Milnor K-theory and motivic homotopy

Haynes Miller February, 2015

Milnor. Milnor, Inv. math. 9 (1970) 318–344:

k a field. $K^M_*(k)$ is a graded ring; it comes with a group homomorphism $k^{\times} \to K^M_1(k)$; and is universal as such with the relation

$$\rho_a \rho_b = 0 \quad \text{if} \quad a+b=1$$

So $\rho_{ab} = \rho_a + \rho_b$ and $\rho_1 = 0$. Milnor gives a beautiful proof that the ring is graded-commutative, which makes you think that $K^M_*(k)$ really does carry deep information about k. In particular $2\rho_a = 0$. Also $\rho_a^2 = \rho\rho_a$ where $\rho = \rho_{-1}$. And if $a_1 + \cdots + a_n = 1$ then $\rho_{a_1} \cdots \rho_{a_n} = 0$.

The relations are all quadratic, so $K_1^M(k) = k^{\times}$.

An order on k determines a surjective ring homomorphism

$$\operatorname{sgn}: K^M_*(k) \to \mathbb{F}_2[t]$$

The order determines a group homomorphism $k^{\times} \to \{\pm 1\}$, sending x to 1 if x > 0 and to -1 if x < 0. Regard this as a map $f : k^{\times} \to \mathbb{F}_2\langle t \rangle$, so positive numbers go to 0 and negative numbers go to t. Then note that since either x or 1-x is positive, the map satisfies f(x)f(1-x) = 0, and determines sgn as shown. It is surjective since $\rho \mapsto t$.

Milnor asserts that $K_n^M(\mathbb{R})$ is the direct sum of a cyclic group of order 2 generated by ρ^n (nonzero since $\operatorname{sgn}(\rho^n) = t^n$) with an infinitely generated divisible group.

Morel ("Motivic π_0 "; see also Dugger and Isaksen, "Motivic Hopf elements and relations") defines the Milnor-Witt K-groups as the graded ring accepting a map $k^{\times} \to K_1^{MW}(k)$ (no longer assumed to be a homomorphism) and containing an element $\eta \in K_{-1}^{MW}(k)$, and universal subject to:

(i) $\eta \rho_a = \rho_a \eta$ (ii) $\rho_a \rho_b = 0$ if a + b = 1(iii) $\eta h = 0$, where $h = 2 + \eta \rho$ (iv) $\rho_{ab} = \rho_a + \rho_b + \eta \rho_a \rho_b$ (v) $\rho_1 = 0$ Note that (iv) implies that $\rho h = 0$ also.

The element $\epsilon = -1 - \rho \eta = 1 - h$ plays a special role; regarded as an element of the homotopy of the smash square of the zero sphere, it swaps the factors. It's central in $K_*^{MW}(k)$, $\epsilon^2 = 1$, and In his book, p 51, Cor 3.8, Morel shows that $\rho_a \rho_b = \epsilon \rho_b \rho_a$. This noncommutativity is subtle. (iv) shows that it's killed by η .

Filter $K^{MW}_*(k)$ by powers of the central element η . Then $\operatorname{gr}^0 = K^M_*(k)$. The relation (iii) shows that 2 kills gr^s for s > 0, and indeed

$$\operatorname{gr}^{*}K^{MW}_{*}(k) = K^{M}_{*}(k)[\eta]/(2\eta)$$

Look at $K_0^{MW}(k)$. It is generated by elements (following Morel, "Motivic π_0 ") $\langle a \rangle = 1 + \eta \rho_a, a \in k^{\times}$, and these elements satisfy:

- (ii) $1 + \langle a \rangle \langle b \rangle = \langle a \rangle + \langle b \rangle$ if a + b = 1
- (iii) $h\langle a \rangle = h$ where $h = 1 + \langle -1 \rangle$
- (iv) $\langle ab \rangle = \langle a \rangle \langle b \rangle$
- (v) $\langle 1 \rangle = 1$.

At least when the characteristic of k is not 2, this is the "Grothendieck-Witt ring" GW(k), the group completion of the commutative monoid of quadratic forms over k. The class $\langle a \rangle$ corresponds to the quadratic form ax^2 .

Multiplying by η kills h but does no other damage. So

$$K_{\leq 0}^{MW}(k) = GW(k)[\eta]/(\eta h)$$

The quotient GW(k)/(h) is the "Witt ring" of k; h represents the hyperbolic form. Also $h = 1 - \epsilon$, which Dugger and Isaksen ("Motivic Hopf elements and relations") pick out as the first element of Hopf invariant one.

Morel proves that Milnor-Witt K-theory gives the motivic stable homtopy ring in coweight zero:

$$K_n^{MW}(k) = \pi_{-n,-n}(S)$$

So in coweight zero and positive dimension we see precisely the Witt group of the field.

Calculations: $GW(\mathbb{C}) = \mathbb{Z}$ and h corresponds to 2. This is the claim that if $f : \mathbb{C}^{\times} \to S$ is a map satisfying the properties for which $K_0^{MW}(\mathbb{C})$ is universal, then f(a) = 1 for all a.

Let $\sigma : \mathbb{R}^{\times} \to \mathbb{Z}[C_2]$ by sending *a* to 1 if a > 0 and to the generator T of C_2 if a < 0. This map satisfies the properties for which $K_0^{MW}(\mathbb{R})$ is

universal, so we get a map $K_0^{MW}(\mathbb{R}) \to \mathbb{Z}[C_2]$ sending $\langle a \rangle$ to 1 if a > 0 and to T if a < 0. It sends $h = 1 + \langle -1 \rangle$ to 1 + T. The claim is that this map is an isomorphism; so $W(\mathbb{R}) = \mathbb{Z}$. This is equivalent to claiming if $f : \mathbb{R}^{\times} \to S$ is any map satisfying these properties, then f(a) depends only on the sign of a.

Morel proves that there is a map

$$K^{MW}_*(k) \to W(k)[\eta^{\pm 1}]$$

sending ρ_a to $\eta^{-1}(\langle a \rangle - 1)$, and this map localizes to an isomorphism

$$\eta^{-1} K^{MW}_{*}(k) \to W(k)[\eta^{\pm 1}]$$

Motivic gradings. The rank two free abelian group grading motivic homotopy has a variety of coordinate functions defined on it. They are related as follows:

coweight + weight = dimension

coweight - weight = Chow or Novikov degree

	dim	wt	cowt	deg
ϵ	0	0	0	0
$ ho_a$	-1	-1	0	1
η	1	1	0	-1
ν	3	2	1	-1
au	0	-1	1	2
$ au_i$	$2^{i+1} - 1$	$2^{i} - 1$	2^i	1
ξ_i	$2(2^i - 1)$	$2^{i} - 1$	$2^{i} - 1$	0
ζ_i	$2^{i} - 1$	$2^{i-1} - 1$	2^{i-1}	1

Here ζ_i is the element used by Dugger and Isaksen;

$$A_{\mathrm{Mot}} \to \mathbb{M}_2[\tau^{-1}, \zeta_1, \ldots]$$

with

$$\tau_i \mapsto \zeta_{i+1} \quad , \quad \xi_i \mapsto \tau^{-1} \zeta_i^2$$

Convergence. Bousfield and Kan (Vol 304, p 183) show that if X is a nilpotent space then the $H\mathbb{F}_p$ nilpotent completion tower is pro-isomorphic to the *p*-completion tower, so we have the Milnor sequence

$$0 \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_n(X)) \to \pi_n(X_p^{\wedge}) \to \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{n-1}(X)) \to 0$$

This is discussed in the motivic setting by Hu, Kriz, and Ormsby ("Convergence of the motivic Adams spectral sequence"):

$$0 \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_{n,q}(X)) \to \pi_{n,q}(X_p^{\wedge}) \to \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{n-1,q}(X)) \to 0$$

Generally one needs to complete at η as well as at p, but not over \mathbb{R} or \mathbb{C} . In that case then we have

$$0 \to \text{Ext}(\mathbb{Z}_{2^{\infty}}, \pi_{0,-1}(S)) \to \pi_{0,-1}(S_2^{\wedge}) \to \text{Hom}(\mathbb{Z}_2, \pi_{-1,-1}(S)) \to 0$$

In his book Morel explains that if every element in k is a square then there's an embedding $k^{\times} \to K_1^{MW}(k)$. So when $k = \mathbb{C}$ there's an embedding

$$\mathbb{Z}_{2^{\infty}} \hookrightarrow K_1^{MW}(\mathbb{C}) = \pi_{-1,-1}(\mathbb{C})$$

The mysterious element θ , mapping to $\tau \in \mathbb{M}_{0,-1}$, is a preimage of this map; it does not come from $\pi_{0,-1}(S)$ under the completion map.

Over the reals, $\eta_R \tau = \tau + \tau_0 \rho$: τ is not primitive and does not survive to an element of $\pi_{-1,-1}(S_2^{\wedge})$. This corresponds to the fact that $K_1^{MW}(\mathbb{R})$ doesn't contain any infinitely 2-divisible elements.

The short exact sequence

$$0 \to \mathbb{Z} \to \mathbb{Z}[1/p] \to \mathbb{Z}_{p^{\infty}} \to 0$$

gives us the long exact sequence

$$0 \to \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, A) \to \operatorname{Hom}(\mathbb{Z}[1/p], A) \to A \to$$

 $\operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, A) \to \operatorname{Ext}(\mathbb{Z}[1/p], A) \to 0$