
1 Introduction

The homotopy theory we will discuss in these lectures has historical origins
in very concrete geometric problems. We will begin, in this lecture, by de-
scribing some of those problems and their solutions. For the most part these
solutions date from work by Frank Adams in the 1960’s, but the problems
themselves are much older.

The central problem we are concerned with involves the construction of
interesting sets of tangent vector fields on the (n− 1)-sphere

Sn−1 = {x ∈ Rn : ‖x‖ = 1} .

This embedding of the sphere into Euclidean space provides us with a con-
crete way to visualize tangent vectors: A tangent vector at x is a vector
v ∈ Rn such that x · v = 0. The tangent space to Sn−1 at a point x is the
orthogonal complement in Rn of the line through x. Write TxS

n−1, or just
Tx, for this vector space.

The identification of the tangent space at a point with a subspace of
Rn provides us with an inner product on each tangent space. This inner
product varies continuously with the point on the sphere; it is a “metric” on
the tangent bundle. In particular each tangent vector v has a length ||v||.

A vector field on Sn−1 is a continuous section of the tangent bundle. In
prosaic terms, this is a continuous function

v : Sn−1 → Rn

such that
x · v(x) = 0 for all x ∈ Sn−1 .

A first question is whether there exists a nowhere vanishing vector field.
If we have a nonwhere vanishing vector field, we may normalize it by dividing
by its length (which is a continuous function on Sn−1) to obtain a unit
tangent vector field: a map v : Sn−1 → Sn−1 such that x · v(x) = 0 for all
x ∈ Sn−1. There are advantages to replacing the open condition of being
everywhere nonzero with the closed condition of being everywhere of length
1, just as there are advantages to thinking about the unit sphere Sn−1 in
place of the noncompact set of nonzero vectors in Rn.

The answer to this question is very well known.

Proposition 1.1. Sn−1 admits a unit tangent vector field if and only if n
is even.
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Proof. Suppose first that n is even; say n = 2m. Then Sn−1 can be thought
of as the unit vectors in Cm, and v(x) = ix satisfies ||v(x)|| = 1 and x·v(x) =
0 for all x ∈ Sn−1. This gives us a nonvanishing vector field on each odd
sphere.

However, when n is odd there are none. Such a v(x) would give a ho-
motopy between the identity and the antipodal map α(x) = −x:

ht(x) = (cosπt)x+ (sinπt)v(x) .

We can get a contradiction by using the degree, i.e. the effect of a self-map of
Sn−1 on the (n− 1)-dimensional integral homology group Hn−1(Sn−1;Z) ∼=
Z. The degree of the identity is 1, so by homotopy invariance degα = 1.
But α is a composite of n reflections in Rn, each of degree −1, so degα =
(−1)n = −1, giving a contradiction. �

A more refined question now arises: for a given positive integer k, can
we produce a sequence (v1, v2, . . . , vk−1) of (k−1) vector fields on Sn−1 that
are everywhere linearly independent? How big can we make k and still get
an affirmative answer to this question?

Once again, we can replace this by an equivalent compact question, this
time using the Gram-Schmidt process (which continuous, so we can apply
it fiber-wise): find a sequence v1, v2, . . . , vk−1 of everywhere orthonormal
vector fields on Sn−1.

And, once again, in certain cases there are rather obvious constructions.
If n = 4m, for example, we can regard Sn−1 as the unit vectors in quater-
nionic m-space, and then

v1(x) = ix , v2(x) = jx , v3(x) = ijx

provide three orthonormal vector fields. Similarly, the “octonion” multipli-
cation on R8 provides seven everywhere independent vector fields on S7. In
these cases, the vector fields provide an isomorphism Sn−1×Rn−1 → TSn−1

of vector bundles; that is, a trivialization of the tangent bundle or a par-
allelization of the sphere. In fact, Kervaire proved that these are the only
spheres that are parallelizable.

While these questions are clearly interesting in their own right, we shall
see, in this course, that they are equivalent to fundamental questions about
the structure of unstable homotopy theory, especially the behavior of the
homotopy groups of spheres.

For a start, notice that they can be phrased in terms of standard ques-
tions about the existence of sections of certain fiber bundles. To define these
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fiber bundles, recall that a k-frame (or an orthogonal k-frame) in Rn is a
sequence (v1, . . . , vk) of mutually orthogonal unit vectors. Regarding them
as column vectors, they can be assembled into an n × k matrix v with the
property that the product vT v is the k × k identity matrix Ik.

Definition 1.2. The Stiefel manifold Vk(E) of an inner product space E is
the set of all k-frames in E, topologized as a subset of the product Ek.

If E = Rn with it standard inner product, we will write Vn,k in place of
Vk(Rn).

The Stiefel manifold is a compact manifold. It comes equipped with a
smooth map

π : Vn,k → Sn−1

sending the k-frame (v0, v1, . . . , vk−1) to v0 ∈ Sn−1. The rest of the k-frame,
(v1, . . . , vk−1), can be viewed as giving a (k− 1)-frame in the tangent space
to the sphere at v0. That is, π−1(v0) = Vk−1(Tv0).

Lemma 1.3. The map π : Vn,k → Sn−1 sending v to v0 is the projection
map of a fiber bundle.

Proof. This means that any point v0 in the base has a neighborhood W
over which the projection is isomorphic to a product projection. In this
case we can take for W the upper open hemisphere centered at v0, W =
{v′0 ∈ Sn−1 : v0 · v′0 > 0}. Then define a map κ : π−1W → Vk−1(Tv0)
as follows. Let v′ ∈ π−1W . The sequence (v0, v

′
1, . . . , v

′
k−1) is still linearly

independent, so we can apply the Gram-Schmidt process to it to obtain a
sequence (v0, v1, . . . , vk−1). Define κ(v′) = (v1, . . . , vk−1). Then

(π, κ) : π−1W →W × Vk−1(Tv0)

is a homeomorphism compatible with the projections to W . �

So the projection map always has local cross-sections; the sphere (or any
(n − 1)-manifold) admits local (k − 1)-frames as long as k ≤ n. A global
cross-section is the same thing as a tangential (k− 1)-frame field (or briefly
a (k − 1)-frame) on Sn−1. Finding obstructions to the existence of a cross-
section of a fiber bundle is one of a small collection of standard problems in
homotopy theory, and we will bring a number of homotopy-theoretic tools
to bear on this particular sectioning problem.

We may ask how large k can be, given n. The answer is given in terms
of a function ρ(n), defined as follows. Let ν(n) be the largest integer such
that 2ν divides n. Then write ν = ν(n) as ν = 4b+ c, 0 ≤ c ≤ 3, and set

ρ(n) = 8b+ 2c .
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Theorem 1.4 (Hurwitz, Radon, Eckmann; Adams). There exist ρ(n) − 1
linearly independent vector fields on Sn−1 (Hurwitz-Radon-Eckmann) and
no more (Adams).

Here’s a table of a few values of this strange function ρ(n). Since ρ(n)
depends only on ν(n), we tabulate its values in terms of ν.

ν 0 1 2 3 4 5 6 7 · · ·
2ν 1 2 4 8 16 32 64 128 · · ·
ρ(n) 1 2 4 8 9 10 12 16 · · ·

Thus ρ(n) is roughly twice the exponent of 2 in n; it quickly falls behind n.
In fact the only cases in which ρ(n) = n are n = 1, 2, 4, 8; the only paralleliz-
able spheres are S0, S1, S3, S7. The sphere S127 admits fifteen everywhere
independent vector fields and no more.

There are two steps to proving Theorem 1.4:

1. Construct enough vector fields. It turns out that linear algebra – in
the form of representations of Clifford algebras – produces a (ρ(n)−1)-
frame on Sn−1.

2. Show that no other method can produce more. This is much harder,
and was the first major victory for K-theory in topology, the occasion
for Frank Adam’s introduction of the operations named after him.

Let’s focus for the moment on the parallelizable case. There are many
statements that are equivalent to saying that Sn−1 is parallelizable.

If Sn−1 is a Lie group, we can pick a basis for the tangent space at the
identity element and translate it around the group; this gives a different
way of thinking of the parallelization we got above by thinking of S1 and
S3 as unit vectors in C and H. The 7-sphere is not a Lie group, but it does
posess a smooth (though non-associative) multiplication, which can be used
to parallelize it.

Conversely, a parallelization of a sphere produces a multiplication on the
sphere. More precisely, you get an H-space structure, where:

Definition 1.5. An H-space is a pointed space X equipped with a map
µ : X ×X → X such that the diagram

X
in1 //

1 ##

X ×X
µ

��

X
in2oo

1{{
X
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is homotopy commutative, where i1(x) = (x, ∗) and i2(x) = (∗, x).

Lemma 1.6. A parallelization of Sn−1 determines an H-space structure on
this space.

Proof. The H-space structure arises via the “stereographic projection” σ :
TSn−1 → Sn−1, defined as follows. A tangent vector is a pair (x, v) where
x ∈ Sn−1 and v is a vector in Rn perpendicular to x. Connect the sum x+v
to −x by a line segment. It intersects Sn−1 in two points: −x is one, and
the other we take as the definition of σ(x, v). Thus σ(x, 0) = x, and for any
nonzero v the limit of σ(x, tv) as t→∞ is −x. This lets us extend the map
σ slightly, by adjoining a point “at infinity” to each tangent space. This
yields a fiber bundle TSn−1 → Sn−1 whose fiber over x ∈ Sn−1 is the one-
point compactification of Tx; that is, an (n−1)-sphere. TSn−1 is a “twisted
product” of Sn−1 with itself. We obtain a map σ : TSn−1 → Sn−1 such that
the left triangle commutes and the right one commutes up to homotopy.

Sn−1 s0 //

1 $$

TSn−1

σ

��

Sn−1ιxoo

1zz
Sn−1

where s0 is the inclusion of the zero-section and ιx is the inclusion of the
fiber over x.

Now suppose that Sn−1 is parallelizable. A parallelization gives a trivial-
ization of the tangent bundle, and hence of the compactified tangent bundle.
This gives us a homeomorphism Sn−1 × Sn−1 → TSn−1 with the property
that the zero section and fiber inclusion correspond to axis inclusions. So
the parallelization determines an H-space structure on Sn−1. �

Next, we can use an H-space structure to produce a corresponding “pro-
jective plane.” This uses several general topological constructions. The cone
CX on a space X is the quotient space

CX = (X × I)/ ∼

where I denotes the unit interval [0, 1] and (x, 0) ∼ (x′, 0) for any x, x′ ∈ X.
Note that CX has a distinguished basepoint, represented by (x, 0) for any
x ∈ X. (Categorical considerations demand that we say C∅ = ∗.) CX
admits a canonical contracting homotopy. Write i : X → CX for the
inclusion x 7→ (x, 1). Given a map f : X → Y , the mapping cone C(f)
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of f is the pushout in

X

i
��

f // Y

��
CX // C(f)

We could also write C(f) = Y ∪CX. For example, the mapping cone of the
unique map X → ∗ is the unreduced suspension SX of X; this is also the
quotient of CX by the subspace given by the image of i.

The join of two spaces, X and Y , is

X ∗ Y = X × I × Y/ ∼

where (x, 0, y) ∼ (x′, 0, y) for any x, x′ ∈ X, y ∈ Y , and (x, 1, y) ∼ (x, 1, y′)
for any x ∈ X and y, y′ ∈ Y .

The Hopf construction of a map µ : X × Y → Z is the map

h(µ) : X ∗ Y → SZ

defined by the formula

h(µ)(x, t, y) = (µ(x, y), t) .

The projective plane of an H-space (X,µ) is the mapping cone of the Hopf
construction of µ.

Let’s apply this to our H-space structures on spheres. When n = 1, we
have S0; there is only one multiplication µ on this two-point space; S0 ∗ S0

and SS0 are both homeomorphic to S1, and h(µ) is a map 2ι : S1 → S1

of degree 2 (with appropriate choice of orientations). In general, the join of
two spheres is another sphere:

Sp−1 ∗ Sq−1 ∼=−→Sp+q−1

by sending (x, t, y) to (cos(πt/2)x, sin(πt/2)y); and of course the unreduced
suspension of Sn−1 is an n-sphere. The Hopf constructions on H-space
structures on spheres give important maps, the Hopf maps

2ι : S1 → S1 , η : S3 → S2 , ν : S7 → S4 , σ : S15 → S8 .

The discovery of the essential (non null-homotopic) map η, by Heinz Hopf,
was one of the kick-off events in the discipline of homotopy theory; and
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for many years these maps and their combinations were the only known
elements in the homotopy groups of spheres:

2ι ∈ π1(S1) , η ∈ π3(S2) , ν ∈ π7(S4) , σ ∈ π15(S8) .

These maps really are essential. We can see that by exploiting the map-
ping cone construction, which uses a map to produce a space. This con-
struction is “homotopical”:

Lemma 1.7. Let f, g : X → Y . A homotopy from f to g determines a
homotopy equivalence Cf → Cg.

Let ∗ denote both a point ∗ ∈ Y and a map from any space to Y whose
image lies in {∗}. Then

C(∗ : X → Y ) = Y ∨ SX

where the ∨ denotes the “wedge” of the two pointed spaces, obtained from
the disjoint union by identifying base points. So if the mapping cone of f
does not split as a wedge then f is essential.

Suppose α ∈ π2n−1(Sn). Its mapping cone has cells in dimensions 0, n,
and 2n. If n > 1, the integral cohomology is rank one free abelian in these
dimensions, and orientations for the spheres provide us with generators xn
and x2n. The cup product structure is determined by an integer H(α):

x2
n = H(α)x2n

As we shall see, this defines a group homomorphism

H : π2n−1(Sn)→ Z ,

the Hopf invariant.

In our case, the mapping cones of the various Hopf maps are the pro-
jective planes RP 2,CP 2,HP 2,OP 2. Homology groups suffice to distinguish
RP 2 from S1∨S2. For the rest, the cup product structure does; in each case,
the cup product structure of projective space shows that the Hopf invariant
of each of the Hopf maps (for n > 1) is ±1.

We have seen a good portion of the following omnibus result. The hard
part, (4) =⇒ (5), is due to Frank Adams.

Theorem 1.8. The following are equivalent.
(1) There is a nonsingular bilinear pairing Rn × Rn → Rn.
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(2) Sn−1 is parallelizable.
(3) Sn−1 admits the structure of an H-space.
(4) The Hopf invariant π2n−1(Sn)→ Z is surjective.
(5) n ∈ {1, 2, 4, 8}.

The Hopf maps arise in many contexts. A slightly different construction
of them was generalized by George Whitehead. The orthogonal group O(n)
acts linearly on the sphere Sn−1. Any map Sk−1 → SO(n) ⊂ O(n) thus
gives us a composite

Sk−1 × Sn−1 → SO(n)× Sn−1 → Sn−1

to which we can apply the Hopf constuction. The result is a homomorphism

J : πk−1(SO(n))→ πn+k−1(Sn) .

The orthogonal group O(n) is also known as Vn,n, so a parallelization of Sn−1

compatible with its orientation provides an example of such a homotopy class
α with k = n, and Jα ∈ π2n−1(Sn) is the class we constructed above.

The maps J are compatible as n increases. On the right, the groups
stabilize to the “stable homotopy group” πsk−1. The increasing union of the
topological groups SO is the “stable special orthogonal group” SO, and we
get a map

J : πk−1(SO)→ πsk−1 .

Luckily, the homotopy groups of SO are known; this is part of Bott period-
icity. The image of the J-homomorphism was studied, also by Adams, and
(following the resolution of the “Adams conjecture”) turns out to be a direct
summand of known order. It is the “linear part” of the stable homotopy
groups of spheres, and in this course we will get to know these groups very
well.

2 Clifford algebras and their representations

In this lecture we will see how many vector fields on spheres we can construct
using linear algebra. We’ll begin by defining a family of associative algebras
called Clifford algebras, then explain how their representations can be used
to produce frame fields on spheres, identify them in simpler terms that will
allow us to understand their representation theory, and then show that we
have produced a (ρ(n) − 1)-frame on Sn−1 for any n. Clifford algebras
provide a means to study quadratic forms in some generality, but we will
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focus on the particular form (two forms, actually) that will be of use to us
in constructing vector fields on spheres.

Definition 2.1. Let k ≥ 0. The Clifford algebra C+
k is the associative

R-algebra generated by elements e1, . . . , ek, subject to relations

eiej + ejei = 0 for i 6= j ,

e2
i = −1 .

For example,

C+
0 = R,

C+
1
∼= C by e1 7→ i

C+
2
∼= H by e1 7→ i , e2 7→ j , e1e2 7→ k

Remarks 2.2. 1. The relations imply that a basis for C+
k is given by the

set of words
{ei1 · · · eim : m ≥ 0 , i1 < · · · < im}

made up of ordered nonrepeating sequences of the generators. So

dimC+
k = 2k .

2. The set
Gk = {±ei1 · · · eim : m ≥ 0 , i1 < · · · < im}

is a multiplicative subgroup of C+
k , of order 2k+1. For example G2 is the

quaternion group of order 8. A C+
k -module is the same thing as a real

representation of Gk with the property that (−ei) ·x = −(ei ·x) for all i and
x.

Before trying to identify more of these algebras, let’s look at how they
can be used to construct vector fields on spheres. Briefly, a representation
of C+

k on Rn produces a k-frame on Sn−1.

Suppose V is an n-dimensional real vector space with a C+
k -module struc-

ture. Choose an inner product on V . By averaging over the action of the
finite group Gk we arrive at a Gk-invariant inner product (−,−). Let S(V )
denote the unit sphere of V , and note that multiplication by ei sends S(V )
to itself. We claim:

Lemma 2.3. The function

x 7→ (e1x, . . . , ekx)

defines an orthonormal k-frame on S(V ).
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Proof. The proof consists in two simple calculations. First,

(x, eix) = (eix, eieix) = −(eix, x) = −(x, eix) ,

so (x, eix) = 0 and eix is tangent to S(V ) at x. Second, if i 6= j, we have

(eix, ejx) = (eiejeix, eiejejx) = (−e2
i ejx, eie

2
jx) = (ejx,−eix) = −(eix, ejx) ,

so (eix, ejx) = 0, and eix and ejx are orthogonal. �

This recovers the 1-frames on Sn−1 with n even and the 3-frames on
Sn−1 with n divisible by 4 that we saw in in the last lecture.

It turns out that the algebras C+
k can be expressed in terms of R, C, H,

and matrix algebras over them. If A is an associative R-algebra, write An

for the n-fold product of A with itself, and write A(n) for the associative
R-algebra of n × n matrices over A. We will identify the Clifford algebras
inductively in terms of these basic examples and operations, building up the
table below.

k 0 1 2 3 4 5 6 7 8

C+
k R C H H2 H(2) C(4) R(8) R(8)2 R(16)

C+
k = C+

k−8(16) , k ≥ 8

In carrying out this induction it is useful to introduce a Clifford algebra
associated to a different quadratic form. Let C−k be the associative R-algebra
generated by e1, . . . , ek, subject to relations eiej + ejei = 0 (for i 6= j) and
e2
i = 1.

We need to compute the first few of the C−k ’s as well. C−1 has basis
{1, e1}, and e2

1 = 1, so C−1
∼= R2, with e1 7→ (1,−1) (or (−1, 1)). C−2 admits

a representation on R2: Let e1 act by reflecting across the x-axis and e2 by
reflecting across the line x = y. Then e1e2 gives a clockwise rotation by 90◦

and e2e1 gives the inverse rotation. This representation gives us an algebra
isomorphism C−2

∼= R(2).

This simple geometry starts our induction. For the inductive step, we
have:

Lemma 2.4. For k ≥ 2, C±k
∼= C±2 ⊗ C

∓
k−2.

Proof. Take the upper signs first. Define a linear map Rk → C+
2 ⊗C

−
k−2 by

e1 7→ e1 ⊗ 1 , e2 7→ e2 ⊗ 1
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and for i > 2
ei 7→ e1e2 ⊗ ei−2 .

Note that in C+
2

(e1e2)2 = e1(−e1e2)e2 = −1 ,

so that in C+
2 ⊗ C

−
k−2 we have

(e1 ⊗ 1)2 = −1⊗ 1 , (e2 ⊗ 1)2 = −1⊗ 1 ,

and, for i > 1
(e1e2 ⊗ ei−2)2 = −1⊗ 1 .

The anti-commutativity is easily checked, so this linear map extends to an
algebra map

C+
k → C+

2 ⊗ C
−
k−2 .

This map sends basis elements to basis elements and so is an isomorphism.

The other case is identical up to sign. �

Using the known values of C±2 , these isomorphisms may be rewritten

C+
k
∼= H⊗ C−k−2 , C−k

∼= C+
k−2(2) (2.1)

where for the second isomorphism we use the fact that A⊗ R(n) ∼= A(n).

Finally we need to observe:

Lemma 2.5. We have the following R-algebra isomorphisms

C⊗ C ∼= C2

C⊗H ∼= C(2)

H⊗H ∼= R(4) .

Proof. The complex numbers admit two complex-valued real bilinear forms,
xy and xy. Together they provide the first isomorphism.

For the second isomorphism, observe that there is a homomorphism of
R-algebras H→ C(2) sending

i 7→
[

0 1
i 0

]
, j 7→

[
0 i
1 0

]
.

This map extends to an isomorphism C⊗H→ C(2).
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The third isomorphism arises from the H ⊗ H-module structure on H
given by the action

(x⊗ y) · z = xzy

where y 7→ y is the anti-involution defined by i = −i, j = −j. �

The remaining C±k in the table can be computed in succession using
these lemmas, rather like lacing a skate. The arrows pointing southeast
tensor with H and those pointing southwest tensor with R(2):

k C+
k C−k

0 R

$$

R

zz
1 C

##

R2

{{
2 H

##

R(2)

||
3 H2

##

C(2)

||
4 H(2)

##

H(2)

||
5 C(4)

##

H(2)2

||
6 R(8)

##

H(4)

||
7 R(8)2 C(8)

8 R(16) R(16)

If we continue to lace, we will repeat the same pattern but now tensored
with R(16):

C±k = C±k−8(16) , k ≥ 8 .

These identifications of the algebras C+
k provide us with representations,

using the following constructions.
(1) R, C, and H have representations on themselves by left multiplication.
(2) If Rn has the structure of an A-module, then Rdn has the structure of an
A(d)-module, adapting the usual way in which a matrix acts on a column
vector.
(3) If the associative R-algebra A acts on Rn, then A2 acts on Rn as well,
in two ways — through the projections to the two factors. We obtain rep-
resentations of real dimension ak, as given in the following table.
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k 0 1 2 3 4 5 6 7 8

C+
k R C H H2 H(2) C(4) R(8) R(8)2 R(16)
ak 1 2 4 4 8 8 8 8 16

ak = 16ak−8 , k ≥ 8

By taking direct sums of these representations we also get representations
of C+

k on Rcak for any c ≥ 1. It is not hard to see that these representations
are of minimal dimension; in fact every representation of C+

k is a direct sum
if these (remembering that there are two of dimension ak if k ≡ 3, 7 mod 8).

We can now harvest some families of vector fields on spheres. A repre-
sentation of C+

k on Rn provides us with a k-frame on Sn−1. We have found
such representations provided that n is a multiple of ak. To maximize k for
given n, then, we want to maximize k such that ak divides n. The dimension
ak is always a power of 2, so this maximal k will depend only on ν(n), the
power of 2 dividing n. The first few cases are:

ν(n) 0 1 2 3 4 5 6

kmax 0 1 3 7 8 9 11

and
kmax(ν) = kmax(ν − 4) + 8 for ν ≥ 4 .

This is exactly ρ(n) − 1 from Lecture 1. So we have succeeded in con-
structing ρ(n) − 1 linearly independent vector fields on the (n − 1)-sphere,
and explained, from this linear algebra perspective, the occurence of the
strange number ρ(n). It turns out that this is the best we can do using
linear algebra — in fact this really is the best we can do period. To prove
this we will have to explain how the number ρ(n) occurs from a purely
homotopy-theoretic perspective.

3 Projective space

We now set about finding obstructions to sectioning the projection map
Vn,k ↓ Sn−1. The key to this is problem is hidden in the homotopy theory of
real projective space, RP k−1. This space will be a central actor throughout
these lectures.

By definition, RP k−1 is the quotient of Sk−1 obtained by identifying x
and −x. Thus it is the orbit space of the action of the cyclic group C2
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of order 2 on Sk−1 in which the nontrivial element acts antipodally. The
projection Sk−1 ↓ RP k−1 is a principal C2-bundle.

Every line through the origin in Rk meets Sk−1 precisely in a pair of
antipodal points, so we can also regard RP k−1 as the space of lines through
the origin in Rk. From this perspective, the natural structure over RP k−1

is a real line bundle λ, the canonical line bundle. The total space of λ is

E(λ) = {(x, l) ∈ RP k−1 × Rk : x ∈ l} .

These two structures are equivalent to each other. The line bundle λ has
a natural metric, given by restricting the Euclidean inner product in Rn,
and the double covering by the sphere is the unit sphere-bundle in λ (with
fiber sphere S0):

Sk−1

  

∼= // S(λ)

~~
RP k−1

In fact the sphere with its C2 action may be thought of as the “princi-
palization” of λ: an element of Sn can be thought of as an isometric linear
isomorphism from R to a fiber of λ. Conversely, λ is obtained from the
principal C2-bundle Sk−1 ↓ RP k−1 via the “Borel construction”: C2 acts on
R linearly by sending x to −x; this is the “sign representation” of C2. The
Borel construction is given by

Sk−1 × R/ ∼ , (x, t) ∼ (−x,−t) .

The map sending (x, t) to ±x ∈ Rk−1 factors through the quotient and
displays this space as the total space of a line bundle over RP k−1, one which
is none other than the canonical line bundle λ.

Another (less interesting but just as important) line bundle over RP k−1

is the trivial line bundle RP k−1 × R ↓ RP k−1, which we denote by ε. The
canonical line bundle comes to us embedded as a sub-bundle of the trivial k-
plane bundle kε over RP k−1, and as such has a complementary (k−1)-plane
bundle λ⊥.

The covering projection Sk−1 ↓ RP k−1 shows that RP k−1 is locally iso-
morphic to the manifold Sk−1, and so is itself a compact smooth manifold.
We will identify its tangent bundle.

A tangent vector v ∈ (Rx)⊥ at x ∈ Sk−1 descends to a tangent vector at
Rx ∈ RP k−1. The opposite vector −v at −x descends to the same tangent
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vector. This behavior can be expressed by saying that a tangent vector
at l ∈ RP k−1 is the same thing as a linear transformation from l to l⊥.
The tangent space is the vector bundle whose fibers are these spaces of
homomorphisms,

TRP k−1 = Hom(λ, λ⊥) .

The connection of all this to our sectioning problem is the following
simple lemma.

Lemma 3.1. A section s of the projection Vn,k ↓ Sn−1 determines a bundle
map

RP k−1 × Sn−1 = S(nε)

  

ŝ // S(nλ)

}}

= Sk−1 ×C2 S
n−1

RP k−1

that is of degree 1 on each fiber.

Proof. To begin with, recall that the image of x ∈ Sn−1 under the section
s defines a linear isometric embedding s(x) : Rk → Rn. So we can define a
map s : Rk × Sn−1 → Rk × Rn by

s(x, v) = (x, s(v)x)

that restricts to a map Sk−1 × Sn−1 → Sk−1 × Sn−1. Since s(−x, v) =
(−x,−s(v)x), this map descends to a map ŝ between the indicated quotients.
Both projection maps are induced by projection to the first factor, so ŝ is a
map of fiber bundles over RP k−1. The map s is a section of the map that
sends a linear isometric embedding to its value on e1 ∈ Rk: s(v)e1 = v.
So s(e1, v) = (e1, v), inducing a map of degree 1 on the fiber over ±e1 ∈
RP k−1. The degree of the restriction to the fiber over ±x is an integer
depending continuously on ±x ∈ RP k−1 and hence is constant since RP k−1

is connected. �

When the section s is one of those constructed in Lecture 2, the map s
defines a map of vector bundles nε→ nλ that is an isomorphism on fibers,
and so provides a trivialization of the bundle nλ over RP k−1. In general,
the map ŝ does not extend to a linear isomorphism, so we cannot conclude
that nλ is trivial as a vector bundle.

Nevertheless, the map ŝ does provide us with a trivialization of the
spherical fibration S(nλ) ↓ RP k−1 is trivial. We had better be clear about
what this means.
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Definition 3.2. Let E and E′ be fiber bundles over a common base B.
Two bundle maps f, g : E → E′ are fiber homotopic if they are homotopic
through bundle maps. The bundle map f is a fiber homotopy equivalence if
there is a bundle map g : E′ → E such that fg and gf are fiber homotopic
to the respective identity maps. A fiber homotopy trivialization is a fiber
homotopy equivalence from a trivial bundle.

We have a bundle map of sphere bundles that is a homotopy equivalence
on each fiber. Fortunately this forces it to be a fiber homotopy equivalence
by the following theorem of Albrecht Dold.

Theorem 3.3 (Dold). Suppose E and E′ are fibrations over B with a bundle
map f inducing a homotopy equivalence on each fiber. If E and E′ have the
homotopy type of CW complexes then f is a fiber homotopy equivalence.

Proof. See [3]. �

If B is connected, then it is enough to check that the map is a homotopy
equivalence on a single fiber. This is clearest if the fiber is a sphere; then
the degree of the map is a continuous function with discrete values. The
homotopy inverse of a fiber homotopy trivialization of a fiber bundle with
fiber F amounts to a map from the total space to F which restricts to a
homotopy equivalence on each fiber.

In our context, the lemma gives

Corollary 3.4. A section of Vn,k ↓ Sn−1 determines a fiber homotopy triv-
ialization of S(nλ) ↓ RP k−1.

So the topology of certain vector bundles over real projective space be-
come important in our study of the vector field problem. Let’s get a little
more familiar with these bundles.

First of all, a linear embedding of Rk into Rn+k induces an embedding
of manifolds

RP k−1 ↪→ RPn+k−1 .

For definiteness, let’s take Rk to be cut out by setting the last n coordinates
equal to zero. Its orthogonal complement is an appropriately embedded copy
of Rn, which defines a complementary embedding of RPn−1 into RPn+k−1.

An element l ∈ RP k−1 together with a linear map f : l→ V determines
an element of the larger projective space RPn+k−1, namely, the graph of f ,
as a subspace of l × Rn ⊆ Rn+k. If f = 0, the graph is just l again. On
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the other hand, if l′ is almost any line through the origin in Rn+k, we may
project it to a line in Rk, and express it as the graph of a linear function on
the image line. The exception is if l′ ⊆ Rn, in which case it projects to the
origin of Rk rather than a line.

The complement RPn+k−1\RPn−1 is an open set containing RP k−1,
which we have just identified with the total space of the vector bundle

Hom(λ, nε) = nλ∗

This is a particular case of the following general theorem from differential
topology:

Theorem 3.5. (Tubular neighborhood theorem) Let M ⊂ N be an
embedded submanifold with normal bundle ν. There is a neighborhood U of
M in N such that (U,M) is homeomorphic rel M to (E(ν),M).

The metric on λ further identifies λ∗ with λ, so we have identified the
normal bundle of RP k−1 ⊆ RPn+k−1 with E(nλ). Since this neighborhood
is dense in RPn+k−1, the quotient is precisely the one-point compactification
of E(nλ).

RPn+k−1/RPn−1 ∼= E(nλ)+ .

This quotient is called a stunted projective space, and written

RPn+k−1
n = RPn+k−1/RPn−1 .

Exercise 3.6. Identify the stunted projective space RPn+1
n .

Real projective space RPn has a well-known cell structure, with k skele-
ton given by RP k. The attaching map Sk−1 → RP k−1 for the k-cell is
simply the double cover Sk−1 → RP k−1. To see this, think of the k-disk
embedded in Rk+1 as the upper hemisphere. Every line through the origin
passes through a unique point of this disk, unless it is actually a line in Rk,
when it passes through a pair of antipodal points of the boundary of this
disk.

The stunted projective space RPn+k−1
n has a cell structure obtained from

the given one on RPn+k−1 by collapsing the (n−1)-skeleton. The attaching
maps are given by composing the double cover with the projection map.
RPn+k−1

n has one cell of dimension i for i = 0 and n ≤ i < n+ k.
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4 Thom spaces

The projection map of a vector bundle is a homotopy equivalence, with
homotopy inverse given by the zero section. This would seem to make it hard
to detect features of the vector bundle in homotopy theoretic terms. René
Thom explained how to capture deep information about a vector bundle in
a space, the Thom space of the bundle.

So suppose that ξ is a vector bundle with projection map π : E ↓ B. We
might as well give it a metric, so the total space E(ξ) contains the unit disk
bundle D(ξ) and the unit sphere bundle S(ξ).

Definition 4.1. The Thom space of the vector bundle ξ is

Th(ξ) = D(ξ)/S(ξ) .

This construction may be described in terms of the fiberwise one-point
compactification E(ξ) defined in Lecture 1: The points at infinity define a
section s∞ of E(ξ) ↓ B, and

Th(ξ) = E(ξ)/s∞(B) .

If B is a compact Hausdorff space, this is simply the one-point compactifi-
cation of E(ξ).

For trivial bundle nε over B,

Th(nε) =
B ×Dn

B × Sn−1
=

B+ × Sn

+× Sn−1 ∪B+ × ∗
= B+ ∧ Sn .

In particular, the case n = 0 expresses B0 as B with a disjoint basepoint
adjoined.

For another example, we have shown in Lecture 3 that

Th(nλ ↓ RP k−1) = RPn+k−1
n . (4.1)

As we have defined it, the Thom space is a pointed space functorially
attached to a vector bundle (perhaps with metric). But the construction
actually only depends upon the underlying sphere bundle. This is because
the total space of the disk bundle is none other than the mapping cylinder
of the projection π : S(ξ) ↓ B. So the Thom space is simply the mapping
cone of this projection map.
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Consequently, fiber homotopy equivalent sphere bundles have homotopy
equivalent Thom spaces. In particular, the Thom space of a fiber homotopi-
cally trival sphere bundle (with fiber dimension n − 1) is simply an n-fold
suspension:

Th(ξ) ' ΣnB+ .

For any point ∗ ∈ B we have a “fiber inclusion” π−1∗ ↪→ S(ξ), and an
induced pointed map on Thom spaces. The Thom space of a bundle over a
point is a sphere, and if we are given an orientation for the vector bundle
we get an element of πn(Bξ) that is independent of the chosen point if B is
path-connected. A “coreduction” of a vector bundle ξ is a map Th(ξ)→ Sn

splitting this element up to homotopy. If the bundle is fiber homotopically
trivial, we certainly get a coreduction, by collapsing B to a point:

Th(ξ) ' ΣnB+ → Sn .

Putting this together, we have shown:

Proposition 4.2. If Sn−1 admits k−1 everywhere independent vector fields,
then nλ ↓ RP k−1 admits a coreduction.

So we will spend a lot of time finding obstructions to coreducing these
bundles. In terms of the cell structure given in Lecture 3, you can say that
a coreduction shows that the bottom cell splits off as a wedge summand, so
that

RPn+k−1
n ' RPn+k−1

n+1 ∨ Sn .

In Lecture 6 we will see what Steenrod operations have to say about this
question. They do not suffice, and later we will follow Adams in applying
K-theory to the problem.

Exercise 4.3. What does your determination of the homotopy type of RPn+1
n

tell us about the non-existence of vector fields on spheres?

A coreduction is weaker than a fiber homotopy trivialization, but not by
much.

Lemma 4.4. A coreduction of a vector bundle ξ determines a fiber homotopy
trivialization of S(ξ ⊕ ε).

Proof. We begin by giving yet another description of the Thom space of a
vector bundle ξ over B. Consider the Whitney sum ξ⊕ε, and its unit sphere
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bundle S(ξ ⊕ ε). It is equipped with a nowhere vanishing section s1 taking
the value (0, 1) at each point. Stereographic projection from (0, 1) provides
a map E(ξ) → S(ξ ⊕ ε), and as a vector in E(ξ) goes to infinity its image
goes to (0, 1). We thus obtain a homeomorphism

E(ξ)→ S(ξ ⊕ ε)

under which the section at infinity s∞ corresponds to the section s1. So the
Thom space, obtained by collapsing the image of s∞, can be identified with
the space obtained from S(ξ ⊕ ε) by collapsing the image of s1 to a point.
Under this identification, the fiber inclusion into S(ξ⊕ ε) over a point in the
base corresponds to the fiber inclusion into the Thom space.

Suppose that the bundle ξ admits a coreduction. The composite

S(ξ ⊕ ε)→ Th(ξ)→ Sn

is a homotopy equivalence when restricted to each fiber. It therefore defines
a fiber homotopy trivialization of S(ξ ⊕ ε). �

The Thom space construction interacts well with products. If ξ ↓ X
and η ↓ Y are vector bundles, then the product of total spaces maps to the
product of the base spaces and defines an “product” bundle ξ × η ↓ X × Y .
If X = Y , we can pull this back under the diagonal map ∆ : X → X × Y ,
and obtain the Whitney sum ξ ⊕ η ↓ X.

If we equip ξ and η with metrics, the we can take for the disk bundle
of ξ × η the product of the disk bundles of the factors. Since the boundary
sphere of a product of disks decomposes as

∂(Dp ×Dq) = Dp × Sq−1 ∪ Sp−1 ×Dq ,

we can form the Thom space of the product bundle as

Th(ξ × η) =
D(ξ)× D(η)

D(ξ)× S(η) ∪ S(ξ)× D(η)
=
Th(ξ)× Th(η)

Th(ξ) ∨ Th(η)
,

so there is a natural identification

Th(ξ × η) = Th(ξ) ∧ Th(η) . (4.2)

By naturality, this is compatible with the inclusions of the fibers.

For example, suppose that η = qε, a trivial bundle over ∗. Since Th(qε ↓
∗) = Sq, (4.2) gives us

Th(ξ ⊕ qε) = Th(ξ) ∧ Sq = ΣqTh(ξ) . (4.3)
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The product of the 0-dimensional bundle with xi gives us a vector bundle
over X×X. It can be described as the pullback of ξ under pr2 : X×X → X.
The diagonal map ∆ : X → X ×X is covered by a bundle map 0× ξ → ξ,
and, using the fact that Th(0 ↓ X) = X+, we receive a map

Th(ξ)→ X+ ∧ Th(ξ) .

This map enters into an important theorem, due to René Thom, about
the cohomology of a Thom space. In cohomology (with coefficients in a
commutative ring R) the map provides us with a pairing

H∗(X)⊗H∗(Th(ξ))→ H∗(Th(ξ))

which, as can be easily checked, renders H∗(Th(ξ)) a module over the graded
ring H∗(X).

To study this structure in more detail, suppose that the fiber dimension
of ξ is n. Pick a metric. Write ξx for the fiber over x, and D(ξx) and S(ξx) for
the fibers of the disk and sphere bundles. The relative cohomology groups

H∗(D(ξx), S(ξx);R)

with coefficients in a commutative ring R are nonzero only in dimension n,
where they are free of rank 1 over R. As x varies, these abelian groups form a
local coefficient system overX, which we denote byOξ. It is a local coefficent
system of R-modules, and this provides the cohomology H∗(X;Oξ) with the
structure of a module over the graded ring H∗(X;R).

Theorem 4.5 (General Thom isomorphism theorem). Let ξ be an n-plane
bundle over X. There is a natural isomorphism

H∗(Th(ξ)) ∼= σnH∗(X;Oξ)

of modules over H∗(X), where σn shifts the module up by n dimensions.

Proof. Once you have the Serre spectral sequence for a pair of fibrations,
this is easy:

Es,t2 =

{
Hs(X;Oξ) for t = n
0 otherwise

There is only one nonzero row, and the result follows by convergence and
the multiplicative structure of the spectral sequence. �
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The vector bundle is “R-oriented” by a section of Oξ that provides a
generator for each fiber. If R = F2, this is no data; the nonzero elements
in the fiber give the unique R-orientation in that case. If R = Z, this is
the same as the standard notion of an orientation for a vector bundle. An
orientation provides an isomorphism Oξ with the trivial coefficient system
with fiber R. The conclusion:

Theorem 4.6 (Oriented Thom isomorphism theorem). An R-orientation
of an n-plane bundle ξ determines an element

U ∈ Hn(Th(ξ)) ,

the Thom class, that restricts to the chosen generator of Hn(D(ξx), S(ξx)) for
every x ∈ X. It serves as a generator of H∗(Th(ξ)) as a free H∗(X)-module
of rank 1.

For example, with R = F2, X = RP k−1, ξ = nλ, we find that the Thom
class is the generator of Hn(RPn+k−1

n ), and H∗(RPn+k−1
n ) becomes a free

module of rank 1 over H∗(RP k−1).

The behavior of Thom spaces under products, (4.2), implies that the
product of two R-oriented vector bundles is naturally R-oriented, and the
Thom class is the product of the Thom classes’:

Uξ⊕η = Uξ ∧ Uη . (4.4)

If we restrict the Thom class to D(ξ) ' X, we receive an element

e(ξ) ∈ Hn(X) .

the Euler class. This is the first and fundamental example of a “charac-
teristic class.” It is “characteristic” in the sense that it is naturally as-
sociated to the R-oriented vector bundle ξ: If f : Y → X is a map, the
pulled back vector bundle f∗ξ receives an R orientation in the form of
f∗U ∈ Hn(D(f∗ξ),S(f∗ξ);R), and so

e(f∗ξ) = f∗e(ξ) .

We will have more to say about characteristic classes in a later lecture,
but for now note just two things:

Lemma 4.7. If a vector bundle ξ admits a nowhere vanishing section, then
its Euler class is zero.
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Proof. The section can be normalized to a section of the sphere bundle; so
the inclusion S(ξ) ↪→ D(ξ) induces a monomorophism in cohomology, and
the previous map in the long exact sequence, H∗(D(ξ), S(ξ))→ H∗(D(ξ)) =
H∗(B) is trivial. Thus the Thom class pulls back to the zero class. �

Lemma 4.8. e(ξ ⊕ η) = e(ξ)e(η).

Proof. This follows from (4.4). �

5 Steenrod operations

Our next objective is to construct Steenrod operations and see what they
tell us about our coreduction problem. Luckily, this is a 2-primary problem,
so we can get away with constructing these operations in mod 2 cohomology.

Steenrod operations arise from the permutation action of the symmetric
group on a product of a space with itself. The Künneth map is “commuta-
tive,” in the sense that the diagram

H∗(X)⊗H∗(Y ) //

T
��

H∗(X × Y )

T ∗

��
H∗(Y )⊗H∗(X) // H∗(Y ×X)

is commutative. Here we take coefficients in a commutative ring; and T
denotes the signed switch map on the left and the switch map on spaces on
the right. But the product arises from the Alexander-Whitney map, which
is not commutative; you evaluate the first cocycle on the front face and the
second on the back face. It is this failure of commutativity on the “chain
level” that gives rise to Steenrod operations.

We will detect this failure of commutatity homotopy theoretically, by
analysing the “extended power” construction using the Serre spectral se-
quence.

So to begin with, we will fix a subgroup π of the symmetric group Σn,
which we regard as the group of permutations of the set {1, 2, . . . , n}. There
is a natural action of Σn on Xn, in which the action of σ given by sending
(x1, . . . , xn) to (xσ−1(1), . . . , xσ−1(n)). This restricts to an action of π.

We will follow a standard topological gambit by studying this group
action by means of its Borel construction. So let Eπ be a contractible space
with a free right action of π. For example, if π = Σ2 we can take Eπ = S∞,
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the union of the unit spheres in Euclidean space, with the antipodal action.
The Borel construction of an action of π on Y is given by first freeing up
the action without changing the homotopy type, by looking at the diagonal
action of π on Eπ × Y , and then forming the orbit space with respect to
this action: Eπ×π Y . This is a fiber bundle over Eπ/π = Bπ with fiber Y .
The “extended power” is the case Y = Xn with π acting by permuting the
factors.

We begin with a general observation about the relationship between the
cohomology of the total space of a fibration E ↓ B and the cohomology of
the fiber F over a point ∗ ∈ B. Let σ : I → B be a loop at the basepoint
∗. Using the fibration condition, we can complete the following path lifting
diagram.

F
i //

in0

��

E

��
F × I σ◦pr1 //

h

B .

Then the other end of the homotopy h gives us a self-map of F :

F
σ# //

in1

��

F

i
��

F × I h // E .

This construction gives us an action of π1(B, ∗) on the homotopy type
of the fiber F , and hence on the cohomology of F . But the map h gives
us something more: it provides us with a homotopy from i : F → E to
i ◦ σ# : F → E. It follows from this that the map induced in cohomology
by i lands in the invariants under the action of π1(B, ∗):

i∗ : H∗(E)→ H∗(F )π1(B,∗) . (5.1)

The extended power Eπ×πXn is our primary object of interest. But in
order to expose its most interesting features, it is useful to work modulo a
certain subspace that is defined by means of a choice of basepoint ∗ ∈ X.
Using the usual construction of the product of pairs,

(X,A)× (Y,B) = (X × Y,X ×B ∪A× Y ) ,

we have the pair
(X, ∗)n = (Xn,WnX)
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where WnX is the “fat wedge”

WnX = (X, ∗)n = {(x1, . . . , xn) ∈ Xn : at least of the xi’s is ∗} .

Collapsing this subspace to a point gives the n-fold smash product X∧n.

The Serre spectral sequence can be thought of as a device for determining
how close the map (5.1) is to being an isomorphism. In the case of an
extended power, we find the following result. Let’s take coefficients in a
field K and suppose that X is a CW complex such that H∗(X;K) is of finite
type. Then the relative Künneth map gives an equivariant isomorphism

H∗(X)→ H∗(Xn,WnX) . (5.2)

Proposition 5.1. Suppose in addition that H i(X) = 0 for i < q. Then

H i(Eπ ×π (Xn,WnX)) = 0 for i < nq

and the natural map

Hnq(Eπ ×π (Xn,WnX))→ (Hq(X)⊗n)π

is an isomorphism.

Proof. We will use the Serre spectral sequence for the pair of fibrations
Eπ ×π (Xn,WnX

n) ↓ Bπ. In this spectral sequence,

Es,t2 = Hs(Bπ;Ht(Xn,WnX)) ,

where the local coefficient system is the one associated to the action of
π = π1(Bπ) on the cohomology of the fiber pair. The Künneth map (5.2)
shows that

Es,t2 = 0 for t < nq .

It follows that

E0,nq
∞ = E0,nq

2 = H0(Bπ;Hq(Xn,WnX)) = (Hq(X)⊗n)π .

This is the only possibly nonzero group in total degreen nq, so convergence
of the spectral sequence, along with the standard identification of the edge
homomorphism, then gives the result. �
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If we collapse the fat wedge to a point in the product we get the n-fold
smash product,

Xn/WnX = X∧n .

So we define the reduced extended π-power to be

DπX =
Eπ ×π Xn

Eπ ×π WnX
= Eπ+ ∧π X∧n . (5.3)

It comes equipped with a “fiber inclusion”

i : X∧n → DπX (5.4)

defined by sending x to [e, x] where e is a chosen point of Eπ. Up to
homotopy this map is independent of the choice of e.

In this lecture we will focus on the case in which n = 2, π is the group of
order 2, and coefficients are in the field F2. Then W2X = X ∨X, embedded
in X2 as the axes. We will write D2X for DπX in this case.

Theorem 5.2. Work in the category of pointed CW complexes of such that
H∗(X) is of finite type. There is a unique natural transformation

P : Hq(X)→ H2q(D2X)

such that
i∗Px = x ∧ x ∈ H2q(X∧2) .

Proof. On pointed CW complexes, Hq(−) is representable. The universal
q-dimensional cohomology class is the fundamental class

ιq ∈ Hq(Kq) ,

where Kq denotes the Eilenberg Mac Lane space K(F2, q). By the Hurewicz
theorem, H i(Kq) = 0 for i < q, and work of Serre implies that H∗(Kq) is of
finite type. So by Proposition 5.1, the map

H2q(D2Kq)→ (Hq(Kq)
⊗2)π

is an isomorphism. The class ιq ∧ ιq is invariant, so there is a unique class
Pιq ∈ H2q(D2Kq) restricting to it. The theorem follows from this universal
case. �
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This operation is the external square. It yields internal operations in
mod 2 cohomology by pulling back along a map induced by the diagonal
map

∆ : X → X ×X .

This map is equivariant when π is made to act trivially on X, and hence
induces a map

j : Bπ+ ∧X = Eπ+ ∧π X → Eπ+ ∧π X∧2 = D2X . (5.5)

Recall that
H∗(Bπ) = F2[t] , |t| = 1 .

If we pull Px back under the map j, we get a class which can be expressed
using the Künneth formula as a polynomial with coefficients in H∗(X):

j∗Px = 1 ∧ x2q + t ∧ x2q−1 + · · ·+ t2q ∧ x0 , xi ∈ H i(X) .

The classes xi depend naturally on x; x 7→ xi is a natural transformation
from Hq to H i.

We can say some things about these operations right away. Since Kq is
(q − 1)-connected, there are no cohomology operations that lower degree.
This implies that xi = 0 for i < q. For the others, let us write

Sqix = xq+i , i ≥ 0 ,

so that
j∗Px = 1 ∧ Sqqx+ t ∧ Sqq−1x+ · · ·+ tq ∧ Sq0x

We have defined operations, the Steenrod squares

Sqi : Hq → Hq+i .

(We will not indicate the source dimension q in the notation.) It will do no
harm to agree that

Sqi = 0 on Hq for i > q .

We have defined these operations on the reduced cohomology of pointed
spaces. By applying them to the pointed space X+, X with a disjoint
basepoint adjoined, we get natural transformations

Sqi : Hq(X)→ Hq+i(X)
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natural on unpointed spaces.

One of these operations is easy to identify. A point in Eπ determines
vertical maps fitting into a commutative diagram

Bπ+ ∧X
j // D2X

X

OO

∆ // X∧2

i

OO .

Up to homotopy, these vertical maps are independent of choice of point in
Eπ. Chasing the element Px, for x ∈ Hq(X), shows that

Sqqx = x2 |x| = q .

This operation is linear, since (x+ y)2 = x2 + y2 mod 2, and multiplica-
tive, since (xy)2 = x2y2. How about the others? In the next lecture, we will
focus first on the effect of the squares on cup-products. Additivity will turn
out to be a consequence.

6 The Cartan formula

We will study the effect of the total power operation on products using the
diagonal map

D2(X∧Y ) = Eπ+∧π(X∧Y )∧2 δ−→(Eπ+∧πX∧2)∧(Eπ+∧πY ∧2) = D2X∧D2Y

(e, (x1, y1), (x2, y2)) 7→ (e, (x1, x2)), (e, (y1, y2))

Note that the following diagram commutes.

(X ∧ Y )∧2 i //

T
��

D2(X ∧ Y )

δ

��

Bπ+ ∧ (X ∧ Y )
joo

T∆+

��
X∧2 ∧ Y ∧2 i∧i // D2X ∧D2Y Bπ+ ∧X ∧Bπ+ ∧ Y

j∧joo

(6.1)

Lemma 6.1. δ∗(Pu ∧ Pv) = P (u ∧ v).

Proof. It suffices to take the universal case,

X = Kp , Y = Kq , u = ιp ∈ Hp(Kp) , v = ιq ∈ Hq(Kq) .
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Apply cohomology to the left square in (6.1). The element Pιp ∧ Pιq ∈
Hq(p+q)(D2Kp ∧D2Kq) gets sent by T ∗(i∧ i)∗ to (ιp ∧ ιq)∧2 ∈ H2(p+q)((X ∧
Y )∧2). So i∗δ∗(Pιp∧Pιq = (ιp∧ιq)∧2 as well. Also, i∗(P (ιp∧ιq) = (ιp∧ιq)∧2.
But H i(Kp ∧ Kq) = 0 for i < p + q, so by Proposition 5.1 the map i∗ is
injective in this dimension. Thus

δ∗(Pιp ∧ Pιq) = P (ιp ∧ ιq) ,

which is the universal case of our formula. �

Corollary 6.2. (External Cartan formula) Let x ∈ Hp(X) and y ∈ Hq(Y ).
In H∗(X ∧ Y ),

Sqk(x ∧ y) =
∑
i+j=k

Sqix ∧ Sqjy .

Proof. Chase Px∧Py ∈ H2(p+q)(D2X∧D2Y ) in cohomology applied to the
right square of (6.1) and use Lemma 6.1:

(T∆+)∗(j∗Px ∧ j∗Py) =
∑
i,j

t(p+q)−(i+j) ∧ Sqix ∧ Sqjy

||

j∗δ∗(Px ∧ Py) = j∗P (x ∧ y) =
∑
k

t(p+q)−k ∧ Sqk(x ∧ y) .

Now equate coefficients of t(p+q)−k. (Please forgive the re-use of the letters
i and j.) �

Pulling this back under a diagonal map gives us the Internal Cartan
formula

Sqk(xy) =
∑
i+j=k

(Sqix)(Sqjy) .

The Cartan formula can be conveniently packaged in the following way.
Introduce a formal variable t of dimension −1 and define the “total square”

Sqt : H∗(X)→ H∗(X)[t] , Sqtx =
∑

(Sqkx)tk

Then
Sqt(xy) = (Sqtx)(Sqty) .
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We don’t (yet) know that Sq0 = 1 in all dimensions, but we do at least know
that Sq0 : H0 → H0 is the identity, since the top square squares, and in
dimension zero squaring is the identity. Thus

Sqt1 = 1 .

So the Cartan formula says that the total square is a ring homomorphism.

At this point the only squares we know to be non-trivial are the top
squares, Sqn : Hn → H2n. At the other extreme, we would like to know
how

Sq0 : Hq → Hq

acts. Since Hq(Kn) = F2 (by the Hurewicz and universal coefficient theo-
rems), there are only two natural endomorphisms of Hq: the zero map and
the identity map. Which is Sq0? To see that it is not the zero map, we need
just one example. Let’s start with q = 1.

Lemma 6.3. Sq0 : H1(S1)→ H1(S1) is nonzero.

To prove this we need to analyze D2(S1) = Eπ+ ∧π (S1)∧2. Reduced
extended powers (5.3) of spheres have a description in terms of Thom spaces.

Proposition 6.4. Let π ⊆ Σn. The reduced extended power

Dπ(Sq) = Th(qξ ↓ Bπ) ,

where ξ = Eπ×π Rπ is the vector bundle associated to the regular represen-
tation of π on Rπ.

Proof. Since (Sq)n/Wn(Sq) = (Sq)∧n = Sqn,

Dπ(Sq) =
Eπ ×π (Sq)n

EππWn(Sq)
=
Eπ ×π Sqn

Eπ ×π ∗
.

But as a π-space, Sqn is just the one-point compactification of qRπ, so the
right hand side is Th(qξ). �

Thus (with π the group of order 2)

D2S
1 = Th(ξ ↓ Bπ)

where ξ is the vector bundle associated to the regular representation of π
on Rπ. This representation is isomorphic to the direct sum of the sign
representation and the trivial representation. By (4.3), this implies that

D2S
1 = ΣTh(λ ↓ RP∞) = ΣRP∞ .

30



In order to compute Steenrod operations on σ ∈ H1(S1), we have to go
on to identify the fiber inclusion (5.4) and diagonal (5.5):

(S1)∧2
i−→D2S

1 j←−RP∞+ ∧ S1 .

under the identification of D2S
1 with a Thom space. The map i is the

inclusion of the Thom space of ξ over a point. The map j is induced by the
inclusion of the trivial representation into Rπ. The class Pσ is the Thom
class:

Pσ = t ∧ σ ∈ H2(ΣRP∞) .

The map j restricts to the identity on RP∞, so j∗(t ∧ σ) = t ∧ σ and in

j∗(t ∧ σ) = 1 ∧ Sq1σ + t ∧ Sq0σ ,

we must have Sq1σ = 0 (of course) and Sq0σ = σ. This completes the proof
of 6.3.

Combined with the Cartan formula, this example implies that the Steen-
rod squares are “stable” operations: smashing with the generator σ ∈
H1(S1) gives the suspension isomorphism

Hq(X)
∼=−→Hq+1(ΣX) .

Since Sq0 is the only Steenrod operation that is nontrivial on σ, the Cartan
formula collapses to

Sqk(x ∧ σ) = (Sqkx) ∧ σ . (6.2)

It is now easy to deduce:

Theorem 6.5. For any n, Sq0 : Hn → Hn is the identity map.

Proof. Again, a single example suffices. We can use Sn = (S1)∧n, by stabil-
ity. �

Proposition 6.6. For all q and k, Sqk : Hq → Hq+k is a homomorphism.

Proof. This is implied by the fact that Sqk is stable. Here is one way to see
that. Since cohomology is represented by Eilenberg Mac Lane spaces, we
can think of Sqk : Hq → Hq+k as a homotopy class

Sqk : Kq → Kq+k ,
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namely the one pulling ιq+k back to Sqkιq. The functor X 7→ Hq+1(ΣX) is
representable too: The functor Σ has a right adjoint given by the looping
functor

ΩX = map∗(S
1, X) ,

so
Hq+1(ΣX) = [ΣX,Kq+1]∗ = [X,ΩKq+1]∗ .

The suspension isomorphism is represented by a homotopy equivalence

Kq
σ−→ΩKq+1 .

and the stability of Sqk is equivalent to the commutativity of the diagram

Kq
Sqk

//

σ

��

Kq+k

σ

��
ΩKq+1

ΩSqk

// ΩKq+k+1 .

(6.3)

The identification of Kq with ΩKq+1 imposes a natural addition on
[X,Kq]∗. This addition is none other than the additive structure of Hq(X),
and the diagram (6.3) implies that Sqk respects that addition. �

Let’s see what Steenrod operations have to say about our co-reducibility
question. We have to compute their effect in the cohomology of projective
space. This is easy, since H∗(RP∞) is generated by the class t in dimension
1. Only Sq0 and Sq1 can be nonzero on it, and both are. In terms of the
total square, we can say

Sq t = t(1 + t)

so, by the Cartan formula,

Sq tn = tn(1 + t)n =
n∑
i=0

(
n

i

)
tn+i .

In H∗(RP k−1) the formulas are the same; but tk = 0.

We are interested in the stunted projective space RPn+k−1
n . Its reduced

cohomology is the subspace of H∗(RPn+k−1) generated by ti for n ≤ i <
n+k, so we know what Steenrod operations do in it as well. We are interested
in whether the bottom cell splits off. If it does, the map RPn+k−1

n → Sn
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induces an injection in cohomology, so all positive dimensional operations
on tn must vanish. This is equivalent to requiring that(

n

i

)
= 0 mod 2 for all i with 0 < i < k .

Writing n in its binary expansion gives an expression for (1+t)n as a product
of terms of the for (1+t2

i
). The lowest positive dimensional term corresponds

to the lowest power of 2 in the expression for n, which is to say the largest
power of 2 dividing n:

max

{
k :

(
n

i

)
= 0 mod 2 for all i with 0 < i < k

}
= 2ν(n) .

Therefore the bottom cell cannot split off of RPn+k−1
n unless k ≤ 2ν(n).

From this, and Proposition 4.2, we conclude:

Theorem 6.7. Sn−1 admits at most 2ν(n)−1 everywhere linearly indpendent
vector fields.

For example, if n is odd then there are no nowhere vanishing vector fields
on Sn−1. For another example:

Corollary 6.8. If Sn−1 is parallelizable then n is a power of 2.

This is a celebrated theorem of José Adem. It was a major vindication of
the “Adem relations” among Steenrod operations. But using the coreduction
approach avoids the need to invoke these relations.

Nevertheless, this is not best possible. Theorem 1.4 gives the optimal
statement. It turns out for example that S15 is not parallelizable, and in
fact does not admit even nine everywhere independent vector fields. For
the general case, we will need to probe stunted projective spaces using a
different tool, namely, Adams operations in K-theory. In general it does
turn out that the maximal number of independent vector fields depends
only on ν(n), but for ν(n) > 3 it is significantly less than 2ν(n).

7 The Adem relations

placeholder
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8 Chern classes

It may come as a surprise that we have come this far in analyzing the
structure of various vector bundles without ever mentioning characteristic
classes. This state of affairs cannot continue, however, and in this lecture
we will set up the theory of Chern classes.

The starting point is the functor from spaces to sets given by sending
a space X to the set of isomorphism classes of complex vector bundles of
fiber dimension n. To reassure you that this is a set (and not something
bigger), recall that a vector bundle is by definition locally trivial, so any
n-plane bundle is isomorphic to one obtained by gluing trivial bundles over
intersections of open subsets. Write Vectn(X) for this set. The pull-back of
vector bundles renders it a contravariant functor

Vectn : Top→ Set .

This functor is quite difficult to understand in general. One approach
to studying it is to define natural transformations from it to more under-
standable functors. One example, that is in some sense universal, is given by
K-theory, and we will study this in detail in later lectures. Another example
is ordinary cohomology, and we will study that in this lecture. The relevant
definition is:

Definition 8.1. A characteristic class for complex n-plane bundles is a
natural transformation

Vectn(X)→ Hq(X;R)

for some q and some coefficient group R.

A similar definition applies to real vector bundles, oriented real vector
bundles, and a variety of other structured bundles. We have already seen
one example: the Euler class is characteristic for R-oriented n-plane bundles.

Theorem 8.2. There is a family of characteristic classes (the Chern classes)

c
(n)
i : Vectn(X)→ H2i(X;Z) , 0 ≤ i ≤ n ,

such that
(1) c

(n)
0 (ξ) = 1 ∈ H0(X) ,

(2) c
(1)
1 (λ) = −e(λ) ∈ H1(X) for any line bundle λ, regarding it as a real
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vector bundle oriented by saying that for any nonzero vector v the ordered
basis (v, iv) is compatible with the orientation, and
(3) the “Whitney sum formula” holds: if ξ is of fiber dimension m and η is
of fiber dimension n, then

c
(m+n)
k (ξ ⊕ η) =

∑
i+j=k

c
(m)
i (ξ) · c(n)

j (η) .

The axioms identify the Chern classes in the case of complex line bundles;

c0 = 1, and c
(1)
1 is just the negative of the Euler class of the underlying

oriented real 2-plane bundle. The Euler class of a trivial bundle (of positive
dimension) is zero, so the trivial line bundle εC has trivial first Chern class.

So by the Whitney sum fomula,

c
(n+1)
k (ξ ⊕ εC) = c

(n)
k (ξ) .

This “stability” suggests that we just drop the superscript, and we do so.

Under certain very general conditions the functor Vectn is representable.
One may restrict the type of vector bundle: A vector bundle is numerable
if it admits a trivializing open cover that supports a subordinate partition
of unity. Or one may restrict the type of base space: over a paracompact
space (e.g. a CW complex) any vector bundle is numerable.

Under these conditions there is a universal n-plane bundle ξn over a
space BU(n). The Yoneda lemma assures us that there is a bijection

Hq(BU(n);R)→ ntX(Vectn(X), Hq(X;R)) .

The cohomology of BU(n) carries complete information about characteristic
classes for complex n-plane bundles.

The “classifying space”BU(n) is only well defined up to homotopy equiv-
alence, but it may be taken to be a CW complex. In fact, it admits the
following very concrete description. Form the Stiefel manifold Vn(Cn+k) of
Hermitian orthogonal n-frames in Cn+k. This is the space of inner-product
preserving linear maps Cn → Cn+k, and as such it admits a free right action
of the unitary group U(n) by precomposition. The orbit space for this ac-
tion is the Grassmannian Grn(Cn+k) of n-dimensional subspaces in Cn. For
example, V1(C1+k) is the unit sphere in C1+k, and Gr1(C1+k) = CP k.

The Grassmannian supports a canonical vector bundle, built as the Borel
construction

ξn,k : Vn(Cn+k)×U(n) Cn ↓ Grn(Cn+k) .
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Theorem 8.2 has an interpretation in terms of the cohomology of BU(n).
Write

ci ∈ H2i(BU(n)) , 0 ≤ i ≤ n , c0 = 1

for the Chern classes of the universal n-plane bundle; these are the universal
Chern classes. To capture the Whitney sum formula, consider the (m+ n)-
plane bundle ξm × ξn over BU(m) × BU(n). It is represented by a well
defined map

µ : BU(m)×BU(n)→ BU(m+ n) ,

and these maps are associative and unital since the Whitney sum operation
is.

Theorem 8.3. There exists a unique family of classes

ci ∈ H2i(BU(n)) , 0 ≤ i ≤ n ,

such that
c0 = 1 ∈ H0(BU(n)) ,

c1(λ) = −e(λ) ∈ H2(BU(1)) ,

and
µ∗ck =

∑
i+j=k

ci × cj ∈ H∗(BU(m)×BU(n)) .

Furthermore,
H∗(BU(n)) = Z[c1, . . . , cn] .

This theorem goes beyond the previous one in two ways. First, it tells us
that polynomials in the Chern classes exhaust all characteristic classes for
complex vector bundles – with any coefficients, not just with Z coefficients,
since the universal coefficient theorem tells us that

H∗(BU(n);R) = R[c1, . . . , cn]

for any coefficient ring R. Second, it tells us that there are no algebraic
relations among the Chern classes that are valid for all vector bundles.

The proof of this theorem will go by induction on n, using the simplest
relationship between successive classifying spaces: the map

BU(n− 1)→ BU(n)

representing ξn−1 ⊕ εC.
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Lemma 8.4. There is a homotopy equivalence

BU(n− 1)
' //

&&

S(ξn)

zz
BU(n)

compatible with the indicated maps to BU(n).

Proof. There are many ways to see this. One is to use the Grassmannian
models. These are homogeneous spaces;

Gr(
nCn+k) = U(n+ k)/U(n)× U(k) ,

where the subgroup sits in U(n + k) as block diagonal matrices. We have
the following fiber bundle:

U(n+ k − 1)

U(n− 1)× U(k)
→ U(n+ k)

U(n− 1)× 1× U(k)
→ U(n+ k)

U(n+ k − 1)
.

Using the identification of U(n)/U(n − 1) with the unit sphere in Cn, we
can rewrite this fiber bundle as

Grn−1(Cn+k−1)→ S(ξn,k ↓ Grn(Cn+k))→ S2(n+k)−1 .

These bundles are compatible as k increases, and in the limit the base be-
comes contractible and

Grn−1(C∞)→ S(ξn ↓ Grn(C∞))

becomes the homotopy equivalence we asserted. �

Another proof uses the fact that the classifying space of a topological
group G is characterized as the orbit space of a free (principal, to be strictly
correct) action of G on a contractible space (written EG). If H is a closed
subgroup of G, then H acts freely on EG and so its orbit space is a model
for BH. But

EG/H = EG×G (G/H)

fibers over BG with fiber G/H: we have a fiber bundle

G/H → BH → BG .
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Now apply this principle to the inclusion U(n − 1) → U(n) and remember
again that U(n) acts transitively on the unit sphere in Cn with isotropy
group U(n− 1).

In any case, we have a sphere bundle BU(n−1)→ BU(n). Let’s analyze
the relationship between the cohomology of the sphere bundle π : S(ξ) ↓ B
of a vector bundle over B and the cohomology of B. This is the “Gysin
sequence,” and actually the analysis works if you have a fibration whose
fibers have the homology of a sphere. We will use the Thom isomorphism
theorem 4.5. The cofiber sequence

S(ξ)→ D(ξ)→ Th(ξ)

gives rise to a long exact sequence in cohomology, shown in the top row
below.

· · · // Hq(Th(ξ)) // Hq(D(ξ)) // Hq(S(ξ))
δ // Hq+1(Th(ξ)) // · · ·

· · · // Hq−n(B)

∪U

OO

·e // Hq(B)

∼=

OO

π∗
// Hq(S(ξ))

=

OO

π∗ // Hq−n+1(B)

∪U

OO

// · · ·

The vertical arrows are given by the Thom isomorphism and the projection
map D(ξ) ↓ B (a homotopy equivalence). The Euler class e ∈ Hn(B) is
the restriction of the Thom class to Hn(B) (via Hn(D(ξ))), so the map
H0(B)→ Hn(B) in the bottom row sends 1 to e.

The cohomology long exact sequence is a sequence of modules over
H∗(D(ξ)), so the maps in the bottom row are H∗(B)-module maps, and
Hq−n(B)→ Hq(B) sends a to a · e.

The map π∗ is variously known as the “Gysin map,” an “umkher homo-
morphism,” or a “pushforward.” We will have more to say about such maps
later, but for now let’s make note of the fact that it too is a homomorphism
of H∗(B)-modules:

π∗(π
∗a · b) = a · π∗b .

We now make a couple of deductions from the Gysin sequence, that will
serve us well in the induction.

Assume that

n is even and Hq(S(ξ)) = 0 for q odd.

Then the Gysin sequence implies that

e|Hq(B) is monic for q even

38



e|Hq(B) is epic for q odd.

But Hq(B) = 0 for q < 0, for sure, so we conclude that

Hq(B) = 0 for q odd.

It follows that
π∗ = 0 ,

since it relates even and odd dimensions. So

H∗(S(ξ)) = H∗(B)/H∗(B)e

and
H∗(B) = H∗(S(ξ))[e] .

We can now run our induction, starting with the trivial caseH∗(BU(0)) =
Z. The Gysin sequence assocated to the sphere bundle of the canonical line
bundle λ = ξ1 over BU(1) = CP∞ shows that

H∗(BU(1)) = Z[e1]

where e1 is the Euler class of λ. Define c1 = −e1. For the inductive step,
suppose we have classes ci ∈ H2i(BU(n− 1)), 1 < i < n, such that

H∗(BU(n− 1)) = Z[c1, · · · , cn−1] .

Then
H∗(BU(n)) = H∗(BU(n− 1))[e]

where en ∈ H2n(BU(n)) is the Euler class of ξn. Note that π∗ : Hq(BU(n))→
H∗(BU(n − 1)) is an isomorphism for q < 2n, so for 0 < i < n there are
unique classes ci ∈ H2i(BU(n)) pulling back to classes of the same name in
H∗(BU(n− 1)).

To proceed, we could take for cn any class of the form ±en + c where c
is a polynomial in c1, . . . , cn−1. The preferred choice is

cn = (−1)nen .

This completes a computation of H∗(BU(n)) and construction of classes
ci satisfying two of the three conditions in the theorem. We now need to
check the Whitney sum formula. (Whitney once called this the hardest
theorem he ever proved.) For this we will use the “splitting principle.”
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9 The Splitting Principle

Theorem 9.1 (The Splitting Princple). Let ξ be a complex n-plane bundle
over a space B. There is a map f : X → B such that
(1) f∗ξ splits as a sum of line bundles, and
(2) f∗ : H∗(B)→ H∗(X) is a monomorphism.

As a result, to check an identity among Chern classes it is enough to
check it on sums of line bundles.

Proof. By induction, it suffices to split off one line bundle. There is a canon-
ical way to do this, using the projectivization of ξ. This is the fiber bundle
over B with total space

P(ξ) = {(x, l) : x ∈ B, l is a one-dimensional subspace of ξx} .

The point (x, l) projects to x ∈ B. The projectivization of an n-plane bundle
over a point is simply complex projective space of complex dimension (n−1).
In general the fiber over x is the projective space of ξx.

The space P(ξ) supports a “tautologous” line bundle λ with

E(λ) = {(l, v) : v ∈ l ∈ P(ξ)} .

Now
E(f∗ξ) = {(x, l, v) : x ∈ Vx, l ⊆ Vx} ,

so λ ⊆ f∗ξ as the subbundle where x ∈ l. A choice of metric expresses f∗ξ
as λ⊕ λ⊥.

It remains to show that f∗ : P(ξ) → B induces a monomorphism in
cohomology. Let’s analyze H∗(P(ξ)) using the Serre spectral sequence for
the fibration:

Es,t2 = Hs(B;H∗(CPn−1)) =⇒ H∗(P(ξ)) .

Can the coefficient system be non-trivial? Certainly B need not be
simply connected. But ξ is a complex vector bundle, so it is a pullback
of the universal n-plane bundle ξn ↓ BU(n). BU(n) is simply connected
(because U(n) is connected), so the coefficient system given by P(ξn) is
trivial. It pulls back to the coefficient system for P(ξ), which is therefore
also trivial.
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So (by the Künneth theorem)

Es,t2 = Hs(B)⊗ Z[e]/(en) ,

where e is the generator of H∗(CPn−1).

Does the spectral sequence collapse? If so, we are done, because the
kernel of f∗ : H∗(B)→ H∗(P(ξ)) is the sum of the images of the differentials
hitting the bottom row in the spectral sequence. We should try to compute
differentials on the algebra generators of E∗,∗2 . There are the generators of
H∗(B) along the base, and these certainly survive because all differntials
on them land below the horizontal axis. There is only one more generator,
namely the element e ∈ E0,2

2 . (Actually, there’s one such element for every
component of the base space. But we can handle the components separately.)

Under the identification

E0,t
2
∼= Ht(B)

(assuming B is connected and the coefficient system is trivial!) an element
on the vertical axis survives if and only if it extends to cohomology class in
the total space.

Well, what is the generator e ∈ H2(CPn−1)? It’s the Euler class of the
tautologous line bundle λx over the fiber. Since e is a characteristic class, it
will extend to a class in H2(P(ξ)) if λx extends to a line bundle over P(ξ)
. . . and it does!

This completes the proof of the splitting principle. �

The spectral sequence comes close to computing the cohomology of the
projectivization. The fact that it collapses gives us a natural multiplicative
isomorphism

grsH∗(P(ξ)) ∼= Hs(B;H∗(CPn−1))

where we are forming the associated graded algebra with respect to the
filtration coming from the spectral sequence. This decreasing filtration does
not exhibit the module structure over H∗(B), but it can be modified to an
increasing filtration that does (following Quillen [4]): Define

FtH
n(P(ξ)) = Fn−tHn(P(ξ)) .

Then, for example,

F0H
n(P(ξ)) = FnHn(P(ξ)) = grnHn(P(ξ)) ∼= Hn(B)

41



since Fn+1Hn(P(ξ)) = 0. This is a filtration ofH∗(P(ξ)) byH∗(B)-submodules,
with

gr∗H
∗(P(ξ)) = H∗(B)[e]/(en)

Since the associated quotients are free modules over H∗(B), we find by
induction that H∗(P(ξ)) is a free module; and we know a set of generators:
{1, e, . . . , en−1}. Then en can be expressed as an H∗(B)-linear combination
of these generators. We choose to express this relation as a monic polynomial
satisfied by e ∈ H∗(P(ξ)):

en + c1e
n−1 + · · ·+ cn−1e+ cn = 0 .

We have written the coefficients this way because, in fact, this gives a differ-
ent definition of the Chern classes of ξ. This approach is due to Alexander
Grothendieck. On the other hand, this can be viewed as a functorial de-
scription of the cohomology of P(ξ) in terms of H∗(B) and the Chern classes
of ξ.

By iterating the projectivization process, we can produce a map f : X →
B canonically associated to the complex vector bundle ξ such that f∗ξ splits
into a sum of line bundles. This is the flag bundle associated to ξ. The total
space is given by

Fl(ξ) =

{
(x, l1, . . . , ln) :

x ∈ B, l1, . . . , ln one-dimensional
subspaces of ξx whose sum is ξx

}
.

Exercise 9.2. There are many variants of the flag bundle construction.
Given a partition

n = n1 + · · ·+ nk

we may consider the fiber bundle Fln1,...,nk
(ξ) over X whose fiber over x is

the space of direct sum decompositions of ξx as sum of k subspaces where the
ith one has dimension ni. Find a functorial expression for H∗(Fln1,...,nk

(ξ))
in terms of H∗(B) and the Chern classes of ξ. In particular, give a descrip-
tion of the generalized flag manifold, which is the case B = ∗.

We are now aiming at a proof of the Whitney sum formula. Along the
way, we will need to better understand the notion of a classifying space.
In Lecture 5 we used classifying spaces for finite groups, and we are now
studying the classifying space for n-plane bundles. The relationship between
these concepts occurs through the notion of a principal bundle.

Definition 9.3. Let G be a topological group. A principalG-bundle is a fiber
bundle P ↓ B which is expressed as the orbit projection of a free continuous
right action of G on P .
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A complex n-plane bundle ξ with a Hermitian metric determines a prin-
cipal U(n)-bundle, namely the frame bundle, with total space

Fr(ξ) = {(x, t) : x ∈ B, t : Cn → ξxan isometry} .

The structure group U(n) acts from the right on this space by precomposi-
tion, and

E(ξ) ∼= Fr(ξ)×U(n) Cn .
In fact all the fiber bundles associated to ξ can be built using the Borel
construction from Fr(ξ):

S(ξ) = Fr(ξ)×U(n) S
2n−1 , P(ξ) = Fr(ξ)×U(n) CPn−1 ,

and
Fl(ξ) = Fr(ξ)×U(n) (U(n)/Tn) .

Two principal G-bundles P, P ′ over a base B are “isomorphic” if there is
an equivariant homeomorphism P → P ′ covering the identity on B. Princi-
pal bundles pull back under maps, as do isomorphisms between them. The
set of isomorphism classes of principal G bundles over B forms a set, and
we have contravariant functor

X 7→ BunG(X) .

Under numerability or paracompactness assumptions, this functor is repre-
sentable, and the representing object is the “universal” principal G-bundle

EG ↓ BG .

It is a theorem that the universal principal G-bundle is characterized by the
fact that EG is contractible.

Suppose that f : H → G is a continuous homomorphism and P ↓ B is
a principal H-bundle. We can construct a principal G-bundle over B with
total space

P ×H G

where g ∈ G acts by (x, g′)g = (x, gg′). This operation respects isomor-
phisms, and defines a natural transformation f∗ : BunH → BunG.

By the Yoneda lemma, this natural transformation is represented by a
unique homotopy class of maps Bf : BH → BG. Uniqueness shows that we
obtain a functor B from topological groups and continuous homomorphisms
into the homotopy category.

Given g ∈ G, write cg : G → G for the continuous homomorphism
γ 7→ gγg−1. These homomorphisms have a simple effect on BG:
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Lemma 9.4. Bcγ is homotopic to the identity map on BG.

Proof. To prove that Bcg ' 1, we need to show that (cg)∗ = 1 : BunG →
BunG. So let P ↓ B be a principal G bundle. (cg)∗P is again P as a space
but with G acting through cg. Using · to denote this twisted action,

x · h = xghg−1

The isomorphisms are given by

(cg)∗P → P by x 7→ xg ,

P → (cg)∗P by x 7→ xg−1 .

We leave it to the listener to check that these maps are equivariant. �

We can now use this machinery, and the splitting theorem, to give a
different interpretion of the Chern classes, one which will immediately imply
the Whitney sum formula. We are studying the inclusion

H∗(BU(n)) ↪→ H∗(Tn) .

Conjugation by any element of U(n) acts as the identity on BU(n). The
normalizer of Tn, NU(n)T

n, is the set of elements that conjugate Tn into
itself. The only elements in U(n) that do that are the unitary matrices with
n nonzero entries. There must be one in each row and one in each column,
and the nonzero entries must be complex numbers of absolute value 1. This
subgroup contains Tn as a normal subgroup, and the quotient group is the
symmetric group Σn, acting by permuting the entries, and we have a split
extension sequence

1→ Tn → NU(n)T
n → Σn → 1 .

In the parlance of Lie groups, Tn is a maximal torus in U(n), and Σn is the
Weyl group.

NU(n)T
n acts on the homotopy type of BTn, and Tn acts trivially (since

Tn is abelian, but actually conjugation by elements of Tn act as the identity
on BTn anyway), so we receive an action of Σn on the homotopy type of BTn

and hence on its cohomology. Σn also acts on BU(n) and on its cohomology,
but trivially, by Lemma 9.4. So the inclusion in cohomology factors as

H∗(BU(n)) ↪→ H∗(BTn)Σn . (9.1)
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The action of Σn simply permutes the generators of H∗(BTn), so we
are looking at a well-studied situation. Over any coefficient ring R, the
symmetric invariants of the Σn action on H∗(BTn;R) = R[t1, . . . , tn] form
a polynomial subalgebra on generators given by the “elementary symmetric
polynomials,” σj ∈ H2j(BTn;R), 1 ≤ j ≤ n.

The inclusion (9.1) is valid for any coefficient ring; for example, for every
field. Then a dimension count implies that the map is an isomorphism
for every field, and that is enough to see that it is an isomorphism with
coefficients in Z (and hence for any coefficient ring):

Proposition 9.5. The map BTn → BU(n) induces an isomorphism

H∗(BU(n))
∼=−→H∗(BTn)Σn .

We should be more explicit about the structure of the ring of symmetric
invariants. The elementary symmetric polynomials

σj = σj(t1, . . . , tj)

are defined using the equation

n∏
i=1

(t− ti) =
n∑
j=0

σjt
n−j . (9.2)

One should think of the ring of invariants as generated by the coefficients of
the general degree n monic polynomial. The larger ring H∗(BTn) is then
obtained by formally adjoining the n roots of the polynomial.

We have taken the liberty of omitting the rank n from the notation for the
elementary symmetric polynomials. This is justified by the observation that
the map R[t1, . . . , tn]→ R[t1, . . . , tn−1] sending tn to zero is equivariant with
respect to Σn−1 (embedded into Σn as the isotropy group of n ∈ {1, . . . , n}),
and sends σi to σi for i < n and to zero for i = n. This is the effect in
cohomology of the inclusion of the first (n − 1) factors into BTn and on
invariants it reflects the map BU(n− 1)→ BU(n).

Where do the Chern classes map to under (9.1)? The top Chern class,
cn, is (−1)n times the Euler class of the canonical n-plane bundle. The map
BTn → BU(n) pulls that bundle back to the product of the canonical line
bundles over the factors, so by Lemma 4.8 the Euler class pulls back to the
product of the Euler classes ti. By (9.2),

σn = (−1)nt1 · · · tn
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as well, so cn maps to σn. Since lower Chern classes correspond under
BU(n − 1) → BU(n), as do lower elementary symmetric polynomials, we
find:

Proposition 9.6. Under the map BTn → BU(n) induced by the inclusion
of the diagonal matrices,

ci 7→ σi .

This gives us a different and very convenient way of thinking of the Chern
classes, and, indeed, of computing with them. For example, since we know
the effect of the Steenrod squares in H∗(BTn), we can read off the effect of
the squares on the Chern classes.

For another example, we can now prove the Whitney sum formula. Let’s
first re-express it using the total Chern class

ct(ξ) =
∑
i

ci(ξ)t
i

using a formal variable of dimension −2. The formula is then

ct(ξ)ct(η) = ct(ξ ⊕ η) .

We might as well do this in the universal case, with ξ = ξm and η = ξn.
We will take both sides of this equation and pull them back to the tori.

ct(ξ)× i∗nct(η) =
m∏
i=1

(t− ti)
m+n∏
i=n+1

(t− ti) =
m+n∏
i=1

(t− ti) = ct(ξm+n) .
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