1. (a) Find all the reduced quadratic irrationals of discriminant 328 ; this is the set $R(328)$. (There are ten.) Record also the coefficients a, b, c for each one.
(b) Determine the action of the continued fraction operator $\phi(\alpha)=\frac{1}{\alpha-[\alpha]}$ on $R(328)$.
2. (This is a continuation of PS4\#1.) (a) Let a and c be relatively prime, with $c>0$. Show that there is exactly one solution in integers x, y with $0 \leq y<c$ to each of the equations

$$
\begin{equation*}
a y-c x=1 ; \quad a y-c x=-1 . \tag{1}
\end{equation*}
$$

Explain how to find them, using the continued fraction expansion of a / c. Find them for example in case $a=61, c=23$.
(b) Given a proper continued fraction $\left\langle q_{0}, q_{1}, \ldots\right\rangle$, let

$$
W_{n}=\left(\begin{array}{ll}
a_{n} & a_{n-1} \\
b_{n} & b_{n-1}
\end{array}\right)
$$

(I prefer this slight variant of a matrix discussed in class because it leads to more uniform expressions.) Explain that for all n

$$
W_{n}=W_{n-1}\left(\begin{array}{cc}
q_{n} & 1 \\
1 & 0
\end{array}\right)
$$

and that we could start this with $W_{-1}=I$. Thus

$$
W_{n}=\left(\begin{array}{cc}
q_{0} & 1 \tag{2}\\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
q_{n} & 1 \\
1 & 0
\end{array}\right) .
$$

Use this matrix expression to solve (??) in case $a=61, c=23$, again.
(c) Show that a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}_{2}(\mathbb{Z})$ is a product of the form (??) (with $q_{i} \in \mathbb{Z}, q_{i}>0$ for $i>0$) if and only if either
(i) $c \geq 2$ and $0 \leq d<c$, or
(ii) $c=1$ and $2 d-1=\operatorname{det} A$.
(This alternative reflects the fact that $b_{n}>b_{n-1}$ except possibly for $n=1$.) Show that then the sequence of q_{n} 's is unique. (Hint: a, c, and $\operatorname{det} A$ determine A, using (a).)
3. We saw that the unique reduced quadratic irrational α of discriminant $d=$ $4 m$ with $a=1$ in its primitive polynomial is $q+\sqrt{m}$ with $q=[\sqrt{m}]$, and that this element has a continued fraction expansion of the form $\left\langle\overline{q_{0}, \ldots, q_{k-1}}\right\rangle$, where q_{0} is even and the sequence q_{1}, \ldots, q_{k-1} is palindromic. Observe that in the primitive polynomial α, b is even; and that $-b=q_{0}$.

Now let $d=4 m+1$ be an odd discriminant. Then b is odd as well. Express α, the unique reduced quadratic irrational of discriminant d with $a=1$ in its primitive polynomial, in terms of $\frac{1+\sqrt{d}}{2}$, and show that the exact same statement holds: $\alpha=\left\langle\overline{q_{0}, \ldots, q_{k-1}}\right\rangle$ with $q_{0}=-b$ and the sequence q_{1}, \ldots, q_{k-1} is palindromic.

