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A fair proportion of the community of homotopy theorists has been
spending a lot of time in the last few years thinking about various aspects
of the homotopy theory of classifying spaces of finite groups. I will try
to tell you two or three theorems that have emerged.

To begin, let me recall for you a slight extension of an idea of
Dennis Sullivan's. Let G be a finite group, and suppose X 1is a nice
space on which G acts nicely: say, X is a G - cw complex. Then the
fixed point set XG is a subcomplex, and Sullivan proposed to recover it

(up to weak homotopy type) from homotopy theory. For this, write

XG = MapG(*,X).

Now general ideas indicate that * is not a nice G-space to map out of.

It is natural to blow it up to a free G-space EG such that the equivariant
map EG + * 1is a homotopy equivalence. There are of course many
constructions of such a space; any one will do. It is the total space of
the universal principal G-bundle EG + BG; BG is the orbit space EG/G.

In any case, we have a natural map

iz XG = MapG(EG,X).

The target is "homotopy theoretic"; for instance, if f : X+ Y 1is a

G-map and a homotopy equivalence, then MapG(EG,f) is a homotopy equivalence.

The map fG is not, of course; think of EG + ® as a choice of f.
Sullivan's idea was that under the proper circumstances, i should be

close to a homotopy equivalence. Obviously it can't be in general: 1if

X = EG, then XG = @, while the right hand side contains at least the

identity map. To avoid such examples, some restriction must be imposed on X.

The most convenient one, though perhaps not the most natural, is to require

that X be finite-dimensional.



If X is free, so that XG = @, the projection X + X/G 1is a
principal G-bundle, and so is classified by a map X/G + BG. Suppose we
had G-map EG + X. It induces a map BG + X/G, and the composite
BG + X/G » BG must be homotopic to the identity, since it pulls the bundle
EG + BG back to itself. But X/G is of finite category, while BG is
not, so we have a contradiction. We conclude that MapG(EG,X) = @ also,
so i 1is a homotopy-equivalence in this case.

The first theorem I'd like to put before you represents the other

extreme:

Theorem A. The map 1 1is a weak equivalence if G 1is finite, X 1is
finite~dimensional, and the G-actiom on X 1s trivial.

Of course, in this case
G »
Map (EG,X) 2 Map(BG,X).

If X 1is connected, the theorem admits a further reformulation, as follows.

Pick a point * & BG, and look at the evaluation fibration:

Map, (BG,X)

X L —> Map(BG,X)
lp
X

Since pi =1, Theorem A is equivalent to

Theorem A'. Let G be a finite group and X a connected finite-
dimensional cw-complex. Then Map,(BG,X) has the weak homotopy type of a

point.



I shall say just a word about the proof, before showing you an
extension and an application. One shows using K-theory that any map BG + X
1ifts to the universal cover of X, and so one can agsume that X 1is
simply connected. A reduction, due in its present form to Mike Hopkins, allows
one then to assume G = Zp ; this is the basic case. Unstable Adams
spectral sequence methods of Bousfield and Kan show that vanishing of a
suitable Ext 1is sufficient. This Ext involves both the cup-product
structure and the action of the Steenrod algebra A. One shows that certain
homological constructions on commutative coalgebras preserve boundedness,
and then that certain other homological constructions on A-modules yield
0, given bounded input. The latter step involves an observation due for

p = 2 to Gunnar Carlsson, and is closely related to the following result.

-t
Theorem. H (BZP) is injective in the category of unstable left A-modules

of finite type.

The extension of Theorem A' I have in mind is due to Alex Zabrodsky.

Theorem. Let W be a connected space with ﬂiW finite for all i, and O
for all large i. Let X be a connected finite dimensional c¢w complex.
Then Map,(W,X) 1is weakly contractible.

Let me show you the idea of the proof. Suppose G 1is a topological
group——for instance, K{(m,n), 7 Abelian--and let E be a G-space. One

then has the Milnor filtration of EG X E :

E + F, > F, > ... > EGx,E .
(%) ¥ ¥
sentt 2P A gt

The vertical maps are the cofibers. Assume that Map*(G,X) = %, Then,

using adjointness,

Map, (K AG,X) = Map, (K,Map, (G,X}) & * ,



Mapping (*) into X, we obtain a tower of fibrations, in which each

projection map is a weak equivalence. Thus

+ R

Map, (E,X) Map, (EG x, E,X) .

G

As a case I take E = * ; this shows that Map,(BG,X) = *. Thus
by induction Map (K(m,n),X) = # for any finite m and finite-dimensional X.
Next take E principal, with orbit space B. Then EG *a E + B, so
we have
Map, (E,X) < Map,(B,X).
This is the inductive step to go to a finite Postnikov system as source.

By supplementing this result with other techniques, Zabrodsky has

removed the finiteness assumption on ﬂi(W).

Theorem. Let W be a connected space with NI(W) finite, ﬂi(W) finitely
generated for each i, and ﬂi(W) = 0 for all large i. Let X be a
connected finite dimensional CW complex. Then every map from W to

O'x  is phantom; and ﬁi(Map*(W,X),f) = I Exté(Hn(W;Q), m (X)) for

n

n+i+l

any f : W~ X,
The application is due to Chuck McGibbon and Joe Neisendorfer.

Theorem. Let X be a nilpotent space such that H_(X; Z(p)) is bounded and
of finite type over z(p) . Then either X =(p) BN for a finitely
generated torsion-free nilpotent group N, or else the p-torsion in X

is unbounded.



You will, of course, recognize that this is an extension of a thoeorem
of Serre's, and resolves affirmatively a conjecture of his. The proof
is quite easy.

Now I turn to stable homotopy theory. Traditionally one thinks of
stabilizing as a device for simplifying problems to the point where they may
be addressed, if not solved. In the present situation, however, it seems
that one merely trades one set of problems for another; and in fact the
Sullivan conjecture seems quite unrelated to any stable analogue.

Given a space Y, let QY = lim QY. QY is an n-fold loop space
for any n, so [X,QY] is an Abelian group for any X. Write ({X,Y} for
this; it is the group of stable maps from X to Y. I propose to describe
{BG+,BH+} to you explicitly, for any finite groups G and H.

Of course, a map of spaces X + Y gives rise to a stable map xt+y" H
but there is another construction of stable maps as well, whose existence
I recall for you. Given a finite cover E + B, there is a stable
"transfer" map B* > E'. If B is a finite complex, it may be obtained
via the Pontjagin-Thom construction applied to an embedding over B
of E into B x R". If the finite cover has the form BH - BG, for H < G,
then this map induces the usual group-theoretic transfer in cohomology.

I will show how to produce a large collection of stable maps BG* + BH®
using a combination of these two constructions., The initial data consists
in a finite set S, on which G aéts from the left and H from the
right, such that (1) the two actions are compatible, and (2) the H-action

is free. Then we have a diagram

q
\ (EG xg §)/H £ >

P

EG X S

BG



in which f classifies the principal H-bundle Q. WNow the transfer
associated to the #(S/H)-fold cover p, composed with f+, induces
a(S) e-{BG+,BH+}. The association o 1is clearly additive, and so yields

a map

o @ A(G,H) » {BG',BH"}

from the Grothendieck group of isomorphism classes of such (G,H)-sets S.

As a case of particular interest, take H = 1. Then A(G,1) is the
well-known Burnside ring A(G) (the product comes from putting the diagomal
G-action on products of G-sets), and the right hand side is the zero-
dimensional unreduced stable cohomotopy no(BG). On the other hand, we
can regard A(G,H) as morphisms from G to H 1in a category, which we
call the "Burnside category."” Composition is given by

(GSH ; HTK) W (GS Xy TK) 5
The map « then gives a functor from the Burnside category to the stable
category. The Burnside category is the natural source for any '"'representation-
theoretic" functor.

We regard A(G,H) as a discrete approximation to {BG+,BH+}. Since
Be* is infinite-dimensional, however, we anticipate that the latter group
will be quite large. Indeed, it is complete with respect to the topology
defined by kernels of restrictions to skelata of BG'. So we expect to
have to complete A(G,H) somehow to improve the chances of o being an

isomorphism. There is a ring-homomorphism € : A(G)}) + Z given by sending

S to its cardinality. Let TIA(G) = ker €. A(G) acts on A(G,H) by

(.5

¢Sr T ™ (S x Ty



G acting diagomally. We check that ¢ 1is continuous, using the
IA(G)~topology on the left and the skeleton topology on the right. There

results a map
&: a(e,n) » {Bc*,su’}.

Theorem B. (Carlsson) & is an isomorphism. Moreover, for any spectrum
K, {KI\BG+, BH'} can be expressed in terms of the groups {X, BW'} for

certain associated groups W. 1In particular, for all q > 0,

{8e*, Imu*} =0 .

+u2

When H =1 this reads: K(G) ﬂO(BG), 73(BG) = 0 for gq > O,

and n-q(BG) for q > 0 wmay be expressed in terms of w, of certain
associated classifying spaces--namely, ﬁeyl groups of subgroups of G. This
is of course reminiscent of M. F. Atiyah's theorem about the K-theory of

a classifying space, and, indeed, Atiyah's theorem was doubtless an
inspiration to Segal, who is said to have proposed this case as a conjecture.

Notice right away that this is not a stabilization of the Sullivan

conjecture. For instance,

lim [2"BC¢*, ™1 = lim Z = Z
> >

while

sc*,s%) = a6)

%

cannot be defined as maps from all of 286" for any finite n ; this is an

is generally much larger. The point is that the maps involved in {BG+, 8

illustration of the wisdom of Frank Adams' dictum, "cells now, maps later."



The proof of this theorem has occupied many of us for some time, and I'll
say a word or two about it, leaving aside many contributions not directly
in the line of its current formulation. However, I can't go without
mentioning that the initial step was taken by W. H. Lin. In 1978 he proved
the case G =2/2, H =1, wusing the Adams spectral sequence. While his
algebraic methods, even as later improved by others, are not now used,
there is no doubt that his success caught everyone by surprise and started
the ball rolling. I should also say that some useful early work was done
by E. Laitinen.

Rather direct preliminary work (due e.g., to Lewis, May, and McClure)
reduces us to the case in which G is a p-group and H = 1. On the other
hand, Adams, Gunawardena, and I proved the case G = (Z/p)n. Along the way,
we were forced to allow H to be various elementary Abelian p-groups;
indeed, the exigencies of that proof are what led me to formulate the
version of the "Segal conjecture" outlined above. Our method was to express
the Segal conjecture as the assertion that a certain map is a homotopy
equivalence, check that it induces an isomorphism at E2 of the Adams
spectral sequence, and prove a convergence theorem. The algebra involved
used essentially ideas of W. Singer, and has since been clarified in

part by Priddy and Wilkerson., I quote one result from this work. Let

V= (Z/p)n, regard V as HI(V*), and consider BV C HZ(V*). Inverting
the product of the nonzero elements of RV, we obtain a localization
H*(V*)BV ; it is an A-algebra in a unique way making the localization

map A-linear. The automorphism group GL(V) acts on H*(V*)Bv by
A-linear maps, and so it acts also on the module of indecomposables

It is possible and useful to identify this GL(V)-module,

*")
FP BA H (V 8V .

which turns out te be concentrated in degree -n, As it happens, it is



projective over F GL(V). This fact puts a lower bound on its size, as

follows. Let U be a p-Sylow subgroup of GL(V): it is a group of

"unipotent matrices," upper triangular with 1 's down the diagonal,

when written out in a suitable basis. Since F U is local, any projective
prreducide

is free. It turns out there is an essentially unique[ FpGL(V)—module which

as an FpU-module is free of rank 1 ; it was discovered by R. Steinberg,

and I shall denote it by St(V). Steinberg in fact wrote down an

idempotent € in FPGL(V) which splits St{(V) off the group algebra.

Now I can tell you the theorem.
Theorem. (1} As FPGL(V)—modules,

® % ]
Fp 8, H (V )BV =L ose(v) .

(ii) The resulting quotient map H*(V*)BV »> 2" St(V) induces a
Tori(rp,—)-equivalence on G-fixed point submodules for any subgroup G
of GL(V).

The remaining, and hardest, task was accomplished last year by Gunnar
Carlsson. He worked with a formulation of the Segal conjecture as a
statement about equivariant stable homotopy theory, and indeed his result
represents the premier theorem in this new field., Without entering into
definitions, the conjecture, for a p-group G, 1is equivalent to the claim
that EG + * induces an isomorphism in p-completed equivariant stable
cohomotopy. This is analogous to Segal's reformulation of Atiyah's theorem.
Carlsson discovered an ingenious induction, using a blow-up of the singular
locus of certain G-spaces, showing that the conjecture was valid provided
it was true for elementary Abelian groups. Actually, his context reduces
the conjecture in the Abelian group case to a check that a certain boundary

map is an isomorphism, and that check can be carried out using somewhat less



=] (=

than the end result of Adams, Gunawardena, and'Miller; May and Priddy have
a paper on this point. Finally, I mention that substantial clarification
of Carlsson's proof have been proposed recently by Frank Adams. I quote
one interesting theorem which oeccurs as part of an inductive cycle in
Frank's approach. If V is a G-representation, then the one-point
compactification Sv is a pointed G-space, with base-point at =, Since
0 1is also fixed, we have a G-map SO > Sv. As spaces, this map is of
course null-homotopic; but if VG = §, it is non-null, and, indeed, of

fundamental importance, as a G-map; it is a kind of Euler class. For any

G-cw complex X we may form the sequence of G-maps

X+ SV'\X+ SZV/\X+ esn

*

- ,\* ~
Theorem. lim NG(SnVA X) = 0 where G 1is a p-group and T denotes
FLbEA Rl <

p-complete G-equivariant stable cohomotopy.

As a final taste of the work being done on classifying spaces, I should
mention the work of S. Mitchell and S. Priddy on stable splittings of
classifying spaces. Let San = X?ﬁn ; this construction stabilizes
easily to a functor on spectra. For example, one may form

—a pn 0 n-1 0
£ (spP s°/5p? s Y(py = L(m).

n

()
Theorem C. (Mitchell-Priddy) th(zlp)n contains a wedge of p 2 copies

of L(n) as a retract.
These summands are obtained as follows. The group algebra
R = ZPGL(V) acts naturally on ZmBV, V= (Z/p)n. Any idempotent € in

R yields a splitting of £ BY ; one factor is the mapping telescope of

=) € =2 €
LBV >~ LBV > ...
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If we take for ¢ the idempotent of Steinberg mentioned earlier, then
this mapping telescope is L(n)VL(n-1). I point out that this splitting
of the telescope must (by the Segal conjecture) correspond to a further
decomposition of ¢ in the "monoid algebra" FpEnd(V). Such a splitting

seems to be beyond the ken of the algebraists.

Mitchell and Priddy also obtain splittings of certain other classifying

spaces, such as dihedral groups, with transfer techniques. Some early
work on this was done by Celia Whitten in her thesis under Jim Milgram.
This fact turned out to be just what N. J. Kuhn needed to coumplete a
proof of the "Whitehead Conjecture" for p = 2. The Dold~Thom theorem
implies that SpmS0 is the integral Eilenberg-MacLane spectrum H. Form

the diagram of cofibration sequences

[ I T

0 2,0,.0

s Sps/s Sp4SO/Sp280

and then write down the sequence of boundary maps:

# e—H —5" e—1L(1) €—1L(2) é— ...

Theorem D. (¥. J. Kuhn) This sequence is exact in homotopy localized at



