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Abstract

Let A be an A, ring spectrum. We give an explicit construction of topological
Hochschild homology and cohomology of A using the Stasheff associahedra and an-
other family of polyhedra called cyclohedra. Using this construction we can then
study how THH(A) varies over the moduli space of A, structures on A, a prob-
lem which seems largely intractible using strictly associative replacements of A. We
study how topological Hochschild cohomology of any 2-periodic Morava K-theory
varies over the moduli space of A, structures and show that in the generic case,
when a certain matrix describing the multiplication is invertible, the result is the
corresponding Morava E-theory. If this matrix is not invertible, the result is some
extension of Morava FE-theory, and exactly which extension we get depends on the
A structure.

To make sense of our constructions, we first set up a general framework for en-
riching a subcategory of the category of noncommutative sets over a category C using
products of the objects of a non-X operad P in C. By viewing the simplicial category
as a subcategory of the category of noncommutative sets in two different ways, we
obtain two generalizations of simplicial objects. For the operad given by the Stasheff
associahedra we obtain a model for the 2-sided bar construction in the first case and
the cyclic bar and cobar construction in the second case. Using either the associahe-
dra or the cyclohedra in place of the geometric simplices we can define the geometric
realization of these objects.

Thesis Supervisor: Haynes R. Miller
Title: Professor of Mathematics
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Chapter 1

Introduction

One of the goals of this paper is to calculate topological Hochschild homology and
cohomology of ring spectra such as Morava K-theory, and to do this we need to
think seriously about noncommutative ring spectra. The Morava K-theory spectra
are not even homotopy commutative at p = 2, and at odd primes there is something
noncommutative about the A, structure. Moreover, if we make Morava K-theory
2-periodic it has many different homotopy classes of multiplications, most of which
are noncommutative, and all of which can be extended to A, structures.

Let us write TH H(A) for either topological Hochschild homology or cohomology
of A, while using THH?®(A) for topological Hochschild homology and TH Hg(A)
for topological Hochschild cohomology. THH(A) is defined for A ring spectra,
and depends on which A, structure we endow A with. Usually one would first
replace A with a weakly equivalent strictly associative ring spectrum A and define
topological Hochschild homology or cohomology in terms of A. This makes it hard
to see how THH depends on the A, structure, as the process of replacing an A,
ring spectrum by a strictly associative one is largely intractable. Instead we build the
maps making up the A, structure into the definition of TH H(A), using the Stasheff
associahedra and another family of polyhedra called cyclohedra. The cyclohedra were
first introduced by Bott and Taubes in [16], and later given the name cyclohedra by
Stasheff [62]. This makes it easier to see how T'H H(A) depends on the A, structure
and to study how changing the A, structure might affect the result. In other words,
it enables us to study how T'H H(A) varies over the moduli space of A, structures
on A. Given just an A, structure on A we can also define a kind of partial THH,
which coincides with sk, _THH®(A) or Tot" ‘T HHg(A) if the A, structure is the
restriction of an A, structure on A.

To proceed we need a good understanding of the set, or space, of A, structures
on a spectrum A. The original reference for A, obstruction theory for spectra as
set up by Robinson in [55] implicitly assumes that the multiplication we start with is
at least homotopy commutative, and he only proves that Morava K-theory is A, at
odd primes. We only need to modify his obstruction theory slightly to make it work
for noncommutative ring specta, and then his proof that Morava K-theory is A,
works the same way at all primes. It is sometimes easier to assume that A is an R-
module with a homotopy associative multiplication for some commutative S-algebra



R, in which case we study the space of A,, R-algebra structures on A. In fact, this
setup allows us to prove that a large class of spectra can be given A, structures. If
R is even, meaning that R, = m,.R is concentrated in even degrees, and A = R/I
for a regular ideal I C R, then it follows almost immediately that the space of A,
structures on A is nonempty.

We could also set up the A, obstruction theory using derived functors of deriva-
tions, this is the A, version of the obstruction theory set up by Goerss-Hopkins as
in [30]. With our setup, the obstructions to extending a homotopy associative multi-
plication on A to an A, multiplication lie in what deserves to be called E5 term of a
spectral sequence converging to w7 H Hr(A). The two approaches are related by the
cofiber sequence

THHR(A; M) — M — Dergp(A; M) (1.0.1)

of spectra. Here M is any A-bimodule, and we recover the obstruction theory by
setting M = A.

We prefer the obstruction theory as formulated in terms of associahedra and topo-
logical Hochschild cohomology, both because it is more geometric and because a
closely related obstruction theory will help us calculate 7w, THH(A). To describe
this obstruction theory we need to introduce another idea. We generalize the notion
of a trace and formulate the dual notion of a cotrace in such a way that topological
Hochschild homology corepresents traces and topological Hochschild cohomology rep-
resents cotraces. These traces and cotraces are defined in terms of the cyclohedra by
viewing the collection of cyclohedra as a right module over the associahedra operad.
Because this right module is also cellular, we can use obstruction theory to deter-
mine when such traces and cotraces exist. In interesting cases the obstructions to the
existence of such traces and cotraces are nontrivial, and correspond to extensions in
certain spectral sequences converging to 7,7 HH (A).

Let us say more precisely what these spectral sequences look like when R is even
and A = R/I for a finitely generated regular ideal I = (z1,...,2,). Then there are
spectral sequences

Ey" = Adaqr, .., qn) = mTHHg(A) (1.0.2)

and
E, =T4.(q,....¢) = m.THH"(A). (1.0.3)

Here I' denotes a divided power algebra, though topological Hochschild homology
is in general only a spectrum without any multiplicative structure, so we have to
interpret the second spectral sequence additively only. By a version of the Deligne
conjecture, which is now a theorem with several independent proofs, see e.g. [48],
topological Hochschild cohomology admits an action by some operad equivalent to
the little squares operad. In particular, THHr(A) has a homotopy commutative
multiplication, and it follows that the first spectral sequence is a spectral sequence
of commutative R, algebras. There is also an action of the first spectral sequence on
the second coming from the natural map THHRg(A) Ag THHY(A) — THH%(A),
and one can check that ¢; sends k() to Ye—1(g)-

These spectral sequences collapse because everything is in even total degree, but



we can ask if there are additive extensions. By that we mean that an element in R,
which acts trivially on Ey = E., or E? = E* acts nontrivially on the abutment. As it
turns out, the trace and cotrace obstructions defined in terms of cyclohedra identify
these extensions, so we have reduced the calculation of THH®(A) and THHg(A) to
obstruction theory.

Now let K be Morava K-theory, either the 2(p" — 1)-periodic version K (n) or the
2-periodic version K,. Let E be the corresponding K (n)-localized Johnson-Wilson

—

spectrum F(n) in the first case and the corresponding Morava E-theory £, in the
second case. Then we can write K = E/I as above, and use the trace and cotrace
obstructions to get information about THH”(K) and THHp(K). But we are really
interested in THH®(K) and THHg(K). Tt turns out that THH(K) is independent
of the ground ring, in the sense that the natural maps THH®(K) — THH?(K) and
THHE(K) — THHg(K) are weak equivalences. Thus we are actually calculating
THH®(K) and THHs(K).

In view of the equivalence THHy(K) — THHg(K) for topological Hochschild
cohomology of Morava K-theory, we get a natural map £ — THHg(K). If we
think of TH Hg(K') as the homotopy center of K, the fact that it receives a map from
E just says that the map £ — K is central. In any case, we can ask if this map
might be an equivalence, or something close to an equivalence. An affirmative answer
to this question was obtained by Baker and Lazarev in [6] for K (1) = KU/2 at the
prime 2, where they showed that in fact THHg(KU/2) ~ KU .

If we stick to the 2-periodic case, then by using our obstruction theory together
with the fact that there are lots of noncommutative multiplications on K, we show
that in fact this happens generically. By this we mean that if a certain matrix which
expresses the noncommutativity of the multiplication is invertible, then TH Hg(K,,) ~
E,,. We can obtain this result either by using our obstruction theory, or by comparing
K, Ng, K% with Fg, (K,, K,) and using a double centralizer theorem. The latter
method was used by Baker and Lazarev to prove their result for KU/2. However, this
method does not give any information about higher filtration extensions. In fact, this
allows us to see exactly the filtration one extensions in the above spectral sequence
converging to m,THHg(A). This is because the A, structure controls the filtration
n — 1 extensions, and the comparison map A A A? — Fg(A, A) only depends on
the homotopy class of the multiplication, in other words the A, structure.

If the multiplication on K, is “more commutative”, the map E, — THHg(K,)
is not an equivalence. The map 7, Fy — 7w, THHg(K;) is always a finite extension,
and we conjecture that m.F, — m.THHgs(K,) is always a finite extension. If we
instead consider the 2(p" — 1)-periodic Morava K-theory K(n) there is less room
to make noncommutative multiplications, because of the sparsity of the homotopy
groups of K(n). In fact, THHg(K (1)) is independent of the A, structure, and we
conjecture that ZEI\IJS(K(n)) is also independent of the A, structure. The degree of

the extension 7, E(1) — m,THHg(K(1)) is p — 1, while the degree of the extension
m.Fy — m,THHg(K) is between 1 and p — 1.

To make our definition of T"H H, and to put ourselves in a situation where we
can do calculations, we first set up a categorical framework that we hope will be of



independent interest. We can unify several constructions by considering the following
setup. Let AY. denote the category of noncommutative sets [40, section 6.1] and let A
be a subcategory of AY.. If P is a non-X operad in some symmetric monoidal category
C we can then define a new category Ap enriched over C using the objects in P. The
simplicial category A is a subcategory of AY in two different ways, giving two
generalizations of simplicial sets. Given a P-algebra A, we get a generalization of the
2-sided bar construction in the first case and the cyclic bar construction in the second
case. If P is the operad given by the Stasheff associahedra we can define geometric
realization using the associahedra instead of the standard geometric n-simplices in
the first case, and this recovers Stasheff’s construction of BA for an A, H-space [61].
In the second case we use the cyclohedra instead of the n-simplices, and as far as we
know this gives the first explicit construction of the cyclic bar construction on an A,
algebra.

We can think of both the 2-sided bar construction and the cyclic bar construction
on an A, algebra as simplicial object where the simplicial identities are allowed
to hold only up to homotopy and the homotopies are required to satisfy certain
coherence relations. The associahedra operad is exactly what is needed to organize
the homotopies for the 2-sided bar construction, while we also need the cyclohedra
for the cyclic bar construction. This extra piece of geometry is exactly what we need
to see how the constructions depend on the A, structure in an explicit enough way
to allow us to do calculations.

This paper is divided into two parts. We set up the categorical framework we
need in the first part and then apply our theory to spectra in the second. Each part
has its own introduction, giving a summary of that part.
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Part 1

Operads and enriched categories
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The construction of TTH H we sketched in the introduction is most naturally de-
scribed in terms of certain categorical constructions, which might be of independent
interest. In chapter 2 we first recall the definition of an operad in a symmetric
monoidal category C and some objects and structures related to operads and non->:
operads, including right modules.

In chapter 3 we consider a subcategory A of the category AY of noncommutative
sets, and given a non-Y operad P in C we define a new category Ap enriched over C
using the objects in P. The most productive way of thinking about the category AY
from our point of view is as having finite sets as objects, and morphisms are maps of
sets f : S — T together with a linear ordering of each inverse image f~'(¢). This way
it is clear that replacing a point f : S — T in Homax(S,T) with @, . P(f7'(t))
makes sense.

We are interested in two different embeddings of A into AX. The first is given
by identifying A% with a subcategory of A which we will denote °’A where the
objects are sets of cardinality at least 2 and the maps are order-preserving maps which
preserve the minimal and maximal element, and then using the natural inclusion of
YA into AX. The second is given by looking at a certain subcategory of Connes’ cyclic
category AC, namely the category of based cyclically ordered sets and basepoint-
preserving maps, which we will denote "AC.

Thus we get two generalizations of simplicial objects, either as a functor from
“Ap to C (or some other category) or as a functor from ACp to C. If P is the
associative operad we get simplicial objects in both cases, but otherwise these two
constructions are different. If A is a P-algebra and M and N are right and left A-
modules, respectively, then we can generalize the 2-sided bar construction and make
a functor "Ap — C. The second generalization of the simplicial category gives
a generalization of the cyclic bar construction. If A is a P-algebra and M is an
A-bimodule we can make a functor °ACp — C which generailizes the cyclic bar
construction.

If we have a functor F': Ap — C and R : A% — C we can form the coequalizer
R®4, F. If P is the associative operad and R sends an n-element set to A"~! this
gives geometric realization in the usual sense, and with appropriate choices for P and
R this still gives a good model for geometric realization.

We then devote chapter 4 to studying the Stasheff associahedra and the cyclohedra
in some detail. We denote the associahedra operad by K and the cyclohedra (which
do not form an operad) by W, and prove that the cyclohedra give a functor W :
ACY — Top.

In chapter 5 we prove some technical results to allow us to put a model category
structure on the category of functors “"Ax — M or ’ACx — M, where K is either
the associahedra operad in simplicial sets and M is a simplicial model category, or K is
the associahedra operad in topological spaces and M is a topological model category,
and show that we get the expected spectral sequence from the skeletal filtration.

In chapter 6 we generalize the notion of a trace and introduce the dual notion of
a cotrace. Given a right P-module R, Markl [42, definition 2.6] defined an R-trace
on a P-module A into some other object B in C. We generalize this by letting R
be a functor "ACY — C, and a trace is now defined on a pair (A, M) consisting

12



of a P-algebra A and an A-bimodule M. An R-trace is corepresented by the cyclic
bar construction while an R-cotrace is represented by what we call the cyclic cobar
construction.

13



Chapter 2

Operads

In this chapter we recall some things about operads that we will need later, and enrich
various categories of finite sets over the category our operad lives in. This is similar to
[44], [64] and [59], which all consider enriching some category of finite sets using the
spaces in an operad. We will focus mostly on non-¥ operads, which we will simply
call operads. We will use the term Y-operad for an operad in the usual sense, the
few places where we will need operads with symmetric group actions. The original
reference for operads is [45], see also [10]; for a more modern introduction the reader
can see for example [49]. See also [43] for a comprehensive treatment of many topics
related to operads. Our formalism is inspired by [20], though we focus mostly on
non-> operads.

One key difference from the approach in [43| and [20] is that our operads have
a zero’'th space. We need a zero’th space in our operads to make sense of using an
operad in C to enrich some category of sets over C. Indeed, when the category of sets
is the simplicial category, the maps coming from composition with a nullary operation
should be thought of as face maps. One disadvantage is that cofibrant operads are
much bigger in our category and our favorite operad, the Stasheff associahedra operad,
is no longer cofibrant.

2.1 Sequences and symmetric sequences

Let C be a closed symmetric monoidal category with all countable coproducts. For
the basic definitions C does not have to be closed, though it is a convenient technical
assumption, see remark 2.1.2. Our main examples are the categories of spaces and
based spaces, which we denote by 7op and 7Zop,, and the category of S-modules from
[26]. By a space we mean either a compactly generated weak Hausdorff space or a
simplicial set, and we will assume that all our based spaces are well pointed, i.e., that
*x — X is a cofibration. We will state things in terms of (based) topological spaces,
but throughout the paper (except when making references to [26]) it makes sense to
use the category of (based) simplicial sets. We will denote the monoidal structure by
® and the unit object by *. We will assume that @ ® A = & for all A, where @ is
the initial object. If C is a specific category, we will revert to the usual notation for

14



that category.

We let A denote the category of finite, nonempty, totally ordered sets and order
preserving maps, and we let A, be the category of all finite totally ordered sets, i.e.,
A together with the empty set. We define a sequence in C as a functor

P :iso(Ay) — C. (2.1.1)

The isomorphisms are required to be order-preserving, so there are no nontrivial au-
tomorphisms. We will write P(n) for P({1,2,...,n}), n > 0. We define a symmetric
sequence in C as a functor

P :iso(F) —C, (2.1.2)

where F is the category of finite sets. In this case the symmetric group >, acts on
P(n). We will think of a (symmetric) sequence both as a functor from some category
of finite sets and as a collection of objects indexed by the natural numbers. We will
find it convenient to consider the category of all finite (totally ordered) sets when
writing down coherence conditions, while (implicitly) choosing a skeleton category
when taking limits. The main advantage of working with arbitrary finite sets is that
we avoid constant relabeling when describing the maps in the definition of an operad
etc.

To ease the notation, given a (symmetric) sequence P and a map f : S — T
in Ay (F) we will write P[f] for @,. P(f"(t)). This notation is inspired by [43,
definition 1.53] but differs from theirs in that we consider all maps and not just
surjections. There is a monoidal product on sequences in C defined as follows:

Definition 2.1.1. Given sequences P and @), their composition product, which we
denote by P o Q, is given by

(Po@)(S)= [ P(T)@Qlf] (2.1.3)

[f:5—T]

for a finite totally ordered set S, where the coproduct runs over all isomorphism classes
of totally ordered sets T and all order-preserving maps S — T.

The composition product on symmetric sequences is defined similarly, using un-
ordered sets.

Remark 2.1.2. This does not quite define a monoidal product unless the monoidal
product in C distributes over coproducts, as the operation o on sequences in C is not
quite associative up to natural isomorphism. We refer the reader to [19], which ex-
plains how to get around this by defining M oNo P, which maps to both (MoN)oP and
M o (N o P). We will ignore this technicality in this paper, since the monoidal prod-
uct does distribute over coproducts when C is closed and all the symmetric monoidal
categories we consider are closed.

15



2.2 Operads and modules

Let I be the sequence with I(1) = % and I(n) = () for n # 1, and note that P o [ =
P=ToP.

Definition 2.2.1. An operad is a sequence S +— P(S) together with a unit map
I — P and an associative and unital map

PoP — P. (2.2.4)
A right P-module is a sequence R together with an associative and unital map

RoP — R, (2.2.5)
and a left P-module L is a sequence together with an associative and unital map

PoL — L. (2.2.6)

A Y-operad is defined similarly.

Thus an operad structure on P is a collection of maps P(T) ® P[f] — P(S)
satisfying certain conditions. Occationally it will be convenient to describe an operad

P by giving composition maps P[g] ® P[f] — Plgo f] for all § — T~ U which
are associative and unital in the appropriate sense, as in [43, theorem 1.60]. If we
want to recover the above definition we just restrict to the special case U = {1}.

In fact, it is enough to consider maps S U, T BENR S {1} where s € S,
SUsT = (S — {s})]IT ordered in the obvious way and f sends T to s, see the
discussion about pseudo-operads in [43, section 1.7.1].

Notation 2.2.2. We will denote the resulting map P(S)® P(T) — P(SUs;T) by
os, and similarly for a right or left P-module.

Giving a right P-module structure on R is equivalent to giving associative and
unital maps maps R[g] ® P[f] — R[g o f], or maps R(T) ® P[f] — R(S) for each
f:85—T.

Giving a left P-module structure on L is equivalent to giving associative and
unital maps Plg] ® L[f] — L[g o f], or just maps P(T) ® L[f] — L(S) for each
f:85—T.

We can embed the category C in the category of sequences in C in two different
ways. For an object A in C we can either set A(S) = @ for S # @ and A(@) = A, or
we can set A(S) = A for all S.

We say that a P-algebra structure on A is a left P-module structure structure on
either of the corresponding sequences. The two embeddings of C in sequences of C
give the same notion of a P-algebra. In the first case, for a map f : S — T of finite
totally ordered sets A[f] = @ unless S = &, in which case A[f] = A®T. Then giving
maps P(T)®@A[f] — A(S) reduces to giving maps P(n)®A®" — A for n > 0 which
satisfy the usual contions. For the second notion of embedding of C into sequences in

16



C we get A[f] = A®T for any f: S — T, and again the maps P(T) ® A[f] — A(S)
reduces to maps P(n) ® A®" — A satisfying the usual conditions.
If we have a map f : P — @ of operads we immediately get a map

f*: Q-alg — P-alg. (2.2.7)

If we introduce a simplicial direction, then we have a map f, in the other direction
given by a simplicial bar construction. What we mean by that is that if A is a P-
algebra, then B,(Q, P, A) is a Q-algebra, where B,,(Q, P,A) = QoPo...0c Po A with
P repeated n times. If C has a notion of geometric realization we can get an honest
Q-algebra |B,(Q, P, A)| in C. With some additional hypothesis it is possible to prove
that f, is a homotopy left adjoint to f* and that if f : P — @ is a weak equivalence
of operads then |B.(Q, P, A)| is weakly equivalent to A.

We say that an object M in C is an A-bimodule, if the sequence with A in degree
0, M in degree 1 and the initial object in all other degrees is a left P-module. Giving
an A-bimodule structure on M is equivalent to giving maps

P(n) @ A%V @ M@ A®) — M (2.2.8)

foralln > 1 and 1 < i < n which satisfy the usual conditions. This is also sometimes
called a (P, A)-module, and we might use this notation if the operad P is not clear
from the context.

The notions of a left or right A-module do not fit comfortably into this framework,
but we will fix that in a moment.

First we will introduce the notion of tensor product of operads. The earlies in-
carnation of this idea appeared in [11]. The idea is that if we have two Y-operads
P and @), then we can study objects which are simultaneously algebras over P and
(@ in such a way that these two structures commute, or interchange. This type of
structure is controlled by another operad, which is usually denoted P ® (). It can be
constructed by taking the free operad on the symmetric sequence n — P(n) [ Q(n)
and imposing the natural conditions coming from the operad structure on P and
@, and the interchange condition. Alternatively, it is the universal operad receiving
maps from P and () making certain diagrams which express the interchange of P and
() commute.

The tensor product of operads does not respect weak equivalences of operads. For
example, it is easy to show that Ass ® Ass = Comm, because when we have two
commuting multiplications which share a unit they are equal. On the other hand,
Dunn [23| showed that if C,, denotes the little n-cubes operad, then C,, ® C,, >~ Cypppip.
This is not so surprising, since we have natural inclusions of C,, C C,,4, and C, C
Cinin as the horizontal and wvertical cubes, respectively, and it is easy to see that
defining the action of C,, and C,, on an (m + n)-fold loop space in this way allows for
interchange. Fiedorowicz and Vogt’s result [27] that also Ass ® C,, ~ C,, 41 is slightly
more surprising, but very useful. We will come back to this point in section 7.2.
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Chapter 3

Subcategories of noncommutative sets

Let A be the category of noncommutative sets, as in [40, section 6.1| or [51]. The
objects in AY. are finite sets (the empty set is allowed) and the morphisms are maps
f: S — T of finite sets together with a linear ordering of each f~1(¢), t € T. This
category is noncommutative in the sense that there are 2 different maps from a set
with 2 elements to a set with 1 element, and as the notation suggests a map in AX
can be factored uniquely as a permutation followed by a map in A (if we pick a linear
ordering of S and T'). This is exactly the data we need so that given an associative
algebra A and a morphism f : S — T in AY, we get a map f, : A — AT in a
natural way.

3.1 Enriching subcategories of noncommutative sets

If we have a subcategory A of AX, then each map f: S — T in A comes with a
linear ordering of each f~'(¢). Thus, given an operad P in C, we can make sense of
P[f] and we can define a new category Ap enriched over C as follows:

Definition 3.1.1. Let A be a subcategory of AY and let P be an operad in C. We
define a category Ap enriched over C as follows. The objects are the same as in A,
but the Hom objects are given by

Homyu,(S,T)= ] Pl (3.1.1)
fe€Hom A(S,T)

Composition is defined in terms of the operad structure in the evident way. To spell
this out, given f : S — T and g : T — U in A, we need to give a map Plg] ®

P[f] — Plgo fl. If we write P[f] = @,cvs (®teg,1(u) P(f7'(t))), then the map
is simply given by a product of the maps P(g7'(u)) ® (®t€g_1(u) P(f7(t)) —
P((go f)~'(u)) given by the operad structure on P over all u € U.

Example 3.1.2. There are several natural examples one can consider; we list some
of them here.
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1. The simplicial category A, which we have defined to be the category of all
nonempty finite totally ordered sets and order-preserving maps, or its augu-
mentation Ay which is the category A together with the empty set.

2. The category °’A of finite totally ordered sets with a minimal element 0 and
order-preserving maps preserving the minimal element, or the category A of
finite totally ordered sets with a maximal element 1.

3. The category A of finite totally ordered sets with both a minimal and mazimal
element.

4. Connes’ cyclic category AC, which consists of finite cyclically ordered sets and
order-preserving maps together with a linear ordering of each inverse image of
an element, or its augumentation AC, .

5. The subcategory °AC of AC of cyclically ordered sets with a basepoint 0 and
basepoint-preserving maps.

3.2 Two generalizations of simplicial sets

Lemma 3.2.1. The categories "A and °AC are isomorphic to A°P.

Proof. (See e.g. [22, p. 621].) We construct a functor “?A — A by sending a set
with n 4+ 2 elements, say, {0,21,...,2,,1} ton = {0,1,...,n}. The map on Hom
sets is given as in the following picture:

0 O\Il ! $2/2 1
0 5 Y1 T 1
For the second case, given f : S — T in A, the linear ordering of f~1(0) allows
us to extend f to amap S][{1} — T ]J]{1} by sending the elements in f~*(0) which

are greater than 0 to 0 and the elements that are less than 0 to 1. The rest of the
proof is the same as for the first case. O

(3.2.2)

Thus we get two generalizations of a simplicial object in C, either as a functor
“Ap — C or a functor "ACp — C. As we will see, the first generalization allows
us to define the 2-sided bar construction while the second allows us to define the
cyclic bar construction.

Remark 3.2.2. By a functor F' : D — D’ between categories two categories that
are enriched over C, we will always mean a C-functor, i.e., F' comes with maps
Homp(X,Y) — Homp (F(X),F(Y)) of objects in C. For example, if C = Top
this means that we require all maps of Hom sets to be continuous.
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If X:%Ap — C or "ACp — C we will abuse notation and denote the image of
an element which corresponds to n = {0,1,...,n} in A by X,,. If P(0) = P(1) = «,
the injective maps in “?A or YAC, which correspond to surjective maps in A, do not
change when we pass from “A to “Ap or from AC to °ACp, and we will denote
the map corresponding to s; in A% by s;.

This gives a new way to look at a P-algebra A, as well as right, left and bimodules
over A. A P-algebra A gives a functor (A,)p — C given by S — A®S. A right
A-module M gives a functor °Ap — C given by S — M ®@ A®={0 a left A-module
N gives a functor '"Ap — C by S — A%~ @ N, while a pair (M, N) of a right
and a left A-module gives a functor “"’Ap — C by S — M @ A®E-{01) @ N An
A-bimodule M gives a functor °ACp — C by S — M ®@ A®S~10D We will call the
functor S — M@ AP0 @ N the P-simplicial 2-sided bar construction and denote
it by BY' (M, A, N) or simply B,(M, A, N) if P is clear from the context. Similarly, we
will call the functor S — M ® A2~ from ACp to C the P-cyclic bar construction
and denote it by B&Y(A; M).

We will depart from standard terminology and call the functor S +— Hom(A®S M)
the cyclic cobar construction and denote it by C¢,(A; M). This is a functor "ACY —
C.

Notation 3.2.3. We will call a functor F': Ap — C a left Ap module and a functor
R: A% — C a right Ap module.

Thus a P-algebra A gives rise to a left Ap module S — A®® for any subcategory A
of AY, and since a P-algebra is really a left P-module structure on a certain sequence
under the composition product (definition 2.1.1), a left Ap module is a generalization
of this which depends on A. (A general left P-module does not give a left Ap module
in any natural way, so one could argue that this notation is not the best, but we will
use it anyway.)

The categoryAOAC’p should be compared to the category A° and its enrichment
P from [64] (or C, since C is an operad in Thomason’s paper). Indeed, his category
A is very closely related to the category AC of based cyclic sets. His condition
in definition 1.1 that for a map f € A%, if f(iy) = 0 then either f(i;) > 0 only if
11 > 1g or only if iy < iy guarantees that f can be lifted to a map of cyclically ordered
sets. The only difference is that he only has one map n = {0,1,...,n} — 0 = {0}
instead of n+ 1 maps, so the lift is not always unique. He also works with operads (as
opposed to Y-operads), and his enriched category P is the same as our ACp, except
that he only uses the spaces C(f~!(¢)) for t # 0. None of these differences matter as
long as one only studies the case when M = %, which is in effect what he did.

We also note that a functor R : (A, )% — C is precisely a right P-module. Thus
we also obtain various generalizations of right P-modules. For example, we will think
of a right (AC,)p module as a right P-module with some extra structure.
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3.3 Geometric realization

Now let D be a category which is tensored and cotensored over C. We will still call a
functor Ap — D a left Ap module etc.

Notation 3.3.1. If we have a left Ap module F' : Ap — D and a right Ap module
R: AP — C, we will denote by R ® 4, F the coequalizer

[ rmePifleFS) =]]RS)®F(S) — Reu, F. (3.3.3)
[f:5—T] 5]

Similarly, if F and R are both right Ap modules we will denote by Hom 4, (R, F')
the equalizer

Hom, (R, F) — [[ Hom(R(S), F(S)) =[] Hom(R(T)® P[f],F(S)).
5] Iy
(3.3.4)

If we work in Top, P = Ass and A is either “!A or YAC, so that Ap = A, then
R(S) = A0l or R(S) = A0} the standard geometric simplicies, gives a right
Ap module. Thus we recover the usual notion of geometric realization and Tot. We
can do something similar in any other category where geometric realization makes
sense.

If we have a map f : P — @ of operads, then we get a functor f : Ap — Ag
between enriched categories. Thus we can pull a functor Ag — D or AOQp — D
back to a functor Ap — D or A% — D. This gives a functor f* : DAe — DAP,
In particular, since A,y = A, given any A, operad P and a functor A — D or
A% — D we can pull it back to a functor Ap — D or AY — D. With A ="Ap
or "ACp we see that we can regard any simplicial object in D as a functor from “Ap

or from YACp. Similarly, any cosimplicial object can be regarded as a functor from
UAY or from "ACY.
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Chapter 4

The associahedra and cyclohedra

The original definition of the associahedra can be found in [61]. The cyclohedra got
their name from Stasheff [62], but had been considered earlier, first by Bott and
Taubes in [16]. They sometimes go under the name Stasheff associahedra of type B.
For an introduction to the associahedra and cyclohedra, see [42].

4.1 The associahedra

Consider all ways to parenthesize (in a meaningful way) n linearly ordered variables.
The maximal number of pairs of parentheses is n — 2, and the Stasheff associahedron
K, has an (n—2—1i)-cell for each way to parenthesize using i pairs of parentheses, with
a face map for each way to insert an additional pair. Perhaps a more precise definition
of K, is as the cone on L,, where L,, is the union of various copies of K, x K,_,.1,
as in [10, definition 1.7]. This definition also makes sense in the category of simplicial
sets. For example, Ky = K; = Ky = %, K3 = [ is an interval and K is a pentagon.
Figure 4-1 shows K.

Theorem 4.1.1. (Stasheff [61]) For n > 2 the associahedron K, is homeomorphic
to D"72, and the sequence K = {K, }n,>0 forms an A operad in Top.

Figure 4-1: The associahedron Kj

22



The operad structure can be thought of as substitution of parenthesized epressions.
The Boardman-Vogt W-construction, which is usually given in terms of certain metric
trees, provides a cofibrant replacement of operads in a certain model category. The
associahedra operad K (or a cubical decomposition of it) is the W-construction on
the associative operad Ass [43, Example 2.22|, though we have to be careful about
exactly which category of operads we work in.

The model category structure on operads (in Zop) is given by levelwise weak
equivalences and fibrations, while the cofibrations are what they have to be |9, theo-
rem 3.2|. This relies on special properties of the category Zop, though it is possible
to weaken the conditions necessary for getting a model category somewhat by consid-
ering reduced operads |9, theorem 3.1]. An operad P is reduced if P(0) is the unit in
the symmetric monoidal category. It is not clear if there is a model category structure
on operads in a general symmetric monoidal model category.

But K is not cofibrant in the category of operads in 7op. For example, it is easy
to see that there can be no map from K to the little intervals operad C;. The problem
is that * € C;(0) does not act as a unit. If we perform the WW-construction on Ass
in this category we also get an operad with a very big first space. The solution in
[43] is to consider the category of operads with P(0) = . In this category one can
show that there is a map from the associahedra to the little intervals operad, and the
associahedra operad is indeed cofibrant in this category.

Because we want to generalize the W/ -construction in such a way that it produces
the cyclohedra, we will sketch the details of the W-construction of Ass in the topo-
logical setting. To do this we need to discuss trees. See [20] for a much more thorough
discussion of trees as related to operads. For simplicity we will not allow vertices with
only one incoming edge. This means that we have to restrict the WW-construction to
operads with P(1) = %, but that is enough for our purpose. By a tree we will mean
a planar directed tree where each non-leaf vertex except the root has at least two
incoming edges. The root has exactly one incoming edge. A metric w on T is an
assignment of a length w(e) of each internal edge e in T such that 0 < w(e) < 1.
We topologize the space of metric trees as the quotient of the space of metric trees
with 0 < w(e) < 1 where we identify a tree with an internal edge of length 0 with
the corresponding tree with that edge collapsed. Let 7, be the space of metric trees
with n leaves. Given a tree T' € 7,, let vert(T) be the set of internal vertices, and let
In(v) be the set of incoming edges to v.

Definition 4.1.2. Given an operad P in Top with P(0) = & and P(1) = %, WP is
the operad defined by

wprm)= 1] [ PUn@) (4.1.1)

TeTy, vevert(T)
with the natural topology.
The structure maps in W P are given by grafting trees, and assigning the length
1 to any new internal edges.

The claim in [43] is that the W-construction on Ass in this setting gives K. For
example, K, is given by figure 4-2.
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Figure 4-2: The associahedron K4 from the W-construction

It is easy to see that K is cofibrant in the category of operads without zero’th
space. This amounts to showing that for any trivial fibration P — Ass of operads,
which just amounts to requiring that each P(n) is fibrant and contractible, the dotted
arrow in the diagram

P (4.1.2)

7 lw

K;Ass

exists. But we can construct a map like this by induction. If we are given maps
K; — P(i) for i < n, the map K,, — P(n) is determined on 0K, and now we just
have to solve the extension problem

n—2

which we know we can solve because each P(n) is fibrant and contractible.

Thus for any A, operad P, we get a map X — P of operads without a zero’th
space. If P(0) = % and P(0) acts as a unit in a sufficiently nice way, the map
IC — P can be promoted to a map of operads with a zero’th space, and we can pull
back a functor F': Ap — Top to a functor Ax — Top. Thus it makes sense to
concentrate on the A, operad K as long as we are willing to restrict the kinds of
operads we consider. This restriction excludes operads like the little intervals operad,
so for some purposes this restriction is bad, for example if we want to consider tensor
products of operads.

We note that K, has i faces of the form K; x K,,_;; foreach 2 <i <n—1, given
by the images of the ¢ maps o; : K; x K,,_;;1 — K, or the i ways to put one pair
of parentheses around n — i + 1 of the variables. In particular, K,, has n + 1 faces of
the form K,,_;1. As in [55], we will see that the faces z1(xg---x,) and (z1 -+ xy_1)z,
correspond to the first and last map in the Hochschild cochain complex, while the
faces x1 - - - (z;xi41) - - - T, give the rest of them.

The operad K has an obvious filtration, where we let IC,, be the operad generated
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by K; for i <n. An algebra over I, is precisely an A,, algebra as in [61], and giving
an A, algebra structure on A is equivalent to giving maps K; x A — Afor0<i<n
satisfying the usual conditions.

Observe that the standard n-simplex A" is the configuration space of n+ 2 points
on the unit interval, where the first point is at the beginning and the last at end.
Let the points be labelled by elements of a set S € %A with |S| = n + 2, say,
S ={0,z1,...,2,,1}. By abuse of notation, we will let x; denote both the position
of the (i + 1)st point and an element in S. We get the standard description of A™ by
setting t; = ;11 — x; (to = 21, t, = 1 — x,). The associahedron K, o = K(95) is also
such a configuration space; it is the compactification of the configuration space of n-+2
disinct points as above, where for each time we have a point repeated ¢ times we use
a copy of K; instead of just a point. This is the Axelrod-Singer compactification, see
[3] and also [28]. Of course, we could also describe the configuration space of distinct
points on [ in terms of distinct points on R modulo translation and dilatation. This
is the point of view found in the references, and the point of view we have to take if
we want to generalize to configurations on higher-dimensional manifolds, see remark
4.2.7.

If f: S — T isamap in "’A, we can interpret X(T) @ K[f] — K(S) in terms of
the above configuration space as follows. For each ¢ € T', the map replaces the point
labelled by ¢ by points labelled by the set f~!(¢), and the factor K(f~1(¢)) tells us
how. This works because 0 € f~!(0) and 1 € f~!(1), so we never remove the points
at the beginning and end of the interval.

Next we compare the associahedra to the standard n-simplexes. Denote by s :
Kyio — Ky, 0 <1 <n-—1, the map K, 1o = K, 1o x Ky — K, 11 obtained
from o,,,, (notation 2.2.2). This is the same as removing the (i + 2)nd variable in
the parenthesized expression of n + 2 variables defining K, .o, and as we just saw
it corresponds to removing the point marked x;;; in the configuration space. We
also get maps K,,.o — K, 11 by removing 0 or 1, but these do not correspond to
codegeneracy maps on A", Similarly we get maps &’ : K, o = K40 X Ky — K, 13
for 0 < j <n+41 from o,, (29 =0, 7,41 = 1), which correspond to replacing z; with
a double point.

As is obvious from the configuration space interpretation of K, there is a surjec-
tive map K, o — A" which is a homeomorphism on the interior. The association
n — K, .5 is not quite a cosimplicial space, because some of the simplicial identities
commute only up to homotopy, but the following diagrams commute:

lsi lsi ldj ldj
Kn+1 — A1 Kn+3 — AN+l

In particular these two diagrams show that S — Al*I=1 gives a functor A —
Top. We also see that the two faces of K, 5 coming from the inclusions Ko x K, 1 —
K, 5 are crushed to a point in A”.

Let A be a KC-algebra, M a right A-module and N a left A-module. By regarding
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K as a functor “?AY¥ — Top we can now define the 2-sided bar construction as
B(M,A,N) = K ®ua, BX(M, A, N). (4.1.5)

We elaborate on what this definition means. The tensor product is defined as a
coequalizer, which just means a quotient in Top, so B(M, A, N) is given by

HK,HQ X M x A" X N/ ~, (4.1.6)

where we identify (f*x,y) with (z, f.y). (The roles of f, and f* are reversed here
because “?A has replaced A, not A.)

Proposition 4.1.3. When M = N = x, the bar construction as defined above agrees
with Stasheff’s definition in [61]. In particular, if A is grouplike (moA is a group)
then BA = B(x, A, %) is a delooping of A.

Similarly, given any functor X : “"Ax — Top we define |X| as K ®ua, X, and
given a functor Y : ?AY¥ — Top we define Tot(Y) as Homoa, (K, Y).

Proposition 4.1.4. The maps K, o — A" assemble to a natural transformation
of functors from “"Ax to Top.

Proof. This follows immediately from the two commutative diagrams in equation

4.1.4 O
Proposition 4.1.5. Let X be a simplicial space and reqard X as a functor “"Ax —
Top via
OIAIC I OIAAss =, A°P L Top. (4.1.7)
Then the natural map
’C ®01AIC X — A. ®Aop X (418)

18 an isomorphism.
Similarly, if we regard a cosimplicial space Y as a functor "AY — Top the
natural map
Homa(A®)Y) — Homoa,.(K,Y) (4.1.9)

1 an 1somorphism.

Proof. Let S ={0,2z1,..., 20,1}, T ={0,y1,...,Ym, 1} and let f : S — T be a map
in A which is dual to g:m —mnin A. Let f be a map in A which is in the
component of f. Then f, = ¢*: X,, — X,,,, so the induced map

K[f] x X» — Xom (4.1.10)

is constant in the first variable. This means that when we consider the corresponding
map K(T") x K[f] — K(S) which appears in the coequalizer defining I ®oa,. X, the
image of {k} x K[f] in K, ;2 x X,, is crushed to a point. Doing this for all f gives us
exactly the projections K, o — A".

The second part is similar. O

26



Figure 4-3: The cyclohedron W

4.2 The cyclohedra

Next we consider the right module over K given by the cyclohedra. To define the
cyclohedron W,,, we again consider all ways to parenthesize n variables, but now we let
them be cyclically ordered. In this case the maximal number of pairs of parentheses
is n — 1. For example, 12 can be parenthesized as either (12) or 1)(2. The same
construction as above, now with an n — ¢ — 1 cell for each way to parenthesize n
variables using ¢ pairs of parentheses gives the space W,,. Again a better definition of
W,, might be as the cone on a union of various copies of Wy x K,,_s.1. For example,
Wo = Wi =%, Wy =1 and W3 is a hexagon. Figure 4-3 shows Wj.

Theorem 4.2.1. For n > 1 the cyclohedron W, is homeomorphic to D", and the
cyclohedra assemble to a functor W : (AC, )y — Top.

Proof. 1t is well known ([62, section 4]) that W is a right K-module, i.e., a functor
(AL)E — Top, and a straightforward extension of the proof shows that it extends
to a functor (AC, )Y — Top.

(A+)O,Cp770p (4.2.11)
(ACYK
0

This result is related to Markl’s result [42, theorem 2.12| that if we consider the
Y-operad with n — X, x K, then the symmetric sequence n +— C,\%, x W, is a
right module over this operad.

Next we describe the version of the Boardman-Vogt W-construction which gives
us W. The idea is to change the definition of a tree slightly, in a way that is similar
to |20, definition 7.3|. First of all, we allow the root to have more than one incoming
edge. We also require the leaves to come with a cyclic ordering, and we identify trees
that differ by a cyclic permutation of the root edges. We also assign a length to the
root edges. Let 7 C,, be the space of such trees with leaves labelled by the cyclically
ordered set {1,2,...,n}.
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Figure 4-4: The cyclohedron W3 from a relative WW-construction

Definition 4.2.2. Given an operad P in Top with P(0) = @ and P(1) = %, and a
functor R : °ACp — Top, W(R, P) is the functor °ACywp — Top given by

W(RP)n)= ][] R(In(r))x( I1 P(In(v))) (4.2.12)
(T)

TeETCn vEvert

with the natural topology. Here r is the root vertex, and vert(T) is the set of internal
vertices of T'.

Proposition 4.2.3. The cyclohedra can be obtained as W = W (R, Ass), where R :
AC s — Top sends any set to *.

Proof. This follows almost immediately. The relative W-construction gives an (n—1)-
cube for each binary tree. We can think of each vertex of W), as a binary tree where
all the internal edges have lenght 1. By subdividing W,, as in figure 4-4 we see that
W,, can be decomposed as a union of (n — 1)-cubes, one for each binary tree. O

The cyclohedra, regarded as a functor ACx — 7op, also has a universal lifting
property. For any R : ACx — Top with each R(S) ~ *, we can construct a natural
transformation ¥ — R by lifting one cell at a time.

Remark 4.2.4. We could consider this construction for other subcategories of AX.
For example, if we consider R : AY — Top given by R(S) = x for all S we find that
W (R, Ass)(3) is two copies of W3 joined at the center. More generally, W (R, Ass)(n)
is (n — 1)! copies of W,, joined at a codimension 2 subspace.

The functor WV has a filtration which is compatible with the filtration of . We
let W, be the functor W, : (AC,)g — Top generated W; for i < n.

Again we can relate this to configuration spaces. We can also consider the n-
simplex A" as the configuration space of n 4+ 1 points on S* labelled by elements of
some S € "AC with S| =n + 1, say, S = {0,21,...,2,}, with 0 at the basepoint.
Then W, is the Axelrod-Singer compactification of the interior of this space where
we use a copy of K; instead of a point every time we have a point repeated ¢ times.
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Again we have maps A
s Wy — W, (4.2.13)

for 0 < ¢ < n — 1, which can be interpreted as removing the point x;.; in the
above configuration space, and maps d’ : W, .1 — W45 for 0 < j < n + 1 which
can be interpreted as replacing the point x; with a double point. Here d° and d"**
both replace 0 by a double point, either with {0, 21} or {z,.1,0}. Again we have a
surjective map W, ,; — A", which gives commutative diagrams

Wy — = A Wiy — = A (4.2.14)
lsi lsi ldj ldj
Wn — A1 Wn+2 — Al

Again we see that we also get a map W, .; — W,, from removing the point 0,
but this does not correspond to a codegeneracy map on A”™.

If we have a functor X : °ACx — Top, we define the geometric realization |X|
as W ®oac, X, and if we have a functor Y : "ACYY — Top we define the total
object Tot(Y) as Homoac, (W,Y). In particular, given an A, space A and an A-
bimodule M we can define the cyclic bar construction BY(A; M) and the cyclic cobar
construction Cp,(A; M) this way.

Proposition 4.2.5. The maps W, .1 — A" assemble to a natural transformation
of functors from °ACx to Top.

It is clear that the analog of proposition 4.1.5 holds:

Proposition 4.2.6. Let X be a simplicial space and regard X as a functor °ACx —
Top via
OACK — "AC 155 — AP = Top. (4.2.15)

Then the natural map
w ®OAC;C X — A* X Aop X (4216)

18 an isomorphism.
Similarly, if we regard a cosimplicial space Y as a functor °ACYE — Top the
natural map
Homa(A®,Y) — Homoac,, (W,Y) (4.2.17)

18 an isomorphism.

We can also consider functors defined only on °ACk,. If X : °ACx, — Top, the
expression W, ®oac,,, X makes sense, and by abuse of notation we will denote it by
sk,_1|X|, because if X is the restriction of a functor from "ACy then this does give
the (n — 1)-skeleton. Similarly we will denote Homoac, (W,,Y) by Tot" 1 (Y') for a
functor Y : "ACYY — Top. In particular, given a pair (A, M) consisting of an A,
algebra A and an A-bimodule M we can define sk,,_1B%(A; M) and Tot" ' C,(A; M).

Remark 4.2.7. A natural generalization is to consider the configuration space of
points in R™ modulo translation and dilatation, and the resulting Y-operad F,, we
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get from the Axelrod-Singer compactification of this space. If we have a parallelizable
m-manifold M, the compactified configuration space of points on M is naturally a
right module over F,,. It might be natural to consider a pointed manifold and based
configurations if we want to consider a right F,,-algebra A and an (F,,, A)-module. If
M is not parallelizable one has to consider a framed version of this, we refer to [41]
for the details.
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Chapter 5

A Reedy model category structure

We need conditions which guarantee that a functor “XAx — Top or "ACx — Top
is well behaved. In particular, we want to know when the skeletal filtration gives
a spectral sequence converging to the homology of the geometric realization. To
accomplish this we set up a Reedy model category structure on the category of such
functors and their natural transformations, and identify the conditions we need to
say that such a functor is cofibrant.

This chapter draws heavily on Chapter 15 in Hirschhorn’s book [31].

5.1 Reedy categories

We start by recalling a number of things from [31].

Definition 5.1.1. A Reedy category is a small category A together with two subcat-

— —

egories A (the direct subcategory) and A (the inverse subcategory), both of which
contain all the objects of A, together with a degree function assigning a nonnegative
integer to each object in A, such that

ﬁ

1. Every non-identity morphism of A raises degree.
(—

2. FEvery non-identity morphism of A lowers degree.

3. Every morphism g : S — T in A has a unique factorization
s Ty (5.1.1)

— —
with ‘g a morphism in A and ¢ a morphism in A.

The canonical example of a Reedy category is the simplicial indexing category A,
— —

or rather a skeleton of A. In this case A is the subcategory of injective maps and A
is the subcategory of surjective maps.
Now let M be a model category, and suppose X is a functor A — M.
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Definition 5.1.2. Let S be an object in A. The latching object LsX 1is the colimit

LsX = lim X, (5.1.2)

where ,—4>/S is the category of objects over S and 8(7(/5) is the full subcategory
containing all the objects except the identity on S.
The matching object MsX s the limit

MsX = lim X, (5.1.3)
d(S/A)

where S/j is the category of objects under S and 8(5/2) is the full subcategory
containing all the objects except the identity on S.

By construction there are maps LgX — Xg and Xg — MgX.

Definition 5.1.3. Let X and Y be functors A — M, and let f : X — Y be a
natural transformation.

1. The map [ is a Reedy weak equivalence if each
fs: Xg —Ys (5.1.4)
18 a weak equivalence.
2. The map f is a Reedy cofibration if each
XsUrgx LgY — Yy (5.1.5)
15 a cofibration.
3. The map f is a Reedy fibration if each
Xg — Ys Xpgy Mg X (5.1.6)

s a fibration.

We recall the following theorem, which is due to Dan Kan, from [31, theorem
15.3.4):

Theorem 5.1.4. Let A be a Reedy category and let M be a model category. Then
the category M* of functors from A to M with the Reedy weak equivalences, Reedy
cofibrations and Reedy fibrations is a model category.

5.2 Enriched Reedy categories

Next we do the same for enriched categories. Let C be a closed symmetric monoidal
model category (|33, definition 4.2.6]), which will be either simplicial sets or spaces in
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our applications, and let M be a C-model category. By this we mean a model category
which is enriched, tensored, and cotensored over C, and satisfies the following axioms:
(compare [31, definition 9.1.6])

M6. For every two objects X and Y in M and every object K in C there are natural
isomorphisms

Hom(X ® K,Y) = Hom(K, Hom(X,Y)) = Hom(X,Y™) (5.2.7)

of objects in C.
M7. If i : A — B is a cofibration in M and p : X — Y is a fibration in M, then
the map

Hom(B, X) =% Hom(A, X) X grom(ay) Hom(B, X) (5.2.8)
is a fibration in C that is trivial if either ¢ or p is.

If C is the category of simplicial sets then these are the extra axioms that make
a model category which is enriched, tensored, and cotensored over C into a simplicial
model category. If C is topological spaces, by which we mean compactly generated
weak Hausdorff spaces, then C is a symmetric monoidal model category ([33, propo-
sition 4.2.11]) and a C-category is sometimes called a topological category.

These axioms have some immediate consequences. For example (compare |31,
proposition 9.3.9]) it follows that if A — B is a (trivial) cofibration in M then so is
A® K — B® K for any K in C. Similarly, if X — Y is a (trivial) fibration then
so is XX — Y¥ for any K in C.

Definition 5.2.1. An enriched Reedy category is a small category A enriched over
C together with an underlying Reedy category Ay with the same objects as A and a
decomposition of Hom objects in A as

Homy(S,T) = H Homyu (S, T), (5.2.9)

gEHom 4, (S,T)

such that if g = ¢ °q is the unique factorization of a map g in Ay, then there is a
natural isomorphism

Homy(S,T)y = Homa(U,T)5 ® Hom(S,U). (5.2.10)

Even though A has a discrete object set, the same is not true for 8(7(/5) and

8(5/?) Thus when defining the latching object LgX, we are forced to take a
colimit over a category where both the objects and morphisms are objects in C. See
[35, chapter 3| for the general theory of enriched limits and colimits.

Definition 5.2.2. Let X : A — M be a C-functor. The latching object LsX 1is the
coequalizer

[T Hom(U.S)® Hom(T,U) ® Xy = || Hom(T, S) ® Xy — LsX, (5.2.11)
T.U<S T<S
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where one map is given by the composition Hom(U,S) @ Hom(T,U) — Hom(T,S)
and the other is given by Hom(T,U) @ X7y — Xy.
The matching object MsX s the equalizer

MsX — [[ Hom(Hom(T,S), X7) =[] Hom(Hom(U,S) ® Hom(T,U), Xr).
T<S T.U<S
(5.2.12)

The category A has an obvious filtration, where F™A is the full subcategory of A
whose objects have degree less than or equal to n.

Lemma 5.2.3. (/51, theorem 15.2.1, remark 15.2.10]) Suppose X is a functor F"~1 A
— M. Eztending X to a functor F" A — M is equivalent to choosing, for each
object S of degree n, an object Xg and a factorization LgX — Xg — MgX of the
natural map LgX — MgX.

Proof. This uses the unique factorization in the definition of a Reedy category, in the
same way as in the proof of |31, theorem 15.2.1]. O

Lemma 5.2.4. Suppose that for every object T of A of degree less than S, the map
Xr Up,x LrY — Yr is a (trivial) cofibration. Then LgX — LgY is a (trivial)
cofibration.

Similarly, suppose that for every object T of A of degree less than S the map
Xr — Yr Xpy MpX is a (trivial) fibration. Then MgX — MgY is a (trivial)
fibration.

Proof. We will do the case where each X7 U, x LrY — Y7 is a trivial cofibration,
the other cases are similar. Let ¥ — B be a fibration. We have to show that any
diagram

LgX —F (5.2.13)

LsY —=B

has a_l)ift. Classically we had to construct a map Yy — FE for each object T' — S
in d(.A/S) by induction on the degree of 7. We need to make sure that these maps
are compatible, so in our case we need to construct a map Hom(T,S) ® Yy — E.

We proceed by induction. Suppose we have constructed a map Hom(U,S) ®
Yy — E for all U of degree less than 7. We then have maps

Hom(T,S)® Hom(U,T) ® Yy — Hom(U,S) @Yy — E (5.2.14)

for each U of degree less than T'. These maps assemble to a map Hom(T,S)QLrY —
E. We also have maps Hom(T,S) ® X7 — E, so we get a diagram

Hom(T, S) X (XT ULTX LTY) —F (5215)

7

Hom(T,S)® Yr
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By assumption, each map X¢ Uy, x LrY — Y7 is a trivial cofibration, and since we
are in a C-model category this remains true after tensoring with Hom(T,S), so we
have a lift. O

Lemma 5.2.5. A map X — Y s a trivial Reedy cofibration if and only if each
XsUrox LY — Yg is a trivial cofibration.

Similarly, X — Y is a trivial Reedy fibration if and only if each Xg — Yo X pry
MsX s a trivial fibration.

Proof. Recall that the pushout of a trivial cofibration is a trivial cofibration. Suppose
that f : X — Y is a trivial Reedy cofibration. By the previous lemma each LgX —
LsY is a trivial cofibration, so when we take the pushout over the map LgX — Xg
we find that the map Xg — XgUr x LsY is a trivial cofibration. By assumption
the composite Xg — XgUp,x LgY — Yy is a weak equivalence, so by the two out
of three axiom so is XgUr x LsY — Y.

The other case is similar. O

Theorem 5.2.6. Suppose M is a C-model category. Then M* with the Reedy weak
equivalences, cofibrations and fibrations, is a model category.

Proof. 1If we have a diagram
—X (5.2.16)

B—Y

where i : A — B is a Reedy cofibration and p : X — is a Reedy fibration, with
either 7 or p a weak equivalence, we need to constuct a lift. We can do this by
induction on the degree, using the diagrams

AsUrga LsB — X (5.2.17)
Bs Ys Xargy Mg X
and the previous lemma. O

5.3 The Reedy category Ap

Now let A C AX. be a subcategory of the category of noncommutative sets which is
also a Reedy category, and let P be an operad in C with P(0) = P(1) = *.

Proposition 5.3.1. The category Ap is a Reedy category enriched over C.

Proof. The decomposition of Hom 4, (S,T) as a coproduct over Hom4(S,T) is the
ﬁ
obvious one. The condition P(0) = P(1) = x ensures that the direct subcategory A p

ﬁ
is in fact equal to A, and it is easy to see that Ap satisfies the unique factorization
condition. O
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Corollary 5.3.2. Let M be a simplicial model category. Then the category of left
Ap modules F : Ap — M is a model category.

From the proof of proposition 5.3.1 we observe the following:

Observation 5.3.3. The definition of latching objects for a left A module or Ap
module, which only depends on the direct limit category, does not change when we
pass from A to Ap. In particular, if A is either “"A or °A and X is a left Ap
module, the usual description of latching objects in a simplicial category in terms of
a coequalizer

[T X-2= J] X —LX (5.3.18)

0<i<j<n—1 0<i<n—1

as in [31, proposition 15.2.6] is still valid.
Dually, the usual description of matching objects for a right A module or Ap
module does not change when we pass from A to Ap.

Next we show that when Ap is either “’Ax or YACk then the skeletal filtration
gives an appropriate spectral sequence.

Theorem 5.3.4. Let C be either simplicial sets or topological spaces, and let KC be the
associahedra operad in C. Let M be a pointed C-model category, let X : "Ax — M
or °ACyx — M be Reedy cofibrant and let E be a homology theory. Then the skeletal
filtration gives a spectral sequence

Ez,q = HP(EQ(X)) g Eerq’X‘- (5.3.19)

Proof. We filter [ X| by letting F'"|X| be the image of [[,_,, Kiy2® X; or [[,., Wis1 ®
X; in |X|. As in the classical case, the cofibrancy of X implies that the filtration
quotients look like

FUIX|/F" X | 2 (Kpyo/O0K ) A X, 23X, (5.3.20)
and the rest is standard. O
There is also a dual setup for Reedy fibrant right modules.

Theorem 5.3.5. Let Y be a Reedy fibrant right “"Ax module or °ACx module, and
let E be a homology theory. Then the total space filtration gives a spectral sequence

BP9 = HP(E,(Y)) = E,_,Tot(Y). (5.3.21)

While the spectral sequence coming from the skeletal filtration usually has good
convergence properties, we need additional conditions to guarantee convergence of
the spectral sequence coming from the total object filtration. See for example [17] for
details.
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Chapter 6

Traces and cotraces

6.1 Traces over a P-algebra A

We start by recalling Markl’s definition of a trace (|42, definition 2.6]), adapted to
right modules over operads (as opposed to Y-operads). As usual, let P be an operad
and let A be a P-algebra. Let £4 be the endomorphism operad for A, with £4(5) =
Hom(A®% A), and let £4 g be the sequence given by £4 5(S) = Hom(A®, B). Then
Eap i1s a right £4-module, and by using the map P — &4 defining the P-algebra
structure on A, a right P-module. Given another right P-module R, we can ask for
a map R — &, p of right P-modules. Markl defines an R-trace over A (into B)
as such a map. This is equivalent to giving maps R(S) ® A®S — B for each finite
totally ordered set S, such that the diagram

R(T) ® P[f] ® A®S —= R(T) @ A®T (6.1.1)
R(S) ® A®S /_£

commutes for all maps f: S — T in A,. Thus an R-trace is simply a map
R®@p A* — B, (6.1.2)

where A°® is the functor S — A®S.

6.2 Traces over a pair (A, M)

We will modify this construction so that it applies to the situation where we have
a pair (A, M) consisting of a P-algebra A and an A-bimodule M, and a functor
R :°ACY — C. Let S € "AC, and let €4 .5 be the functor "ACY — C defined
by Ear5(S) = Hom(M @ A®S~0 B). Then we can ask for a natural transformation
R — &4 r.p of functors from "ACY to C.

Definition 6.2.1. Let A be a P-algebra, M an A-bimodule and R : "ACY — C.
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An R-trace over (A, M) into B is a natural transformation R — €4y of functors.

Asin the classical case, it is easy to find the object corepresenting R-traces. Giving
an R-trace over (A, M) into B is equivalent to giving a map

R ®OACP ny(A, M) — B. (623)
In particular, we have the following:

Observation 6.2.2. With P = K,, 1 < n < 00, a W,-trace is corepresented by the
partial cyclic bar construction sk,_1BY(A; M) (which exists even if A is only A,).
In particular, a W-trace is corepresented by B%Y(A; M).

Giving an R-trace is equivalent to giving maps R(S) ® M ® A®S~{% — B for
each S € AC such that the diagram

R(T)® P[f]®@ M ® A®5~ % — R(T) @ M @ A®T—") (6.2.4)
R(S) ® M @ A®S—{0} B

commutes for all f: S — T in "AC.

Notation 6.2.3. If R(1) = %, we will call an R-trace over (A, M) into B which
restricts to f : R(1) @ M = M — B an R-trace extending f. If M = B and f is
the identity map, we will call an R-trace over (A, M) into M extending f an R-trace
on M. If P =K, we say that an A structure on A together with an A-bimodule
structure on M admits a W, -trace if the identity map on M extends to a W, -trace.

We can interpret R in terms of trees in the following way. We picture a map
R(S) ® A®5~10% @ M — B as a tree

(6.2.5)

where the leaves are cyclically ordered and the leaf labelled M is the basepoint. Here
A; is the copy of A labelled by 7 in S ={0,1,...,n}.

38



Given a map f: S — T in "AC, the commutativity of diagram 6.2.4 says that

ENNIVZaEa\\\///4
P(L) (T2 P(T)

(T3
_ R(T)
R(S)
B B (6.2.6)

6.3 Cotraces

We can also reverse the role of B and M, and consider the functor éB,A,M ACYE —
C defined by S — Hom(B @ A®5~1% M). In this case, we interpret the operation
corresponding to a tree by first rerooting the tree, making the basepoint leaf becomes
the new root. For example, after rerooting the tree on the left hand side of diagram
6.2.6, it looks like

(6.3.7)

Note that the cyclic ordering in diagram 6.2.6 has been replaced by a linear ordering
of the A-factors.

Definition 6.3.1. An R-cotrace of B into (A, M) is a natural transformation R —
Ep.am of functors.

A cotrace is represented by a certain object. This is dual to the notion of a trace,
but we have to use an extra adjunction, so we present it as a lemma.

Lemma 6.3.2. R-cotraces are represented by Homoac, (R, Cg,(A; M)).

Proof. Giving an R-cotrace of B into (A, M) is equivalent to giving maps R(S)® B®
A®S0 M which satisfy certain coherence relations. But giving maps R(S) ®
B ® A®5~10 — M is equivalent to giving maps B — Hom(R(S) @ A®S—{0 M),
and the coherence conditions translate into the conditions for equalizing the maps
defining T'ot(C?,(A; M)) = Homoac, (R, Cg (A; M)). O

Again we single out the associahedra and cyclohedra case:
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Observation 6.3.3. With P = K,, 1 < n < 00, a W,-cotrace is represented by the
partial cyclic cobar construction Tot" 1C.,(A; M) (which exists even if A is only A,).

Giving an R-cotrace is equivalent to giving maps R(S) ® B ® A®S~{% — M for
each S € YAC such that the diagram

R(T)® P[f]® B® A®5 1% — P(f~1(0)) @ R(T) ® B ® AT} g A®/ 71 (0)~{0}

|

P(f~10)) ® M @ A%/ (O—-{0}

|

R(S) ® B® A®S—{0 M

(6.3.8)
commutes for any f : S — T in "AC. Here the top horizontal map is obtained
by writing A®5—{0} ag A®S-F (010} @ 49/ (O-{0} and then using using the maps
P(f~1(t)) ® A%/ () — A for each t # 0. The fact that this diagram has an extra
term corresponds to the fact that rerooting a tree with 2 levels yields a tree with 3
levels, as in diagram 6.3.7.

The example we have in mind is P = K and R = W, or perhaps P = K,, and R =
W,,. In this case a W,-trace, 1 < n < oo, is a collection of maps W; x M x A"=! — B
for 1 <4 < n making diagram 6.2.4 commute for all f. Note that W; = %, so the
starting point is a map f : M — B.

If we restrict the trace map W,, x M x A"~!' — B to one of the n faces of W,, of
the form K,, we get a map

Kpx M x AV 24 s At M oxo A L B, (6.3.9)

where t is the cyclic permutation of M x A"~! which puts the first n — i factors of
A at the end and the second map is one of the maps defining the bimodule structure
on M. In particular, the existence of a W, -trace extending the identity map on M
says, loosely speaking, that the maps (m,ay,...,a,-1) — Gp_ip1 - Ap_1Ma7T * - - Ay
for 1 < i < n are homotopic in a coherent way.

A W,-cotrace is a collection of maps W; x B x A1 — M for 1 < i < n making
diagram 6.3.8 commute. The restriction of W, x B x A"! — M to one of the
K,,-faces is given by

K,xBxA" 1 REA K, x AU s Bx A1 IS fe s ALy Mx AT M, (6.3.10)

where £ is the permutation of B x A"! placing B in the i’th position. Note that in
this case there is no cyclic permutation of the factors, the cyclic ordering of M x A™~1
has been replaced by a linear ordering of the A-factors in B x A"~ !,

In particular, the existence of a W, -cotrace extending the identity map on M
says, loosely speaking, that the maps (ai,...,a,-1,m) — ay---a;_yma;---a,_ for
1 <1 < n are homotopic in a coherent way.
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Part 11

Topological Hochschild homology and
cohomology
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In chapter 7 we use the machinery from part I to define of THH of an A, ring
spectrum with coefficients in a bimodule as the cyclic bar or cobar construction. In
particular, we show that our construction is homotopy-invariant, and that our defi-
nition is equivalent to the usual definition found for example in |26, chapter IX]|. We
then use the fact that THH®(A; M) corepresents traces of (A, M) to give a charac-
terization of when the canonical map M — THH(A; M) splits. Dually, cotraces
into (A, M) give a characterization of when the canonical map THHgz(A; M) — M
splits.

Next we study different kinds of duality between topological Hochschild homology
and cohomology. If A is commutative, or even just Fs,, then the canonical map
A — THH®(A) makes THH*(A) into an A-module, and if M is a symmetric
A-bimodule we show that there is a duality

THHR(A; M) ~ FA(THH®(A), M). (6.3.11)

If A is not at least F,, then such a statement does not make sense, but we
sometimes have a different kind of duality. If DM ~ XM as an A-bimodule we
find that

THHR(A; M) ~ X Fr(THH®(A; M), R). (6.3.12)

In chapter 8, we improve Robinson’s obstruction theory for A, ring spectra [55]
to include noncommutative ring spectra. In our setup, the obstructions to an A,
structure on A live in what becomes the Fs-term of the spectral sequence converging
to m.THHg(A) associated to the Tot-filtration of TH Hr(A) if A turns out to be A..
In fact, this setup gives a spectral sequence converging to the space of A, structures
on A with a fixed A,, structure for some n > 2 which looks like a truncated version
of the spectral sequence converging to m,THHg(A) if THHR(A) exists.

Using this obstruction theory we prove that if R is even and [ is a regular ideal,
then any homotopy-associative multiplication on A = R/I can be extended to an
Ao multiplication. We also set up an obstruction theory for extending a map to a
W-trace or cotrace.

In chapter 9 we study the moduli space of A, structures more closely. Using
results from Strickland [63] we show that the obstruction to the existence of a Wh-trace
or cotrace on A = R/I is given by a power operation related to RP?. In particular
this shows that Morava K-theory K (n) does not admit a W,-trace or cotrace at p = 2.
We also show that K'(n) does not admit a W,-trace or cotrace for p odd, and identify
obstructions that will allow us to say something about THHE/(R\)(K(n)) later.

In chapter 10, we try to calculate THH(A) for A = R/I with R even and I a
finitely generated regular ideal, for any A, structure on A, in terms of obstructions
to certain cotraces. For example, we find that for any such A, THHRr(A) ~ Ry, the
A-localization of R, if and only if a certain matrix which expresses the noncommu-
tativity of the multiplication (As structure) on A is invertible. In many other cases,
mTHHR(A) is a finite extension of m, R4.

We then use the W-cotrace obstructions to calculate TH H of Morava K-theory
K, and K(1), and to make conjectures about THH (K (n)) and THH (K,,) for n > 1.

42



We find that while THHpg, (K,) varies over the moduli space of A, structures on
K,, the map 7.FE, — m.THHg, (K,) is always injective. We conjecture that this

extension is always finite. We also conjecture that m.E(n) — W*THHE/(;)(K(n))

is a finite, tamely ramified, extension of E(n) which does not depend on the A,
structure. These conjectures are all theorems for n = 1.

—

Finally, in chapter 11 we prove that when R = E(n) and A = K(n) or R = E,
and A = K,,, the canonical maps

THHS(A) — THH®(A) (6.3.13)

and
THHR(A) — THHs(A) (6.3.14)

are weak equivalences. This tells us that as far as Morava K-theory is concerned,
Morava E-theory (or the localized Johnson-Wilson spectrum) is ‘close’ to the sphere
spectrum. This is a manifestation of the Devinatz-Hopkins theorem which says that
Ly nyS =~ E"n [21] for the extended Morava stabilizer group G,,, or the reinterpre-
tation of this result as saying that the map L) S — E, is a K(n)-local pro-Galois
extension [58].

43



Chapter 7

THH of Ay ring spectra

We are now ready to define topological Hochschild homology and cohomology of an
A ring spectrum. Let R be a commutative S-algebra as in [26]. We will work in
the category of R-modules, so all smash products and function spectra will be over
R unless the notation suggests otherwise. We will denote the n-fold smash product
of A with itself by A and the function spectrum from A to B by F(A, B). We will
assume that all R-modules are g-cofibrant.

7.1 The definition of THH

Recall from notation 3.3.1 the definition of R ® 4, F' and Homu, (R, F') for functors
F:Ap —Dor Ay — D and R: A7 — C. In particular, we can make sense of
this when C = 7Top, and D is the category of R-modules.

We defined the associahedra (cyclohedra) as an operad (right module) in unbased
spaces, but of course we can just define K by K, (S) = K(5)4 and similarly for
W,. Thus we can define the geometric realization of the K-simplicial cyclic bar
construction of an A, spectrum in the same way as in part I.

Definition 7.1.1. Let A be an Ay, ring spectrum and M an A-bimodule. We define
topological Hochschild homology of A with coefficients in M as
THH"(A; M) = Wy Qacy, B (A; M), (7.1.1)

where BY(A; M)(S) = M A AS—{0h,
Similarly, we define topological Hochschild cohomology of A with coefficients in M
as
THHR(A; M) = Homoacy, (W, Cg,(4; M)), (7.1.2)
where C3,(A; M)(S) = Fr(AB~0D M),

Our first order of business is to check that our definition is homotopy invariant
and compare it to the standard definition.

Proposition 7.1.2. If A is strictly associative, then our definition of THH agrees
with the one given in [26, chapter IX]. Moreover, THH is homotopy invariant in the
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sense that if A — A’ is a map of Ay ring spectra which is a weak equivalence then

THH(A) ~ THH(A).

Proof. By proposition 4.2.6 our definition agrees with the usual cyclic bar or cobar
construction if A is strictly associative, and this is the second definition of TH H
given in [26, chapter IX]. Recall from [26, theorem VII.4.4] that the category of S-
modules, and hence the category of R-modules, is a topological model category. By
theorem 5.3.4 and theorem 5.3.5 we get the usual spectral sequences (proposition 7.1.4
below), provided we can show that B(A; M) is Reedy cofibrant and C¢, (A; M) is
Reedy fibrant. But the conditions for B&Y(A; M) being cofibrant are the same as in
the classical case, because the latching objects are the same (observation 5.3.3), so
this follows in the same way as in the classical situation (remember that we assume A
is g-cofibrant). The fibrancy of C¢ (A; M) is similar, using that the matching objects
in the opposite category are the same as in the classical case.

Once we have these spectral sequences, a weak equivalence A — A’ gives an
isomorphism between Es terms and thus a weak equivalence between THH(A) and
THH(A"). O

Remark 7.1.3. If A is not q-cofibrant, the correct way to define THH(A) is as the
geometric realization of a cofibrant replacement of BSY(A; M) in the model category
structure on functors °ACx — spectra given by theorem 5.2.6. If we use this defi-
nition then we always get the spectral sequences for topological Hochschild homology
below.

Similarly, the correct way to define THHg(A) is as Tot of a fibrant replacement.

For ease of reference, we recall the standard spectral sequences used to calculate
the homotopy or homology groups of THH.

Proposition 7.1.4. (/26, chapter 1X]) There are spectral sequences

B2, = Torl, 4 (A, M,) = mg THHE(A; M),

By = Baty! 4 aomy (Av, M) = m_ THHR(A; M). (7.1.4)

If E is a commutative R-algebra, or if E.(A Ag A) is flat over m.(A Agr A?), then
there are spectral sequences

B2, = Torl; A" (ER A, ERM) = E, ., THH®(A; M), (7.1.5)
Ey' = Baty un,aom (BLEA, EFM) = B, [THHp(A; M). (7.1.6)

Here EEX means m.(E Ap X).

Under reasonable finiteness conditions on each group these spectral sequences
converge strongly, see [12, theorem 6.1 and 7.1].
The spectral sequence

E}, = Tor:AsA"%0)(H (A4;F,); Ho(M;Fp)) = H.(THH®(A; M);F,) (7.1.7)
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is called the Bokstedt spectral sequence, after Marcel Bokstedt who first defined topo-
logical Hochschild homology ([14], [15]). We will use the Bokstedt spectral sequence
in section 9.2 to identify some WW-trace and cotrace obstructions which will help us
calculate TTH H (K (n)). For more calculations using the Bokstedt spectral sequence,
see for example [47] or [1].

The inclusion of the O-skeleton gives a map M — THH(A; M), and it is well
known that when A is an E,, R-algebraand A = M, then the map A — THH?(A) is
split. This is easy to prove. For example, it follows immediately from the Hopf-algebra
strucure on THH?®(A), see [1]. Similarly, there is a map THHz(A; M) — M, and
when A is E,, and M = A, then this map also splits.

Commutativity is a much too strong condition to put on A and M in order to get
a splitting, what is needed is a trace or cotrace on M (notation 6.2.3).

Observation 7.1.5. A splitting of M — THH®(A; M) amounts to a W-trace on
M. More generally, a factorization of f : M — B through THHY(A; M) amounts
to a W-trace from (A, M) to B extending f.

Observation 7.1.6. A splitting of THHg(A; M) — M amounts to a YW-cotrace on
M. More generally, a factorization of f: B — M through THHR(A; M) amounts
to a W-cotrace from B to (A, M) extending f.

By a splitting we simply mean a splitting of R-modules. We do not claim that
THH®(A; M) or THHR(A; M) is an A-module, or that a splitting A — THHg(A)
makes THHpr(A) into one.

7.2 Duality between topological Hochschild homol-
ogy and cohomology

This section is not strictly necessary for the rest of the paper, but we include it here
for completeness.

While the Deligne conjecture implies that topologcial Hochschild cohomology in-
creases the coherence of the multiplication on A from A, to E5, topological Hochschild
homology decreases the coherence from FE, to E, ;. This is due independently by
Basterra-Mandell [8] and Fiedorowicz-Vogt [27]. It is not surprising that we often
have some kind of duality between topological Hochschild homology and cohomology.
In this section we investigate when we get various kinds of duality.

If A is a strictly commutative R-algebra, and M is a symmetric A-bimodule, then
it is easy to see that there is a duality

THHR(A; M) ~ FA(THH®(A), M). (7.2.8)

Indeed, since THH®(A) is the geometric realization of a simplicial spectrum with
n — AT and the levelwise left A-module action on the first factor commutes with
the face and degeneracy maps, this gives a left A-module structure on THH%®(A).
Thus Fu(THH®(A), M) is Tot of a cosimplicial spectrum with n +— F4(A®), M)
~ Fr(A™ M).
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A priori the cosimplicial structure is different than for TH Hg(A; M) because the
former uses only the left A-module structure on M while the latter uses both the left
and right A-module structure. This is why we need M to be a symmetric bimodule.

Let us look at an example of this kind of duality, between THH®(HZ/p) and
THHg(HZ/p). We will present the calculations for p odd, the p = 2 case is similar
but easier, since there are no differentials in the spectral sequences. We can run the
spectral sequences from equation 7.1.3 and 7.1.4 to calculate the homotopy groups in
each case. First of all, m.(HZ/p N HZ/p?) = A,, the dual Steenrod algebra with

A* :Z/p[gl,gg,...]®A(7_'0,7_'1,...), (729)

where we use the conjugate classes because they behave better for this purpose. The
E%term of the topological Hochschild homology spectral sequence, which is Tor over
A,, is a tensor product of an exterior algebra and a divided power algebra,

Ef* :A(O'é_-l,O'g-Q,...)®F(O'7_'0,0'7_'1,...). (7210)

The Bokstedt spectral sequence has our E?-term tensored with A.. By Bokstedt’s
calculations there is a dP~'-differential d?~*(v,(07;)) = 0&; 41, killing all the exterior
generators and leaving a truncated polynomial algebra

E? = E =17Z/ploTy, 07, ../ (0T;)P. (7.2.11)

The p’'th power of o7; is only zero modulo lower filtration, and there is a hidden
extension (07;)? = o7i41. Thus we find that 7,THH(HZ/p) = 7/p|zs] for a class
in degree 2. This is Bokstedt’s result [15].

By the above duality we then have m,.THHg(HZ/p) = I'(y_2), a divided power
algebra on a class in degree —2, because the dual of a polynomial algebra is a divided
power algebra. We could also run the topological Hochschild cohomology spectral
sequence, which has F,-term

This time there is a d,,_;-differential d, ;(6¢;) = (67;_)? killing all the p'th powers of
the polynomial generators. The result is a truncated polynomial algebra on classes
Y_opi, Which is the same as a divided power algebra on y_,.

This result is somewhat surprising from the algebraic viewpoint, because the poly-
nomial and divided power algebras have switched places. If R is a (differential graded)
ring and we define Hochschild homology and cohomology of a projective differential
graded R-algebra in the obvious way, then if we agree to write Z/p for a differ-
ential graded projective Z-algebra with homology Z/p concentrated in degree zero
(for example Z —» Z with the obvious multiplication) it is not hard to show that
HHZ(Z/p) = T'(x5) and HH3;(Z/p) = Z/ply_]. This is also the result we obtain if
we calculate the homotopy groups of THH#Z(HZ/p) and TH Hyz(HZ/p).

If A is not strictly commutative, it is less clear how to make TH H®(A) into an
A-module. Indeed, if A is only associative it cannot be done at all. But if A is at least
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Es, and M is an (FE5, A)-module (see equation 2.2.8), then this can be done. To make
THHZE(A) into an A-module we assume that A is an algebra over C; ® Ass, which is
an Ey Y-operad by [27]. Then we use the multiplication in the Ass-direction to define
the simplicial spectrum BZY(A), while we use the multiplication in the C;-direction to
define the left A-module structure.

It follows as above that if M is a symmetric A-bimodule we still have the above
duality between topological Hochschild homology and cohomology. In particular,
equation 7.2.8 still holds with A = M for an F5 algebra A, because the A-bimodule
structure on A is equivalent to a symmetric A-bimodule structure. We will omit the
proof.

The other kind of duality we want to consider is a kind of Gorenstein algebra
condition. Recall from [25] that one of the conditions for A to be a Gorenstein R-
algebra is that the dual DA = Fr(A, R) is equivalent to a suspended copy of A as
a left A-module. We need this equivalence between A and X¢DA to be a duality of
A-bimodules. We might as well make our definition for an A-bimodule M instead of
just A itself.

Definition 7.2.1. Let A be an A, R-algebra and let M be an A-bimodule which is
dualizable as an R-module. We say that M is a self-dual A-bimodule of dimension d if
there is an equivalence M — YCDM of A-bimodules, where DM has the A-bimodule
structure dual to the A-bimodule structure on M.

Here is the observation that makes this interesting:

Proposition 7.2.2. If M is a self-dual A-bimodule of dimension d, then there is a
duality
THHR(A; M) ~ S4Fr(THHR(A; M), R). (7.2.13)

Proof. The point is that both sides are Tot of the same cosimplicial spectrum. The
left hand sides is given by n — Fr(A™ M), while the right hand side is given by
n i SUFR(A™ A M, R) ~ Fr(A™ S4DM) ~ Fr(A™ M). Tt is straightforward to
check that the coface and codegeneracy maps match up as long as the equivalence
Y¥¢DM ~ M is one of A-bimodules. O

Here is the main reason we are interested in this definition. Unfortunately we
have not yet been able to prove this, but all our calculations confirm it:

Conjecture 7.2.3. If A = R/I with R even commutative and I regular, then A is a
self-dual bimodule over itself.

7.3 A circle action on topological Hochschild homol-
ogy

In this section we sketch two proofs that if A is a K-algebra, then the geometric
realization BY(A) = B%¥(A; A) defined using the cyclohedra has a natural S'-action.
While any proof of this result in the classical setting should carry over, we outline
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two proofs here. The first is based on Loday’s book [40], while the second elaborates
on an idea by Drinfeld [22] of writing the geometric realization of a cyclic set as a
colimit over finite subsets of S'. For simplicity we will present the proofs for functors
to Top.

We follow [40, section 7.1|, adapted to our setting. There is a forgetful fuctor

U:CACr —, C"ACP, (7.3.14)

and it has a left adjoint F' : C"ACr __, CACP given by F(X), = Cpy1 X X,,, where
we write X,, for X(5) with |S| =n+ 1 and C,,4; is the cyclic group of order n + 1.
Now let P = K and let | X| = W ®oac, X, and suppose that C = ZTop. Let C denote
the functor ACx — Top given by C(S) = S, or in other words C,, = C,4;. By
proposition 4.2.6, |C] = S', and as in [40] one can prove the following lemma:

Lemma 7.3.1. The map (pri,pra) : |[F(X)| — |C| x |X]| = S* x | X| is a homeo-
morphism.

Proof. We only sketch the proof. The hard part is showing that |C x X| = |C| x | X].
For this we need some kind of Eilenberg-Zilber theorem. If A = A, , is a generalized
bisimplicial space, the idea is to show that the total complex T'ot(A) is equivalent to
the diagonal d(A). This can be accomplished by setting up a spectral sequence with
E5 term

EZ, = my(mA, ) (7.3.15)

converging to both g, Tot(A) and 7, ,d(A). This is rather technical, and we omit
the details. O

Then, if X : ACx — 7op, we have a map ev : C x X — X, and we can define
the circle action as ¢ = |ev| o (pry, pra)~'. The following theorem follows in the same
way as in [40]:

Theorem 7.3.2. Suppose X is a functor ACx — Top. Then
i) | X| is endowed with a canonical action of S*.
i) X — | X| is a functor from Top™°% to S*-spaces.

For the second proof, let F' be a finite subset of S! together with a multiplicity of
each point in F, and define my(S* — F) as the cyclically ordered set with one element
for each connected component of S' — F' plus n — 1 elements for each multiplicity n
point in F'. We think of a point with multiplicity n as n points that are very close
together, so there should be n — 1 connected components between the n points. We
have a map F' — F’ if I’ is obtained from F' by either adding points or reducing
the multiplicity of a multiple point, or if F’ is obtained from F by a rotation of S!.
If X is a functor AC' — Top, we define the geometric realization of X as

| X[ = lim X (mo(S* — F)). (7.3.16)

F

Note that Drinfeld [22] does not allow multiple points, so his definition of | X | does
not involve the face maps on X. As a result he only obtains | X| as a set, and he has
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to use some trick to put in the topology. With multiple points we avoid this, and the
topology on | X| comes from the topology on the direct limit system.

Now we can generalize this by letting F be a finite subset of S! together with
a multiplicity of each point and an element of K, for each n-tuple point. Thus F
runs over [ S' x W,. We have a map F — F’ if I is obtained from F by either
adding points or reducing the multiplicity of a point in F'" according to the element in
the given associahedron. If X is a functor ACx — 7op, then we get an alternative
description of | X| as

| X| = lim X (mo(S* — F)). (7.3.17)
F

With this description of | X| it is now obvious that X has an action of S', and in
fact an action of the group of orientation-preserving homeomorphisms of S?.

We should note that the usual problem with this kind of definition of topological
Hochschild homology persists, in that we do not get a cyclotomic spectrum [13| out
of our construction. To get a cyclotomic spectrum one is still forced to do something
more sophisticated.
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Chapter 8

A~o obstruction theory

In this chapter we set up an obstruction theory for extending a homotopy associative
multiplication on a spectrum to an A, multiplication. The original reference for
this is [55], but Robinson implicitly assumes that the multiplication is homotopy
commutative. There is also an issue with unitality, which is addressed in Robinson’s
more recent paper [56]. Other works on the same subject, such as [29], also assume
that the ring spectrum in question is homotopy commutative.

The classification of A, structures comes in two flavors: One where we fix some
initial data such as the A, structure and build the A, structure one step at a time,
and another where we allow ourselves to conjugate the A, structure on A by an
appropriately defined automorphism of \/, (K,)4 A A™. We will not attempt a clas-
sification of A, structures up to conjugation, though the reader is encouraged to look
at Lazarev’s paper [37] to see how this works algebraically.

8.1 The obstructions

Suppose that we have an A,_; structure on a spectrum A, n > 4, and we want to
extend it to an A, structure. Then we need a map

(Kn)e ANA™ — A (8.1.1)

which is compatible with the A,,_; structure. Because all the faces of K,, are products
of associahedra of lower dimension, the map (K,); A A®™ — A is determined on
0K, N A" ~ ¥"=3 A Thus the obstruction to extending the multiplication from
an A,_; structure to an A,, structure lies in

[Zr3A4, A] = A3(AM), (8.1.2)

The unitality condition on the A, structure also fixes the map on (K,,)As;(A®~D)
for 0 < j <n—1, where s; : A=) A g given by the unit S — A on the
appropriate factor. (This does not quite make sense, as sj(A("*l)) is not a subset of
A™: what we mean is that the corresponding diagram is required to commute.) Also
note that the set of A,,_; structures on A, with a given A,,_s structure, is isomorphic
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to A3 (A1) as a set, though this set has no group structure. We define a bigraded
group E7" by
Bt = ATHAW). (8.1.3)
There are s + 2 maps A'(A®) — A*(AG+D) which we denote by d for 0 < i <
s+ 1. Let ¢ denote the A, structure. Then d° sends f : A®) — A to AGHD S,
. i—1 s—1
A 2, A, d' sends f to AG+D ! AT AG) L A for 1 < i < s and d*+! sends f
to A+ 104 4@) 2, 4
Adding the obvious codegeneracy maps, this structure makes F}™ into a graded
cosimplicial group, and the obstruction to extending the given A, _; structure lies in
the associated normalized cochain complex. Note that using the normalized cochain
complex captures the unitality condition.

Using the same geometric argument that Robinson used in [55] we get the following
theorem:

Theorem 8.1.1. Let n > 4, and suppose we have an A,_o structure on A which
can be extended to an A,_1 structure in at least one way. Then the obstruction to
extending the A, _s structure to an A, structure, while allowing the A, _1 structure to
vary, lies in B3,

If the A, _5 structure can be extended to an A,, structure, the set of A,,_1 structures
which can be extended to A, have a free transitive action of E;L*l’"fzg.
Proof. The argument in [55] shows that the obstruction to extending the A,,_; struc-
ture to an A, structure, which lives in E}""*, maps to zero under d. Similarly, if we
change the A,,_; structure by an element f € E{Lil’"fg, Robinson’s argument shows

that the obstruction changes by df. The last part is similar. O

While this theorem is sufficient for our purpose, an easy extension of the above
argument shows that if we fix the A, ; ; structure and allow the A, _; structure to
change in such a way that the obstructions to an A,, structure for n —i < m < n
remain unchanged, this changes the obstruction to an A, structure by what we should
interpret as a d; differential, at least as long as n — i > 3. Moreover, while EJ>™"
gives the set of connected components in the space of A, structures which extend to
Apiq, EFT7" gives m; of this space.

Under some very reasonable conditions on A, we can then identify Ej’t with
Extfr’fAAAop (As, Ay). Tf Ais A, then this is the Es-term of the spectral sequence
converging to m_THHg(A).

There is a similar story for the obstructions to extending a map f: A — B to a
map of A, ring spectra. To be precise, we fix the A, structure on B and allow the
the A structure on A to vary only up to homotopy. Then we need the diagram

(Kp)y ANAW —(K,), A B™ (8.1.4)

l |

A B
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to commute for some map (K,)+ AA™ — A homotopic to the original A, structure,
or equivalently the original diagram to commute up to homotopy. The two maps
(Kn)s AN A™ — B agree on 0K, so this gives an obstruction in

(2240 B] =~ B (AM), (8.1.5)

and one can show that the obstructions really lie in EJ"" %, where F; = B~(A®)
and the d;-differential is given in the same way as before.

This obstruction theory also works for an R-module A, where R is a commutative
S-algebra, by smashing over R everywhere and replacing A*(A™) with A%(A™) =
T, Fr(AM™ | A) etc.

Before turning to our main application of this obstruction theory, we include a
proof that the mod p Moore spectrum is A,_; but not A,. This result seems to be
known by the experts in the field, but there is no proof in the literature except in the
cases p = 2 and p = 3 [50]. See [60] for a comment about this, and an alternative
approach that also leads to a proof. First we need a couple of lemmas:

Lemma 8.1.2. Suppose that A is (—1)-connected, and that A is an A, ring spectrum.
Then the map
A — HmyA (8.1.6)

is a map of A, ring spectra.

Proof. Using the obstruction theory for maps above we see that the obstructions lie
in

[Ei_2A(i), HWOA] ~ H2_i(A(i), 7T0A) (817)

for 3 <1 < n. These groups are all trivial, so there are no obstructions to extending
the map to a map of A, ring spectra. O

Remark 8.1.3. It is also true that if A is (—1)-connected and an E, ring spectrum
for some 1 <n < oo, the map A — HmgA is a map of E, ring spectra.

Lemma 8.1.4. In the dual Steenrod algebra A, there is a p-fold Massey product

(Tir ey Ti) = =& (8.1.8)
defined with no indeterminacy.

Proof. We need two ingredients for this proof. Kochman showed [36, corollary 20|
that in the mod p homology of a triple loop space, the p-fold Massey product on a
class z in dimension 2n — 1 is given by —pQ"(z). While his proof does not apply
directly to E, (or E3) ring spectra, the result is still true.

One way to show this is to look at the universal example. Most of the details
can be found in [34]. Given a spectrum X, let PX denote the free commutative

ring spectrum on X as in [26, construction I1.4.4]. Then the universal example lives
in H,(PS**~ 1, Z/p). By [18, theorem IX.2.1] (or [39, proposition VIL.3.5] and the
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corresponding calculation of the homology of QS?*~! in spaces), this homology is
given by
H,(PS*™ Y Z/p) = F(Q'v), (8.1.9)

where I runs over admissible sequences with excess less than 2n—1 and F'(S) denotes
a polynomial algebra on the even-dimensional classes in S and an exterior algebra on
the odd-dimensional generators.

We can read off Massey products as differentials in the appropriate spectral se-
quence coming from the bar construction [46, theorem 8.31|, which in this case is the
spectral sequence

Ei* — TOTH*(IP’S%fl;Z/p) (Z/p’ Z/p) _— H*(PSQTL, Z/p) (8110)

A counting argument, which is carried out in [34], shows that we do have a dif-
ferential d?~!([¢|...|t]) = ¢BQ"(¢) for some ¢ # 0. If we want to determine the
constant ¢, we can do that by comparing this with the isomorphic spectral sequence
Tort=@S*" " \2/p)(7,/p, 7./p) = H,(QS>"; Z/p) and use Kochman’s result, which ap-
plies because this is happening in infinite loop spaces.

This gives us (7;, ..., 7;) = —3QP (7). Steinberger calculated how the Dyer-Lashof
operations act on the dual Steenrod algebra in [18, theorem II1.2.3]. In particular,
Steinberger’s result says that 3QP (7;) = &1, and the lemma follows. O

Theorem 8.1.5. The mod p Moore spectrum M, is A,_1 but not A,.

Proof. First of all, the obstruction to extending an A,_; structure to an A,, structure
in [Z”_3M1§"), M,,] has to factor through projection onto the top cell in sr=30" by
unitality, so the obstruction really lies in [S?"73 M| = ma,_3M,. But the homotopy
groups of M, start out with a Z/p in degree 0, and the next non-zero homotopy group
is mo,_3M, = Z/p. Thus the obstructions vanish for 2 < n < p — 1, and the next
obstruction group is Z/p, generated by

SPMP) — 5778 2 S0 M, (8.1.11)

However, calculating the obstruction inside this obstruction group is more difficult.
Instead we consider the map M, — HZ/p. Suppose that M, is A,. According to
lemma 8.1.2 this map is a map of A, ring spectra, and as such it commutes with
p-fold Massey products. Taking mod p homology of this map we get a map

Ap, (7o) — A (8.1.12)
but this map cannot commute with p-fold Massey products as (7o, ..., 7o) is visibly
zero in Ag,(7p) and nonzero in A, by lemma 8.1.4. O

8.2 Quotients of even commutative S-algebras

Now suppose that R is an even commutative S-algebra. By even we mean that R,
is concentrated in even degrees. In this section we will again work in the category
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of R-modules [26], and as in chapter 7 we will take all smash products and function
spectra to be over R.

Let I be a finitely generated regular ideal in R,, generated by (z1,...,z,) with
|z;| = d;, and let A= R/I asin |63]. Thus A = R/x1 Ar...Ag R/x,, Ax = R, /I and
A is a cell R-module with 2" cells. If I is not finitely generated, say, I = (z1,x2,...)
then we can still define R/I as the telescope of R/x; A ... A R/z, as in [63, p. 2581]
and most of the results in this section go through. Here R/x is defined as the cofiber

YR 2+ R — R/x. (8.2.13)

Let 3; : R/x; — %™ R be the next map in the cofiber sequence defining R/z;,
and define Q; : R/x; — Y%T'R/xz; as the composition of 3; and the unit map

Remark 8.2.1. The bockstein (3; : R/x; — Y4 R is not an invariant of the
spectrum R/x;, because it depends on x;. For example, if we replace x; by —x;, we
also need to replace (; by —F;. The spectrum R/x; is a 2-cell R-module with cells in
degree 0 and d; + 1, so it is dualizable and D(R/z;) = Fr(R/x;, R) is also a 2-cell
R-module, now with cells in degree 0 and —d; — 1. In fact, D(R/z;) ~ S"%'R/x;,
but the equivalence depends on x;. Since R/x; is defined by the cofiber sequence

YR "% R — R/z; — 4T R 25 ¥NR, (8.2.14)
the dual spectrum D(R/x;) can be defined by the cofiber sequence
YR Z v %R — D(R/x;) — R 25 ©74R (8.2.15)

and we see that there is a map from the (d; + 1)-fold desuspension of the first cofiber
sequence to the second one. In fact, using that R/x; is dualizable as an R-module,
we can identify B; as being adjoint to a map R — D(R/x;)) NS5 R~ R/x;, and
this is in fact just the canonical R-module map R — R/x;.

By abuse of notation, let Q; also denote the corresponding map A — X%+ A, It
is clear that Q? = 0, and the following result is standard:

Lemma 8.2.2. ([63, proposition 4.15]) The ring m.Fr(K, K) (with composition as
the product) is an exterior algebra

W*FR(K,K) gAK*(Ql,...,Qn), (8216)

Remark 8.2.3. If I is not finitely generated the above result is still true if we use
the completed exterior algebra.

The following result can also be found in [5, theorem 3.3] and [38, lemma 2.6]:
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Proposition 8.2.4. Given any homotopy associative multiplication on A = R/I with
R even and I = (x1,z2,...) a regular ideal, T, A Ag AP is given by

7T*A /\R AP = AA*(Oél,OéQ,...) (8217)
as a ring. Here |oy| = d; + 1.

Proof. The proofs in [5] and [38] both use that m,Fr(A, A) is a (completed) exterior
algebra together with a Kronecker pairing. Here we present a different proof:
There is a multiplicative Kiinneth spectral sequence (see [7])

E?, =Torl"(A,, A?) = m. A Ng A”. (8.2.18)

By using a Koszul resolution of A, = R, /I it is easy to see that £2, = Ay, (o1, a0,...)
with «; in bidegree (1,d;). The spectral sequence collapses, so all we have to do
is to show that there are no multiplicative extensions. Because a7 is well defined
up to lower filtration and E12* is concentrated in odd total degree, it follows that
oz? € A, ®pr, A = A, in m,AAr AP = A,A°?. Now there are several ways to show
that ozf = 0. If we denote the map A,A? — A, by ¢, it is enough to show that
e(a?) = 0 since € gives an isomorphism from filtration 0 in the spectral sequence to
A,. For example, we can use that A is an A Agp A°’-module and study the two maps
A AP @ A AP @ A, — A,. One sends o; @ o; @ 1 to €(a?), the other one sends it
to 0. 0

An extension of the argument in the proof shows that there cannot even be any
Toda brackets in m,A Ag A%, by comparing brackets formed in (A Ax A?)(™) and
(A AR AP)=1) A A,

The above result is not true for A Ag A, in which case «; might very well square
to something non-zero.

Corollary 8.2.5. Any homotopy associative multiplication on A = R/I can be ex-
tended to an A structure.

Proof. Using theorem 8.1.1, the relevant obstructions lie in Ea:tZ’:Z\?’R or(As, As). In
particular the obstructions are in odd total degree. But m,AAg AP = Ay, (a1, g, .. .)
with |a;| = |d;| + 1, so Ext over it is a polynomial algebra

Ext:**A/\RAOP (A*7 A*) = A* [Q17 q27 .. ] (8219)

with |¢;| = (d; + 1, —1), which is concentrated in even total degree, and there can be
no obstructions. O

In particular, this settles [6, conjecture 2.16], where Baker and Lazarev conjecture
that any homotopy associative multiplication on R/x can be extended to an A,
multiplication.

This also shows that while there are no obstructions to the existence of an A
structure on R/I, the A, structure might not be unique. For example, if A is 2-
periodic then the proof shows that we have a power series worth of A, structures.
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We go on to list some ring spectra that are automatically A, by corollary 8.2.5.
Most of these were already known to be A. For example, with R = MU or MU,
regular quotients include ku, HZ, HZ/p, BP, P(n), k(n) and BP(n).

We can also invert elements in R, [26, proposition V.2.3|, so we can add KU,
B(n), K(n) and E(n) to the list. For the homotopy groups of these spectra, see for
example [63, p. 2573-2574|

We will also be interested in 2-periodic Morava K-theory. Recall from [54] that
given a formal group I' of height n over a perfect field k of characteristic p, there is
a ring spectrum £, = E ) with homotopy

By = Wk[[uy, . .., up_1]][u, u™"], (8.2.20)

where |u;| = 0 and |u| = 2. Here Wk denotes the Witt ring on k. Also recall from [30]
that E, has the structure of a commutative S-algebra. We define 2-periodic Morava
K-theory K, (we apologize for using the same notation for Morava K-theory and the
n’th associahedron) as K,, = E,, /I, where I = (p,us,...,u,_1). Thus

T Ky = k[u,u™] (8.2.21)

and K, is also A, by corollary 8.2.5. We will see in chapter 11 that we get the same
answer when calculating TH H (K,,) over the sphere spectrum or over E,.
It will also be convenient to exhibit K (n) as a quotient of a variant of the Johnson-

—

Wilson spectrum E(n). Let E(n) be the K (n)-localization of F(n). This localization
has the effect of completing the homotopy of E(n) at the ideal I = (p,vq,...,0,-1),
SO

—

T E(n) = Zpy[v1, ..oy Un1, Uy 0517 (8.2.22)

A variation of the obstruction theory in [30], for example the one based on I'-

—

cohomology in [57] shows that E(n) is also a commutative S-algebra. Thus we find

that K'(n) = E(n)/I is a quotient of an even commutative S-algebra by a finitely gen-
erated regular ideal. In this case we find that we get the same answer for TH H (K (n))

—

when using the sphere spectrum or E(n) as the ground ring.

As in the proof of corollary 8.2.5 we find that if A = R/I with R even commutative
and [ = (x1,...,x,) a finitely generated regular ideal, the spectral sequence from
proposition 7.1.4 converging to m, T HHpr(A) collapses at the Ey term and looks like

Ey* = Adq, .- qn) = m.THHRg(A). (8.2.23)

If |z;| = d;, then ¢; is in bidegree (d; 4+ 1, —1) and contributes to m_4,_2THHRg(A).
The spectral sequence converging to m, T H H(A) is similar, with

El, =Ta(q,--..q,) = m.THH"(A). (8.2.24)

Here @ is in bidegree (d; + 1,1) and contributes to 7y, o7 HH(A). Because topo-
logical Hochschild homology of an A, ring spectrum is in general just a spectrum
without a multiplication, this has to be interpreted additively only. There is also
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an action of the first spectral sequence on the second coming from the natural map
THHRr(A) A THHR(A) — THH?(A), and one can check that ¢; sends 74(g) to

YVie-1(G)-

8.3 Trace and cotrace obstructions

In this section we connect the obstructions to a W-trace or cotrace extending a map
M — B or B — M with the A, structure on A. We will characterize the cotrace
obstructions first, and then use duality to calculate the trace obstructions in the cases
we are interested in.
Suppose we have a W,,_;-cotrace extending f : B — M, i.e., a factorization of
f:B— M as
B——Tot™?THHgr(A; M) (8.3.25)

\ l

M

If we want to lift f to a W,,-cotrace we have to give a map B — F((W,,,)+ A
AM=D M), or equivalently a map (W)« A B A A=Y — M which is compatible
with the W,,_;-cotrace. This compatibility determines the map on OW,, = S™2,
Thus the obstruction lies in

[Zm2B A A™Y M) = MP(B A AMY), (8.3.26)

We let £ = M~(B A A®), so the obstruction lies in £ "2 The set of possible
extensions has, if it is nonempty, a free transitive action of &£;" “bm=l - Again there
is a unitality condition, and as a result the obstructions really lie in the associated
normalized cochain complex.

The cyclohedron W,, has m copies of W,,_; on its boundary, so changing the
Win_1-cotrace by a map

f:Em2BAAMD (8.3.27)

changes the obstruction by the sum of m terms. We let the differential d : £~ —
EY' be given by d = Y7 d'f, where d* and d* use the left, respectively right,
A-module structure on M and d',...,d*"! are given by precomposing with the mul-
tiplication of two adjacent copies of A and define £;* as the homology of d. £ can
also be made into a cosimplicial group, by adding the obvious codegeneracy maps.

Next we introduce an assumption which holds in all the cases we will consider,
that M*B is flat over A,. This implies that we have a Kiinneth isomorphism

M*B ®4, A*(A™) =5 M*(B A A™) (8.3.28)

fng

sending (B —— M, A™ %5 A)to BAA™ 2% MAA — M. Then £ =~ M*Bo,,
E7", where E7"" is the E; term of the spectral sequence where the obstructions to an
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A, structure on A lives, and also the spectral sequence converging to m, T H Hg(A)
since we have assumed that A is A,,. The d;-differential on &; is induced up from
the d;-differential on F7, and it follows that

EF 2 M*B®y, Er* (8.3.29)

Now let A =M = R/I with R even commutative and I = (x1,...,x,) a finitely
generated regular ideal, and let B = R/x;. Then A*B = A4, (Q;), and we will write
this as A.{1,dq;}. Thus

E = Adq, - ql{1,dg;} (8.3.30)

Here |¢;| = —d; — 2 as before and |dg;| = —d; — 1.
The obstruction to a W,,-cotrace lies in odd total degree, so we conclude that it
looks like

ri(qi, - -, qn)dg; (8.3.31)

for some homogeneous polynomial r; of degree m — 1 in the ¢;’s and total degree —1.
Thus the obstructions to a W,,-cotrace extending the natural map R/zy V...V
R/x, — A looks like

Z ri(qs - -y qn)dg; (8.3.32)

for some polynomials 7;(q1, ..., g,) as above.
It is enough to find a WW-cotrace extending each R/x; — A in the sense that the
following holds:

Lemma 8.3.1. If the natural maps R/x; — A extend to a YW-cotrace for each i,
then the identity map on A also extends to a VV-cotrace.

Proof. This relies on the fact that THHRr(A) is an A, ring spectrum, so we can
define the map A = R/xy A ... N R/x,, — THHRr(A) as R/xy N ...\ R/z, —
THHR(A) A ... ANTHHg(A) — THHp(A). 0

We also want to see how the obstruction changes if we change the A,, structure
on A. Because W,, has m copies of K,, on its boundary, changing the A,, structure
changes the obstruction by a sum of m terms.

Lemma 8.3.2. Fiz an A,,_ structure on A and a W,,_1-cotrace extending R/x; —
A. If we change the A, structure on A by f(q1,...,q,) for some polynomial f of
degree m in the q;’s and total degree —2, the obstruction to extending the W,,_1-
cotrace to a W,,-cotrace changes by dixif.

Proof. Suppose f(q1,...,q,) = aq{1 -++@i". Then changing the A,, structure by f

(1) (4n)
corresponds to changing the map (K,,)y A A™ — A by ¥m—24m = L@
ylal Am) 2, A, The cotrace obstruction is a map

(OWm)4 ARJx; NAMD 5 A (8.3.33)
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and restricted to one of the faces of the the form K, this map looks like
(Kp)e NAFD ARz N AMR A (8.3.34)

This map only changes if R/x; is in a position where we apply @Q; to it, and it follows
that the obstruction changes on j; of the faces, which is what we needed to prove. [

Using this lemma it is easy to prove the following:

Theorem 8.3.3. If A= R/I as above and i is invertible in A, for i < p, then there
ezrists a unique A,y structure on A such that the natural map R/x1V.. VR/x, — A
admits a VW,_1-cotrace.

Next we do the same for W-traces. Given a W,,_;-trace on a map M — B we
would like to extend it to a W,,-trace. Thus we need a map

(W) AMAA™Y B (8.3.35)
which is determined on OW,,, = S™~2 by the W,,_;-trace, so the obstruction lies in
[Zm2M A A Bl = B2 (M A AMY), (8.3.36)

We can make this into a graded simplicial group, and the d;-differential is given by
B-cohomology of the Hochschild homology differential, but in the cases we care about
we can actually translate these obstructions into cotrace obstructions.

Let A = M = R/I as above, and let B = R/x;. There is no degree 0 map
M — B, but by using the bocksteins we get a map

R/I Br—i D+ tdn)—ditn=1p /0. (8.3.37)

Here 3;_; means 3, 0...0 03,11 00;_10...0 3, i.e., we use all the bocksteins except
B;. Using that R/x; and R/I are dualizable as R-modules, and in fact self-dual up
to a dimension shift, this map is adjoint to the natural map

R/x; — R/I. (8.3.38)

Thus if we let B = X(di+-tdo)=didn=lp /2. we can translate the obstruction to a
Win-trace on the above map into an obstruction living in

(=" 2B A A™Y M. (8.3.39)
We get the following:

Proposition 8.3.4. Let A = R/I as above. Suppose the canonical map R/z; — A
admits a Wy,_1-cotrace. Then the corresponding map A —s Nt tdn)=ditn=1p /4,
admits a W,,_1-trace. Conversely, if A — N\ ttd)=didn=1p /0 qdmits a Wy,_1-
trace then R/x; — A admits a W,,_1-cotrace.
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The obstruction to extending the W,,_1-cotrace to a W,,-cotrace and the obstruc-
tion to extending the W,,_1-trace to a W,,-trace map to each other under the duality

[R/x;, A] = [A, Rldittdn)—ditn=lp /71 (8.3.40)
described above.
We record the analog of theorem 8.3.3:

Theorem 8.3.5. If A= R/I as above and i is invertible in A, for i < p, then there
exists a unique A,_y structure on A which admits a W,_1-trace.
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Chapter 9

Classifying the A, structures

In this section we focus on the case A = R/I with R even commutative and [ regular.
As we can see from the previous section, modulo the first few terms there is a power
series worth of A, structures on A under some equivalence relation which fixes the
A,, structure for some n > 2. We need some more detailed information about the
set, of A, structures. First of all, we need to know when an A, structure allows a
W,-trace or cotrace. We give a satisfactory answer of this in the first subsection for
n = 2 using work of Strickland [63].

If A, is p-local and n < p, then theorem 8.3.3 and 8.3.5 say that there is a unique
A,, structure with this property. In the second subsection we study the A, structures
in characteristic p. While we have no good general answer, we can still say what
happens when A is Morava K-theory, based on a delicate analysis of the Bokstedt
spectral sequence for the connective case.

9.1 Homotopy classes of multiplications

In this section we will only deal with homotopy classes of maps, and our goal is to
classify the possible A, structures on A. We will call an A, structure on A a product,
to distinguish it from an A, multiplication. Most of this section takes place in the
homotopy category, and we are still working with R as the ground ring. Here we are
building on work by Strickland [63].

We start by studying products on R/x, where R is an even commutative S-algebra
and z is regular. The results we need from Strickland can be summed up in [63,
proposition 3.1].

Given a product ¢ on R/x, Strickland shows that ¢ is always homotopy associative,
so by corollary 8.2.5 ¢ can be extended to an A, multiplication. By unitality ¢ and
¢°? agree on the bottom 3 cells of R/x A R/x regarded as a 4-cell R-module, so ¢ — ¢
factors through projection onto the top cell in R/z Ar R/x. Following [63] (and [5])
we define ¢(¢) € (R/x)2a+2 by the following equation:

¢F — ¢ =c(@) o (BAD). (9.1.1)

Here ¢(¢) depends on x, see remark 8.2.1. We will find it convenient to write ¢ as
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P(1N1+c(¢)QAQ). (Recall that Q is the composite R/x B . YR/ 1)
If ¢/ = ¢(1 A1 +UQ/\Q) for some v € (R/x)2442, then ¢/ = ¢0p(1 A1l —UQ/\Q)
and we find that ¢(¢') = c¢(¢) — 2v. It follows that if 2 is a unit in (R/z),, then R/x
has a unique commutative product.
If 2 is not invertible, then we can still determine whether or not R/x has a com-

mutative product. Because R is E,, (we only need E, for this), the map S? A S¢ 2
RAR - R factors through RP2+2 ~ Y24R P2 and gives a class P(z) € R~24(RP?) =
Roq & Rogio/2. Here RP(f denotes a stunted projective space with cells in dimension
a + 1 through b. Following Strickland, we define P(x) as the projection of P(x) on
the second factor (or summand).

Proposition 9.1.1. (/63, proposition 3.1 part 5/) For any product ¢ on R/x, we have

c(¢) = P(z) mod (2,x). (9.1.2)

Part 2 of [63, proposition 3.1] says that the set of A structures on R/z has a free
transitive action of mey9R/x, so the enumeration of the possible A, structures on
A = R/x in terms of power series from the previous section, which a priori only held
for n > 3, is also valid for n = 2.

Now let A = R/I = R/xy Ar ... Ar R/z, for a regular ideal I = (x1,...,x,).
By choosing a product ¢; on each R/xz; we get a product ¢ = ¢; A ... A ¢, on A,
but we also have mized products, i.e., products that cannot be obtained by smashing
together products on each R/xz;. The point is that if ¢ is some product on A, then
SO is

qb/ = ¢(1 A1+ UijQZ‘ A Q]) (913)

for any Vi; € Adi+dj+2'

Theorem 9.1.2. Fix an associative and unital product ¢g on A. Given any other
associative and unital product ¢ on A, it can be written uniquely as

¢:¢0H(1/\1+Uz‘jQi/\Qj) (9.1.4)

for some vi; € m4,44,40A, where the product denotes composition (which can be taken
in any order, because all the factors are even). Moreover, all such products are asso-
ciative and unital.

Proof. Associativity is some kind of cocycle condition, and one could imagine a simple
proof based on this. However, the relevant maps A°(A A A) — A°(AAN AN A) are
not linear, and this complicates things.

We use the Kiinneth isomorphism

A*A= Homa, (AA A)) (9.1.5)

and similar formulas for A*(A®) and A*(A®). These isomorphisms depend on a
choice of multiplication, and we will use ¢, for each of them. For example, the map

A*A — Homy, (ALA, A,) is given by sending A L Ato A A A, A A o, A,.
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Let € : A,A — A, be the map induced by ¢q. To check if ¢ is associative, it is
enough to check whether or not the diagram

oAl

AAR4, ALARy, AA A A®y, AA (9.1.6)
l¢
1AQ A A

le

AA@L AA— 2 LA A A,

commutes.

Recall that A*A = A4, (Q1,...,Q,) and that ALA = Ay (aq,...,0q,), at least
additively. Under the Kiinneth isomorphism @); corresponds to the map sending «;
to 1.

Now suppose that ¢ is some unital product on A. We can write

¢:¢0H(1/\1+UUQ1/\Q.}), (9.1.7)
1,

where [ and J run over indexes I = (i1,...,4,) and J = (j1,...,Js) with iy < ... <4,
and j; < ... <Js, Qr =Q; - Qs and Qy = Qj, ---Q;,. Let |I| denote the number
of indices in /. By unitality we have |I| > 0 and |J| > 0, and because A, is even
|I| + |J| has to be even.

If = ¢o(1 A1+ v;;Q; A Q;), then we can calculate ¢p(¢ A 1) and ¢(1 A ¢) using
diagram 9.1.6. For example, ¢(¢ A 1) and ¢(1 A ¢) both send a; ® a; ® 1 to v;5, as
we see by following diagram 9.1.6 around both ways. Similarly, they send o; ® 1 ® «;
and 1® a; ® o to v;;, and they send a; ® oo ® a5 to —vfj. Those are all the relevant
terms, and shows that

P(LN @) =(p A1) = ¢o(do A1)
<Uij(Qi A Qj ANLT+QiNTA Qj +1IAQ; N Q]) — UijQi AN Qij N Q]) (9.1.8)

This shows that any ¢ as in the theorem is associative.
To show that none of the other products are associative, it is enough to show that

¢=0o(1N1+vr,QrNQy) (9.1.9)

is not associative for any I, J with |I| + |J| > 2. For example, if

¢ = do(L A1+ 0vQi5 N Q) (9.1.10)
then ¢(1 A ¢) sends a;a; ® ap @ oy to v but ¢(¢ A 1) sends it to zero. O

Remark 9.1.3. Alternatively, we can say that given an associative product ¢ on A,
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it can be written as

¢:¢0H(1/\1+Uz‘jQi/\Qj) (9.1.11)
i#]
for a unique ¢y which comes from products on each R/x;.

Definition 9.1.4. We define an n x n matriz C(¢) with coefficients in A, by Cy; =
c(¢i) and Cij = —v;j —vj;, where we write ¢ as in remark 9.1.3 and ¢pg = G1/\. . . A\ ¢y,.
Note that C(¢) = 0 if and only if ¢ is commutative.

If f: A— Ais an automorphism, we get a new product ¢/ on A by

ANAIL Ana 2 a0 A (9.1.12)

If f = 14w;;Q;Q;, with inverse f~1 = 1—w;;Q,;Q;, then for ¢ = [[(1A1+v;,;Q;AQ;) as
above, the expression for ¢/ is given by replacing v by vi; +w;; and vj; by vj; — w;;.
Expanding this argument shows that for any automorphism f € Autg(A) we get
C(¢7) = C(9).

Proposition 9.1.5. If ¢' = ¢/, then C(¢') = C(p). Conversely, if

¢:¢0H(1/\1+UUQH\Q3‘) (9.1.13)
i#j
and
¢ =[] (A AL+0,Q:i AQ;) (9.1.14)
i#]

with the same ¢ and C(¢) = C(¢'), then ¢' = ¢/ for some automorphism f of A.

This proposition almost says that two multiplications are equivalent if and only
if they have the same matrix C', but not quite. For example, if ¢ and ¢° are the two
multipliciations on KU/2, then ¢(¢) = ¢(¢®) = u € myKU/2, but ¢ and ¢ are not
equivalent (in the category of KU-ring spectra, that is). If 2 is invertible, then this
problem goes away:

Proposition 9.1.6. If 2 is invertible in A,, then the matriz C(¢) determines ¢ up
to conjugation by an automorphism of A.

The following calculation, which is a special case of [63, proposition 6.2], is essential
to Baker and Lazarev’s calculation of TH H ey (KU /2):

Proposition 9.1.7. For R = KU, P(2) = u.

This shows that neither of the two products on KU/2 are commutative, and this
is what Baker and Lazarev used to show that TH Hyy(KU/2) ~ KU} in [6]
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9.2 A, structures

We now have a good understanding of the number of A, structures on A = R/I for
any n, and if n is invertible in A, for n < p, then we also know that there exists an
A, structure that admits a W,-trace and cotrace. If p > 2 and p is not invertible
in A,, we would like to characterize the A, structures on A in the same way as we
did for p = 2 in the previous section. Unfortunately, we have not yet been able to
connect the obstruction to the existence of a good A, structure on A with a power
operation, but we make the following conjecture.

Conjecture 9.2.1. Suppose that 2(p — 1)|d. Given an A,y structure on A = R/x
which admits a W,_1-cotrace and an A, structure ¢, extending the A,_, structure,
let c(¢p) be the obstruction to the existence of a Wy-cotrace. Then we have

c(¢,) = P(x) mod (p,z), (9.2.15)

where P is the power operation obtained by estending the map SP¢ LT RO) R
over (BEp)zgf(pfl) ~ Y4 BY, )72, the suspension of the (2p — 2)-skeleton of BY,.

In particular, this would show that there is no W,-trace or cotrace on K(n). But
we can show this in another way, by finding A, comodule extensions in the Bokstedt
spectral sequence converging to H,(THH?®(k(n));F,). This will also supply us with

the obstructions to WW-cotraces extending the natural maps E(n)/v; — K(n) for
0<i<n-—1 (v =p). We will give the argument for odd primes, the p = 2 case
is similar, after making the usual changes in the notation. Consider the connective
Morava K-theory spectrum k(n). From [4] we know that

H,(k(n);F,) = P(&li > 1) @ E(Fi|i # n). (9.2.16)

The calculation of the E2-term of the Bokstedt spectral sequence converging to
H,(THH?®(k(n));F,) is similar to the calculations found for example in |1, section 5|,
and we get

E?, = H,(k(n);F,) ® E(c&|i > 1) @ [(o7i|i # n). (9.2.17)

Because there is no multiplication on TH H®(k(n)) this has to be interpreted addi-
tively only.

This E2-term injects into the E2-term for the corresponding spectral sequence for
HZ/p, so the differentials are induced by the corresponding differentials for HZ/p.
Thus there is a differential d?~1(y,(07;)) = 0.1, and the EP term looks like

EP, = H,(k(n);F,) ® E(6&,11) ® Py(oT|i # n). (9.2.18)

At this point the map of spectral sequences stops being injective, so we can not use
this argument to say that the spectral sequence collapses. But we can say that there
are no more differentials in low degrees:

Proposition 9.2.2. The Bdikstedt spectral sequence converging to H,(k(n);F,) has
no d"* differentials for n > p in degree less than 2p™ ™ — 1.
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Proof. By comparing with the Bokstedt spectral sequence for HZ/p, any differential
has to hit something something which is in the kernel of the map EZ, (k(n)) —
EP (HZ/p). The first element in the kernel is 0,11, which has degree 2p"*' —1. O

In particular, this shows that &,.,_,, Fp(07;) survives to £

Remark 9.2.3. If n = 1, then one can show ([2]) that the spectral sequence does
collapse, by using that the map { — k(1) makes the Bikstedt spectral sequence for
k(1) into a module spectral sequence over the Bikstedt spectral sequence for ¢, and
using that EP (k(1)) is generated as a module over EP ({) by classes in filtration
0 <i<p-—1. One could imagine a similar argument with E, (k(n)) as a module
over EX (BP{(n)) if BP{(n) is at least Es, though in this case the module generators
are in filtration 0 < i < n(p — 1).

Using that the Bdkstedt spectral sequence is a spectral sequence of A, comodules
also restricts the possible differentials. If d"(z) =y # 0 with |x| minimal, then y has
to be A, comodule primitive. But this is not enough to show that the spectral sequence
collapses in this case.

It muight also be possible to use the corresponding spectral sequence converging to
H.(THHgs(k(n));F,). This spectral sequence is better behaved because TH Hg(k(n))
is an Ey ring spectrum, and if we can show that it collapses at E, it might be possible
to use the pairing EX* @ EP, — EP, coming from THHg(k(n)) A THH?®(k(n)) —
THH?®(k(n)) to show that the latter spectral sequence collapses.

Recall that in the corresponding Bokstedt spectral sequence for HZ/p there are
multiplicative extensions (07;)? = 07;41. Thus we find that o(7,_1(07,_1)P" ') = 07,
in H(THH®(HZ/p),F,), and more generally o(7;(c7;)P~L - (67,_1)P71) = 07,. We
use this to prove that there are A, comodule extensions in the Bokstedt spectral
sequence for k(n).

Proposition 9.2.4. Let x; = (o7)P~' - (07,_1)P" . Then the A, comodule action
on T;x; 18 given by

v(Fr) = 1@ 7w+ Y @& 1 — Y & (9.2.19)

All the classes in @i, Pp(0Ti) are A, comodule primitive, and together with the

natural A, comodule structure on H,(k(n)) this determines the A, comodule structure
on H.(THH (k(n));F,) up to dimension 2p™+* — 1.

Proof. Consider the commutative diagram

H,(THH?(k(n));F,) —%— H,(THHS(k(n));F,) (9.2.20)

| |

H.(THH®(HZ/p);F,) —— H.(THH*(HZ/p); F,)

The classes in question all survive to E2° by proposition 9.2.2, and because o(7;x;) = 0
in H(THH?®(k(n));F,), the image of T;z; in H.(THH®(HZ/p);F,) has to be in the
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kernel of 0. But o(Fiz;) = o7, in H(THH®(HZ/p);F,), and the image is given
by the element with the same name in the Bokstedt spectral sequence for HZ/p
modulo lower filtration. Thus 7z; in H,(THH?®(k(n));F,) has to map to 7,z; minus
something in lower filtration which also maps to o7, under ¢. The only elements in
lower filtration that map to o7, are 7, and 7;x; for j > 7. If necessary we can adjust
7;x; by adding elements in lower filtration in the Bokstedt spectral sequence for k(n)
SO T;x; maps to T;T; — Tn.

Because the map from H,(THH?®(k(n));F,) to H.(THH®(HZ/p);F,) is a map of
A, comodules, it follows that the A, comodule action on 7;x; is as claimed. The claim
about all the classes in @, ,.,, F,(07;) being primitive follows immediately by using
that H.(THH®(k(n));F,) — H.(THH®(HZ/p);F,) is injective in low degrees. [

Now let us see what happens in the Adams spectral sequence with FEs-term
Exta, (F,, H(THH®(k(n));F,)) converging to m,THH®(k(n)). (Here Ext means
Ext of comodules, as opposed to in the spectral sequence from equation 7.2.12.) Be-
cause everything is concentrated in Adams filtration 0 and 1 in degrees less than the
degree of v2, we can run the whole Adams spectral sequence in low degrees.

Theorem 9.2.5. In m,THH?®(k(n)) there is a relation
vi(oT)P (0T )P = . (9.2.21)

Proof. First of all, since all the classes in &),.,., Fp(07;) are primitive, we get cor-
responding classes in filtration 0 in the Adams spectral sequence. Also, since 7, is
missing from H,(k(n);F,) we get a class v,, in filtration 1. There are no classes in
higher filtration in these degrees, so the classes @Q);.,, P»(07;) and v, all survive to
. THHS (k(n)). -

Recall, e.g. from [52, p. 63| that v, is represented by —> 7; ® EZZ_Z in the co-
bar complex for p odd, with a similar formula for p = 2. This also implies that
i(oT)Pt e (0T_1)P ! is Tepresented by — S 7 ® & (oT)PTE - (0T 1)L

From the A, comodule structure we found in proposition 9.2.4, we find that the
expressions representing v;(o7;)P~' -+ (07,_1)?"! and v, are homologous, so the two
expressions have to be equal in 7, THH?®(k(n)). O
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Chapter 10
Calculations of THH(A) for A= R/I

We will continue to work in the category of R-modules. As we have seen, 7w, A Ag AP
is an exterior algebra, so we get a spectral sequence

Ey" = Alq, ..., q) = m.THHR(A). (10.0.1)

This spectral sequence collapses, and there can be no multiplicative extensions, but
there can be additive extensions. By that we mean that an element in R, which acts
trivially on the F., term actually acts nontrivially on 7.7 H Hg(A).

10.1 What we can say from the A, structure

In [6], Baker and Lazarev were able to prove that when R = KU and A = KU/2 =
K (1), (with any A, multiplication on K (1)) there is such an additive extension, and
in fact ug (which is in degree 0) represents multiplication by 2 in 7.7 H H (KU /2).
This shows that

THHiy(KU/2) ~ KUs,. (10.1.2)

Their primary tool was the map A Ap A% — Fg(A, A) adjoint to the action of
A ANgr A%? on A. They used the following piece of Morita theory, a kind of double
centralizer theorem which is an easy consequence of the theory developed in [24]:

Theorem 10.1.1. (/6]) For a finite cell R-module A, the map
R — Fpya,a)(A,A) (10.1.3)
is an A-localization.
Corollary 10.1.2. If the map A Agp A’ — Fg(A, A) is an equivalence, then
THHR(A) = Fryan(A,A) = Ry, (10.1.4)

It is plausible that A Ag A% and Fr(A, A) can be equivalent when A = R/I with
R even and [ finitely generated regular, as the homotopy is an exterior algebra over
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A, on n generators in both cases. (Though the exterior generators are in different
degrees.) An extension of the argument in [6] gives the following:

Theorem 10.1.3. If the matriz C(¢) from definition 9.1.4 is invertible, we get
THHR(A) ~ Ra. (10.1.5)

Proof. The map A A A%®? — Fgr(A, A) sends «; to Zj Cij(¢0)Qj, so we get an
equivalence A Agr A ~ Fg(A, A) of R-ring spectra if and only if C(¢) is invertible.
The result then follows from the double commutant formula. O

Corollary 10.1.4. If A is 2-periodic and either I has at least two generators or 2 is
invertible in A., then there exists a product ¢ on A with THHR(A) ~ Ra.

Proof. The conditions guarantee that there exists a ¢ with C'(¢) invertible in A,. O

We can say something similar about T'H H®(A). While this is not a ring spectrum,
we can describe 7, THH(A) as a module over R,.

Theorem 10.1.5. If C(¢) is invertible, we get

mTHHY(A) 2 R, /(z5°,...,25). (10.1.6)

rrn

This is all we can say using only the A, structure. The As structure tells us what
the extensions that increase or decrease the filtration by 1 are, but that is all.

10.2 Extensions to higher filtration

To detect additive extensions that increase the filtration by more than 1, we use the
obstruction theory for W,,-cotraces from section 8.3. A factorization of R/z; through
filtration m — 1 of the Tot-tower for TH Hg(A) is the same as a W,,-cotrace, but we
can say something slightly stronger:

Proposition 10.2.1. Suppose R/x; — A extends to a W,,_1-cotrace, and that the
obstruction to a W,,-cotrace s

ri(qy - Gn)dgs. (10.2.7)

Then the extension of x; to filtration m — 1 in the spectral sequence converging to
m. T HHg(A) is precisely ri(q, ..., qn).

Proof. A W,,-cotrace fits as the dotted arrow in the diagram

T

4R R R/x; (10.2.8)

Tot™ 1

The W,, obstruction is the obstruction to extending the map R — Tot™ ! over the
top cell in R/z;, which is precisely z; € [2% R, Tot™ '] = 7y, Tot™ . O
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Corollary 10.2.2. If A, is p-local and R/x; — A extends to a W,,_1-cotrace for
some m < p, then for any homogeneous polynomial ;(q1,...,q,) € Alqr,-- -, aqn]
of degree m — 1 in the q;’s and total degree d;, there exists an A,, structure on A
such that the extension of x; in the spectral sequence converging to m,THHRg(A) is
ri(q1, -, qn), modulo filtration m.

Thus we can get any extension we want in the spectral sequence, as long as we
stay in low filtration.

Something similar holds for topological Hochschild homology, though in that case
the extensions lower the filtration by m — 1.

10.3 The Morava K-theories

We start by connecting the relation
vi(oT)P e (oma )PT = vy (10.3.9)

in m,THH?®(k(n)) from theorem 9.2.5 to the W-cotrace obstruction theory. Recall
that we have a spectral sequence

—

B, =T2p(@o, -, Gn1)[vn, v, '] = . THHE™ (K (n)). (10.3.10)

Proposition 10.3.1. Under the natural map THH?®(k(n)) — THH®(K(n)) —

— —

THHE®™ (K (n)), the class o7; in 7, THH(k(n)) maps to ¢; in =, THHF™ (K (n)).

Proof. The key fact is that the exterior generator «; in m, K (n) N I (n)°? which

gives rise to ¢ in the spectral sequence converging to m,THHP™ (K (n)) also lives
in m.k(n) Ag k(n)°. The rest is a simple matter of comparing two ways to calculate
. THH?®(k(n)) in low degrees, either by first running the Bokstedt spectral sequence
and then the Adams spectral sequence or by running the Kiinneth spectral sequence.

O

Corollary 10.3.2. There are additive extensions

ug B = (10.3.11)

—

in the spectral sequence converging to m, T HHP™ (K (n)).

Thus multiplication by v; acts nontrivially on 7, THH®™ (K (n)). This means
that the canonical map K (n) — Y20 ~1D/(-1D-n=2"-11(p) /4, (the composite of all
the bocksteins except [3;) extends to an (n—i)(p—1)-trace but not an (n—i)(p—1)+1-
trace. By proposition 8.3.4 we can translate this into cotrace obstructions.

—

Corollary 10.3.3. The canonical map E(n)/v; — K(n) extends to a Wn_iyp-1)-
cotrace, and the obstruction to a Win_ip—1)+1-cotrace is
(—1)" gt (10.3.12)

)
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Proof. We only need to know that there are no obstructions to a W,,-cotrace for
m < (n—1)(p—1). This follows for degree reasons; there are no possible obstructions
to a W,-cotrace for m < (n —i)(p — 1). The extra sign is there because ¢" " is dual
to v,_1(q), which is —g" . O

n—1i

By proposition 10.2.1 we then have an extension v,¢” ' --¢"~} = (=1)""v; in
filtration (n —4)(p — 1) in the spectral sequence converging to W*THHE/(;)(K(n)).

We have not yet addressed what happens in higher filtration. We only know that
v; is congruent to (—1)"v,¢" " - - - ¢°~] modulo higher filtration. At least in the case
n = 1 this is all we need to know to write down a precise answer. We will do this
first, before trying to calculate W*THHE/(‘TT)(K(TL)) for n > 1.

When n =1 we have a spectral sequence

Ey* = Z/plvn, v, Y[q) = mTH H55(K(1)). (10.3.13)
If we have hidden extensions where p = f(q) = —v1¢"™* + ..., we get
m.THH5(K(1)) 2 ZyJor, oy '[lall/ (0 — f(a)), (10.3.14)

where f is any lift of f to Z,[vi, vy *][[¢]]-

Theorem 10.3.4. For any A structure on K(1), the homotopy groups of topological
Hochschild cohomology of K(1) are given by

—

m TH Hys(K (1)) 2 B, [al)/(p + via”™), (10.3.15)

which is a tamely ramified extension of E(T)* of degree p — 1.

Proof. By corollary 10.3.3 and the following discussion,

mTHHp (K (1)) = E(1)).[[dl/(p — f(q)), (10.3.16)
where f is a lift of some power series f(q) = —v1¢"~ ' +. .. to characteristic zero. The
result now follows by the Weierstrass preparation theorem. O

This recovers Baker and Lazarev’s result about THHE/(T)(K(l)) for p =2 asa

special case.
If we instead consider topological Hochschild homology we get the following:

Theorem 10.3.5. The homotopy groups of topological Hochschild homology of K (1)
are given by m,THHFW (K (1)) = Z/p™ for i even and zero for i odd.

For general n we have n power series fo(qo, .- qn-1)s--+s fn1(Go,- -+, Gn_1) in
K(n)«[[q0s- - - qn-1]]- We know that

—

W*THHE/(;)(K(”)) = En), 0, gnll/(p — oo — fn—l) (10.3.17)
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—

for lifts fo, ..., fa_1 of power series fo, ..., fa_1 tO En),[[qo; - - -, qn—1]]- Here f; has
leading term (—1)"“v,q" " ---¢?~], but we do not know enough of the coefficients of
the f;’s to identify this ring precisely.

We conjecture that things work the same way as for n = 1, in the following sense:

Conjecture 10.3.6. The ring W*THHE/,(n\)(K(n)) is independent of the Ay, structure

—

on K(n) and is a finite extension of E(n),.

We know enough to say that after inverting the maximal ideal in W*E/(\n) we get a
finite extension, because we can rearrange the relations to read v; = —vi+1qf_1 +...
If the rest of the coefficients in the f;’s are generic enough, for example if we operate
under the assumption that any extension that can happen does happen, then we do
get a finite extension.

The topolggical Hochschild homology calculations are similar. In particular, we
find 7,7 HH”™(K(n)) is always infinitely divisible by p,v1, ..., vp_1.

The spectrum THHE(T)(K(l)) cannot be F,,, as one can see by considering suit-
able power operations in K(1)-local E ring spectra. Recall, e.g. from [53] that a
K(1)-local E., ring spectrum T (which has to satisfy a technical condition which
we do not have to worry about here) has power operations ¢» and # such that (in
particular) 1 is a ring homomorphism and

Y(z) = 2P + ph(x) (10.3.18)

for x € T°X. Now, if T, has an i'th root of some multiple of p, say, (! = ap for a unit
a and 72 > 1, then we get

ap =¥(¢)" = (¢ +p0(C))", (10.3.19)

and the right hand side is divisible by p? while the left hand side is not. In particular,
we can apply this to T' = THHE/(l\)(K(l)) as above to show that this cannot be an
E, ring spectrum.

We believe that a similar argument shows that THHp,) (K (n)) or THHg,(K,)
can never be E.,, except in the cases when THHpg, (K,) ~ E,.

If we want to calculate TH Hg, (K,), the result depends on the A, multiplication.
Theorem 10.3.7. For any p and n there exists Ay, structures on K, such that
THHg, (K,) ~ E,. (10.3.20)

Proof. This follows by corollary 10.1.4, except if n = 1 and p = 2. This last case is
covered by theorem 10.3.4. O

This is the generic result, since it happens whenever the matrix C(¢) is invertible.
If we choose a more commutative multiplication on K,,, we get

m THHp (K2) 2 (B)ulgos - Gnrll/ 0 = For v tinot — fat) (10.3.21)
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for some f; € (En)u[[qo, - - -, qn-1]] (with leading term of degree at least 1 in the g¢;’s).
By comparing the A, structures on K, with those on K(n) we also know that the
reduction of f; to (K,).[[¢o, - - ., Gn_1]] has a term (—1)"iu(=D@-DgP=t . P71

In the case n = 1 we can describe T'H Hg, (K;) more explicitly. If the Ay structure
on K7 is noncommutative, we get Fy. If the Ay structure is commutative but the A,
structure does not admit a WWs-cotrace, we get a degree 2 extension, m.THHp, (K,) =
(E1).[[q]]/(p — au?q?) for some a. If the A, structure admits a Ws-cotrace but not a
Wi-cotrace, we get a degree 3 extension, and so on. But we never have a W,-cotrace,
so the degree of the extension is always between 1 and p — 1.

The corresponding statement for TH H"'(K) is that mTH H®'(K) is some num-
ber of copies of Z/p> for i even, and the number of copies is always between 1 and
p— 1.
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Chapter 11

T'HH of Morava K-theory over S

In this section we prove that THH(K(n)) and THH(K,) do not depend on the
ground ring. By this we mean that the canonical maps

THH®(K,) — THH"(K,) (11.0.1)

and
THHg, (K,) — THHs(K,) (11.0.2)

—

are weak equivalences, and similarly for K'(n) using E(n) instead of E,. The earliest
incarnation of this equivalence can be found in [55|, where Robinson observed that
for p odd the ¢;’s in

T (K (n) As K(n)) = K(n)[ao, . .., an_1,t1,ts, .. ]/ (a2, 0.t?" —0P't;)  (11.0.3)

do not contribute to the Ext groups Ext;” i ey (K (1), K(n),). Something sim-
ilar is true at p = 2 if we use K(n) Ag K(n)°. While a; squares to ¢;,; instead of 0
in this case, the Ext calculation is still valid.

Much of the material in this section comes from [54], where Rezk does something
similar to show that certain derived functors of derivations vanish. We have also used
ideas from [32].

We expect T'"HH to be invariant under change of ground ring from S to E,,, or

the other way around, because something similar holds algebraically.

Lemma 11.0.8. Let R — R’ be a Galois extension of rings and suppose A is an R’
algebra. Then the canonoical maps

HHE(A) — HHF (A) (11.0.4)

and

HH}/(A) — HHE(A) (11.0.5)
are 1somorphisms
Proof. Recall from [65] that Hochschild homology satisfies étale descent and Galois
descent. Etale descent shows that HHF (A) = HHE(A) when A = A’®@z R, and then
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Galois descent shows that it holds for any A. The cohomology case is similar. O

Now, if F, is the Morava E-theory associated to the Honda formal group over
F,n, Rognes describes [58, section 5.4] how the unit map S — E,, is a K(n)-local (or
K,-local) pro-Galois extension with Galois group G,,, the extended Morava stabilizer

—

group. Similarly, S — FE(n) is a K(n)-local Galois extension with the slightly
smaller Galois group G, /K for K = F. x Gal(F,./F,) , so we expect the result, if
not the proof, to carry over.

11.1 Perfect algebras

Let A and B be commutative [F,-algebras, and suppose i : A — B is an algebra
map. There is a Frobenius map F' sending = to 2” on each of these IF,-algebras. Let
AF denote A regarded as an A-algebra using the Frobenius . Now we can define a
relative Frobenius Fy : A" ®4 B — B as F4(a®b) = i(a)b’ on decomposable tensor
factors:

A—"=B (11.1.6)
|

A— A" @, B\F

Definition 11.1.1. We say that i : A — B is perfect if Fy : A¥ @4 B — B is an
1somorphism.

This definition specializes to the usual definition of a perfect IF,-algebra when
A=T,.

Now suppose that i : A — B has an augumentation € : B — A. Let I = ker(e)
be the augumentation ideal, so that B = A & [ additively.

Lemma 11.1.2. Fori > 0 and any B-module M we have
Tor?(I,M) = Tor? (A, M) (11.1.7)

and
Exty (I, M) = ExtS (A, M). (11.1.8)

Proof. This follows by choosing a resolution like
A— APl «— Py +— P, — ..., (11.1.9)

of A, where Py «+— P; «— ... is a projective resolution of I as a B-module. O

Now, if i : A — B is perfect, we have an isomorphism F : A" @4 (A® ) —
A @ I, and this gives an isomorphism Fy : A" ® 4 I — I of non-unital algebras.

Now suppose that M is an A-module, and regard M as a B-module via e. Then
I acts as zero on M, and we use that to prove the following:
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Proposition 11.1.3. For i : A — B perfect and M any A-module viewed as a
B-module via the augumentation € : B — A we have

Tor'y(I, M) =0 (11.1.10)
and A
Exty(I,M) =0 (11.1.11)
for all 7.
Proof. We show that the maps
F Fa®1
(A" @4 ) @p M —=— I®g M (11.1.12)
and -
Homp(I, M) —2 Homp(A¥ @4 1, M) (11.1.13)

are both isomorphisms and zero. They are isomorphism because i : A — B is
perfect. They are zero because, for example, given any map f : [ — M of B-
modules, we find that F}f is given by Fjf(a ® b) = f(ab?) = b~ f(ab) = 0, so
F f is zero. The same argument applies to a projective resolution of I to show that
Ext',(I, M) = 0 for i > 0. The argument for Tor is similar. O

Combining the above two results we get the following:

Theorem 11.1.4. Suppose that 1 : A — B s perfect, and let M be any A-module
regarded as a B-module via the augumentation € : B — A. Then we get

TorP(A, M) =0 (11.1.14)
and .

Extiy (A, M) =0 (11.1.15)
for i >0, while A@g M = M and Homp(A, M) = M.

11.2 Formal groups

Most of what we need to know about formal groups can be found in [54]. Recall that
given two Morava E-theories F and F' of the same height, the maximal ideals in FyF
coming from mpg and mpg coincide. Furthermore, EyF/m represents isomorphisms
of formal group laws. Let W (I'1,I'y) = ky @, W ®, ko, where L is the Lazard ring
(isomorphic to MU,, or MUPF,, where MUP is the 2-periodic complex cobordism
spectrum) and W = L[tF! t,,.. ].

Proposition 11.2.1. ([5, remark 17.4]) If E and F are the Morava E-theories
associated to two formal groups I'y and I'y of height n, then
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Proposition 11.2.2. ([54, corollary 21.6]) The ring W (I'1,T's) is a perfect ky-algebra.

Proposition 11.2.3. Given any multiplication on K, we have
To(K As K%)= (mo(E As E))/m @ Ala, .. ., an_1). (11.2.17)
additively, and each o; squares to something that acts trivially on K,.

Proof. This is clear additively, and the claim about the multiplicative structure follows
as in the proof of proposition 8.2.4. O

Now we are in a position to prove the following theorem:

Theorem 11.2.4. Let E be either E, or m If £ = FE, let K = K, and if
E =E(n) let K = K(n). Then the canonical maps

THHY(K) — THH"(K) (11.2.18)
and

THHg(K) — THH(K) (11.2.19)

are weak equivalences.

Proof. We have spectral sequences calculating 7, of both sides, where the Es-terms are
Torx, (knpior)( Ky, Ky) and Torg, (xngxory (K, K) in the first case and corresponding
Ext groups in the second case. For (E, K) = (E,, K,,), proposition 11.2.3 shows that
the Es-terms are isomorphic, and since the isomorphisms are induced by the obvious
maps this proves the theorem.

The case (E,K) = (L?(;), K(n)) is similar, using L[t, t, ...] instead of W. O

One interesting consequence of this theorem is the following:

—

Corollary 11.2.5. Let E be either E, or E(n). If E = E, let K = K,, and if

E =E(n) let K = K(n). Then the spaces of As E-algebra structures on K and A
S-algebra structures on K are equivalent.
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