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Homotopy theory deals with spaces of large but finite dimension. Chro-
matic homotopy theory is an organizing principle which is highly devel-
oped in the stable situation.

1. The Spanier-Whitehead category. We’ll work with the category
of finite polyhedra (or finite CW complexes) and homotopy classes of
continuous maps between them. We will always fix a basepoint in all
spaces, and assume that maps and homotopies preserve them. Write
F for this homotopy category, and write [K, L] for the set of pointed
homotopy classes of pointed maps. It’s just a pointed set, and very
difficult to compute in even quite simple cases. The idea of stable
homotopy theory is to try to simplify this problem by a certain type of
localization.

There is a shift operator on F . Embed K into the cone on K,

C(K) =
[0, 1]×K

1×K ∪ [0, 1]× ∗
as the subspace 0×K, and then collapse this subspace to a point. This
is the suspension ΣK of K. The construction may be iterated. There
is a natural isomorphism

Hq+n(ΣnK) = Hq(K)

By functoriality, there are maps

[K, L] → [ΣK, ΣL] → [Σ2K, Σ2L] → · · ·
and these maps are eventually isomorphisms. Elements of the direct
limit are called stable maps from K to L. Maps from a suspension form
a group, maps from a double suspension form an abelian group, and
the suspension maps are homomorphisms when they can be: so the set
of stable maps forms an abelian group.

Spanier and Whitehead (around 1955) defined what is now called the
homotopy category of finite spectra, S. An object has the form K[q]
for K ∈ F and q ∈ Z. Morphisms are defined by

[K[q], L[r]] = lim
n→∞

[Σq+nK, Σr+nL]

The direct system begins with n large enough so that both q + n and
r + n are nonnegative.

If K ∈ F , write K also for the object K[0] ∈ S. We can now make
sense of Sn for any n ∈ Z: Sn = S0[n].
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For X, Y ∈ S, [X, Y ] is an abelian group. In fact S is an additive
category, with

K[q]⊕ L[r] = (Σn+qK ∨ Σn+rL)[−n]

for any n making both n + q and n + r nonnegative. Even better,
it is triangulated. The distinguished triangles are those isomorphic to
cofiber sequences. In F the cofiber of f : K → L is the pushout in

K L

CK L ∪f CK

-
f

? ?
-

The cofiber maps to ΣK by collapsing K to a point. The shift func-
tor in this triangulation is given by ΣK[q] = K[q + 1]. There is an

isomorphism (ΣK)[q]
∼=−→K[q + 1]. The

The category S of “finite spectra” offers a useful “first approxima-
tion” to homotopy theory, in the words of Spanier and Whitehead. It
embeds in a larger triangulated category of spectra as the compact
objects.

Define the homotopy and homology of K[q] by

πr(K[q]) = [Sr, K[q]] = lim
n→∞

πr+n(Σq+nK)

and

Hr(K[q]) = Hr−q(K)

2. Constructions. Let p be a prime number and consider the homo-
topy class of maps Sn → Sn of degree n. These suspend to each other,
and define a map p : S0 → S0 in S. It is non-nilpotent: no iterate is
ever null-homotopic. This is seen by applying homology to compute
the degree.

The first element of p-torsion in π∗(S
0) is in degree 2p − 3, and is

written α1 : S2p−3 → S0. (When p = 2 this comes from the famous
Hopf map S3 → S2.)

The identity pα1 = 0 has a geometric implication. A map Sn → Sn

of degree p can be used to attach an (n + 1)-cell to Sn: Sn ∪p en+1.
This construction is compatible with suspension, and defines a finite
spectrum written S0/p or S0 ∪p e1.
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Let q = 2p− 2 and consider

Sq ∪p eq+1 S0 ∪p e1

Sq S1

Sq

p p p p p p p p p p p p ps

p p p p p p p-

?

6

-
Σα1

6
p

The diagonal arrow records the null-homotopy of pα1 = α1◦p. The top
arrow exists by virtue of a harder computation, due to Frank Adams,
which is valid only when p > 2.

We now have a self-map of S0/p,

v1 : ΣqS0/p = Sq/p → S0/p

Even though it has nonzero dimension, you should think of it as an
analogue of p : S0 → S0. In particular you can iterate it: neglecting to
indicate suspensions of maps,

Sqt/p Sq(t−1)/p · · · S0/p

Sqk S1

-
v1

-
v1

-
v1

?

6

-
Σαt

The composite αt defines a new and high dimensional element in the
homotopy of the sphere spectrum. It is actually a well-known class, in
the “image of the J-homomorphism.”

Larry Smith showed that this may be repeated, as long as p ≥ 5: let

S0/(p, v1) = S0/p ∪v1 C(Sq/p)

This has “cells” in dimensions 0, 1, 2p− 1 and 2p. There is a map

v2 : S2(p2−1)/(p, v1) → S0/(p, v1)
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which we may use to create more elements in high dimensional homo-
topy:

S2(p2−1)t/(p, v1) S0/(p, v1)

S2(p2−1)t S2p

-
vk
2

?

6

-
βt

3. Detection. This is the constructive side of the story. It is not clear
though that these elements are nonzero!—you need some analogue of
the degree.

This is provided by a certain family of homology theories, known
as Morava K-theories. These are functors on S that satisfy a Meyer-
Vietoris property making them computable.

The zeroth member of this family is just K(0)∗(X) = H∗(X; Q).
Thereafter there is a family for each prime p. K(1)∗ is very closely

related to topological complex K-theory, but in general K(n)∗ is more
novel. K(2)∗ is related to “elliptic cohomology.”

The maps vn are such that K(n)∗ is nonzero on the spectra and
K(n)∗(vn) is an isomorphism. This shows that vn is non-nilpotent.

It takes more work to show that αt and βt are nonzero, but they are.

4. The Periodicity Theorem. These are hard computations in
the Adams spectral sequence, and they seem to represent very special
situations. This turns out not to be the case, however! This is the
content of work of Ethan Devinatz, Mike Hopkins, and Jeff Smith,
from the 1980’s.

If X ∈ S is such that H∗(X; Q) = 0, then the homotopy type of X
splits as a finite wedge of spectra each of which has homology which is
p-torsion for a single prime p. Let Sp denote the category of p-torsion
finite spectra. Let Sp,n be the category of p-torsion finite spectra for
which K(n− 1)∗(X) = 0. Its objects are said to be of type n.

Theorem. [Ravenel [4]] If X ∈ S then K(n)∗(X) = 0 ⇒ K(n −
1)∗(X) = 0.

This implies that

Sp,1 ⊇ Sp,2 ⊇ Sp,3 ⊇ · · ·

It is far from clear that the strata are nonempty, and a construction
is needed to show this.



5

Theorem. [Devinatz, Hopkins, Smith [1]] Let X ∈ Sp,n. There exists

a map φ : Σ2(pn−1)pk
X → X such that K(n)∗(φ) is an isomorphism and

K(i)∗(φ) = 0 for i > n.
The map φ is a vn-self-map. The maps v1 and v2 are examples.

Theorem. [Devinatz, Hopkins, Smith [1]] Let X, Y ∈ Sp,n, and f :

X → Y . Let φ : Σ2(pn−1)pk
X → X and θ : Σ2(pn−1)pl

Y → Y be vn-self-
maps. There exists an integer m with m ≥ k and m ≥ l such that the
diagram

Σ2(pn−1)pm

X Σ2(pn−1)pm

Y

X Y

-
f

?

φpm−k

?

θpm−l

-
f

commutes.

In particular, take f to the identity map on X: this says that any
two vn-self-maps have homotopic iterates. On the category Sp,n, there
is an “ideal operator” acting, well defined up to iterates. The labor
involved in constructing the self-maps v1, v2, wasn’t in vain; but some
power of them exists automatically by this theorem.

5. Localization. This leads to the following challenge: For a finite
p-torsion spectrum X of type n, compute

φ−1π∗(X) = lim
→

(
π∗(X)

φ−→ π∗(Σ
−2(pn−1)pk

X)
φ−→· · ·

)
The only known examples occur when n = 0 or n = 1.
When n = 0, we are looking at a finite spectrum whose homology

contains an infinite cyclic summand (and, say, no p′-torsion). A v0

self-map is given by multiplication by p, and Serre proved that

p−1π∗(X) = H∗(X; Z[1/p])

When n = 1 we have the computation (for p > 2) [3]

v−1
1 π∗(S

0/p) = Fp[v
±1
1 ]〈i, a〉

where
i : S0−→S0/p and a : S2p−3 α1−→S0 i−→S0/p
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