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Take a polygonal knot L. At each vertex you bend off straight by some angle, which
we may take to be strictly between 0 and π. This angle is independent of orientation but
cannot be given a sign. The sum of these angles is the total curvature κ(L) of the knot.
If the knot is actually just a plane convex curve then the total curvature is 2π.

It seems that the total curvature of a notrivial knot must be greater than 4π. To
estimate this pick a direction, that is, a unit vector û. Assume that no segment of L is
perpendicular to û. Then the extrema of û· along the knot occur at vertices, and there
are as many maxima as minima. Call this common number the kinkiness with respect to

û (although Milnor calls it the crookedness). It is a function µL on the sphere S of unit
vectors minus the union of the great circles perpendicular to the edges of L. Write SL

for this open subset of the sphere.

Theorem 1.

∫
SL

µL = 2κ(L).

Proof. The function µL is a sum of functions µL,a, where a is a vertex of L. µL,a(û) is
defined to be one or zero depending upon whether a is or is not a maximum of û·. Let
v and w be unit tangent vectors of the segments meeting at a (oriented arbitrarily but
compatibly). a is an extremum exactly when the signs of û · v and û · w are of opposite
sign. Since the great circles removed from S are where these dot products vanish, µL,a

is the characteristic function of a “lune” bounded by the great circles perpendicular to v

and w. The area of this lune divided by the area of the sphere (namely 4π) equals half
(since it is only one of the pair of opposite lunes) the angle between v and w divided by
π: so it is 2 times that angle. Summing up, the result follows.

Let µ(L) denote the minimum of µL(û) as û ranges over SL; the is the kinkines of L.

Corollary. κ(L) ≥ 2πµ(L).

Proof. 2κ(L) =

∫
SL

µL ≥

∫
SL

µ(L) = 4πµ(L).

Theorem 2. If µ(L) = 1 then L is the trivial knot.

Proof. Pick û so that µL(û) = 1. There is a single highest vertex and a single lowest
vertex. Between these extremes each horizontal plane meets the knot in exactly two
points. Draw the horizontal straight line between these points. You have constructed a
disk spanning the knot, so the knot is trivial.

Corollary. If κ(L) < 4π, then L is the trivial knot.

Proof. By the Corollary to Theorem 1, the hypothesis implies that 2 > µ(L). But µ(L)
is a positive integer, so it must be 1 and the Proposition carries the day.

Now we can minimize µ(L) and κ(L) over all representatives L of a knot-type [L];
write µ[L] and κ[L] for the resulting “infima.”

Theorem 3. κ[L] = 2πµ[L].
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Proof. The Corollary to Theorem 1 shows that κ[L] ≥ 2πµ[L]. Let L be a representative
of the knot type [L] for which µ(L) = µ[L]. Choose a direction û ∈ SL with µL(û) = µ(L).
Now isotop (i.e. deform) the knot by compressing it linearly into a very thin tube with
axis û. The angle at each vertex other than the extrema for û· approach 0, while the
angles at the extreme vertices approach π. Therefore the total curvature approaches
2πµ(L, û), and this completes the proof.

Theorem 4. If κ(L) = κ[L] then L is planar and convex. Otherwise κ(L) < κ[L].

Proof. If L is not planar, there are four consecutive vertices which are not coplanar. The
two middle vertices can be moved slightly to make the line though them more nearly
coplanar with the line through the other two. The result is to isotop the knot to another
with smaller total curvature.

Now assume that L is planar. Straightening out concave angles decreases the total
curvature, so if it is minimal there can be no concave angles and the figure is convex.

Notice that this lets you improve the Corollary to Theorem 2 to say that if κ(L) ≤ 4π
then L is unknotted.

Theorem 5. Any nontrivial knot meets some plane in at least six points.

Proof. Suppose this is false, and select a counterexample L with the fewest possible
number of vertices.

Since

∫
SL

µL(û) = 2κ(L) > 8π, which is twice the area of the sphere, there is some

direction û for which µL(û) > 2. Since it is an integer, µL(û) ≥ 3.
Bring a plane perpendicular to û down from above and observe when it meets L at

extrema for û·. It first meets a maximum, after which the number of intersections is 2.
It must then meet another maximum, after which the number of intersections is 4. If it
next meets a third maximum, the number of intersections will shortly be 6, proving the
theorem. So suppose that it next meets a minimum. This minimum must lie between
the two maxima, with no other intervening extrema. Construct a new knot by joining
the two maxima by a straight line and eliminating the portion of the knot originally
containing the intervening minimum. The result is a new knot L′ isotopic to the original
one, with fewer vertices. Since the original knot was a minimal counterexample, some
plane meets L′ in at least six points. This plane will also meet L in at least six points,
contradicting the existence of a counterexample.
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