18.781 Problem Set 3: Due Wednesday, March 8.

1.(a) Find out whether 7 is a quadratic residue modulo 23, using (i) Euler’s
criterion; (ii) Gauss’s criterion; (iii) quadratic reciprocity.

(b) Compute (@), (_1111), (M)'

11 691 97

(c) What is the discriminant of the quadratic polynomial
f(z) =62 + 232 + 77

Use quadratic reciprocity to decide whether f(z) = 0 (mod 11) has a solution.
If you discover that there is one, find one explicitly.
2. Let m be square-free (that is, m is not divisible by any square integer

greater than 1), and consider (;) as a function of the odd prime p. Show
that it depends only on

p(modm) if m =1 (mod4);
p(mod4m) if m =2 or 3 (mod4).

Thus for example determine (’75) and (g) for all primes p, in terms of the
congruence class of p modulo 20 (respectively, 5).

3. Suppose that the Fermat number F),, = 22" +1 is prime, and that m > 0.
Show that 3 is a primitive root mod F},.

4. Suppose p is a prime greater than 5, and that ¢ = pT_l is also prime.

(a) Show that p =3 or 7 (mod8).

(b) Show that 2 is a primitive root mod p if p = 3 (mod8), but that 2 has
order ¢ in Zy if p = 7 (mod8).

Thus 2 is a primitive root modulo the primes 11,59, 83,107, ..., but not
modulo 7,23,47,167,.... So the numbers 1,2,4,8,...,2'%, have distinct
residues mod 107; whereas 2% = 1 (mod 167). Unfortunately it is not known
whether or not there are infinitely many primes p such that 7%1 is also prime
(much less subject to the additional condition that p = 3 (mod 8)).



5. Even with the use of the law of quadratic reciprocity, the Legendre sym-
bol is in principle “incomputable,” because before you can use quadratic
reciprocity you have to factor the “numerator” into a product of primes.
The Jacobi symbol overcomes this computational defect. It is defined for any
two integers k,n, with n odd and positive, by

B =TI

where n = [ p; is the prime factorization of n. (Remember, the Legendre
symbol (%) is extended to allow k divisible by declaring it to be 0 in that
case.) (a) through (c) below are obvious. Check (d) through (g).

(a) If k = (modn) then (£) = (£).
(b) () = () )

() If also m is odd and positive then (-£) = (£)(£).
(d) Compute (=).

(e) Compute (2).

(f) Prove the following extended version of quadratic reciprocity: if m and
n are positive odd numbers then

() (2 = (1" 7
(You'll want check that if m = p;---ps and n = ¢, - - - ¢; are prime factoriza-

tions then
Z Pi;l q]'2—1 - m2_1nT_1 (mod 2)

0,3

first.)

m

(g) Check that if m is a quadratic residue mod n, then (%) = 1. But the
converse assertion is false, since for example (%) = 1 but 2 is not a quadratic
residue mod 9.



Challenge Problem (G. Rousseau, The Mathematical Intelligencer, Vol.
14, No. 3, p. 64 (1992)) The “pg — 1 puzzle” is like the famous “15 puzzle”
or “jeu de taquin” of Sam Loyd, except that the frame has p rows and ¢
columns instead of 4 rows and 4 columns. The movable tiles are numbered
1,2,...,pq — 1, with the blank square labelled 0. Say the pieces are in row
order if the first row is 0,1,...,¢ — 1, the second is ¢,q + 1,...,2q — 1,
and so on. They are in column order if the first column (reading down) is
0,1,...,p — 1, the second is p,p+ 1,...,2p — 1, and so on. They are in
diagonal order if they start with 0 at the upper left corner, and increase one
by one along the main diagonal; whenever an edge is reached the sequence
is continued one row down or one column to the right on the opposite edge.
(For this to make sense, p and ¢ must be relatively prime.)

Assume that p and ¢ are distinct odd primes, and show:

(a) It is possible to pass from row to column order except when p and ¢ are
both congruent to 3 mod 4.

(b) It is possible to pass from row order to diagonal order if and only if ¢ is
a quadratic residue modulo p; and it is possible to pass from column order
to diagonal order if and only if p is a quadratic residue modulo gq.

cos(2m/17) = %(—1+¢1_7+ 34— 2V17)
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—C. F. Gauss, Disquisitiones Arithmeticae §365.
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