18.781 Problem Set 4: Due Wednesday, March 15 (Second edition).

1. (a) Show that (as has been claimed in lecture) any rational number has exactly two expressions as a finite proper continued fraction.
(b) At the start of Davenport's chapter on continued fractions, he explains how the Euclidean algorithm leads to an expression of a rational number as a finite continued fraction. In $\mathbf{1 ( b )}$ (iii) of Problem Set 1 you worked out the Euclidean algorithm for the pair 1024 and 729 . Use that work to express $\frac{1024}{729}$ as a finite continued fraction.
2. Find the continued fraction for $\sqrt{31}$.
3. Let $\alpha=\sqrt[3]{2}$.
(a) Show that

$$
\frac{1}{a \alpha^{2}+b \alpha+c}=\frac{\left(b^{2}-a c\right) \alpha^{2}+\left(2 a^{2}-b c\right) \alpha+\left(c^{2}-2 a b\right)}{4 a^{3}+2 b^{3}+c^{3}-6 a b c}
$$

(b) Find the first four terms of the continued fraction for $\alpha$, and the first four convergents. Besides (a), it may be useful to note that $\alpha<2$ and that $\alpha^{2}+\alpha+1<4$.
4. Let $\gamma$ be the "golden ratio" $\frac{1+\sqrt{5}}{2}$. We will see in this problem that this number is "very nearly rational." The following result was mentioned in class.

Theorem 1. For any irrational real $\alpha$ and any $n>0$,

$$
\left|\alpha-c_{m}\right|<\frac{1 / \sqrt{5}}{\left(\operatorname{ht} c_{m}\right)^{2}}
$$

for some $m$ with $|n-m| \leq 1$.
We showed that this is false for rational $\alpha$. The number $\gamma$ shows that the numerator $1 / \sqrt{5}$ cannot be improved for general irrational numbers $\alpha$ :
Theorem 2. For any $\delta<1 / \sqrt{5}$ there are only finitely many nonzero rational numbers $c$ for which

$$
|\gamma-c|<\frac{\delta}{(\operatorname{ht} c)^{2}}
$$

(a) What is the continued fraction of $\gamma$ ?
(b) Recall the Fibonacci sequence $\phi_{n}$ : $\phi_{0}=\phi_{1}=1 ; \phi_{n+1}=\phi_{n}+\phi_{n-1}$. Express the numerators $a_{n}$ and the denominators $b_{n}$ of the convergents of the continued fraction for $\gamma$ in terms of the Fibonacci sequence, and find the $n$th " $\alpha_{n}$."

We saw in class that for any irrational real $\alpha$,

$$
\left|\alpha-c_{n}\right|=\frac{1}{b_{n}\left(b_{n} \alpha_{n}+b_{n-1}\right)} .
$$

(c) Let $\delta<1 / \sqrt{5}$ and show that there are only finitely many $n$ for which

$$
\left|\alpha-c_{n}\right|<\frac{\delta}{\left(\operatorname{ht} c_{n}\right)^{2}}
$$

(Hint: Compute $\lim _{n \rightarrow \infty} \frac{b_{n}^{2}}{b_{n}\left(b_{n} \alpha_{n}+b_{n-1}\right)}$.)
(d) Now use the fact that any nonzero rational $c$ such that

$$
|\gamma-c|<\frac{1 / 2}{(\operatorname{ht} c)^{2}}
$$

is one of the continued fraction convergents to complete a proof of Theorem 2.

It turns out that $1 / \sqrt{5}$ can be improved if (and only if) the irrational real $\alpha$ is not equivalent (under the $\mathrm{GL}_{2}(\mathbb{Z})$-action) to $\gamma$. Then it may be replaced by $1 / \sqrt{8}$. This is just the beginning; for more see J. W. S. Cassels, An Introduction to Diophantine Approximation.

Challenge. Prove Theorem 1 above.
5. (a) What number has continued fraction $\langle 1, \overline{2,3}\rangle$ ?
(b) Let $n$ be a positive integer. What number has continued fraction $\langle\bar{n}\rangle$ ?
6. (a) Prove that there are infinitely many primes congruent to $-1(\bmod 4)$. Hint: Suppose $\left\{p_{1}, \ldots, p_{n}\right\}$ is a complete list of such primes, and consider $4 p_{1} \cdots p_{n}-1$.
(b) Prove that there are infinitely many primes congruent to $1(\bmod 4)$. Hint: Suppose $\left\{p_{1}, \ldots, p_{n}\right\}$ is a complete list of such primes, and consider $\left(p_{1} \cdots p_{n}\right)^{2}+1$.

I do not know what I may appear to the world; but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.-Isaac Newton

