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In this note we record a simple proof of a beautiful result of J.D.S. Jones, stating that the
Mahowald root invariant of a stable homotopy class « has dimension at least twice that of «.
This result is a natural strengthening of the Kahn—Priddy theorem. Our contribution is simply to
provide a postcard—length proof of the key diagram (3.1) {which occurs on p. 481 of 2]}, but we
take the opportunity to restate the notions of root invariant and quadratic construction, and the
connection with the Kahn—Priddy theorem. We also deal with odd primes, after J. P. May [1].
We end with a proof of Mahowald's theorem that o; € R(p"), and the observation that Jones's

theorem allows one to translate a 20—year old result of Toda's into the assertion that up to a unit,
By € R(ay).

§1. Mahowald's root invariant.

We begin with a discussion of the "root invariant" introduced by Mahowald in 1967 [5]. A
reference for the constructions in this section is [1]. We begin with p = 2. Let A dencte the
canonical line bundle over a real projective space, and let Pfgl be the Thom spectrum of

~n)\iﬂlPt+n_1. This is the suspension spectrum of lRPt—l/IRP"n“1 if n<0; itis IRP_?_“1 if

n=20; andif n> 0 oneembeds anPH—n—l in a trivial vector bundle and considers the
complementary subbundle. Atiyah duality shows that the 0—dual of PE;I is

t-1 -1
DP. " = ZPI (1.1)

t-1
-n+1’

by unnamed arrows. By forming direct limits we get spectra P_n with collapse maps

P

There are natural inclusions PE;l -+ an and collapses PE;l - P which will be represented

-~ P ~n+1
The pinch map 7: Pg_l = [RPi—l - 80 dualizes to a map sy P:% Composing with

1

the inclusion we get maps +:S = P-—t which are compatible under the collapse maps and yield

a diagram
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S S (1.2)

Now let p # 2 and set ¢ = 2(p—1). Then Adams' stable homology approximation to BEp
(see [1], p. 146) extends to give spectra P_Il with analogous properties. Here n = 0 or 1 mod g;
P_ has one cell in dimension i for each i = 0 or —1 mod q with i > —n; Pq_1 ~ Z‘”B)Zp; (1.1) holds

with t = 0 or 1 mod q; and there is an evident analogue of (1.2). See [1], pp. 146 and 42,

For1<¢igq-LletP_y ;= P_g g

The Mahowald filiration on the p—completed stable homotopy group =, is

t
M® 7, = ker(ue: 7w,y (ST) — 7, (P_)). (1.3)

Clearly M0 o= for all t. There is a cofiber sequence

P L_.so

-1 ¢
S 1 0

_,P_

in which 7 is the "transfer" map. The Kahn—Priddy theorem may thus be stated as

M'm o= foralltyl. (1.4)
The theorem of Jones asserts
M5 m=m for s<t, forp=2. (1.5)
We will show also that for any prime p,
Ms7rt = m for s < gk—e, if t = 2k—¢ (1.6)

Lin's theorem [4] (Gunawardena's when p # 2) says that the map +: ST holim P_,
is p—adic completion. This implies

nMS 7, =0. (1.7)
S

If aeM® - MmSt! L the root inveriant of « is defined as
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1 \\\\3
R(a) = {g:s" P_.}cx (1.8)
"‘\"S"l /: ST

where j is the inclusion of the bottom cell. Jones's result is thus that [R{e)| 2 2|a} .
when p = 2, and we find that for any prime p, |R(@)] > 2(pk—¢) if o] = 2k—e.

One may of course define an invariant "Rs(a)“ by means of (1.8) for any s. Butif a€
ML m , thenR(a) = {f:jo f=x}, andif af Mm® m, then R.(a) =9 : in either caseit is
independent of o and of little interest.

The root invariant of a may be interpreted in terms of the homotopy spectral sequence

associated to the tower (1.2): it is the set of representatives of a in Eis,s+t =gy Lin's
theorem shows that this spectral sequence converges to w*((S—l)p); 80
Eﬁ’q =0 for q<—(u+1). (1.9)
From (1.4), we have
E"l‘;’* =0 for u>0, (1.10)
and the Kahn—Priddy theorem asserts
E"_"l,q.—-o forq > 1. (1.11)
For p = 2, Jones's theorem is
Ejj)q =0 forq>-2(u+1) (1.12)

Thus E® is concentrated in a wedge:

N

T slope-2
slope-1
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More precise information about the position of E® is tied up with the conjecture that the

root invariant converts "vn—periodic” families to "v_  —periodic" families. This leads one to

n+1
expect that E” should be concentrated near rays with slopes —(2 — 27™). Similar analytic
geometry holds at odd primes.

§2. The Cup—i construction.

Jones proves his theorem by relating the root invariant to the cup—i construction. We
recall this construction from [2].

The p—adic construction

of a pointed space X extends naturally to spectra; see [3], [1]. It is easy to see that D pS211 =

ZQann and DpSzn_1 —y2n-lp for n > 0, and this holds for n <0 as well. Thereisa

qn—1
natural map

v KAD X——ADP(KI\X)

p

for K a pointed space and X aspectrum. If X is a space this given by

k; e, X[y Xp =t €, (k,xl),...(k,xn).

If K=S' and X = S", this is the “collapse map," EnHPn B —— Zn+1Pn ) When p =2,

+
and analogously for p # 2.
For p=2 and ac€ m define Q(a): Pt. 5§~ as the desuspension of the composite

DQ(O‘)

5P, = Dy(s") —2—— Dy(s?) = P T8 (2.1)
The gquadratic filtration of T, is given by
F'r, = {a: Q(a)|PT" e} (2.2)
Thus
Fgwt =T (2.3)
and

Flr, = {a: d® =0} . (2.4)
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We will see that

NF'r, =0. (2.5)
n

If ae ant —potl T, We define the cup—n construction to be

St+n 5
C(e) =1{p: P10 P T S (26)

Thus for example if a¢F17r then C(a) = e
t

It is useful to extend this definition by considering the composite

-5 t

for s > —t, where ¢ is the collapse map. We then have a modified quadratic fillration

Flr, = {a: (Q(a)o o) [PPFT T~ ) (2.7)
Then

n_ _ i 1
Fim =F_m CF 7 Co (2.8)
and Fgwt ig independent of s for s>t + 1. We call this last the stable quadratic filiration and
write Fr, for it.
[

7

~F§+l { wemay define the modified cup—n construction

For s> — and &EFIsl?rt
St+n
7 S8

Cyle)=1p: PUI" (2.9)

For s>t + 1, Cs(a) is independent of s; it is the stable cup—n construction Cm(a).
For p#2 and ac€ 7, define Q(a) analogously as the composite
D (@)

_ t 0 L)
qlece = Dp(8Y 7 D, (8°) —"—8

y2k—ep

if t=2—¢ with €€ {0,1}. If t =2k then Q(a)|SP*= oP. If t = 2k-1, Q(a)[S2PK2 s the
"restricted p—fold Massey product” <a>P, depending not just on the product in the
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sphere~spectrum but on the commuting homotopies as well. For example, in {7] Toda proves
<o:1>p = ﬂl up to a unit in le. The proof uses little more than the non—existence of elements of

mod p Hopf invariant one corresponding to PP,

The rest of the definitions go just as for p = 2; we have the p—adic filtration and the
stable p—adic filtration, the cup—construction and the stable cup—construction. For instance, if
|e} isodd and <a>P #0, then C(a) = {<a>P}; otherwise ae Fl?rt.

§3. The proof.
Jones's key observation is the

Lemma 3.1. Let a€r

" with t = 2k—e, let 26+8> t+1, and let r = qf+4. Then

~ 3 SO
[ N
P .Qﬁg)___q‘ S-t’
gk—e¢
commutes.
This lemma, relates the Mahowald filtration to the stable quadratic filtration, and the root
invariant to the stable cup—construction. To see this we note that for any 8 =0 or —1 mod q and

any fem .,

commutes iff

does. By (1.1), together with the fact that the dual of « is «a, this commutes iff
PS L3 SO
X I
SS .__...._é..........; Smt
does. But by (3.1}, this commutes iff

e
g f gt

does. Thus (taking f=0) S0 257t Lup sttt P —p Ol g7

is null. The latter is surely null if s < qk—¢; and this is Jones's theorem (1.5) and its extension
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to odd primes, (1.6). In fact this shows (as Jones notes) that

S_ _ pS—t
Mz =F """ m , (3.2)
and that the root invariant coincides with the stable cup construction:
R{a) = Cw(a). (3.3)

Since Msﬂt = Fi'"t m 2 o 7, Lin's theorem leads via (1.7) to (2.5), which may be restated

as:
{3.4) The p—adic construction {with t = 2k—e)

et —t
Qix —7 qu_f

is injective.

The proof of (3.1) is quite simple. Let s = 2f+6. Since s>t + 1, @ € m, is represented

t
by amap «: st S3 The following diagram then commutes by naturality in K of e

and this proves (3.1).

P .s+t
-85 A D (579 5 DY) —
a M1
1A q;SS \0\. gS A Dp(s—s) ) Dp(a)
T $s 4(a)
5 2 0, (s%) PR 0, (s")
1 A7 i l

by St ¢4 N SO P

84. Two examples.

Let o =1 and for s > 0 let o € ™ be a minimal dimensional nonzero p—torsion
element of Adams filtration s. These are represented in Adams’ E, along Adams' edge. The
element 0 is well—defined up to a unit in in.

For s > 0, the dimension of ay is q(s)—1, whereif p> 2, q(s) =g¢s; if g=2,

q(s +4) = q(s) + 8 and
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Theorem (Mahowald). o € R(p%).
This says that the diagram

8
3”1 ___ P S_1

o K

S‘Q(S) i , P—-q (s)

cornmutes, and that the common composite is essential.
Since E%’S"l(S_Q(S)) = 1/p maps isomorphically to E;’svl(P —q(s))’ and

r,r—1 . e s . 3
E2 (P = (0 for r > s, it will suffice to show that 0 # p° ¢ € 7r__1P_q(S).

—q(s))
Take p = 2. When s =1 or 2 mod 4, this may be checked by projecting on into
boAP —q(s) which is not hard to compute [6]. In the other cases, one may detect the class in

J—theory. Using James periodicity to translate Mahowald's analysis in [6] of J *(IRPH) to stunted

projective spaces, one finds

I (P = 1/

—q(s)

generated by the Hurewicz image of ¢
When p > 2, a similar but simpler analysis shows that J_; (P —qs) = I/ ps+1, and the

result again follows.
In our second example, we will use Toda's computation of C(al); as recalled above, it is a

unit multiple of ﬂl‘ Thus by Lemma 3.1

sq‘

Q(a)

Zq—-l P_g_l q—l —1 P

qu_

commutes. If the horizontal composite is nonzero for large s, then uﬂl € R(al). The dual of the

bottom composite is

8
2_"1 (pa___ |
S S P (p-1)q
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{after dropping the unit, suspending, and including into the infinite projective space). To see this
is essential one checks that it is nonzero at Adams' E,. Since Eg’q_l(P —(p—l)q) =0, this

element survives.
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