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The traditional strategy in Algebraic Topology is to start with some topological prob-
lem, apply a functor to an algebraic category, and solve the resulting problem there. If
it was a non-existence question, you may have the answer. If not, you are at the first
stage of a step-by-step process known as “obstruction theory.”

The most promising functors are continuous, and since algebra is discrete these func-
tors can’t distinguish between homotopic maps. Algebraic Topology is for the most part
“Homotopy Theory,” and the first step in a problem is often to replace it by a different
problem which has homotopical significance. For example, invariance of domain is proven
by first removing a point from the Euclidean spaces, at which point you get spaces which
are not homotopy equivalent. A topological space thus appears as merely a model of a
more intrinsic object, namely a homotopy type.

In recent years a new paradigm has emerged. One can start with a piece of algebra
and attempt to find a homotopical enrichment of it. This is akin to the celebrated process
of “quantization”: you have a “classical” object, often commutative in some sense, and
you wish to see it as derived from a much richer “noncommutative” object.

Groups.

I am not refering to the simple process of replacing the study of groups, for example,
by the study of topological groups: that is a topological enrichment, not a homotopical
one. If a topological group G is homeomorphic to a finite polyhedron, then it is iso-
morphic as topological group to a compact Lie group. This version of Hilbert’s Fifth
Problem was solved by von Neumann in the 1930’s. For a homotopy theorist the better
question is: what can we say of a topological group that is homotopy equivalent to a
finite polyhedron? Now the notion of equivalence has to be weakened: two are equiva-
lent if they are connected by a chain of continuous homomorphisms each of which is a
homotopy equivalence.

There is a contractible space EG on which G acts freely, and the homotopy type of the
orbit space BG is an invariant of G. In fact G can be reconstructed from it: G ' ΩBG.
It follows that two topological groups are equivalent in our sense exactly when their
classifying spaces are homotopy equivalent; so we are asking to classify connected spaces
X whose loop spaces are homotopy equivalent to finite complexes.

In around 1970 David Rector showed that there are uncountably many distinct con-
nected homotopy types X such that ΩX ' S3.

We are saved by another homotopical enrichment, the notion of p-adic completion
(due in an early form to Dennis Sullivan). It turns out (Dwyer, Miller, Wilkerson) that
for each prime p there is only one p-complete homotopy type X such that ΩX ' S3

p̂.

This observation has led on to a large program to classify p-complete connected spaces
X for which H∗(ΩX;Fp) is finite: “p-compact groups.” Dwyer and Wilkerson proved that
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there was (in an approprate sense) a “maximal torus,” and a “Weyl group’ which was a
p-adic generalized reflection group. The classification of these (by Shephard and Todd)
is the starting point for a classification of p-compact groups.

Abelian groups.

What of abelian groups? A topological abelian group A (no longer assumed homotopy
equivalent to a finite complex!) has the property that there is a natural isomorphism from
[X,A] to a product of cohomology groups of X. The appropriate homotopical weakening
is to require that [X,A] should be a generalized homology theory. In effect, we no
longer demand that A should be commutative on the nose, but rather only homotopy
commutative, but with a homotopically symmetric commuting homotopy, and so on
forever. The objects representing homology theories have been part of topology for forty
years now, but only in the past couple of years has the theory reached a state at which
we may really treat these objects as if they were abelian groups. The new ingredient
is a symmetric monoidal tensor product on the category of spectra. Thanks to work of
Elmendorff, Kriz, Mandell, and May, and parallel work by Jeff Smith, Mark Hovey, and
Brooke Shipley, we now have such a setup. This lets us define rings and commutative
rings in the simplest possible way. I would say that the horizons for exploration are now
quite broad.

I want to stress that these constructions are occuring on the “pointset” level, not
modulo the relation of homotopy. Spectra are hybrid objects, taking some traits from
spaces and others from abelian groups. They have underlying homotopy types, and these
in turn have a graded homotopy group which may be regarded as an algebraic shadow
of the richer homotopy type.

Let me rephrase Quillen’s construction of algebraic K-theory in these terms. Grothen-
deick began with a ring R, and studied the monoid of isomorphism classes of finitely
generated projectives. The group completion is K0(R). Quillen proposed starting with
the category PR of finitely generated projectives and their isomorphisms. This has a
symmetric monoidal structure, coming from direct sum. Grothendieck had been looking
at the set of isomorphism classes. The symmetric monoidal structure turns out to be
food for a machine to produce a spectrum K(R), whose group of components is K0(R).
The rest of the homotopy groups constitute the Quillen algebraic K-theory of R. The
abelian group K0(R) has been “quantized” to produce the “homotopy abelian group”
(spectrum) K(R).

Formal groups.

A “formal group” is a formal power series F (x, y) such that

F (x, 0) = 0 = F (0, y), F (x, F (y, z)) = F (F (x, y), z), F (x, y) = F (y, x).

F (x, y) = x+ y and F (x, y) = x+ y − xy are the simplest examples, called the additive
and multiplicative groups. Certain multiplicative cohomology theories give rise to formal
groups in a natural way. K-theory for example gives rise to Gm, and ordinary cohomology
gives Ga.
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The assumptions are that E∗ is evenly graded and E2 contains a unit. (This captures
Bott periodicity in the case of K-theory.) Under this assumption, one discovers that
there is an element e such that

E0(CP∞) = E0[[e]].

A complex line bundle λ ↓ X is represented by a map X → CP∞, and we may pull e
back along this map to get an “Euler class” e(λ). Then we may ask for e(λ ⊗ µ), and
discover that there is a formal group F (x, y) such that

e(λ⊗ µ) = F (e(λ), e(µ)).

One may attempt to “pre-homotopicalize” a formal group, finding a periodic coho-
mology theory affording it. Peter Landweber has given conditions guaranteeing that this
can be done. I use the prefix “pre” because one may also ask for a functorial association
of a ring spectrum. This has not been done in general and remains a major question.
But it has been done in important special cases.

Elliptic curves and Modular forms.

Both Ga and Gm are formal completions of one-dimensional commutative algebraic
groups, and the next commutative algebraic groups to consider are elliptic curves. These
are one-dimensional projective varieties with a group structure. They are among the
most intensively studied objects in all of mathematics. A typical intersting example is
the “Legendre curve”

y2 = x(x− 1)(x− λ) over Z[1/2, λ±1, (1− λ)−1].

There is a weakly universal example given by the Weierstrass curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, over Z[a1, a2, a3, a4, a6,∆

−1].

There are coordinate changes that preserve this form, given by

x = x′ + r
y = y′ + sx′ + t

Theorem (Hopkins, Miller). On a sufficiently broad category E of ellitpic curves
(including Legendre but not Weierstrass) there is a functor E to ring-spectra, such that

π0(EA/R) = R

and the formal group associated to EA/R is the formal completion of A.

Tate and Deligne called the subring of W = Z[a1, a2, a3, a4, a6,∆
−1] fixed by the

coordinate changes the ring of “integral modular forms,” and computed

M∗ = Z[c4, c6,∆
±1]/(c34 − c26 = 123∆).
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This may be regarded as a graded ring with |c2n| = 4n and |∆| = 24. Our work provides a
“quantization” of this computation. By forming an appropriate homotopical analogue of
the invariants, we can construct the ring spectrum TM of “topological modular forms.”
There is a map

π∗(TM)→M∗.

This map is neither onto nor one-to-one; indeed, the discriminant ∆ itself is not in the
image. This homomorphism is the edge homomorphism of a spectral sequence, in which
the E2 term is the derived functors of the functor used to get from W to M∗. This higher
cohomology is a natural and purely algebraic object, but it has apparently never been
studied by algebraists before. It serves here as the optimal purely algebraic model for
our new geometric object, TM .

A dream of long standing is to give these cohomology theories the kind of geometric,
analytical, and arithmetic significance that has surrounded K-theory (via vector bundles,
index theory and algebraic K-theory). Conformal field theory has some role to play, but
it’s as yet obscure. Perhaps in the end the analogy with quantization which I have been
drawing will turn out to be more than merely an analogy.
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