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On the Segal Conjecture for Periodic Groups

Haynes Miller and Clarence Wilkerson

Using a hyperext calculation and D. C. Ravenel's "modified
Adams spectral sequence" it is shown that the Segal conjecture
for D2® implies the Segal conjecture for Q28%71;, in particular,
it holds for Q8. Also, a homotopy theoretic argument is
provided for Ravenel's theorem that the Segal conjecture for
Z/p"™ implies the Segal conjecture for Z/p™*l,

In a talk at the Northwestern University Homotopy Theory Conference in
March, 1982, Gunnar Carlsson announced a complete affirmative resolution of
the Burnside ring conjecture of G. B. Segal. This represented a tremendous
advance over previous knowledge, as the reader will see by glancing at
J. F. Adams' report [3] at the Adem conference the preceding August. We
refer the reader to that report, or to Adams' earlier report [2], for an account
of the conjecture itself. The first author had been analyzing the proof by
D. C. Ravenel [13] of the implication, "Segal conjecture for Z/pn = Segal
conjecture for Z/pn+l," in hopes of constructing an analogous proof for more
general group extensions. The starting point for an induction was to have
been the validity of the conjecture for elementary Abeiian groups, due to
Adams, Gunawardena, and Miller [4], as the starting point for Ravenel's in-
duction was its validity for Z/p, due to W. H. Lin [11], [12], and J. H. C.
Gunawardena [9]. (Carlsson's proof in fact uses [4] to ground an induction.)
In particular, he noticed that Ravenel actually provided the techniques for two
distinct proofs of his result, though, at least in the first version of [13]
(available in September, 1981), the two were mixed together. One proof relied
on a modification of the Adams spectral sequence, designed to make the
algebraic result underlying the theorems of Lin and Gunawardena applicable in
the presence of higher torsion. The other was entirely homotopy-theoretic,
depending instead on a modification of a certain "Atiyah-Hirzebruch-Serre"

spectral sequence. Naturally, the latter appeared to the first author more
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promising as a pattern for generalization. However, during a visit in
November, 1981, the second author convinced him that the modified Adams
spectral sequence approach was worth a try, at least for groups over which

one has homological control - such as the gquaternion groups. Joint work soon

led to

Theorem A. The Segal conjecture is valid for the quaternion group Q2n+l

provided it is valid for the dihedral group Dzn.

Since the Segal conjecture was known for D4 = Z/2 x Z/2 (a proof was
in fact announced by the first author at the Winter AMS meeting in January,
1981), this constituted a proof of it for QS' the first non Abelian p-group
for which it had been checked. Of course, this result in itself is now of
mainly historical interest, and probably only to us, at that. However, we feel
that the techniques used merit an audience.

Recall that if DX denotes the Spanier-Whitehead dual of a2 spectrum X -
i.e., the spectrum representing the contravariant functor W +— TTO(X A W) -
then the Segal conjecture describes a map to. DBG, for any finite group G,
which should be a homotopy equivalence. If G 1is a p-group (which suffices,
by independent work of May and McClure, of Laitinen, and of Segal) then DBG
is p-adically complete. Our technique yields a general theorem concerning the
p-adic completion of DBG for compact Lie groups G which admit a represen-
tation which is free away from 0. The only nondiscrete examples of such
groups are SO(2) = Sl, Spin(3) = 83, and the normalizer N2 of the maximal
torus in 53. If G is discrete, it must have periodic cohomology. We
restrict attention to p-groups; so [8] the only examples are the cyclic
p-groups and quaternion. 2-groups. Each of these groups has a unique
normal subgroup C of order p. Write G for the quotient G/C. In the
statement of the following theorem, « denotes the adjoint representation of G
on its Lie algebra. Generally, we shall denote by B* the Thom space of the
vector bundle formed over the base B of a principal G-bundle by mixing with

a representation A of G.

Theorem B. Assume G 1is a periodic p-group, Sl, ST, or NZ' There is

a canonical map

DEG v BG” —s DBG

which is an equivalence after p-adic completion.
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In Section 1 of this paper we recall Ravenel's method of proof and his
"modified Adams spectral sequence," and reduce Theorem B to an algebraic
calculation which we carry out in Section 2. In particular, we prove the

following Theorem in which A is the Steenrod algebra.

+
Theorem C. Make Fz[z“l], |z| = 4, into an A-algebra by declaring
Sq z =z + & Make FZ[WZ, W3], [wi’ =1, into an A-algebra by declaring
Sqg Wy = W, + W3 Sq Wy = W, and let FZ[WZ’ w3]n denote the sub A-
module of elements of degree n in the variables. Then there is a canonical

isomorphism

+1 s-n,t-n

® Ext
n>0

1)

n

55t
Ext,’"(F,, F,[z (F,, Folwy, wyl )
The paper ends with an account (due to the first author) of a proof of
the inductive step for cyclic groups which does not use Ext.
We wish to thank Doug Ravenel for letting us see an early draft of [13],
and the first author thanks Northwestern University for its support and

hospitality during the 1981-82 academic year.

Section 1.

We shall set up some machinery wvalid for any compact Lie group G with
a real representation V such that G acts freely off 0. Such groups, and,
in fact, such representations, have of course been completely classified [15].
Since G is compact, we are free to give V an equivariant inner product.
Let S be the unit sphere and BV = G\S the orbit space. We begin with a

lemma; the notation is as in the introduction.

-

Lemma 1.1. (i) There is a cofibration sequence

-V Vv 0

v

B,, — BG ' —= BG

in which the first map is induced from the classifying map of S — BV and
the second by including a complement of V (over a finite skeleton of BG)

into a trivial bundle,
(ii) By, is Spanier-Whitchead 0-dual to BY.

Proof. (i) Ravenel has observed [13] that for any CW complex X and

vector bundles o and B8 over X there is a cofibration sequence
S(a)® —s D)8 —s x%®8

where S(a) and D(a) are the sphere- and disk-bundles of o. Since
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D(o) =2 X, this may be rewritten, up to homotopy, as

(1.2) Stay B x B X8

where the second map is induced from the inclusion of 0 into a. By re-
stricting to finite subcomplexes and considering complementary bundles, we
obtain the same statement for g +wvirtual. Now take X =BG, a =V, B=-V,
and notice that S(a) = B.

(ii) Recall (e.g. from [6]) that if G acts freely on a smooth manifold S
with orbit manifold B, then 1(B) & o = G \1(S). In our situation,
©(S) ®1l=5S xV as G-vector bundles. To see this, identify T(S)S with
{veV:vas}; then g e G acts by guls, v) = (gs, gv). The
isomorphism is then (s, v, t) > (s, v + ts). Dividing by G we find

G\(SxV) 2G\1(S) ® L= 1(B) ® a® L

The result is thus Atiyah duality [5] in this instance. O

Let G and G be as in Theorem B. Part (i) of Lemma 1.1 gives the
top cofibration seguence in the following important diagram, in which X
denotes the Thom space of the zero bundle over X - i.e., X with a disjoint

base point adjoined.

BE"Y s BEY s zB{fV
(1.3)
BgY

Our main technical result is

Theorem 1.4. The composite *BG_V — BC_}O induces an isomorphism in 74
for g > 1 - dim V, where 7 denotes p-adic cohomology.

We pause to explain about p-adic completion. Let 50 be the fiber of

SO S % 80[113]; it is a Moore spectrum with H_l(go) = Z[%]/Z. Following

A. K. Bousfield [7], we define the p-adic completion of a spectrum X as the
spectrum 5 representing the contravariant functor W +— [éo AW, X]. It
comes equipped with a canonical map X — X; and it clearly satisfies

=0

D& A x) = (DX)

where D is Spanier-Whitehead duality as in the introduction. Define
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TArq(X) = [X, éq]; then
(1.5) FUR) = 1o ((DX) b

Now D carries cofibration sequences to cofibration sequences [1], so by
Lemma 1.1(ii) we obtain from (1.3) the diagram
=¥ 0

DBG ' «— DBG «n——B3

pBG?Y

We may now p-adically complete and take a direct limit over increasing V,
using the maps induced by the inclusions V — V @ W. We get:

~

QF(DBG*V) «— (0BGY " — (me%"

AY

O)"

(DBG
Theorem 1.4 implies that the diagonal map is a homotopy equivalence, using
(1.5) and the Whitehead theorem. Consequently the cofibration splits, and we
have obtained Theorem B.

We remark that Segal's conjecture specifies a map BGY — DBGO,
constructed from the transfer, which should enter into a description of the
homotopy-type of pec?. The appendix to [13] shows that the present map
agrees with Segal's; so Theorem A follows.

The proof of Theorem 1.4 is achieved by exhibiting spectral sequences
converging to the two completed cohomotopy groups involved, and checking that
the map at E2 is an isomorphism in a suitable range of dimensions. Following
Ravenel, we use a modification of the Adams spectral sequence, constructed as

follows. Assume given a diagram of cofibration sequences

0
(1.6 \
E

The fiber terms are named ESX because we choose to_think of X — Xs as
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the quotient of X by the sth stage in an increasing filtration, and of EgX

as the associated quotient. Pick an Adams resolution [1]
. YO Yl v
k! k!

for the p-adic sphere. By means of mapping telescopes (as in [13]) we may

take F(Xm, Yn) to be a subspectrum of F(X, SO). Filter F(X, §0) by

~

S 5

- n
r_= U Fix, 9
m+n<s

To describe the Ez—term of the associated homotopy spectral sequence, let
*
H (E{_]X} denote the cochain complex of A-modules obtained from (1.6) using

the boundary maps. Then [13]
E, = Ext,(F,, B (E’X
2 =3 XtA( 2! ( N ))
Here EX‘tA(FZ, C’) denotes the hyperext module associated to a cochain

complex C  over A; it is computed by means of a projective resolution P .

of FZ:

(1.7) Ext,(F,, C') = H(tot Hom,(P , C"))

A% 0

To prove Theorem 1.4 we construct filtrations of BG and of BG,

compatible with the map in question, and verify:

(1.8) Ext (F, B (G V) =+ Ext (F, B (BcY))
’ A p’ AT p’ .

0

1

(1.9) Ext,(F , ¢ BGY))

— % 0 ~ — %k
s H (BG")) — EX‘tA(Fp, H (E

where e is the mod p reduction of the period of G. Notice that since the
mod p Euler class of V is a nonzero scalar multiple of some power of e, we
have

Vv =

(1.10) A9%8c™Y) == <HYUBGY)  iso for q > - dim V

Using (1.8) and (1.9) it follows that the map BG Y —s B at EZ’t is iso

for s-t > -dim V. According to [13], the two spectral sequences are
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convergent in the sense that such an Ez—iso induces an isomorphism in 73

for g > 1 - dim V; and Theorem 1.4 follows.

Section 2.

In this section we construct filtrations satisfying (1.8) and (1.9). We
actually do this explicitly only for p = 2 and G = Q2n+1. The modifications
required for the other cases may safely be left to the reader, and of course
the cases G = 'Zu'/pn and G = Sl were done by Ravenel [13], though from a
slightly different perspective. We shall begin with a proof of Theorem C of
the introduction.

If C' is a cochain complex over A, there are two spectral sequences

useful in studying ExtA(Fp, c:

E, = ExtA(Fp, H(C")) ——> ExtA(Fp, "
L . )
E, = ExtA(Fp, §C’) = ExtA(E“p, ch

Here &C° denotes C° without its differential. These are obtained from the
usual filtrations of the double complex defining ExtA(Fp, C'), and result in
the following:

Lemma 2.1. Let f:C" —+ D" bea map of bounded below cochain complexes
over A. Then ExtA(Fp, f) is an isomorphism if either H(f) or
ExtA (Fp, §f) is an isomorphism. O

+
Consider the Laurent series algebra Fz[z'l] on a generator z of

dimension 4, with its natural A-algebra structure: Sq z = z + zz. We begin
by replacing Fz[zil] by a homologically equivalent cochain complex. Consider
the bigraded polynomial algebra szwz, w3], |wi| = (1, i-1), as a cochain
complex over A by declaring d = 0 and Sqg Wy = Wyt wg, Sq Wy = Ws.

Let [x]| =1 and consider Fz[x] with Sq x = x +'x%, and its quotient

Hopf algebra over A,FZ[X]/X4. The map 1 : ]E"z[x]/x4 —\FZIWZ, w3]
sending 1+— 0, x —> Wo, x2 — w,, x3 +— 0, is a twisting morphism
[10] which is A-linear and has acyclic total complex. For any Fz[x]/x4-
comodule K over A, 1 induces an A-linear differential in FZ[WZ, w3] ® K,
indicated by decorating the tensor symbol with a superscript 7. An easy

calculation shows that z —> x4 induces an A-linear homology isomorphism
i
Fz{z} — Fz[wz, w3] ® FZ[X]

where Fz[x] is an Fz[x]/xtl—comodule via the quotient map. Now x4 acts
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on Fz[x] by comodule maps, so we get a structure of Fz[x]/x4—comodule

over A on Fz[xil} and on the Fz[x]-submodule xhész[x] generated by

x-4k, for any k. Thus we obtain A-linear homology isomorphisms

(2.2) Ez[zﬂ} —s Fylw,, w,] 8 Fz[xﬂ]

4k

“kp [2] — Fylw, wyl ® x “F,lx]

(2.3) z "F,[
-,

On the other hand, Lin's theorem [11] asserts that FZ —_— Fz[x—l} is
an isomorphism in ExtA(FZ, -). Since each degree of FZ[WZ, WS] is a finite
A-module, it follows that
(2.4) Flw,, w, —> &F [w,, w,] 8% F [x"1]

' 2'%2r V3 2'%2r V3 2
is an isomorphism in ExtA(FZ, -). Combining (2.2) and (2.4) with Lemma 2.1
yields Theorem C. Notice also that we may tensor everything with a finite A-
module without altering the proof.

Given a coalgebra C, there is a universal twisting morphism
8 : 0 C —> C from the cobar construction [10]. If C is a coalgebra over
A then, using the diagonal tensor product to make Q'C an algebra over A,

6 becomes A-linear. The acyclicity of the total complex of T thus implies

that the natural map

T
> FZ[WZ’ w3] ® M

(2.5) 9'(F2[x]/x4) ©° M

is an A-linear homology isomorphism, for any FZ[X] /x4—comodule M over A.

Now all the above algebra is closely modelled on geometric constructions.
Thus, if G 1is a compact Lie group, BG comes equipped with a canonical
filtration, due to Milnor. By [14],

* 0 . %k
H (EBG) =a (HG) ,

*
using the Pontrjagin coalgebra structure of H G, as cochain complexes over
A. DMoreover, given a G-space X, the pullback of the Milnor filtration

filters EG XG X, and

* R g .k
(2:6) H (E.(EG XGX)) =g (HG) ® HX

Suppose we have a pullback diagram of compact Lie groups and

homomorphisms
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|

(2.7)

O $— O

|

il €——— I

in which the vertical maps are epic and the horizontal maps are monic. Let

N = ker(H — H) = ker(G — G)

M=G/H =G/H

M is a smooth G-manifold wvia left translation. On the other hand, recall
that in general, the fiber of a fibration E — BG is ‘canonically homotopy-
equivalent to a principal G-bundle over E, namely, the pullback over E
of EG — BG. Thus we may take BN to be a G-space, by virture of the

fibration sequence BN —s BG —s BG,

Lemma 2.8. There are canonical homotopy equivalences

BH = EG e (M x BN)

BH = EG x aM
under which the map BH — BH is induced by pPry M x BN —> M.

Proof. If we arrange that BG —> BG and BH —> BG are fibrations, then

BH may be obtained as a pullback in

BH — BG

|

BH ——— BG

Thus in the three-dimensional diagram
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M I BI\\. ] BIN\ *
I
[
| -
™

each horizontal square is a pullback and the right-most three columns are
fibration sequences. It follows that the left-hand column is a fibration

sequence too, and this gives the result. O

Using this lemma we obtain filtrations of BH and BH from the Milnor
filtration of BG, and the map BH — BH is compatible with them. Moreover,
if V is a representation of H, then the Thom spectrum BH_V is filtered

by the Thom spectra of the pullback of -V to the filtration degrees of BH.

Of course the "transfer" map BH_V — BI—I0 respects filtrations. We obtain:
L o . % ; ok

(2.9) @B Y) =o' (me) e° W Me HBN V)
% 0. =0 . Kk g . ¥

(2.10) H (E'BH) = Q(H G) ® H BN

We now specialize by taking for (2.7) the diagram

Q.n+] —»> 53

2

DZn —s S50(3)
Thus N = Z/2, and M 1is a certain 3-manifold. Take for V a 4k-
dimensional free representation of Q2n+l; then we claim that (1.8) and (1.9)
hold for the filtrations analyzed above in (2.9) and (2.10). We require only

the following Lemma whose proof is left to the reader.

* *
Lemma 2.11. (i} The coaction of H SO(3) on H M is trivial.
* #®
(ii) H (BQ2n+l) 2 E‘z[z] ® H M with the diagonal A-action; |z| = 4,
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Assembling (2.11), (2.3), (2.5), and (2.9),

% =Y -k *
HBQ2n+l 2z FZ[Z] ® HM
- *
—> Fylw,, w,] 87 x 4kF2[x] ® H M

. * ) . -V %
<— 0 (H SO(3)) ®° H BN ® HM

% -
= B (E°BQn+1)

where both arrows are homology-isomorphisms and hence, by Lemma 2.1,

IExtA(FZ, -)-isomorphisms. This gives (1.8). Equation (1.9) is immediate
* ,

from Theorem C tensored with H M. The compatibility of everything is

immediate from the close parallel between the algebra and the geometry.

Section 3.

In this section we give a proof of Theorem 1.4 (and hence of Theorem B)
in case G = Z/pn or G = S1 which, while using ideas from [13], is free of
Ext calculations. To begin with, we outline a faulty proof; then we indicate
how to fix it up. For notational convenience, take p to be 2.

Let G be any compact Lie group and C a normal subgroup of order
2, with quotient group G. Let V be a representation of G which
restricts to n = dim V times the sign representation of C. Consider the

composite

=V 0

BGY —» Bg!

—— BG

Pseudoproposition 3.1. This composite induces an isomorphism in ¢ for

g > 1l-n.

Pseudoproof. If £ is a (virtual) vector bundle over the total space E of a
*
fibration p : E — B, and h is any cohomology theory, then we have a

relative Atiyah-Hirzebruch-Serre spectral sequence
* * £ * E
H (B; h (F?)) =—= h (E®)

where F is the fiber of p. Apply this with p: BG — BG and ¢ = -V,
*
so that F° is the "stunted real projective space" P_n, and with h = 7.

There is a map of spectral sequences
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% F 0
H (BG; 7)) == 7 (BG")

Y

* K K E
H (BG; P_n) == 71 (BG
Lin's theorem asserts that 73 —> frqP_n is iso for q > l-n, so the map is

iso at E2 in a range, and hence in the abutment. g

The first author was very happy to have found such a short proof, till
the next morning, when Mark Mahowald pointed out that the result contradicted
the validity of the Segal conjecture for Z/2 x Z/2. Some comfort was gained
from the later realization that he was not the first to fall into this trap, which
was dubbed the '"canonical error.”

The trouble, of course, lies in the fact that Lin's theorem gives us an
isomorphism above a horizontal line, while what is needed to conclude anything
about the abutment is an isomorphism above a line of slope -1. In order to
explain how to achieve this, in case G 1is cyclic or G = Sl, we first
express the "Serre filtration," inducing the spectral sequence of the pseudo-
proof, in terms of Thom spectra. For clarity, we deal only with G = Sl; the
case of a cyclic p-group follows similar lines.

Let X = CP”, and consider the map p : X — X induced by squaring
in Sl. Let X be the canonical one-dimensional complex representation of Sl.
The Serre filtration of X—n}‘, viewed as a succession of guotients, is

equivalent to the system of cofibration sequences

2 2
X-n?\ XR -ni XZA -ni
2 4
P-Zn z P—Zn . P—Zn

The horizontal maps are induced from the inclusion 0 ¢ )\2, and the identi-
fication of the cofibers results from (1.2) together with the observation that
S(x%) = RP",

We propose to alter this system so as to obtain stunted projective spaces
with bottom cell in lower and lower dimension. To achieve this, we employ a
device which Ravenel used (needlessly, as shown above), in his Ext proof.
Let X be any complex line bundle over an arbitrary CW complex X. The
map S(A) — S(?\Z) by z —> z2 induces a map ¢ : X s XA of Thom
spaces which is trivial in mod 2 cohomology (since it has degree 2 on the

Thom class). We may also twist with a virtual vector bundle o to obtain a
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2
map ¢ Xa”\ — Xcr” of Thom spectra.
2

Apply this with X and A as above, and o = -(k+i+1)X + i)%, to

obtain a map

- (k) ain 5 (it 1) a (5+1) 22

. . . ; 2=l
It is not hard to check that the cofiber of this map is £ P-Z(k+i)+1’ and

that we receive a commutative diagram

2 2
<k (k1) 3 L g (k2) M2 .
\ r\ . \ 4
Fomea TP o3 2P o5
CPOF\\\l CP? R\\\\ cp; R\\\\ i
S0 52 %4

in which the vertical fiber maps are exactly those guaranteed by Lin's theorem
to induce isomorphisms in 73 for g > -2k.

What remains is to prove convergence of each spectral sequence: i.e.,
that lim 1?* = 1i<_ml 1?* = 0 in both cases.

The lzl_ml 1?* terms vanish in both cases since these are inverse systems
of compact Abelian groups. Since each horizontal map in the top "exact couple"

WF : 132
is trivial in mod 2 cohomology, any string in lii_m T X (k+i)x+ix

consists
entirely of elements of infinite Adams filtration. But the Adams spectral
sequences converge [11], alE4], so this 1i<_m is zero. For the bottom "exact
couple, " notice that lim T (CP;O) is contained in the group of phantom
completed cohomotopy classes in CP*, i.e., liir_nl 'E*(CPl_l), and this group

is zero, again by compactness.
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