UNIVERSAL BERNOULLI NUMBERS AND THE S^1-TRANSFER

Haynes Miller

Several authors ([4], [6], [7], [8], [12]) have considered a stable "transfer" map

$$t: \mathbb{E}P_0^\infty \wedge S^1 \rightarrow S^0,$$

and it is of interest to develop techniques by which to compute its effect in stable homotopy. In this note we begin an attack on this problem via the Novikov spectral sequence ([2], [13]) $E_\infty (-)$.

We shall study t by means of its unique factorization through the Moore spectrum for \mathbb{Q}/\mathbb{Z}:

$$\mathbb{Q}/\mathbb{Z} \xrightarrow{\tilde{u}} S^2 \xrightarrow{\partial} \mathbb{Q}/\mathbb{Z}.$$

The behavior of $\tilde{\partial}$ in the Novikov spectral sequence is quite well understood [13], and our principal result here, Cor. 3.10, describes \tilde{u}_h on the standard generators in $MU_h\mathbb{E}P_0^\infty$. The analogous result for $K_h\mathbb{E}P_0^\infty$ appears in [8], and I understand that Knapp now has a proof for the present case also.

In [16], D. M. Segal gave generators for $E_{2}^{0}(\mathbb{E}P_0^\infty)$. In Section 4 we describe these elements together with a simplified proof of their properties. Their images under \tilde{u}_h turn out to be "universal Bernoulli numbers," in the sense that they are to the formal group for MU, which is universal, as the usual Bernoulli numbers are to the multiplicative formal group. A construction of these classes, and a computation of their denominators, is carried out in Section 4.

As a corollary, we recover the fact, due to Becker and Schultz, that for $k > 0$ neither ν_{8k+1} nor the generator of the image of the J-homomorphism in dimension $8k-1$ lies in the image of t. It is to be hoped that this work will lead to a complete computation of the image of t_\ast in $E_2^2(S^0)$, providing a context for the germinal result of K. Knapp [7].

This research was supported in part by NSF Grant MCS 77-05414.

© 1982 American Mathematical Society
0731-0636/82/0000-0479/04.25 437
Section 1. BERNOUlli NUMBERS ATTACHED TO A FORMAL GROUP.

We assume the reader is familiar with the basic properties of formal groups as exposed for instance in [2] or [3]. As an illustration, for any element \(u \) in a ring \(A \), one has a formal group

\[G_u(X,Y) = X + Y - uXY. \]

The **additive** formal group \(G_a \) is then the case \(u = 0 \), and the **multiplicative** formal group \(G_m \) is the case \(u = 1 \). If \(A \) is torsion-free, embed it in \(A_d = A \otimes \mathbb{Q} \), let \(\log_p : F \to G_a \) be the (unique) isomorphism of formal groups over \(A_d \), and let \(\exp_p(T) \) its inverse. For example, \(\log_{m_i}(T) = -\ln(1 - T) \) and \(\exp_{m_i}(T) = 1 - e^{-T} \).

DEFINITION 1.1. Let \(A \) be a torsion-free ring and \(F \) a formal group over \(A \). The Bernoulli numbers associated to \(F \) are the coefficients \(B_n(F) \in A_{d} \) in the powerseries expansion

\[\frac{T}{\exp_p(T)} = \sum_{n=0}^{\infty} \frac{B_n(F)}{n!} T^n. \]

The **divided Bernoulli numbers** are \(B_n(F)/n! \).

EXAMPLE 1.2.

(a) \(B_0(F) = 1 \) for all \(F \).

(b) \(B_n(G_a) = 0 \) for all \(n > 0 \).

(c) \(B_n(G_m) \) is the usual Bernoulli number, occuring in

\[\frac{T}{1 - e^{-T}} = \sum_{n=0}^{\infty} \frac{B_n(G_m)}{n!} T^n. \]

Recall [5] that the reduction of \(B_n(G_m)/n! \) in \(\mathbb{Q}/\mathbb{Z} \) has order \(d_n \), where

\[d_n = \prod_{(p-1)|n} p^{v(n)+1} \quad \text{for even } n \]

\[d_n = 2 \quad \text{for } n = 1 \]

\[d_n = 1 \quad \text{for odd } n > 1. \]

These denominators are universal:

THEOREM 1.3. If \(F \) is a formal group over a torsion-free ring \(A \), then

\[d_n \frac{B_n(F)}{n} \in A. \]

We begin our proof of this theorem with a lemma.

LEMMA 1.4. If \(u \neq 0 \) in \(A \), then

\[\exp_p(T) = \frac{T}{u^{-1}} \quad \text{for all } i \geq 0 \text{ and for all formal groups } \mathcal{G}_m, \]

where \(U/\mathcal{G}(U) = 0 \) is the assertion that all \(i \geq 0 \) are Leibnitz' form.

PROOF. Let \(A \) be a ring; a ring homomorphism \(\phi(A,F) \) recall a well-defined formal group over \(A \).

A ring homomorphism \(\phi(A,F) \) is a Cartesian product of formal groups over \(A \), for \(G \) by the

REMARK 1.

possibly with \(\mathbb{Z} \).

We give a few examples useful for the

[14] of the.
LEMMA 1.4. If F and F' are formal groups isomorphic over a torsion-free ring A, then $B_n(F)/n \equiv B_n(F')/n \mod A$.

PROOF. Let $\phi: F \to F'$ be the isomorphism, so that $\exp_{F'}(T) = \phi(U)$ where $U = \exp_F(T)$. Then

$$\frac{T}{\exp_F(T)} = \frac{T}{\phi(U)} = \frac{U}{\exp_F(T)} + \sum_{n=1}^{\infty} a_n U^{n-1}$$

where $U/\phi(U) = \sum_{n=0}^{\infty} a_n U^n$, $a_0 = 1$, $a_n \in A$. The lemma is equivalent to the assertion that the value at 0 of the i^{th} derivative of U^n lies in A for all $i \geq 0$ and $n \geq 1$. This is well-known for $U = \exp_F(T)$, and follows by Leibniz' formula for larger n. \hfill \Box

A ring-homomorphism $f: A \to B$ carries a formal group F over A to a formal group $f_* F$ over B. There is an initial object in the category of pairs (A,F), namely [2] the Lazard group G over the Lazard ring L. We now recall a well-known integrality statement for L. Let $A = \mathbb{Z}[b_1, b_2, \ldots]$ and let $\phi(T) = \sum b_i T^i$ with $b_0 = 1$. Let $\phi_G(X,Y) = \phi_G(\phi^{-1}(X),\phi^{-1}(Y)))$; this is a formal group over A. Let $\eta: L \to A$ classify ϕ_G. Then we have:

THEOREM 1.5. (Stong-Hattori) In this situation, the diagram

$$
\begin{array}{ccc}
L & \xrightarrow{\eta} & A \\
\downarrow & & \downarrow \\
L \to & \phi & A \\
\end{array}
$$

is a Cartesian square. In particular, L is torsion-free. \hfill \Box

For a proof, see [10]. Theorem 1.3 follows as a corollary. For $\phi: G \to \phi_G$ is an isomorphism, so by Lemma 1.4 $B_n(G)/n$ and $B_n(\phi_G)/n$ have the same denominators; but $B_n(\phi_G)/n = \eta_* B_n(G)/n$, so the theorem holds for G by the Stong-Hattori theorem. The general case follows immediately. \hfill \Box

REMARK 1.6. Consequently, if F is a formal group over a ring A, possibly with torsion, then "Bernoulli numerators" $N_n(F) \in A$ are defined, viz.,

$$
N_n(F) = \eta_0(d_n \frac{B_n(G)}{n})
$$

where $\eta_0: L \to A$ classifies F.

Section 2. THE TRANSFER.

We give a brief description of the transfer construction, focussing on examples useful to us here. The reader is referred to [12, 14] for more exhaustive accounts of the transfer. We end with a proof (due to S. Mitchell [14]) of the fact, stated in [7], that $t: S^\infty_0 \to S^1 \to S^0$ is the cofiber of a
natural collapse map.

Let \(\pi: E \to B\) be a smooth map, and let \(\xi \to E\) and \(\zeta \to B\) be vector bundles. A *relative framing* is a lift \(j: E \to \mathbb{R}^k_B\) of \(\pi\) to an embedding (with normal bundle \(\nu(j)\)) into a trivial vector bundle over \(B\) together with a bundle-isomorphism
\[
\phi: \xi \oplus \mathbb{R}^k_E \cong \pi^* \zeta \oplus \nu(j).
\]

Given this data, application of the Pontrjagin-Thom collapse gives a stable map
\[
(2.1) \quad t: B^c \to E^\xi
\]
of Thom spaces, called the transfer. An obvious modification allows us to suppose that \(\zeta\) and \(\xi\) are merely virtual bundles.

Example 2.2. Let \(L^*\) denote the complex dual of the tautological complex line-bundle over \(E^\mathbb{C}\). For \(-\infty < q \leq r < \infty\), define
\[
E^p_q = (E^{p-q})^{L^*_q}.
\]
For \(r \leq s\), the bundle-map \(L^r_q \to L^s_q\) induces a map
\[
i: E^r_q \to E^s_q
\]
of Thom spaces. For \(p \leq q\), recall that the inclusion \(j: E^{r-p} \to E^p\) has normal bundle \((q-p)L^r_q\). Taking \(\xi = qL^r_q\) and \(\zeta = pL^r_p\), we obtain a transfer map
\[
c: E^r_p \to E^r_q.
\]

It is not hard to see that if \(p\), \(q\), \(r\), and \(s\) are all nonnegative then under the usual homeomorphism
\[
E^p_q \cong (E^{p-q} / E^{p-q-1})
\]
these maps coincide with the natural inclusion and collapse maps. Also, their obvious compatibility allows us to include the possibility of \(r = \infty\) or \(s = \infty\).

Given \(j = i = q \in \mathbb{Z}\) and \(k \geq 0\), the bundle map \(\Lambda: qL^k_k \to \mathbb{R}^k_k \times \mathbb{R}^k_k\) covering the diagonal of \(E^k_k\) induces
\[
(2.3) \quad \Lambda: E^{q+k}_k \to E^{q+k}_1 \wedge E^{q+k}_j.
\]
These maps are clearly associative, unitary, commutative, and behave well with respect to \(i\) and \(c\).

Example 2.4. Let \(\pi: S^{2n+1} \to E^n\) be the usual projection map. The bundle \(\tau(n)\) of tangents along the fiber is complementary to the normal bundle of \(\pi\), and is

Thus we obtain

The projection Hopf's theorem are compatible

This map is a cofibration.

Proof.

Recall al associated to null-homotopy a bundle over increases, th hence is

There re to the mapping dimensions.

\(H^0(C^c(\omega_1 \wedge S^2))\) J-homomorphism invariant 1

\(H^0(C(c))\) as
of \(n \), and is trivialized by the infinitesimal generator of the \(S^1 \)-action. Thus we obtain a stable transfer map
\[
t: \; \mathbb{E}P_n \wedge S^1 \to S^{2n+1}.
\]
The projection to \(S^{2n+1} \) has degree 1 and is of no further interest, by Hopf's theorem, so we consider the other factor, \(\mathbb{E}P_n \wedge S^1 \to S^0 \). These maps are compatible over \(n \), and yield a stable map
\[
t: \; \mathbb{E}P_n \wedge S^1 \to S^0.
\]
This map was studied by J. C. Becker and R. E. Schultz, who proved:

THEOREM 2.5. [4] There is a stable map \(j_{s1} : U \to \mathbb{E}P_n \wedge S^1 \) such that the composite \(t \circ j_{s1} \) is adjoint to the composite
\[
j_{s1} : U \to \mathbb{E}P_n \wedge S^1 \to Qs^0.
\]

Recall also

PROPOSITION 2.6. [12] If \(\lambda : \mathbb{E}P_n \wedge S^1 \to U \) carries \((\ell, z)\) to multiplication by \(z \) in the line \(\ell \), then the composite \(j_{s1} \circ \lambda \) is homotopic to the identity.

We end this section with:

LEMMA 2.7. [7] The diagram
\[
\mathbb{E}P_{-1} \wedge S^1 \to \mathbb{E}P_n \wedge S^1 \to S^0
\]
is a cofibration sequence.

PROOF. [14] First note that \(\overline{t}c : \mathbb{E}P_n \wedge S^1 \to S^{2n+1} \) is the transfer associated to the composite \(S^{2n+1} \to \mathbb{E}P_n \wedge S^{2n+1} \). Since this composite is null-homotopic, \(\overline{t}c \) factors up to homotopy through the Thom space \(S^{2n+1} \) of a bundle over a point. Since the null-homotopies are compatible as \(n \) increases, the composite \(\overline{t}c \) factors through the contractible spectrum \(S^0 \), and hence is null-homotopic. Therefore \(\overline{t}c \) is null-homotopic.

There results a map
\[
\overline{a}_*: \mathbb{E}P_{-1} \wedge S^2 \to C(t)
\]
to the mapping-cone of \(t \). It is clearly a homology-isomorphism in positive dimensions. In Remark 3.5(c) we shall see that \(P^1 \) is nontrivial on \(H^0(\mathbb{E}P_{-1} \wedge S^2) \) (where \(P^1 = Sq^2 \) if \(p = 2 \)). According to Theorem 2.5, the J-homomorphism \(j_{s1} : U \to S^0 \) factors through \(t \), so the element \(a_1 \) of Hopf invariant 1 is carried on \(C(t) \), and it follows that \(P^1 \) is nontrivial on \(H^0(C(t)) \) as well. Therefore \(\eta_0(a) \) is also an isomorphism. The map \(a_0 \) is
thus a homotopy-equivalence, and the result follows.

REMARK 2.8. One may use ideas of Löffler and Smith [11] in place of the work of Becker and Schultz to see that p^1 detects τ.

Section 3. TRANSFER, THOM CLASS, AND COACTION.

In this section we show how to extends Adams' treatment [2] of the complex bordism of \mathbb{E}^∞ to the case of E_n^∞ for $n \in \mathbb{Z}$. We shall adopt the convention that the E-homology of X is $X'_E = \pi_n(X \wedge E)$, the stable homotopy of $X \wedge E$. (The homology (and cohomology) of a space is thus always reduced.) If E is a ring-spectrum (always associative and commutative) for which E_n^∞ is flat over E^∞, then we have a right coaction map

$$\psi: X'_E \times X'_E \xrightarrow{\psi} X'_E.$$

This convention seems natural from several points of view; in particular, it fits well with [13].

Recall that an orientation of a ring-spectrum E is an element $x = x_E \in E^2(\mathbb{E}^\infty)$ restricting to the canonical generator of $E^2(S^2)$. If E is oriented by x, it follows that $E^*(\mathbb{E}^\infty) = E^*(x)$; and if $\mu: E_0^\infty \wedge E_0^\infty \to E_0^\infty$ is the multiplication map, then $u \cdot x = F(1 \wedge 1, 1 \wedge x)$ defines a formal group F over E^∞. The homeomorphism $\mathbb{E}^\infty \cong \mathbb{M}(1)$ provides a canonical orientation $x_{\mathbb{M}(1)}$ and $(\mathbb{M}(1), x_{\mathbb{M}(1)})$ is universal in the obvious sense. By a famous result of Quillen, the natural map $L \to \mathbb{M}(1)$ is an isomorphism; see [2].

Now consider E_n^∞ for $n \in \mathbb{Z}$. The diagonal (2.3) $\Delta: E_n^\infty \to E_0^\infty \wedge E_n^\infty$ makes $E^*(\mathbb{E}^\infty_n)$ into a module over $E^*(\mathbb{E}^\infty_0)$, which is free on one generator u by the Thom isomorphism theorem. If $n \geq 0$, we take u such that $x^0 = x_0^0 \in E_n^0(\mathbb{E}^\infty_0)$, and write x^i for x^{i-n}. In either case it makes good sense for $i \geq n$ to write x^i for x^{i-n}, and henceforth we do so.

Let $b_j = x_j^0 \in \pi_j(\mathbb{E}^\infty \wedge E)$ be dual to x^{-1}_j, and write

$$\hat{b}(T) = \hat{b}^0_n(T) = \sum_{i \geq n} b_i x_i.$$

Then the module structure dualizes to give

$$\Delta_n \hat{b}(T) = \hat{b}(T) \otimes \hat{b}(T)$$

where $b(T) = \hat{b}^0_n(T)$.

Our approach to the coaction for E^∞_n differs from that of Adams. We may write

$$\psi \hat{b}(T) = \sum_{j \geq n} b_j \otimes f_j(T)$$

for suitable in view of $\hat{b}(T)$, a function over $\hat{b}(T)$. Together with

Write

The unital p

For a ring-s

$$\varphi: F \wedge E +$$

for $f: X \to E$.

LEMMA 3.1. The evident

PROOF.

commutes, f

$$X_n^E -$$

But the bot
for suitable power series $f_j(T)$; these power series are independent of n, in view of the maps i and c. Now the Cartan formula of [1], p. 71, applied to $\hat{e}(T)$, asserts that

$$\sum \beta_i \otimes \beta_j \otimes f_{i+j}(T) = \sum \beta_i \otimes \beta_j \otimes f_i(T)f_j(T).$$

Together with the obvious fact that $f_0(T) = 1$, this yields $f_j(T) = f_1(T)^j$. Write

$$f_1(T) = h(T) = \sum_{i \geq 0} b_i T^{i+1}.$$

The unital property of ψ shows that $b_0 = 1$.

We must next recall some generalities concerning the Kronecker pairing. For a ring-spectrum E and an E-module-spectrum F with structure-map $\psi: F \otimes E \to F$, we have a pairing

$$\langle , \rangle: F^p(X) \otimes X \otimes E \to X \otimes F^p.$$

for $f: X \to E^p$, $e: S^q \to X \otimes E$,

$$\langle f, e \rangle: S^q \otimes X \otimes E \xrightarrow{f \otimes 1} E^p \otimes X \otimes E \xrightarrow{\psi} F^p.$$

LEMMA 3.2. In addition to these notations, let $\mu: E^p \otimes E^q \to E^{p+q}$ be the evident multiplication. Assume that $E^p \otimes E^q$ is flat over E^{p+q}. Then

$$f^* \mu = \langle f, \psi \rangle.$$

PROOF. Since

![Diagram](image)

commutes, the top row of the following commutative diagram evaluates f^*:

$$\begin{align*}
X \otimes E \otimes E &\xrightarrow{(1 \otimes \psi)} (X \otimes E) \otimes E \\
&\xrightarrow{(f \otimes 1) \otimes \psi} (F \otimes E) \otimes E \\
&\xrightarrow{\otimes \psi} F \otimes E
\end{align*}$$

But the bottom row is $\langle f, - \rangle$. \[\square\]
Now $b(T)$ is by definition $\langle x, \psi \beta(T) \rangle$; so we have proved:

Proposition 3.3. In $\pi_n(\mathbb{C}P^n \wedge MU)$,

$$\psi \beta(T) = \widehat{\beta}(1 \otimes b(T)).$$

with $b(T) = x \otimes \beta(T)$.

Remark 3.4. This line of argument may be used to determine the form of the coaction in any space with polynomial integral cohomology. Consider H^P for example. For the generator $y \in MU^4 \otimes \mathbb{C}$, we may take the second Connor-Floyd Chern class of the canonical bundle over H^P thought of as a complex 2-plane bundle. Under the natural inclusion $i: \mathbb{C}P \rightarrow H^P$, this bundle pulls back to $L \otimes L^*$, so, with $[n] = [n]_G$ as in [15],

$$i^* y = c_{f_2}(L \otimes L^*) = cf_2(L)cf_1(L^*) = x[-1](x).$$

Let γ_1 be a dual to y^*, and form a power series

$$\gamma(T) = \sum_{120} \gamma_1 T^{24}.$$

Since i^* is a coalgebra map, we find that

$$i^* \beta(T) = \gamma(c(T))$$

for some power series $c(T)$. We compute:

$$c(T) = \langle y, i^* \beta(T) \rangle = \langle i^* y, \beta(T) \rangle$$

$$= \langle x[-1](x), \beta(T) \rangle = T[-1](T).$$

For the coaction, we compute:

$$\psi \gamma(c(T)) = \psi i^* \beta(T) = i^* \psi \beta(T)$$

$$= i^* \beta(1 \otimes b(T)) = \gamma(1 \otimes c_L(b(T))).$$

where $c_L(T) = \eta_{L} c(T)$. This implicitly determines the coaction in H^P; cf. [16].

Remark 3.5. (a) Since we are using the right coaction, our elements $b_i \in BP_{2^i} \otimes \mathbb{C}$ are conjugate to those of Adams [2 : I].

(b) Let $G_L = \eta_{L} G$ and $G_R = \eta_{R} G$; then by [2 : I (11.4)] the power series $b(T)$ is an isomorphism of formal groups from G_R to G_L; that is,

$$b(\exp_R(T)) = \exp_L(T)$$

where again $\exp_R(T) = \eta_{R} \exp_L(T)$, etc. Also $\rho_L: MU \otimes MU \rightarrow H^P \otimes MU$ carries

$$G_L$$

to G_R,

$$\zeta(T) = \eta_{L} \zeta(T).$$

where $\zeta(T) = \eta_{L} \zeta(T)$. Now let

Since $MU \otimes MU$ induces a lor

in $[9]$ it is sequence, the

Let us:

a map of cof:

$$(3.8)$$

This yields

$$(3.6)$$

of t_α in sequence in

According

$E^\alpha_{r} (G^0)$ are

$u_\alpha: \pi_*(\mathbb{C}P_{-1})$.

Since
\(G_L \) to \(G_A \), so

\[\rho_{A \to B}(T) = \log_B(T). \]

\((3.7) \)

(c) The same results hold in any oriented ring-spectrum \(E \) such that \(E_*E \) is flat over \(E_* \). In particular we find in mod \(p \) homology that

\[\psi(T) = \hat{\delta}(1 \otimes \xi(T)), \]

where \(\xi(T) = \sum_i \xi_i T^i \) with \(\xi_i = x_0 x_1 \) for \(p \) odd and \(\xi_i = x_0 x_1^2 \) for \(p = 2 \).

Now let \(t: \mathbb{E}_* \times S^1 \to S^0 \) be the transfer map constructed in Section 2. Since \(MU_* \) is evenly graded, \(MU_*(t) = 0 \); so the cofibration sequence

\[S^0 \to \mathbb{E}_* \to S^2 \]

induces a long exact sequence in \(E_2(-) \), with boundary homomorphism

\[t_*: \mathbb{E}_*^{s+1}(S^0) \to \mathbb{E}_*^{s+1}(S^0). \]

In [9] it is shown that if \(x \) is a permanent cycle in the first spectral sequence, then \(t_*x \) represents \(tx \) in the second.

Let \(u: \mathbb{E}_*^{s+1}(S^0) \to M \) represent the Thom class \(x^{-1} \). We then have a map of cofibration sequences:

\[\begin{array}{ccc}
S^0 & \to & \mathbb{E}_*^{s+1}(S^0) \\
\downarrow & & \downarrow \\
S^0 & \to & S^0 \to S^0 \to S^0/\mathbb{Z} \\
\end{array} \]

This yields a factorization

\[\mathbb{E}_*^{s+1}(S^0) \xrightarrow{t_*} \mathbb{E}_*^{s+1}(S^0) \]

\[t_* \]

\[\mathbb{E}_*^{s+1}(S^0/\mathbb{Z}) \]

of \(t_* \), in which \(\delta \) is the boundary homomorphism induced by the bottom sequence in (3.6).

According to the program of [13], it is via the map \(\delta \) that elements in \(\mathbb{E}_*^{s+1}(S^0) \) are best described; so it is very natural to compute \(u_*: \pi_* \mathbb{E}_*^{s+1}(S^0) \to \mathbb{Q} \otimes MU_* \).

Since \(u \) factors as

\[\mathbb{E}_*^{s+1}(S^0) \xrightarrow{x^{-1}} MU \xrightarrow{\rho} M \]

in \(\mathbb{H}^{\infty} \); cf. elements
the first step is to compute
\[
x_n^{-1} \beta(T) = \mu < x_n^{-1}, \Phi_n(T) > \quad \text{by (3.2)}
\]
\[
= \mu < x_n^{-1}, \beta(1 \otimes b(T)) > \quad \text{by (3.3)}
\]
\[
= \mu(1 \otimes b(T)^{-1})
\]
\[
= b(T)^{-1}.
\]
Now using (3.7), we find:

THEOREM 3.9. \(u_n \tilde{\beta}(T) = \frac{T}{\log G(T)} \in \mathfrak{g} / \mathfrak{g} \otimes \mathbb{M}_G[[T]] \).

Since \(u_n \tilde{\beta}^{-1} = 1 \), we have also:

COROLLARY 3.10. \(u_n \tilde{\beta}(T) = \frac{T}{\log G(T)} - 1 \in \mathfrak{g} / \mathfrak{g} \otimes \mathbb{M}_G[[T]] \).

Section 4. THE IMAGE OF THE PRIMITIVES.

We begin by recalling the primitive generators in \(\pi_n(\mathbb{E}_0^0 \wedge \mathbb{M}) \). Write \(\exp(T) \) for \(\exp_G(T) \).

PROPOSITION 4.1. (D. M. Segal [16]) If we define \(p_n \in \pi_n(\mathbb{E}_0^0 \wedge \mathbb{M}) \) by means of the expansion
\[
\beta(\exp(T)) = \sum_{n=0}^{\infty} \frac{p_n}{n!} T^n,
\]
then \(p_n \) lies in \(\pi_n(\mathbb{E}_0^0 \wedge \mathbb{M}) \) and generates the subgroup of primitives.

PROOF. We first check that \(p_n \) is primitive, by means of the following calculation (due in different guise to Segal).
\[
\psi \beta(\exp(T)) = \beta(1 \otimes b(\exp_n(T))) \quad \text{by (3.3)}
\]
\[
= \beta(1 \otimes \exp_L(T)) \quad \text{by (3.6)}
\]
\[
= \beta(\exp(T)) \otimes 1.
\]

Next, note that \(n! \) times the coefficient of \(T^n \) in \((\exp(T))^k \) is integral. It follows that \(p_n \) is integral. On the other hand, the coefficient \(n! b_{n-1} \) of \(\beta_1 \) in \(p_n \) generates a summand in \(\mathbb{M}_G \); this follows from the fact that its image in \(\mathbb{Z} \) under the map classifying \(G \) is \(-1 \). Therefore \(p_n \) is a generator of \(\mathbb{E}_0^0,2n(\mathbb{E}_0^0) \). But this group embeds into \(\mathbb{E}_2^0,2n(\mathbb{E}_0^0 \wedge \mathbb{S}) \) since \(\mathbb{E}_0^0 \) is torsion-free, and the latter group is just \(\mathbb{E}_2^0(\mathbb{E}_0^0 \wedge \mathbb{S}) = \mathbb{S} \) since \(\mathbb{E}_0^0 \wedge \mathbb{S} \) is a \(\mathbb{M} \)-module-spectrum.

REMARK 4.2. Since \(\exp(\mu \mathbb{Q}) \in \mathbb{M} \mathfrak{g}^2(\mathbb{E}_0^0) \) reduces to \(T \mathbb{H} \in \mathbb{H}^2(\mathbb{E}_0^0) \), we find that \(p_n \) reduces to \(n! \beta_n^H \in \pi_n(\mathbb{E}_0^0 \wedge H) \). In the H-structure of \(\mathbb{E}_0^0 \), \(n! \beta_n^H = (\beta_1^H)^n \); and it follows that

That is,

Therefore, \(S \) and \(T \),

\(\text{Wilson [15]} \)

\((4.3) \)

This line is

REMARK.

The power \(q_n \in \pi_n(\mathbb{H}) \) is a generator. We not

An analogue of Lazard ring;

THEOREM.

PROOF.

The result

This is valid;

other hand,
UNIVERSAL BERNOUlli NUMBERS AND THE S^1 - TRANSFER

$p_n = \beta_{1}^{n}$.

That is,

$$\beta(\exp(T)) = \frac{\beta_{1}^{T}}{T}.$$

Therefore, incidentally, $\beta(\exp(S))\beta(\exp(T)) = \beta(\exp(S + T))$, and, replacing S and T by $\log(S)$ and $\log(T)$, we obtain the formula of Ravenel and Wilson [15]:

$$\beta(S)\beta(T) = \beta(G(S,T)).$$

This line of argument may of course be reversed.

REMARK 4.4. Analogous primitive generators may be constructed for $\mathbb{M}F^{\infty}$. The power series $\frac{1}{2} \exp(T)\exp(-T)$ is even, so we may define, following [16],

$q_n \in \pi_{4n}(\mathbb{M}F^{\infty} \wedge \mathbb{M}U) \otimes \mathbb{Q}$

by

$$\frac{1}{2} \gamma_0 + \frac{1}{2} \gamma(\exp(T)\exp(-t)) = \sum_{n \geq 0} \frac{q_n}{(2n)!} t^{2n}.$$

An analogue of the above proof shows that q_n is integral and a primitive generator.

We now evaluate

$$\bar{u}_k \beta: E_2^0(\mathbb{E}^m_0 \wedge S^2) \rightarrow E_2^2(S^8/\mathbb{Z})$$

in terms of the Bernoulli numbers introduced in Section 1. Since $\mathbb{M}U$ is the Lazard ring, the universal Bernoulli number B_n lies in $\mathbb{M}U_{2n} \otimes \mathbb{Q}$.

THEOREM 4.5.

$$\bar{u}_k \beta_{1}^{n} = -\frac{B_{n+1}}{n+1}.$$

PROOF. Replacing T by $\exp(T)$ in Corollary 3.10,

$$\bar{u}_k \beta(\exp(T)) = \frac{1}{T} - \frac{1}{\exp(T)}.$$

The result follows upon expanding both sides.

This together with Theorem 1.3 implies that $\bar{u}_k \beta_{1}^{n}$ has order d_n. On the other hand, recall from [13] that (if $\| \cdot \|$ means divides exactly)

$$E_2^{0,0}(S^8/\mathbb{Z}) = \mathbb{Z}/\mathbb{Z}$$

$$E_2^{0,2(p-1)}(S^8/\mathbb{Z}) \otimes \mathbb{Z}/p^{n+1} = \mathbb{Z}/p^{n+1} \quad \text{if} \quad p^n \| u > 0, \quad p > 2$$

$$\mathbb{Z}/2 \quad \text{if} \quad 2 \| u > 0, \quad p = 2$$

$$\mathbb{Z}/4 \quad \text{if} \quad u = 2, \quad p = 2$$
= \mathbb{Z} / 2^{u+2} \text{ if } 2^u \parallel u > 2, n > 0, p = 2.

Furthermore, 3: $E_2^0(\mathbb{Q}/\mathbb{Z}) = E_2^1(\mathbb{Q}/\mathbb{Z})$ merely kills the \mathbb{Q}/\mathbb{Z}. Comparing these orders with the numbers d_n we find

THEOREM 4.6. The image of $t_n = E_2^0(\mathbb{Q}/\mathbb{Z}) + E_2^1(\mathbb{Q}/\mathbb{Z})$ is the subgroup of index 2 except when $u = 1$ or 2, when the map is surjective. □

From [13] we then easily recover the theorem of Becker and Schultz:

THEOREM 4.7. [4] For $k > 0$, neither η_{8k+1} nor the generator j_{8k-1} of the image of the J-homomorphism in dimension $8k - 1$ lies in the image of $t: \pi_8(\mathbb{S}^5) \to \pi_8(\mathbb{S}^5)$.

REMARK 4.8. [4] Since η_{8k-1} is in the image of the usual complex J-homomorphism, it does lie in $\text{Im}(t)$ by the result (Theorem 2.5 above) of Becker and Schultz.

January, 1980
Revised July, 1981

Added in proof: Many of these results occur explicitly in K. Knapp's Bonn Habilitationsschrift, "Some applications of K-theory to framed bordism: e-invariant and transfer," Bonner Mathematische Schriften, Heft 118, 1979. For instance, Lemma 2.7 occurs there as Theorem 2.9, and Corollary 3.10 occurs there as (5.21).
Comparing these S^0 is the sub-
as surjective. and Schultz:
generator $18k-1$
in the image of
usual complex 2.5 above) of

BIBLIOGRAPHY

1. J. F. Adams, "Lectures on generalized homology", Lecture Notes in

2. J. F. Adams, Stable Homotopy and Generalized Homology, Univ. of

3. S. Araki, Typical Formal Groups in Complex Cobordism and K-Theo-
ry, Lectures in Mathematics 6, Kyoto Univ., Kinokuniya Book-Store Co., Ltd., n.d.

4. J. C. Becker and R. E. Schultz, "Equivariant function spaces and

5. Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press,
1966.

6. I. Hansen, "Framed bordism of free Lie group actions and the trans-
fer", preprint.

7. K. H. Knapp, "On the bi-stable J-homomorphism", Lecture Notes in

homomorphisms in the generalized Adams spectral sequence and the nontriviality
of infinitely many Y_t in stable homotopy", Notas de Mat. y Symp., No. 1, Soc.

10. P. S. Landweber, "Annihilator ideals and primitive elements in complex

12. B. M. Mann, E. Y. Miller, and H. R. Miller, "S^1-equivariant function

13. H. R. Miller, D. C. Ravenel, and W. S. Wilson, "Periodic phenomena in

14. S. A. Mitchell, "Complex bordism and stable homotopy type of

15. D. C. Ravenel and W. S. Wilson, "$\text{The Hopf ring for complex cobordism}$,

16. D. M. Segal, "The cooperation on $\text{MU}_*(CP^\infty)$ and $\text{MU}_*(HP^\infty)$ and

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195