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THE ELLIPTIC CHARACTER AND THE WITTEN GENUS

Haynes Miller!

The elliptic cohomology of Landweber, Ravenel, and Stong [7] is constructed so as
to serve as the third term in the sequence beginning with rational cohomology and

KO—theory. Just as there is a multiplicative natural transformation
* i * +1
che: KO (X) — H (X; Q[v7'],
given by the Chern character of the complexification, so there is an "elliptic character"
* * 1
A EE(X) —— KO (X; Z[z]) [l -

In this addendum to [7], we construct this transformation and use the corresponding
Riemann—Roch formula to obtain Witten's elliptic genus and to interpret the rigidity
result conjectured by Witten and proven by Taubes (with later improvements by Bott and
Taubes [3]).

fg:MUy,——Risa ring~homomorphism, we may consider the functor

Xr—R ®MU*MU*(X) = R«(X) on spaces. Landweber [6] gives conditions on &

guaranteeing that R(X) is a homology theory. All three cohomology theories of interest

* * *
to us here — H{ , KO [%], and Ef — are defined in this way. We begin by observing the
naturality of this construction. We use the usual machinery [1] of formal group laws, etc.,

*
associated with MU , and consider the following situation. We have formal group laws F
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over R and I over S, a ring homomorphism A : R - S, and a strict isomorphism

©: F’ —— AF. Then this data determines a natural transformation
* *
Ae R (X)— S (X)
such that:

(1) OnX=* dy=A
(2) KL | Xisacomplex line bundle, then

/\*(ER(L)) = 9(95(11))’

where ep (L) is the image in RQ(X) of the MU—Euler class of L.

The construction of A, uses the coaction

P MUgX —— MU MU QMU*MU*X

together with the fact that MU,MU carries the universal strict isomorphism of formal
groups. Thus, MU, MU = MU*[bl, b2,...], bo = 1, and the formal groups g, G and R G
over MU4MU, obtained by pushing the coclficients of the universal group law G over MUy,

are strictly isomorphic by B(t) = I bit'+1. There is a unique ring homomorphism ¢ :
i20

MU«MU —— S carrying B to © and such that

MU,

" TS
g

MOMU ——— = §
MU,



ELLIPTIC CHARACTER AND WITTEN GENUS 283

The natural transformation A4 is the R—linear extension in the diagram

MU (X) —¥— MU, MU By, MUs ()
;ﬁ@ll pei

Ax
Ry, WU (X) —— Seyg WU (X)

E 3
We now specify the complex orientations of our examples. For H we take
(3) eH(L) = _CI(L) = CI(E) ;

% -
its formal group law is G 2(XY)=X+Y. For KO {%] we choose the A—orientation, for
which

(4) e (L) = —4 (L)
(5) cei(Lel)=v2(1-L)(1-T)

* * i
wherec: KO —— KU is complexification, v is the Bott class in KU 2, and 1 denotes

the trivial complex line bundle. The Chern character of the complexification,

che : KO (X)) —— 1'(x; 1],
arises from the embedding
I)lv*%) —— Qv
logether with the isomorphism

epr:Ga——n GA
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given by
(6) expj(x) = oy 1 sinh{vx/2).
*

Of the various versions of elliptic cohomology described in [7] we take for E¢ the
ring of modular forms for T'y(2) with Fourier coefficients in l[%] and poles only at the cusp
at 0. Thus

| 2 —1
E¢ = I’l[i, be, (85—¢€) )
Its orientation e, is determined by the Euler formal group law G, (see [7]). According to
Landweber, Ravenel, and Stong, E{,(X) is then a homology theory.
The g—expansion f+— T, T(q) = (1), ¢ = eZm’r’ determines a ring homomorphism

* *1
A:BE —— KO [j[d]

by sending a form f € B¢ —k o weight 2k to vk, Explicitly [10]

2 1 n
br— v [—5-3 % I d|qg
[ 8 n21[2:}’d|n J }

Then we have the key

*
Proposition. There is an isomorphism G § — AGE over KO [%] [al given by

n 2.2 }(—1)"
O(y) =y I I_L_'_vzg}( )
n>1 (1)
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This was proven by the Chudnovskys [4] and later by Zagier [10], but it represents an
explicit form of the well-known fact that the Tate curve has multiplicative reduction, and
as such is due to Jacobi and Tate and was known to Morava [8] in 1973. Zagier's formulas

(5) and (6) are equivalent to the proposition since they show that

Ga

exf/ \ expp
8

G}i _— AGE

commutes.

We now recall (from Dyer [5], for example) the general "Riemann—Roch formula"
associated to a multiplicative transformation of cohomology theories. Let ) : h>i= — k* be
such a map and let £ | X be a vector bundle. Assume given orientations — i.e., Thom
classes — uy, € hd(XE) and u) € kd(XE). Then Auy € kd(XE) is another Thom class, so by
the Thom isomorphism theorem there is a unique class p(£) € kO(X) such that if

e : k%(X) — k° is induced by the inclusion of a point then

e(p(€)) =1

and

pu ,\uh =

Now suppose p : E —— B is a smooth fiber bundle with compact d—dimensional

fiber and bundle of tangents along the fiber . Assume given orientations u, and Uy for 7.

h

ES
These determine Gysin homomorphisms Py h*(E) —j _d(B) and pl,{ : k*(E)  —

*
k _hd(B). The Riemann—Roch formula then asserts that

Ap(a) = p(p(r) U A(a)).

* *
In particular,if b and k are equipped with complex orientations, then complex

vector bundles are naturally oriented, and u(¢ ® §)=u(€) Uu(¢’). The class pis thus
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"exponential," and is determined by its value on the universal line bundle L | BU(1).
Since the homotopy-equivalence BU(1) —— MU(1) pulls u back to the Euler class e, we

may as well define p(L) by the equation
(7) p(L) U Aey (L) = e (L) .

Our theories are all localized away from 2 and the complex orientations are odd:
(L) = —e(L). This permits a (unique) factorization of MU = h through MU - MSO: so

oriented real vector bundles are canonically oriented.

The multiplicative transformation

*
che : KO*(X)[%] —— H (X Q[v*],
together with the orientations chosen above (see (6)), leads to
(10) che py(e) = pH(A() U che(a)) .
The multiplicative transformation

A Ee*(X) _ KO*(X){ll [al,

&

together with the orientations chosen above (see (8)), leads to

A p%(0) = pMp(r) U N(a)

*®
where p is the exponential characteristic class in KO (—)[%] [al such that, withy = e AL,

PL) = otyy = nlgl
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If we now complexify, the ! term in the product becomes (by (4) and (5)) the {—l)n—1

power of

(12) 1 4 L0-L)(-T) _ (l—an)(l—gn]Z)
(1-q")* (1%
K—theory is better equipped than cohomology to succinctly express multiplicative
P

sequences. Thus, (11) determines the multiplicative class A H({ —dim £) @, and its

—-.q
reciprocal, § (£ —dim ¢) ® (. Hence, with ¥ = £ — dim £,
q .

“)=Q S De@A (@Hec=r (0.
o 9 n>0 4
even odd

If we now apply the traditional Riemann~Roch formula (10), we arrive (with & = 1) at
che ApT(1) = p(A(7) U ch Ry(7)
which is Witten's expression [9].

Let the circle group T act smoothly on a compact manifold M, and form the Borel

construction p : ET xTM —— BT. We obtain
E * *
p): El (ETxT M) —— E¢ (BT),
and the image classes can be considered equivariant elliptic characteristic numbers for M.
The following rigidity result was conjectured by Witten [9] and proved by Taubes and by a

subsequent collaboration of Bott and Taubes (3]

Theorem: Suppose M is a spin manifold. Then p],E’(l) is constant, in the sense that it is

pulled back from Et’*(*) under BT ——— *,

One may wonder whether elliptic cohomology might be useful in giving a proof of

this result closer in spirit (and simplicity) to the proof by Atiyah and Hirzebruch [2] of the
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analogous result for K—theory. One can indeed set up a "fixed point formula" in elliptic
cohomology, and try to play the two sides off against each other. The extra ingredient

available in the K—theory setting is a diagram of the form

Kop( M) —— K(ETx M)
P Jp 1

Kop(*) —— K(BT).

KT(*), a Laurent series ring, provides a "rational structure" in the power series ring
K(BT), and restricts the location of poles enough to complete the proof. What is missing,
then, is a T—equivariant elliptic cohomology, equipped with suitable Thom classes. Note
that in the K~theory context consideration of elliptic operators may be confined entirely to
the construction of such Thom classes in I{G; and in fact may be eliminated there as well

when G = T. Note also that one really only needs a rational equivariant theory. One may

hope that a suitable geometric construction of elliptic cohomology might lead to an
*
equivariant theory. It has been hinted, by Witten and by Hopkins, that E&p(*) might be a

ring of Jacobi forms.

M.LT.
April, 1988
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