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A SPECTRAL SEQUENCE FOR THE HOMOLOGY
OF AN INFINITE DELOOPING

HAYNES MILLER

Let £ = {E,: n€ Z} be a (—1)-connected infinite loop space:
i.e., QFE,.,=F, for all n, and for n =0 the space F, is
(n—1)-connected. Then the stable homology of E is

Hy(E) = lim Hy,.(E,)
—

under the suspension homomorphisms. One also has the un-
stable homology Hy«(E,), which with mod p coefficients carries
a Pontrjagin product and an action of the mod p Dyer-Lashof
algebra R.

It is natural to ask how Hy(F,) determines H.(F); and
the purpose of this paper is to construct and study the general
properties of a spectral sequence whose E’term depends
functorially on Hy(E,) as an R-Hopf algebra and whose E*-
term is the associated graded module of a natural filtration
on Hy(E). For simplicity we mainly treat the case p = 2.

The spectral sequence developed here is probably identical in the
stable range with the iterated barconstruction sequence of D. W.
Anderson.! We give an entirely different construction, however,
which makes evaluation of E* easier. In fact, if .97 is the category
of allowable R-Hopf algebras ([4] I or §2 below) then E? is the sth
derived functor of the functor F,X.Q(—), where Q(B) is the R-
module of indecomposables of Be .

The following heuristic description of the resulting E*term in
favorable cases is due to M. Mahowald. Suppose 7, (E,) is free-Abelian
and H.(E,[1]) is polynomial, where E,[1] is the connected component
of the identity. Then as algebras H,.(FE,) is isomorphic to the homology
of a product of 2S™’s for various n. Now H,(2S") is an Abelian Hopf
algebra and hence has formal iterated deloopings defined inductively by

B*H,(28") = Tor”" ' @™(F, F,) .

Then our E'-term is the tensor-product of the corresponding groups
B”H,.(2S"), and the differential d* is determined by the Dyer-Lashof
action on H,.(E,).

In §1 of this paper we construct the spectral sequence and outline
the algebraic identification of its E*term. In §2 we set up the
algebraic background required to complete this identification. We

1 Added in proof. W. Dwyer points out that our spectral sequence is not identical
with Anderson’s, since Anderson’s E,-term depends only on the algebra structure of
H.(E,) while ours depends on the R-module structure as well.
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also exploit the fact that Q(—) itself has only one derived functor
on an Abelian Hopf algebra to provide a “linear” computation of the
E*term. Then in §3 we set up an analogue of the /-algebra to
make this calculation. Finally, we show in §4 that the action of
the Steenrod algebra on H,.(E,) puts very strong restrictions on the
differential in the spectral sequence and goes farther than one might
expect towards determining the Steenrod action on H,(E).

It is a pleasure to thank Northwestern University for providing
the friendly and inspiring atmosphere in which much of this work
was done. I am in particular indebted to Mark Mahowald and Stewart
Priddy for a great many useful conversations.

1. Construction of the spectral sequence. Let .7 be the cate-
gory of compactly generated Hausdorff spaces with nondegenerate
basepoint (i.e., such that the inclusion of the basepoint is a co-
fibration) and continuous pointed maps. For brevity call an object
of 7 a space. Clearly 2 and Y are adjoint functors on .7 ; let
ap: X — 23X and By: 32Y —Y be the usual adjunctions. Let & be
the category of (—1)-connected infinite loop spaces. Thus an object
E of &Z is a sequence E,, n € Z, of spaces such that F, = QF, ., and
E, is (n — 1)-connected for all ». A morphism E’— E is a sequence
fu: B, — E, of continuous maps such that f, = 2f,., for all »n. Call
an object of &¥ a spectrum.

Let Q°: &¥ — 9 by Q°E = E,. Let 3*: 9 — <& by

(1.1) (2*X), = lim 'YX .
Then 2~ and X= are adjoint functors [8]; we recall their adjunction
morphisms. For Xe. 7, a3: X — 2°3*X is the inclusion of the first
term in the direct limit (1.1). For Ee &5 8%5: X3°Q°KE — E is the
sequence whose nth term is the map induced from the system

Qi i4n .
o R, —E,.

QIFE = QiyitaQitep

If h, is a connective homology theory on .
we can form the unstable homology

hi(E) = h(2°E)

then given E ¢ &7

and the stable homology
ho(E) = lim 3"k, (E,) .

n -0

Our problem is to relate these groups.
For any spectrum FE there exists a space X and a map i: I°X —
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E such that 27 is a split epimorphism in .. For example, we can
take X = Q°F and 7 = B3, since

03B -5, oo
GZMET =/7
0°E

commutes.
Using this observation we can resolve a spectrum E with respect
to “space-like” spectra by forming a diagram

E = E0) E(1) E(2)
1.2 N N S
X0)  ZeX)

in which (i) 271, is split epi and (ii) the V-shaped segments are
fibration sequence in &£

Now applying stable homology &, yields a spectral sequence
abutting to h.(F).

In case h, is mod p singular homology H, for p a prime, we can
express F, in this spectral sequence in terms of HXE). We shall
outline here how this is done, and develop the necessary algebra in

the next section.
Apply 2~ to (1.2). The fibration

QB + 1) — 2°5°X(n) 25 0= E(n)

is principal, and 2%i, has a section, so 2°3“X(n) has the weak homo-
topy type of the product of fiber and base. Consequently we have a
short exact sequence

F,— H(En + 1)) — Hi(2"X(n)) — Hi(E(n)) — F,

of Hopf algebras over the Dyer-Lashof algebra R (see §2 below).
Splicing these together gives a long exact sequence

(1.8) F, —— HYE) — HY(Z~X(0)) —— H}(Z"X(1)) e -+~ .

Now Theorem 4.2 of [4] I implies that for Xe 7, H,(2*X) =
H,(X) is given in terms of HX3*X) by F, R, QHXZ~X), where Q
denotes the Pontrjagin algebra indecomposables. Thus if we regard
H:(3~X) as a projective object then (1.3) is a projective resolution
of HY(E) and

B = L(F, ® Q(H(E))
is the left derived functor of F, ®,Q(—).
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2. The homological algebra of allowable Hopf algebras over
the Dyer-Lashof algebra.

2.1. Hopf algebras. We make the following definitions.

Let & be a field. Let (Coalg) be the category of nonnegatively
graded commutative augumented £k-coalgebras C such that C, is
generated over k by its set

7C ={xeCide =2, cx =1}

of set-like elements. For brevity call an object of (Coalg) a coalgebra.
Given coalgebras C’ and C”, the coalgebra C’'® C” is a product in
(Coalg). Let (Hopf) be the category of Abelian group objects in
(Coalg). Call an object of (Hopf) a Hopf algebra.

For a Hopf algebra H, H has a natural Abelian group structure
for which the identity element is the identity element 1 of H. Let
HJ1] be the component of H containing 1:1i.e., H[1] = k[]y H. Then
the natural map k[zH|® H[1] — H is an isomorphism. It follows that
(Hopf) splits as the product of the category (Ab) Abelian groups and
the category (¢ Hopf) of connected Hopf algebras. By a theorem of
J. C. Moore (unpublished, but see [5]), (c Hopf) is Abelian; so (Hopf)
is Abelian. The (co) product is the tensor-product.

Let Z: (Coalg) —» (Hopf) be the “free Abelian group” functor, left
adjoint to the forgetful functor; see [4] p. 23 for details. This
adjoint pair induces a projective class [6] in (Hopf), so the left
derived functors L.,F' of an additive functor F' on (Hopf) are defined.

For example, let Q: (Hopf) — (k — mod) be the module of inde-
composables; thus QH = Tor{(k, k). Thereis a six-term exact sequence

2.1.1) 0—QH —QH—QH" QH’ QH QH" 0

depending functorially on the short exact sequence k¥ — H' — H —
H" — k in (Hopf). Here Q.H = Q Tor{(k, k) in terms of the natural
algebra structure on Torli(k, k). To see this first let A be an Abelian
group. Let E denote the exterior algebra over k and let I” denote
the divided polynomial algebra over k. Then as algebras

Tor“I(k, k) = E(Z(k ® A)) ® I'(3*(k+A))

where Y means suspension and where X) and = are the tensor and
torsion products over Z. Thus QK[A] = kX A and Q.Kk[A] = kA, and
(2.1.1) is the long exact sequence of the derived functors of k& —.
In the connected case (2.1.1) is proved in [9]. The general case
follows by additivity.
Now by standard techniques we have
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ProposITION 2.1.2. On (Hopf), LQ =Q, L,Q = Q,, and LQ =0
for s > 1.

2.2. The Dyer-Lashof algebra. For simplicity we fix p = 2.
We recall some notation from [4].

Let R(— ) be the bigraded algebra with generators Q° 7 = 0,
Q| = (1, %), and “Adem” relations

t—gJ—1

2.2.1) Q'R = Z( of

)Qi+j—tQt , ’l: > zj .

R(— o) is thus isomorphic to the opposite of the A-algebra [2]. We
will often neglect the first gradation to obtain a graded algebra. Let
s be a nonnegative integer and let I be a sequence of s nonnegative
integers %, -+-, %,. I is allowable iff 7, < 21,,, for 1 <t <s. Let
RQI=Q"---Q5eR(—). Then {Q":I is allowable} is a basis for
R(— o).

The excess of an allowable sequence I of length s is e(I) = 1, —
(% + +++ + 1,). The subspace spanned by {Q”:e(I) < n} is an ideal
B(n) C R(— ). Let R(n) = R(—)/B(n). Then R = R(0) is the Dyer-
Lashof algebra.

An R(— co)-module M is n-allowable iff Qx = 0 for all x € M and
all ¢ <|z| + »n. Thus for any nonnegatively graded mn-allowable
R(— )-module, the R(— )-action factors through an R(n)-action.
Write (a,R-mod) for the Abelian category n-allowable R(— o )-modules.

For neZ, the inclusion (a,R-mod) — (R(—c)-mod) has a left-
adjoint a, such that

(2.2.2) a, M = M/{Qx:1 <|x| +n,xeM}.

This adjoint pair induces a projective class in (a,R-mod). Let
Untor(F,, —) denote the resulting derived functor of

F,®; —: (a,R-mod) — (F,-mod) .

2.3. Hopf algebras over the Dyer-Lashof algebra. The Dyer-
Lashof algebra admits a (noncommutative) Hopf algebra structure
with commutative diagonal such that 4Q" = 3..,;,_, @ ® Q. Hence
one has a internal tensor-product on (a,R-mod) and so one can define
the category (aR-Coalg) of allowable R-coalgebras and (aR-Hopf) of
allowable R-Hopf algebras. (An R-Hopf algebra H is allowable if
it is O-allowable qua R-module and is such that Q'*'xz = 2* for all
xe H.) It is easy to see that (aR-Hopf) is Abelian.

In [4] I §2 May constructs adjoint functors
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E VA
(Coalg) — (aR-Coalg) —— (aR-Hopf)

where the unnamed arrows are forgetful functors. E is such that
JEC =a,(R JC), and Z (which May calls GW) covers Z: (Coalg) —
(Hopf). Give (aR-Hopf) the projective class induced by ZE.

By [4] I Theorem 4.2, H¥(3* X)= ZEH .(X) € (aR-Hopf) naturally
in Xe. 7. Thus (1.3) is indeed a projective resolution; note in par-
ticular that it is split as a sequence of coalgebras. Thus if Q:
(aR-Hopf) — (F,-mod) by QH = F, X QH, then in our spectral sequence,

(2.3.1) E: = LQ(HE)) .

To compute L,Q we first study @Q: (aR-Hopf)— (a,R-mod). Let
H«— P, be a projective resolution in (aR-Hopf). Clearly P, is a
projective resolution of H when regarded in (Hopf). Hence for He
(aR-Hopf),

L,Q(H) = Q Torj (F,, F)

as an F,module and L,Q(H) =0 for ¢t > 1.
It is easy to see that Q: (aR-Hopf) — (a,R-mod) carries projectives
to projectives. One thus has a Grothendieck spectral sequence [6]

(2.3.2) s0 = Untor(F,, LQ(H)) — L,..Q(H) .

Since L,Q = 0 for t > 1 this spectral sequence degenerates to a long
exact sequence

0 —— Untor{(F,, QH) «—— L,Q(H) «—— Untor{(F,, @ .H)
(2.3.3) P
«—— Untor®(F,, QH) «—--- .

In particular, if @ H = 0 — for example, if 7H is free of 2-torsion
and H[1] is a symmetric algebra — then

(2.3.4) L,Q(H) = UntorX(F,, QH)

for all s. Thus in this case L,Q(H) is determined by the action of
R on QH alone.

REMARK 2.3.5. Of course, this FE,-term may also be obtained
directly, without introducing @, by observing that
0 — QHY(E) «—— QHi(3* X(0)) —— QHY(Z~ X(1)) ¢—---

is a projective resolution in (a,R-mod) which yields E* on application
of the funector F, R, —.
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2.4. Remark on the Adams spectral sequence. The procedure
of this section is equally applicable to the study of the FE,-term of
Bousfield and Kan’s mod p unstable Adams spectral sequence [2]. They
prove that

E;(X) = R°P(H.(X)) .

Here P: (unstable A-coalgebras) - (F,-mod) is the functor F, [ ], P(—)
where A is the mod p dual Steenrod algebra and P(—) is the module
of primitives. Then P(C) is a 1l-unstable A-comodule, in the sense
(for p = 2) that xSqg" = 0 for all xeC and all » = 1/2|x|. As such,
P carries injectives to injectives, and there results a Grothendieck
spectral sequence

(2.4.1) E3t = Uncotor:(F,, R'P(C)) - R P(C)

in which Uncotor!(F,, —) is the obvious right derived functor of
F,[], —: (u,A-comod) — (F,-mod).

This situation is in several ways more complicated than the Dyer-
Lashof case. First, the category of unstable A-coalgebras is not
additive, so one must use the theory of nonabelian derived functors
to define R'P and R°P. Furthermore, R°P can be nonzero for all
s. Bousfield and Curtis consider the case when R'P =0 for s > 1,
and [1] is in part an analysis of the spectral sequence (2.4.1) in this
“nice” case.

Bousfield and Curtis construct a complex A(M) such that

Uncotor (F,, M) = H(A(M)) .

A(M) is closely related to the usual unstable A-algebra for M. Our
next step here is establish an analogous complex for a 1-allowable
R(—c0)-module. We remark that the methods of §3 carry over to
the Steenrod algebra case and give another derivation of the pro-
perties of A(M).

3. A A-algebra for allowable R-modules. We now address the
problem of computing Untor®(F,, M). As noted by S. Priddy in [10],
Example 9.4, the algebra R(— o) has a “Koszul resolution.” We note
here that this machinery behaves well with respect to the allow-
ability condition, and study the resulting complex.

3.1. The off-diagonal homology of the bar-construction. Let
R =R(—)X® —: (Fymod) — (R(— < )-mod)

and
U=a(R(—>)® —): (Frmod) — (a,R-mod)
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be left adjoint to the forgetful functors. The resulting cotriples on
(R(— o)-mod) and (a,R-mod) give rise to standard complexes B (M)
and B,(M). Here By(M) is the usual (reduced) unnormalized bar
construction with respect to R(—co). Similarly, B,(M), = U*(M).
The natural surjection R(M) — U(M) induces a surjection of the cor-
responding bar constructions.

Given a basis X for M e (R(— «)-mod),

(3.1.1) Q"R - RR"Qxz: I; is allowable, ze X}

is a basis for By(M),. If Me(a,R-mod) then a basis for B,(M), is
given by (the image of) the subset of Q" ® --- ® @+ X« in (3.1.1)
such that in addition

e(l) > [ L] + o+ 4+ | L] + | ]

for 1 £ 7 <s. These are the “monomial” bases.

Let S, € (a,R-mod) have (S,), = F, (with generator ) and (S,); =0
for j #+# n. Then the bigrading on R(— ) induces a trigrading on
Bk(S,) and on By(S,) with (Bx(S,)),... generated by those Q"X ---®
Q' ® x such that >, I(I;) =t and 3 |I;| +n =u. Clearly By(S,), .=
0 for s >t. The differential d preserves ¢ and u and decreases s by
1. We now have:

PROPOSITION 8.1.2. There is no homology in By(S,) or in B,(S,)
off the main diagonal — i.e., for s == t.

For Bg(S,) this is [10] Theorem 5.3. The assertion follows for
By(S,) upon checking that the chain-homotopy constructed by Priddy
sends By(S,) into itself.

To compute the diagonal homology, we pass to the dual, still
following [10].

3.2. The dual of the Dye'r-LashoAf algebra. We recall from [7]
and [4] the structure of the dual R of the Dyer-Lashof algebra.
As a commutative algebra

R =TI R[k)

k20

where ﬁ[k] = F)[&.4 +++, &l for £ >0, and R[0] = F,. Here &,, is
dual (with respect to the allowable basis) to @Q%¢*, where I,, is the
length k& sequence

Io,k = (07 °t %y 0)
L,= @2 —-1), -+, 2" = 1),27, - D) for 0 <1<k
ok (2"_1: cee, 1)
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Note that ¢(QI;,) = 0 unless 7 =k > 0, when ¢(QI,,) =1. &, is the
identity element in R[k]. R is bigraded by &l = (K, 25742 — 1)).
Let A be a sequence of the form (k; 4, ---,7,) where k =0 and 1 <
i; = k; then define &' =&, , -+ &, ,. Write I(4) = k.

R is not a Hopf algebra, because R, = F,[Q"] is not of finite type.
However, the preduct in R induces a multiplicative unitary coproduct
4 on R,, the positive dimensional submodule of R, such that

(3.2.1) 4850 =3 (G PP N R A

Also the unit in R dualizes to e: R — F, by e(&,) =1 and ex) =0
otherwise.

Let J(n) be the submodule of R generated by {&4: 7, = n where
I(4) = k}; J(n) is the ideal generated by {&7 ..k =1}. J(n) is then
the annihilator of B(n) C R.

A 1l-allowable comodule over R is a nonnegatively graded F,-

module together with a map : N —U(N), where
UN)=@®Jn+1)QN,cCRRQN,
720

such that (4 @ N)y = (B ® )y and (¢ @ N)y = id. Notice that since
Jn +1), =0 for n =0, 4® N is defined on U(N).

Let (aﬁ-comod) denote the resulting category. It is clearly
Abelian, and there are functors

U ~
(Fy-mod) — (a,R-comod)

in which the unmarked arrow is forgetful and U is its right adjoint.
This adjoint pair yields an injective class in (a,R-comod) and a
standard complex 2;(N). A basis Y for N determines a basis for
2+(N)*, namely,

@ - ®Quitied(dinl + oo 4]+ YD

3.2.2
( ) foralll<j<sand yeY}.

If M is a 1-allowable R-module then /] is a 1-allowable R-comodule
and there is a natural isomorphism of complexes
By(M)" = Qu() .
Thus if M is of finite type,
Untor”(F,, M)~ = H(2:(M)) .

3.3. The diagonal homAOlogy of the cobar const'{'\uction. We must
therefore compute H**(24(S,)). From (3.2.2), 24(S,)"* has basis



148 HAYNES MILLER

331 (H® - ®&EQuii;> i+ +i, +nfor 1<j<s},

where y generates §n. These elements are of course all cycles, since
24(S,)y"* = 0. This also follows from the equations

(3.3.2) 48, = 6, R éw + S0 @ &n
and £,&, = 0, since then
AEh = Eil ® 500 + Eoo ® 81 .

To compute the boundaries in .Qg»(ﬁn)s’s note that .Qg(&)“*s has
basis

(1R - RE"REMAQETR - RET Ry

3.33) i=0and i; > %, + o+, +nfor1<j7<s—1}.
Now

(3.3.4) Ao =5, R0 + R EL + R + &0 ® &

(3.3.5) 45 =5 R + &R én + Q&

so the reduced diagonal of &L&j is

(3.3.6) > ( 1 >Eft‘“f‘"t & &t

t=0

and this obviously determines the differential of an element of (3.8.3).
To describe the resulting homology, let L be the associative
algebra on symbols o,,,, =0, of bidegree (1, 7), subject to relations

i 1
(3.3.7) g& < ¢ >0'zi+2j—t+10j+t+1 =0

for 7, 7 = 0. Then H(.Q(:-(S‘n)) maps isomorphically to the sub F,-module
of L spanned by

{Gipr o 0s 21, > 15, + oo + i, +n for 17 < s}
by sending & ® --- QL QY to Oipor 0 Oy e
LemmA 3.3.8. (a) Let I = (i, +-+,1,) be a sequence of positive
integers such that
(3.3.9) 1y Z Ay + o0 + 1, Jor 157 <s.

Then in L, 0,y = 0,4y -+ 0, 4, s a linear combination of o,’s with
J admissible.
(b) {o,:J is admissible} is linearly independent in L.
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Here “admissible” carries its usual meaning: J is admissible iff
jk g ij+1 fOl‘ al]. IG.

Proof. (a) Let 0 < b < a < 2b. Then with the substitutions j =
a—0b,i=2b—a,t=2b—a—s, (3.3.7) yields

20—a/2b — @
(3.3.10) O'a»!-LO-IH—l = Z (

8=0

>aa+s+10b—s+1 .

s

The condition (3.8.9) guarantees the applicability of this relation to
0;., unless I + 1 is admissible. The reader may check that (3.3.9)
is satisfied by each term of the result. If we define the moment
of T+ 1 as

m(I +1) = gg’(z‘j +1)

then each term of the result has strictly smaller moment. This
completes the proof, since moment is positive.

(b) If we forget the first gradation, then L maps multiplicatively
to the mod 2 Steenrod algebra A by sending o,., to S¢*** for 7 = 0.
To see this let §: A— A be the derivation sending S¢*™* to Sq¢*. Then
(3.3.7) maps to Leibnitz formula for 6%(Sq***™'Sq'*/*'), which is zero
as required. Since {Sq’: I is admissible} is a basis for A, the result
follows.

We have proved

ProPOSITION 3.3.11. Let n = 0. Then
UntorZ(F,, S,)" = H(Bi«(S,)" = H*(Q:(S,) = L(n)
where L°(n) is the F,-module with basis

{o:: I admissible, I(I) = s, 1, > n + 1} .

ExampLE 3.3.12. Let H be the integral Eilenberg-MacLane
spectrum. Then QH = Z as a discrete H-space, so HY(H) = F,[Z].
Thus (2.3.4) applies, and since QF,[Z] is spanned by x = [1]-[0], our
E*-term is UntorZ(F,, F,) = L*(0)". Now H,.(H)" = A/ASq', and we
have just seen that L*(0) is additively isomorphic to A/ASq' under
the correspondence o;,, — Sq¢‘*', 7 = 1. The spectral sequence there
fore collapses in this case. The example of the mod 2 Eilenberg-
MacLane spectrum may be handled using (2.3.3), and this provides an
upper bound (which turns out to be sharp) on the size of the Steenrod
algebra, derived entirely from the Dyer-Lashof algebra. We shall
study the behavior of the Steenrod action in the spectral sequence
in more detail in §4.
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We now define a complex L(N), natural in the l-allowable R-
comodule N, such that

H(Q2;(N)) = H(L(N)) .
As an F,module,

(3.3.13) L(N) = QL(%) &® N, .

To define the differential, let nlzﬁ’—dé[l] be the projection; then
(3.3.14) (7, @ Ly(y) = ;} & ® yQ

defines a right R-action on N. Let
(3.3.15) Ao QDY) = 201 @ YQ* -

Now the relations in L precisely guarantee that d* = 0. There
is a natural map of complexes

0: 2:(N) —— L(N)

sending 4R --- Q&% Ry to zero unless I(4;) =1 for all j, and
sending

ﬁ@“'@Eﬁ@y'_—_)o-iﬁ—x"'ais+1®y'

Filter Nby F,N = @,-, N*. F,N is a sub l-allowable R-comodule,
and E:N is a sum of copies of §,,. Thus in the resulting spectral
sequence, E'(#) is an isomorphism by the above work. Thus 6 is a
homology isomorphism, and we have proved

THEOREM 3.3.16. There is an isomorphism
Untor®(F,, M)~ = H(L(M))

natural the 1-allowable R(— = )-module M of finite type.
4, The Steenrod action.

4.1. The Nishida action. Let A° be the opposite of the mod 2
Steenrod algebra, graded nonpositively. A left A’module M is
unstable iff Sq"x = 0 whenever 2n > |x|. Write (u4’~mod) for the
resulting Abelian category. The diagonal A%action provides it with
an internal tensor-product. A coalgebra C in (uA’~mod) is unstable
provided that & = Sq™x for all x €C,,, where & is the Verschiebung.

If M is an unstable A’-module, give R X M the unstable A°~module
structure determined inductively on length in R by the Nishida relation
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(4.1.1) Sq*(Qx) = Zt </: : ;)Q""“Sth .

An n-allowable R(— )-module structure on M (for » = 0) is an A°R-
structure iff R ® M — M is an A>-module map. The resulting category
(ua,A°R-mod) is Abelian.

Putting this together with §2.3, we have the category (uaA°R-
Hopf) of allowable R-Hopf algebras with compatible unstable A’-action.
(uaA°R-Hopf) is Abelian, and the functors Z, E, and Q of §2.3 lift;
for example, Q: (uaA°R-Hopf) — (uA"mod) additively. Then [4] I
Theorem 4.2 asserts further that Hy(2* X) = ZEH, . (X) in (uwaA°R-
Hopf). Thus the spectral sequence is defined in (uA’mod), and E? =
LQHYX)) in (wA*~mod). ’

Similarly, for M e (ua,A°R-mod), Untor®(F,, M) c (uA’mod), and
the exact sequence (2.3.3) is defined in (uAmod). When M is of
finite type we can express this action in terms of the complex L(M)
introduced in §3.8. Give M the contragredient left A-action. There
is then an A-action on U(M) for which y: M — U(M) is A-linear. We
need only part of this action, namely,

—t
(4.1.2) St @) = >, <T >$ﬁ““ ® Sq'z .
t \n — 2t

This formula follows by an easy dualization from (4.1.1). Thus one
may inductively define an A-module structure on L(M): if it is known
on LH(M), let

r—t
(4.1.3) Sq" (0, w) = 3} < >0'n+r—t+lsth
T \n — 2t

for we L*~'(M). Then L(M) is a differential-graded object in (wA-mod),
the category of left A-modules for which Sqg®x = 0 whenever n > |z|,
and

H(L(M)) = Untor?(F,, M)"

as A-modules.

ExAMPLE 4.1.4. By comparing (4.1.3) with the Adem relations
in the Steenrod algebra, we have

(4.1.5) LS, = L*0) = E}(A/ASq)
as A-modules, where A/ASq' is given the length filtration
(4.1.6) F"(A/ASq") = {(S¢*: I = (4, ++~, 1,) admissible, s=n, 7,>1) .



152 HAYNES MILLER

(It follows from this, incidentally, that E3(A4/ASq"), given the com-
plementary gradation, so Sg’ occurs in dimension |[I| — %, is an
unstable A-module. The same is true of E°(4).) In fact, the filtration
on H*(H) = A/ASq' associated with the spectral sequence is precisely
the length filtration. To see this we make the following general
observation.

For a left A-module M let F°M = M and inductively define sub
A-modules

Ft'M = {Sqg"x:m + s > x|, x € F"M} .

For example, on A/ASq" this is precisely the length filtration. In
general we call this the wmnstable filtration, because E:M (graded by
complementary degree) is unstable, and F*M is the largest filtration
of M with this property; any other such filtration F*M has F*M <=
F°M for alls. If Mis (—1)-connected then F*M is (2° — 2)-connected.

Thus in particular the filtration F* H*(E) associated to the spectral
sequence for the spectrum E maps to the unstable filtration. In the
example of A/ASq', the quotients agree, so the filtrations agree as
claimed.

4.2. The secondary Steenrod action. Consider the filtration
induced in stable cohomology H*(E) by the spectral sequence of §1.
Since

Sq'lb-)-lFsHs-l-t(E) ; Fs-}-le—'r—t‘i—n-i-l(E)

whenever n = ¢, we may hope to find a representative for S¢"*'% in
E, depending only on a representative for Z ¢ F*H*''(E) in E,. In
fact we have

THEOREM 4.2.1. Suppose E is a spectrum such that H.(E) is
of finite type.

(a) Comnsider the cohomology spectral sequence with E, obtained
from (1.2) with X(n) = QE(n). Let Te F<H"'(E) and let n = ¢, so
that Sq""'z ¢ F*+' H**"***(E). Let x,c H'(E(s), = E** survive to .
Then

Q@ wo € H™((2” Q7 E(3)),)

maps to an element in H'**(E(s + 1),) surviving to Sq*™'Z.

(b) Suppose that Q.H,(E,) = 0, so that E, = H(L(PH*(E,))). Let
x,€ L (PH*(E,)) survive to & € F*H**'(E), and let n =t. Then 0, 2 ¢
LY (PH*(E,)) survives to Sq"*'%.

This theorem follows immediately from Lemma 4.2.4 below.
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Let E be a spectrum with H.(E) of finite type, and consider
the natural fibration sequence

4.2.2) Fi.xg -t g5k,
on the 0-space level we have a fibration

(4.2.3) 7, 0oseB, - B, .

Let xe H'(E) map to k*x = x,c H(3"E,) = HY(E,). Let n>=t, so
that Sq¢"*'z, = 0. Thus there exists y € H'**(F') such that i*y = S¢"*'z.
Let y map to y,€ H**(F,). Then

LEMMA 4.2.4. J5(EL @ x) = Y.

Proof. Let K = {K,} denote the mod 2 Eilenberg-MacLane spec-
trum, and let

(2.2.4) L— s k507 ey

be a fibration sequence in &, Let ¢, H"(K,.,) be the fundamental
class, and let ¢,,, € H***(L,) map to ¢, under the boundary homo-
morphism. Then the reduced coaction +: H*(L,) — R ® H*(L,)
satisfies

(4.2.5) Vi, =0 Q¢ .

This formula is just dual to the well known fact [3] that the funda-
mental homology classes in L, are related by Q.

Now, since k*xr = x, has S¢"*'xz, = 0, we have maps y and z in
the commutave diagram of spectra

F-YL, st g
il
S°E,—2 5L
|
B sk ST, sewng

At the level of 0-spaces, we have a commutative diagram



154 HAYNES MILLER

14
Kisn L, Q2L
Yo ] 2o 2, 2”20
Jo B
F, Q" 3°E,~—— Q~3~Q~3"E,
[/4

where B8 = Q°B5wp, @ = Qzogey, and @ = 2°B%:,. Chasing the ele-
ment ¢,,., € H**Y(L,) and using (4.2.5), we have

T e N el 41 X ta

[l ]

Yoy QRLRx+1Q L %,

N

HONED)

so the result follows.

ExXAMPLE 4.2.6. Returning again to the case of the integral
Eilenberg-MacLane spectrum, we see that Theorem 4.2.1 forces the
spectral sequence to collapse. Thus we have recovered the Steenrod
algebra (additively) using “only” the struecture of H,(2°3*X) and
the existence of a map Sg"*' satisfying (4.2.5).
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