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§1. INTRODUCTION

IF G is a connected compact Lie group, then for almost all prime numbers p the mod p
cohomology ring of the classifying space BG is a finitely generated polynomial algebra.
In 1961, N. Steenrod [24] asked in general for a determination of all spaces X such that
H*(X, F,) is a finitely generated polynomial algebra (i.e., such that X has a polynomial
cohomology ring); at that time, the only examples known were spaces of the form X = BG.

There has been a lot of subsequent progress on this problem. On the one hand, the
topological constructions of Sullivan [25, p. 4.28], as exploited by Clark-Ewing [8] and
Wilkerson [27]. have led to the discovery of exotic spaces X with polynomial cohomology
rings. On the other hand, the algebraic arguments of Wilkerson [26] and Adams-Wilkerson
[1] bave shown in some generality that if X is any space with a polynomial cohomology
ring then H*(X, F,) must be one of the polynomial algebras listed in [8].

However, therc is still a gap here between topology and algebra; in this paper we act to
narrow the gap and in some cascs to close it. Supposc that p is an odd prime. Let X be the
category of unstable algebras [18] over the mod p Steenrod algebra o/, and X', the full
subcategory of X consisting of objects which as rings are finitely generated polynomial
algebras. If X is a p-complete space with H*(X, F,)e X", we extend the ideas of [1] by
associating to X a finite p-adic linear group Wy generated by pseudoreflections (see 1.1);
given any such finite group W such that p does not divide the order of W, we then show (1.2)
that there is up to homotopy exactly one p-complete space X with H*(X, F,)e X, and
Wy = W.In a variety of particular situations (1.3, 1.4) this gives a bijective correspondence
between finite group data and homotopy types of p-complete spaces with polynomial
cohomology rings.

As a corollary we observe that if G is a connected compact Lie group and p a prime
which does not divide the order of the Weyl group of G then the cohomology ring
H*(BG, F,), considered as an object of 7, determines the homotopy type of the
p-completion of BG (1.7). This generalizes the treatment of G = SU(2) in [12] and is the
uniqueness property referred to in the title of the paper.

We will now describe our results in more detail. If R is an object of X", let pg (the rank
of R) be the number of polynomial generators in R and vg the product [,(1x,//2) indexed by
a set {x;} of polynomial generators for R; recall that the prime p is odd, so that the degree
| x;] of each polynomial generator x; is even. The integer vz does not depend upon a choice of
polynomial gencrators for R. If X is a space with H*(X, F,)e X ., we will write py and vy
for pg and vg with R = H*(X,F,). If H*(X,F,)e ¥ o, and X = BG for a connected
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compact Lie group G, then py is the Lie-theoretic rank of G and vy the order of the Weyl
group of G.

Let Z, denote the ring of p-adic integers. The Eilenberg-MacLane space K((Z Y, 2) 1s
the p-compleuon of the classifying space of the r-torus T7, and we will denote it BT or BT
if r is understood; it is clear that the general linear group GL(r, Z,) acts on BT’ in a natural
way.

Given a commutative domain D, an element ge GL(r, D) of finite order is said to be
a pseudoreflection if the r x r matrix (g — I,) has rank at most one (here I,e GL(r, D) is the
identity matrix). If X is a space, say that a subgroup W < GL(r, Z,)is adapted to X if there is
amap t: BT" — X, equivariant up to homotopy with respect to the natural action of W on
BT and the trivial action of W on X, such that t induces an isomorphism

H*(X,F,) = H*(BT,F,)".

1.1 THEOREM. Let p be an odd prime and let X be a p-complete space with H*(X, F,) in
A poty- Then there exists up to conjugacy a unique finite subgroup Wy < GL(px. Z,) adapted
to X. The group Wy is generated by pseudoreflections and | Wy| = vy.

Remark. Theorem 1.1 does not require the assumption p 4 vy and for this reason leads to
non-realizability results for many objects of 4" ,,. The image in GL(py, F,) of the group
Wy = GL(px,Z,) is the “Galois group™ of H*(X,F,) constructed in [1] (see §2). If
H*(X,F,)e X ,,, and X is the p-complction of BG for a connected compact Lie group G,
then Wy is the image in GL(py, Z,) of the Lie-theoretic Weyl group Wi « GL(px, Z). In
general the group Wy of 1.1 must be a product of the irreducible p-adic pseudoreflection
groups enumerated in [8]. This perhaps gives the list in [8] a richer significance.

1.2 THEOREM. Let p be anodd prime and let W be a finite subgroup of GL(r, Z,) generated
by pseudoreflections. Suppose that p does not divide the order of W. Then there exists up to
homotopy exactly one p-complete space X such that H*(X, F,)e X ., and W is adapted to X.

It is clear from 1.1 that if H*(X, F,)e X", then p divides | Wy] iff p divides vy. This
leads to the following corollary.

1.3 CoroLLARY, Let p be an odd prime. Then for any r > | there is a bijective correspond-
ence between the following two sets:

(1) Homotopy equivalence classes of p-complete spaces X such that H*(X,F,)e X ,q,,
px=rand pYvy.
(2) Conjugacy classes of finite subgroups W < GL(r, Z,) such that W is generated by
pseudoreflections and p k| W|.
If r < p~2then GL(r, Z,) does not contain any non-trivial elements of order p, so
Corollary 1.3 takes the following simpler form in this case.

1.4 CoroLLARY. Let p be an odd prime. Then for any r such that 1| <r < p — 2 there is
a bijective correspondence between the following two sets:

(1) Homotopy equivalence classes of p-complete spaces X such that H*(X, F,)e X",y and

Px=r.
(2) Conjugacy classes of finite subgroups W < GL(r, Z,) such that W is generated by
pseudoreflections.

Moreover, if X is a space as in (1) then p } vx.
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The foliowing algebraic theorem is both a summary and an extension of some of the
results of [8] and [1]; it lists several ways of looking at the groups W which appear in
1.2-1.4. Let Q, denote the quotient field of Z,,.

1.5 TueoreM. Let p be an odd prime. Then for any positive integers r and n with p 4 n
the following sets are in bijective correspondence:

(1) Isomorphism classes of objects R€ X oy, such that pg = r and vg = n.

(2) Conjugacy classes of subgroups W < GL(r, F,) such that W is generated by pseudo-
reflections and |W| = n.

(3) Conjugacy classes of finite subgroups W < GL(r, Z,) such that W is generated by
pseudoreflections and |W| = n.

(4) Conjugacy classes of finite subgroups W < GL(r, C) such that W is generated by
pseudoreflections, | W| = n, and the character field Ky (see §5) can be embedded in Q,,.

Combining 1.3 with 1.5 gives the following result.

1.6 CoroLLARY. Let p be an odd prime. Then for any positive integers r and n with p t n
there is a bijective correspondence between the following two sets:

(1) Homotopy equivalence classes of p-complete spaces X such that H*(X, F,)e
X oty Px =rand vy =n.
(2) Isomorphism classes of objects R€ A o, such that pg = r and vg = n.

Of course, the bijection (1) — (2) in 1.6 is given by the cohomology functor, so in effect
1.6 states that a spacc X of the indicated type is dctermined up to homotopy by
H*(X,F,)e X . This immediately leads to the following homotopical uniqueness
theorem for classifying spaces of Lic groups.

1.7 THEOREM. Let G be a connected compact Lie group with Weyl group W and assume
that p ¥ |W|. Suppose X is a space with H*(X, F,) isomorphic to H*(BG, F,) as an object
of X ". Then the p-completion of X is homotopy equivalent to the p-completion of BG.

Proof. Let r be the rank of G and let T < G be a maximal torus. The conjugation action
of Won T exhibits W as a finite subgroup of GL(r, Z) generated by (pseudo)reflections.
Since p 4| W| there is an isomorphism H*(BG, F,) = H*(BT, F,)", where the action of
W on H*(BT,F,) can be interpreted as the algebra action induced under the com-
posite W -—GL(r,Z)-» GL(r,F,) by the natural action of GL(r,F,) on
H?*(BT, F,) = Hom((F,Y, F,). The second part of [1, 1.2] (cf. (2)«(1) in 1.5) now shows that
H*(BG, F,)e X, and p f vgg, so the theorem follows immediately from 1.6.

We will give one concrete example of the calculations possible with 1.5 and 1.6. Let
F,[x24, x48] denote a graded polynomial algebra over F, on generators of the indicated
dimensions.

1.8 THEOREM. If p > 3 then the number of isomorphism classes of objects of X~ with
underlying ring F[x34,x45] is 1 if p= 1 mod 48,3 if p = 25 mod 48, 2 if p = 13, 17 mod 48
and zero otherwise. This number is also the number of homotopy types of p-complete spaces
X such that H*(X,F,) = F,[x,4, X5 ]

This follows from a check of the group tables in [8]. The following more qualitative
result is proved by combining 1.5, 1.6, the spectral sequence argument of [3, 13.1], and the
observation that a finite group has only a finite number of conjugacy classes of subgroups.
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1.9 THEOREM. Let p be an odd prime and let Y be a one-connected p-complete space such
that H*(Y, F,) is an exterior algebra on generators of degree 2d, — 1,i =1, ..., n. Suppose
that p¥d;,i=1,...,n Then up to homotopy there are at most finitely many connected
spaces X such that QX is equivalent to Y.

Further work. The results in this paper deal mostly with odd primes. For several reasons
the results do not extend directly to cover the case p = 2; one of these reasons is that there
are more elements of Hopf invariant one mod 2 than there are mod p for odd p (cf. proof of
4.1). Removing the restriction p ¥ |W/| in Theorem 1.2 will probably require a new tech-
nique. Nevertheless, one example in which p =2 and | W| = 2 (i.e. X = BSU(2)) has been
treated successfully in [12]; there is some hope that the techniques of that paper, as
extended by [16] and [17], may lead to further progress in this area.

Organization of the paper. Our main technique is to take a p-complete space X with
H*(X, F,)e X", and find a homotopical “maximal torus” for X this is essentially a map
t:BT — X with certain homological properties (see 2.6). We describe the theory of
homotopical maximal tori and of their associated “Weyl groups™ in §2, where we also detail
how this theory leads to proofs of 1.1 and 1.2

If X is the p-completion of BG for a compact Lie group G, then a homotopical maximal
torus for X can be constructed from the map BT — BG induced by the inclusion T < G of
an ordinary maximal torus (cf. proof of 1.7). If p is an odd prime, though, it is casy to see that
T'is in fact the centralizer in G of the subgroup V < T generated by elements of order p, and
so [14] the map BT — BG can also be obtained (up to p-completion) by restricting the
domain of the basepoint evaluation map Map(BV,BG) — BG to an appropriate compon-
ent. It turns out that a corresponding function space construction gives a homotopical
maximal torus for any p-complete X with H*X € " ,,; this is proved in §4 with the help of
some propertics of Lannes’ functor “TY " which are established in §3. Section 5 contains the
proof of 1.5.

1.10 Notation and terminology. The letter p will stand for a fixed rational prime, which
except in §3 is assumed to be odd. For a space X, H* X will denote the object H*(X, F,) of
X and X the p-completion of X in the sense of [6]. For a topological group or group-like
topological monoid G, EG will denote some functorial contractible G-CW complex on
which G acts freely, BG = EG/G the classifying space of G, and BG the p-completion of BG;
if X is some space on which G acts, then B(G, X) will denote EG x X and B(G, X) the
p-completion of B(G, X). If /- X — Yis a map of spaces, we will let Map(X, Y), denote the
path component of the space of maps from X to Y containing f.

An object of ) is of finite type if in each dimension it is of finite rank as an F, vector
space. An object Re X" which is a domain is said to have transcendence degree r if its
{graded) field of fractions Frac(R) has transcendence degree r over F,. We will let ¥ (4 (resp.
X'14) denote the full subcategory of ¥ consisting of domains of finite transcendence degree
(resp. transcendence degree r). Note that /4 @ H ., many of our methods give informa-
tion about objects of X ¢4 as well as about objects of X" ,,. Let 474, denote A oy, 0 K fia.

§2. MAXIMAL TORI

In this section we will describe the properties of homotopical maximal tori and then
show how these properties lead to 1.1 and 1.2. The proofs of the theorems in this section will

appear in §4.
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It is convenient to begin by recalling some material from [1] and [28] which deals with
properties of an algebraic analogue of a maximal torus for rings Re X §q.

2.1 THEOREM. [1] For any object R of X i there exists a X -map t: R — H*BT" which
is an embedding (i.e. monomorphism). If t, and t, are two such embeddings, then there is an
automorphism w of H*BT" such that w+t, = t;.

According to 2.1, considering general objects of X', is equivalent to considering
suitable &/, subalgebras of H*BT".

The group GL(r, F,) can be identified with the group of automorphisms of H*BT" (in
the category X'). Given an &/, subalgebra R of H*BT", let Wy denote the subgroup of
GL(r, F,) consisting of automorphisms of H*BT which leave R elementwise fixed. The
geometric multiplication on BT gives a Hopf algebra structure on H*BT which is preserved
by the action of GL(r, F,), and we will let R,., denote the smaliest Hopf subalgebra of
H*BT which is closed under the action of .o/, and contains R. The action of Wg on H*BT
clearly restricts to an action of Wy on R,,,.

Remark. The ring R,,, is in some sense the separable closure of R in H*BT and in
generated by iterated pth powers of two-dimensional classes (cf. proof of 4.1).

2.2 THEOREM. [28] Let ReA'¢y be an of ysubalgebra of H*BT". Assume that as an
algebra R is noetherian and integrally closed. Then the natural map

W,
R = (Ryp)"
is an isomorphism,

Theorem 2.2 of course applics if R is a polynomial algebra, but even more is true in this
case.

2.3 Tueorem. [1] [28] Let Re A, be an of , subalyebra of H*BT’". Assume that
pAYve-ThenR, ,=H *BT", the group Wr < GL(r, F,) is gencrated by pseudoreflections, and
|Wel = va.

Finally, there is an algebraic existence theorem.

2.4 Tueorem. [1] [28] Let W be a subgroup of GL(r, F,) and R the ring (H*BT")¥.
Then Re A 14, R is noetherian and integrally closed, R, = H *BT’, and the natural map
W — Wy is an isomorphism. Moreover, if W is generated by pseudoreflections and p ¥ | W]
then Re X ), and vg = | W|.

What we will now do is to give geometric strengthenings of the above theorems under
the assumption that the ring R in question is the cohomology ring of a space. The basic
philosophy behind our approach is due to Rector [22].

Let B " stand for a CW-complex with some chosen homotopy equivalence to BT". We
introduce this notation because below we would like to take a map f: BT" — X and consider
for instance self-maps of BT over X; to do this is a homotopy invariant way it is necessary
to replace f by an equivalent Serre fibration ¢: BT " — X.

2.5 THeOREM. For any p-complete space X with H* X € X'y there exists a space BT*
and a Serre fibration t: B " — X such that the induced cohomology homomorphism t* is an
embedding. If t;: BT - X, (i = L.2) are two such maps, then there is a homotopy equivalence
w:BT " - éf’z such that t, = w-t,.
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2.6 Definition. A space X with a maximal r-torus is a pair (X,t) in which X is a
p-complete space with H*X e ¥ ¢4 and t: BT " — X is a Serre fibration such that t* is an
embedding.

The above definition of “maximal r-torus™ is not the most useful general one but it is
convenient for the purposes of this paper. According to 2.5, considering a general
p-complete X with H*X € X1, is more or less equivalent to considering a space X with
a maximal r-torus.

2.7 THEOREM. Let X be a space with a maximal r-torus t: BT " — X and let R be the
algebra t*(H*X) < H*BT". Then R,., = H*BT" and hence R = (H*BT")*~.

In the above theorem, the geometric assumption that R is the cohomology of a space has
allowed us to sidestep requirements (cf. 2.3) of the type p ¥ vg. This theorem is false for p = 2
(for instance, let X be the 2-completion of BSU(2)).

2.8 Definition. Let X be a space with a maximal r-torus ¢: B " — X. The Weyl space
Wy = Wy(t) of X is the space of self-equivalences w:BJ — B such that t-w = t. The
Weyl group Wy = Wy(t) of X is the component group n,# .

Remark. Composition of maps gives the Weyl space # 'y the structure of a group-like
topological monoid, and actions of # 'y can be used in forming suitable Borel constructions
(1.10).

Given X as in 2.8, let R stand for the subalgebra t*(H*X) of H*BT". The group of
homotopy classes of sclf homotopy equivalences of BT" is GL(r, Z,), so that there is
a commutative diagram

Wy - W

l l
GL(r,Z,) = GL(r,F})

in which the horizontal arrows arc constructed by taking induced cohomology homomor-
phisms. In this diagram, it is not a priori clear that Wy is finite or that the left-hand vertical
arrow is a monomorphism, although by definition the right-hand vertical arrow is a mono-
morphism.

2.9 THeoreM. Let X be a space with a maximal r-torus t: BT * — X and let R be the
algebra t*(H*X )< H*BT". Then the Weyl space W x is homotopically discrete (i.e., each
component of # 'y is contractible), and the natural map Wy — Wy is an isomorphism.

If BF"—~X is a space with a maximal r-torus, there is an induced map
B(¥ x, BZ")— X and up to homotopy a map 1:B(Wy, BT )= X (see 1.10 for the
notation here). Note that the homomorphism Wy — GL(r, Z,) gives by naturality an action
of Wy on the Eilenberg-MacLane space K{(Z,), 2) = BT".

2.10 THEOREM. Suppose that X is a space with a maximal r-torus and that as an algebra
H*X is noetherian and integrally closed. Assume that p }|Wy|. Then the above map.
T B(Wx, BT ) X

is a homotopy equivalence. Moreover, the space B(# x, BT ") is homotopy equivalent to
B(Wy, BT").
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As in 2.3, there are additional algebraic restrictions in the case of a space with
a polynomial cohomology ring. Note (2.9) that under the hypotheses of the following
theorem the group Wy can be identified with a subgroup of GL(r, Z,), well-defined up to
conjugacy.

2.11 THEOREM. Suppose that X is a space with a maximal r-torus and that H*X is
noetherian and integrally closed. Then the natural maps

H*X — H*(BT")*:
H*(X,Z,) - H*(BT", Z,)**
Q,®z,H*(X,Z,)»(Q,®z,H*(BT", Z,))*:
are isomorphisms. If H*X € X o1, then Wy < GL(r, Z,) is generated by pseudoreflections.

Finally, there is a geometric existence theorem.

2.12 THEOREM. Let W be a finite subgroup of GL(r, Z,) and let X be the space B(W, BT")
Jformed with respect to the natural action of W on BT =K ((Z,Y, 2). Assume that p f | W |.
Then H*X = (H*BT")¥ € X }q, H*X is noetherian and integrally closed, and, given a maxi-
mal r-torus t: BT "= X for X (2.5, 2.6), the group Wy(t) is conjugate as a subgroup of
GL(r,Z,) to W. Moreover, if W is generated by pseudoreflections then H*X € X"y, and
vy = |W].

We will finish this section by giving proofs for the homotopy theoretic theorems of the
introduction.

Proof of 1.1. Letr = py(so that H*X e 47, ) and lct t:BJ " — X be a maximal r-torus
for X (2.5). By 2.9, 2.7 and 2.2, the group Wy(¢) defined in 2.8 is adapted to X. By 2.11 the
group Wi(t) is generated by pscudoreflections; the equality vy = | Wy(t)| follows from 2.4.
Suppose that W < GL(r, Z,) is some other subgroup which is adapted to X. Let § be the set
of homotopy classes of maps f: BT’ — X such that f* is an embedding. It follows from 2.5
that GL(r, Z,) acts transitively on S and that the isotropy subgroup of any element of S is
conjugate to the image of the natural map no % x(t) - GL(r, Z,). As a consequence, W is
conjugate to a subgroup of Wy(t) and so by (2.9) the reduction mod pmap W — GL(r, F,) is
a monomorphism. By 2.4 and 2.1 the image of Win GL(r, F,)} is a conjugate to the image of
Wy(t), which by the above implies that | Wy (¢)| = | W] and finishes the proof.

Proof of 1.2. This is a direct consequence of 2.4 and 2.2.

§3. THE FUNCTOR T"

In this section ¥ will denote an F-vector space of dimension r. The purpose of this
section is to describe some properties of Lannes’ functor T% [20].

Recall [20,§2] that TV is left adjoint to the functor X — X which sends Re ¥ to
H*(BV)® R. The functor TV is exact [20, 2.4.1] and preserves tensor products [20, 2.4.3].

If f:R - H*BV is a map of X, then corresponding to f under adjointness is a map
TY(R)—F, or in other words a ring homomorphism f: T¥(R)° -+ F,. We will let T%(R)
denote the tensor product T"(R) ® 7+ F,, where the action of T¥(R)® on F, is given by f.
If f:R— S and ¢g:S — H*BV are maps of X with g-f= h then finduces a natural map
TYR — T}S. We will denote this map T'}(/); using the notation T} (f) would leave some

TOP 31:1-D
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ambiguity as to the range of the map, since there might be several maps g:S — H*BV with
g*f = h. The inclusion {0} = ¥ induces for any Re X" a natural map e:R = T'%R - T"R
which for f: R -~ H*BV passes to a map ¢,:R - T/ R.

For any space X, the evaluation map BV x Map(BV, X)— X induces a cohomology
homomorphism

H*X - H*(BV)® H*Map(BV, X)
which has as adjoint a natural map
A:TY(H*X)— H*Map(BV, X).

For each map f: BV — X, A induces a map i,: T (H*X)—~ H*Map(BV, X),, which fits
into a commutative diagram

H*Xx S H*X

& l l

i
TY(H*X) = H*Map(BV, X),

in which the right vertical map is induced by evaluation at the basepoint of BV. (Here and

subsequently we write T7(H*X), etc,, instead of TY.(H*X).)
Lannes has proved the following two theorems.

3.1 TueoreMm. [20, 3.1.4] If X is a simply-connected p-complete space such that H* X is
of finite type, then the natural map
(BV,X]- Hom,(H*X, H*BV)
is a bijection.

3.2 Tueorem. [20,3.2.2] Let X be a simply-connected p-complete space such that H*X
is of finite type and let f: BV — X be a map. Assume that TH(H*X) is of finite type and
vanishes in degree 1. Then the natural map

Ap:TH(H*X)— H*Map(BV, X),
is an isomorphism.

We will need to establish some algebraic properties of T7. Recall that the topological
multplication on BV gives H*BV the structure of a Hopf algebra with comultiplication
A:H*BV — H*BV ® H*BV. For any g: H*BV - H*BV, the map TY(H*BV)—» H*BV
which is adjoint to (g® 1)+ A induces a map p,:T)(H*BV)— H*BV. For any map
f:BV — BV, y, fits into a commutative diagram

TY(H*BV) 4 H*BV
iyl ! =
H*Map(BV, BV);, - H*BV
14

in which t is induced by the map BV — Map(BV, BV), which sends a point xe BV to the
map obtained by composing f with (right) multiplication by x.

3.3 LeMMA. For any map g: H*BV — H*BV the maps ¢,: H*BV — T, (H*BV) and
Ug:TY(H*BV)— H*BV are isomorphisms. If f is an endomorphism of H*BV then

B TolS) =1 pys.
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Proof. The first two statements can be proved by using the elementary fact that
A:TY(H*BV)— H*Map(BV, BV) is an isomorphism [20, 3.4.4] and then calculating with

function space cohomology: for instance, the statement about ¢, follows from the calcu-
lation that for anv b - BV = BV the man Man(RIY RUY. . RV given hu avaluatinn at the

lation that for any h the map Map(BV, BV), = BV given by evaluation at the
basepoint is an equivalence. The final assertion is proved by showing that both maps
involved correspond under adjointness to ((gf) ® f)- A.

The following lemma will be used in §4. It is proved by using the fact (cf. [14] or [19])
that 4: TY(H*BT*) - H*Map(BV, BT?) is an isomorphism.

34 LemMma. For any s>0 and map f:H*BT*— H*BV, the map e,:H"ET’—»
TY(H*BT®) is an isomorphism.

3.5 ProrosiTION. Let f:R — H* BV be a monomorphism and let 1 denote the identity map
of H*BV. Then the map T!(f): T{R - T/ (H*BV) =~ H*BV is a monomorphism.

Proof. Denote the tensor product TY(R) ® v T"(H*BV) by S. The algebra T}R is
flat as a module over TV R (this is a consequence of the associativity of the tensor product
and the fact that every module over the p-boolean ring (T* R)? is flat [20, 1.8]). It follows
from the exactness property of TV [20,2.4.1] that the natural map TR — § is a monomor-
phism. It is easy to calculate (cf. 3.3) that § is the product n,T:(H‘BV) indexed by
g:H*BV — H*BV such that g-f=/; under this identification the monomorphism
TYR—=S is [[ T4 (f). To complcte the proof, then, it is ecnough to show that if
g:H*BV — H*BV is a map with ¢-f =/, then the kernel of T} (f) contains the kernel of
T/ (f).

Let u denote the composite map g, TV(f) and v the corresponding composite
#,° Ty (/). By 3.3, we will be done if we can show that the kernel of v contains the kernel of u.
The map g: H*BV — H*BV is (By)* for a unique homomorphism y: ¥V — V. Write V as
a direct sum V, @ V, where ¥V, is the subgroup killed by some power of y and V; is the
intersection of the images of all powers of y. Note that the restriction of y to ¥, gives an
automorphism of V,. Let ¢: V' — V, be the projection map, and choose N large enough that
the restriction of y™ to V, is zero. Let e: H* BV — H*BV be the map (Be)*. Since e * g~ = ¢¥,
it follows from 3.3 that g,- T} (¢") = e- p,* T} (¢"). Consequently, there are equalities

v=p, Ty (S)
=, TY(g")- T} (f)
=ep, T (g") Ty (f)
=epu, TJ(f)

where the first equality is the definition of v, the second and fourth follow from ¢ f = f, and
the third is the above remark. Let y ! denote the self-map of ¥ which is zero on ¥; and the
inverse of y|,, on Vy; let g~ ' denote (By ™')*. The identity y-y ™' e = e givese=e-g ™' *g.
It follows from 3.3 that e- i, = e g~ '+ g,* T/ (g). Combining this with the above gives that
v agrees with the map g™ 'y, TV (9)- TY(f) =g~ ' *u," TV (f), where the equality follows
from g-f = f. In other words, v = g ~! - «, which proves the desired result.

3.6 PROPOSITION. Suppose that Re X is a subalgebra of H*BV. Let f: R — H*BV be the
inclusion map and let 1 be the identity map of H*BV. Then (g,)~' - TY (f) gives an isomorphism
Jrom TYR to the smallest Hopf subalgebra of H*BV which is closed under the action of o ,and
contains R.
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This proposition does not require the assumption that R is noetherian.

Proof of 3.6. Adjoint to the identity map of TR is a map R— H*(BV)® T"R.
Compose this with the diagonal map of H*BV to get a map

R—-H*BV)®H*BV)®T'R
and reverse the process of taking adjoints; this gives a map
A:TYR - H*(BV)® TYR

which makes 7" R into a comodule over H*BV. (This comodule structure is an algebraic
counterpart to the action of BV on Map(BV, X) induced by the left translation action
of BV on itself). The comodule structure passes to a quotient comodule structure
A;:TYR -» H*(BV)® T4 R which fits into a commutative diagram

R % TYR % H*BV)® TR

rl gl l1®g
H*BV 5 H*BV 3 H*BV)® H*(BV)

where we have used ¢, (3.3) to identify T)(H*BV) with H*BV and g = (&)~ ' * TV (f). Since
fis a monomorphism the map g is a monomorphism (3.5). It is easy to see that A, is the Hopf
algebra comultiplication map on H*BV. It now [ollows from the fact that the comultiplica-
tion on H*BV is cocommutative that Ay (T} R) is contained in TfR ® TR and thus that
TR is a Hopf subalgebra of H*BV. On the other hand, if S is a Hopf subalgebra of H*BV
closed under the action of .o/, and h:S — H*BV is the inclusion, then g,:S — T{'S is an
isomorphism [13, 4.8]. The proposition follows.

§4. MAXIMAL TORI, CONTINUED

In this section we will give proofs of the theorems from §2. We will continue to use the
notation of §2 and §3.

4.1 LemMma. Let Re X'}, be an o, subalgebra of H*BT". Then there exists a space
X with H*X = R,, iff R,., = H*BT".

Proof. Define a filtration of H*BT’
FocF, <+ < H*BT

by declaring that xe H*BT belongs to F, iff the element x* of the field (1.10) Frac (H*BT)is
separable [28] over Frac(R). According to [28] R,., © R is the subalgebra of H*BT
generated by ), ; (F,)”". Suppose that there exists such a space X of the indicated type, so
that in particular H2X = F,. Let s be the F, rank of Fp. Since H>X =0 the group
H*(X,Z,) has no torsion, so there exists a map f:X = BT* such that H(f) is an
isomorphism. Let Y be the homotopy fibre of f. It is clear that H*Y is isomorphic to the
(polynomial) subalgebra of H*BT" generated by Y, , ,(F,)”", and thus that H*Y is non-zero
only in degrees divisible by 2p. An argument [15] involving the non-existence of higher
elements of Hopf invariant one mod p implies that this fibre Y is contractible.

Proof 2.5. Let V be the group ,T" generated by the elements of order p in the torus T".
The map BV — BT" induces a monomorphism on cohomology which we will use to identify
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H*BT" with the subalgebra of H*BV generated by the images under the Bockstein of
one-dimensional classes. By 2.1 and 3.1 there is a map f: BV — X such that f* embeds H*X
into H*BT" = H*BV. Let R = H*BT" denote f*(H*X).It follows from 3.6 and the fact
that H*BT" is a Hopf subalgebra of H*BJV that T7(H*X) is isomorphic to R,.,. On the
other hand, by 3.2 there is an isomorphism ,{,:T}’(H‘X)—»H‘Map(BV, X); and so
T7(H*X) = R,., is realizable as the cohomology of a space. Lemma 4.1 now shows that
R,,=H*BT* and thus that H*Map(BV,X), =~ H*BT". There is a map
c:Map(BV, X); — BT which induces this cohomology isomorphism, and, since the space
Map(BV, X), is H,( —, F,)-local [5, 12.9], the map c is an equivalence. Let 1 denote the
identity map of BV. There is a commutative diagram

Map(BV, BV), = Map(BV, X),

"-l l"/
v L. x

in which the vertical maps are given by basepoint evaluation and the left-hand vertical
map is an equivalence. It follows that the map e, induces an embedding
(ef)*:H*X —» H*Map(BV, X), and that the desired map t:BJ " - X can be obtained by
replacing e, by a weakly equivalent Serre fibration.

Now suppose that g: Y — X is a Serre fibration with ¥ = BT" and g* an embedding. By
the fact [20] that H*BV is an injective object of ), the map f*: H*X — H*BYV extends
overg*toamap:H*Y - H*BV (ic. x*g* =f*). If h: BV - Yis a map with h* = g, then
the composite g * h is homotopic to f(3.1). Since g is a fibration it is possible by the covering
homotopy property to adjust h so that g-h = f. There is then a commutative diagram

Map(BV, ¥),"“=) Map(BV, X),
[ l l ¢y

r 4 X

in which the vertical arrows are given by basepoint evaluation. The map e, is an equivalence
by a simple direct argument or by a combination of 3.2 and 3.4. To complete the proof it is
enough by standard homotopy theory to show that the upper horizontal arrow in this
diagram is an equivalence, or, since the spaces involved are H,( —, F,)-local (5, 12.9], that
the corresponding cohomology map T} (g) (see 3.2) is an isomorphism. The map
TV(f):T7(H*X)— TY(H*BV) is a monomorphism by 3.5; since T/ (f) = T/(h): T¥(g),
this implies that T} (g) is a monomorphism. Since T} (H*Y) = H*BT" by 3.4 and
THH*X) = H*BT’ by the argument above, dimension counting in fact shows that T} (g)
must be an isomorphism.

Proof of 2.7. Let V = (F,) and choose amap g: BV — BJ " such that g* is a monomor-
phism. Let f = t-g. It is possible to argue as above in the proof of 2.5 that R, is realizable
as the cohomology of the space Map(BV, X'),. The desired conclusion follows from 4.1.

4.2 Lemma. Let X be a space with a maximal r-torus t: BF " — X and V the vector space
(F,Y. Suppose that f: BV — BJ " is a map such that f* is an embedding, and let g = t* f. Then
the natural map

Map(BV, B7 "), ") Map(BV, X),

is an equivalence.
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The proof of this is contained in the proof above of 2.5. We now head towards a proof
of 2.9. First we have an algebraic lemma, whose proof comes down to a straightforward
calculation.

4.3 LemMA. Suppose that R is an object off;,d and that t: R - H*BT" is an embedding.
ot I bho tho vortar cnace (K ¥V idontifv H* DT sith tha cithalaohes Af H ¥ R aomorns tad

el v pe [ne vector space \x Pl and i iaenlyjy «1 " D1 Wiln lnie SécGigecra o i1 ~ o7 generalea
by the images under the Bockstein of one-dimensional classes. Let G be the group of
X automorphisms g of H*BV such that g+t = t. Then each element of G carries H*BT" to
itself, and the subsequent induced homomorphism G — W is an isomorphism.

[‘w

Proof of 2.9. Let V' = ,T" as above. The main idea of this proof is to find a relationship
between maps BV — X and maps BT"— X by using the fibration sequence
BV — BT" — BT". We begin with some general considerations.

Suppose that g: E — B is a (Serre) fibration of connected CW-complexes with fibre F,
and that Y is a space. By elementary homotopy theory there is a space Map(E/B, Y) and
a fibration ¢:Map(E/B. Y) — B such that the space of sections I'(¢) is naturally weakly
equivalent to Map(E, Y). The fibre of ¢ is Map(F, Y).

Suppose in addition that f1E— X and g: ¥ — X are maps, with g a fibration. Let
Mapy(E, Y) denote the space of all maps h:E— Y such that f=g-h. The map
Map(E, Y) - Map(E, X) given by composition with ¢ is a fibration with fibre over
SeMap(E, X) cqual to Mapy(E, Y). It is clear that there is a space Mapg(E/B, Y) and
a fibration y:Mapy(E/B, Y)— B such that ['{§x) = Map(E, Y); the map §¢ can be
obtained by constructing a (homotopy) fibre square

Mapy(E/B, Y) - Map(E/B, Y)
de | l
B — Map(E/B, X)

in which the lower horizontal arrow corresponds to f. It follows from this fibre square that
the (homotopy) fibre of ¢y is Mapy(F, Y).

Suppose that X is a space with a maximal torus ¢: B7 " — X. Let Y be the space BT *
and g:Y— X the map . Let q:E— B be a fibration equivalent to the map
K((Z,),2) = K((Z,), 2) induced by the homomorphism (Z,)" - (Z,)" given by multiplica-
tion by p, and let f:E — X be the composite of ¢ with an equivalence E = B ". Up to
homotopy we will identify the fibre of g with BV, where V'is the vector space (F,) = ,T". By
the above considerations, Mapy(Y, Y) = Mapy(E, Y) is equivalent to the space of sections
of a fibration gy over B with fibre Mapy(BV, Y).

We will use a superscript * + " (e.g. “Map " (X, ¥)") to denote the subspace of a mapping
space consisting of maps with induce a monomorphism on cohomology. It is clear that
there are equivalences # 'y = Mapys (Y, Y) = Mapz(E, Y); in effect, a map Y- 7Y is
a homotopy equivalence iff it induces a monomorphism on cohomology. A maph:E— Y
induces a monomorphism on cohomology iff the composite of h with the map BV — E
induces a monomorphism H*Y — H*BV. It follows that Mapy (E, Y) is equivalent to the
space of sections of a fibration §§ : Mapys (E/B, Y) — B with fibre Mapj (BV, Y).

The space Mapy (BV, Y) is the fibre of the map Map*(BV, Y) —» Map*(BV, X) given
by composition with g over the point represented by the composite h: BV — E — X. Thus
by 4.2 the space Mapy(BV, Y) is homotopically discrete and the component set
ngMapy (BV, Y) is isomorphic in a natural way to the sct of homotopy classes of maps
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a: BV - Y such that a* is a monomorphism and g-a ~ h. This last set is isomorphic (3.1) to
the set of monomorphisms a’: H*Y — H*BV such that a’-g* = h*. It now follows easily
that the group Wy, considered (4.3) as a group of automorphisms of H*BV or equivalently
as a group of homotopy classes of self-equivalences of BV, acts simply transitively on
noMapy (BV, Y).

The fibration §§ is necessarily fibre-homotopically trivial, since it is a fibration with
a homotopically discrete fibre over a simply connected base. The basepoint evaluation map
(g1 )— Mapy (BV, Y)is thus an equivalence. But ['(§5) ~ Mapy (E, Y), so, by naturality,
the restriction map Mapg (E, Y) - Mapx (BV, Y) is an equivalence. This shows that
Mapyx (E, Y) = # x is homotopically discrete; the desired statement about Wy (= o % x)
follows in a straightforward way from the above identification of n,Mapyx (BV, Y).

Proofof 2.10. Let R = H*BJ " be the image of H*X. By 2.2 the natural restriction map
gives an isomorphism H*X = (H*BJ ")*», while by a twisted coefficient Serre spectral
sequence argument the corresponding restriction map gives an isomorphism
H*B(¥ x,BT ") = H‘(Bf’)w'. Since Wp is naturally isomorphic to Wy, it follows im-
mediately that the map B(# x, BZ ") — X induces an isomorphism on cohomology and
thus that the completed map t is an equivalence.

The spaces B(# "y, B7 ") and B(Wy, BT') are each two-stage Postnikov systems with
fundamental group Wy and second homotopy group (Z,)"; by construction both spaces
have the same action of the fundamental group on the second homotopy group. The
difference between the two spaces can therefore be measured by a k=invariant in
H*(BWyx.(Z,Y). since this group vanishes (pt|Wy|) the two spaces (and hence their
completions) must be equivalent.

The following lemmas will be used in proving 2.11.

44 LeEMMA. Let W be a finite group and f: A — B a map of modules over the group ring
Z,[W]. Suppose that A and B are finitely generated free modules over Z,, that W acts trivially
on A, and that f induces an isomorphism A/pA = (B/pB)". Then f induces isomorphisms
Az=BYand Q,®,,A=(Q,®,,B)".

Proof. Let C denote BY. Pick x € B and suppose that px e C. For each we W the element
px — wpx = p(x — wx) vanishes; since B is p-torsion free, this implies that x = wx and thus
that xe C. Conscquently, the maps C/pC — B/pB and C/pC — (B/pB)* are monomor-
phisms and hence (since the composite A/pA — C/pC — (B/pB)" is an isomorphism) the
map A/pA — C/pC is an isomorphism. The fact that A — C is an isomorphism now follows
from the fact that A and C are both finitely generated free modules over Z,. For the second
isomorphism, note that since Q,, is flat as a module over Z, (i.e. Q, ®z, is an exact functor)
and the fixed point functor ( — )" can be expressed naturally as a kernel, the natural map
Q,®,(BY) = (Q,®;, B)" is an isomorphism.

4.5 LeMMA. IfH*X € X, then the ring Q, @2 H*(X, Z,) is a polynomial algebra over
Q, on a finite number of generators.

Proof. We can assume that X is p-complete and in particular simply connected. The
Eilenberg-Moore spectral sequence (or Serre spectral sequence) shows that H*QX is finite
and hence that H*(QX,Z,) is finitely generated over Z,. This implies that
Q,®,, H*(QX,Z,) is a finite connected commutative Hopf algebra over Q, and thus
isomorphic as an algebra to an exterior algebra over Q, (see {21, Appendix and 5.15]).
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(Another way to obtain this last conclusion is to use obstruction theory and the fact that
k-invariants of QX are torsion to produce a map

QX - [] K(n:QX /torsion, i)

which induces an isomorphism on Q,®z, H*( —, Z,). The fact that H*(QX, Z,) is finitely
generated implies that except for a finite number of odd integers i the spaces in the above
product are contractible.) By the Samelson-Leray theorem [21, 7.20], the dual of the Hopf
algebra Q,®z H*(QX, Z,) is also an exterior algebra over Q,. The spectral sequence
argument of Borel {3, 13.1] (or an easy argument using the bar construction spectral
sequence) now shows that Q,®z H*(X, Z,) is the desired polynomial algebra.

Proof of 2.11. If Y is a space such that H*Y is of finite type and vanishes in odd
dimensions, then for each i the group H'(Y, Z,) is a finitely generated free module over Z,
and there is a natural isomorphism H'Y = F,®;, H'(Y, Z,). This remark applies to the
spaces X and B7 *, where t: BF " — X is the maximal torus for X. The three isomorphisms
listed in the theorem follows from 2.2 (cf. proof of 2.10) and 4.4. By 4.5, then, the ring of
invariants (Q,®z H*(BZ ", Z,))"** is a polynomial algebra. Under the monomorphism
(2.9) Wy —» GL(r, Z,) = GL(r, Q,) the action of Wy on Q,®,, H*(BS ", Z,) can be identi-
fied with the natural induced action of Wy on the symmetric algebra of the dual of (Q,), so
the desired result is a consequence of 5.1.

Proof of 2.12. It s clear (cf. proof of 2.10) that the natural map H*X — (H*BT")" is an
isomorphism, so it follows immediately from 2.4 that H*X € X {4, that H*X is noctherian
and integrally closed, and that H*X € X", and vy = |W| il W is generated by pscudo-
reflections. Let f: B7 " — X be the maximal r-torus for X obtained by replacing the evident
map BT’ — X with a Serre fibration, and let R = H*BJ * denote f*(H*X). By construc-
tion W < Wy(f), by 2.4 the natural map W — Wpgis an isomorphism, and by 2.9 the natural
map Wy(f)— Wk is an isomorphism. It follows that W = Wy(f). The desired conjugacy
statement is a consequence of 2.5.

§5. PSEUDOREFLECTION GROUPS

In this section we will prove Theorem 1.5.

If D is a commutative domain, a subgroup of GL(n, D) is said to be a pseudoreflection
(p.r.) subgroup if it is generated by pseudoreflections (see §1). The main property of p.r.
subgroups that makes them interesting for our purposes is the following one.

5.1 TueoreM. [10] [7] [4, V. Sect 6, Exer. 8(a)] Suppose that F is a field and that W is
a finite subgroup of GL(n, F). Let W act on the polynomial algebra R = F[t,, . . ., t,] in the
natural way. If the ring of invariants RY is a polynomial algebra, then W is a p.r. subgroup. If
the characteristic of F is zero or prime to | W |, then the converse holds as well.

5.2 LeMMA. If W < GL(n, F,)is a subgroup of order prime to p, then Wliftsto a subgroup
W < GL(n, Z,) and the conjugacy class of W depends only on that of W. If W< GL(n,Z,)is
a subgroup of finite order prime to p and W reduces mod p to a p. r. subgroup, then Wisap.r.
subgroup.
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5.3 Remark. It is possible to have a finite p.r. subgroup W of GL(n, F,) with the
following paradoxical combination of properties:

(1) F[ty,...,t,]" is a polynomial ring,
(2) W lifts to a subgroup W of GL(n, Z,). but
(3) W does not lift to a p.r. subgroup of GL(n, Z,).

Of course, by 5.2 the prime p must divide the order of W, and by 5.1 the ring of invariants
(Z,[ty, ..., t.1)¥ must fail to be a polynomial ring. For example, let p be 3, let
We<e GL(2,F,) be the cyclic group of strictly upper-triangular matrices, and let
W < GL(2,Z,) be the group generated by the matrix (-§ _%). It is easy to check that
(F,[t;,t,])" is the polynomial algebra on t, and t3 — t3t,. No generator of W can lift to
a pseudoreflection, since Q, does not contain a cube root of unity.

Proof of 5.2. The fact that a group W of the indicated type lifts to a subgroup of
GL(n, Z,) in a way which is unique up to conjugacy is proven in [ 1, pp. 141-142]. To finish
the proof we show in fact that if 4e GL(n, Z,) is an element of finite order prime to p which
reduces mod p to a pseudoreflection then A itself is a pseudoreflection. Pick such an A, let
s be the order of A, and let N denote s~'(3.;24 4°). Choose linearly independent elements
vy, ..., Us- in (F,)" which are fixed by 4, and let 5;€(Z,)" be a lift of v,. Then for each
i < n— | the element N§; is fixed by 4 and reduces mod p to v;. Since the v, are linearly
independent, it follows easily that the set {N&,,...,Ni,-,} generates a rank (n — 1)
submodule of (Z,)"; by construction the elements of this submodule are in the kernel of
(A = I,) and so the existence of this submodule shows that 4 is a pscudoreflection.

If F is a ficld of characteristic zero and y: W — GL(n, F) is a representation of the finite
group W, then the character field K is by definition the extension ficld of Q generated by
the values of the character of g (i.e. by the algebraic numbers trace (x(w)), we W). If W is
a finite subgroup of GL(n, F), we will let Ky denote the character field of the inclusion
representation W< GL(n, F). Note that Ky < F. For any we W the algebraic number
trace (w) is the sum of the eigenvalues of w and therefore a sum of roots of unity; this implies
that Ky lies in a cyclotomic, hence abelian, extension of Q and thus that Ky itself is
a Galois extension of Q.

5.4 ProrosiTioN. [8] [2] If F is a field of characteristic 0 and W = GL(n, F) is a p.r.
subgroup, then W is conjugate in GL(n, F) to a subgroup of GL(n, Kw).

Remark. This proposition amounts to the statement that the Schur index of a reflection
representation is one [2].

5.5 Provposition. If W < GL(n, C)is a p.r. subgroup and o is a field automorphism of C,
then the group a(W) is conjugate as a subgroup of GL(n, C) to W.

Remark. Ifi: W — GL(n, C)is the inclusion of a p.r. subgroup it is not necessarily true in
the situation of 5.5 that the representation o i of W is conjugate to the representation i; for
instance, the dihedral group D, of order 10 has two distinct p. r. representations over
Q(\/g) which are interchanged by the non-identity automorphism on(ﬁ). According to
5.5, these two representations must also be interchanged by an outer automorphism of D .

Proofof 5.5. We may assume that the action of W on C" gives an irreducible representa-
tion of W. The action of (}¥) on C" is then also irreducible. It is clear that W and o(}) are
irreducible p.r. groups of the same rank (i.e. both W and o(W'} lie in GL(n, C)) and the same
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order. Since the character field Kw is Galois and hence carried to itself by 6, Kyw) = Kw.
Moreover, W is primitive [9] as a p.r. group iff o(W') is primitive. The fact that W and a(W)
have all of these properties in common now implies, by inspection of the tables in [8], that
W and g(#’) are conjugate.

5.6 ProrosiTioN. Let W be a finite group of order prime to p. Then the inclusion
GL(n,Z,)—» GL(n,Q,) induces a bijection from conjugacy classes of homomorphisms
W — GL(n. Z,) to conjugacy classes of homomorphisms W — GL(n, Q,).

Proof. The argument in [1l, proof of 73.5] shows that every homomorphism
W — GL(n.Q,) is derived up to conjugacy from a homomorphism W — GL(n, Z,). The
proposition now follows from [11, 76.17].

5.7 PropOSITION. Let W be a finite group, F a field of characteristic 0, M and N finitely
generated F [ W] modules, and L a field containing F. Then L @ ¢ M is isomorphic to L @ ¢ N
as a module over L{ W] iff M is isomorphic to N as a module over F{W].

Proof. A finite-dimensional representation of a finite group over a field of characteristic
0 is determined up to isomorphism by the character which it affords [11, 30.14]. This
character is not changed by extension of scalars.

Proof of L.5. The bijection (1)«+(2) is obtained from 2.4. The bijection (2)(3) is
obtained from 5.2.

It remains to give the bijection (3}« (4). Suppose that Wis a p.r. subgroup of GL(n, Z,).
The character field Ky < Q, is a finite extension of Q, and by 5.4 the group W is conjugate
in GL(n, Q,) to a subgroup W’ of GL(n, Ky). By 5.7 the subgroup W is well-defined up to
conjugacy in GL(n, Kw). Pick an embedding j: Ky — C and observe that j(W') < GL(n, C)
is a p.r. subgroup. Since Ky is a Galois extension of Q any two embeddings Ky — C differ
by an automorphism of C; in this way 5.5 shows that the conjugacy class of the subgroup
J(W'} e GL(n, C) does not depend on the choice of j. This gives the desired function from
the sct of conjugacy classes of p.r. subgroups of GL(n, Q,) to the set of conjugacy classes of
p.r. subgroups of GL(n, C) with character ficld embeddable in Q).

To construct an inverse to this function, reverse the procedure. Let W< GL(n, C) be
a p.r. group with character field Ky, and assume that Ky can be embedded in Q,. By 54
the group W is conjugate to a subgroup W’ of GL(n, Ky ); by 5.7 there is only one such W’
up to conjugacy. Choose an embedding k: Kw — Q,. and observe that k(W’) is a p. r.
subgroup of GL(n, Q,). Since Ky is a Galois extension of Q any two such embeddings differ
by a field automorphism of Ky and thus by 5.5 the conjugacy class of the subgroup
k(W') = GL(n,Q,) does not depend on the choice of k. Finally, by 5.6 there is up to
conjugacy a unique subgroup W” < GL(n, Z,) such that W” is conjugate in GL(n, Q,) to
k(w").

Acknowledgement — We are grateful to J. Lannes for telling us of his results and showing us how to simplify some
carly cumbersome proofs. Much of the work in this paper was discussed by the third author in a talk at the 1986
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