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INTRODUCTION

The computation of the stable homotopy groups of a space has been
one of the touchstones of algebraic topology since Hopf discovered in 1935
that 'rr3(S2) # 0. A major conceptual advance in the study of these groups
occurred with Adams' ([1], 1958) construction of a spectral sequence abutting

to (roughly) the p-component of 'ni(X), with

E2 = Ext . (H(X;F),F ),

A" P P

st
3R

where A* is the mod p Steenrod algebra.

In time, Adams (1964) and Novikov ([50], 1967) showed how to use
various associative ring-spectra E to construct spectral sequences with
Ez-terms depending only on the behavior of primary E-theory operations
on E*(X). Under the assumption that E.E is flat over E,, Adams [3]
gave a description of E2 as

sk

Ext (E

£(E, E (X))

%

defined in terms of a certain 'coaction' of the "coalgebral E*E on E*(X).
In this thesis we study various algebraic tools for computing this

Ext group. Chapter I describes the construction of a general Adams

spectral sequence. In Chapter II we study homological algebra over gadgets

like E*E, which we call "Hopf algebroids. " By exhibiting a cosimplicial

structure on a ''cobar' construction for E*E, we show that EXt;;k,E(Eﬂ“E*)

supports Ui—products and, if pE* = 0, Steenrod operations. We construct

an analogue of the Cartan-Eilenberg change-of-rings spectral sequence,



and study some special classes of Hopf algebroids.

Chapter III introduces a spectral sequence obtained by filtering the
cobar construction by powers of an ideal I in E* invariant under the
operations in E-theory. This generalizes a construction of Novikov, and
we call it an algebraic Novikov spectral sequence. In case E is the Brown-
Peterson summand BP of the unitary Thom spectrum MU localized at
p, and I is the kernel of the Thom homomorphism BP*(point)—>H*(point; ]Fp),
the spectral sequence is shown to have

siskok

E2 = Extp (]Fp, E

sle
b

e

o BP(X))

relative to a certain canonical coaction of the dual Steenrod reduced powers

ale o,
sk 3

P, on EO ‘BP\,’(X). For p odd, and under restrictive torsion assumptions
on X, this E'ZM‘-term is merely a regrading of the classical Adams Ez—term

(IF‘p, H (X; IE‘p)). Thus differentials in the algebraic Novikov spectral

Sk

t:}:
Ex A

Sequence may be regarded as BP-theoretic differentials in the modp Adams

spectral sequence.

In the last chapter we use these techniques to prove a vanishing

theorem for ExtBP:'<BP(BP*, BP*(X)) and to compute EXtBl?,,BP

in a band of width pZ(Z‘p—Z) above the vanishing edge. These results are

(BE,, BE,)

combined in an appendix with known facts about wi to calculate

s,t _ o _
EXtBR_:BP(BP*’ Bl::,a) through degree t =96 for p=3 and t=472 for
P = 5. This computation reveals several nontrivial differentials in the

BP-Adams spectral sequence besides the well-known Cohen-Toda differen-

tial [62].



CHAPTER ONE

ADAMS SPECTRAL SEQUENCES

§1.0. Introduction

Adams spectral sequences arise from resolutions in a category with
exact triangles. In this chapter we construct an Adams spectral sequence
in this generality. In the first section we study the behavior of injective
classes (after Eilenberg-Moore [18]) in a triangulated category (after Verdier
[59]). Then we show how to lift a resolution to a "filtration" or dual Post-
nikov system whose associated fibers are the objects of the resolution. A
""homology theory! carries this structure, dubbed an Adams complex, to
an exact couple. Associated to this exact couple is the Adams spectral
sequence.

QOur interest is of course principally in the stable homotopy category.
We shall use Adams' formulation of this category [5]. In §l.3 we study
the Adams spectral sequence briefly in this context, and recall a known
convergence theorem.

Despite this homotopy-theoretic orientation, we hope that the Adams
spectral sequence, in the generality presented here, will find other applica-

tions, perhaps for instance to algebraic geometry.

¢l.1. Injective classes and triples in triangulated categories

In this section we recall Verdier's definition [59] of a context for

"first-order" stable homotopy theory, and study the behavior of injective



classes and triples in such a situation. Much of this material can be found

in [60] or [49].

(1.1.1) Let X be a pre-additive category (i.e., a category enriched [35]
over the closed category Ab of Abelian groups). Let X: X—>X be an
additive automorphism, called suspension., There arises a new category
_}_(*, enriched over the category Z Ab of graded Abelian groups, with the
same objects and with X, (X,Y)n = z(z;nx, Y) and the obvious composition.

ol
=

Given any functor F: X—>A let F : X, ,—>ZA by Fn(X) = F}E(X)r1 =

F(Z}_nX) for X in X and analogously for morphisms.

A triangle is a diagram X —>Y — 7 —> XX, which we frequently

denote by

(1.1.2) (1) v:/\ /v

where (-1) indicates that w: Z —X has degree -1. A morphism of

triangles is a triple (f,g,h) of maps in X such that

X — —> Z — X
fl
X

| o

L4 __’ZI > EXI

I——>

commutes.

Definition 1.1.3 [59],[22],[20]. A triangulated category X= (X,Z,p) is

an additive category X, an automorphism ¥, and a class A of "exact!



triangles, satisfying (1.1.4) - (1.1.6).
(1.1.4) Every triangle isomorphic to an exact triangle is exact. Every
morphism u: X —Y lies in an exact triangle (1.1.2). The triangle
X
X—>X—>%—> X
is exact, if * is the point in X.
(1.1.5) The triangle (1.1.2) is exact iff
Tu

Y_V_> Z_VV_> ZX;___)_ oY

is exact.

(1.1.6) Let(l.1.2)and (1.1.2)" be exact triangles, and let

u
—_—

X
f J
1

u
XN —

M oe— K
0Q

commute. Then there exists h: Z — 7’ making (f,g,h) a morphism of
triangles.

Verdier ([59] [22]) states another axiom, the octahedral axiom (which
is stronger than the "octahedral axiom' of [20] in an essential way). This
axiom is useful in providing the Adams spectral sequence with a '"Rees

system'' ; but, having nothing new to say about convergence, we make no

use of this axiom.

Definition 1.1.7 [18],[19],[23]. Let X be a pointed category. A (two-

morphism) sequence is a diagram



x' Lo x B g

such that gf is the trivial map. An injective class I is a class I-obj of

objects and a class 1-seq of sequences such that:

(1.1.8) Iel-obj iff for all X' —X —>X"e I-seq, (1.1.9) is exact:
(1.1.9) XX\ 1) +— X(X,I) <— X(X",I)

(1.1.10) X' —>X —>X"el-seq iff for all Iel-obj, (1.1.9) is exact;

1.1.11) for all X'—=X there exists X'—>»X —>Icl-seq with IeI-obj.
S q 2 J

A longer sequence is I-exact iff each two-morphism subsequence

is in I-seq.

Definition 1.1.12 [49]. An injective class I in the triangulated category

X 1is stable iff I-obj is stable under %, or equivalently, if I-seq is stable

under 3.

The following lemmas are proved in [49].

Lemma 1.1.13. ILet I-obj be a class of objects in a triangulated category

X. Suppose I-obj is closed under retraction and suspension. Let I-seq
be the class of sequences X' —>X —>X" in X such that for all Iel-obj,
(1.1.9) is exact. Then (I-obj, I-seq) is a stable injective class iff for all

X eob X there exists *—>X —>Ilel-seq with leI-obj. .

Lemma 1.1.14. Let I be a stable injective class in a triangulated category

X. Let *—=>X'—>Xecl-seq andlet X' — X —>X" —>ZX’ be an exact

triangle. Then *—5X —s X —»X" —5% jg I-exact. -



(1.1.15) Let T = (T,n,1) be a triple [19] on the category X. Recall that
Eilenberg and Moore [19] have associated to T the category zi_T of
T-algebras. An object of §T is a pair (X,¢), Xeob X, p: TX —>X,
such that ¢ is unitary and associative with respect to 9 and p. Let
T': }_(_——>}£T be defined by T'X = (TX,py) and S Eur —>X by
S'(X,¢) =X. Then T = S'T’.

For further important properties of S, T, see [19]. They form
an adjoint pair ''generating'' T, and are universal as such.

Now let X be pointed. Let M-seq be the class of sequences

X' —>X —>X" such that for all Y eX,

X(X', TY) <— X(X, TY) <— X(X", TY)

is exact.

Lemma 1.1.16. 1Ilet f: X —> X”. The following are equivalent.

(i) >!<—>X—f——>X”e T-seq.

(ii) Ny = 8f for some §: X" — TX.

(iii) Tf: T'X —T'X" is split mono in _)_(r]r

(iv) Tf: TX —TX" is split mono in X.

Proof: (i) == (ii) by definition of M-seq, with Y = X.

(ii) ==p (iii) follows from the commutative diagram



T'X" : > T'TX . . T'X

where |.L’X is My regarded (using associativity of T) as a map in __)_(_T
(iii) == (iv) 1is trivial.
(iv) == (i). Let g: X—>TY andlet s: TX” —TX split Tf.

Commutativity of the following diagram implies that g = (|J,Y +Tg s -nX,,)f.

X < d X g TY
' |
T]Xu WX !
| TY
TX" <« 11 TX 1y
S
s\ TX
e .".: )
“~._____.; v e
TX Tg s Ty — Y oy

Definition 1.1.17. Let X,Y be triangulated categories. A functor
F: X—>Y is stable iff it is additive and commutes with suspension. A

natural transformation 8: F —> G of stable functors is stable iff § is additive

and commutes with suspension, i.e. s GEX = EeX. A triple T = (T, N, 1)

on X is stable iff T, N, and p are all stable.

Lemma 1.1.18.

Let T be a stable triple on a triangulated category X.

Then T-seq is the class of sequences of a stable injective class I(T) in

X. I(T)-obj is the class of objects X of X such that M is split mono.



Proof. We first show that this class I(T)-obj is the class of retracts of
objects of the form TX. I1€I(T)-obj is a retract of TI by definition.

For the other inclusion suppose that I, X are in X and that

I — 5 TX
S
\I~ I ]
T

commutes. Then commutativity of

TI
/J/, ™~
. n “-'“::.
1 —1 5 1x IX o 1%
\\“x
I = =
I TX

implies that s -p.X-Ti splits ni
Thus I(T)-obj is closed under retraction and determines T-seq

via (1.1.9). But
Tx
#*—> X —> TXeT-seq

since it satisfies (1.1.16.1ii), so (1.1.13) completes the proof. 0

(1.1.19) Recall [19] that a triple T on a category X determines a functor
Sop? X —>s°X into cosimplicial objects over X, with Tt in degree n
and, for 0 <i<n,

s, =T pT 't ST —> s
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i n-i n-1 n
di—TnT .S,]I,~>S,]I,.

S'JI' is the standard construction of .

The associated cochain complex A']I" with Arrj} = Sr,;[, for n>0

and

n
1 n n+l
- (nia . —s ARt
E Sgg( ) d: Ay T

is called the standard complex of T. A slight modification of the second

proof of [19], Prop. 4.1, using exact triangles and Lemma 1.1.14 in place

of cokernels, gives

Proposition 1.1,20. let X be a triangulated category and T a stable

triple on X. The standard complex A_X at XeX 1is an I(T)-injective

T

resolution of X.

O

For another useful resolution see Example 1.2.4.

§l.2. Adams resolutions

Throughout this section X will be a triangulated category.

Definition 1.2.1. An Adams complex is a sequence

o '

- -
Xy X0 X1
(1.2.2) ... \\\\N ////i: \\\\ ////fj
p3Y
5 I

of exact triangles in X; the labels "-1'"" denote maps of degree -1. The
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Adams complex (1.2.2) is negative iff in is iso for n> 0, or equivalently,
if In = % for n> 0. All Adams complexes we consider will be negative,

50 we suppress the modifier.

The associated (augmented) complex of (1.2.2) is

-1 -2
{(1.2.3) >:<—~—>IO——>E Il———>2 IZ——>.

(with augmentation XO ——>IO).
Let I be a stable injective class in X. An Adams complex is
I-injective iff its associated complex is I-injective, and I-exact iff its asso-

ciated augmented complex is I-exact. It is an Adams resolution relative

to I iff it is I-injective and I-exact, i.e., iff its associated complex is an

I-resolution.

Example 1.2.4. Let T = (T,’I’],H) be a stable triple on X. The Adams

complex (1.2.2) is canonical iff for all n < 0 there exists an isomorphism

~

I —s TX such that
n n

5 1
- n
e
X 1 ~
n =
e,
Xn TX
n

commutes. From Lemma 1.1.18, x* -—>Xn ﬁTXI1 €l-(T)-seq and
TXnE_I(’]I‘)-obj. Thus if (1.2.2) is canonical then it is an Adams resolution

relative to I(T).

Note that any two canonical Adams resolutions are isomorphic, but

not by a unique isomorphism.
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Lemma 1.2.5. The Adams complex (1.2.2) is I-exact iff * —%Xn—}ln is
Il-exact for all n < 0.

Proof. "If'" is clear, since I-exact sequences paste together, and

* —>Xn——>-1n ——>Z}Xn —>* is I-exact by Lemma 1.1.14.

1 The converse is

proved by the following induction on n.

n=0: % > XO > Ioe_I—seq by hypothesis, so by Lemma 1.1.14,

% —-—>XO~—>IO——>2X —> % is_I—exact.

1

n < 0: Assume that % —X —>1 —>» X —>% is I-exact.
n+l n+l n -

Given Jel-obj and f: Xn—>J,

n+1 : B i J

n+2 d In+1 d -

we seek g suchthat f=gj. Now fkd = * so, since I, is I-exact, g such

k
that fk = gd = gjk exists. By hypothesis In+1 —> Xn—>* €l-seq, so

E(In_i_l,.]') <—§(Xn,J) injects, and f = gj follows. Il-exactness everywhere

now results from Lemma 1.1.14.

a

Proposition 1.2.6. Any I-resolution is the associated augmented complex

of some Adams resolution, which is unique up to (non unique) isomorphism

of Adams complexes.
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Proof. Let X —>I be an I-resolution. Build the Adams complex induc-

tively; start by forming the exact triangle

=~ <= X
X XO
/'/.
\ //_1
I—l

Now suppose the complex is defined up to

-1

A

X o

n+l Xn .
\ ) .
In+l

d n

(omitting degrees). In+1 —> ZXn—->* €l-seq by induction, and Ine_I—obj,
so d lifts to j. Arguing as in Lemma 1.2.5, we see that x* —>Xn—>InE_I_-seq.

Complete the triangle to get Xn Uniqueness follows from [59], p.4, and

-1

Lemma 1.1.14 now completes the proof.

a

Note that injectivity and exactness both play crucial roles in this

construction.

Proposition 1.2.7. Let I be a stable injective class in X. Let (1.2.2),

(1.2.2)" be Adams resolutions for X, X', and let f: X — X' 1ift to

h:I —>I'. Then h,  lifts to a morphism of Adams complexes.

Proof. Suppose the lift has been constructed up to fn: Xn —>-XJ'[1 Consider
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X < X
n n-1 j
N § / : \\
A
s I
e 1 ! Tn n-1
l
h I
n
v ¥
/ 7 ' h
Xrl ~— ? Xn-l n-1
o s/
\ // \
. / -k
v 7 N ;,
n n-1
(|k| = -1 = |k’'|). Complete the map of triangles to f )3 we claim

=/ - f .. - . - YA - o7 k. s
I8, 4 o1 By construction fn-l ik =ik fn i'g But IHA»Xn —

n-1 -1

€I-seq and I’n 1 €1-obj together allow us to cancel the k. -

§1.3. Adams spectral sequences

We now transfer an Adams complex in a triangulated category X
to an exact couple in an Abelian category A by means of an exactness-

preserving functor.

Definition 1.3.1. [20] A functor VO: X—>A is homological iff it is additive

and such that for every exact triangle X'—X —>X"—TX’ in X

2

vox’—4>vox—~>vox” is exact in A.

Let ZA be the category of graded objects over A. VO: X—>A
defines a functor V.: X, —>ZA by Vn(X) = V>'<(X)n = V(E-nx). Then
V\.=(EX) S O-V*(X) where cr is the suspension automorphism on ZA given

by (()'A)I1 = An-l'
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(1.3.2) \ -1 N -1

be an Adams complex in X. Applying V, we arrive at an exact couple

AL (1,-1) R
o4
(1.3.3) (O,N %0)
L
E

over A, withmaps of the indicated (filtration, complimentary) bidegrees,

and with
As,t - Vs+t(Xs)
(1.3.4)
1
Es,t B Vs+t(Is) :
1 1 .
d : E —FE is induced from I — XX — I .
s,t s-1,t s s-1 s-1

Let I be a stable injective class in X and suppose (1.3.2) is an

Adams resolution relative to 1. Then in the spectral sequence associated

to (1.3.3),

I
2 =
(1.3.5) E =RV _ (X

I
where R Vn denotes the right derived functor of Vn relative to 1; see

[18],[23].
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If (1.3.2)" is an Adams resolution of X’ and f: X' —>X, let
f: X ﬁX*, h : I:,‘—>IJ’ lift f as in (1.2.7). We obtain a map of exact
couples, which depends only on h at EZ. Thus the associated Adams

spectral sequence depends functorially on X. Without implying convergence,

we shall denote it by

L
R >V< V~L

(X) = V (X).

Of course, our principal interest is in the stable homotopy category
S. We refer the reader to [5] for a description of this triangulated category.
Let [X,Y]

= 5(X,Y),. S possesses a coherently associative and commu.

tative smash product A for which the sphere spectrum S is the unit.
Let w . ( ) =[S, ],:8—>2ZAb denote the stable homotopy functor. Recall

[61],[5], that a spectrum E defines a homological functor E ( )=n (EA )

on S.

Definition 1.3.6. A ring-spectrum is a spectrum E together with mor-

phisms 5:S—=E and p: E AE—>E which are associative and unitary,

and such that © (E) is commutative under the product

Ly
T (E)®m (E) —> 7 (EAE) — (E).

A ring-spectrum E = (E, m,p) defines a triple (E A NN LRA )
on S which we denote simply by E. Write RE: V0 for the derived functor
of VO relative to the E-injective class I(E). Note that any spectrum V

defines a homological functor VO: S—>Ab, Ab the category of Abelian

groups.
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We lose little by restricting attention to the derived functors of the

stable homotopy functor m, . In fact we have:

Proposition 1.3.7. ILet E be a ring-spectrum and V any spectrum.

Then the Adams spectral sequences

e
3R -

(1.3.8) rREv (x) =V, (X)

(1.3.9) Rf-n*(v/\X) = 7 (VAX)

are naturally isomorphic in a way compatible with the identity V. (X) =7 (V AX).
If we are given a ring-spectrum structure on E AV andamap 0: E—>EAV

of ring-spectra, then the natural morphism

E
R T (VAX) == m(VAX)

(1.3.10) RinV AX) =

E N
REM o (VAX) = m (V AX)

sle
xR

is an isomorphism.

Proof. Form a canonical Adams resolution, (1.2.4), relative to E (in

which ZE completes the exact triangle S —>F — EE—> ZS):

~

X e X < X

X 0 -1

NIV AN

Then V A(1.3.11)1is a canonical Adams resolution for V AX, and the exact
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couple V>.'< (1.3.11) is clearly naturally isomorphic to the exact couple
™, (VA(l.3.11)). The first statement follows.

For the second, we want V A(l.3.11) to be an Adams resolution
relative to EAV. From the ring-spectrum map §: E—>EAV we deduce

that it is E A V-exact. On the other hand each term in the associated complex

has an obvious E A V-module structure, and hence is injective.

O

Let E be a spectrum and V a Moore-spectrum with integral

homology H_(V) equal to the graded Abelian group A. Following [3], write

EA for the spectrum E AV.

Example 1.3.11. Let H be the Eilenberg-MacLane spectrum with homotopy
w (H) = Z(p)’ the integers localized at p. Thus we are suppressing the
localization from our notation. Let IF‘p be the Galois field with p elements,

and let V be the sphere spectrum. Then

HEF
P
R,  w(X) = 7 (X)

is the classical modp Adams spectral sequence.

Nextlet E=H and V = S]Fp. Then (1.3.8), for p odd, was con-
sidered by J. Neisendorfer [52]. The proposition shows that his spectral
sequence at X agrees with the usual Adams at V AX. Neisendorfer notes

that the modp stable homotopy functor V., carries a natural Bockstein

differential induced by the cofibration

S-—E—>S —= V.
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This induces a differential 3 in the spectral sequences (1.3.8) - (1.3.10).
T . . r r r
That is, E~ has two differentials, 3 and d°, such that 3d =-d"3, and
r o, r+l . . . -
d on E  induces 3 on E . The isomorphisms in Proposition 1.3.7
respect this structure by virtue of naturality in V.
Another case of special interest occurs when V is the Spanier-

Al

Whitehead dual [5] A of a finite spectrum A. The functors

are naturally isomorphic, so the first part of (1.3.7) asserts that

Ry[A, 10 = [AX],

and
E * *
R 7 (A AX) = T (A AX)

are isomorphic compatibly with the duality isomorphism.

Since the homological degree is negative, we will henceforth system-
atically raise it in our notation. Because of the special importance of L
we fix the following notation:

)

s,t . _JE _
(1.3.12) E (XE)=R 7 S(X)—RE tos

s (X).

(1.3.13) We now summarize the work of Adams, Bousfield, and others

on the convergence of Adams spectral sequences. I.et E be a (-1)-connected
ring-spectrum, and let P be the set of rational primes invertible in 'rrO(E).
The unit map Z——>-1TO(E) factors through the subring Z[P_l] of ® con-
sisting of fractions whose denominators are products of primes in P. For

any connective spectrum X, define a spectrum XE as follows. If Z—>-1TO(E)



injects, then

xE = XZ[P’I].
Otherwise,
H - A
xF o T x
peéP

A
where Xp is the obvious (cf. [11] VI, 6.5(ii)) stabilization of the Bousfield-
Kan IE“p—completion [11]. xE s the "E-~-completion' in the sense of

Adams [5]; see [10].

Theorem 1.3.14 (Adams [5]). Let E be a (-1)-connected ring-spectrum

and let P be the set of rational primes invertible in 'rrO(E). Assume that

'rro(E_) is solid (i.e., multiplication: 'rTO(E)@Z TTO(E) _“>"1TO(E) is an isomorphism)

-1
and that H (E; Z) is of finite type over Z[P ]. Then for any connective

spectrum X, the spectral sequence

E_(X; E) ZEZ(XE; E) = 7 (X )

5

tonverges, in the sense that the filtration on T (X ) is bicomplete.
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CHAPTER TWO

HOPF ALGEBROIDS

§2.0. Introduction

Let E be a ring-spectrum. Then E E is the algebra of stable
operations on E_. Infact given x: S—>EAX and 8: E—>E we may form

(AX)x: S— E AX. This gives an action

E'E®E,(X) —>E,(X)

natural in X.

Proper treatment of the algebra E'I:E requires the use of topological

modules over a topological algebra [62].

To avoid this unpleasantness J. F. Adams proposed in [3] to study
the dual object E_ E and its coaction on E_(X), in analogy with Milnor's

work [44] on the dual Steenrod algebra.

The description of this coaction Y 1is slightly tricky. A natural

candidate for Y is the composite

n>,'<
EX=m(EAX)——E (EAX)<Y EE ® EX.

e
5

Here 7, is the Hurewicz homomorphism and p is the usual Kiinneth map

carrying ¢:S—>EAE, x:S—>E AX, to the composite

S=sASEM L BAR) AEAK) EATAX EAEAEAX

e 1HAEAX
\\__

7 EAEAX
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To invert p we assume that E*E is right-flat over E*; then p is a map
of homology theories which is an isomorphism on the sphere and hence
everywhere.

The problem with this attempt is that in order to study homological
properties, 3 must be associative. To consider associativity, 3 must
be left E*-linear. Now yp is left E*-linear, but N, is in general not; so
p generally fails to have this property.

Adams overcame this obstacle by introducing a new algebraic object,
which we recall in §2.1 and christen a ""Hopf algebroid' for reasons stated
there. We define comodules over a Hopf algebroid, indicate some of their
properties, and recall the connection with geometry.

In §2.2 we study homological algebra in the category of comodules
and construct a cobar resolution. §2.3 shows how the situation studied by
Landweber in [29] fits into this context.

With §2.5 we come to the main application, which is to complex
bordism and Brown-Peterson homology. We recall the structure and certain
elementary properties of the Hopf algebroid BP*BP, and give yet another

proof of the Stong-Hattori theorem.

§2.1. Hopf algebroids

Let E be a ring-spectrum such that E E is flat over E . We
saw above that E_E cannot in general be made into a Hopf algebra in a

meaningful way.

Recall [45] that a commutative Hopf algebra (with involution) is
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precisely a cogroup in the category of commutative algebras. Recall also
that a groupoid is a small category in which every morphism is an isomor-
phism; thus a group is a groupoid with one object.

What Adams realized [3] was that E*E is generally not a cogroup,
but rather a cogroupoid in the category of commutative algebras.

Let R be a commutative ring. Throughout this chapter "R-algebra'

will mean ''commutative graded R-algebra."

Definition 2.1.1. A Hopf algebroid over R is a cogroupoid in the category

of R-algebras. Explicitly, it consists in two R-algebras, A and T (the
algebras of ""objects" and of "morphisms''), called the coefficient algebra

and the cooperation algebra, and R-algebra morphisms

Ny A—T left unit, '"target"

nR: A—=T right unit, '"'source!

e: T'—A counit, '"identity"

A T— I‘®AI‘ diagonal, ''‘composition'
c: T'—T conjugation, 'inverse!

Here T is a left A~module via uy and a right A-module via MR and
]_"®A1" is the usual tensor product of bimodules. We require of these maps

that A and ¢ be A-bimodule maps and that the following diagrams commute.
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=
=~ / N =
_— A \a_\\&
/ T~
A, T <«— I'e T » I'® A
A €®A1" A I‘®Ae A
n n
A L re r < R A
lc
R . nL
T
A < & r —=% s 4
”Rl l A N
T < I'e9 T > T
p{c ®AI'") A H(I‘@AC)

We leave to the reader the amusement of interpreting these as
cogroupoid axioms. We will frequently let the coefficient algebra A be
understood, and write simply T for (A, ).

Suppose ny, = MR A —>T. Then all tensor products are simply
tensor products of left modules over the commutative algebra A. The
product T'® '——T factors through I'e '— ]_"®A1" and T becomes
simply a Hopf algebra over A. This extends the classical notion only in
that A 1is graded.

Much of this chapter could be carried through in greater generality.
In fact, let A be an R-algebra. The category (A-mod-A) of A-bimodules

has an internal tensor product ®

N which is coherently associative and
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unitary, but is not commutative. We may study ®A—coa1gebras in (A-mod-A).
We refrain from this generalization because we see no use for it.
We neglect also to point out which results are valid for any cocategory in

the category of R-algebras, and which depend on the inverse.

Definition 2 1.2. ILet E and V be ring-spectra; see (1.3.6). V. (EAE)

is a V E-bimodule by virtue of the ring-maps

~ V:,'<(E /\77)

(2.1.3) N ViE = V(EAS) ——— V (EAE),
_ V. (MAE)

(2.1.4) Mg V,E = V (SAE) ——— V_(EAE).

E is flat relative to V iff V.(EAE) is left-flat over V_E. In case V is
the sphere-spectrum S, E will be called flat.
Generalizing a construction of Adams [3], we provide (VE, V.(E AE))

with a Hopf algebroid structure with left and right units as in (2.1.3) and

(2.1.4), and
V%p

(2.1.5) e: V.(EAE) ——— V.E,
v, T

(2.1.6) c: V(EAE) —— V. (EAE),

where T switches factors. To define A firstlet X be any spectrum and

construct ng in
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N V*(E An AX)
V*(E AX) =V_(E AS AX) >V _(EAE AX)

sle ot
ac s

i

(2.1.7) Mx
x

V,(EAE) ®V>'<EV*(E A X)

where m carries f: S—>VAEAE, g:S—>VAEAX, to the composite

~ f /
SE SAS—LE L VAEAEAVAE AX L VAVAEAEAEAX

EPAEARAX

-H“-H_""-._._\_ '
* VAEAEAX

Here T’ exchanges the neighboring copies of EAE and V. Now let

(2.1.8) A= ng:V*(E/\E)———é-V*(E/\E)@ V*(E/\E).

V. E

The map ng of (2.1.7) prompts the following:

Definition 2.1.9. Let (A, I') be a Hopf algebroid. A left (A.T)-comodule

is a left A-module M together with an A-module map P: M —> I"®AM

making commutative:

]

M I"®AM
- l e®, M

A®AM ,
Y
M > I'®AM
d, [ roas
F®AM A® M > I‘®AI‘®AM
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I'-comodules form a category (I'-comod) in an obvious way. A is

a I'-comodule with coaction

M, -~
(2.1.10) A—=>T = Ire,a.

I" is a D-comodule with coaction A T— I‘®A1".

If M,N¢€(I'-comod), then the set of comodule morphisms from M
to N forms a sub-R-module of the R-module of A-linear maps.

There is an obvious suspension automorphism ¢ lifting the usual
suspension on (A-mod). Let Homr (M, N) denote the graded R-module
with the R-module of I"-comodule maps o'nM —> N in dimension n.

As an important special case let M = A as in (2.1.10). Then

(2.1.11) Homr(A,N)={neN: ¢(n)=l®An}.

If N=A as well, then P(n) = nL(a) ®Al while 1 ®An = nR(a) ®Al; s0

(2.1.12) Hom_ (A,A) = {acA: ny (@) = (@)},

Definition 2.1.13. The Hopf algebroid (A,T) is flat iff T is left or

equivalently right flat over A. (A, T') is connected iff A and T are
positively graded and e‘.O: 1"0 —>AO is an isomorphism. More generally,

(A,T) 1is (n-1)-connected iff A and T" are positively graded and e: r—A

is (n-1)-connected.

If (A,T) is flat then the category (I'-comod) is Abelian.

(2.1.14) Let E and V be ring-spectra such that E is flat relative to Vv,
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so that V_(EAE) is a Hopf algebroid. Then [3] the coaction ;pX gives
V(EAX) a V (EAE)-comodule structure natural in X. Furthermore,

V(EAZX) S gV, (EAX).

ol
i

Example 2.1.15. The modp Eilenberg-MacLane spectrum HlFp is flat
since 11-*(H le) = le is a field. The coefficient algebra is just the ground-
ring IE‘p, 50 -rr*(H ]Fp /\HIFp) is actually a Hopf algebra: in fact, it is just
the dual Steenrod algebra A*.

If p>5 then the Moore-spectrum M = SIF‘p is an associative ring-
spectrum, and the Z(p)—Eilenberg-MacLane spectrum H = HZ is M-

(p)
flat. The associated Hopf algebra is the quotient

A, =A /(1))

of the Steenrod algebra considered by J. Neisendorfer [49]. It may also be
constructed in this manner for p = 3; what is really needed in (2.1.3) -
(2.1.8) is that V 1is a not necessarily associative ring-spectrum such that

EAV is homotopy-associative and T (EAV) is commutative. The projection

A>,<—>A(1)>,= is m  applied to the composite

HIEI')AHIE];)ZMAHAMAHMMAMAHAHM>MAH/\H_

Since M*(X) supports a natural Bockstein differential, A(l), is a differen-

ale
b

tial Hopf algebra.

To better understand the definition (2.1.13) of connectivity, we have

Lemma 2.1.16. Let E be a flat ring-spectrum. Then the Hopf algebroid
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E _E 1is connected iff E is (-1)-connected and = (E) = E

0 o 18 solid.
(Recall [11] that a commutative ring R is solid iff the unit Z —>R
is a categorical epimorphism, or equivalently, iff multiplication:

R ®ZR—-—>~ R is an isomorphism.)

Proof.

We must show that if E_ is positively graded then €qTH (E A E)o

——»-EO is an isomorphism iff E _ is solid. This will follow if the Kinneth

map E0® EO —> (E /\E)O is an isomorphism. Consider the Atiyah-

Hirzebruch spectral sequence for E, at E. We see that (E/\E)O;HO(E;E ),

0
and the universal coefficient theorem completes the proof.

O

Proposition 2.1.17. ("Nakayama' [45], Prop. 2.5). Let (A, T') be a flat

connected Hopf algebroid. Let f: M —>M’ be a T'-comodule map and
suppose M is connective. Then f is monomorphic iff Hom_(A,f) is

monomorphic.

Proof. For a I'~-comodule N let FON =Homr(A,N). Suppose N is

(n-1)-connected and Nn # 0. Unitarity (2.1.9) reads, in degree n,

¥n

Nn (r®AN)n - PO ®AO Nn
=~ (€®, N}, €0 ®A0Nn
(A®,N) a AO®A0Nn

Since € is an isomorphism, (FON)n = Nn. In particular, if FON = 0 then

N =
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Since (I"-comod) is Abelian, we can construct the kernel
0 —>N—>M—M'.

Assume FOM -—>FOM’ is monomorphic. Since FO is left-exact, F0N=O.

Since M 1is connective, N is too; so N =0 and M —>M’ is monomorphic.

a

(2.1.18) Let (A,T')—> (B,Z) be a map of Hopf algebroids. For a left

I'-comodule M, give the B-module B ®AM a X-coaction by extending the

A-linear map

M—JL>P®AM—»Z®AM =(E®BB)®AM

We have defined a functor
(2.1.19) B®A: (T'-comod) — (¥ -comod).

Now (A A, T'®TI) is a Hopf algebroid in an obvious way, and
(K, 1) (AR A, T@T) —>(A,T') is a morphism of Hopf algebroids. If M and

N are I'-comodules, then M® N is a I’ ® P-comodule. Define

L
2.1.2 = .
( 0) M@ ‘N Ag, o o (MgN)

Note that the underlying A-module is the tensor-product of left modules
L
over the commutative algebra A. The functor ®A is a coherently associ-

ative and commutative tensor product on (I’-comod) with unit A. We have

a similar functor



31

®}:: (comod-T) x (comod-T) —> (comod-T).

The product p: I'® I'— T factors through maps pLL: F@XI‘—>1"
and pR: I‘®i I'— I'. Now in analogy with the theory of groups [15] or of

Hopf-algebras [8], we have:

Lemma 2.1.21. There is an isomorphism

~ L
1"®AN N I"®A N

of I'~comodules, natural in the I'-comodule N.
Proof. The following composites are inverse isomorphisms.

L
I'® Y L ad .o ® N
h: ]."®;:‘N ‘—A-—*I‘®A (I"®AN) — (I‘®j§1") ®ANL-A—>-I‘®AN

e, T®c® N R 1. PR8N L
k: 1"®AN———> I".®A (r ®AN) —‘———*(I‘®AI‘)®AN_‘—“?I‘®AN» O

In the geometric setting we have the following ""Cartan formula."

Lemma 2.1.22. Iet E, V be ring-spectra with E V-flat. Then the

Kunneth map

L
v: V(EAX) @ E Vo lEAY) —>V (EAXAY)

sending f: S—>VAEAX, g: S—>V A EAY, to the composite

S=5ASIA 8L VAEAXAVAE AY T VAVAEAEA X AY

‘\\"‘\.._

e [p/\p AXANY
vii®g)

—

T* VAEAXAY
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is a map of V_ (E AE)-comodules. 0

§2.2 Homological algebra

We turn now to homological algebra in the category of (A, T')-comodules.
The forgetful functor (I'-comod) —> (A-mod) has a right adjoint
taking M to ]_"®AM with coaction A ®AM. This adjoint pair pulls the split
injective class [23] in (A-mod) back to an injective class in (T-comod).
An object is injective iff it is a direct summand of I‘®AM for some A-module
M. A sequence

M L M B M

of comodules is exact iff it is split-exact in (A-mod); that is, the unique map
coker (f) —>M" factoring g is split mono in (A-mod).
Thus for ['-comodules M and N we may define the bigraded

R-module with

s, t N
EXt]." (M,N) = H_S’tHomr(M,I)

where N——1I is any injective resolution.
0
Since Hom_(M, ) is left-exact, Ext_(M, N) = Hom (M, N).
T T r
It will often be convenient to have an explicit and natural resolution.

Observe that the injective class in (T-comod) arises from the triple

= (I"®A,n,pt), where

Ym

nM :M—>—P®AM

(2.2.1)
by = T8¢ ®, M: e, I'®,M—>T® M.
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Thus we have the standard (cosimplicial) construction SI"(M) and
its associated cochain complex AT(M), the standard resolution recalled
above (1.1.19). It is usual to work in the slightly smaller canonical resolu-

tion W(I';M), which is the (co)normalized complex [39] of the cosimplicial
-comodule S__ (M).
T ]F( )
Explicitly,
W(r;M) = 1"®A I'®, '@, ', M
where

f = Ker (e: T"—>A)

as an A-bimodule. Write 7[71l ---‘yn]m for an element of W(T ;M)n. The

differential is:

dyly, [+ ly Im = By [y |y | |y Im

n n

n .
+ DDyl Lol 1] e |y, Im

i=1

+ (-l)e(n+1)27[71|"'Iyn\m’]m”
where

ry = Sy ey,

ym = Zm'@ m”

(i) = [yl [yl 4eeet {4l + 1.

Let

(2.2.2) Q(I's M) = Hom (A, W(T'; M))
so that

Extr (A, M) = H(Q(T; M),
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Write (T A) = QT"- The adjointness mentioned above implies

=T

e
(M) = 1"®A---®AI'®AM

and the differential is now

Ay loly Im= [y |y, Im
(2.2.3) + Z(-l)e(i) [7’1""|'>’ill’}’iﬂl"'|'}’n]m
i=1

]. / 17s
+ P By ey jmlm

In particular for n = 0,
d[ Jm=[1]lm - Z[m']lm"”.
If M =A with the comodule structure (2.1.5),

d[ Ja={1]a - [p,.a]l
(2.2.4) M

= [nRa - nLa] .

The existence of this cobar resolution has several useful consequences.

Proposition 2.2.5. Let (A,T) be a flat Hopf algebroid. Then any sequence

of comodules
(2.2.6) 0 —>M'—>M—> M"—> 0

which is short-exact as R-modules induces a long exact sequence in Ext (A, ).

r

Proof. Since T is right-flat over A, sois (T A). But non-differentially,

~

Q(r; M) Q(IA) ®AM; s0 (2.2.6) induces the short exact sequence

0—Q(IsM') = (M) — (I M”) — 0
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of DG R-modules. Hence the result.

Proposition 2.2.7. Let (A, I') be flat and let

0 1
O—>M—>I —1 —> v
be a sequence of I'~-comodules which is R-exact and such that each 1’ is
I’-injective. Then

Extr (A,M)= H (Homr (A,1)).

Proof. Form the double complex Q(I';I). Filter on degree in I; in the

associated spectral sequence

Em = E2 =H (Homr (A,1)).

Then filter on degree in (); in the associated spectral sequence

E_=E, = ExtP(A,M).

The result follows.

Proposition 2.2.8. If (A,T) is (n-1)-connected (2.1.5)and M is an

(m-1)-connected I'-comodule, then for s >0, Ext; (A,M) is (ns+m-1)-

connected.
Proof. The cobar construction Q(I'; M) has this connectivity.

O

(2.2.9) Let (A, ), (B,%) be two Hopf algebroids over R, and let M be
a I'-comodule and M’ a ¥-comodule. Let M—I, M'—1/ be injective
resolutions. Since 7n: M —>1 is A-split there are A-maps ¢: IO —=M,

] II1 —>In~1, such that
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en=M, sd+ds=1-ne, s =0.

So also for M'—>I', over B. Then M @M’ —>I1® 1’ is A ® B-split by the

retraction e ® ¢’ IO® (I’)O —>M® N and the homotopy (s® 1 + ne ® s’).

Clearly (I® I’)I1 is I'®@ Z-injective; so we have an injective resolution.
Now for any A-module X,

~ ~

Homr (A,I‘®AX) = HomA(A,X) X.

Therefore for any B-module Y,

Homr®z(A® B, (I‘®AX)®(2®BY))
= Homr®E(A® B, (T'® E)®A®B(X® Y))
T Xev

= HomF(A, 1"®AX) ® Hom (B,E®BY).

z

Hence in the situation above,

) I
Homr®z(A® B,Ig®l)

= Homr (A, I) ® Homz (B,1).

Note that Q{(I";M) is R-flat if M is R-flat and (A, T is flat.

Therefore we have ([15], XVII) :

Proposition 2.2.10 Let (A,T) and (B,Z) be two Hopf algebroids over

R, andlet M be a I'~comodule and N a 5-comodule. Suppose (A, T") is

flat and M is R-flat. Then there is a convergent spectral sequence

R
T'or (Extr (A, M), Extz(B, N))

Ext A® B, M® N).
==>X1.,®E(® ® N)
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Now suppose (A, T) = (B,Z). Then the edge-homomorphism of

(2.2.11) composes with the map induced by (u,p): (A A, T'e)—A, D)

(see 2.1.20)) to give

L
(2.2.11) v: Ext (A, M)® ExtI,(A,N)~—>E>;tP(A,M®AN).

v is associative and commutative in the obvious sense.

(2.2.12) 1In order to relate this product to the cobar construction, we need

a tensor algebra.

If X is an A-bimodule, let TA(X) be the R-algebra with underlying

R-module

and multiplication

(218, @, %) ® (y, BBy Yy)

TEIBA L BN Y18 By Y

Note that T = TA(c'l?) as bigraded R-modules; here 0-1 gives
a graded R-module a second degree of -1. Inspection shows that this
isomorphism makes QT into a differential R-algebra and Q(I"; M) into a
differential QT'-module. Thus ExtP(A,A) is naturally an R-algebra and

Extr(A,M) an Extr(A,A)-module; and these maps agree with those of

(2.2.11).

(2.2.13) There is another expression for the cobar resolution which reveals

more structure. Notice that T is a comodule-algebra over (A, I") with
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unit uly and multiplication p.L (see (2.1.20)). Hence

= (Te- or o~ )
L =T8, »n. 8 ,p &

is a triple on (I’-comod). Recall from (2.1.20) that the functors ]_"®A and

]_"®A are naturally equivalent. It is easy to check that this equivalence

extends to an isomorphism of triples T = ]["L. Hence the associated canon-

ical resolutions are naturally isomorphic DG (A, I')-comodules.

If M is a I’~comodule-algebra then Homr(A, S (M)) is a cosim-

T

plicial commutative R-algebra. Since Extr(A,M) is the homology of the

normalized complex, it has Ui—products; and if R = ]Fp, then it has Steenrod

operations. ‘See [41].

(2.2.14) Suppose now that E and V are ring-spectra such that E is
V-flat; see (2.1.2). Then (V. E, V>,<(E AE)) is a Hopf algebroid. We deduce

from (2.1.21) and (2.1.22) that for any spectrum X, the Kinneth isomorphism

mX: V*(E AR) ®V\,,E V*(E AX) ——> V*(E AN E AX)

of (2.1.7) is a map of V (EAE)-comodules. Thus

~

V. (E A X).

>

HomV¢(E /\E)(V*E’ V*(E AE AX))
By additivity, then, V\E(E AI) is V _(E AE)-injective for any E-injective I,

and

H

~

My (& aE) VEr YHEAD) = V@),

Furthermore, let * —>X —=X" be E-exact: i.e., EAX—=EAX"

is a split monomorphism of E-module-spectra, by (1.1.16). Then
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V(EAX)—=V (EAX") is a split monomorphism of V E-modules.
It follows that V (EA ) carries a resolution of X relative to E

to a resolution of V.(EAX) as a V (E AE)-comodule, and that

st ale sl
be b

(2.2.15) RV (X) = Exch(EAE) (V.E, V,(EAX)).

b

O

Arguments analogous to those of [16] prove that for spectra X and

Y there is a pairing

v: EI._(X; E)® Er(Y; E) — Er(X ANY; E)

of spectral sequences agreeing at E2 with the composite of (2.2.11) and

(2.1.22) and associated at E with the pairing
[=-]

ViV, (X) ® V (Y) —> V_(XAY).

(2.2 16) If the spectral sequence

(2.2.17) Extv (E A E)(V*E, V. (E A X)) = V. (X)

is known to converge at the connective spectrum X and if V*(E NE) is
l-connected (2.1.13), then (2.2.17) converges classically by (2.2.8). For
example let V be the Moore-spectrum with homology ]Fp, p odd prime,
and E = HZ(p)' The associated Hopf algebroid A(l)*, (2.1.15), is (2p-3)-
connected, so here convergence is classical. So also if V=S and E= MU

or K = BP for any prime p. Indeed, (2.2.8) gives the Novikov-Zahler

vanishing line [50], [62] for MU and for BP at p=2.
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§2.3 Split Hopf algebroids

We describe here an important special class of Hopf algebroids. For
motivation let G be a group (in the category of sets) and let G act from
the right on the set X. Define a groupoid X% G with object set X and, for
X,y €X,

(XX G)(x,y) = {geG: xg = y]}.
The structure maps are the obvious ones. A groupoid is split if it is iso-
morphic to one of this form.

Now recall the situation envisaged by Landweber [29]. Let S be a
commutative Hopf algebra (with involution) over a commutative ring R and
let A be a right S-comodule-algebra with coaction Y- (Remember that all
our R-algebras are commutative.) Thus S is a cogroup in the category
of R-algebras, coacting from the right on A. We construct a Hopf algebroid

(A, A® S) with cooperation algebra A® S and structure maps given by

(2.3.1): nL=A®n:A§A®R—> A®S

g = PprA—>A®S
€e=A®ec: AR S——> AQR = A
A=A®NA®S—>A®S®S = (A®S)®, (A8 S)
c=(A®)(P®c): A® S“>A‘® S® S———A® S .

A Hopf algebroid is split iff it is isomorphic to one of this form.

The Hopf structure of S equips (comod-S) with an internal "diagonal®

tensor product ®A. A is just a commutative ®A-algebra. Still following

Landweber, consider the category (A-mod/S) of left A-modules over S
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that is, A-modules M together with a right S-coaction i such that

A®AM —>M 1is an S-comodule map.

We wish to compare (A-mod/S) with (A@J S-co:hod). To this end

b

define for any R-module M two R-module maps, f and g, as follows.
g: M® S—> (AR 9) ®,M

by gmes) = (-1)1™] ‘s'®c(s>®m.

f: (A®S) ®,M—>M® s
by fla®@ s@m) = 2(—1)‘m‘(|‘a”\+‘S|)a’m®a”C(S),

where )t A—>A®S by P@) = T.a’®a”. The reader may check that f
actually factors through the tensor product over A. Now an easy verification

yields:

Lemma 2.3.2. The correspondences

G: (M, ) ¥—> (M, gy)
(M, f)<—+ (M, ¥): F
define inverse functors
G

(A-mod/S) <F— (A§S—comod). O

This equivalence frequently reduces EXtAgs to a ''classical' object.

To see this we first construct adjoint pairs
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u

®S S
(2.3.3) (A-mod) <—— (A-mod/S <——" (comod-S)
u A®
A
uA———{ ®S Ag — ug

where u, o ug are the forgetful functors. The A-actions ¢ and S-coactions

Y are given, for A-module Y and S-comodule X, by

goA®X=p.® XKiAQARX—> A® X

YA ® Yy AR T® S
ARX — > A®S®X®S ———> A® X®S®S

—

— A® X® p

brox T v
R > A®X® S

P, ®Y®S AR T®S
ARY®S ——————> A®S®Y®S — > A®Y®S®S

\H--H‘H_ﬁﬁ Py ® B
_‘_-‘-‘_"‘—\\-\\ ¥
“vo s > Y® S

¢Y®S=Y®A:Y®S —> Y®S®S .

The adjunction morphisms may easily be written down.
Recall the adjoint pair
(A% S-comod)

U——— (A S)®,
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Since the inverse functors F and G leave the A-action alone, UF = uA,

and so for an A-module Y,

F((A® S) ®,Y) Zves

in (A-mod/S). But the S-comodule uS(Y® S) 1is injective. Thus uSF
carries injectives to injectives; and it is clearly exact.

So let X be a right S-comodule and N an A® S-comodule, and let
N —>1 be an injective resolution. Then

E (G(A® X),N)

XtA%S

H HomAgs(G(AQb X),I)

H HomA/S (A® X, FI)

1

H HornS (X,u_FI)

S

= Exts (X, uSFN).

Here HomA/S denotes the obvious graded R-module of A-linear, S-colinear

maps.

Since F, G, and uS leave the R-module structure untouched, we

omit them in stating

Proposition 2.3.4. Let X be a right S-comodule and N an A® S-comodule.

Then

. = t X
ExtA®S(A® X, N) Ext_ (X, N) -

We remark that throughout this section R could have been graded;

the results would be the same. The proof actually yields a natural, multi-
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plicative isomorphism
QABS;N) = q(S;N)

between cobar constructions.

(2.3.5) Finally we indicate a different type of Hopf algebroid, which will
be useful in §2.5. It is analogous to a groupoid with exactly one morphism
between any two objects. So let B be a commutative R-algebra. The

R

_ _ N ITIRLPY
e(b;®b,) =b by, 4(B®b,) = (b;81)@ (1@b,), c(b,®b,)=(-1) b,®b .

unicursal Hopf algebroid on B is (B,B®_ B) with nL(b) =b®1l1, nR(b):1®b,

Let C(B) be the core [11] subalgebra

C(B) = {beB:b@1l=1®becBg B},

Lemma 2.3.6. We have

. C(B) if q=0
Ext (B,B) = {
BeB 0 if q>0.

Proof. Since 0 —>B——>B —=>0 is an injective resolution, the result

follows from (2.1.12).

§2.4 Cotensor and change of Hopf algebroids

It will be convenient to have a cotensor product over the Hopf alge-

broid (A,I'). So let M be a right I'~-comodule and N a left I'-comodule.

The R-module MDTN is the difference-kernel of
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@, N
_—
M®AN W M®AF®AN :

For example if M = A then (cf. (2.1.11))
(2.4.1) ADI"N: {neN: Y(n) = l®An]=Homr(A,N).

The functors M []_F and DPN are left-exact; and the functor

Dr is balanced [23] (relative to the injective class of §2.2). Let Cotorr(M,N)

0
denote the derived functor; Cotorr M,N)=MO_N. From (2.4. 1), there is

T

a canonical isomorphism

(2.4.2) Cotorr(A,N) = Extr (A, N).

Let (A,T), (B,Z) be two Hopf algebroids. In the “situation” (cf. [15],

II §3)

Lr, I'ME’ EN ,

we have a natural associativity isomorphism

~

(2.4.3) LO,MO.N) = (L0 M) OLN.

z r z

Let ¢: (A,T) —> (B,T) be a map of Hopf algebroids. Recall from
© P p g

(2.1.19) the functor

®

AB: (comod-T) —> (comod-J%}).

Note that T ®AB has a natural I'-%-bicomodule structure. For a

I'-comodule M we have a natural isomo rphism
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(2.4.4) MOp (T®,B) = Mo B

of Z-comodules.

Proposition 2.4.5. Let o: (A,T) —>(B,Z) bea map of Hopf algebroids,

M a right D-comodule, and N a left I-comodule. There is a natural

spectral sequence converging to
Cotorz (M ®AB, N)
with

E2 = Cotorr(M, Cotor2 (I‘®AB, N)).

Proof. Let M—>I, N-—J be injective resolutions over ' Z. Form

X = (I®AB) DZ“T =1 Ell_.((l"®AB) DEJ)

(using (2.4.3) and (2.4.4)).
Filter X on homological degree in J. Since 0 ——>M —=TJ is

A-split exact, 0—M ®AB —-—>J®AB is exact and

E; = (M@, B) O_J;

H(X) = E2: Cotorz (M®AB, N) .

Filter X on homological degree in I. Since I is I'-injective,
E1 =1 DI‘ Cotorz (1"®AB, N},

EZ: Cotorr(M, Cotorz (1"®AB, N)). -

(2.4.6) To motivate an important application of (2.4.5) let G be a groupoid

(in the category of sets). Call Xc ob G invariant iff all morphisms starting
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in X endin X. Then the restriction of G to X 1is the groupoid G|X
with object set X and (G|X)(x,y) = G(x,v).
A special case of the corresponding construction for Hopf algebroids
is the following. Let (A,T) be a Hopf algebroid. An ideal Ic A is invariant
iff IT'= Tl as submodules of T Then the structure maps of (A,I') factor

to give a Hopf algebroid structure to (B,X), where
(2.4.7) B=A/I, T/IT=%=T/I'.

Let M be an (A, I')-comodule such that IM = 0. Then the I'-coaction

can be written
P: M——>I‘®AM = I‘®A(B®BM) = Z®BM.

The first part of the next proposition is then clear.

Proposition 2.4.8. With the above notations, the category of (A, I')-comodules

annihilated by 1 is equivalent to the category of (B, 5)-comodules. Further-

more we have an isomorphism

Cotor_, (M, N) = Cotor_ (M/MI, N),

=
natural in M_, _N.

'z

Proof. In the spectral sequence (2.4.5), E2= Cotorr (M,N) is concen-

trated on an axis; hence the edge-homomorphism is an isomo rphism.

§2.5 The Hopf algebroids of MU and BP

In this section we recall some standard notation and basic data about
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operations in complex bordism MU _( ) and in Brown-Peterson homology
BP,( ). For background see [43],[13],[53],[4].

There exist elements XZi e MU b .1& MU

21" Py MU), such that

Zi(
MU, = Z[XZ,X4,... 1,

MU MU = MU, [b,,b,,...].

Thus MU MU is flat over MU_, and (MU _, MU _MU) is a Hopf algebroid.
It is split in a well-known way. In fact MU, is a comodule-algebra over
the dual Landweber-Novikov algebra §_ = Z[bz,b4, ...1 ([27],[50],[46]) in

such a way that
MU MU = MU_® S_.

From Proposition 2. 3. 3 we have therefore:

Corollary 2.5.1. For any MU _MU-comodule M,

~

(MU, ,M) = Ext_ (Z,M).
* S:{: D

v mu

In particular, for any spectrum X,

EZ(X;MU) = Exts¢(Z,MU*(X)).

-

We turn now to the Brown-Peterson spectrum [13]. Let p be any
rational prime. Quillen [53] constructs a ring-spectrum BP and ring-

spectrum maps

BP — MU(p) L. BP

such that (i) m¢ = BP and (ii) the idempotent € = (7 acts in m, (MU) by
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P if n=p-1 for some i>0
e (P) = {
*on 0 otherwise

where Pn is the bordism class of complex projective n-space. It follows

that

m (BP)= Z o [1T>'<X

and 'n'*(MU(p)) :B® 1T>')(BP) where

. j )
B =2 x_ .:i#p'-1 for an .
(p)[21 p y il

Thus the natural maps

are isomorphisms which respect external products. In particular

Z, @MU MU = MU, MU
(p) (p)* (p)

TMU, ® BP, BP MU, . .
(P)>‘< BP>:< * ®BP, (p)"‘

Thus this Hopf algebroid splits as a tensor-product

z(p) ® MU_MU = (B® B) ® BP, BP

where (B,B® B) is the unicursal Hopf algebroid (2.3.5) on B. Now the

core (2.3.5) of the Z(p)—algebra/ B is Z, , so (2.3.6) and (2.2. 10) imply

(p)
that for any BP BP-comodule M
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ty @MU MU (MU

(p) (p)* (p)* "BP

1

" BeB)enP BP BEBP, BOM)

= EXtBP*BP (BP*, M).

In particular, if X is a spectrum then

~

Z(p) ® EXtMU*MU (MU*, MU*(X)) = EXtBP*BP (BP*, BP*(X)).

To describe (BP,,BP BP), recall ([43],[53],[4]) that it embeds in

the Hopf algebroid (H*(BP), H*(BP ABP)). We have, with

T, P, i
*2p -
m- = — -p 2 3
' 2p'-1
H (BP)=Z m.,m_,. s
WBP) = Z ) [mymy, ]
H _(BP ABP) = H (BP) [tl,tz, e 1,
where |m1| = 2p1—2 = \til and where the ti‘s are described inductively
by (2.5.3) below. Then:
(2.5.2) nL(mk) =m
pi
(2.5.3) nR(m ) = E m, 1:J
i+j=k
(2.5.4) e(ty) =
i h hti
(2.5.5) T m P = D m t @t
i+j=k htit+j=k J
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h h+i

(2.5.6) m = D mhtf (ct )P
htitj=k )

These formulae may be effectively translated to BP, by means of
the generators Vo i>1, of Hazewinkel [21], described inductively by

k-1 i

(2.5.7) pm, =

P
m, Vi

i=0
It is frequently convenient to set vy = P

We insert here a short remark on why (MU*, MU*MU) and
(BP*, BP*BP) are cogroupoids in the category of R-algebras. Quillen's
theorem [53] asserts that MU* represents the functor A carrying a
Z-algebra R to the set of commutative one-dimensional formal groups of
degree -2 over R ('"formal groups over R,'' for short). Morava [46]
shows how to interpret the dual Landweber-Novikov algebra S* as the
Z-algebra representing the functor I"O carrying the Z-algebra R to the
group of strict isomorphisms of formal groups over R — i.e., the group
of formal power series of the form 1+ a1T+ I Rzi » under composition.
The diagonal in S* represents composition. Now the groupoid of formal
groups and strict isomorphisms over R 1is, in the notation of (2.3.1),
A(R) ;(J]."O(R). This splitting is functorial, so the representing Hopf alge-
broid is split: MU, ®S,. This is MU _MU.

Passing to BP, P. S. Landweber [31] has shown that the Hopf

algebroid (BP,, BP BP) represents the functor carrying a Z, ,-algebra R

(p)

to the groupoid of p-typical formal groups and strict isomorphisms over R.
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If M is a BP,BP-comodule with coaction

p: M—>BP,BP®__ M

BP,
let
E
(2.5 8) pm) = 2c (t )@ r_(m)
E
E
define for any multiindex E = (el, €pse - )s e non-negative integers almost

all of which are zero, an operation T M —>M. Recall that BP _ is a

left comodule by means of

: BB, —»BP,BP = BP,BP®__, BP,.

r~

L

Now a short computation reveals that for any xe BP_,

(2.5.9) nR(X) = 7 rE(x)tE.
E

Let In denote the ideal (p,v1 y e e ,vn_l)C BP*; IO= (0); I= (p,vl,. ).

It is easy to see that these are invariant ideals. Let M be a BP BP-

comodule annihilated by In. By (2.4. 8) there is an isomorphism, natural

in M:

(2.5.10) EXtBP='<BP(BP>l<’ M) = EXtBP\bBP /In(BP*/In’ M).

The following computation is of fundamental importance.

Theorem 2.5.11. (Landweber [28]; see also [26].)

~

E (BP,,BP,) = z

5P BP (p)

~

F [v], n>1.

0
Ext (BP,, BP, /1 )
* *on P n o

BP,BP
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For an application, let G be the Adams summand of connective

K-theory localized at the prime p ([3],[7],[25]). There is a ring- spectrum

map BP —>G, and

G, = BP\,‘/(VZ,VS, ca)

b b3

Corollary 2.5.12. (Stong-Hattori [7]). The Hurewicz map

m (BP) —>G _(BP)

is a split monomorphism.

Proof. It suffices to show that for each prime p,

n: BP,(SEF, ) —> BE, (GF)

s

is a monomorphism. Since GIE‘p is a BP-module-spectrum it is BP-injective

SO

E (BP_,BP,(GIF )) = E_(GIF ; BP)
R - 2 p

XtBP*BP

e GIF ) =T [v
", (GE ) = F [v)]

concentrated in homological degree 0. From (2.5.11) (n=1), we see that

0
i i phi t 1.
EXtBPJ,BP(BP*’n) 1s an isomorphism, so by the Nakayama lemma (2.1 17),

17' is a monomorphism.

Remarks. Larry Smith's original proof [55] of (2.5.11) (n=1) relied on
the Stong-Hattori theorem. From our point of view this implication is imme-
diate. On the other hand, [26] gives a proof of another version of the Stong-

Hattori theorem using the classical Nakayama lemma.
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CHAPTER THREE

THE ALGEBRAIC NOVIKOV SPECTRAL SEQUENCE

§3.0 Introduction

In this chapter we construct a spectral sequence by filtering the
cobar construction of a Hopf algebroid by powers of an invariant ideal in the
coefficient algebra. It may be regarded as an analogue of the May spectral
sequence [37],[38]. It was first constructed, in the dual context and in a
special case, by Novikov [50], and we refer to it as the algebraic Novikov

spectral sequence. The special case of BP,BP is studied in Section 3. 2.

§3.1 The Novikov spectral sequence

We begin with some remarks on filtrations. To keep the indices
under control, we relapse briefly to lower indices.

Let R be a commutative ring, A a graded R-algebra, and Ic A
an ideal. Every A-module M is naturally filtered by the I-adic filtration

FnM=InM 0<n

FnM=M -cc_Sn_(._O.

In this filtration A is a filtered R-algebra and M is a filtered module

over this filtered algebra. Thus EOA is naturally a bigraded R-algebra
0 . 0

and E M is naturally an E A-module.

Let M be a right A-module and N a left A-module. The tensor-

product M®AN is filtered by
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im % M11®AIJN
i+j=n

F_n(M ®AN)

- 1.111 M® F N .
( A -1 )

0 ~ 0
E M@, N) =M@, EN

A A
(3.1.1) _ 0 0
= (M® E A)® E N
A0 0
E A

0
where A acts on EON through EOA. But for any M

~

0 0, ~_0 0
—EOM = M®AEOA.

Thus:

Lemma 3.1.2. Let IcCA be an ideal, M a flat right A-module, and N

a left A-module. Then

0 ~ _0 0
E (M®AN) = EM® 0 E N.
E A O

Now let (A,I') be a Hopf algebroid over R. Suppose that ICA is
an invariant ideal: that is, II'= I'I as submodules of I'. Then the right
and left I-adic filtrations on T agree and filter T by sub-A-bimodules.

By naturality of the filtration, the structure maps nL, R’ €, c, and A are
all filtration-preserving.

Suppose (A,I') is flat: thatis, T is A-flat. Then by Lemma 3.1.2,

Eo(mAr) e're . E'T

E A
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We may therefore form a bigraded Hopf algebroid (EOA, EOI‘). Further-
more any (A, T)-comodule M, when filtered by the I-adic filtration, gives
an (EOA, EOP)-comodule EOM.

We now filter the cobar construction. Recall first that if X is a

filtered graded R-module, then the t-fold suspension otX is filtered by

t t
Fn(o- X) = an_tX, -o<n<ew,
so that, using (filtration, total) degrees,

t - t,t 0
Eo(a X) = o’tE X.

Filter Q(IxM) =TT (o_lf)®AM accordingly. It is easy to check

A
that the differential strictly decreases filtration, so there arises a spectral
sequence with

E1 = EO = EOQ(T;M).
By the considerations above,

B T aE&’r; £%M)

and one may check that the differential is correct. Thus

0
(3.1.3) E%= Ext® I'e’, £'%M) = Exl (A, M).

This is a fourth-octant homology spectral sequence. At this point
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we return to upper indices, so it becomes an eighth-octant cohomology

spectral sequence.

Since the filtration is negative, it is clear that

0o 0 0
(E,T®g o ET) =ET® , ET.
0 E A

Let EgI“ = S, EgA = K. Then clearly (K,S) forms a Hopf algebroid.

Furthermore, since I is flat over A, (3.1.1) gives

E;T = EjA®, (Ko, T)
= EOA ®KS .
Suppose that
0 0
EOnR = EOnL' K—> S.

Then S is a Hopf algebra over K (§2.1). (EOA, Eol") may also be
regarded as a Hopf algebroid over K. Under
EOnR: EOA—> EOI" = EOA ®KS,
EOA becomes an S-comodule-algebra and (§2. 3)
(EOA, EOI‘) = (EOA, EOA ®K S).
Thus in this situation, Proposition 2. 3.3 gives
3.1.4 =
( ) E2 ExtS (K,EOM)

in the algebraic Novikov spectral sequence.

(3.1.5) Suppose M = A. Then the I-adic filtration on OI'= Q(T; A) respects

the algebra structure (2.2.12), and (3.1. 3) is a spectral sequence of algebras.
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We mention two convergence conditions.

(3.1.6) Suppose that (A,I') is connected (2.1.13), that IO = 0, and that

M is connective. Then the convergence is 'classical' : the filtration is
finite in each degree, and for any tridegree (s,t,u), there exists r such

s,t,u

s5,t
that for r’zr, Er 2 o S

=E ;

T

(3.1.7) Suppose that R is Noetherian, that J< R is an ideal such that
N

I =JA, andthat A, IT", and M are of finite type over R. Let R be the

completion of R at J. Then the completion of {Q(T';M) at I is

A
R® Q(I'; M); so the spectral sequence converges in the sense of [17] to

A
Ext_ (A, M).
R® 1..(,)

§3.2 The Novikov spectral sequence for BP*BP

We refer to §2.5 for notations and definitions surrounding the Hopf
algebroid BP BP. In particular, I = (p,vl, ... )Cc BP,_ is an invariant
ideal, so an algebraic Novikov spectral sequence is defined for any BP*BP-

comodule M. Furthermore Eg BP>:< =k = ]Fp, so Eg ng, = Eg TR’ and

(3.1.3) gives

(3.2.1) E2 = EXtP\k (k, EOM)
where
0
2.2 = = I
(3.2.2) P* EOBP*BP k[tl,tz, ]

We compute the diagonal A in P, and the coaction of P, on

(3.2.3) Q. =E BP, =k[v,,v,,... |.
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1
Here v €Q (as in (3.1.3)) and v
n

is the class of peBP,..
n 0
2p -2

0

Proposition 3.2.4. In BP,BP,

' = P 2
) Mg Ve Pt + D vt mod 1
i=1
n pi
(ii) Atn = 'Z ti®tn-i mod I .
i=0
Proof. (i) Consider
h
m (BP) —> H.(BP;Z, )
N (p)
(3.2.5) l l
h 2
T (BP)/IT —-emmmeiio > H_(BP; Z/p°Z)

The definition (2.5.7) of Hazewinkle's generators implies that for all n >1,

(3.2.6) plh(vn),
2
(3.2.7) P /rh(vn).

By (3.2.6) h exists and by (3.2.7) it injects. The right unit Mg ™aps
(3.2.5) to the similar diagram featuring BP ABP. Let a bar denote any of
the vertical reduction homomorphisms. Then (2.5.7) implies
m_=h(v ).
pm_=h(v )

Thus using (2.5. 3),



1
CMDMS pu3I
o
8
[l
o

This implies (i).
The idea of working in H_(; Z/pZZ) is due to Dave Johnson.

(ii) Using (3.2.6) construct E, b’ in (3.2.8), and using (3.2.7)

show they inject.

=

m (BP ABP)/I H_(BP ABP; Z/pZ)

(3.2.8) INA! A/ (p)

/

h
T, (BP ABP ABP)/I ——> H_(BP ABP ABP; Z/pZ).

Thus we compute using (2.5.5) modp. Clearly At.=t. @1+ 1@t

1~ 1 e

and the result follows by induction.

Corollary 3.2.9. With the above notations,

e
28

(i) Q is a right P -comodule-algebra with coaction determined by

60
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Notice that P, is precisely the Hopf algebra of dual Steenrod reduced

powers, with tn = En conjugate to the Milnor generator En' The Thom

map BP —>H=H le is compatible with this identification: consider

E, BP,(X) > H_(X)
Eod ¥
\ :
E)BP,BP®  E BP,(X) A, ®H_(X)
f f
y W
E,BP,(X)® P, ~ HX)eA,

in which each horizontal arrow is induced from the Thom map and { is as
in §2.3. Thus EOBP>,<(X) —>H_(X) is a map of right A -comodules, using
the ''corestricted" coaction on the left and the right coaction conjugate to

the usual one on H_(X).

Now suppose that H*(X; Z(p)) is torsion-free of finite type. Then
(1) the Atiyah-Hirzebruch spectral sequence converging to BP,(X) collapses,
and (2) the A  -coaction on H_(X) factors through P*. (2) implies that the

H-Adams spectral sequence at BP AX has

_ A
E, = Ext, (k, P,®"H (X))

Al
=

= EXtE (k, k)® H>,<(X):

E,=E To '_rl, ... ]; and (1) implies that E2 = E Dby a dimension count.
b [+

Thus the H-Adams filtration on BP*(X) coincides with the I-adic filtration.
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We may identify

(3.2.10) Ext. (k%) = Q.

ol

b

Then the multiplicative structure of the H-Adams spectral sequence implies

that

(3.2.11) EBP,(X) = Q & H (X)

as Qj-modules.
Combining these two remarks, we see that (3.2. 11) is an isomorphism

of Qf—modules over P*, and the algebraic Novikov spectral sequence has

(3.2.12) E, = Ext, (k, Qe H (X))

1.
3R

We now describe a reinterpretation of this group, due to Novikov [50].

Consider the multiplicative extension sequence
(3.2.13) P—A —>E_ .

It is noncocentral; in fact, the P, _-coaction on ExtE (k, k) agrees with the

P, -coaction (3.2.9) on Q_ under the identification (3.2.10). Thus (3.2.12)

is also E2 of the Cartan-Eilenberg spectral sequence converging to

ExtA*(k, H, (X)) .

Give A_ a second gradation, the ""Cartan degree, " by setting

6,1 = 0. 2"-2)

I, | =@, 2p"-2).

The resulting bigraded object A, ., remains a Hopf algebra, and H _(X) may
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be regarded as concentrated in Cartan degree 0 (since H_(X; Z(P)) is
torsion-free! ). Then the Cartan-Eilenberg spectral sequence collapses
for degree reasons. In fact,

3R A ~
K = Ext  (k
ExtPJ‘( ,Q, ®"H (X)) = Ex A (R HL (X))

as trigraded algebras with Steenrod operations and Mas sey products.
Thus the H-Adams Ez-term may be regraded to give EZ of the

algebraic Novikov spectral sequence. This observation may be exploited

to compute ""BP-theoretic'' differentials in the H-Adams spectral sequence.

(3.2.14) We investigate next the behavior of the Bockstein in the algebraic
Novikov spectral sequence. So let M be a B_P*BP—cornodule. Since
(p)CBP* is invariant, M = M/pM is a BP BP-comodule, and we have a
spectral sequence

(3.2.15) ExtP*(k, EOM) = EXtBP¢BP (BP*, M).
Suppose M is flat over Z(p)' Then the short exact sequence of
comodules
(3.2.16) 0o—s ML+ M—s M —» 0
generates a Bockstein spectral sequence with El :EXtBP\kBP(BPﬂ“ M) and

differentials CI of degree (1,0).

If M =BP (X) for a finite-type spectrum X then ([25], 3.10) M is
Z(p)—flat iff it is BP -flat. So assume that M is BP -flat. Then tensoring

the exact sequence



64

0—> BP, P>1 —7 —s o,
- -1
where I = (p, Vs .) and I =1/pl, with ™ M, we obtain an exact sequence
n-1

0—>I M—>I"M —>I"M —>0.

Apply the 3 x3-lemma to the diagram

-~
~

The short exact bottom row generates a Bockstein spectral sequence with

E! = Ext, (k, EOM) and differentials 3’ of degree (s,t,u) = (1, l-r, 0).

e
58

Lemma 3.2.18. ILet M be a BP -flat BP BP-comodule. The spectral

sequence (3.2.15) carries a natural differential d of degree (s,t,u)=(1,0,0)

which agrees in E2 with a’l and which at E is associated to the differen-
o

tial 3, of (3.2.16).

Proof. In the exact couple

A——————>A

\/
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defining (3.2.15),

A, = HQ(BP,BP; I M)
E) = HQ(BPBP; E M)
= HQ(P; E, M).

The horizontal sequences of (3.2.17) induce differentials in both terms, and
u and v respect these differentials. The equation w3 = - gw follows from

[15], III, 4.1. The result now follows easily. -
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CHAPTER FOUR

EXT NEAR THE VANISHING LINE

§4.0 Introduction

In this chapter we apply the tools of Chapters II and III to compute

T 1 . N
part of EXtBP\bBP(BP*’BP*/IH) If the spectrum V(n-1) exists, this is its
Novikov Ez—term.

In §4.1 we display a vanishing line for Ext (BP*,M), for any

BP _BP
connective comodule M. §4.2 sets up certain Bockstein spectral sequences
by specializing the construction of Chapter III, and shows that if P, 1is the
Hopf algebra of dual reduced powers then Ex’l:P (IE‘p, Fp) is an approxima-

tion to EXtBP,(BP*’ BP*/In) in a certain range. A portion of this algebra
is computed 1n §4.3, and in §4.4 is fed into the Bockstein spectral sequences.
Certain results of §4.4 are tabulated in an Appendix. Comparison with results
of Tangora [56] and Oka [51], [52] on the stable homotopy algebra yields

the E2 term in a larger range and implies the existence of several ''"new'

nontrivial differentials.
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§4.1 The vanishing line

Here we show that the vanishing line stated in [62] as (7.1) for the
BP Adams spectral sequence at the sphere holds for any connective spec-

trum X. We also recall various facts from homological algebra which will

be useful later.

The following vanishing theorem for coalgebras is proved in straight-

forward analogy with [2], Lemma 2.3 and Proposition 2. 5.

Proposition 4.1.1. Let B be a connected coalgebra over the field k.

e

Let S>1, andlet T(s), 1 «s <8, be integers such that Ext.’ (k, k) is

s
B
(T(s) - 1)-connected for 0<s<S Extend T to W= {0,1,... } by

T(aStb) = aT(S) + T(b), 0<b<S.

Let M be an (m-1)-connected B-comodule. Then Ext]:’ g (k,M) is

(T(s) + m - l)-connected for all s > 0.

The proof of [2], Theorem 3.1, extends to give:

Proposition 4.1.2. Let f: B—C be a map of connected coalgebras over
the field k. Suppose that B is injective as a right C-comodule. Let f be

(u-1)-connected, and let T: IN—>IN be a nondecreasing function such that

EX‘t;’ (k,k) is (T{(s)-1)-connected for s >0. Let M be an (m-1)-connected
B-comodule. Then

5 F G

Extf (k, M): Ext

5 8, %
t 2
B (k, M) —> Ex B (k, M)

is (T(s-1)+ u + m - 1)-connected for s > 0.
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(4.1.3) Next we need to recall (from [33] for example) the structure of the
loop-homology of the primitive Hopf algebra k[t], where k = IEp’ p is
odd, and ]t‘ = n is even. We have

Eth[t] (k, k) = S[hi’ )\i: i>0]

where S is the free commutative bigraded k-algebra functor and where
lhil = (l,pln), l)\i\ = (2,p1+ln). The classes hi’ )\,1 are represented in the

cobar construction by

i p-1 (: L1 L1
[tp ] B ) [th ‘t(P-J)P ]
1 7 1 1 ’
=1 P
respectively. The action of the Steenrod operations (in Liulevicius' indexing
[33]) is determined by the Cartan formula, the Adam relations, the expression

Psx: Xp for |x| = (2s,t), t even, and the formulae

0
Prby=h,

0
BP h=x

(4.1.4) Notice also that the quotient Hopf algebra k[t]/(tp) has loop-

homology S[ho, )\O].

(4.1.5) Let P* denote the Hopf algebra of Steenrod reduced powers. As
in Chapter III, let tn be the Hopf conjugate of the Milnor generator gn s

so that P_ = k[tl,tz, ... ] as algebras. Then D = k[tl]/(tﬁ)) is a quotient
Hopf algebra by a (pq-1)-connected projection f: P,— D, q=2p-2. From

(4.1.2) with T(s) = 0 for all s, we see that
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Tk, k) — Ext> T (k, k)

S’
(4.1.6) £, Exty b

e
P

is (pg-1)-connected for s > 0. But (4.1.4) implies that Ext;)’ >ﬁ(k,k) is
(T(s) - 1)-connected for s =0, 1, 2, where T(0) = 0, T(1) = q, T(2) = pq.

Thus (4.1.2) implies:

Proposition 4.1.7. Let M be an (m-1)-connected P, -comodule. Then

Ext)) " (k,M) is (T(s)+m-1)-connected, where, for n >0,

T(2n) = npq

T(2n+1)

i

(np+ 1)q.

It will be convenient later to set T(s) = 0 for s < 0.

(4.1.8) Let M be an (m-1)-connected BP BP-comodule. Then in the
augmentation filtration of §3.2, EBM is (m-1l)-connected for all t > 0;

so in the Ez—term of the algebraic Novikov spectral sequence,

B
s

s t
Extpd< (k, EOM)

is (T(s)+m-1)-connected for all s, t > 0. Now if M is of finite type, then

the spectral sequence converges by (3.1.7), and

s, %

EXtBP>|< BP

(BP,, M)

is (T(s)+m-1)-connected for s > 0. In the general case, note that M is

a union of comodules of finite type. Thus:

Theorem 4.1.9. Let M be an (m-1)-connected BP, BP-comodule. Then
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1,

g, %

EmBP>,<BP

(BP,, M)

is (T(s)+m-1)-connected for s > 0.

§4.2 Bockstein spectral sequences

Here we set up several spectral sequences which, in various contexts,

add one Bockstein at a time. The prime p remains odd.

(4.2.1) Let A

-~

be the dual Steenrod algebra bigraded as in §3.2, and

consider the quotient Hopf algebra

There is a noncocentral multiplicative extension sequence
E[r ] —> A(n) —> A(n+l)
n
which gives rise to a Cartan-Eilenberg spectral sequence with

= ‘ k
E, k[an] ® Ext , k),

A(n+l) (

la_| = a, 1, 2p"- 2).

(4.2.2) Let Q = k[VO’Vl’ ... ] be the right P -comodule-algebra studied

in §3.2, and consider the quotient comodule-algebra

Q(n):Qf/(vO,...,v ), 0<n.
% n-1 -
Then
s+t,t,u. _ s,u t
EXtA(n) (k,k) = ExtP='< (k, Q(n)").

Filter the cobar construction Q(Q(n),P\,:, k) by powers of the ideal
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(vn)C Q(n). There arises a spectral sequence identical with the Cartan-

Eilenberg spectral sequence above. The grading is such that

0,j,t,u _ j-ua
1 = ExtP'

B

5 (k, Qn+1)Y),

n
a ={v+F2}EE,1’-1’l’2p -2.
n n 1

(4.2.3) Note that a survives to v EExtO’a: (k, Q(n)l). Let k(a ) be
n n P n

Al
b

the graded field of fractions of the graded integral domain k[an]. Then

the differential modules

(4.2.4) k(a_)® E_

i[a,_]

form a spectral sequence, since k(an) is flat over k[a.n].

The exact sequence of P, -comodules

v
0 —> Q(n) ——> Q(n) —> Q(n+l) —» 0

gives rise to an exact couple in Ex‘cP - The associated spectral sequence

sle
b4

may be identified, after tensoring over k with k(an), with (4.2.4).

(4.2.5) Let (BP,, BP BP) be the Hopf algebroid of BP cooperations

described in §2.5, and consider the quotient Hopf algebroid
(B(n), I'(n)) = (BPJIn, BP>,<BP/In), 0 <n,

where In is the invariant ideal (p,vl,. A 1)C BP,. In particular,
(B(®), I'(«)) = (k, P ). From (2.4.8 ) we have

E (BP*, BP*/In) = Ext (B(n), B(n)).

*t5p BP T(n)
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Now Ik(n) = (vn, SR 1)CB(n), n <k, is an invariant ideal, and
we wish to study the algebraic Novikov spectral sequence associated to

In+1(n) = (vn). As algebras,

EOB(n) = k[an]® B(n+l)
EgT(n) = k[a ]® T(ntl)

0 0 .
For degree reasons, EOnR(an) = an, and EOnR and E0 A agree with R
and A on (B(n+l), I'(n+l)). That is, EO T'(n) is obtained from I'(nt1)

by extending the ground-ring from k to k[an]. Therefore, in the Novikov

spectral sequence,

E,= k[an]® Ext

5 B(n+l), B(n+1)).

I'(n+1 )(
It is convenient to regrade this slightly so that Er becomes Er 1

This is accomplished by neglecting the shift in filtration of a suspension in
the construction (p.56) of the spectral sequence. The algebra structure is

unharmed, and we obtain a cohomological spectral sequence lying in the

pth, 7th, and gth octants, with

Oyj:u_ j’u
) = EXtI"(n+l) (B(n+l), B(n+l)),

n
c El,-l,Zp -2 .
n 1

0, =
(4.2.6) Note that a_ survives to v € Ext’

I(n) (B(n), B(n)). The differential

modules

(4.2.7) k(a_) ®k[an] E_
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form a spectral sequence since k(an) is flat over k[an].

The exact sequence of BP BP-comodules

A\

0—> BP /I ~——>BP /I —>BP /I .-—>0
* n ¥ n * n+l

gives rise to an exact couple in Ex‘cBP BP The associated spectral sequence
may be identified, after tensoring over k with k(an), with (4.2.7).

We shall call all these spectral sequences "Bockstein spectral sequences."

(4.2.8) There are also Novikov spectral sequences

ExtP (k, Q(n)) => Ext (B(n), B(n)).

‘ I'(n)
A proof identical to that of (3.2.18) shows that the differentials 3 in the
respective Bockstein spectral sequences are respected by this spectral

sequence.

To get started on this ladder of spectral sequences let us note the
exact sequences
0 =——=>J(n) —> Qn)—>k—> 0
0 —>I(n) — B(n) —>k —> 0
of P*, resp. I'(n), -comodules. The appropriate long exact sequence in

Ext then proves that

(4.2.9) Ext;’ *(k, Q) — Ext;’ *(k, k)

e e
58 =S

is (T(s)+ (2p -2)t- 1)-connected and (using (4.1.9)) that

(4.2.10) Ext® " (B(n), B(n)) —> Ext> ¥ (k, %)
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is (T(s)+ (2pn-2) - 1)-connected. Notice also that for t = 0

s

~
PO
b

3 0 = kok
EXth (k, Q(n) ) — Extp* (k, k).

So our first goal is to compute a portion of the loop-homology of the

reduced powers.

§4.3 A portion of Ext_ (k,k)

3

P

Consider the sub Hopf algebra

L k[tl,tZ]CP* ,
with reduced diagonal determined by _A'tZ = t1® tIl) - We shall compute

Extp (k, k) in the modest range where L, maps isomorphically. To define
that range, note that in the Cartan-Eilenberg spectral sequence defined by

2
is (T(i)+ (p +p+ 1)T (j) - 1)-connected. Then it is obvious that

i,j,*
L E2

3
the edge-homomorphism L, is (T(s-2)+ (2p -2)-1)-connected in degree s.

To compute part of Ext 1 (k, k) we use the cocentral multiplic-

k[t ,t
[ 172
ative extension sequence

k[tl]-———> k[tl,t —> k[t

2] 2]'

From (4.1.3),

E,=8[h,x;:i>0]® Slh, o Ay i iz 0]

In our area of interest we may restrict our attention to
S[ho,hl ,hz,}\o,kl] ® [hZO’hZI s )\‘20] where [X] denotes the span of X.
Following [33], from the cobar construction of k[i:1 ,tz] we have

d.h = - h, h,
1 14

272,1 1



Hence the Steenrod action implies that d2>\20 =0 and

dahz0 = g Byd -

In our range of E3 there are new generators

ko = [-Bghygl = Chys by, b)
Vo = thy Byl = (By By by )
Passage to E4 merely kills }\20 and adds the relation h1A0= hl)\l.

in our range E has generators
=}

and relations

hOhl’ hth’

h h h h ) 2,
OIJ‘O} ].VO’ 1"1'0- OVO’ IJ“O > IJ"Ovo! V0’

hoko = ByAy -

For degree reasons all algebra extensions are trivial if p>3.

p = 3, recall the Massey triple product [40]

A.=<¢h,, h, h).

i i i i
Now compute, using [40] Cor. 3.2 (iii),

birg =Dy (hg, by, hy)

»

and similarly hoxl = uoh1 Using [40] Cor. 3.2 (i)

2

75

Thus

If
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N 2 .
and similarly Vg = po)\l. Finally,

(hokglvg = hyhvy = (v, = RoXoX

S0 p,v, = )\O}\l. We have proved:

3
Proposition 4.3.1. In the range u < T(s-2)+ (2p°-2), Ext]“';’“ (k,k) has

generators

and relations:
hobps hyho, hipo-hov, BoXg=PyAgs
if p>3,

h 2.
O’ OH-OJ IJ-OUO: lvo: UO ’

Fo = Voror Bglg - BjAgs  Boyg - Aoy

2
LR SRR N v O

§4.4 A computation

Let k = ]Fp’ Q(n) = Q*/(VO, . ’Vn-l)’ T= BP*BP, and B(n)=BP*/In-,

as in §4.2. Let

H(P,; Q(n)) = Ext_ (k, Q(n)),

P\l

kG

H(T; B(n) = Ext  (BP,, B(n)).

We summarize our intentions in this section by the following diagram of

spectral sequences.
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H(P,;Q(3)) = H(P;0Q(2)) = H(P,;Q(1)) =9 H(P,;Q(0))

(4.4.1) ﬂ ﬂ

H(I B(3)) = H(IB(2)) == H(I; B(l)) = H(T; B(0))

Here the horizontal triple arrows denote Bockstein spectral sequences.

For lack of time we shall be brief.

By (4.2.9) and (4.2.10), Proposition 4.3.1 provides us with the left-

3
most algebras in (4.4.1) in the range u < T(s-2)+ (2p -2).

(4.4.2) The first Bockstein spectral sequences must collapse in this region.
The Cartan degree implies that in the homology spectral sequence, all
algebra extensions are trivial. In the BP case, note that the given relations
in ExtP (k,k) all arise from boundaries of chains in QP* involving only t1
and tz. ’PModulo (p,vl), 1:1 and t2 have the same diagonal in I as in P*,

so the same relations must hold. Hence there are no extensions in the BP

spectral sequence either.

(4.4.3) Pass now to the homology Bockstein spectral sequence

k[a)]® H(P;Q(2) = H(P,_;Q(1)).

0,1 1
For reasons of degree, v, € H (P,;Q(1)") is the only generator which

may support a norizero al. From the cobar construction (P, ;Q(1)) (with

the right comodule Q(1) as coefficients) we have

Thus E2 has generators
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hz; >\,O: Aly IJ'O)
Yl
= v ln l<ic

ml = Vz 0 _l_p

b, = {iv: 1 1 <iepo1

i T Wy S1EPS

- p-1

bp = {VZ hl}

b! = {i(i-l)vi-zy } 2<i<p-1l

i 2 Yo =t i

-, _ P_Z

bp = {VZ yo}

so that

my = {hl}, ™= (g yo Bysoag)
b, = f{h p, =izl (b h )
1 = Iyl i 1 i-17 10
- po_i-2
by = {1, b 7 (b ;s by, a,)

(with no indeterminancy).

Now the chain

Vg[t1]+ 2v. v [Py

2 . 2p+l 1. 2
1Yol I+ 2vi [t PPt Jeq (P,;Q(1)")

1 172
is a representative mod filtration 3 for m,. This chain has boundary

vf(Z [tz lt$]+ [1:l |tfp]), which is a representative for - VZ v

1 Consequently,

"
1 2,
923 T g 2 by

Hence ([40], Cor. 4.4) for 4<ix<p,
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~
.

o™y (®ymy; y» hysap)
~ Z 7
— 2y by, hpap)

2 .,
— b,

by induction; here = indicates equality up to a nonzero scalar factor.

We now skip ahead in the spectral sequence. This is the Cartan-
Eilenberg spectral sequence of a multiplicative extension, so Steenrod oper-
ations behave in the expected way; cf. [33], [41]. In particular, there is a

. . 0,2s
Kudo theorem, which asserts that if r - 1 = 2s and xe¢E transgresses
r

E2s+l, 0
r

-1
to drx=ye , then P y transgresses to

a4 )= - (8P0y)

for q = 2p-2. Consequently, from alv = a_h it follows that

2 11
3 {a Vp_lh} = —ap)\
p-1Y%172 ™ 17
and so
p-1 B p-1
op1lvy By o= -a A
Also,

- 1o _ 21 _ P
apvl_;—apP v,=P 3, v,=al h,

Now look back. Suppose P> 3. Then

-1
=-ap h )\

0=23 2 Bohy) 1 ot

p-1

To avoid a contradiction, we must have

O}\l'

-, : p_z
ap_z (bp) a; h
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If p =3, we have

2, (Vovg) =a hyyy =2 hody

In either case, this differential introduces a new indecomposable in Ep E

=, p-2 =12
6= {hb V= {v; "houol= {vPn 3

Taking cognizance of the Cartan degree one can see that no differen-
tials enter the region of interest from an uncomputed group. Thus for

example we know that

p _
31V BB =ar ey

The spectral sequence collapses at E'p+1’ and the abutment is displayed

in Table I of the Appendix.
(4.4.4) Consider next the algebraic Novikov spectral sequence

H(P,; Q(1)) = H(T;B(1)).

For reasons of degree, the only generators on which d2 may be nontrivial

are m and p.o. The class m is represented in FZQ(I';B(I)) by

m =[] - [v'ltf“] - v, ]

Now by §2.5, we have modulo p:

At1=0
P
p-1 (1)

-, _ p i p-i
Mtp=h®ty -vy I —— 1t |t;7 ]
i=1

MRY1™ M1
V., = v+vtp-vpt
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Therefore
p
p-1 (1) . .
— P i 2,1, p-i
dm = [vl tlltl] + .Z) [v1 t) |t2 ]
i=1
v P
p-1 () . :
2 D 4
=v., 2 L [tlltp 1] mod F .
1 P 1M1
i=1
Consequently,
— 2
dzrn =V }\0 .
A similar argument shows that
dabg = -2vihgn,-

For p > 3, {vil)_3|.xo>\l} becomes an indecomposable class in E3.

There are no further differentials, for reasons of degree. We indicate

some extensions in the abutment.

hobp = -viay
hob; = -v,b/, 2<i<p-l
Bobodg = - v
Py~ p-3
P>3: biby = vy "oy b i4j=pel

- ! ! r—
p > 3: hObep-l ¢>‘O

Most of these can be seen from the behavior of the Bockstein differential

in H(I';B(l)), which we take up in (4.4.6).

(4.4.5) It is now an easy matter to decide the structure of the BP Bockstein
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spectral sequence
k[a,]® H(I;B(2)) == H(T;B(1)).

We indicate the differentials:

Yy T bk
o1k = 31 hgAg
91¥y T CAhAg
(v,h )=al )
92V =2y A
i - .2 i-2,,. .
az(v2 hO) -ial vj ((i-1) Vo t 5 )\O), 2 <i<p-1
p~-2 ~ p-2
3p-20V2 V) ey Thyd
p-1 3 p-1
3p-1V3 P) = -ap Ty
P, _ _p
ider the extension h_h. = Apply PYihh = -vPy -0 b
Consider the extension 0 1—-v1)\0. pply t hy 2——v1 Al— v

the behavior of 3 . Thus h h, =0 in H(I’B(l)) for is 1.
p-1 i+l

(4.4.6) In the homology Bockstein spectral sequence

klagle H(P;0(1)) = H(P,;0Q(0))

we have easily:

alb- =bf, zfisp—l

We now use (3.2.18) to feed these differentials into the BP Bockstein

spectral sequence. Thus 3, bi =b!, 2<i<p-1. Inaddition, Q(T; B(1))

is the normalization of the mod p reduction of a cosimplicial commutative
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Z(p)-algebra which is Z(P)—flat in each degree. Hence [41], Prop. 2.3 (v),

for all s >0,

In particular, for i > 0

2

0 0
1% 3Pk = BP R =

We find that E2 modulo ao—torsion has basis (in this range)

vy » 0<i<p+l,

v h 1515p+1;

-1 s
It is known [62] that 3, (le hyh,) — ¢, but we shall not prove this here.
Turn instead to the first collection of classes.

Let A(n) be as in §4.2. Consider
™AL —> St T,1/¢P) = L.

Then ExtL(k,k) = S[ho, AO’ vl] and ™, hits the generators. Thus ™, sur-
jects. By placement, S[ho, Vl] survives nontrivially in the mod p algebraic
Novikov spectral sequence
H(A(1);k) == H(T;B(1)).
Recall the formula of W. Browder, [12] Theorem 5.11 and [41] Prop.
6.8: if xe¢ E:n in the Bockstein spectral sequence of a sufficiently homotopy-

: -1
commutative DG Z(p)-algebra has drx =y, then dr+1{xp} = {Xp v}. The
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cosimplicial structure of (") guarantees infinite homotopy commutativity.

Now alvl = h ;

oi 80 by induction,

Thus we have

Proposition 4.4.7. (Novikov, [50]). 1If p>2, (a,p)=1, and q=2p-2, then
1, a; S s
'Y= znz.

(4.4.8) The end-result of this computation is included in Tables II and III
3
of the Appendix for the primes 3 and 5. In this range, u < T(s-2) +(2p -2),

primes > 5 behave uniformly.
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Table I. We give an IF‘P-basis for

t
Exty " (F, Q, /(v,))

s,u
P>:<
in the range

u <T(s-2) + (2p-2)t + (Zp3—2).

Degree s is plotted horizontally and t vertically. Vertical lines indicate

multiplication by

0,2p-2 1
v, € ExtP (]Fp, Q>:</(VO))'

Arrows of bidegree (1,1) indicate differentials in the algebraic Novikov
spectral sequence converging to

E (BP,, BP,/(p)).

XtBP>,<BP

We display degrees s = 0, ... »4; thereafter multiplication by
2,2p(p-1) 0
g € Exty (IFP, Q. /vy

is an isomorphism.

Tables II and III. We display

s,2u(p-1)

Extpp gp (BP, BP)

for p=3, u <23, and p =5, u< 59, combining results of Chapter IV
with those of Tangora [56] and Oka [51], [52]. Homological degree is plotted

vertically and (internal degree)/(2p-2) horizontally. In addition to the listed

relations, one has



1% T %185y,

%192, i+

keB B, = 1B,

*i+1%2,;

and possibly others; for example, it is likely that ¢ - @, 34

for p = 3. The symbol = indicates equality up to a nonzero factor.

entials in the Adams-Novikov spectral sequence are determined by:

- 3
p =3 dgey B
~ 2
d5By T @ B €
3
dsn = BB,
4t = g
~ 5
p=>5 d9€O —otlﬁl
5
dgn; = BB, lsi<4 (57)

86

Differ-
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TABLE I.

Y
N
)
I - —|— —ZF
il _.9
-<
..... i A
~
*-— ‘l\b..o
T
~
— e IR

A\

L)
ot 4 - —-\%
O
<
F— — —— = S
0

.=t 1 | I

<

Q

P
() a o

~< _< <

-— - ~ —
Hb.w. N
- o o

R

Na o
~ K
<a1_ L 1 _ 1 g4
-~
. -
<
/H ~ I.z
- = |bu./|nwlp
< IMh..ho
[~ I 9 Q -]
\A.T\AJA \AS\AL\A.
..DPIDP. 0 _& _g
A
& — - —l= - l,ll,ll%
R

I

.| 7._ e



TABLE II: p=3

88
7 o
¢ g
5 by b P2
) By B,
i %y % - o Z,
2 3 Po || % || 8

Ay

o




/5

14

13 |
(2
T

lo

TABLE II: p-3
b
.
o By
Bt BB,
o b abb pizs
B Erk Bz,
Ut afly,  ABE
Prg, bit b %
Vb By b pE
Piga B, %4 @P‘r
4 n &
P Ps
Y s g % dy 4, A g
phafy b= Bbact,
oAn= B

89

«ph
o
B, leﬁtb
[; lq o F‘? (322
b
glLF:’ *!Flz"]
H-"') fglz& F’l i
Bl Py
e “»Fz*)
I P2
oLV
ERA
»
T | Al 2
20 T fy
%30 o(zf: Ay %y
hp



TABLE III: p=5

90
of) Ff,
By’
dl%? 0(,€,2P,_
A
ol bl
B, (‘7’1 ?,Pa
48,
Ps B,




I3

1Z

]

TABLE III: p=5

o B
i
"‘l{‘??z
e,
BB
Bt
By
PiBy
o) by Ko AT oS,
& & 5 & B
Ay oc'ZI; Oog Gy Mpg Ay

91

o (5."
o
% b
Bk,
%bifs
BrBs
iy
RN
“iE by
Pigo Bz Py
& 7,
B
Wy Ay Oy Oy oy, ol
pB= i Bibeofp,



TABLE III: p=5

92
1q 4By
I B
7 4\ B 4 BR
" i b'p,
15 |, B b
m BB, b Bs
13 | oBet, W B
A oA,
] B Bl bl
o 2 B B
4 | bbbl b,
3 Wb B Bhb «fy
7 4gre, BBy B, P
6 Blpy po, bR ap
2 Pr ks, B,
4 lam, &P %7, Bifs
2o, e by M2
: 2 3
] B Y e oy gy |y | ey | ey | ey | o U Huz

AN [}zio o= fos,



TABLE III: p=5
10
2.0 f},,

il o(.ﬂfﬁl
" : Bh
- P,

16 ﬁ?ﬁs

1€ 1, F/eﬁi

14 | F'“)g‘f

3 o, F'fﬁq A (3,52-0

L P Ig/; + ﬁls )

n k3,

o ﬁf@lﬁ} “lﬁlg 4]

3 ! F‘z'*ll @,zK.

3 fglgﬂé ! F,z")z

1 F\Q M2 Bk,

f 2
‘| b8 a'@l%
o) 5.5,

>l K o €, bms abfy s
2 €5,

* 47, €  Eof B b €83

2 o, ﬁz

=
, fsq? Y,




10.

11.

12.

13.

14.

94

REFERENCES

J. F. Adams, On the structure and applications of the Steenrod
algebra, Comm. Math. Helv. 32 (1958), 180-214.

» A periodicity theorem in homological algebra, Proc.
Camb. Phil. Soc. 62 (1966), 365-377.

, Lectures on generalized cohomology, Lecture notes in
mathematics 99, Springer-Verlag, Berlin, 1969.

> Quillen's work on formal group laws and complex
cobordism, University of Chicago lecture notes series, 1970.

» Stable homotopy and generalized homology, University
of Chicago lecture notes series, 1971.

J. . Adams, A. S. Harris, and R. M. Switzer, Hopf algebras of
cooperations for real and complex K-theory, Proc. Lon. Math. Soc.
(3) 23 (1971), 385-408.

J. F. Adams and A. Liulevicius, The Hurewicz homomorphism
for MU and BP, J. Lon. Math. Soc. (2) 5 (1972), 539-545.

D. W. Anderson and D. W. Davis, A vanishing theorem in homological
algebra, Comm. Math. Helv. 48 (1973), 318-327.

S. Araki, Typical Formal Groups in Complex Cobordism and K-

theory, Lecture notes in mathematics, Kyoto University, Kinokuniya
Book-Store Co., n.d.

A. K. Bousfield, Types of acyclicity, J. Pure and Appl. Alg. 4 (1974),
293-298.

A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions,
and Localizations, Lecture notes in mathematics 304, Springer-
Verlag, Berlin, 1972.

W. Browder, Homotopy commutative H- spaces, Ann. of Math. 75
(1962), 283-311.

E. H. Brown and F. P. Peterson, A spectrum whose Z -cohomology
is the algebra of reduced pth powers, Topology 5 (1966),p149-154.

V. M. Buhstaber, The Chern-Dold character in cobordisms, I,
Math. USSR Sbornik 12 (1970), 573-594.



15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

381-398.

95

H. Cartan and S. Eilenberg, Homological Algebra, Princeton
University Press, Princeton, 1956.

A. Douady, La suite spectrale d'Adams: structure multiplicative,
exp. 19, Seminaire H. Cartan, 1958-59.

S. Eilenberg and J. C. Moore, Limits and spectral sequences,
Topology 1 (1962), 1-24.

» Foundations of Relative Homological Algebra, Mem.
Amer. Math. Soc. 55 (1965).

» Adjoint functors and triples, Il1. J. Math. 9 (1965),

R. Hartshorne, Residues and Duality, Lecture notes in mathematics
20, Springer-Verlag, Berlin, 1966.

M. Hazewinkel, Constructing formal groups I. Over Z(,ralgebras,
Report of the Econometric Institute #7119, Netherlands School of
Economics, 1971.

A. Heller, Stable homotopy categories, Bull. Amer. Math. Soc.
74 (1968), 28-68.

D. Husemoller and J. C. Moore, Differential graded homological
algebra of several variables, Symposia Mathematica IV, Instituto
Nazionak di Alta Mathematica, dist. by Academic Press, London,
1970, 397-429.

D. C. Johnson, A Stong-Hattori spectral sequence, Trans. Amer.
Math. Soc. 179 (1973), 211-225.

D. C. Johnson and W. S. Wilson, Projective dimension and Brown-
Peterson homology, Topology 12 (1973), 327-353.

» BP operations and Morava's extraordinary K-theories

2

(to appear).

P. S. Landweber, Cobordism operations and Hopf algebras, Trans.
Amer. Math. Soc. 129 (1967), 94-110.

» Annihilator ideals and primitive elements in complex
bordism, IIl. J. Math. 17 (1973), 272-284.

» Associated prime ideals and Hopf algebras, J. Pure
and Appl. Alg. 3 (1973), 43-58.



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44 .

96

On Panov's theorem, Proc. Amer. Math. Soc. 43
(1974), 209-213,

» BP,BP and typical formal groups, (to appear).

A. Liulevicius, The cohomology of a subalgebra of the Steenrod
algebra, Trans. Amer. Math. Soc. 104 (1962), 443-449,

» The factorization of cyclic reduced powers by secondary
cohomology operations, Mem. Amer. Math. Soc. 42 (1962).

» Zeros of the cohomology of the Steenrod algebra, Proc.
Amer. Math. Soc. 14 (1963), 972-976.

S. MacLane, Categories for the Working Mathematician, Springer-
Verlag, Berlin, 1971.

M. Mahowald, The order of the image of the J-homomorphism,
Bull. Amer. Math. Soc. 76 (1970), 1310-1313,

J. P. May, The cohomology of restricted Lie algebras and of Hopf

algebras; application to the Steenrod algebra, Thesis, Princeton
Univ., 1964.

) » The cohomology of restricted Lie algebras and of Hopf
algebras, J. Alg. 3 (1966), 123-146.

» Simplicial Objects in Algebraic Topology, Van Nostrand
Princeton, 1967.

2

» Matric Massey products, J. Alg. 12 (1969), 533-568.

» A general algebraic approach to Steenrod operations,
Lecture notes in mathematics 168, Springer-Verlag, Berlin, 1970.

H. R. Miller and W. S. Wilson, On Novikov's Extl modulo an
invariant prime ideal, Proceedings of Northwestern University homo-

topy theory conference, August, 1974, Mem. Mex. Math. Soc.,
(to appear).

e
B

J. Milnor, On the cobordism ring Q and a complex analogue,
Part I, Amer. J. Math. 82 (1960), 505-521.

» The Steenrod algebra and its dual, Ann. of Math. 67
(1958), 150-171.



45.

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

97

J. Milnor and J. C. Moore, On the structure of Hopf algebras,
Ann. of Math. 81 (1965), 211-264.

J. Morava, Structure theorems for cobordism comodules, (to appear).

Al
™

» Notes on the Novikov algebra Extz (U,U), (to appear).

R. M. F. Moss, On the composition pairing of Adams spectral
sequences, Proc. Lon. Math. Soc. (3) 18 (1968), 179-192.

J. A. Neisendorfer, Homotopy theory modulo an odd prime, Thesis,
Princeton University, 1972.

S. P. Novikov, The methods of algebraic topology from the viewpoint
of cobordism theory, Math. USSR Izvestija 1 (1967), 827-913.

S. Oka, The stable homotopy groups of spheres, I, II, Hiroshima
Math. J. 1 (1971), 305-336, 2 (1972), 99-161.

, (to appear).

D. G. Quillen, On the formal group laws of unoriented and complex
cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.

» The spectrum of an equivariant cohomology ring, I, II,
Ann. of Math. 94 (1971), 549-572, 573-602.

L. Smith, On characteristic numbers of almost complex manifolds
with framed boundaries, Topology 10 (1971), 237-256.

M. Tangora, (to appear).

H. Toda, p-primary components of homotopy groups, IV: Composi-
tions and toric constructions, Mem. Coll. Sci., Kyoto Univ.
A32 (1959), 297-332.

» Algebra of stable homotopy of Z -spaces and applications,
J. Math. Kyoto Univ. 11 (1971), 197-251.

J.-L. Verdier, Categories Derivdes: Quelques resultats (Etat 0),
I.LH.E.S., 1966.

R. Vogt, Boardman's Stable Homotopy Category, Lecture notes
series 21, Aarhus Univ. Mat. Inst. , 1969,



98
61. G. W. Whitehead, Generalized homology theories, Trans. Amer.
Math. Soc. 102 (1962), 227-283.

62. R. S. Zahler, The Adams-Novikov spectral sequence for the spheres,
Ann. of Math. 96 (1972), 480-504.



99

ABSTRACT

Let E be a ring-spectrum such that E*E is flat over E>.'< = 'rr*(E).
In this thesis we study homological algebra over the "Hopf algebra' of
cooperations E*E, after Adams. We construct a cobar construction and
use it to produce Ui-products, and if ‘pE* = 0 Steenrod operations, in
EXtEJE' An ideal Ic E* invariant under the E*E—coaction determines a
spect;'al sequence by filtering the resolution by powers of I. Cases of this
construction are various Bockstein spectral sequences and the "algebraic
Adams spectral sequence'' of Novikov. With these tools we obtain a vanishing
line for ExtBPd‘BP(BP*,M) for a comodule M, and we compute
EXtBP,BP(BP*B;P*) in a band of width pzq, q = 2p-2, above the vanishing
line. Combined with known facts about -rri (SO), this yields

s,tq i . =23 =
EXtBP>,<BP (BP*, BP,) ina larger range: throught =23 for p =3 and

through t =49 for p =5. This comparison reveals several nontrivial

differentials besides the Cohen-Toda-Zahler differential.



