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In September, 1988, I was priveleged to talk here in honor of Albrecht Dold’s sixtieth
birthday. I talked about the transfer, a central part of homotopy theory to which he
contributed so much. Today I am honored again to be here, doubly honored now to
celebrate the career of both Albrecht Dold and Dieter Puppe.

The subject of this talk will be Elliptic Cohomology. I will not be able to talk in
much detail. But behind the scenes there is an obstruction theory, and the cohomology
groups housing the obstructions are direct descendants of the “Homologie nicht-additiver
Functoren” which formed the subject of the paper by Professors Dold and Puppe which
forms the climax of my contact with German literature.

In this talk I want to outline an approach to Elliptic Cohomology, due mainly to Mike
Hopkins. I will touch on work he has done or is doing jointly with Matthew Ando, Neil
Strickland, Mark Mahowald, as well as myself. Other contributions to the homotopy
theory involved have been made by Charles Rezk, Ethan Devinatz, and Paul Goerss.

To begin, I recall the notion of a genus, as explored in Professor Hirzebruch’s won-
derful book. This is an invariant of manifolds with some specific extra structure (such as
a complex structure, or more topologically a complex structure on the normal bundle—
“U -manifolds”) which is additive, multiplicative, and vanishes on boundaries. In the case
of a complex structure, the fundamental example is the “Todd genus.” I want to remind
you of some of the features of this example.

A genus on U -manifolds is determined (up to torsion) by its values on complex pro-
jective spaces, and

Td(CPn) = 1

for all n. In fact, Td(M) is integral for any U -manifold, and this encourages one to look
for an interpretation as a dimension.

Such an interpretation comes from analysis, at least of M is in actually a complex
manifold. For then there is the Dolbeault complex

0−→C∞(M)
∂̄−→C∞(T̄ ∗M)

∂̄−→C∞(Λ2T̄ ∗M)
∂̄−→· · · ∂̄−→C∞(ΛnT̄ ∗M)−→ 0.

The cohomology groups Hk of this chain complex turn out to be finite-dimensional, and
the alternating sum of the dimensions is the arithmetic genus of M . Hirzebruch’s book
is devoted to a proof that the arithmetic genus and the Todd genus coincide. This is a
fundamental case of the Atiyah-Singer Index Theorem.

Now suppose that we have a family of complex manifolds: a fiber bundle

E
π−→B,
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with compatible complex structures on the fibers. Any genus assigns to each fiber a
number: locally the same number, of course. But in the case of the Todd genus, the
Dolbeault cohomology groups Hk vary smoothly and define vector bundles over B. Their
alternating sum is more than just a number at each point of the base: it is a virtual
vector bundle over B, an element of K(B). φ thus enriches to an invariant

π!(1) =
∑

(−1)kHk ∈ K(B). (1)

By tensoring the Dolbeault complex with a vector bundle over E, we get a homomorphism
π! : K(E)→ K(B), the push-forward or Gysin map.

Let me start a table. [This table gets filled in bit by bit as the talk progresses.]

HQ K EC/R, C etale
µ : MU → HQ Td : MU → K λx : MU → EC/R

counting Dolbeault complex ??
none complex conjugation maps in (MEll)et

w1 = 0 w2 = 0 p1/2 = 0

µ : MSO → HQ Â : MSpin→ KO ϕW : MStr → TMF
counting Dirac operator ??

The construction of the Gysin map is completely captured by the “Todd orientation”
Td : MU → K; this is a map of ring spectra.

There is an important refinement which uses the symmetry provided by complex
conjugation. In fact we should consider Td and T̄d on the same footing. Suitably
interpeted, the fixed point subspectrum of Z/2 acting on K by complex conjugation is
the spectrum KO. There is a corresponding genus, obtained by forming a “difference
of square roots”: the Â-genus. It takes integral values on Spin-manifolds (where w1 =
w2 = 0), and its values are realized analytically by the Dirac operator D. There is
as before a push-forward in the presence of a spin structure on the bundle of tangents
along the fiber, and this Gysin map is captured by the “Atiyah-Bott-Shapiro” orientation
MSpin→ KO.

An interesting new feature is that KO∗ contains torsion (in dimensions 1 and 2 mod
8). The ABS orientation is thus a proper refinement of the Â genus. The new torsion-
valued invariants also have index theory interpretations (Atiyah and Singer).

Now, I will want to discuss progress in filling in a column to the right of this. To get a
running start, though, let us look at what happens in a simpler case. The genus I have in
mind is quite stupid: It assigns to a U -manifold the value 0 except in dimension 0, where
it counts the number of points (with sign). It is realized by an orientation MU → HQ,
representing the natural Thom class. When we evaluate this map on a space X we get
the Steenrod-Thom orientation

MUn(X)→ Hn(X;Q).
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There are no symmetries here, but µ does factor through an orientation MSO → HQ.

Now suppose we had only the left hand column here. It is quite a jump to the middle!
There are a lot of new ideas—index theory, for example, and vector bundles. I believe
that the jump in complexity from the middle column to the right one is similar in size.
We are just beginning to understand the formal features it presents, and there are a lot
of mysteries.

To describe the relevant genera on U -manifolds, I need to remind you of some of the
theory of elliptic curves.

One approach to elliptic curves is via the Weierstrass equation

C : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ R.

The essential point is that this defines a projective plane cubic curve which meets the
line at infinity at a single point o (namely [0, 1, 0]) in such a way that the line at infinity
is the tangent line at that point. I will also want to assume that the curve is nonsingular;
this is equivalent to requiring that a certain polynomial in the ai’s, the discriminant ∆,
is a unit.

Generically at least any line meets C at three points. Requiring that the sum of those
points is o defines a group structure on C.

There are some changes of variable which preserve all this:

x = x′ + r
y = y′ + sx′ + t

There is a group-structure on R3, and this group acts on the set of Weierstrass curves
naturally in R. This may be formulated by saying that there is a groupoid W(R) of
Weierstrass curves, whose objects are such curves and whose morphisms are coordinate
changes. This groupoid is represented by the Hopf algebroid

A = Z[a1, a2, a3, a4, a6,∆
−1]

Γ = A[r, s, t]

There are structure maps. For example ηL : A→ Γ, representing “source,” is the obvious
map, while ηR : A→ Γ, representing “target” classifies the effect of the universal change
of coordinates.

I am ignoring a scaling change of coordinates, which does not change the projective
equation. These have the effect of grading the rings involved: |ai| = 2i, |∆| = 24,
|r| = 4, |s| = 2, |t| = 6.

Now, things will work better later if we enlarge this somewhat in the following way.
Suppose that C is a Weierstrass curve over R, and that S is a ring extension of R. I
consider the ring S ⊗R S. There are two maps, ηL, ηR : S → S ⊗R S, and the curve C
gets sent to the same curve under the two (since r ⊗ 1 = 1⊗ r).

On the other hand, suppose we have a curve C over S together with an isomorphism
ηLC → ηRC. Does it come from a curve over R? This is the question of descent, and it
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is only reasonable to ask if S is faithfully flat over R. Even then, however, the answer is
“No.” So we repair the defect by defining

(MEll)R =


faithfully flat R→ S,
Weierstrass curve C over S,
isomorphism of Weierstrass curves
from ηLC to ηRC over S ⊗R S

:
compatibility
over S ⊗R S ⊗R S
and over S


This forms the set of objects in a groupoid, containing and in sense completing W(R).

Said differently, an object of (MEll)R is a faithfully flat map R→ S together with a
Hopf algebroid map from (A,Γ) to (S, S ⊗R S).

One can also change rings. This gives the “elliptic modular stack” MEll (over affine
schemes). Write (MEll)flat for a certain full subcategory ofMEll. I’ll describe the condi-
tion in case C/R is Weierstrass, represented by A→ R: then

A
ηR−→Γ ∼= A⊗A Γ−→R⊗A Γ

is required to be a flat morphism. Roughly speaking this says that R can’t be too small.

Theorem 1. There is a functor E from (MEll)flat to the homotopy category of periodic
ring spectra, with natural isomorphisms π0(EC/R) → R and from the formal group of
EC/R to the formal completion of C at o.

This is really the Landweber exact functor theorem. A periodic ring spectrum is
a homotopy-associative and commutative ring spectrum such that π∗R is evenly graded
and π2R contains a unit. K-theory is the motivating example. As Dan Quillen explained,
to any such theory is associated a formal group over π0R. (Actually one must pass to a
smaller subcategory than (MEll)flat, requiring that the canonical line bundle ω admit a
global section in order to obtain a formal group in the traditional sense.)

These periodic ring theories are our analogue of K: there is an abundance of them.
The possibility of defining a multiplicity of “elliptic cohomology theories” was first
brought up by Jens Franke. The first were constructed by Landweber, Ravenel, and
Stong. Each has an associated genus λC/R defined on U -manifolds. The coefficient ring
R is in each case torsion free.

If we choose a local parameter x on C near o, we obtain a formal group law and an
orientation

λx : MU → EC/R.

Next one wants to rigidify this big diagram of spectra, in order to form its “inverse
limit.” I think it is fair to say that we are still experimenting with this. For some
time our approach has been this: In order to cut down the size of the mapping spaces
involved, we consider an intermediate step, the category of A∞ ring spectra. There are
several good treatments of this theory now, including an entirely simplicial one due to
Jeff Smith, Mark Hovey, and Brooke Shipley. There is a simplicial model category of
such objects. This leads to an obstruction theory for the existence of an A∞ structure,
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a spectral sequence converging to the homotopy groups of such structures, and a similar
story for maps of A∞ rings spectra. We have been helped here by Charles Rezk, a student
of Mike’s.

The obstruction groups which arise lie in certain cohomology groups (as defined by
Quillen). The groups involved in existence and uniqueness of structure can be made
to vanish if we restrict further to the subcategory (MEll)et of etale curves. Restricting
again to Weierstrass curves, this means that R ⊗A Γ should again be flat over A, and
that in addition the relative cotangent complex should vanish. Roughly speaking the
added condition means that R can’t be too big either. There are fewer of these curves,
but enough. Many standard parametrizations of elliptic curves (the Legendre form y2 =
x(x − 1)(x − λ) over Z[1/2, λ±1, (1 − λ)−1] for example) are etale. For these purposes
Hopkins has written down an etale cover which seems to be new.

There is also a second stage of the obstruction theory, which rigidifies the diagram
in the homotopy category of A∞ ring spectra to one in the honest category. For this we
have the work of Dwyer and Kan; the relevant diagram turns out to be “centric.”

Theorem 2. There is a commutative diagram

(MEll)et
E−→ Periodic A∞ ring spectray y

(MEll)flat
E−→ Ho(Periodic ring spectra)

Finally we can take the (homotopy) inverse limit, which we call the spectrum of Topo-
logical Modular Forms, TMF . There is a spectral sequence converging to its homotopy
groups, whose E2 term is the cohomology of the Hopf algebroid (A,Γ). H0 is the subring
of A of polynomials whose value is independent of the parametrization of the curve: these
were computed by Tate and Deligne, under the name “integral modular forms.” They
found that

H0 = Z[c4, c6,∆
±1]/(c3

4 − c2
6 = 123∆).

Topology brings an interpretation of the higher cohomology, and shows that the Tate-
Deligne ring is just the first approximation to a more fundamental object.

The higher cohomology is interesting! It is all torsion, killed by 24. There are differ-
entials in the spectral sequence, and they are interesting too! ∆ itself is not a permanent
cycle, though 24∆ and ∆24 are. The result, π∗(TMF ), is periodic of period 242. Ra-
tionally, it is the ring of modular forms. But there is something defective about ∆.
What?

It would seem that there should be a genus on manifolds whose normal bundle lifts
through the next connective cover of BSpin: This kills p1/2, and I would like to call the
resulting group the string group, Str. (Is there a construction of Str(n) analogous to
the construction of Spin(n) using Clifford algebras?) As a matter of fact, by thinking
about computing the equivariant Â genus of the free loop space on a manifold by means
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of the fixed point formula, Ed Witten defined a genus on string manifolds with values in
modular forms (or rather their Fourier series). His wonderful formula is:

ϕW (M) = 〈Â(M) ∪ ch
⊗
n≥1

Sqn(TCM − dim M), [M ]〉.

That this does take values in modular forms was proved by Don Zagier. Hopkins, Ando,
and Strickland have done most of the work necessary to construct an orientation MStr →
TMF , analogous to the ABS orientation, refining the Witten genus. This will show that
the discriminant is not a value of the Witten genus, for example. Gerd Laures has shown
that there is a natural orientation from MStr to many elliptic spectra by much simpler
methods.

Obviously there are some gaps in the right column of the table, but I think that
homotopy theory has done its part!
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