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Looping Massey-Peterson towers

J. R. Harper and H. R.. Miller

Introduction
In this paper we begin a study of the mod p cohomology of function
spaces by means of an Adams resolution of the target space. For simplicity and
concreteness we will require the source space to be a sphere, so we are dealing with
iterated loop spaces. We will use the “classical” unstable Adams towers constructed by
Massey and Peterson [4] and Barcus [1]. This technique restricts us to consideration
of target spaces X with “very nice” cohomology: H*(X) = U(M) for some unstable
module M over the Steenrod algebra A, where U is the Steenrod-Epstein enveloping
unstable A-algebra functor. The class of such spaces includes Stiefel manifolds over
C and H (and over R too if p = 2), buut excludes nontrivial wedges and suspensions.
Our method is simply to compute, to the extent possible, the cohomology of the
spaces in the k-fold loop space of a Massey-Peterson tower. By construction, the
cohomology of each space E, in such a tower for X surjects to H*(X). This fails for
the looped tower, and there results a fltration of H*(QFX) in the category of A-Hopf
algebras. Our main result determines the associated quotient of A-Hopf algebras,
under rather restrictive connectivity assumptions, in terms of certain homological
functors on the category I of unstable A-modules. To describe these, let Q%M denote
the maximal unstable quotient of the .A-module T—* . This is a right-exact functor
from I to U, and has left-derived functors Qf

Theorem. Let X be a simply connected finite complex such that
H*(X) = U(M) for some M € . Let b and ¢ be integers such that M? = 0 unless
b < i <t, and assume that k — 1 < b—p~*. Then there is a natural fltration of
H*(Q%X) by A-Hopf algebras A, such that 4_, = Fpy U4, = H*(Q2%X), and

Ast1/ /A, 2 UQQTIM).

A more precise version of this theorem is stated in Section 3 as Theorem 3.9.
We remark that, while examples (like 4.10 below) show that some restrictions on
M are necessary, the filtration by images of H*(2*E,) scems to satisfy 3.9 in much
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70 J. R. Harper and H. R. Miller

more general circumstances than we have been able to prove here. For example,
computations of W.M. Singer [5] show that H*(£2*S"**) has this form for all k > 0
and n > 1, at least for p = 2. Indeed, the derived functors he computes are precisely
the ones entering into 3.9 if M is a k-fold suspension in .

We begin by reviewing certain elementary facts about derived functors of %, In
Sections 2 and 3 we give a self-contained account of the Massey-Peterson-Barcus the-
ory, using the Filenberg-Moore spectral sequence. Finally, in Section 4, we prove the
theorem.

We adopt the following convention on primes. When the case p = 2 can be handled
by the substitution 8 = Sq’, P! = Sq%, we make no further comment; only when
something special happens for p = 2 do we take notice.

Most of the work on this paper was done before 1980. The intervening years have
seen the exploitation by Jean Lannes and others of more sophisticated variants of
this approach, but using source spaces with more convenient cohomology. We offer
our apologies for the long delay in publication, and express our gratitude for the
opportunity to submit it to these proceedings in honor of Ioan James.

1 Some algebra
We begin with the algebraic loop functor € and its derived functors
[4,5]. For any unstable .4-module M, define a vector space &M by

(@M)*P™ = M3",
(DM)PPr+2 = pp2ntl
(PM) =0 otherwise.
Write Z for the element of ®M corresponding to z € M. 1t is direct to check that
1.1 ®M becomes an unstable .4-module if we declare
PPig = Pig,
PPitlg — BPiz  if |z| is odd,
ﬁerE =0 otherwise.
1.2 The map A: @M — M defined by
o { Pz if |z| = 2n,
fP"r if|z|=2n+1,
is A-linear, and its kernel and cokernel are suspensions in .

Define functors  and £; by means of the resulting natural exact sequence

0— DM — ®M 2 M — TOM — 0. (1.3)
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Since @ is exact and ) is monic on projectives, standard homological methods imply
that §; is the first left derived functor of  and that Q has no higher derived functors.
The functor Q:4 ~ U is right adjoint to ¥. Since the ¥ is exact, ) carries
projectives to projectives. Consequently there is a Grothendieck spectral sequence
associated to the composite /QF = Qi+k.
UM S itiy, (1.4)
In particular, with j = 1, we obtain the Singer exact sequence (5]
0 — QOIM — Q¥ — 0k M — 0. (1.5)
Oune sees also by induction that
QM =0 ifs>k and (1.6)
QM = (Q;)° M. (1.7)

We will need estimates on the connectivity and coconnectivity of QAL If N is
a graded vector space let
conn N = min{i: N; #£ 0} - 1
coconn N = max {i: N; # 0}.

1.8 Lemma. If M €U, then

conn Q31+ Af > p*(conn M — k),

coconn QAL < p*coconn M — k.
Proof. From (1.3) we have

conn £; M -> p conn M,

coconn {3 M < p coconn M.

(If p is odd, both inequalities can be improved by dividing according to parity, and in
any case the second can be improved by at least 1. But these suffice for our purposes. )
(1.7) then gives the result if k = 0. If s = 0 the result is clear, and the rest follows
by induction using the Singer sequence (1.5). Notice that the cokernel determines the
connectivity and the kernel determines the coconnectivity. [ |

The above algebra is connected with the geometry by the contravariant functor J ()
which associates to any projective unstable A-module F' of finite type a generalized
Eilenberg-MacLane space K(F) with homotopy 7 K(F) = Hom4(F,L'F,). Then
H*(F) = U(F); and to a morphism f:F' — F we associate the unique H-map
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72 J. R. Harper and H. R. Miller

K(f): K(F) — K(F') inducing U(f) in cohomology. The functor K is in a certain
sense adjoint to H*:(spaces) — . there is a natural bijection

[X, K(F)] & Hom  (F, H*(X)).

There is a natural homotopy equivalence K(QFF) ~ Q*K(F), so H*(Q*K(F)) =
U(Q*F). For more general spaces X with H*(X) = U(M), H‘({QkX) is much larger
than U(Q*M); the isomorphism in this case is, as we shall see, a reflection of the
triviality of the higher derived functors of 2%t on F.

2 The cohomology theory of induced fibrations
The basic homological tool in the study of pull backs of fibrations is the
Eilenberg-Moore spectral sequence. Suppose we have a pull-back diagram

E M ppg

lP L’Po (2.1)
B L B
with pg the path-loop fibration. Under certain restrictions, an analysis of (2.1) was
carried out by Massey and Peterson [3] and by Barcus [1], using the Serre spectral
sequence. In this section we offer a proof of a variant of their results, using the

Eilenberg-Moore machinery. We state all our results and comment on them first, and
then sketch proofs.

To express the result conveniently we need the following universal construction.
Given an unstable 4-algebra R and a map ¢: R — G of unstable A-modules, we
seel the initial unstable A-algebra B accepting an A-linear map from @ such that
the composite £ — B is an A-algebra homomorphism. Write Ug(G) for this B;
it is a reduced version of a construction denoted Uz by Massey and Peterson. It is
easily seen that if U(R) — R is the unique A-algebra map extending the identity map
R — R, then

R Qu(ry U(G) = Tr(G).

From this we see:

2.2 Lemma. If g is monic then so is R — Ug(G); and the extension
0—R—G—Q—0

in U induces an extension
Fp — R — Ur(G) —U(Q) —F,

of A-algebras: U g(G) is free over R, and U(Q) = Up(G) ®r F, = Ur(G)//R. W
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2.3 Theorem. Consider the fiber square
E —F P.BD
dl l
B L g,

Assume that B and By are simply connected, that H*(B) and H*(By) are of finite

type, and:
(i) H*(B) is a free module over Im .
Assume further that there is given a sub A-module Q of H*(By) such that
(i) Q= 0;
(iif) H*(By) is a free module over U(Q); and
(iv) ker f* is the idea] generated by Q.

Let R = H*(B) ®H(By) Fp. There is then a short exact sequence in U, the “fun-

damental sequence”
O—rR—tG—-—}QQ——p(], (2.4)

and an extension i: G — H*(E) of the natural A-algebra map R — H*(E), such that
the induced map

qﬁR(G) — H'(E)

is an isomorphism, and

G — Q0

| J (25)
o' 2L geasy
commutes. Here & is the Barratt-Puppe boundary map and w is the natural “suspen-
sion” map.
Thus R embeds in H*(E), so B = Imp*.
As a special case, take B = *, 50 £ = 0By, The theorem yields the

2.6 Corollary. Let X be a simply connected space such that H*(X) is
of finite type and H(X) = U(Q), 0,Q = 0. Then the suspension map induces an
isomorphism
U(QQ) = m(0x).
|
If X is k-connected and 492°Q = 0 for all i with 0 <7 <k, then by induction we

‘have

UQkQ) = B0k x),
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The Singer sequence (1.5) shows that this condition is in fact equivalent to requiring
QiifQ = 0 for all 5 > 0; so our main theorem holds in this case without dimension
assumptions.

2.7 Example. Typically one obtains the conditions of Theorem 2.3 by
starting with By such that H*(B,) = U(N) for some N € U for which 4N = 0;
for instance, By = K(N) for N projective in I{. Any @ C N then has ,Q =0 as
well, since £ is left exact. Note that U(N) is an A-Hopf algebra, with PU(N) = N.
Now suppose that we can give H*(B) a Hopf algebra structure such that f* is a Hopf
algebra map. Then condition (i) of Theorem 2.3 is automatic. Take

@ =.Nnkerf* =ker Pf*. (2.8)

Then we obtain (ii) of Theorem 2.3 as noted; (iii) holds because U(Q) — H*(By) is
monic, being a Hopf algebra map which is monic on primitives; and (iv) holds since
U(Q) is the Hopf algebra kernel Ker f* = H*(By) Og-(5)F,.

The Hopf condition on f* usually oceurs in one of two ways:

(a) H*(B) = U(M) for some M € i/, and the map f* induced by f: B — B, fits

into a diagram

vy L9 g

HB) < H'(BY
for an A-module map ¢.

(b) B and By are homotopy-associative H-spaces such that the Hopf algebra struc-
ture on H*(By) = U(N) has N for primitives, and f is an H-map. If By = K(N),
the standard H-structure on By will do, and f corresponds to a primitive cohomology
class in B.

2.9 Remark. In case (b) above,
E — PB,
I
B Ly B

is a Hopf fiber square. We have seen that R = Imp*. We can identify other elements
of the situation as follows:

(i) The Hopf algebra kernel Ker f* = H*(Bo) Oy+(5)Fp = U(Q).

(ii) Im f* = Kerp*.

(iii) Ker 8" has a description in terms of a fundamental sequence. The diagram
(2.5) shows that & factors as
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H*(E) al H*(QB,)

- . U(Qk)
Ur(G) —= U(QkerPf*y —5 UQN)

where k:ker Pf* — N is the inclusion. By Lemma 2.2 the map ¢ is epic with Hopf
algebra kernel R, but U (£2k) is not generally monic; indeed, there is an exact sequence

0— 2ImPf L ke Pr* & oy ., oimppe g,

If we form the pull-back diagram

O—bR——»K——»QlImPf’—rO

S s

0—>R——rG—ererPf‘—+0

then we see that the top row is a fundamental sequence for
Kerg* = ﬁR(I\’).

It will be important for us to compare the fundamental sequence for E against
that for QE. For this purpose we will write Q(f) for the choice of €, and agree to
take Q(Qf) = ker P(f)* as in (2.8). Then the suspension w: SLH*(Bo) — H*(QB,)
automatically maps QQf to Q(Qf). We will also write R(f) = H*(B) ®@He(5,) Fp,

etc, ) ' il
Theorem 2.3 has the .

2.10 Addendum. Suppose f:B — Bo and Q(f) satisfy the conditions of :
Theorem 2.3, that B and By are 2-connected, and that :Q(2F) = 0. Then there js
w:G(f) — G(Qf) such that

QR(f) — Q6(5) — Q) — o

| Al I
0— R@f) — GEOF) — 29@QF) — o

and

QG(f) — QB (E)

w] o]
GQf) — HYQE)

commute.

e e T e
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We turn to a sketch of proofs. Write Ey for PBy. Let Egp be the mapping cylinder
of the ‘projection map py: Ey — By. Then Ey — By factors canonically as By >—
By s Bo, and pj is a homotopy equivalence. Now Ey — Egp is a cofibration over
B inducing a surjection in cohomology. (This is the general assumption made in [3] by
Massey and Peterson; here it is trivial since Ey ~ +.) Moreover H*(Eyr) = H*(B,)
is a projective H*(By)-module. It follows that the following diagram is the beginning
of an exact couple yielding the Eilenberg-Moore spectral sequence (cf. Smith [6]):

é
H*(Bxpg, Ey) — H*(B x g, (Eyr, Ep))

L Nl

H‘(B X By E[]T) H*(B X By Bn X (EQT, Eg))

Rewriting this, we have

H*(E) —-6—-—} H*(Ep, E) —'—5-—4
;\ p* \ /
/ ' 2.11)
H*(B) H*(B) ® H*(Eor, Ey)
Il J Il
E? —t EL,

Therefore, in the Eilenberg-Moore filtration of K *(E),
FO=keré = Im p*,
F' =ker$? = E_IImp}'.
If we identify H*(Eqor, Ey) H*(By), then di{(b®bg) =b- f*by. Since @ C ker f*,

the map 1@ — E? sending by to 1 ® by carries Z71Q to ker(d; |E?). Since
EZ €U, there is a factorization

Qe — Qq

| | (2.12)

ker(d; [E[Y) —n EL
Thus we may form the pull-back

0——»R——rG—-+QQ-—»D

I l l (2.13)

0——}Fu-—}F'I—+E;1-—»O.
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&
_—

~ / (2.12)

) @ H‘(EDTy EU)
ll
ErL

=b- f*bo. Since Q C ker f*,
'@ to ker(d;|E7!). Since

(2.12)

(2.13)
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The top sequence here is the fundamental sequence. The composite G — F~1 >
H*(E) is the map 7 in the statement of Theorem 2.3. The composite R — G — H*(E)
is an A-algebra homomorphism, induced by p*: so we get a map 3: Ug(G) — H(E).
To show it is an isomorphism, we filter U (). First filter U(Q) by setting F* = F
F'=F,®Q, and F~" = (F~1)"; thus F~P = U(Q). Then let F~"Ug(G) be the
inverse image of F~"U(Q) under the natural map. It is then clear that 7 is fltration
preserving when H*(E) is given the Eilenberg-Moore filtration. We will show that
Ej}i is an isomorphism.

Before we carry out this computation, we prove the naturality statements (2.5) and
Addendum 2.10. The boundary map 8: 2By — E extends to a map of squares

QBy — E, E — E
l | — 1 |
* — B B — By,

s0 compa:tibility with & follows by naturality of the Eilenberg-Moore spectral sequence.

As for 2.10, note that the cohomology suspension map w is induced from a natural
transformation £ — id. The relevant portion of the exact couple for the square with
classifying map f is induced in H* by

(ET, E)

NS My (2.14)

B x (EUT,E()).
The corresponding diagram for fis
QE (QEr, QE)

A 4 S (2.15)

QFEr QB x (QEyr, LE).

The suspension of (2.15) maps to (2.14), and this leads to the desired naturality.
We now compute

E; = Tor}y(p,)(H*(B),Fy)

in the Eilenberg-Moore spectral sequence. Let A = Im f*. Since H*(B) is a free
A-module, the extension spectral sequence

Tor’y(H™(B), Torjye py) (4, Fp)) = Torky. gy (H*(B),F,)
collapses. Since H*(By) is free over U(Q) and A = H*(Bo) @uig) F

P

Tork- (o) (A4, Fp) & Torgy gy (Fp, Fp).

e T e ——
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There is thus an 4-algebra isomorphism
R ® Toryy(q)(Fp,Fp) — Torka g,y (H*(B),Fp). (2.16)

Suppose first p = 2. The assumption ;@ = 0 implies that U(Q) is polynomial with
Torg(g)(F2,F2) = ZQQ as A-modules, so Torys(g,)(H"(B),F;) = R® E[c 1 Z0QQ).
By multiplicativity, E; = E. The map 7 is thus an isomorphism in this case.

Now take p > 2. By 1.1, the sub vector space 3tQ of &Q of elements of degree
divisible by 2p forms a sub .4-module. Since ,Q = 0 we have a commutative diagram
with exact rows and columns

0 ]

0 — &tQ — ¥Q — IQ —0
! I
Q — Q
0 — Q@ X 10 — =g — o

l l

0 0
which defines 1@ and 7@ in U. Then as an algebra U(Q) is free-commutative and
Torg{gy(Fp,Fp) = I(Q) as A-modules. Therefore Toryq)(Fp,Fp) is the free algebra
with divided powers generated by I(Q). The pth divided power 'yp:TorE(lQ)(Fp,Fp)
— Toryfoy(Fp, Fp) factors through as an embedding

T72@7Q — Torylo,(Fp, Fy)
sending T to yp[z]. Under this correspondence, the differential dy_, satisfies
dp-17nlo] = Famsple] - [\"E] (2.17)

up to a unit, for n > p. This follows from the fact that the divided powers in Tor are
natural, so we can use them to compute the effect on Tor of the map of squares

E — E Kin — PKyuyy
Ll —= ] |
B — By * = Koayq

to the appropriate universal example; here |z| = 2n+1 and Ky = K(Z/p,m). There,
(2.17) is known ([6], Prop. 4.4, page 85).

The effect of d,_; is that E; contains no generators in homological degree less than
—1, 50 B} = E; and E} = E°Ug(G), so as before we conclude that Ug(G) =
H*(E). |

coni

in 4
ind
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e have a commutative diagram

Q@ —0

7(@) is free-commutative and
(@)(Fp:F5) is the free algebra
led power Tp: TOI‘E(IQ)(FP Fp)

crential d,_; satisfies

(2.17)

the divided powers in Tor are
or of the map of squares

-211-!'-]
n+1

nd Km = K(Z/p,m). There,

1 homological degree less than
we conclude that Up(G) =
|

T T T T T e e
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3 Massey-Peterson towers

We review the construction of a tower of fbrations associated to a simply
connected space X with H*(X) = U(M) and a projective resolution

M&Epdpdhop, (3.1)
in Y. Both H*(X) and P, will be assumed to be of finite type, and P, should be zero

in degree d < s+ 1.

The tower will have the form

a1 Byt
////ﬁ {ps
X —— 5 —I  gar, (3.2)
i
1
K(Py) = Ey —'-fu—-* K(p)

where p, is the pull-back under the “k-invariant” fa of the path-loop fibration; and
if 8,: K(Q*P,) — E, is the Barratt-Puppe boundary map, then

fo08, ~ K(Q°d,). (3.3)

Begin by constructing go: X — K(Py) such that H*(gy) = U(e). Since edy =0, g
lifts to g;. By Theorem 2.3 we have a diagram

0P,
pﬁ
0 — R(f) — G(h) — Qkedy, — 0 (3.4)

= i |

&

H*(X) 4i H*(E,) i H*(K(QP))

in which R(fo) = H*(K(P)) ®u-(xe(pyy) Fp = U(M) & H*(X) and Un(s0)(G(fo))
— H*(E;). Thus g}i splits the fundamental sequence for E;.

It follows that H*(E,) = U (M ® Qkerdy) as A-algebras, in such a way that the
diagram




e T
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H*(X) L8 H(E) 8 & (K (Q2F))

i i R
UM) +«— UM ®Qkerdy) — U(QPR)
commutes. Here the bottom horizontal arrows are the obvious ones.

Let o:Qkerdy — M & Qkerd, include the summand, and let Qd: QP — Qkerdy
be induced from d;. Then there exists a unique map fi: By — K(QP,;) such that
U{cQd}) = H*(f1). It follows that f;q; = * and that f16; = K(Qd,).

To carry on we must know R(f;) = H*(E,) @u+(xc(apr,)) Fp. For this we note the
exact sequence

!
Q1P 41 2 ker @2 1d,_; —s Q1M — 0

defining the derived functor, and remember that Q3! = 0 (1.6). Since Q is right
exact,

QP — Qker 1, (3.6)

is surjective. Thus (taking s = 1) tensoring over H*(K(QP,)) = U(2P,) is the same
as tensoring over U(Qkerdy); and that gives us

3.7 q1 induces an isomorphism R(f) = U(M).
The succeeding inductive steps are identical, and yield
3.8 Theorem [4]. There exists a tower (3.2) in which (3.3) holds and such
that
HY(X) & H*(E,) &, HE@ P))

UM) — UM®QLkerd,_;) —  UQP,_;)

commutes.
Here we have slipped in the identification

=11, = a—1
1" kerd,_; — ker°"1d

a—1y
which follows from the exact sequence

14, ,
0 — Q7'M — Q*'kerd,_, — Q*-1p, — 7, Q-lp,_,
(see e.g. (2, page 93]) together with the fact that 22-1AM = 0. A generalization of this
identification, Lemma 4.5 below, is a key element to our approach and explains the
form of the associated quotients in our main theorem, which we now restate in more
precise form.




H*(K(QP))
T (3.5)
U(QR)

> obvious ones.

1d, and let £2d}: QP, — Qkerd,

wp fi: By — K(2P,) such that
fi6 = K(Qdy).

s(2p;)) Fp- For this we note the

— 0

~! =0 (1.6). Since  is right

(3.6)
K(QP;)) =U(QP,) is the same

).
ield
2) in which (3.3) holds and such

L HU(K(QP,.)

Tg

—+ U(QBPJ_l)

5 gs—] ds—l :
TPy — P,
M =0. A generalization of this
our approach and explains the
i, which we now restate in more
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3.9 Theorem. Let M € U be of finite type, and let X be a simply
connected space with H*(X) = U(M). Choose a projective resolution M «— P, in
U and construct the associated Massey-Peterson tower (3.2). For any

k < connM — p~*coconn M + 1,
Im(H*(Q*B,) — H*(Q*X)) = Im (H*(Q*E,) — H*(QFE,4.1)),

and is independent of the resolution. If we call this Hopf algebra A,, then there is a

fundamental sequence giving rise to a Hopf algebra extension sequence over A

Fp— A, — Ay — UQQEEM) — F,.

4 Looping the tower: proof of the main theorem

Begin again as in Section 3, but assume X is (k+1)-connected and P, is
(s + k)-connected. We wish to compute H*(Q2%E,) and the map QFpl HY(QFE,) —
H*(Q*E,41). Start with the fundamental sequence for Q¥E;: by 2.10, we have a
commutative diagram

0 — QfUM) — QG(fo) — Q" kerdy — 0

| [ [ )
0 — U©M) — G@Q*f)) — Qkerfdy — 0.
The bottom left term, R(Q*fy), is as displayed because 0* is right exact. Notice
that R(QF fy) — H*(Q*E,) is a Hopf algebra map and that PR(Q* f)) = Q*M is zero
in degrees greater than coconn M — k.

We next state the inductive assumptions:

4.2 (1)s The fundamental sequence for H*(Q*E,) is given by the bottom
row of the commutative diagram

0 — QR(fi1) — QG(fi-1) — Q" *kerd,.;, — 0
l Jw Jor
0 — R(Qf,y) — .G(Q%fi1) — QkerQet—14_. — g

in which Qr is the natural map.
(ii), There is a Hopf algebra fundamental sequence for R(Q* f,_;) of the form

0 — R(Q*fiz) — G,y — QQITE-2071 5 .

8

(3ii), coconn PR(Q"f,_;) < p*! coconn M — k.
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4 Let o:Q'kerd,—; — G(f,_;) be the splitting (as in Section 3). The k-invariant
i Jsi By — K(QP,,,) is defined as induced by the composite

a8t
2Pt T Q0 kerd,, % 6s,,) H*(E,).

Since w is compatible with the cohomology suspension by 2.10, it follows that the
k-invariant QFf, is induced by the composite

i i Qa«}-kdr k
QP T — Qrthkera, , ¢ Q*G(f,_;)

3 \ lw (4.3)
Il | G four) >— HQVE,).
Write & = w o Q%¢. We need to know H*(Q*E,)//Im Q* ¥ and ker P(Q* f,)*, and
for this it will suffice to find ker & and coker &.

A diagram chase shows that & js compatible with Qr, and there results a commu-
tative diagram with exact rows which defines an important map “fat theta”.

e

0 — kerQr — Q" kerd,.; —s ImQr — 0
i le & or | e | !
i 0 — R(Qkfa—l) — G(ﬂkfs—l) ~—+ QkerQetk-1 dse1 —+ 0. I
; We pause to record some information about 7: 1
4.5 Lemma. There exists a natural commutative diagram in which each
"I ’ row and column is exact: :
i 0 0 0 ;
I l ! ! |
Eé ' 0 — ImQsttq,,, —, ker Q*tkg, — QatiM — 0 ‘
= ! l !
0 — Im ﬂ"+kd,+1 —t .Q,’+kP,+1 —k Q'H'k ker d,m] — 0
% 10a lor
1‘ — [0

. QkerQetrk-14, =~ =, QkerQeth-1g
T_ QO I etk

! L B
0 0.
Proof. The top row defines Qg_‘t{‘M » and the second row follows from
1 exactness of

da+]
1 Pots —— Py — kerd,_y — 0

N |



5 in Section 3). The k-invariant
mposite

— H*(E,).

sion by 2.10, it follows that the

;'(fa—l)

1” (4.3)
¥ fa1) >— H*(Q*E,).
ImQ*fr and ker P(Q*f,)*, and

07, and there results a commu-

ortant map “fat theta”.

Im Qr

o |

Qker Q*+k-14,_, —, .

— 0

(4.4)

nutative diagram in which each

0

oty g
ga+k ker da—l
lﬂr
v QkerQotk-1g
QQetE-1pr

!

0.

+

+

— 0

S

1d the second row follows from
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and right-exactness of Q***, The rows are thus exact. The map ker Q0+, o
Q5 P,y is the inclusion. The box to its left is clearly commutative, and this defines
the vertical arrow to its right. We now construct the rest of the middle column and
show it is exact; a diagram chase shows that this suffices.

The bottom three terms of the middle column are applied to the exact sequence
QP S ke Qg Qe 0.

It remains to prove exactness at Q+kP,, 1. For this, consider the short exact sequence

Qs-{-k—-l Pa+1

al wf'—] d,

0 — kerQfth=1g _, ey Qotk-1p ImQ*H-14,_, - 0.

Since ImQ***=1d, | is a submodule of the projective Q*+5=1p | and £ is left
exact, 3¢ is monic. Therefore ker Qa and ker Qs+ 4, coincide. |

Now by 2.10, w:.QkG(fs_,) — G(Q* f,_,) is compatible with the cohomology sus-
pension Q*H*(E,) — H*(Q*E,), which lands in the coalgebra primitives. Since
R(QFfo) = H*(Q*E,_,)//Im R ) = H*(Q*E,) is a Hopf algebra monomor-
phism, we conclude that © takes values in PR(Q*f,_1). By Lemmas 4.5 and 1.8, we
know that

conn ker 7 > p**(conn M — k + 1).
By inductive assumption 4.2(jii)

coconn PR(.Q"'f,_l) < p* leoconn M — k.
The assumption

k—1 < conn M — p~?coconn M
of Theorem 3.9 lets us conclude that

©=0.

The serpent lemma applied to (4.4), together with Lemma 4.5, then gives an iso-
morphism

(4.6)
and a short exact sequence

0 — R(Q*f,—1) — cokers — QOIH—1a1 _, g, (4.7)




e T e

84 J. R. Harper and H. R. Miller

We can now verify the next stage of the inductive assumption 4.2, The third term
in the fundamental sequence for H*(Q*E, ;) is the algebraic loops of the kernel of
(4.3). To find this kernel, consider the following diagram, whose top half coincides
with the diagram in Lemma 4.5. The map f occurs in (4.3).

0 0

l |

0 — ImQotkd,,, —, kerQ2otkd, —, QM — 0

I- ! !
0 — Imﬂ"'f'kd,.;.] - .Q"+kPJ+1 — Q"’"‘"kerd,_] — 0
s gl (4.8)
G fi) = GOFfy)

{ l

coker f — coker &
4 !
0 0.

Now the rows and the right column are known to be exact, so the middle column is
too. We conclude that 4.2(i),,; holds.

To obtain (ii),4; we establish a fundamental sequence for
R(QFf,) = H*(Q*E,) Buas++p,4,) Fp.
By (4.3), the k-invariant f3 factors through U(4) mapping to the second factor in
HY(Q*E,) = R(Q*f,_,) ®UH&9"[,_1) UG(Q*f,—1),
so by associativity of tensor product and right exactness of U,
R(Q*f,) = R(Qkf,_l) Our(aty,_,) Ucokers.

Thus (4.7) is a fundamental sequence for R(Q* f,), establishing (ii)s41.

Assumption 4.2(iii),;; follows by applying P to the Hopf algebra short exact se-
quence

Fp— R(QYf, ;) — R(QFf,) — UQQat—ian — F, (4.9)

associated to this fundamental sequence, and using Lemma 1.8,

This completes the proof of Theorem 3.9. The unfortunate restrictions on the
coconnectivity of M are needed to kill fat theta in the above argument. A reduction
in the estimate of the size of the module of primitives in R(Q* f,) would lead to a better
theorem; in homology one wants to guarantee the creation of squares, Examples of

D. Kraines seem relevant here, However, some restrictions are necessary, as shown by
the very simple

rn

i
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; diagram, whose top half coincides
urs in (4.3).
0
QitiM
Qe kerd,.; — 0
&l
G(Q* fay)

!

coker &

l

0.

1 be exact, so the middle column s

— 0

(4.8)

quence for

Fo.

mapping to the second factor in
) UG(Qkfa—I )1

ctness of U,

Tcoker 4.
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> the Hopf algebra short exact se-

U@y — F, (4.9)

; Lemmma 1.8.

& unfortunate restrictions on the
the above argument. A reduction
sin R(Q* f,) would lead to a better
creation of squares. Examples of
sictions are necessary, as shown by
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4.10 Example. Consider the two-stage Postnikov system

E -— *

! 1

2
KZ2) 3% ka,a.
Let F'(n) = PH*K(Z,n), so that H*K(Z,n) = UF'(n). Then the Massey-Peterson
theory of Section 2 applies to compute H*(E), since (S¢*)* = U(¢) where ¢: F'(4) —
F'(2) sends ¢4 to Sqt. The fundamental sequence
0 — Eftg) — G — Qker¢ —s 0
splits for degree reasons, so H*(E) = U(M) with

M= (Lz) @ Qkerg.

Consider H*(QE). The modules Q2;(Qker¢) are involved in Theorem 3.9. To
compute them we have the short exact sequernce

0 — kerg — F'(4) — btds S0 14807 80 s ) — 0.
The right term has trivial £, so
0 — Qkerg —s F'(3) — () — 0
is still exact. Since £, is left exact and 0 F'(n) = 0, Q3 Qker ¢ = 0. Thus
QM = (13.)
for any s > 1, while
U(Qker¢) = H*(5%3)).

So our estimate of H*(QE) resembles H*(Q5? x 53(3)).

Butinfact QF = K(Z,1)x K(Z,2), since 28q* ~ . In understanding this example
it may help to notice the square of fibrations

$3) = 5%(3)
1 l
S — 8 L s

H | l

S' — K(@Z,3) — E
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which when looped back gives
Q5 — Q52 g1

I | I

K(Z,2) — QE — g1

! !

5%3) = 5Y3).

The horizontal sequence splits; we have picked up the vertical sequence, which does
not.

References

{1] W.D. Barcus: On a theorem of Massey and Peterson. Quart. J. Math. Oxford 19 (1968),
33-41.

[2] H. Cartan and S. Eilenberg: Homological algebra. Princeton University Press, 1956.

[3] W.S. Massey and F.P. Peterson: The cohomology structure of certain fibre spaces. I,
Topology 4 (1965), 47-65.

[4] W.S. Massey and F.P. Peterson: The mod 2 cohomology structure of certain fibre spaces.
Mem. Amer. Math. Soc. 74 (1967).

(5] W.M. Singer: Iterated loop functors and the homology of the Steenrod algebra. J. Pure
Appl. Algebra 11 (1977), 83-101.

[6] L. Smith: Lectures on the Eilenberg-Moore Spectral Sequence. Lecture Notes in Math.
134, Springer, 1970,

a far
two
real
in g
deR
theo
Ur

dete:

from
The

Each
fora
genu
genu
can t

Or
of thi
depe:
each

T ——



