has a natural
cooperad structure. Moreover, we have an isomorphism of operads in C:

DB(P ) ∼= Ω(DP ).

Proof. The cooperad structure maps for DP are constructed in the same way as the
operad structure maps for DQ in 3.4.1 but using the inverse of the relevant map d
provided by the ‘compatibly dualizable’ hypothesis.

The second part relies on the descriptions of the bar and cobar constructions as
coends and ends respectively. The coend B(P ) is a colimit:

B(P )(A) = colim
T≤T ′

w̄(T ) ∧ PA(T ′)

where the colimit is taken over all inequalities of trees in T(A). Therefore

DB(P )(A) = MapC(colim w̄(T ) ∧ PA(T ′), S)
∼= lim MapC(w̄(T ) ∧ PA(T ′), S)
∼= lim MapC(w̄(T ), MapC(PA(T ′), S))
∼= lim MapC(w̄(T ), (DP )A(T ′))

The last identity again uses the ‘compatibly dualizable’ hypothesis in the form:

MapC(P (i(v1)) ∧ . . . ∧ P (i(vn)), S) ∼= MapC(P (i(v1)), S) ! · · · !MapC(P (i(vn)), S).
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The final line of this calculation is precisely the limit that defines Ω(DP ). We leave
the reader to check that this is an isomorphism of operads.

Remark 3.4.5. The only case of this result we will use in this paper is when all the
terms of the operad P are S0. These are pairwise compatibly dualizable in any C
because

MapC(S
0, C) ∼= C

for any C ∈ C.

Remark 3.4.6. Replacing C with Cop we obtain dual results. These concern the
functor S : X (→ X ⊗ S, the ‘suspension spectrum’ functor. We find that if Q is a
cooperad in based spaces then SQ is a cooperad in C. If P is an operad whose terms
are pairwise compatibly dualizable then SP is an operad in C and SB(P ) ∼= B(SP ).

We have now reached the stage where we can apply our constructions to Good-
willie’s calculus of functors (see §4.2). Before doing so, we extend our bar and cobar
constructions to modules and comodules. This will then allow us to construct modules
over the derivatives of the identity.

3.5 Bar constructions for modules and comodules

In this section we extend the bar and cobar constructions to modules and comodules.
We show that there is a bar construction on left (respectively right) modules over a
reduced operad P that yields left (respectively right) comodules over the cooperad
B(P ). Dually, there is a cobar construction on left (respectively right) comodules over
a reduced cooperad Q that yields left (respectively right) modules over the operad
Ω(Q). These are special cases of two-sided bar and cobar constructions. Given a
reduced operad P with right module R and left module L, we will define a two-
sided bar construction B(R, P, L). Taking either R or L to be the unit symmetric
sequence I will yield the promised constructions for individual modules. The two-
sided construction is isomorphic to the standard simplicial two-sided bar construction
(see Definition 3.5.9) but, in order to get the comodule structure, we have again
reinterpreted this in terms of trees.

Most of the material in this section is a straightforward generalization of that of
§§3.1-3.2. First, in §3.5.1 we describe the more general species of tree necessary for
the definitions of the two-sided constructions. In §3.5.2 we give these definitions and
show that the bar construction of §3.2.1 is a special case. In §3.5.3 we construct the
maps that make the bar construction on a module into a comodule, and dually, the
cobar construction on a comodule into a module.

As previously, C denotes a symmetric monoidal Top∗-category with null object ∗
and all necessary limits and colimits.

3.5.1 Generalized trees

To accommodate the presence of the P -modules R and L in the two-sided bar con-
struction, we need to make two changes to our notion of tree, one at the root level
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and one at the leaf level:

1. we allow the root element of a tree to have more than one incoming edge;

2. we allow the leaves of a tree to have repeated labels, that is, an A-labelling is a
surjection from A to the set of leaves, rather than a bijection.

We will refer to this notion as a ‘generalized tree’, or sometimes just a ‘tree’ if the
context makes it clear that we mean the generalized version. The following definition
makes things precise.

Definition 3.5.1 (Generalized trees). Let A be a finite set. A generalized A-
labelled tree consistst of:

• a poset T with a unique minial element r (the root) satisfying conditions (2)
and (3) of Definition 3.1.1;

• a surjection ι from the finite set A to the set of maximal elements (the leaves)
of T .

We use letters T, U, . . . to denote generalized trees, usually taking the labelling map
ι for granted. We write Tree(A) for the set of isomorphism classes of generalized
A-labelled trees. All the terminology of Definition 3.1.1 applies equally well to gen-
eralized trees.

Edge collapse for generalized trees is defined in exactly the same way as for the
trees of §3.1 except that now we allow ourselves to collapse root edges as well as
internal edges. To get the right category structure on Tree(A) we need a way to
collapse leaf edges as well. The following definition provides this.

Definition 3.5.2 (Bud collapse). A bud in a generalized tree T is a vertex all of
whose incoming edges are leaf edges. Equivalently, a bud is a maximal vertex. If b is
a bud in T , a b-leaf is a leaf of T that is attached to b.

Given a generalized A-labelled tree T and a bud b ∈ T , we define a generalized
A-labelled tree Tb which is obtained from T by bud collapse. The underlying poset
of Tb is obtained from T by removing the b-leaves. This makes b into a leaf in Tb.
The A-labelling on Tb is that of T for the leaves that still remain, with b inheriting
the labels of its old leaves. Formally, we are composing the A-labelling on T with
the surjection from the leaves of T to the leaves of Tb that sends the b-leaves in T to
b. Visually, we can think of this process as collapsing all the leaf edges attached to b
(see Figure 3-11).

Definition 3.5.3 (The categories Tree(A)). If T and T ′ are generalized A-labelled
trees, we say that T ≤ T ′ if T can be obtained from T ′ by a sequence of edge collapses
(of either internal or root edges) or bud collapses. This makes the set Tree(A) of
isomorphism classes of generalized A-labelled trees into a poset and hence a category.
Standard A-labelled trees (as defined in §3.1) are also generalized A-labelled trees
and T(A) is a full subcategory of Tree(A). See Figure 3-12 for pictures of Tree(1) and
Tree(2).
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Figure 3-11: An example of bud collapse for generalized {1, 2, 3, 4}-labelled trees

1 1 2 1 2

Tree(1) Tree(2)

{1, 2}

Figure 3-12: Tree(1) and Tree(2) (the arrows represent the direction of the morphisms
in Tree(2))

Definition 3.5.4 (Weightings on generalized A-labelled trees). We don’t need
to change the definition of a weighting for generalized trees: it is an assignment of
lengths to the edges of a tree such that the root-leaf distances all equal 1. As before,
we write w(T ) for the space of weightings on the generalized tree T . The following
result generalizes Lemma 3.1.9.

Lemma 3.5.5. Let T be a generalized A-labelled tree with n (internal) vertices. Then
w(T ) is homeomorphic to Dn and the boundary ∂w(T ) ∼= Sn−1 consists of those points
in which some edge of T has length zero.

Proof. The labelling plays no role in the space of weightings so we can ignore it.
Picture T as a collection of (non-generalized) trees T1, . . . , Tk attached at their roots.
Suppose Tj has nj vertices so that n =

∑
nj . Then we have

w(T ) ∼= w(T1) × · · ·× w(Tk) ∼= Dn1 × Dnk ∼= Dn.

Under this decomposition, a point is in the boundary of w(T ) if and only if any of it
is in the boundary of any of the w(Tj). That is, if and only if any of the edges of T
has length zero.

Definition 3.5.6 (The functor w(−) on Tree(A)). The ‘space of weightings’ func-
tor w(−) : T(A) → Top of Definition 3.1.10 can be extended to all of Tree(A). To
do this, we have to say what happens when we apply w(−) to a morphism Tb → T
coming from a bud collapse (for b a bud in a tree T ). Given a weighting of Tb we get
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a weighting of T by giving length zero to all the leaf edges attached to b. This defines
a map

w(Tb) → w(T )

and it is not hard to see that this does indeed give us a functor

w(−) : Tree(A) → Top

as claimed. Adding a disjoint basepoint we get a functor

w(−)+ : Tree(A) → Top∗.

3.5.2 The two-sided bar construction

We now update Definition 3.2.4 to the two-sided case. Along with the spaces of
weightings the key parts of this definition were functors

PA(−) : T(A)op → C.

The appropriate generalizations of these to functors on Tree(A)op are as follows.

Definition 3.5.7. Let P be a reduced operad in C with right module R and left
module L. We define functors (R, P, L)A : Tree(A)op → C by4

(R, P, L)A(T ) := R(i(r)) !
∧̄

vertices v∈T

P (i(v)) !
∧̄

leaves l∈T

L(ι−1l).

Recall that i(v) denotes the set of incoming edges to a vertex v ∈ T . Here ι denotes
the labelling surjection from A to the set of leaves of T , so that ι−1l is the set of labels
attached to the leaf l.

To complete the definition, we have to give the effect of (R, P, L)A(−) on mor-
phisms in Tree(A). Notice that Tree(A) is generated by the morphisms corresponding
to:

1. collapse of root edges;

2. collapse of internal edges;

3. bud collapse.

We will describe the effect of (R, P, L)A(−) on each of these types of generating
morphism and then check that they are compatible.

1. Suppose first that e is a root edge of the generalized A-labelled tree T . Then we
have a morphism T/e → T corresponding to collapsing e. Applying (R, P, L)A(−)
we should get a morphism

(R, P, L)A(T ) → (R, P, L)A(T/e).

4It is a serendipitous fact of our terminology for trees that the right module R relates to the
roots of our trees and the left module L relates to the leaves.
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This is given by the map

R(i(r)) ! P (i(v)) → R(i(r ◦ v))

that comes from the right P -module structure on R. Here v is the upper end-
point of the edge e in T . Notice that r ◦ v is the root element in T/e.

2. Now suppose that e is an internal edge of T . The morphism

(R, P, L)A(T ) → (R, P, L)A(T/e)

is then given (as in Definition 3.2.4) by the partial composition map

P (i(u)) ! P (i(v)) → P (i(u ◦ v))

for the operad P where u, v are the endpoints of e.

3. Finally, suppose that b is a bud in the generalized A-labelled tree T . We have
to give a map

(R, P, L)A(T ) → (R, P, L)(Tb).

This comes from the map

P (i(b)) ! L(ι−1l1) ! · · · ! L(ι−1lr) → L(ι−1b)

that is part of the left P -module structure on L. Here l1, . . . , lr are the b-leaves
in T and we have

ι−1b =
r∐

i=1

ι−1li

from the definition of bud collapse.

The associativity conditions for P to be an operad and for R and L to be P -modules
ensure that these choices do indeed determine a functor Tree(A)op → C.

Definition 3.5.8 (Two-sided bar construction). Let P be a reduced operad in
C with right module R and left module L as above. The bar construction on P with
coefficients in R and L is the symmetric sequence B(R, P, L) defined by the coends

B(R, P, L)(A) :=

∫ T∈Tree(A)

w(T )+ ⊗ (R, P, L)A(T )

for finite sets A. A bijection A → A′ determines an isomorphism of categories
Tree(A) → Tree(A′) under which our functors wA(−), wA′(−) and (R, P, L)A, (R, P, L)A′

correspond. It therefore induces an isomorphism B(R, P, L)(A) → B(R, P, L)(A′). So
we do indeed have a symmetric sequence B(R, P, L).

There is a more informal description of this bar construction that generalizes that
of B(P ) from Definition 3.2.1. For a finite set A, a point in B(R, P, L)(A) consists of
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• a weighted generalized A-labelled tree T ;

• a point in R(i(r)) where r is the root of T ;

• for each vertex v ∈ T , a point in P (i(v));

• for each leaf l ∈ T , a point in L(ι−1l) where ι−1l is the set of labels attached to
l.

These are subject to identifications that tell us what happens when the lengths of some
of the edges tend to zero. When a root edge tends to zero we use the right P -module
structure map for R. When an internal edge tends to zero we use the composition
map for P . When a collection of leaf edges attached to a bud tend to zero (note
that the leaf edges attached to a particular bud must all have the same length in a
weighting) we use the left P -module structure for L. Finally, of course, we identify to
the basepoint in B(R, P, L)(A) if any of the chosen points in R(i(r)), P (i(v)), L(ι−1l)
are the basepoint there.

We now recall the simplicial version of the two-sided bar construction for an
operads and modules over them.

Definition 3.5.9 (Simplicial two-sided bar construction). Let P be an operad
in C with right module R and left module L. The simplicial bar construction on P
with coefficients in L and R is the simplicial object B•(R, P, L) in the category of
symmetric sequences in C with

Bn(R, P, L) := R ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
n

◦ L.

The face maps
di : Bn(R, P, L) → Bn−1(R, P, L)

for i = 1, . . . , n − 1 are given by the operad composition map P ◦ P → P applied to
the ith and i + 1th factors. The face map d0 is given by the right module structure
R ◦ P → R and dn is given by the left module structure P ◦ L → L. The degeneracy
map

sj : Bn(R, P, L) → Bn+1(R, P, L)

is given by using the unit map I → P to insert an extra copy of P between the jth

and j + 1th factors.

Proposition 3.5.10. Let P be a reduced operad in C with right module R and left
module L. The bar construction of Definition 3.5.8 is isomorphic to the geometric
realization of the simplicial bar construction:

B(R, P, L) ∼= |B•(R, P, L)|.

Proof. This is an straightforward extension of the argument of Proposition 3.2.13.
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Our first example of the two-sided bar construction is that the reduced bar con-
struction a lone operad is a special case.

Example 3.5.11. Let P be a reduced operad in C and take R = L = I the unit
symmetric sequence. Recall that I is a left and right module over any augmented
operad. It is easy to see from the definitions that for the simplicial bar constructions
we have.

B•(I, P, I) ∼= B•(P ).

This tells us that
B(I, P, I) ∼= B(P )

but we can see this directly as well. First notice that 5

(I, P, I)A(T ) ∼=

{
PA(T ) if T ∈ T(A);

∗ otherwise.

This means that only the objects T ∈ T(A) contribute to the calculation of the coend
in Definition 3.5.8. However, we still have to take into account morphisms U → T
with U /∈ T(A). This amounts to collapsing to the basepoint those weighted trees in
which either the root edge or a leaf edge has length zero (since these are the images
of the maps w(U) → w(T )). All together this tells us that B(I, P, I)(A) is equal to
the coend ∫ T∈T(A)

w̄(T ) ⊗ PA(T )

where w̄(T ) is the quotient of w(T ) by the weightings which have either root or leaf
edge of length zero. This is precisely B(P )(A). Therefore we have B(I, P, I) ∼= B(P )
as claimed.

Example 3.5.12. It is easy to see that B(R, P, L)(1) = R(1) ! L(1). We have
already seen (Figure 3-12) that there are three objects in Tree(2). From this we see
that B(R, P, L)(2) is the homotopy pushout of the following diagram

R(1) ! P (2) ! L(1) ! L(1) R(1) ! L(2)

R(2) ! L(1) ! L(1)
""

!!

If R = L = I, the bottom-left and top-right objects are ∗ and the top-left object is

5Because I(n) = ∗ for n > 1, we have (I, P, I)A(T ) = ∗ whenever T has more than one root edge,
or when any leaf has more than one label. These are precisely the generalized A-labelled trees not
in T(A). For T ∈ T(A) we have

(I, P, I)A(T ) = I(1) ! PA(T ) ! I(1) ! · · · ! I(1) ∼= PA(T ).
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P (2). So we recover
B(P )(2) = B(I, P, I)(2) = ΣP (2).

Definition 3.5.13 (Bar constructions for modules). Let P be a reduced operad
in C and let R be a right P -module. We define the bar construction on R by

B(R) := B(R, P, I)

where I as previously is the unit for the composition product of symmetric sequences.
If L is a left P -module, its bar construction is

B(L) := B(I, P, L)

We trust that it will not be confusing to use the same notation for the bar construction
of right and left modules.

Example 3.5.14. Applying Example 3.5.12 to the one-sided case we see that

B(R)(1) ∼= R(1); B(R)(2) ∼= hocofib(R(1) ! P (2) → R(2))

and
B(L)(1) ∼= L(1); B(L)(2) ∼= hocofib(P (2) ! L(1) ! L(1) → L(2)).

Definition 3.5.15 (Cobar constructions for comodules). All the constructions
of this section can be applied to operads and modules in Cop, that is, to cooperads
and comodules in C. We summarize the results.

If Q is a reduced cooperad in C with left comodule L and right comodule R, the
formula of Definition 3.5.7 defines functors

(R, Q, L)A(−) : Tree(A) → C

for each finite set A and we define the cobar construction on Q with coefficients in R
and L to be the symmetric sequence Ω(R, Q, L) with

Ω(R, Q, L)(A) :=

∫

T∈Tree(A)

MapC(w(T )+, (R, Q, L)A(T )).

This is isomorphic to the totalization of the two-sided cosimplicial cobar construction
on Q with coefficients in R and L. The cobar construction on R is

Ω(R) := Ω(R, Q, I)

and the cobar construction on L is

Ω(L) := Ω(I, Q, L).

Example 3.5.16. Taking R = L = I we recover the cobar construction of §3.3:

Ω(I, Q, I) ∼= Ω(Q).
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Example 3.5.17. Taking the duals of the results of Example 3.5.12 we see that

Ω(R, Q, L)(1) ∼= R(1) ! L(1)

and that Ω(R, Q, L)(2) is the homotopy pullback of

R(1) ! L(2)

R(2) ! L(1) ! L(1) R(1) !Q(2) ! L(1) ! L(1)
""

!!

In particular:

Ω(R)(1) ∼= R(1); Ω(R)(2) ∼= hofib(R(2) → R(1) !Q(2))

and
Ω(L)(1) ∼= L(1); Ω(L)(2) ∼= hofib(L(2) → Q(2) ! L(1) ! L(1)).

3.5.3 Structure maps for bar constructions on modules

In this section we use similar methods to §3.2.3 to show that the bar construction on
a P -module (that is, a single left or right module) is a comodule over the cooperad
B(P ). In fact, we will construct maps of the form

B(R, P, L) → B(R, P, I) ◦̂ B(I, P, L) (3.5.18)

where ◦̂ is the composition of symmetric sequences defined using the product in C
rather than the coproduct (see Remark 2.2.20). Taking R = I and recalling that
B(I, P, I) = B(P ) we obtain a left B(P )-comodule structure on B(L) = B(I, P, L).
Similarly, taking L = I we get a right B(P )-comodule structure on B(R) = B(R, P, I).
Notice that taking R = L = I we recover the cooperad structure on B(P ).

The definition of the map (3.5.18) is a relatively straightforward generalization of
the cooperad structure on B(P ). We start by describing the grafting and ungrafting
processes for generalized trees.

Definition 3.5.19 (Basic grafting for generalized trees). Let T be a generalized
A-labelled tree and U a generalized B-labelled tree and let a be an element of A. We
will define the grafting of U onto T only if T and U satisfy the following conditions:

• the root of U has only one incoming edge;

• the leaf of T labelled by a is labelled only by a and no other elements of A.

In this case, the grafted tree T ∪a U is defined exactly as in Definition 3.2.14 by
identifying the root edge of U to the a-leaf edge of T . Figure 3-13 gives an example.
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Figure 3-13: Grafting generalized labelled trees

To define the maps (3.5.18) we will need to graft trees onto all of the leaf edges
of the base tree T . To do this, we must assume that all the leaves of T only have one
label, so that T satisfies the stronger condition for a labelling we required in Definition
3.1.3. Notice also that the trees U we are to graft onto T satisfy the stronger root
condition of Definition 3.1.1. The following definitions will help us talk about trees
of these types.

Definition 3.5.20 (More categories of trees). For a finite set A, we define the
following subcategories of Tree(A):

Troot(A) := {T ∈ Tree(A)| the root of T has only one incoming edge}
Tleaf(A) := {T ∈ Tree(A)| the leaves of T are labelled bijectively by A}.

Notice that T(A) = Troot(A) ∩ Tleaf(A).

Definition 3.5.21 (Grafting and ungrafting generalized trees). Let A =
∐

j∈J Aj

be a partition of A into nonempty subsets. Given trees Uj ∈ Troot(Aj) and T ∈
Tleaf(J), we denote the tree obtained by grafting all the Uj onto T at the appropriate
places by

T ∪J Uj .

We say that a generalized A-labelled tree is of type {Aj} if it is of the form T ∪J Uj for
some such T and Uj . The correct generalization of the functor of Proposition 3.2.21
is then a functor

Tree(A)+ → Tleaf(J)+ ∧ Troot(Aj1)+ ∧ . . . ∧ Tleaf(Ajr)+

that breaks the tree (T ∪J Uj) into its components T and the Uj and sends a tree not
of type {Aj} to the initial object on the right-hand side. This ‘ungrafting’ functor is
the basis of the map (3.5.18).

Our new categories of trees can be used as the base categories for defining the
one-sided bar constructions. For this we need the appropriate spaces of weightings.

Definition 3.5.22 (More spaces of weightings). For each finite set A we define
a functor

wleaf(−) : Tleaf(A) → Top∗

62



where wleaf (T ) is the quotient of w(T ) by the space of weightings in which some leaf
edge has length zero, and a functor

wroot(−) : Troot(A) → Top∗

where wroot(T ) is the quotient of w(T ) by the space of weightings in which the root
edge has length zero.

Lemma 3.5.23. Let P be a reduced operad in C with right module R and left module
L. Then the one-sided bar constructions are given by

B(R)(A) = B(R, P, I)(A) ∼=
∫ T∈Tleaf (A)

wleaf(T ) ⊗ (R, P, I)A(T )

and

B(L)(A) = B(I, P, L)(A) ∼=
∫ T∈Troot(A)

wroot(T ) ⊗ (I, P, L)A(T ).

Proof. These calculations are similar to that in Example 3.5.11 where we showed that
B(P ) = B(I, P, I). They use the facts that

(R, P, I)A(T ) = ∗ for T /∈ Tleaf(A)

and
(I, P, L)A(T ) = ∗ for T /∈ Troot(A).

The final piece of the puzzle is the construction of a map analogous to (3.2.18)
that tells us how to weight the trees obtained from ungrafting.

Definition 3.5.24. Let A =
∐

j∈J Aj be a partition of the finite set A into nonempty
subsets. Given trees T ∈ Tleaf(J) and Uj ∈ Troot(Aj) we define a map

w(T ∪J Uj)+ → wleaf(T ) ∧ wroot(Uj1) ∧ . . . ∧ wroot(Ujr)

by the obvious generalization of the construction of the maps w̄(T ∪a U) → w̄(T ) ∧
w̄(U) in Definition 3.2.16.

Definition 3.5.25. Putting together all these ingredients we construct maps

B(R, P, L)(A) → B(R, P, I)(J) !B(I, P, L)(Aj1) ! · · · !B(I, P, L)(Ajr).

In an analogous way to Definition 3.2.26, these come from the maps of Definition
3.5.24 together with the isomorphisms

(R, P, L)A(T ∪J Uj) → (R, P, I)J(T ) ! (I, P, L)Aj1
(Uj1) ! · · · ! (I, P, L)Ajr

(Ujr).

Together these maps make up the map of symmetric sequences

B(R, P, L) → B(R, P, I) ◦̂ B(I, P, L)
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as promised.

Proposition 3.5.26. Let P be a reduced operad in C with right module R and left
module L. The maps of Definition 3.5.25 determine a right B(P )-comodule structure
on B(R) and a left B(P )-comodule structure on B(L).

Proof. Taking L = I in 3.5.25 we get the right comodule structure on B(R). Taking
R = I we get the left comodule structure on B(L). We have to check the appropriate
associativity and unit axioms. This is a generalization of the work of §3.2.3. We leave
the reader to write out all the details, including the diagram corresponding to Figure
3-10.

Corollary 3.5.27. Dually, suppose that Q is a reduced cooperad in C with right
comodule R and left comodule L. Then there is a map

Ω(R, Q, I) ◦ Ω(I, Q, L) → Ω(R, Q, L)

that makes Ω(R) into a right Ω(Q)-module (by taking L = I) and Ω(L) into a left
Ω(Q)-module (by taking R = I).

Proof. Apply Proposition 3.5.26 to Q considered as an operad in Cop.

This completes our descriptions of the bar and cobar constructions for operads,
cooperads, modules and comodules. We turn now to our main application of this
theory – the Goodwillie derivatives of the identity functor.
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Chapter 4

Application to the calculus of
functors

In this chapter we describe the application of our operadic bar and cobar constructions
to Goodwillie’s calculus of homotopy functors. The main result is that the derivatives
of the identity form an operad in spectra. This follows from the fact that they can be
viewed as a cobar construction. We’ll first (§4.1) give a general outline of the calculus
of functors and then (§4.2) describe how the derivatives of the identity are related to
bar and cobar constructions for operads.

4.1 Goodwillie’s calculus of homotopy functors

In [9, 10, 11], Tom Goodwillie introduces the ‘calculus of functors’. This is a system-
atic way to approximate a given functor from, say, spaces to spaces, with ‘polynomial
functors’. The result is a ‘Taylor tower’ of closer and closer approximations and under
nice conditions, the tower ‘converges’ to the original functor. Remarkably, the ‘layers’
of the Taylor tower of a functor from spaces to spaces (the things that correspond
to individual terms in a Taylor series) are take values in infinite loopspaces and can
be described in terms of particular spectra which are called the ‘derivatives’1 of the
original functor, again by analogy with the calculus of real variables. In this section
we give a brief outline of the general theory. We concentrate on functors from the
category Top∗ of based topological spaces to itself, but the theory is developed in [11]
in much greater generality.

Definition 4.1.1 (Homotopy functors). Let F : Top∗ → Top∗ be a functor from
based spaces to based spaces. We say F is a homotopy functor if it takes weak
equivalences in Top∗ to weak equivalences.

Definition 4.1.2 (Cubical diagrams of spaces). Let A be a finite nonempty set.
An A-dimensional cubical diagram of spaces is a functor

X : P(A) → Top∗

1Strictly speaking, these are the derivatives evaluated at the one-point space. For the purposes
of this paper we shall just refer to them as derivatives.
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from the poset P(A) of subsets of A ordered by inclusion to Top∗. Such a diagram
comes with a natural map

X (∅) → holim
U ̸=∅X (U)

We say that X is homotopy cartesian if this map is a weak equivalence in Top∗.
Similarly, there is a natural map

hocolim
U ̸=A

X (U) → X (A)

and we say that X is homotopy cocartesian if this map is a weak equivalence in Top∗.
We say that X is strongly homotopy cocartesian if each of its two-dimensional faces
is homotopy cocartesian.

The correct notion of polynomial functor in Goodwillie’s theory is then the fol-
lowing:

Definition 4.1.3 (n-excisive functors). A homotopy functor F : Top∗ → Top∗ is
n-excisive if it takes strongly homotopy cocartesian n + 1-dimensional cubes in Top∗
to homotopy cartesian cubes.

The principal result of [11] is then:

Theorem 4.1.4 ([11], Theorem 1.17). Let F : Top∗ → Top∗ be a homotopy
functor. Then for each n ≥ 0 there is an n-excisive functor PnF and a natural
transformation F → PnF that is universal in the sense that any other map from F to
an n-excisive functor factors (up to weak equivalence) through PnF . Moreover, these
maps factor via natural transformations Pn+1F → PnF making a tower of the form

F → · · · → Pn+1F → PnF → . . . P1F → P0F = F (∗).

Remark 4.1.5. This tower of functors is called the Taylor tower or Goodwillie tower
for the functor F . For ‘suitable’2 functors F and spaces X, we have

F (X) ≃ holim
n

PnF (X).

In other words, the tower ‘converges’.

The second key result of [11] is the classification of the ‘layers’ of the Taylor tower
in terms of individual spectra which we call the derivatives.

Definition 4.1.6 (Layers). Let F : Top∗ → Top∗ be a homotopy functor. The nth

layer in the Taylor tower for F is the functor

DnF (X) := hofib(PnF (X) → Pn−1F (X)).

2Here ‘suitable’ means that F should be ρ-analytic in the sense of [10] for some ρ and X should
be ρ-connected.
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Proposition 4.1.7 ([11],§5). For finite complexes X, the nth layer of the Taylor
tower F is given by

DnF (X) ≃ Ω∞(∂nF ∧ X∧n)hΣn

where ∂nF is some spectrum with an action of the symmetric group Σn and (−)hΣn

denotes the homotopy orbit of a spectrum with respect to the action of Σn.3

Definition 4.1.8. Let F : Top∗ → Top∗ be a homotopy functor. Then the nth

derivative of F is the spectrum ∂nF with Σn action identified by Proposition 4.1.7. It
is defined up to a weak form of equivariant weak equivalence (see [11, Introduction]
for further discussion of this).

Clearly, the derivatives of a functor can be used to reconstruct (up to weak equiv-
alence) the layers of the Taylor tower of that functor. Part of the motivation for this
thesis is the idea that by identifying extra structure on this sequence of derivatives we
could get closer to reconstructing the entire functor F . In the next section we show
that at least the derivatives of the identity functor possess extra structure, namely
that of an operad.

4.2 The derivatives of the identity functor

Let I : Top∗ → Top∗ be the identity functor on based spaces. This is certainly a
homotopy functor and is in some sense a central example in calculus. Its Taylor
tower and derivatives have been extensively studied (see Johnson [13] and Arone-
Kankaanrinta [1]). Arone and Mahowald [2] show that the Goodwillie derivatives of
I can be described in terms of certain finite complexes called the ‘partition poset
complexes’. We recall one of the ways to define these complexes.

Definition 4.2.1 (Categories of partitions). A partition of a finite set A is an
equivalence relation on A. Let K(A) be the poset formed by the partitions of A with
λ ≤ µ if λ is finer than µ, that is, if the set of relations for λ is contained in the set
of relations for µ. The category K(A) has an initial object 0̂ and a terminal object
1̂. Let K0(A) = K(A)− 0̂, the category of proper partitions, and K1(A) = K(A)− 1̂,
the category of non-trivial partitions. Note that the group ΣA of permutations of A
acts on all of these categories in a obvious way.

Definition 4.2.2 (The partition poset complexes ∆(A)). For a finite set A, the
partition poset complex ∆(A) is the geometric realization of the following simplicial
set T (A)• formed from the nerves of these categories of partitions:

T (A)• =
N•K(A)

N•K0(A) ∪ N•K1(A)
.

3Here Σn acts on the object inside the bracket by combining its given action on ∂nF with the
permutation action on X∧n. The value DnF (X) is then the infinite loopspace associated with the
homotopy orbit spectrum of this action.
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So the n-simplices in T (A)• are sequences of n + 1 partitions

λ0 ≤ λ1 ≤ · · · ≤ λn

with a sequence identified to the basepoint if it does not have both λ0 = 0̂ and
λn = 1̂. The face and degneracy maps are given by respectively removing partitions
from the sequence and repeating terms in the usual way for the nerve of a category.
The simplicial set T (A)• is pointed and so its geometric realization ∆(A) is a based
space. The action of ΣA on K(A) induces an action on ∆(A).

Remark 4.2.3. What we are calling the partition poset complex is the suspension
of the complex Kn of [2]. The simplicial set T (n)• is isomorphic to that called Tn in
Definition 1.1 of [2].

Proposition 4.2.4 (Arone-Mahowald, [2]). The derivatives of the identity are
modelled by the dual spectra of the finite complexes ∆(n) = ∆({1, . . . , n}):

∂nI ≃ MapSpec(∆(n), S).

The action of the symmetric group Σn on ∆(n) induces an action on the dual spectrum
and this agrees with the action that comes with the spectrum ∂nI.

The key observation (due to Tom Goodwillie) is that the partition poset complexes
can be described as spaces of trees. We can interpret these as the spaces of a bar
construction.

Definition 4.2.5. Let S0 be the operad in based spaces with

S0(A) := S0

for all finite sets A and with all composition maps equal to the identity on S0. This
can be thought of as the analogue in based spaces of the operad for commutative
algebras.

Lemma 4.2.6. The partition poset complex ∆(A) is homeomorphic to B(S0)(A).

Proof. We have already seen that B(S0) is homeomorphic to the realization of the
simplicial bar construction on S0. It is therefore enough to show that the simplicial
set T (A)• used to define ∆(A) is also given by this simplicial bar construction.

An n-simplex in T (A) is an increasing sequence of partitions of A of length n− 1
(together with a disjoint basepoint). On the other hand the based set of n-simplices
in the simplicial bar construction is

S0 ◦ · · · ◦ S0

︸ ︷︷ ︸
n

(A).

But this is equal to the wedge over increasing sequences of partitions of length n − 1
of S0. Hence we see that the two sets of n-simplices are the same. The face and
degeneracy maps in each case correspond to removing a partition and repeating a
partition respectively. We therefore have isomorphic simplicial sets.
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Corollary 4.2.7. Let ∂nI denote the model of the nth derivative of the identity given
by

∂nI = MapSpec(∆(n), S).

Then we have
∂nI = Ω(DS0)(n).

In particular, the derivatives of the identity form an operad in spectra. We denote
this operad by ∂∗I.

Proof. We have

∂nI = Map(∆(n), S) = DB(S0)(n) = Ω(DS0)(n)

by Lemma 4.2.6 and Proposition 3.4.4 (which applies since all the spaces in S0 are
S0).

Remark 4.2.8. The derivatives of the identity are the cobar construction on the
cooperad S in spectra with

S(A) = DS0(A) = S

where S is the sphere spectrum, for all finite sets A and with all cocomposition maps
the canonical isomorphisms. This is the analogue for spectra of the cooperad for
cocommutative coalgebras.

Remark 4.2.9. We can use the constructions of §3.5 to get modules over the operad
∂∗I. If C is a comodule over S then its cobar construction Ω(C) is a ∂∗I-module. We
give two examples:

1. Let X be a based space. Then the suspension spectrum Σ∞X is a S-coalgebra
(that is, just a commutative coalgebra) with comultiplication given by the (re-
duced) diagonal map on X:

Σ∞X → Σ∞(X ∧ X) ∼= Σ∞X ∧ Σ∞X.

As remarked in Definition 2.2.21, a coalgebra over a cooperad Q determines a
left Q-comodule. Thus we obtain a left S-comodule Σ∞X. We now take the
cobar construction to get a left ∂∗I-module

MX := Ω(Σ∞X) = Ω(I, S, Σ∞X)

(where I in this formula denotes the unit symmetric sequence of Definition
2.2.5). From the calculations of 3.5.17 we find that

MX(1) = Σ∞X

and

MX(2) ∼= hofib(Σ∞X → Σ∞X ∧ Σ∞X)

≃ Σ−1 hocofib(Σ∞X → Σ∞X ∧ Σ∞X)

≃ Σ−1Σ∞ hocofib(X → X ∧ X)
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So MX(2) is (up to homotopy and a desuspension) the mapping cone of the
reduced diagonal on X. Further work is needed to analyze the spectra MX(n)
for larger n. In §5.7 we will look at ways to calculate the homology of these
spectra.

2. A moment’s thought will reveal that a right S-comodule is precisely the same
thing as a functor

(FinSets,") −→ Spec

where the left-hand side is the category of finite sets with morphisms given by
the surjections. Work in progress by Greg Arone has demonstrated a relation-
ship between such functors and the Goodwillie calculus of homotopy functors
F from based spaces to spectra. In particular, we hope to show, by combining
the cobar construction with this work, that the derivatives of such an F form a
right ∂∗I-module.

Remark 4.2.10 (Derivatives of general homotopy functors). The derivatives
of any homotopy functor F form a symmetric sequence in spectra and it is natural
to ask how these symmetric sequences might be related for different functors. We
conjecture that there is in general a map of symmetric sequences

∂∗F ◦ ∂∗G → ∂∗(FG)

for any two homotopy functors F, G : Top∗ → Top∗ such that F (∗) = ∗, where FG
denotes the composite of F and G. These maps should have suitable associativity
properties that taking F = G = I would recover an operad structure on ∂∗I equivalent
to the one we have constructed in this section. Similarly, taking F = I would yield the
structure of a left ∂∗I-module on ∂G and taking G = I a right ∂∗I-module structure
on ∂∗F . The main obstacle at present for constructing these maps is finding good
models for the derivatives of a general functor in a symmetric monoidal category Spec
of spectra. In the case of the identity functor we were fortunate that such models
naturally arose from the partition poset complexes.
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Chapter 5

Homology of the bar and cobar
constructions and Koszul duality

In this final chapter we look at spectral sequences for calculating the homology of the
bar and cobar constructions on operads and cooperads in based spaces or spectra. It
turns out that we can relate the E1-term of these spectral sequences to the algebraic
bar and cobar constructions described in, for example, [7] and [6]. This leads to a link
with Koszul duality which says, briefly, that if the homology of the reduced operad
P is Koszul, then the homology of B(P ) is its Koszul dual cooperad, and dually, if
the homology of the cooperad Q is Koszul then the homology of Ω(Q) is its Koszul
dual operad. This supports the point-of-view that the bar construction for an operad
in based spaces or spectra is an analogue of the Koszul dual for an algebraic operad.

Here is a summary of the chapter. We start in §5.1 by recalling how the homology
(with coefficients in the commutative ring k) of an operad in based spaces or spectra
has the structure of an operad in graded k-modules. Then in §5.2, the main work of
the chapter begins and we describe the filtration of the bar construction that gives
rise to our spectral sequence and identify the ‘filtration quotients’. This filtration
is based on the number of vertices in the trees that underlie the bar construction.
We deal immediately with the two-sided construction, recalling that the construction
for a lone operad is a special cases of this. As usual, for the cobar construction, we
just dualize everything, that is, we get a cofiltration, or tower, whose inverse limit is
the cobar construction and we identify the fibres of the stages in this tower. In §5.3
we give conditions under which the inclusion maps of our filtration are cofibrations,
thus ensuring that our ‘filtration quotients’ are actually the homotopy cofibres of
the filtration. This will allow us later to use our identification of these quotients to
calculate the E1 term in the spectral sequence. This E1 term turns out to be given
by the algebraic bar construction which we describe in §5.4. We give a definition
of this that emphasizes its similarity to the topological version and show that this
definition is equivalent to that given by Getzler and Jones [7] and Fresse [6]. Then
in §5.5 we finally set up the spectral sequence and identify its E1 term with the
algebraic bar construction as claimed. In §5.6 we look at Koszul operads and prove
the result identifying the homology of the bar construction on P with the Koszul dual
of the homology of P . Finally, in §5.7 we use our spectral sequences to investigate
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the homology of the ∂∗I-modules MX constructed in Remark 4.2.9(1).

5.1 Homology of topological operads

Throughout the chapter we fix a commutative ring k and consider the categories
Modk of graded k-modules and Chk of chain complexes over k. First we describe the
symmetric monoidal structure on these categories.

Definition 5.1.1 (Symmetric monoidal structures on Modk and Chk). The
tensor product determines a symmetric monoidal structure on graded k-modules with

(M ⊗ N)r :=
⊕

p+q=r

Mp ⊗ Nq

where the graded symmetry isomorphism

M ⊗ N → N ⊗ M

is given by
m ⊗ n (→ (−1)|m||n|n ⊗ m

and the unit object is the graded module k concentrated in degree 0. If M and N are
chain complexes with differentials dM and dN respectively, we define a differential on
M ⊗ N by

dM⊗N(m ⊗ n) := dM(m) ⊗ n + (−1)|m|m ⊗ dN(n).

This makes ⊗ into a symmetric monoidal structure on Chk with the same unit k
endowed with the trivial differential.

Throughout this section we will use H∗(−) to denote the homology with coeffi-
cients in the commutative ring k of an object in C when C is either Top∗ or Spec. If C
is the category Top∗ of based spaces, this is the reduced homology.1 If C is a category
Spec of spectra, it is the spectrum homology H∗(E) = π∗(Hk ∧ E). We recall the
Künneth maps for these homology theories.

Proposition 5.1.2. Let C = Top∗ or Spec and take C, D ∈ C. Then there is a natural
map

H∗(C) ⊗ H∗(D) → H∗(C !D)

that is an isomorphism if either H∗(C) or H∗(D) consists of flat k-modules. These
maps are symmetric monoidal in the sense that they commute with the associativity
and commutativity isomorphisms in the categories C and Modk.

Definition 5.1.3. Let M be a symmetric sequence in Top∗ or Spec. Then we denote
by H∗M the symmetric sequence of graded k-modules given by

H∗M(A) := H∗(M(A)).

1We stress that any homology group of a based space in this paper is meant to be the reduced
homology.
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The main result of this section is that the homology of a topological operad or
cooperad is, under suitable conditions, an operad or cooperad in Modk.

Lemma 5.1.4. Let P be an operad in Top∗ or Spec. Then H∗P is an operad of
graded k-modules. If P is reduced then so is H∗P . If M is a left (respectively, right)
P -module, then H∗M is a left (respectively, right) H∗P -module.

Let Q be a cooperad in Top∗ or Spec such that the homology groups H∗(Q(A))
are flat k-modules. Then H∗(Q) is a cooperad of graded k-modules that is reduced
if Q is. If C is a left Q-comodule then H∗(C) is a left H∗(Q)-comodule. If C is a
right Q-comodule such that the H∗(C(A)) are flat k-modules then H∗(C) is a right
H∗(Q)-comodule.

Proof. The operad structure maps are given by the composites

H∗(P (A)) ⊗ H∗(P (B)) → H∗(P (A) ∧ P (B)) → H∗(P (A ∪a B))

and the unit by the map
k ∼= H∗(S) → H∗(P )(1)

where S denotes either S0, the unit of Top∗, or the unit of Spec. To check the operad
axioms we use the associativity and commutativity of the Künneth formula as stated
in Proposition 5.1.2. Clearly, if P is reduced (so that the unit map S → P (1) is an
isomorphism) then so is H∗P . The structure maps for H∗M are defined similarly.

In the cooperad case we need the flatness condition. It allows us to define cocom-
position maps by

H∗(Q(A ∪a B)) → H∗(Q(A) ∧ Q(B)) ∼= H∗(Q(A)) ⊗ H∗(Q(B))

using the inverse of the Künneth map. The counit map is the composite

H∗Q(1) → H∗(S) ∼= k

and again, if Q is reduced, so is H∗Q. In the case of a left comodule C we similarly
get comodule structure maps

H∗(C(A ∪a B)) → H∗(C(A) ∧ Q(B)) ∼= H∗(C(A)) ⊗ H∗(Q(B))

where the Künneth map is an isomorphism without any condition on H∗(C(A)) (we
are still assuming that the H∗(Q(B)) are flat). In the right comodule case, we do still
need the flatness assumption.

Remark 5.1.5. We can consider cohomology instead of homology in which case
the Künneth isomorphism also requires a finite-generation hypothesis. We get the
following results. If Q is a cooperad in based spaces or spectra then H∗(Q) is an
operad of graded k-modules. If P is an operad with the cohomology groups H∗(P )
finitely-generated flat k-modules then H∗(P ) is a cooperad of graded K-modules.
Similar results hold for comodules and modules.
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5.2 Filtering the bar construction

The spectral sequence we want to construct comes from a filtration on the bar con-
struction by the number of vertices in the underlying trees. In this section we con-
struct this filtration and calculate the filtration quotients.

Definition 5.2.1 (Filtration on the category of trees). Write Trees(A) for the
subcategory of Tree(A) whose objects are the (isomorphism classes of) trees with less
than or equal to s vertices. We then have

Tree0(A) ⊂ Tree1(A) ⊂ · · · ⊂ Tree|A|−1(A) = Tree(A).

Each Trees(A) is an initial subcategory of Tree(A). That is, if U ≤ T and T ∈
Trees(A) then U ∈ Trees(A). The filtration ‘quotients’ are the discrete categories

Qs(A) := Trees(A) − Trees−1(A)

whose objects are the trees with precisely s vertices. For each tree T ∈ Tree(A) we
write |T | for the number of vertices of T .

Definition 5.2.2 (Filtration on the two-sided bar construction). Let P be a
reduced operad in C with right module R and left module L. Define

B(R, P, L)s(A) :=

∫ T∈Trees(A)

w(T )+ ⊗ (R, P, L)A(T ).

For varying finite sets A these form a symmetric sequence in C. From the inclusion
of categories Trees−1(A) ⊂ Trees(A) we get natural maps

B(R, P, L)s−1(A) → B(R, P, L)s(A).

In the case C = Top∗, it is easy to see that the resulting sequence of maps is a filtration
of B(R, P, L)(A) by subspaces. The subspace B(R, P, L)s(A) consists of those points
represented by trees with less than or equal to s vertices.

Example 5.2.3. The generalized A-labelled trees with no vertices (i.e. only a root
and some leaves) correspond one-to-one with (unordered) partitions of A. We there-
fore see that

B(R, P, L)0 = R ◦ L

where ◦ is the composition product of symmetric sequences.

Example 5.2.4. Take R = L = I so that B(R, P, L) = B(P ). We then have
B(P )0 = I by the previous example. If |A| > 1 there is precisely one (non-generalized)
A-labelled tree with only one vertex and we therefore get

B(P )1(A) =

{
S1 ⊗ P (A) if |A| > 1;

B(P )(1) ∼= S if |A| = 1.
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Recall that S is the unit of the symmetric monoidal category C.

We can think of the sequence

B(R, P, L)0(A) → B(R, P, L)1(A) → · · · → B(R, P, L)(A)

as a kind of ‘cellular’ filtration. That is, we obtain B(R, P, L)s(A) by attaching ‘cells’
to B(R, P, L)s−1(A), one for each generalized A-labelled tree T with exactly s vertices.
The following proposition makes this precise.

Proposition 5.2.5. There is a pushout square in C of the form

∨

T∈Qs(A)

∂w(T )+ ⊗ (R, P, L)A(T ) B(R, P, L)s−1(A)

∨

T∈Qs(A)

w(T )+ ⊗ (R, P, L)A(T ) B(R, P, L)s(A)

""
%
%%
%
%%
%%
%

!!

""
%%
%%
%
%%
%%
%%
%
%

!!

where ∂w(T ) denotes the boundary of the space w(T ).

To identify the top horizontal map in this diagram we use the following simple
but important lemma.

Lemma 5.2.6. Let T be a generalized A-labelled tree. Then

∂w(T )+
∼= colim

U<T
w(U)+.

The indexing category of the colimit is the over-category Tree(A)/T .

Proof of Lemma. This is a categorical reflection of that fact that the boundary ∂w(T )
consists precisely of those weightings of T in which some edge has length zero.

Proof of Proposition 5.2.5. The top horizontal map in the diagram is given by

∨

T∈Qs(A)

∂w(T )+ ⊗ (R, P, L)A(T ) ∼=
∨

T∈Qs(A)

colim
U<T

[w(U)+ ⊗ (R, P, L)A(T )]

→
∨

T∈Qs(A)

colim
U<T

[w(U)+ ⊗ (R, P, L)A(U)]

→ B(R, P, L)s−1(A).

Here we’ve used the fact that − ⊗ C is a left adjoint so commutes with colimits.
If T ∈ Qs(A) and U < T then U ∈ Trees−1(A) so there are compatible maps from
w(U)+ ⊗ (R, P, L)A(U) to the coend defining B(R, P, L)s−1(A).
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With this definition, it is simple exercise in naturality and colimits to see that the
square commutes. To see that it is a pushout take a commutative diagram

∨

T∈Qs(A)

∂w(T )+ ⊗ (R, P, L)A(T ) B(R, P, L)s−1(A)

∨

T∈Qs(A)

w(T )+ ⊗ (R, P, L)A(T )
X

""
%%
%
%%
%%
%
%

!!

""
%
%
%
%
%
%
%
%
%
%
%
%
%

!!

((*))

We have to show that this factors via a unique map

B(R, P, L)s(A) → X.

Since B(R, P, L)s(A) is a coend and hence a colimit, it is enough to get a unique set
of compatible maps

w(U)+ ⊗ (R, P, L)A(T ) → X

for U ≤ T in Trees(A). If T /∈ Qs(A) the required map comes from the right-hand
edge of diagram (*). So suppose that T ∈ Qs(A). Then we have

w(U)+ ⊗ (R, P, L)A(T ) → w(T )+ ⊗ (R, P, L)A(T ) → X

where the second map comes from the bottom edge of diagram (*). We leave the
reader to check that these maps are compatible in the appropriate way and suitably
unique. We conclude that B(R, P, L)s(A) is the claimed pushout.

We use this result to identify the quotients of our filtration of the bar construction.

Corollary 5.2.7. Let P be a reduced operad in C with right module R and left module
L. The following is a pushout square in C.

B(R, P, L)s−1(A) B(R, P, L)s(A)

∗
∨

T∈Qs(A)

w(T )+/∂w(T )+ ⊗ (R, P, L)A(T )""
%
%
%
%
%
%
%
%
%
%
%

!!

""
%%
%%
%%
%%
%

!!
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Proof. Because −⊗ C preserves colimits, the following is a pushout square in C.

∂w(T )+ ⊗ (R, P, L)A(T ) w(T )+ ⊗ (R, P, L)A(T )

∗ w(T )+/∂w(T )+ ⊗ (R, P, L)A(T )
""
%
%
%
%
%
%
%

!!

""
%%
%%
%%
%

!!

The corollary now follows from Proposition 5.2.5 and the universal properties of
colimits.

Remark 5.2.8. Recall from Lemma 3.5.5 that for any generalized A-labelled tree T
with s vertices, w(T ) ∼= Ds. Therefore, w(T )+/∂w(T )+

∼= Ss. We will be talking a lot
about these spaces in the coming sections, so we will give them some more compact
notation:

w(T ) := w(T )+/∂w(T )+
∼= w(T )/∂w(T ) ∼= Ss.

The results for the cobar construction are, as usual, just the duals of those for the
bar construction. We summarize these briefly.

Definition 5.2.9 (Cofiltration of the cobar construction). Let Q be a reduced
cooperad in a symmetric monoidal Top∗-category C with right comodule R and left
comodule L. Then the two-sided cobar construction Ω(R, Q, L) has a ‘cofiltration’,
that is, there are sequences

Ω(R, Q, L)(A) → · · · → Ω(R, Q, L)s(A) → Ω(R, Q, L)s−1(A) → . . .Ω(R, Q, L)0(A)

where

Ω(R, Q, L)s(A) :=

∫

T∈Trees(A)

MapC(w(T )+, (R, Q, L)A(T )).

and the ‘projection’ map

Ω(R, Q, L)s(A) → Ω(R, Q, L)s−1(A)

comes from the inclusion of categories Trees−1(A) → Trees(A).

Corollary 5.2.10. With Q, R, L as in Definition 5.2.9, the following is a pullback
square:

Ω(R, Q, L)s(A)

∏

T∈Qs(A)

MapC(w(T )+, (R, Q, L)A(T ))

Ω(R, Q, L)s−1(A)

∏

T∈Qs(A)

MapC(∂w(T )+, (R, Q, L)A(T ))
""

!!

""

!!
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We can identify the fibres of the projections by the following pullback squares:

∏

T∈Qs(A)

MapC(w(T ), (R, Q, L)A(T )) Ω(R, Q, L)s(A)

∗ Ω(R, Q, L)s−1(A)

!!

""
""

!!

where w(T ) = w(T )/∂w(T ).

5.3 Conditions for the inclusion maps of the filtra-
tion to be cofibrations

In the case that C is either Top∗ or Spec, the filtration of §5.2 allows us to construct
a spectral sequence converging to the homology of B(R, P, L). The E1 term of this
spectral sequence is given by the homologies of the homotopy cofibres of the inclusion
maps of the filtration. In this section we give conditions under which these inclusions
are cofibrations (in a given model category structure on C) and which therefore ensure
that the homotopy cofibres are given by the strict cofibres or filtration quotients that
we have already calculated.

We state the main result of this section (Proposition 5.3.4 below) for a general
symmetric monoidal Top∗-category C with a compatible model structure. Definition
5.3.1 says what we mean by ‘compatible’ here. We use Mark Hovey’s book [12] as
our basic reference for model categories.

Definition 5.3.1 (Symmetric monoidal Top∗-model categories). A symmetric
monoidal Top∗-model category is a symmetric monoidal Top∗-category C (as in §2.1)
together with a model structure (in the sense of [12, Def. 1.1.3]) such that the
tensoring makes C into a Top∗-model category (in the sense of [12, Def. 4.2.18]).
That is, if X → Y is a cofibration in Top∗ and C → D is a cofibration in C then the
induced map

(X ⊗ D) ⨿X⊗C (Y ⊗ C) → Y ⊗ D

is a cofibration in C that is trivial if either of our original cofibrations is. (The domain
of this map is the pushout of X ⊗ D and Y ⊗ C over X ⊗ C.)

Remark 5.3.2. We should say a few words about this definition. Firstly, we are not
requiring that C be a monoidal model category in its own right (in the sense of [12,
4.2.6]). That is, we are not insisting that the symmetric monoidal structure ! on
C in any way respect the model structure. Our reason for doing this is to preserve
the self-duality of Definition 5.3.1 (see Lemma 5.3.6 below). In general, the opposite
category of a monoidal model category is not another monoidal model category and
we wish to dualize our theory to obtain results on the cobar construction.
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On the other hand, the hypotheses we need to prove Proposition 5.3.4 are nat-
ural consequences of the assumption that C is a monoidal model category, and the
categories we are most interested in, Top∗ and Spec, satisfy this assumption. This
suggests that a breaking of the symmetry between bar and cobar is necessary when
we come to study the homotopy theory of these constructions. In this paper, we do
not pretend to give the beginnings of such a theory and, in particular, we do not claim
that Definition 5.3.1 is the philosophically correct way to mix model category theory
into this paper. For us, it serves the purposes of allowing us to make calculations
with our spectral sequence in cases that are of interest.

Lemma 5.3.3. Let C be a symmetric monoidal Top∗-model category. If C ∈ C is
cofibrant and X → Y is a cofibration in Top∗ then X ⊗ C → Y ⊗ C is a cofibration
in C.

Proof. Apply the definition of Top∗-model category to the cofibrations X → Y and
∗ → C.

Proposition 5.3.4. Let C be a symmetric monoidal Top∗-model category such that if
C, D are cofibrant then C !D is also cofibrant. Let P be a reduced operad in C with
right module R and left module L such that, for all A, the objects P (A), R(A), L(A)
are cofibrant. Then for all s and all A the map

B(R, P, L)s−1(A) → B(R, P, L)s(A)

of Definition 5.2.2 is a cofibration in C.

Proof. The cofibrancy conditions on the P (A), L(A), R(A) together with the extra
condition on C ensure that the objects (R, P, L)A(T ) are all cofibrant. For any gen-
eralized tree T , the map

∂w(T )+ → w(T )+

is a cofibration in Top∗ (it is the inclusion of the boundary of a ball). Therefore, by
Lemma 5.3.3:

∂w(T )+ ⊗ (R, P, L)A(T ) → w(T )+ ⊗ (R, P, L)A(T )

is a cofibration. Proposition 5.2.5 tells us that B(R, P, L)s−1(A) → B(R, P, L)s(A) is
a pushout of a coproduct of such maps so it too is a cofibration.

Remark 5.3.5. As we commented in Remark 5.3.2 above, if C is a symmetric mon-
oidal model category in its own right, we get for free that C and D cofibrant imply
C!D cofibrant. In particular this is the case for Top∗ and Spec (that is, the S-modules
of EKMM [5]).

As promised, our definition of symmetric monoidal Top∗-model category is self-
dual.

Lemma 5.3.6. Let C be a symmetric monoidal Top∗-model category. Then Cop is
also a symmetric monoidal Top∗-model category with the standard dual symmetric
monoidal and model structures.
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Proof. We already know from Proposition 2.1.12 that Cop is a symmetric monoidal
Top∗-category. Recall that the tensoring for Cop is given by the cotensoring for C, the
cofibrations in Cop are the fibrations in C and a pushout in Cop is a pullback in C. The
weak equivalences in Cop are the same as those in C.

To see that Cop is a Top∗-model category we have to show that if X → Y is a
cofibration in Top∗ and D → C a fibration in C then

MapC(Y, D) → MapC(Y, C) ×MapC(X,C) MapC(X, D)

is a fibration in Cop that is trivial if either of our original maps is a weak equivalence.
This result is given by Lemma 4.2.2 of [12].

The result dual to Proposition 5.3.4 is then the following.

Corollary 5.3.7. Let C be a symmetric monoidal Top∗-model category such that if
C, D are fibrant then C ! D is also fibrant. Let Q be a reduced cooperad in C with
right comodule R and left comodule L such that all the objects Q(A), R(A), L(A) are
fibrant. Then the map

Ω(R, Q, L)s(A) → Ω(R, Q, L)s−1(A)

of Definition 5.2.9 is a fibration in C.

In these circumstances, then, the fibres of the maps in the tower for Ω(R, Q, L) are
also the homotopy fibres and so can be used to calculate the E1 term of the associated
spectral sequence.

Remark 5.3.8. In our categories of interest, Top∗ and Spec, all objects are fibrant
and so the conditions of Corollary 5.3.7 hold for any cooperad and any comodules
over it.

5.4 The algebraic bar and cobar constructions

So far we have constructed (under suitable conditions) a filtration of the two-sided
bar construction B(R, P, L) by a sequence of cofibrations. This filtration yields a
homology spectral sequence whose E1 term turns out to be given by an algebraic
version of our bar construction. In fact, it was this algebraic version, previously
studied by Ginzburg-Kapranov [8], Getzler-Jones [7] and Fresse [6] among others,
that inspired our definition of the bar construction for operads in topological settings.
This section is devoted to the description of this algebraic bar construction. As in the
topological case, we will only deal with reduced operads, that is, those for the unit
map k → P (1) is an isomorphism.

Our definition of the algebraic bar construction emphasizes its similarity to the
topological versions of §3.2 and §3.5 and it will follow the same pattern.

Definition 5.4.1 (The functors (R, P, L)A). Let P be a reduced operad in the
category Chk of chain complexes over the commutative ring k (with the symmetric
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monoidal structure of Definition 5.1.1). Let R be a right P -module and L a left
P -module. More or less repeating Definition 3.5.7, we define a functor

(R, P, L)A : Tree(A)op → Chk

for each nonempty finite set A by the formula:

(R, P, L)A(T ) := R(i(r)) ⊗
⊗

vertices v ∈ T

P (i(v)) ⊗
⊗

leaves l ∈ T

L(ι−1l).

The composition maps for R, P and L make (R, P, L)A into a functor as claimed.
In making explicit calculations we have to be careful with the signs involved in the
symmetry isomorphism for ⊗ but for theoretical purposes we can treat (R, P, L)A(T )
as the unordered tensor product (see Remark 2.1.2).

We now wish to define the bar construction B(R, P, L) by the same coend formula
as in Definition 3.5.8. For this we need chain complex versions of the spaces w(T ) of
weightings on trees T ∈ Tree(A). As in the topological case, the structure of these
‘spaces’ and their functorial structure are the key parts of the definition of the bar
construction.

Definition 5.4.2 (The chain complexes C∗w(T )). Let T be a generalized A-
labelled tree. The chain complex C∗w(T ) representing the space of weightings on T
will be the cellular chain complex for a certain cellular decomposition of the space
w(T ). The cells in this decomposition correspond one-to-one with the trees U ∈
Tree(A) with U ≤ T . The r-skeleton of w(T ) is given by

w(U)(r) := colim
U<T : U∈Treer(A)

.

The attaching map for the cell corresponding to the tree U with r + 1 vertices is the
map

Sr ∼= ∂w(U) ∼= colim
V <U

w(V ) → colim
V <T : V ∈Treer(A)

w(V ) = w(T )(r).

The cellular chain complex for this cell structure then has

Crw(T ) =
⊕

U<T : U∈Treer(A)

Hr(w(U), ∂w(U)) ∼=
⊕

U<T : U∈Treer(A)

H̃r(w(U)).

The differential
Crw(T ) → Cr−1w(T )
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is given by summing the maps2

H̃r(w(U)) ∼= Hr(w(U), ∂w(U)) → H̃r−1(∂w(U)+) → H̃r−1(w(V ))

for pairs (U, V ) with V < U , |U | = r and |V | = r − 1. An example of this chain
complex for a particular tree is shown in Figure 5-1.

The inclusion w(U) → w(T ) is cellular and so we have inclusions

C∗w(U) → C∗w(T )

for U < T . These make C∗w(−) into a functor

C∗w(−) : Tree(A) → Chk.

This is the generalization of the functor w(−) of Definition 3.5.6.

T

w(T )

k4 ←− k4 ←− k

0

C∗w(T )

1 2

Figure 5-1: Example of the chain complex C∗w(T ) showing the cellular decomposition
of w(T )

Definition 5.4.3 (Two-sided algebraic bar construction). With our ‘chain com-
plexes of weighted trees’ C∗w(T ) we now define the two-sided algebraic bar construc-
tion on the reduced operad P with coefficients in R and L to be the symmetric
sequence B(R, P, L) with

B(R, P, L)(A) :=

∫ T∈Tree(A)

C∗w(T ) ⊗ (R, P, L)A(T ).

This coend is calculated in the category of chain complexes on k and results in a
chain complex B(R, P, L)(A). However, it will be useful to consider a bicomplex
structure on B(R, P, L)(A) for which this chain complex is the total complex. The
bicomplex structure comes about by considering the tensor product of the chain

2The last part of this composite comes from the map

∂w(U)+ ∼= colim
V <U

w(V )+ → w(V )+/∂w(V )+ = w(V )

given by collapsing to the basepoint everything except the interior of the ‘face’ w(V ) of ∂w(U).

82



complexes C∗w(T ) and (R, P, L)A(T ) as a bicomplex with gradings and differentials
coming from these separate terms. We will write

B(R, P, L)∗,∗(A)

to emphasize this bigrading with the first index denoting the grading that comes from
C∗w(T ) (we’ll call this the tree grading) and the second the grading that comes from
(R, P, L)A(T ) (which we’ll call the internal grading). We then have two separate
differentials on B(R, P, L)∗,∗:

∂ : B(R, P, L)∗,∗ → B(R, P, L)∗−1,∗

coming from the differentials on the chain complexes C∗w(T )+ which will refer to as
the tree differential on the bar construction, and

d : B(R, P, L)∗,∗ → B(R, P, L)∗,∗−1

coming from the differentials on the (R, P, L)A(T ) which we will call the internal
differential.

In later sections, we will be applying the algebraic bar construction to operads of
graded k-modules, that is, chain complexes with zero differential. In this case, the
internal differential of B(R, P, L)(A) will also be zero.

We can give a more explicit description of B(R, P, L) as follows.

Lemma 5.4.4. Let P be a reduced operad in Chk with right module R and left module
L. Then we have3

B(R, P, L)s,∗(A) ∼=
⊕

T∈Qs(A)

H̃s(w(T )) ⊗ (R, P, L)A(T )

as chain complexes of k-modules with respect to the internal grading and differential.
Under these isomorphisms, the tree differential

∂ : B(R, P, L)s,∗(A) → B(R, P, L)s−1,∗(A)

is given by summing, over all pairs (T, U) with U < T , |T | = s and |U | = s − 1, the
maps

H̃s(w(T )) ⊗ (R, P, L)A(T ) → H̃s−1(w(U)) ⊗ (R, P, L)A(U)

obtained by combining the maps

(R, P, L)A(T ) → (R, P, L)A(U)

with the terms
H̃s(w(T )) → H̃s−1(w(U))

3Here, as elsewhere, the reduced homology of the quotient w(T ) = w(T )/∂w(T ) can be replaced
with the homology of the pair (w(T ), ∂w(T )).
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from the top differential of the chain complex C∗w(T ).

Proof. We consider a filtration of the algebraic bar construction analogous to that of
§5.2 for the topological version. Virtually the same analysis applies and we get short
exact sequences of chain complexes4

B(R, P, L)s−1(A) −→ B(R, P, L)s(A) −→
⊕

T∈Qs(A)

C∗w(T )/C∗∂w(T ) ⊗ (R, P, L)T (A).

where C∗∂w(T ) is the cellular chain complex for the subcomplex ∂w(T ) ⊂ w(T ) (that
is, everything except the top-dimension cell). Notice that

C∗w(T )/C∗∂w(T ) ∼= H̃s(w(T )).

We construct a splitting of the above short exact sequence (with respect to the internal
differential but not the tree differential) using the obvious splittings (as k-modules)
of the sequences

C∗∂w(T ) → C∗w(T ) → H̃∗(w(T )).

We get by induction on s that

B(R, P, L)(A) ∼=
⊕

T∈Tree(A)

H̃|T |(w(T )) ⊗ (R, P, L)A(T )

which splits, by tree degree, into the isomorphisms of the lemma. We leave the reader
to check that the tree differential has the promised formula.

Remark 5.4.5. Specific choices of generators of the groups H|T |(w(T ), ∂w(T )) ∼= k
determine an isomorphism

B(R, P, L)(A) ∼=
⊕

T∈Tree(A)

(R, P, L)A(T )

which is the definition of the algebraic bar construction given by Fresse in [6, §4.4].
Such choices determine choices of the coefficients (in fact, signs) for the maps that
make up the differential ∂ on B(R, P, L)(A).

Fresse shows that this bar construction is a representative of the derived compo-
sition product of R and L as P -modules, that is,

B(R, P, L) ≃ R ◦L
P L

4The notation here may be a little confusing. We are using B(R, P, L)s(A) to denote the ob-
ject obtained via the chain complex version of Definition 5.2.2. This is not to be confused with
B(R, P, L)s,∗ which is the piece of tree degree s. In fact, it’s a consequence of the proof of this
lemma that

B(R, P, L)s(A) ∼=
⊕

r≤s

B(R, P, L)r,∗(A).
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and so the homology groups of B(R, P, L), with respect to the tree differential, are
Tor groups of P -modules.

The relationship between this algebraic bar construction and the simplicial bar
construction was analyzed by Fresse. His proof of the following proposition uses a
‘levelization’ process analogous to that we used in the proof of Proposition 3.2.13.

Proposition 5.4.6 ([6], Theorem 4.1.8). The algebraic two-sided bar construction
B(R, P, L) is quasi-isomorphic to the normalized chain complex of the simplicial bar
construction on P with coefficients in R and L (the algebraic version of Definition
3.5.9).

As usual, we have the dual constructions and results.

Definition 5.4.7 (Algebraic cobar construction). Let Q be a reduced cooperad
of chain complexes of k-modules with right comodule R and left comodule L. Then
there are functors (R, Q, L)A from Tree(A) to Chk and we can define the algebraic
cobar construction on Q with coefficients in R and L by the same formula

Ω(R, Q, L)(A) :=

∫

T∈Tree(A)

Hom(C∗w(T ), (R, Q, L)A(T ))

as in Definition 3.3.1, where here Hom(M, N) is the chain complex of all homomor-
phisms M → N of graded modules. The cobar construction is a bicomplex with
an internal grading and differential coming from the (R, Q, L)A(T ) and a tree grad-
ing and differential ∂∗ coming from the C∗w(T ). We follow the convention that
Hom(M, N)s,t = Hom(M−s, Nt) so that the tree grading on the cobar construction
is concentrated in negative degrees.

There is an explicit description of the cobar construction analogous to that of
Lemma 5.4.4 for the bar construction.

Lemma 5.4.8. With Q, R, L as above:

Ω(R, Q, L)−s,∗(A) :=
⊕

T∈Qs(A)

Hom(H̃s(w(T )), (R, Q, L)A(T ))

which again is just isomorphic to

⊕

T∈Tree(A)

(R, Q, L)A(T )

after choosing generators of the groups H̃s(w(T )). The internal grading and differen-
tial correspond in the obvious way under this isomorphism. The explicit form of the
tree differential ∂∗ is given by the maps

(R, Q, L)A(U) → (R, Q, L)A(T )
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with coefficients again given by the components

H̃s(w(T )) → H̃s−1(w(U))

of the top differential on the chain complex C∗w(T ).

Definition 5.4.9 (Reduced bar and cobar constructions). If P is a reduced
operad in the category of graded k-modules, then the unit symmetric sequence I
defined by

I(A) :=

{
k if |A| = 1;

0 otherwise.

is both a left and right P -module. The reduced bar construction on P is then given
by the two-sided bar construction with coefficients in I on both sides:

B(P ) := B(I, P, I).

The definition of the algebraic bar construction reduces in this case to

B(P )(A) =

∫ T∈T(A)

C∗w̄(T ) ⊗ PA(T ).

Recall that the space w̄(T ) is the quotient of w(T ) by the subspace of weightings
that give either the root edge or a leaf edge of T length 0. This subspace is in fact
a subcomplex with respect to our chosen cellular structure on w(T ).5 Therefore we
obtain a cell structure on w̄(T ) and C∗w̄(T ) is the relative cellular chain complex for
the pair (w̄(T ), ∗).6 It is clear that C∗w̄(T ) is a quotient of C∗w(T ).

It’s also easy to check that by Lemma 5.4.4 we have

B(P )(A) ∼=
⊕

T∈T(A)

H̃|T |(w(T )) ⊗ PA(T )

which (after choosing an isomorphism H̃|T |(w(T )) ∼= k) is the original definition of
the algebraic bar construction given by Getzler-Jones [7, §2.1].

Similarly, if Q is a coaugmented cooperad then I is both a left and right Q-
comodule and the reduced cobar construction on Q is

Ω(Q) := Ω(I, Q, I)

and is given by a formula analogous to that of Definition 3.3.1.

As in the topological case, the reduced algebraic bar construction on a reduced
operad P of chain complexes has a cooperad structure. We now describe this.

5It is the union of the cells corresponding to U < T that are not in the original category T(A),
that is, that are generalized trees, but not trees in the sense of §3.1.

6The tensor product of chain complexes is here playing the role of the smash product of based
spaces so we need the reduced version of the cellular chain complex. Strictly speaking, the chain
complex C∗w(T ) is the relative chain complex of the pair (w(T )+, ∗).
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Definition 5.4.10 (Cooperad structure on B(P )). This required maps

B(P )(A ∪a B) → B(P )(A) ⊗ B(P )(B)

are defined in exactly the same way as the corresponding maps in the topological
case (Definition 3.2.3). To do this we must construct the algebraic versions of the key
maps (3.2.18):

C∗w̄(T ∪a U) → C∗w̄(T ) ⊗ C∗w̄(U)

for A-labelled trees T and B-labelled trees U . We get this by taking the map of
cellular chain complexes induced by the topological map

w̄(T ∪a U) → w̄(T ) ∧ w̄(U).

For this to work, we need the following lemma.

Lemma 5.4.11. Let T be an A-labelled tree, U a B-labelled tree and let a ∈ A. The
map

w̄(T ∪a U) → w̄(T ) ∧ w̄(U)

of Definition 3.2.16 is cellular, that is, it preserves skeleta.

Proof. A point p in w̄(T ∪a U) is in the s-skeleton if it is in the subspace w̄(V ) for
some tree V with s vertices. If this tree is not of type (A, B) then p is mapped to
the basepoint which is certainly in the s-skeleton. If this tree V is of type (A, B)
(that is, obtained by grafting an A-labelled tree T ′ and a B-labelled tree U ′) then
the point p maps to a pair consisting of a point in some w̄(T ′) ⊂ w̄(T ) and a point
in some w̄(U ′) ⊂ w̄(U). The first point is in the s′-skeleton of w̄(T ) where T ′ has
s′ vertices. The second point is in the s′′-skeleton of w̄(U) where U ′ has s′′ vertices.
Therefore the pair is in the s′ + s′′-skeleton of w̄(T ) ∧ w̄(U). However, since V only
had s vertices, we must have s′ + s′′ ≤ s. So the image of p is in the s-skeleton of
w̄(T ) ∧ w̄(U) as required.

It is easy to describe explicitly the resulting map of chain complexes

C∗w̄(T ∪a U) → C∗w̄(T ) ⊗ C∗w̄(U).

The factor of the left-hand side corresponding to an A ∪a B-labelled tree V with
V ≤ T ∪a U maps either to zero (if V is not of type (A, B)) or to the tensor product
of the factors for T ′ and U ′ where

V = T ′ ∪a U ′

if V is of type (A, B).
With this key map in place, the rest of the formal definition of the cooperad

structure maps for the topological bar construction (Definition 3.2.26) carries over to
the algebraic case.
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Lemma 5.4.12. Let P be a reduced operad in Chk. Under the isomorphism of Lemma
5.4.4, the cooperad structure on B(P ) corresponds to the cooperad structure on the
chain complexes ⊕

T∈T(A)

H̃|T |(w(T )) ⊗ PA(T )

whose cocomposition maps are given by combining the isomorphisms

H∗(w(T ∪a U)) → H∗(w(T )) ⊗ H∗(w(U))

induced by the homeomorphisms7

w(T ∪a U) → w(T ) ∧ w(U)

with the isomorphisms

PA∪aB(T ∪a U) → PA(T ) ⊗ PB(U).

Proof. This is a simple check using the definition of the isomorphism in Lemma 5.4.4
by splittings of short exact sequences.

Definition 5.4.13 (Operad structure on Ω(Q)). Dually, if Q is a reduced coop-
erad of chain complexes, there is an operad structure on the reduced algebraic cobar
construction Ω(Q). The corresponding operad structure under the isomorphism of
Lemma 5.4.8 is built from the isomorphisms

QA(T ) ⊗ QB(U) → QA∪aB(T ∪a U)

and the same maps

H̃∗(w(T ∪a U)) → H̃∗(w(T )) ⊗ H̃∗(w(U)).

Remark 5.4.14. It does not take much more effort to extend the cooperad and
operad structure above to maps

B(R, P, L) → B(R, P, I) ◦̂ B(I, P, L)

and
Ω(R, Q, I) ◦ Ω(I, Q, L) → Ω(R, Q, L)

following the same sort of generalization that we did in §3.5.3.

7It is easy to check that this map is a bijection. The spaces involved are all spheres which are
compact Hausdorff, so it is a homeomorphism.
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5.5 A spectral sequence for the homology of the
bar construction

We now turn our attention directly to the homology spectral sequences born from
the filtration of the bar construction and cofiltration of the cobar construction.8 The
work we have done in the last few sections allows us to identify the E1 terms of
these spectral sequences, under suitable conditions, with the algebraic bar and cobar
constructions.

A quick word on notation: from now on, the only topological categories C we
are interested in are Top∗ and Spec. We will therefore drop the notation ! for the
monoidal product and ⊗ for the tensoring over Top∗, replacing both with the standard
notation ∧. We will reserve ⊗ for the tensor product of graded k-modules.

Proposition 5.5.1. Let P be a reduced operad in Top∗ or Spec with right module
R and left module L such that all the objects P (A), R(A), L(A) are cofibrant and all
homology groups H∗P, H∗R, H∗L flat k-modules. Then for each finite set A there is
a spectral sequence converging to H∗B(R, P, L)(A) with E1-term and first differential
given by the algebraic bar construction:

(E1, d1) ∼= (B(H∗R, H∗P, H∗L)(A), ∂) =⇒ H∗B(R, P, L)(A).

Let Q be a reduced cooperad in Spec with right comodule R and left comodule L
such that all the objects Q(A), R(A), L(A) are fibrant9 and all the homology groups
H∗Q, H∗R, H∗L are flat k-modules. Then for each finite set A there is a spectral
sequence converging to H∗(Ω(R, Q, L)(A)) with E1-term and first differential given
by the algebraic cobar construction:

(E1, d1) ∼= (Ω(H∗R, H∗Q, H∗L)(A), ∂∗) =⇒ H∗Ω(R, Q, L)(A).

Remark 5.5.2. By the comments of Remark 5.4.5, the work of Fresse allows us to
identify the E2 terms of these spectral sequences as suitable Tor groups. That is, our
spectral sequence take the form

E2 = TorH∗P (H∗R, H∗L) =⇒ H∗B(R, P, L)

and
E2 = TorH∗Q(H∗R, H∗L) =⇒ H∗Ω(R, Q, L).

This suggests that the topological bar and cobar constructions should have an inter-
pretation as topological Tor objects. We have not yet studied the homotopy theory
of these constructions sufficiently to make this precise.

8If C is the category of based spaces, we only get a spectral sequence for the bar construction
and not for the cobar construction. This is because a fibre sequence in Top∗ does not immediately
yield a long exact sequence in homology.

9This is automatic if Spec is the category of S-modules of EKMM [5].
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Proof of Proposition 5.5.1. By Proposition 5.3.4, we have cofibre sequences

B(R, P, L)s−1(A) → B(R, P, L)s(A) →
∨

T∈Qs(A)

w(T ) ∧ (R, P, L)A(T ) (*)

Summing these over s we obtain an exact couple and hence a spectral sequence. The
E1 term of this spectral sequence is

E1
s,t := Hs+t(

∨

T∈Qs(A)

w(T ) ∧ (R, P, L)A(T ))

∼=
⊕

T∈Qs(A)

Hs+t(w(T ) ∧ (R, P, L)A(T ))

∼=
⊕

T∈Qs(A)

H̃s(w(T )) ⊗ Ht((R, P, L)A(T ))

∼=
⊕

T∈Qs(A)

H̃s(w(T )) ⊗ (H∗R, H∗P, H∗L)A(T )t

∼= B(H∗R, H∗P, H∗L)s,t(A).

where we have made plentiful use of the Künneth formula. In particular, we need the
flatness assumptions to get

H∗((R, P, L)A(T )) ∼= (H∗R, H∗P, H∗L)A(T ).

The final isomorphism is that of Lemma 5.4.4. Since the filtration of B(R, P, L)(A)
is finite, this spectral sequence certainly converges to H∗B(R, P, L)(A). It remains to
be shown that d1 is given by the differential ∂ of the algebraic bar construction.

The differential d1 is the composite

H∗

⎛

⎝
∨

T∈Qs(A)

w(T ) ∧ (R, P, L)A(T )

⎞

⎠ → H∗−1B(R, P, L)s−1(A)

→ H∗−1

⎛

⎝
∨

U∈Qs−1(A)

w(U) ∧ (R, P, L)A(U)

⎞

⎠

of the boundary map in the long exact sequence associated to one of the cofibre
sequences (*), with the projection map from another one. To analyze this, fix for the
moment a generalized A-labelled tree T with s vertices and consider the following
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map of cofibre sequences

∂w(T )+ ∧ (R, P, L)A(T ) w(T )+ ∧ (R, P, L)A(T ) w(T ) ∧ (R, P, L)A(T )

B(R, P, L)s−1(A) B(R, P, L)s(A)

∨

T∈Qs(A)

w(T ) ∧ (R, P, L)A(T )
""

!!

""

!!

""

!! !!

This induces a map of long exact sequences in homology and in particular we have a
commutative diagram

H∗(w(T ) ∧ (R, P, L)A(T )) H∗−1(∂w(T )+ ∧ (R, P, L)A(T ))

H∗(
∨

T∈Qs(A)

w(T ) ∧ (R, P, L)A(T )) H∗−1B(R, P, L)s−1(A)

""
%%
%%
% %
%

!!

""
%
%
%
%
%
%
%
%

!!

On the other hand, using the identity

∂w(T )+
∼= colim

U<T
w(U)+

we also have a commutative diagram

∂w(T )+ ∧ (R, P, L)A(T )

∨

U∈Qs−1(A): U<T

w(U) ∧ (R, P, L)A(U)

B(R, P, L)s−1(A)

∨

U∈Qs−1(A)

w(U) ∧ (R, P, L)A(U)
""

!!

""

!!

where the top horizontal map is constructed from the quotient maps

∂w(T )+ → w(U)

for U ∈ Trees−1(A) such that U < T together with the operad composition maps

(R, P, L)A(T ) → (R, P, L)A(U).

Taking the homology of this diagram, combining it with our other diagram of ho-
mology groups, throwing in the Künneth formula, summing the top lines over all
T ∈ Qs(A) and using Lemma 5.4.4, we get the commutative diagram of Figure
5-2 in which the top row is the differential ∂ on the algebraic bar construction
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B(H∗R, H∗P, H∗L)(A) (under the isomorphism of Lemma 5.4.4) and the bottom row
is the differential d1 of our spectral sequence. The left and right sides of the diagram
are the isomorphisms described at the beginning of this proof that identify E1 with
the algebraic bar construction.

The argument for the cobar construction is dual but only applies when we are
working in a category of spectra. The sequence of isomorphisms that identifies the
E1 term then takes the form

E1
−s,t := H−s+t(

∏

T∈Qs(A)

MapSpec(w(T ), (R, Q, L)A(T )))

∼=
⊕

T∈Qs(A)

H−s+t MapSpec(w(T ), (R, Q, L)A(T )))

∼=
⊕

T∈Qs(A)

Hom(Hs(w(T )), Ht(R, Q, L)A(T ))

∼=
⊕

T∈Qs(A)

Hom(Hs(w(T )), (H∗R, H∗Q, H∗L)A(T )t)

∼= Ω(H∗R, H∗Q, H∗L)s,t(A).

In particular we use the fact that we are working with spectra and not based spaces
to get the isomorphism

H−s+t Map(w(T ), X) ∼= H−s+t(Σ
−sX) ∼= HtX ∼= Hom(Hs(w(T )), HtX)

that replaces an application of the Künneth formula in the bar construction case.

Remark 5.5.3. Notice that the spectral sequence for the bar construction lies in the
first quadrant. That for the cobar construction lies in the second quadrant.

5.6 The link to Koszul duality

We now use our spectral sequence to look at the relationship between the bar con-
struction on an operad in based spaces or spectra and Koszul duality. Koszul duality
for operads initially appeared in Ginzburg-Kapranov [8]. Further references include
Getzler-Jones [7] and Fresse [6].

The main result of this section is that if P is a reduced operad in based spaces
or spectra such that H∗P is a Koszul operad in graded k-modules, then the spec-
tral sequence for calculating H∗B(P ) collapses at the E2-term and we conclude that
H∗B(P ) is the Koszul dual cooperad of H∗P . This result is a simple consequence
of the definitions of a Koszul operad and its Koszul dual cooperad. The dual result
holds for cooperads in spectra.

Definition 5.6.1 (Koszul operads). Let P be a reduced operad in the cateogry
Modk of graded k-modules. We say P is Koszul if the homology of the reduced bar
construction on P is concentrated in the top tree degree. We explain exactly what
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we mean by this. The reduced bar construction B(P ) is given by

B(P )s,∗(A) ∼=
⊕

T∈Q̄s(A)

H̃s(w(T )) ⊗ PA(T ).

where Q̄s(A) = Qs(A)∩Ts(A) is the set of A-labelled trees (in the sense of §3.1, that
is, not generalized trees) with exactly s vertices. If |A| = 1, this is concentrated in
the column s = 0. If |A| > 1, it is concentrated in 1 ≤ s ≤ |A|− 1. We say that P is
Koszul if

Hs,∗(B(P )(A), ∂) = 0 for s ̸= |A|− 1

where ∂ denotes the tree differential on B(P ).

Definition 5.6.2 (Koszul duals of Koszul operads). Let P be a Koszul operad
in graded k-modules. The Koszul dual of P is the symmetric sequence K(P ) given
by the homology of the reduced bar construction on P . We grade K(P ) according to
the total degree (that is, internal degree plus weight degree) of B(P ):

K(P )r(A) = H|A|−1,r+1−|A|(B(P )(A), ∂).

Notice that K(P )(A) is the kernel of the differential B(P )|A|−1,∗(A) → B(P )|A|−2,∗(A),
so there is a natural inclusion

K(P ) → B(P ).

Proposition 5.6.3 (Cooperad structure on the Koszul dual of an operad).
Let P be a Koszul operad in graded k-modules such that each K(P )(A) is a flat k-
module. Then the Koszul dual K(P ) has a natural cooperad structure.

Proof. We already know from Definition 5.4.10 that the bar construction B(P ) has a
cooperad structure. We get the structure for K(P ) by taking homology. So cocom-
position maps for K(P ) are given by

H(B(P )(A ∪a B)) → H(B(P )(A) ⊗ B(P )(B)) ∼= H(B(P )(A)) ⊗ H(B(P )(B))

where we use the flatness assumption to get the middle isomorphism.

We dually define the Koszul property and Koszul dual for cooperads of graded
k-modules.

Definition 5.6.4 (Koszul cooperads and Koszul duals). Let Q be a reduced
cooperad of graded k-modules. Then Q is Koszul if the homology of the reduced cobar
construction is concentrated in the lowest10 tree degree. In this case, the Koszul dual
of Q is the symmetric sequence K(Q) of graded k-modules with

K(Q)r(A) := H1−|A|,r+|A|−1(Ω(Q)(A), ∂∗).

10Recall that the tree grading for the cobar construction is concentrated in negative degrees.
‘Lowest’ here means most negative.

94



where ∂∗ is the tree differential on Ω(Q). Since K(Q) is the bottom homology group
of Ω(Q) there is a natural surjection

Ω(Q) → K(Q).

Proposition 5.6.5 (Operad structure on the Koszul dual of a cooperad).
Let Q be a Koszul cooperad of graded k-modules. Then the Koszul dual K(Q) has a
natural operad structure.

Proof. The composition maps for K(Q) are given by

H(Ω(Q)(A)) ⊗ H(Ω(Q)(B)) → H(Ω(Q)(A) ⊗ Ω(Q)(B)) → H(Ω(Q)(A ∪a B).

Notice that we don’t need a flatness assumption here.

Fresse [6] gives various fundamental results for Koszul duality of operads and
cooperads, in particular, the following.

Lemma 5.6.6 (Fresse,[6], Lemma 5.2.10). Let P be a Koszul operad of graded
k-modules such that the k-modules P (A) and K(P )(A) are flat. Then K(P ) is a
Koszul cooperad and

K(K(P )) ∼= P

as operads. Dually, let Q be a Koszul cooperad of graded k-modules such that the
modules Q(A) and K(Q)(A) are flat. If Q is Koszul then its Koszul dual operad
K(Q) is also Koszul and

K(K(Q)) ∼= Q

as cooperads.

We now give the main result of this section.

Proposition 5.6.7. Let P be a reduced operad in Top∗ or Spec such that each ob-
ject P (A) is cofibrant and all homology groups H∗P (A) and H∗B(P )(A) are flat k-
modules. If H∗P is a Koszul operad then

H∗B(P ) ∼= K(H∗P )

as cooperads.
Dually, let Q be a reduced cooperad in Spec such that each object Q(A) is fibrant

and the homology groups H∗Q(A) are flat k-modules. If H∗Q is a Koszul cooperad
then

H∗Ω(Q) ∼= K(H∗Q)

as operads.

Proof. The cofibrancy and flatness conditions ensure that the spectral sequence of
Proposition 5.5.1 exists for each finite set A and that H∗B(P ) is a cooperad in Modk.
We have already seen that the spectral sequence has the form

(E1
∗,∗, d

1) = (B(H∗P )∗,∗(A), ∂) =⇒ H∗B(P ).
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Because H∗P is Koszul, the homology of the bar construction is concentrated in the
s = |A| − 1 column. Therefore, the E2-term is concentrated in this column and so
the spectral sequence collapses. We then see that

HrB(P )(A) ∼= E2
|A|−1,r−|A|+1

∼= H|A|−1,r−|A|+1(B(H∗P )(A), ∂) ∼= K(H∗P )r(A)

and so
H∗B(P ) ∼= K(H∗P )

as claimed. It follows that the modules K(H∗P )(A) are flat so, by Proposition 5.6.3,
K(H∗P ) has a cooperad structure. It remains to show that this cooperad structure
agrees with that on H∗B(P ).

The first thing to notice is that the above identification of H∗B(P )(A) with the
submodule K(H∗P )(A) on B(H∗P )(A) is realized by an edge homomorphism of our
spectral sequence. This edge homomorphism comes from applying homology to the
quotient map

B(P )(A) →
∨

T∈Qs(A)

w(T ) ∧ PA(T )

where s = |A|− 1. The key property of these maps is that they fit into commutative
diagrams

B(P )(A ∪a B)

∨

V ∈Qs+s′ (A∪aB)

w(V ) ∧ PA∪aB(V )

B(P )(A) ∧ B(P )(B)

∨

T∈Qs(A)

∨

U∈Qs′ (B)

w(T ) ∧ w(U) ∧ PA(T ) ∧ PB(U)
""

!!

""

!!

where the map on the right-hand side is built from the familiar maps

w(T ∪a U) → w(T ) ∧ w(U)

and the isomorphisms

PA∪aB(T ∪a U) → PA(T ) ⊗ PB(U)

with terms for trees V not of type11 (A, B) mapping to the basepoint.

Taking homology of this diagram, the right-hand side map gives the cooperad
structure on B(H∗P ) as described in Lemma 5.4.12. This shows that the edge homo-
morphisms of the spectral sequence identify the cooperad structure on H∗B(P ) with
the restriction of that on B(H∗P ). Since the cooperad structure on K(H∗P ) is also

11That is, not obtained by grafting a B-labelled tree onto an A-labelled tree.
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the restriction of that on B(H∗P ), it follows that

H∗B(P ) ∼= K(H∗P )

is an isomorphism of cooperads. The dual result is proved similarly.

Example 5.6.8. We return to the Goodwillie derivatives of the identity functor.
Recall that

∂∗I ∼= Ω(S)

where S is the cooperad of spectra with S(A) = S for all A. The homology of this
cooperad is given by

H∗(S)(A) =

{
k if ∗ = 0;

0 otherwise;

for all finite sets A. This is the cooperad of commutative coalgebras in the category
of graded k-modules. Fresse shows in [6, §6] (by updating a result of Ginzburg and
Kapranov [8]) that this cooperad is Koszul (for k = Q, Fp, Z) with Koszul dual given
by a suspension of the Lie operad. Proposition 5.6.7 therefore applies and we recover
the homology of the derivatives of the identity:

H∗(∂nI) =

{
Lie(n) ⊗ sgnn if ∗ = 1 − n;

0 otherwise.

Moreover, we now know that the ‘Lie’ operad structure on this homology is equal to
that induced by the operad structure on the ∂nI themselves, completing the main
goal set out in the introduction to this paper.

5.7 Homology of the ∂∗I-modules MX

In this final section, we use our spectral sequence to investigate the homology of
the ∂∗I-module MX associated to a based space X as described in Remark 4.2.9(1).
Recall that this module is given by a cobar construction:

MX := Ω(I, S, Σ∞X).

We can describe explicitly the spectral sequence for calculating H∗MX(2). The cobar
construction is one-sided and we only have to consider trees for which the root has a
single incoming edge. There are two 2-labelled trees of this type with zero and one
vertices respectively and a morphism between them. The E1 term in the spectral
sequence therefore only has nonzero entries in the columns s = 0 and s = −1. These
entries are respectively H∗X and H∗(X ∧ X) ∼= H∗X ⊗ H∗X with the differential
given by the reduced diagonal X → X ∧ X. The spectral sequence therefore takes
the following form.
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0

...

H∗X ⊗ H∗X H∗X

0−1−2

This reduces to the long exact sequence of homology determined by the cofibre se-
quence

X → X ∧ X → hocofib(X → X ∧ X).

This is consistent with the calculation of MX(2) made in Remark 4.2.9.

Things become more interesting (and much more complicated) for MX(n) when
n > 2. For n = 3 there are eight trees of interest:

(3 labellings) (3 labellings)

321321 2, 31 1, 2, 3

and the E1 term of the spectral sequence takes the form

0−1−2

3H∗X⊗2

H∗X

3H∗X⊗3 H∗X⊗3

The differential d1 is built from the reduced diagonal (between pairs of terms corre-
sponding to bud collapse) and isomorphisms (between pairs of terms corresponding
to collapse of an internal edge).

We will close the paper by looking at X = Sr, the r-sphere (for r ≥ 2). In
this situation the reduced diagonal is zero and there can be no higher differentials
or extensions in the spectral sequence. This will allow us to calculate H∗MSr in its
entirety.

Before stating the general result, we look at what happens for MSr(3) (with coef-
ficients in Z). The E1-term of the spectral sequence now looks like
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...
...

...
...

...

...

0 0

0

0

0

−1−2 0

r

2r

3rZ3 Z

Z3

Z

Consider, for a moment, the spectral sequence for calculating the homology of ∂3I.
The only nonzero part of the E1 term is the map

Z3 ←− Z

based on the four trees labelled bijectively with the set {1, 2, 3}. We know that the
homology is concentrated in top degree. (This is part of the statement that the
cocommutative cooperad is Koszul.) So the E2 term is

Z2 0.

From this we deduce that the only nonzero homology group of ∂3I is:

H−1(∂3I) = Z2

and when we take into account the Σ3-action, we can write this Lie(3) ⊗ sgn3.

Now, return to the case at hand. The 3r-row of the spectral sequence for H∗MSr(3)
looks exactly the same as the 0-row for H∗∂3I and we can see that they are based on
the same trees. Therefore the homology is the same and we deduce that the E2-term
takes the form

...
...

...
...

...

...

0 0

0

0

0

−1−2 0

r

2r

3r0

Z3

Z

Z2
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We now see that there can be no higher differentials and that, if r > 1, no extensions.
We therefore conclude that

H∗(MSr(3)) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lie(3) ⊗ sgn3 ∗ = 3r − 2;

Z3 ∗ = 2r − 1;

Z ∗ = r;

0 otherwise.

From our previous calculations we see that

H∗(MSr(2)) ∼=

{
Z ∗ = 2r − 1 or r;

0 otherwise.

We conclude with the general result.

Proposition 5.7.1. Let Sr be the r-sphere for r ≥ 2. The homology groups H∗MSr

have the following description. There is a ‘generator’, written (A), in HrMSr(A) for
each non-empty finite set A. The entire homology H∗MSr(A) then has a basis given
by all possible iterated brackets of the form

[. . . [[(A1), (A2)], (A3)] . . . , (Ak)]

where A1, . . . , Ak is a partition of A into non-empty finite subsets and [−,−] is a
symmetric binary operation of degree −1 satisfying the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

that also captures the H∗(∂∗I)-module structure12 on H∗(MSr).

Sketch proof. The methods used to calculate the case A = {1, 2, 3} above extend to
general A. The element

[. . . [[(A1), (A2)], (A3)] . . . , (Ak)]

comes from the part of the spectral sequence given by the binary A-labelled tree that
reflects the structure of this iterated bracket, as in the following picture.

. . .

A2A1 A3 Ak

12Recall that such a module is precisely the desuspension of a module over the Lie operad.
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The H∗(∂∗I)-module structure comes from relating the module structures on the
algebraic and topological cobar constructions in a manner similar to the way we
related the cooperad structure on the bar constructions in the proof of Proposition
5.6.7.
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