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Abstract. Divided power algebras form an important variety of non-
binary universal algebras. We identify the universal enveloping algebra
and Kähler differentials associated to a divided power algebra over a
general commutative ring, simplifying and generalizing work of Roby
and Dokas.

1. Introduction

Divided power algebras were introduced by Henri Cartan [3] to describe
the homology of Eilenberg Mac Lane spaces. They have subsequently been
intensively studied [10] and have played important roles in other parts of
mathematics, such as algebraic geometry, where they form the basis of the
construction of crystalline cohomology [2]. They constitute an important
example of a variety of algebras that are “non-binary,” in the sense that
their structure is not entirely encoded in a binary product.

In [8], Dan Quillen described a uniform process for defining a cohomology
theory in any one of a wide class of algebraic structures. An important role
in that construction is played by the category of “Beck modules” (see [1],
for example) for an algebra A in a specified variety V. This is the category,
recognized long ago by Sammy Eilenberg [7] as providing the appropriate
meaning of a “representation” in a general context, consists of the abelian
objects in the slice category V/A. In linear cases it can be identified with
the category of modules over a unital associative algebra U(A), the “uni-
versal enveloping algebra” of A. Beck modules form the coefficients in the
Quillen cohomology theory defined on V, and in fact Quillen homology is
an appropriately defined derived functor of the abelianization functor, eval-
uated on the terminal object 1A : A ↓ A in V/A. If V is the variety of
commutative rings, AbA(1A) is the A-module of Kähler differentials, and
this suggests defining ΩV

A = AbA(1A) in a general variety of algebras V.
This construction has been considered in detail by Ionnnis Dokas [6, 5]

in case one is working with divided power algebras over a field. The goal of
the present paper is to show how this works out over a general ring. Dokas
proves the interesting result that if A is a DP algebra over a field then the
module of divided power Kähler differentials is simply a DP Beck module
structure on the usual commutative algebra module of Kähler differentials.
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We show that the same result holds in general, and along the way we simplify
some of his arguments.

The classical module of Kähler differentials of divided power algebras was
also the subject of a study by Norbert Roby [11]. He described the Kähler
differentials of a free divided power algebra. We show how his result follows
easily from the identification ΩDP

A = ΩCA
A .

In the first section of this short paper we gather some reminders about
divided power algebras. We find it convenient to work with non-unital com-
mutative algebras. We then study the structure of abelian divided power
algebras – those whose product is trivial. These coincide with Beck modules
over the zero divided power algebra. In §4 we identify the universal envelop-
ing algebra of a general divided power algebra. Next we define the module
of Kähler differentials, and state and prove the main theorem. Finally, in
§6, we give some consequences of this theorem.

Acknowledgements. This work was carried out under the auspices of the
“PalUROP” program, designed to foster collaborative research projects in-
volving students from MIT and Palestinian universities. The second author
acknowledges support by the MIT UROP office.

2. Divided power algebras and their universal enveloping
algebras

We recall the definition of divided power algebras and some of their basic
properties. We will always work over a fixed commutative ring R, and an
un-decorated “⊗” will indicate the tensor product over R. By an “algebra”
we mean a commutative non-unital R-algebra.

Definition 2.1. A DP structure on the algebra A is a family of maps
γi : A→ A, i > 0 such that for all a, b ∈ A and r ∈ R,

γ1(a) = a

γn(a+ b) = γn(a) +
∑

i+j=n

γi(a)γj(b) + γn(b)

γn(ab) = anγn(b) and γn(rb) = rnγn(b)

γm(a)γn(a) =
(m+ n)!

m!n!
γm+n(a)

γm(γn(a)) =
(mn)!

m!(n!)m
γmn(a) .

A morphism of DP algebras is an algebra map commuting with these “di-
vided power” operations.

Write DPAlgR for the category of DP algebras.

Remark 2.2. The commutative ring R might be “large,” including the
nonunital algebra A as an ideal. Then one may define γ0 = 1 and the
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axioms become slightly more compact; this is the expression one finds in [2]
and elsewhere.

But R may also be “small.” In fact any nonunital R-algebra A is an ideal
in the augmented unital R-algebra

A+ = A⊕R

with product (a, r)(b, s) = (ab, rb + sa). This is the context discussed by
Roby [10] and Dokas [5, 6]. (Our use of the subscripted + is the opposite of
theirs, but agrees with the usage in [4].)

The following well-known facts will be useful.

Proposition 2.3 ([10]). The forgetful functor DPAlgR →ModR has a left
adjoint, sending the R-module V to the “free DP algebra” ΓR(V ) generated
by V .

The coproduct of two algebras, A and B, is the algebra

A
∐
B = (A⊗R)⊕ (A⊗B)⊕ (R⊗B)

with the evident product. The canonical inclusions take a ∈ A to a⊗ 1 and
b ∈ B to 1⊗ b.

Proposition 2.4 ([10]). Let A and B be DP algebras. Then there is a
unique DP structure on A

∐
B such that the two inclusions are DP maps,

and it serves as the coproduct in DPAlgR.

The product of two DP algebras is a DP structure on their product as
algebras, which has as its underlying R-module the product R-module. The
terminal DP algebra is the unique structure on the trivial R-module 0. Any
algebra has a unique “point,” i.e. a unique map from the terminal algebra.

3. Abelian DP -algebras

We are interested in abelian group objects in the category DPAlgR. A
unital product on an R-algebra A is an algebra map µ : A × A → A such
that µ(a, 0) = a and µ(0, b) = b. From this we find that

ab = µ(a, 0)µ(0, b) = µ(0, 0) = 0 .

Also, µ is an additive map, so

µ(a, b) = µ((a, 0) + (0, b)) = µ(a, 0) + µ(0, b) = a+ b

so the product is none other than the sum in the R-module A, which is
R-linear by distributivity. This product is thus automatically an abelian
group structure, so the abelian objects in CAlgR are the algebras with
trivial product. Since the categorical product in DPAlgR is the same, an
abelian DP algebra also has trivial algebra structure. This imposes strong
restrictions on the divided powers.
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Proposition 3.1. A DP algebra is abelian as a DP algebra if and only if
it is abelian as a commutative algebra. In such a DP algebra, γn = 0 unless
n is a power of a prime. For any prime number p, γp is additive, pγp = 0,
γpe = γep, and, for all a ∈ A and r ∈ R, γp(ra) = rpγp(a).

Proof. We begin by verifying these properties. Suppose A is a DP algebra
that is abelian as a commutative algebra. The deviation from additivity of
γn is a sum of products, so vanishes if products vanish. If i + j = n with
i, j ≥ 1, the product rule for divided powers shows that (i, j)γn = 0 (where
(i, j) = (i+ j)!/i!j!). Since [9]

gcd{(i, j) : i, j ≥ 1, i+ j = n} =

{
1 if n is not a prime power

p if n = pe

we see that γn = 0 if n is not a prime power and pγpe = 0. Finally, following
[3, 7-09], we claim that

γkp ≡ γkγp mod p .

That is to say,
(kp)!

k!(p!)k
≡ 1 mod p .

To see this, write the numerator as
p∏

i=1

(
i(p+ i)(2p+ i) · · · ((k − 1)p+ i)

)
.

The denominator is ((p − 1)!)k times the i = p factor in the numerator.
For i < p, the ith factor in the numerator is congruent mod p to ik, so the
product of those terms is congruent mod p to ((p− 1)!)k.

It follows by induction that γpe ≡ γep mod p.
Now observe that if A isDP algebra with trivial product then the addition

map, which is the only candidate for an abelian group product, is indeed a
DP algebra map. This follows from linearity of the divided powers on such
an algebra. �

Define the unital associative algebra

U(0) = R[φp : p prime]/(pφp) ,

with the twisted product defined by φpr = rpφp. Note that the map R →
U(0) is not generally central; U(0) is not an R-algebra, but it is an “R-
bimodule-algebra” in the sense that it is a monoid in the monoidal category
of R-bimodules. We have proved that an abelian DP algebra structure on
A is recorded by a left U(0) action U(0) ⊗R A → A. The φ’s record the
divided powers; we have changed notation from γ to φ for clarity of later
constructions. If p and q are distinct primes, then both p and q kill φpφq,
which therefore vanishes. As a notational convenience, let φpe = φep and
φn = 0 if n is not a prime power.
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Conversely, any such action determines an abelian DP algebra structure
on A. So:

Lemma 3.2. The category of abelian DP algebras is equivalent to the cat-
egory of left U(0)-modules

A DP ideal in a DP algebra A is an ideal in A that is closed under
formation of divided powers. It is easy to see that if I is a DP ideal in A
then the divided powers descend to give a divided power structure on A/I,
their non-additivity notwithstanding.

The ideal A2 is closed under the divided powers, so A/A2 is an example
of an abelian divided power algebra; indeed, it is the abelianization of A.

4. Beck modules

Fix a DP algebra A and consider the slice category DPAlgR/A. An
object of DPAlgR/A is a DP algebra B equipped with a DP map π : B ↓ A.
A morphism from π′ : B′ ↓ A to π : B ↓ A is a DP algebra map f : B′ → B
such that πf = π′.

Definition 4.1. A DP A-module is an abelian object in DPAlgR/A.

These are the “Beck modules” in the theory of DP algebras. Write ModA

for the category of DP A-modules. The following was observed by Dokas
[5, §3] if R is a field.

Proposition 4.2. ModA is an abelian category, equivalent to the category
of left modules over the R-bimodule-algebra U(A) given by

U(A) = A+ ⊗R U(0)

as an R-bimodule, with product determined by

(a⊗ 1)(b⊗ 1) = ab⊗ 1 , (1⊗ u)(1⊗ v) = 1⊗ uv
(a⊗ 1)(1⊗ u) = a⊗ u

(1⊗ φp)(a⊗ 1) = 0

with a, b ∈ A and u, v ∈ U(0) and p prime.

Proof. Given an abelian object π : E ↓ A over A in DPAlgR, let M = kerπ.
This kernel is a sub DP algebra of E. The abelian structure of E ↓ A
restricts to an abelian structure on M ↓ 0, so the product on M is trivial
and the divided powers are given by an action of U(0) on M .

The unital algebra A+ acts on E, and M is a submodule. It remains to
describe how the action of A+ interacts with the divided power structure.
But for n > 1, in A⊕M ,

(0, γn(ax)) = γn(0, ax) = γn((a, 0)(0, x)) = γn(a, 0)(0, x)n = 0

so γn(ax) = 0.
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Conversely, given a U(A)-module M , the R-module A ⊕M becomes an
abelian object over A with

(a, x)(b, y) = (ab, ay + bx) , γn(a, x) =
(
γna, φnx+

∑
i+j=n

γi(a)φj(x)
)
.

These constructions are inverse to each other. �

It’s interesting to observe that the DP structure of A plays no role in this
description of the category of DP A-modules.

For example, fix a prime p and suppose that R is a Z(p)-algebra. Then
U(A) is too, so φq = 0 for primes q other than p, and

U(A) = A+ ⊗R R[φp]/(pφp)

with product twisted by φpr = rpφp for r ∈ R and φpa = 0 for a ∈ A.
Compare with [6].

Remark 4.3. Divided power algebras often occur in a graded setting; this
is how Cartan encountered them in [3], for example. If the Koszul sign rule
applies, one may divide by the ideal generated by the elements of odd degree
to obtain a graded algebra that is commutative in the sense that ab = ba.

In this graded context, it is appropriate to grade U(0) on the commutative
monoid Z×>0 of positive integers under multiplication; so for example |1| =
|φ1| = 1. This monoid acts additively on Z, and the action of the divided
powers is compatible with that action. The algebra U(A) is naturally Z-
graded; an element a⊗φn ∈ A+⊗RU(0) has degree n|a|. Then the category
of abelian objects in the category of graded DP algebras over A is equivalent
to the category of graded left U(A)-modules.

5. Derivations and Kähler differentials

The category DPAlgR has its own proper theory of derivations and dif-
ferentials.

Definition 5.1. Let A be a DP algebra and M a DP A-module. A DP
derivation is an R-linear map s : A → M such that a 7→ (a, s(a)) is a DP
algebra section of pr1 : A⊕M ↓ A.

Lemma 5.2. An R-linear map s : A → M is a DP derivation if and only
if

s(ab) = as(b) + bs(a)

s(γn(a)) = φn(sa) +
∑

i+j=n

γi(a)φj(sa) .

Proof. The first equality follows from the map a 7→ (a, sa) being an algebra
map:

(ab, s(ab)) = (a, s(a))(b, s(b)) = (ab, as(b) + bs(a)) .



DIVIDED POWERS AND KÄHLER DIFFERENTIALS 7

The second follows from commutation with divided powers:

(γna, s(γna)) = γn(a, sa) = γn((a, 0) + (0, sa))

= γn(a, 0) +
∑

i+j=n

(γia, 0)(0, φj(sa)) + γn(0, sa)

= (γna, 0) +
∑

i+j=n

(0, (γia)(φj(sa))) + (0, φn(sa)) .

Equating second entries gives the result.
Conversely, these conditions imply that a 7→ (a, s(a)) is a DP algebra

map splitting the projection. �

For example, if A is a Z(p)-algebra, a DP derivation is an algebra deriva-
tion s such that s(γpa) = φp(sa).

Remark 5.3. We note some implications of these equations. First of all,

φp(s(ab)) = 0

since s(ab) = as(b) + bs(a) and φp kills elements of the form ax. Next,

φp(s(γqa)) = φpφq(sa) +
∑

i+j=q

φp(γi(a)φj(sa))) =

{
φ2p(sa) if p = q

0 otherwise

since φp is additive, and, again, kills elements of the form ax.

There is obviously a universal DP derivation out of A, which we write

d : A→ ΩDP
A/R .

One construction is as follows. Any R-module map s : A→M extends to a
U(A)-module map U(A)⊗A→M . As a left U(A)-module,

ΩDP
A/R = (U(A)⊗A)/S

where S is the sub U(A)-module generated by the elements

a⊗ b− 1⊗ ab+ b⊗ a

1⊗ γna− φn ⊗ a+
∑

i+j=n

γi(a)φj ⊗ a .

In this model, the universal derivation is given by da = [1⊗ a].
This expression obscures the simplicity of ΩDP

A/R in general.

Theorem 5.4. Let A be a DP algebra. There is a unique DP A-module
structure on ΩCA

A/R such that d : A→ ΩCA
A/R is a DP derivation, and it serves

as the universal DP derivation.

The case in which R is a field of characteristic p is proven in [6].
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Proof. We follow [6] in a proof of this theorem. To begin with, we employ
one of the standard constructions of the Kähler differentials to construct a
DP A-module structure on ΩCA

A/R.

The “fold” map ∇ : A
∐
A→ A is characterized as a DP algebra map by

the equations ∇◦ in1 = 1A = ∇◦ in2. The only algebra map satisfying them
sends each of the the factors in A

∐
A = (A⊗R)⊕ (A⊗A)⊕ (R⊗A) to A

by the product, so the product map is a DP algebra map.
The kernel I of this map is thus a DP subalgebra of A

∐
A. One construc-

tion of ΩCA
A/R is as the quotient I/I2, which thus has a natural structure of

an abelian DP algebra.
ΩCA
A/R is of course also a module over A+. We have to see that this A+-

module structure coheres with the divided powers; that is, that γp((a ⊗
1)ω) ∈ I2 for any ω ∈ I. By the product formula this is (ap ⊗ 1)γpω. But
ap = p!γp(a) and pγpω ∈ I2 since pφp = 0 in I/I2.

So ΩCA
A/R is a left U(A)-module.

Next, the universal derivation d : A → ΩCA
A/R is in fact a DP derivation.

We refer to [6] for this; we observe that the argument for Proposition 2.8 in
that paper does not require one to work over a field of characteristic p, but
rather is a mod p result and so is applicable since pγp = 0.

Finally, suppose that s : A → M is any DP derivation. Since it is
in particular a derivation in CAlgR, there is a unique A+-module map
f : ΩCA

A/R →M such that s = f ◦ d. We claim that f is in fact a map of DP

A-modules.
The DP algebra over A determined by M , A⊕M , admits two DP algebra

maps from A: the unit map and the map corresponding to the derivation s.
Together they induce a DP algebra map A

∐
A → A ⊕M . We claim that

its restriction to I factors through the inclusion M ↪→ A ⊕M . To see this
let
∑
ai ⊗ bi ∈ I, so that

∑
aibi = 0 in A. Its image in A⊕M is∑

(ai, 0)(bi, s(bi)) =
∑

(aibi, ais(bi)) = (0,
∑

ais(bi)) .

Since M is an abelian algebra, products vanish in it, so the map I → M
factors through the quotient I/I2 = ΩCA

A/R. This construction of f : ΩCA
A/R →

M makes it clear that it is indeed a DP module homomorphism. �

6. Examples

There is one case in which the module of Kähler differentials is easy to
compute for formal reasons.

Lemma 6.1 (cf. [6, Theorem 2.9]). Let V be an R-module and let A =
ΓR(V ) be the free DP algebra generated by the R-module V . Then there is
a unique DP derivation d : A→ U(A)⊗ V such that dv = 1⊗ v for v ∈ V ,
and it is the universal DP derivation;

ΩDP
A/R = U(A)⊗ V .
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Proof. We simply verify that (U(A)⊗ V, d) satisfies the universal property.
Let M be any U(A)-module and consider the corresponding abelian object
over A. Let i : V → A denote the inclusion of generators. Then:

DerDP
R (A,M) =


A⊕M

��
A

;;

1 // A


DPAlgR

=


A⊕M

��
V

;;

i // A


ModR

= HomR(V,M) = HomU(A)(U(A)⊗ V,M) .

We leave the check that the universal differential is as stated to the reader.
�

Theorem 5.4 has the following consequence.

Corollary 6.2 ([11]). The module of Kähler differentials of the free DP
algebra A = ΓR(V ) when regarded as merely a commutative algebra is

ΩCA
A/R = U(A)⊗ V

as an A+-module.

Example 6.3. For example suppose that V is free of rank 1 over R, with
generator x. Then A = ΓR(R) is the free R-module on {γn(x) : n > 0}. Its
universal enveloping algebra has the form

A+ ⊕
⊕
p

(A+/p)[φp(dx)]

as an A+-module. To lighten notation, abbreviate γn(x) to γn and φp(dx)
as φp.

Now ΩCA
A/R is generated as an A+-module by the elements dγn(x) (which

we will abbreviate to dγn). This expression does not reveal its structure
as an A+-module. Since d : A → ΩA/R is a DP derivation, we have the
relations

dγn = φn + γ1φn−1 + · · ·+ γn−1φ1 .

The dγns are determined by the φj ’s by means of an invertible lower trian-
gular band matrix. These equations have a unique solution, namely

φn = dγn − γ1dγn−1 + · · ·+ (−1)n−1γn−1dγ1 .
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To see this, substitute these values for the φj ’s into the right hand side of
the equation. It is the sum of the following sums:

dγn−γ1dγn−1+ γ2dγn−2− · · ·+ (−1)n−2γn−2dγ2+(−1)n−1γn−1dγ1

γ1dγn−1−γ1γ1dγn−2+ · · ·+(−1)n−3γ1γn−3dγ2+(−1)n−2γ1γn−2dγ1

γ2dγn−2− · · ·+(−1)n−4γ2γn−4dγ2+(−1)n−3γ2γn−3dγ1

· · · · · ·
γn−2dγ2−γn−2γ1dγ1

γn−1dγ1

For k > 0, the kth column is of the form

(−1)k

(
γk +

k−1∑
i=1

(−1)iγiγk−i + (−1)kγk

)
dγn−k

= (−1)k

(
k∑

i=0

(−1)i
(
k

i

))
γkdγn−k ,

since γiγk−i =
(
k
i

)
γk. But the alternating sum of binomial coefficients van-

ishes, leaving only dγn as claimed.
This provides an explict description of ΩA/R as an R-module:

ΩA/R = A+〈dγ1〉 ⊕
⊕
p

⊕
e≥1

(A+/p)〈φpe〉 .

Remark 6.4. This example actually provides a general expression for φn(a)
in terms of {dγi(a) : i ≤ n}, for any DP algebra A and any a ∈ A, since
there is a unique DP algebra map Γ〈x〉 → A sending x to a. By naturality
of the operators γn and φn,

φn(da) = dγn(a) +
∑

i+j=n

(−1)iγi(a)dγj(a)

in the U(A)-module ΩA/R. These elements generate ΩA/R as an A+-module.
Their dependence on a is additive and “Frobenius linear” in the sense that
φn(r da) = rnφn(da) for r ∈ R. And they satisfy the other properties of the
φn’s: φn(da) = 0 unless n is a prime power and pφpe(da) = 0 for any prime
number p and any e ≥ 1. Moreover, the equations in 5.3 show that φn(a)
depends only on the class of a in the “module of DP indecomposables” of
A: the maximal quotient QA of A in which products and divided powers
γn for n > 1 vanish. So these elements are determined by their values on a
choice of lifts of R-module generators of QA.

As observed by Roby, Theorem 5.4 and Lemma 6.1 together determine
the indecomposables in a free divided power algebra:

Corollary 6.5 ([11]). The indecomposable quotient of the free DP algebra
A = ΓR(V ) is

A/A2 = U(0)⊗ V .
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Proof. First, for any algebra A, the augmentation ε : A+ → R puts an
A+-module structure such that AV = 0 on any R-module V . A derivation
s : A→ V satisfies s(ab) = as(b)+bs(a) = 0, and so factors uniquely through
an R-module map A/A2 → V . Conversely, for R-module map A/A2 → V
the composite A→ A/A2 → V is a derivation. This implies

R⊗A+ ΩA/R = A/A2 .

For A = ΓR(V ), we can now calculate

A/A2 = R⊗A+ ΩA/R = R⊗A+ (U(A)⊗ V ) = U(0)⊗ V
where the last equality follows from U(A) = A+ ⊗ U(0). �

Remark 6.6. The DP module ΩDP
A/R is the abelianization of the identity

map A ↓ A as an object of DPAlg/A. This special case of the abelianization
functor

AbA : DPAlg/A→ Ab(DPAlg/A) = ModU(A)

– the left adjoint of the inclusion – in fact determines the whole functor:
Given B ↓ A,

AbA(B) = U(A)⊗U(B) ΩDP
B/R .

This is easily seen [5] using the fact that the pullback of A ⊕M ↓ A along
B → A is B ⊕M |B ↓ B.

Remark 6.7. The canonical expression for ΩCA
A/R is

ΩCA
A/R = A+ ⊗A/(a⊗ b− 1⊗ ab+ b⊗ a)

and the natural map ΩCA
A/R → ΩDP

A/R includes the unit in U(0) and collapses

the relation involving the divided powers. So the theorem shows that the
effect of those relations is precisely to kill the augmentation ideal in U(0).
The relations clearly have that effect; what is in question is whether they
do any more.
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