
2
Derived Functors

2.1 (5-Functors

The right context in which to view derived functors, according to Groth-
endieck [Tohoku], is that of 8 -functors between two abelian categories A

Definition 2.1.1 A (covariant) homological (resp. cohomological) 8-functor
between A and B is a collection of additive functors Tn\A^ B (resp.
Tn\ A - • B) for n > 0, together with morphisms

(resp. 8n:Tn(C)->Tn+l(A))

defined for each short exact sequence 0 — > - A — • Z ? ^ C - > 0 i n A Here we

make the convention that Tn = Tn = 0 for n < 0. These two conditions are

imposed:

1. For each short exact sequence as above, there is a long exact sequence

Tn(A) -+ Tn(B) - • Tn(C) - 4 Tn-i(A)

(resp.

Tn~\C) - > Tn(A) - + Tn(B) - • r r t ( C ) —• r w + 1 ( A ) • • • ) .

In particular, TQ is right exact, and T° is left exact.

30
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2.1 5 -Functors 31

2. For each morphism of short exact sequences from 0 -> A! —• B' ->

C" —• 0 to 0 -> A -> # ->• C —• 0, the 5's give a commutative diagram

Tn(C) — •

i
Tn(C) - ^ >

rB_i(A')

1
r«-l(A)

resp.

r"(c') — •

1
Tn(C) - ^

r"+1(A')

1
r"+1(A).

Example 2.1.2 Homology gives a homological 5-functor H* from Ch>o(^4)
to A; cohomology gives a cohomological 5-functor H* from Ch-°CA) to
A.

Exercise 2.1.1 Let S be the category of short exact sequences

in A. Show that 5/ is a natural transformation from the functor sending (*) to
Ti(C) to the functor sending (*) to 7}_i(A).

Example 2.1.3 (/7-torsion) If p is an integer, the functors TQ(A) = A/pA and

T\(A) = pA = {aeA: pa=0}

fit together to form a homological 5-functor, or a cohomological 5-functor
(with T° = T\ and Tx = To) from Ab to Ab. To see this, apply the Snake
Lemma to

0 —> A —> B —> C — ^ 0

pi pi pi

0 —> A —> B —> C — ^ 0

to get the exact sequence

0 -+ pA -> PB -+ pC -?-> A/p A -+ B/pB -* C/pC -> 0.

Generalization The same proof shows that if r is any element in a ring R,
then To(M) — M/rM and T\(M) = rM fit together to form a homological 5-
functor (or cohomological 5-functor, if that is one's taste) from /?-mod to Ab.
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32 Derived Functors

Vista We will see in 2.6.3 that Tn(M) = Tor*(R/r, M) is also a homolog-
ical <5-functor with 7b(M) = M/rM. If r is a left nonzerodivisor (meaning
that rR = {s e R : rs = 0} is zero), then in fact Torf (R/r, M) = rM and
Tor*(R/r, M) = 0 for n> 2; see 3.1.7. However, in general rR / 0, while
Torf (R/r, R) = 0, so they aren't the same; Torf (M, R/r) is the quotient of

rM by the submodule (rR)M generated by [sm :rs = 0, s e R,m e M}. The
Torn will be universal <5-functors in a sense that we shall now make precise.

Definition 2.1.4 A morphism S —> T of <5-functors is a system of natural
transformations Sn —> Tn (resp. Sn —• Tn) that commute with 8. This is fancy
language for the assertion that there is a commutative ladder diagram con-
necting the long exact sequences for S and T associated to any short exact
sequence in A.

A homological 5-functor T is universal if, given any other 5-functor S and a
natural transformation fy. SQ —• 7b, there exists a unique morphism {/„: Sn ->
Tn} of 5-functors that extends /o.

A cohomological 5-functor T is universal if, given S and f°: T° -> 5°,
there exists a unique morphism T —• 5 of 5-functors extending / ° .

Example 2.1.5 We will see in section 2.4 that homology //*: Ch>o(*4) -> 4̂.
and cohomology //*: Ch-°(^4) -> ^l are universal 5-functors.

Exercise 2.1.2 If F: A —> B is an exact functor, show that 7b = F and Tn = 0
for n / 0 defines a universal 5-functor (of both homological and cohomologi-
cal type).

Remark If F: A —• B is an additive functor, then we can ask if there is any 8-
functor T (universal or not) such that To = F (resp. T° = F). One obvious
obstruction is that To must be right exact (resp. T° must be left exact). By
definition, however, we see that there is at most one (up to isomorphism)
universal 6-functor T with To = F (resp. T° — F). If a universal T exists, the
Tn are sometimes called the left satellite functors of F (resp. the Tn are called
the right satellite functors of F). This terminology is due to the pervasive
influence of the book [CE].

We will see that derived functors, when they exist, are indeed universal 5-
functors. For this we need the concept of projective and injective resolutions.
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2.2 Projective Resolutions 33

2.2 Projective Resolutions

An object P in an abelian category A is projective if it satisfies the following
universal lifting property: Given a surjection g.B^C and a map y: P —> C,
there is at least one map /?: P —> B such that y = g o /3.

5 — • C —> 0

We shall be mostly concerned with the special case of projective modules
(.4 being the category mod-/?). The notion of projective module first appeared
in the book [CE]. It is easy to see that free R-modules are projective (lift a
basis). Clearly, direct summands of free modules are also projective modules.

Proposition 2.2.1 An R-module is projective iff it is a direct summand of a
free R-module.

Proof Letting F(A) be the free R-module on the set underlying an /^-module
A, we see that for every R-module A there is a surjection n\ F(A) —• A. If
A is a projective /?-module, the universal lifting property yields a map i: A —>
F(A) so that 7i i — I A, that is, A is a direct summand of the free module F(A).

O

Example 2.2.2 Over many nice rings (Z, fields, division rings, • • •) every
projective module is in fact a free module. Here are two examples to show
that this is not always the case:

1. If R = R\ x R2, then P = R\ x 0 and 0 x Ri are projective because their
sum is R. P is not free because (0, 1)P = 0. This is true, for example,
when R is the ring Z/6 = 1/2 x 1/3.

2. Consider the ring R = Mn(F) of n x n matrices over a field F, acting
on the left on the column vector space V = Fn. As a left P-module, R
is the direct sum of its columns, each of which is the left /?-module V.
Hence R = V 0 • • • 0 V, and V is a projective /^-module. Since any free
R-module would have dimension dn2 over F for some cardinal number
d, and dim/KV) =n,V cannot possibly be free over R.

Remark The category A of finite abelian groups is an example of an abelian
category that has no projective objects. We say that A has enough projectives
if for every object A of A there is a surjection P ^> A with P projective.
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34 Derived Functors

Here is another characterization of projective objects in A:

Lemma 2.2.3 M is projective iff Hom^CM, —) is an exact functor. That is,
iff the sequence of groups

0 -> Hom(M, A) -> Hom(M, B) -^> Hom(M, C) -> 0

is exact for every exact sequence 0->A^>B->C^>0inA.

Proof Suppose that Hom(M, —) is exact and that we are given a surjec-
tion g:B -> C and a map y:M -> C. We can lift y e Hom(M, C) to p e
Hom(M, B) such that y = g*p = g o p because g* is onto. Thus M has the
universal lifting property, that is, it is projective. Conversely, suppose M is
projective. In order to show that Hom(M, —) is exact, it suffices to show that
g* is onto for every short exact sequence as above. Given y e Hom(M, C),
the universal lifting property of M gives p e Hom(M, B) so that y = g o p =
g*(P), that is, g* is onto. <>

A chain complex P in which each Pn is projective in A is called a chain
complex ofprojectives. It need not be a projective object in Ch.

Exercise 2.2.1 Show that a chain complex P is a projective object in Ch
if and only if it is a split exact complex of projectives. Hint: To see that P
must be split exact, consider the surjection from cone(idp) to P[— 1]. To see
that split exact complexes are projective objects, consider the special case
0 -> Px ^ P0 -* 0.

Exercise 2.2.2 Use the previous exercise 2.2.1 to show that if A has enough
projectives, then so does the category Ch(*4) of chain complexes over A.

Definition 2.2.4 Let M be an object of A. A left resolution of M is a com-
plex P with Pi = 0 for i < 0, together with a map e: Po -> M so that the
augmented complex

is exact. It is a projective resolution if each P,- is projective.

Lemma 2.2.5 Every R-module M has a projective resolution. More gener-
ally, if an abelian category A has enough projectives, then every object M in
A has a projective resolution.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.003
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:42:20, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.003
https://www.cambridge.org/core


2.2 Projective Resolutions 35

0 0

0 0 0 0

Figure 2.1. Forming a resolution by splicing.

Proof Choose a projective Po and a surjection €o: Po -> Af, and set Mo =
ker(^o). Inductively, given a module Mn-\, we choose a projective Pn and
a surjection en: Pn -» Afn_i. Set Mn = ker(en), and let dn be the composite
Pw ->• Mn_i -> Pw_i. Since dn(Pn) = Mn-\ = ker(dw_i), the chain complex
P. is a resolution of Af. (See Figure 2.1.) O

Exercise 2.2.3 Show that if P. is a complex of projectives with P; = 0 for
/ < 0, then a map e: Po - • M giving a resolution for M is the same thing as
a chain map €: P. —>• M, where M is considered as a complex concentrated in
degree zero.

Comparison Theorem 2.2.6 Let P —> M be a projective resolution of M
and f: M —> N a map in A. Then for every resolution Q. —> N of N there
is a chain map f:P.—> Qm lifting f in the sense that rj o /o = f o e. The
chain map f is unique up to chain homotopy equivalence.

••• —> P2 —> P\ —> Po - ^ M —> 0

Si 3i 3 | if

Porism 2.2.7 The proof will make it clear that the hypothesis that P —• M be
a projective resolution is too strong. It suffices to be given a chain complex

with the Pi projective. Then for every resolution Q -> N of TV, every map
M -* N lifts to a map P -> Q, which is unique up to chain homotopy. This
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36 Derived Functors

stronger version of the Comparison Theorem will be used in section 2.7 to
construct the external product for Tor.

Proof We will construct the fn and show their uniqueness by induction on n,
thinking of f-\ as / ' . Inductively, suppose ft has been constructed for / < n
so that fi-\d~ df. In order to construct / n + i we consider the n -cycles of
P and Q. If n = - 1 , we set Z_i(P) = M and Z_i(g) = N\ if n > 0, the
fact that fn-\d = dfn means that fn induces a map f'n from Zn(P) to Zn(Q).
Therefore we have two diagrams with exact rows

d
"> Pn+\

i
"* Qn+\

d

d

ZniP)

ZniQ)

— • 0

— • 0

0 — •

and

0 — •

ZniP) - >

I/;
z.(fi) - •

Pn

: I/.-,
- ^ Gn-1

The universal lifting property of the projective Pw+i yields a map /w+i from
Pn+\ to Gn+i, so that d/rc+i = /^d = fnd. This finishes the inductive step and
proves that the chain map f\P ^ Q exists.

To see uniqueness of / up to chain homotopy, suppose that g: P -> Q is
another lift of f and set h = f — g; we will construct a chain contraction
{sn: Pn -> <2n+i} of /z by induction on n. If « < 0, then Pn = 0, so we set
sn = 0. If n = 0, note that since 77/10 = €(f — ff) = 0, the map ho sends flo to
Zo(G) = d(2 i ) . We use the lifting property of Po to get a map so: ̂ 0 -^ Gi
so that /zo = ^^0 = ^^0 + s-\d. Inductively, we suppose given maps S((i < n)
so that dsn-\ = hn-\ — sn-2d and consider the map hn — sn-\d from Pn to
Qn. We compute that

d(hn - sn-id) = dhn - (hn-l ~ Sn-2d)d = (dh - hd) + Sn-ldd = 0.

Therefore hn — sn-\d lands in Zn(Q), a quotient of Qn+i- The lifting property
of Pn yields the desired map sn\ Pn ~> Q^+i such that ds^ = hn — sn-\d. O

Pn
3i/ i^-sd and

Gn+i - ^ Zn(Q) — • 0

Here is another way to construct projective resolutions. It is called the Horse-
shoe Lemma because we are required to fill in the horseshoe-shaped diagram.

/»» -

Gn -

•+ Pn-X

'* ^

->• fin-1

>• Pn-2
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2.2 Projective Resolutions 37

Horseshoe Lemma 2.2.8 Suppose given a commutative diagram

0

i
. . P'2 —> P[ —> PQ —^ A' — > °

••• P2 —> Px —> Po —> A —> 0

i
0

where the column is exact and the rows are projective resolutions. Set Pn =
P'n 0 P^. Then the Pn assemble to form a projective resolution P of A, and
the right-hand column lifts to an exact sequence of complexes

0 - • P' - U P ^ P" - • 0,

where in: P'n -+ Pn and nn\Pn^ P^ are the natural inclusion and projection,
respectively.

Proof Lift e" to a map PQ —> A; the direct sum of this with the map
i/^'\ PQ-^ A gives a map e: PQ -> A. The diagram (*) below commutes.

(*)

0

1
ker(e') —

1
ker(e) —

1
ker(e") -

1
0

0

1

-> Po J

i
-+ Po —

i

i
0

0

i
'-+ A'

i
U A

i
"-+ A"

i
0
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38 Derived Functors

The right two columns of (*) are short exact sequences. The Snake Lemma
1.3.2 shows that the left column is exact and that coker(e) = 0, so that PQ maps
onto A. This finishes the initial step and brings us to the situation

0

— • p[

• p>;

d!
—> ker(e')

1
ker(e)

1
-U ker(e")

1
0.

The filling in of the "horseshoe" now proceeds by

— • 0

—> 0

induction.

Exercise 2.2.4 Show that there are maps kn: P^ -> P'n_x so that

2.3 Injective Resolutions

An object / in an abelian category A is injective if it satisfies the following
universal lifting property: Given an injection f:A-+B and a map a: A —• / ,
there exists at least one map /3: B —• / such that a = /3 o / .

0 —> A -^> B

We say that A has enough injectives if for every object A in A there is an
injection A —> I with / injective. Note that if {Ia} is a family of injectives,
then the product f] Ia is also injective. The notion of injective module was
invented by R. Baer in 1940, long before projective modules were thought of.
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2.3 Injective Resolutions 39

Baer's Criterion 2.3.1 A right R-module E is injective if and only if for
every right ideal J of R, every map J —> E can be extended to a map R -> E.

Proof The "only if" direction is a special case of the definition of injective.
Conversely, suppose given an /^-module B, a submodule A and a map a: A ->•
E. Let E be the poset of all extensions a'\ A! -> E of a to an intermediate
submodule A c A ' c f i ; the partial order is that a' < a" if a" extends af.
By Zorn's lemma there is a maximal extension a'\ Af -» E in E\ we have to
show that A! = B. Suppose there is some b e B not in A!. The set J = {r e

R :br e Af) is a right ideal of R. By assumption, the map J —> A! - % E
extends to a map f:R->E. Let A!' be the submodule Af + bR of B and
define a"\ A!1 -> E by

a"(a + br) = a'(a) + /(r), a e A! and r e R.

This is well defined because af(br) = f(r) for br in Ar Pi bR, and ofr/ extends
a/, contradicting the existence of b. Hence Af = B. O

Exercise 2.3.1 Let R = Z/m. Use Baer's criterion to show that R is an in-
jective /^-module. Then show that Z/d is not an injective /^-module when
d\m and some prime p divides both d and m/d. (The hypothesis ensures that
Z/m ^ T/d 0 1/e.)

Corollary 2.3.2 Suppose that R = Z, or more generally that R is a principal
ideal domain. An R-module A is injective iff it is divisible, that is, for every
r ^ 0 in R and every a e A, a = br for some b 6 A.

Example 2.3.3 The divisible abelian groups Q and 1poo = Z[-] /Z are in-

jective (Z[-M is the group of rational numbers of the form a/pn, n > 1). Every

injective abelian group is a direct sum of these [KapIAB,section 5]. In partic-

ular, the injective abelian group Q/Z is isomorphic to SZ^oo.

We will now show that Ab has enough injectives. If A is an abelian group,
let I (A) be the product of copies of the injective group Q/Z, indexed by the
set HornAb(^. Q/Z). Then I (A) is injective, being a product of injectives, and
there is a canonical map e\'- A -> I (A). This is our desired injection of A into
an injective by the following exercise.

Exercise 2.3.2 Show that e& is an injection. Hint: If a e A, find a map
/ : ai -> Q/Z with f(a) / 0 and extend / to a map / ' : A -> Q/Z.
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40 Derived Functors

Exercise 2.3.3 Show that an abelian group A is zero iff HomAb(^, Q/2) =
0.

Now it is a fact, easily verified, that if A is an abelian category, then the
opposite category Aop is also abelian. The definition of injective is dual to
that of projective, so we immediately can deduce the following results (2.3.4-
2.3.7) by arguing in Aop.

Lemma 2.3.4 The following are equivalent for an object I in an abelian
category A:

1. I is injective in A.
2. I is projective in Aop.
3. The contravariant functor Hom^(—, /) is exact, that is, it takes short

exact sequences in A to short exact sequences in Ab.

Definition 2.3.5 Let M be an object of A. A right resolution of M is a
cochain complex /• with V = 0 for i < 0 and a map M ->• 7° such that the
augmented complex

is exact. This is the same as a cochain map M -* / , where M is considered as
a complex concentrated in degree 0. It is called an injective resolution if each
/ ' i s injective.

Lemma 2.3.6 If the abelian category A has enough injectives, then every
object in A has an injective resolution.

Comparison Theorem 2.3.7 Let N - • /• be an injective resolution ofN and
f'\ M —• N a map in A Then for every resolution M —> E there is a cochain
map F.E —> I lifting f. The map f is unique up to cochain homotopy
equivalence.

0 —> M —> E° —> El —> E2 —> ..

Exercise 2.3.4 Show that / is an injective object in the category of chain
complexes iff / is a split exact complex of injectives. Then show that if A
has enough injectives, so does the category Ch(^l) of chain complexes over
A. Hint: Ch(A)op ^ C h ( ^ ) .
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2.3 Injective Resolutions 41

We now show that there are enough injective /^-modules for every ring
R. Recall that if A is an abelian group and B is a left /^-module, then

> A) is a right /^-module via the rule fr: b H> f(rb).

Lemma 2.3.8 For every right R-module M, the natural map

r: HomAb(^, A) -> Hommofi_R(M, HomAb(/?, A))

is an isomorphism, where (r/)(m) is the map r H> f(mr).

Proof We define a map /x backwards as follows: If g: M ->• Hom(/?, A) is
an jR-module map, /xg is the abelian group map sending m to g(m){\). Since
T(/ig) = g and /xr(/) = / (check this!), r is an isomorphism. O

Definition 2.3.9 A pair of functors L: A - • B and /?: ^ ->• A are adjoint if
there is a natural bijection for all A in .4 and B in #:

r = TAB : Hom£(L(A), 5) -=> Honu(A, /?(5)).

Here "natural" means that for all / : A —• A' in .4 and g: B —• 5 ' in B the
following diagram commutes:

Hom#(L(y

HomA(A',

0, B)

R(B))

HomB(L(A),fi) —

HornA(A, R(B)) —

->• Home(L(

1
- ^ Horn A (A,

:A), B')

r

R(B')).

We call L the /^r adjoint and /? the r/^/ir adjoint of this pair. The above lemma
states that the forgetful functor from mod-/? to Ab has HomAb(^> —) as its
right adjoint.

Proposition 2.3.10 If an additive functor R: B -+ A is right adjoint to an
exact functor L.A^B and I is an injective object of B, then R(I) is an
injective object of A. (We say that R preserves injectives.)

Dually, if an additive functor L.A-^Bis left adjoint to an exact functor
R.B —> A and P is a projective object of A then L(P) is a projective object
ofB. (We say that L preserves projectives.j

Proof We must show that Hom^(—, R(I)) is exact. Given an injection
/ : A -> A! in A the diagram
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42 Derived Functors

/ ) ^

/*
HomA(A\R(I)) —• HomA(A,

commutes by naturality of r. Since L is exact and / is injective, the top
map Lf* is onto. Hence the bottom map / * is onto, proving that R(I) is an
injective object in A. O

Corollary 2.3.11 If I is an injective abelian group, then HomAb(/?, / ) is an
injective R-module.

Exercise 2.3.5 If M is an /^-module, let I(M) be the product of copies of
/o = HomAb(^, Q/2) , indexed by the set Hom/?(M, /Q). There is a canonical
map eM> M -> /(M); show that eu is an injection. Being a product of injec-
tives, / (Af) is injective, so this will prove that /?-mod has enough injectives.
An important consequence of this is that every /^-module has an injective res-
olution.

Example 2.3.12 The category Sheaves(X) of abelian group sheaves (1.6.5)
on a topological space X has enough injectives. To see this, we need two
constructions. The stalk of a sheaf T at a point x e X is the abelian group
Tx = lim{JF(£/): x e U}. "Stalk at x" is an exact functor from Sheaves(X) to

Ab. If A is any abelian group, the skyscraper sheaf x*A at the point i G l i s
defined to be the presheaf

(x*A)(U) = \ .
[ 0 otherwise.

Exercise 2.3.6 Show that JC* A is a sheaf and that

HomAbCT7*, A) ^ HomsheavesCX)^, **A)

for every sheaf ^7. Use 2.3.10 to conclude that if Ax is an injective abelian
group, then x*(Ax) is an injective object in Sheaves(X) for each JC, and that

x*(Ax) is also injective.

Given a fixed sheaf T, choose an injection Tx -> Ix with Ix injective in Ab
for each x e X. Combining the natural maps T —• x*Tx with x*Tx ->- x*Ix

yields a map from T to the injective sheaf X = Yixex x * (^) - The map T -> X
is an injection (see [Gode], for example) showing that Sheaves(X) has enough
injectives.
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2.4 Left Derived Functors 43

Example 2.3.13 Let / be a small category and A an abelian category. If the
product of any set of objects exists in A {A is complete) and A has enough
injectives, we will show that the functor category A1 has enough injectives.
For each k in /, the kth coordinate A H> A(k) is an exact functor from A1 to
A. Given A in A, define the functor k*A: I —> A by sending / e / to

= n A

If rj: i -* j is a map in / , the map k*A(i) -> k*A(j) is determined by the
index map rj*: Hom(y, k) - • Hom(/, k). That is, the coordinate k*A(i) -> A
of this map corresponding to cp e Hom(y, k) is the projection of k*A(i) onto
the factor corresponding to rj*(p = cpr] e Hom(7, k). If / : A -> 5 is a map in
*4, there is a corresponding map k*A -> A:*.6 defined slotwise. In this way,
k* becomes an additive functor from A to A1, assuming that A has enough
products for k*A to be defined.

Exercise 2.3.7 Assume that A is complete and has enough injectives. Show
that k* is right adjoint to the kth coordinate functor, so that k* preserves injec-
tives by 2.3.10. Given F e A1, embed each F(k) in an injective object Ak of
A, and let F —• k*Ak be the corresponding adjoint map. Show that the product
E = Ylkei *̂A& exists in A1', that E is an injective object, and that F —> E is
an injection. Conclude that A1 has enough injectives.

Exercise 2.3.8 Use the isomorphism ( A!)°P = A^1^ to dualize the previous
exercise. That is, assuming that A is cocomplete and has enough projectives,
show that A1 has enough projectives.

2.4 Left Derived Functors

Let F: A -> B be a right exact functor between two abelian categories. If A
has enough projectives, we can construct the left derived functors L[F(i > 0)
of F as follows. If A is an object of A, choose (once and for all) a projective
resolution P -+ A and define

Note that since F(P\) - • F(Po) —>• F(A) ->• 0 is exact, we always have
LoF(A) = F(A). The aim of this section is to show that the L*F form a
universal homological 8 -functor.
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44 Derived Functors

Lemma 2.4.1 The objects L(F(A) of B are well defined up to natural iso-
morphism. That is, if Q —> A is a second projective resolution, then there is a
canonical isomorphism:

LiF(A) = Ht(F(P)) ^ > Hi(F(Q)).

In particular, a different choice of the projective resolutions would yield new
functors L[F, which are naturally isomorphic to the functors L[F.

Proof By the Comparison Theorem (2.2.6), there is a chain map f:P—>Q
lifting the identity map id^, yielding a map /* from HiF(P) to H(F(Q).
Any other such chain map / ' : P —• Q is a chain homotopic to / , so /* = /£.
Therefore, the map /* is canonical. Similarly, there is a chain map g: Q -» P
lifting id A and a map g*. Since gf and idp are both chain maps P —• P lifting
id A, we have

£*/* = (gf)* = (idp)* = identity map on HtF(P).

Similarly, fg and idg both lift id^, so /*g* is the identity. This proves that /*
and g* are isomorphisms. O

Corollary 2.4.2 If A is projective, then LiF(A) = Ofor i ^ 0.

F-Acyclic Objects 2.4.3 An object Q is called F-acyclic if LtF(Q) = 0 for
all / ^ 0, that is, if the higher derived functors of F vanish on Q. Clearly,
projectives are F-acyclic for every right exact functor F, but there are oth-
ers; flat modules are acyclic for tensor products, for example. An F-acyclic
resolution of A is a left resolution Q —> A for which each Qi is F-acyclic.
We will see later (using dimension shifting, exercise 2.4.3 and 3.2.8) that we
can also compute left derived functors from F-acyclic resolutions, that is, that
L((A) = Hi(F(Q)) for any F-acyclic resolution Q of A.

Lemma 2.4.4 Iff: A! -> A is any map in A, there is a natural map LiF(f):
LiF(Ar) -> LiF(A) for each i.

Proof Let P' -> A! and P -> A be the chosen projective resolutions. The
comparison theorem yields a lift of / to a chain map / from P' to P, hence a
map / * from H[F(P') to HiF(P). Any other lift is chain homotopic to / , so
the map / * is independent of the choice of / . The map LiF(f) is /* . <>

Exercise 2.4.1 Show that L0F(f) = F(f) under the identification L0F(A) =
F(A).
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2.4 Left Derived Functors 45

Theorem 2.4.5 Each L[F is an additive functor from A to B.

Proof The identity map on P lifts the identity on A, so L[F(idA) is the
f g

identity map. Given maps A! —> A —> A!' and chain maps / , g lifting /
and g, the composite gf lifts gf. Therefore g*/* = (g/)*, proving that L[F
is a functor. If f: A! —• A are two maps with lifts /,-, the sum f\ + f2 lifts
/ l + h- Therefore / i* + /2* = (/i + /i)*, proving that L[F is additive. O

Exercise 2.4.2 (Preserving derived functors) If U: B —• C is an exact functor,
show that

Forgetful functors such as mod-/? ->• Ab are often exact, and it is often eas-
ier to compute the derived functors of UF due to the absence of cluttering
restrictions.

Theorem 2.4.6 The derived functors L*F form a homological 8-functor.

Proof Given a short exact sequence

0 - • A! -> A -> A" -> 0,

choose projective resolutions P' -> A! and Pn —> A". By the Horseshoe
Lemma 2.2.8, there is a projective resolution P —> A fitting into a short ex-
act sequence 0 —• Pf -> P -+ P" ->• 0 of projective complexes in A Since
the P^ are projective, each sequence 0 ->• /^ -* Pn - • P^ -> 0 is split exact.
As F is additive, each sequence

0 ^ F ( ^ ) - • F(Pn) ^ F(P%) -> 0

is split exact in R Therefore

0 -> F(P r) -> F(P) -> F(P r /) -> 0

is a short exact sequence of chain complexes. Writing out the corresponding
long exact homology sequence, we get

>̂ LiF(A') -+ LtF(A) -> LtF{A") -!* L ^
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46 Derived Functors

To see the naturality of the 3,-, assume we are given a commutative diagram

0 —> A' —> A —> A!' —>0A' -

f'i
B' -

—• A —

f[

- • B —

-» A"

if

in A, and projective resolutions of the corners: e': P' -> A\ e"\ P" —• A",
ri': Q! -> B' and rj": Q" -> fl". Use the Horseshoe Lemma 2.2.8 to get projec-
tive resolutions e: P -> A and rj: Q ^ B. Use the Comparison Theorem 2.2.6
to obtain chain maps F': Pf -» (2r and F r /: F r / -> Q/r lifting the maps f and
/ / r , respectively. We shall show that there is also a chain map F: P -+ Q lift-
ing / , and giving a commutative diagram of chain complexes with exact rows:

0 —> P' p —

Q -

-* P"

I?"

-> Q"0 —> Q —> Q —> Q —> 0.

The naturality of the connecting homomorphism in the long exact homology
sequence now translates into the naturality of the 3/. In order to produce F, we
will construct maps (not chain maps) yn\ P% -> Qf

n such that Fn is

Fn

Fn(p',

= [
P")

K Yn].

o F;J-

= (F'{p') •

P'n

e —:
P'n'

+ Y(P"),

Q'n

> ®

Q"n

F"(p

Assuming that F is a chain map over / , this choice of F will yield our
commutative diagram of chain complexes. In order for F to be a lifting of / ,
the map (rjFo — fe) from Po = P$ ® PQ to B must vanish. On PQ this is no
problem, so this just requires that

as maps from PQ to B, where kp and XQ are the restrictions of e and 77 to PQ
and <2Q, and is is the inclusion of B' in B. There is some map ft: PQ -> # ' so
that /^^ = /A - AFQ' because in £" we have

= f"nAkP - nBXF^ = f"e" - ^F^ = 0.
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2.4 Left Derived Functors 41

We may therefore define yo to be any lift of /3 to Q'o.

p"

Q'o ^U B' —-> 0

In order for F to be a chain map, we must have

' F ' - F'rf' {d'y - yd" + AF" - F'A.')
0 d"F"-F"d"

vanishing. That is, the map d'yn\ P^ - • Q!n_\ must equal

Inductively, we may suppose yt defined for / < n, so that gn exists. A short cal-
culation, using the inductive formula for d'yn-\, shows that dfgn = 0. As the
complex Q' is exact, the map gn factors through a map ft: P^ —• d{Qf

n). We
may therefore define yn to be any lift of p to Qf

n. This finishes the construction
of the chain map F and the proof. O

Exercise 2.4.3 (Dimension shifting) IfO->M—>-P->A—•Ois exact with
P projective (or F-acyclic 2.4.3), show that LjF(A) = L/_iF(M) for i > 2
and that L\F(A) is the kernel of F(M) -> F(P). More generally, show that if

0 -> Mm -* Pm -> Pm_i -> • Po -> A -* 0

is exact with the Pj projective (or F-acyclic), then LiF(A) = L/_m_iF(Mm)
for i > w+2andLw +iF(^)isthekernelof F(Mm) -> F(PW). Conclude that
if P -> A is an F-acyclic resolution of A, then L/F(A) = // /(F(P)).

The object Mm, which obviously depends on the choices made, is called
the mth syzgy of A. The word "syzygy" comes from astronomy, where it was
originally used to describe the alignment of the Sun, Earth, and Moon.

Theorem 2.4.7 Assume that A has enough projectives. Then for any right
exact functor F : A-> B, the derived functors LnF form a universal 8-functor.

Remark This result was first proven in [CE, III.5], but is commonly attributed
to [Tohoku], where the term "universal <5-functor" first appeared.
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48 Derived Functors

Proof Suppose that 71* is a homological 5-functor and that cpo: 7b —• F is
given. We need to show that cpo admits a unique extension to a morphism
cp:T*-> L*F of 5-functors. Suppose inductively that <pim. 7} —> L[F are al-
ready defined for 0 < / < n, and that they commute with all the appropriate
Si's. Given A in A, select an exact sequence 0 — • A r ^ f > - > A - > 0 with P
projective. Since LnF(P) = 0, this yields a commutative diagram with exact
rows:

Tn(A) - "

0 LnF(A)

Tn-\(K) -

\,<Pn-\

Ln-tF(K) -

- • Tn-i(P)

\,<Pn-\

- • Ln-iF(P).

A diagram chase reveals that there exists a unique map cpn(A) from Tn(A) to
LnF(A) commuting with the given 5w's. We need to show that cpn is a natural
transformation commuting with all 8n's for all short exact sequences.

To see that yn is a natural transformation, suppose given f\Af^>A and an
exact sequence 0 —• ̂ ' —• P r -^ Ar -> 0 with P7 projective. As P' is projec-
tive we can lift / to g: P' -+ P, which induces a map h: K' -+ K.

0

0

K'

I* I.
A' 0

0

To see that cpn commutes with / , we note that in the following diagram that
each small quadrilateral commutes.

Tn(A)

» LnF(A)

A chase reveals that
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2.5 Right Derived Functors 49

8 o Ln(f) o <pn(A') = 8 o cpn(A) o Tn(f).

Because 8: LnF(A) —• Ln-\F(K) is monic, we can cancel it from the equa-
tion to see that the outer square commutes, that is, that <pn is a natural trans-
formation. Incidentally, this argument (with A = A! and f = idA) also shows
that cpn(A) doesn't depend on the choice of P.

Finally, we need to verify that (pn commutes with 8n. Given a short exact
sequence 0 —• A! —• A —• A!' -> 0 and a chosen exact sequence 0 - • K" ->
P" -> A" - • 0 with P" projective, we can construct maps / and g making the
diagram

0 -

0 -

commute. This yields

Tn(A")

(Pni.

- * K"

u
- • A '

— • P" —

if
—y A —:

a commutative diagram

s
Tn-l(K") -

\rVn-l

> A "

||

> A "

T(g)
>

—+ 0

— • 0

rn_i(A')

LnF(A") ^U Ln-XF(K") - ^ > Ln-\F(Ar).

Since the horizontal composites are the 8n maps of the bottom row, this implies
the desired commutativity relation. O

Exercise 2.4.4 Show that homology H*:Ch>o(A) -* A and cohomology
i/*: Ch-°(^l) -> ^l are universal 5-functors. Hint: Copy the proof above, re-
placing P by the mapping cone cone(A) of exercise 1.5.1.

Exercise 2.4.5 ([Tohoku]) An additive functor F: A -+ B is called effaceable
if for each object A of A there is a monomorphism u: A —• / such that F(u) =
0. We call F coeffaceable if for every A there is a surjection M: P -> A such
that F(w) = 0. Modify the above proof to show that if 71* is a homological
5-functor such that each Tn is coeffaceable (except To), then T* is universal.
Dually, show that if T* is a cohomological 5-functor such that each Tn is
effaceable (except T°), then T* is universal.

2.5 Right Derived Functors

2.5.1 Let F.A^B be a left exact functor between two abelian cate-
gories. If A has enough injectives, we can construct the right derived functors
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50 Derived Functors

Rl F(i > 0) of F as follows. If A is an object of A, choose an injective resolu-
tion A —• / and define

Note that since 0 -> F(A) ->• F(I°) -^ F(Il) is exact, we always have
R°F(A) ^ F(A).

Since F also defines a right exact functor Fop: Aop -> Bop, and . 4 ^ has
enough projectives, we can construct the left derived functors L[Fop as well.
Since /• becomes a projective resolution of A in Aop, we see that

RiF(A) = (LiF
op)op(A).

Therefore all the results about right exact functors apply to left exact functors.
In particular, the objects RlF(A) are independent of the choice of injective
resolutions, R*F is a universal cohomological 5-functor, and RlF(I) = 0 for
/ ^ 0 whenever / is injective. Calling an object Q F-acyclic if RlF(Q) =
0 (i / 0), as in 2.4.3, we see that the right derived functors of F can also be
computed from F-acyclic resolutions.

Definition 2.5.2 (Ext functors) For each R-module A, the functor F{B) =
Horn/?(A, B) is left exact. Its right derived functors are called the Ext groups:

Ex4(A, B) = Rl Horn/?(A, - ) ( £ ) .

In particular, Ext°(A, B) is Hom(A, B), and injectives are characterized by
Ext via the following exercise.

Exercise 2.5.1 Show that the following are equivalent.

1. B is an injective /?-module.
2. Hom#(—, B) is an exact functor.
3. Ext^(A, B) vanishes for all i ^ 0 and all A (B is Hom#(—, 5)-acyclic

for all A).
4. Extj^(A, B) vanishes for all A.

The behavior of Ext with respect to the variable A characterizes projectives.

Exercise 2.5.2 Show that the following are equivalent.

1. A is a projective /^-module.
2. Horn/?(A, —) is an exact functor.
3. Ext^(A, B) vanishes for all i / 0 and all B (A is Hom#(-, #)-acyclic

for all B).
4. ExtJj(A, B) vanishes for all B.
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2.6 Adjoint Functors and Left/Right Exactness 51

The notion of derived functor has obvious variations for contravariant func-
tors. For example, let F be a contravariant left exact functor from A to B. This
is the same as a covariant left exact functor from Aop to B, so if A has enough
projectives (i.e., Aop has enough injectives), we can define the right derived
functors R*F(A) to be the cohomology of F(P) , P—> A being a projective
resolution in A. This too is a universal <5-functor with R°F(A) = F(A), and

i = 0 for i ^ 0 whenever P is projective.

Example 2.5.3 For each /^-module B, the functor G(A) = Hom#(A, #)
is contravariant and left exact. It is therefore entitled to right derived func-
tors R*G(A). However, we will see in 2.7.6 that these are just the functors
Ext*(A, 5). That is,

R* Hom(-, B)(A) ^ #* Hom(A, -)(B) = Ext*(A, B).

Application 2.5.4 Let X be a topological space. The global sections functor
T from Sheaves(Z) to Ab is the functor r(JF) = F(X). It turns out (see 2.6.1
and exercise 2.6.3 below) that T is right adjoint to the constant sheaves functor,
so F is left exact. The right derived functors of T are the cohomology functors
onX:

The cohomology of a sheaf is arguably the central notion in modern algebraic
geometry. For more details about sheaf cohomology, we refer the reader to
[Hart].

Exercise 2.5.3 Let X be a topological space and {Ax} any family of abelian
groups, parametrized by the points x e X. Show that the skyscraper sheaves
x*(Ax) of 2.3.12 as well as their product T = Ylx*(Ax) are F-acyclic, that is,
that Hl(X, T) = 0 for i ^ 0. This shows that sheaf cohomology can also be
computed from resolutions by products of skyscraper sheaves.

2.6 Adjoint Functors and Left/Right Exactness

We begin with a useful trick for constructing left and right exact functors.

Theorem 2.6.1 Let L.A^B and R:B —• Abe an adjoint pair of additive
functors. That is, there is a natural isomorphism

z:HomB(L(A),B) —
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52 Derived Functors

Then L is right exact, and R is left exact.

Proof Suppose that 0 -> B' ->• B -> B" -> 0 is exact in B. By naturality of r
there is a commutative diagram for every A in A.

0 Hom#(L(A), Bf) —

1 =
HomA(A, R(B')) —

-» Homn(L(A), B) -

i-
-> HomA(A,R(B)) -

->• H o m # ( L (

i
-> Hom^(A,

A), B")

i?(B"))0

The top row is exact because Hom(LA, —) is left exact, so the bottom row is
exact for all A. By the Yoneda Lemma 1.6.11,

0 -> R(Bf) -> R(B) -> R{B")

must be exact. This proves that every right adjoint R is left exact. In particular
Lop: Aop -> Bop (which is a right adjoint) is left exact, that is, L is right exact.

O

Remark Left adjoints have left derived functors, and right adjoints have right
derived functors. This of course assumes that A has enough projectives, and
that B has enough injectives for the derived functors to be defined.

Application 2.6.2 Let R be a ring and B a left /^-module. The follow-
ing standard proposition shows that <g)RB:mod-R —> Ab is left adjoint to
HoniAb(#> — )> s o QRB is right exact. More generally, if S is another ring,
and B is an R-S bimodule, then <S>RB takes mod-/? to mod-S and is a left
adjoint, so it is right exact.

Proposition 2.6.3 If B is an R-S bimodule and C a right S-module, then
Homs(£, C) is naturally a right R-module by the rule (fr)(b) = f(rb) for
f e Hom(£, C), r e R and be B. The functor Homs(B, -) from mod-S to
mod-/? is right adjoint to ®RB. That is, for every R-module A and S-module
C there is a natural isomorphism

T: Homs(A ®* B, C) -=> Hom/KA, Hom5(5, C)).

Proof Given / : A (8)/? B —> C, we define (rf)(a) as the map b \-> f(a (8) b)
for each a e A. Given g: A —> Horns(B, C), we define r~l(g) to be the map
defined by the bilinear form a 0 b \-+ g(a)(b). We leave the verification that
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2.6 Adjoint Functors and Left/Right Exactness 53

^ (/)(«) is an S-module map, that r ( / ) is an /^-module map, r " 1 ^ ) is an R-
module map, r is an isomorphism with inverse r"1 , and that r is natural as an
exercise for the reader. O

Definition 2.6.4 Let B be a left /^-module, so that T(A) = A ®/? B is a right
exact functor from mod-/? to Ab. We define the abelian groups

In particular, Tor^(A, B) = A <S)R B. Recall that these groups are computed by
finding a projective resolution P —> A and taking the homology of P <8)R B. In
particular, if A is a projective /^-module, then Torn(A, B) = 0 for n / 0.

More generally, if B is an R-S bimodule, we can think of T(A) = A ®R B
as a right exact functor landing in mod-S, so we can think of the Tor^(A, B)
as ^-modules. Since the forgetful functor U from mod-S to Ab is exact, this
generalization does not change the underlying abelian groups, it merely adds
an S-module structure, because U(L* ® B) = L*U(<g>B) as derived functors.

The reader may notice that the functor A®/? is also right exact, so we could
also form the derived functors L*(A(g)/?). We will see in section 2.7 that this
yields nothing new in the sense that L*(A<8>R)(B) = L*(®RB)(A).

Application 2.6.5 Now we see why the inclusion "incl" of Sheaves(X) into
Presheaves(X) is a left exact functor, as claimed in 1.6.7; it is the right ad-
joint to the sheafification functor. The fact that sheafification is right exact is
automatic; it is a theorem that sheafification is exact.

Exercise 2.6.1 Show that the derived functor Rl (incl) sends a sheaf T to the
presheaf U i-+ Hl(U, F\U), where T\U is the restriction of T to U and H[ is
the sheaf cohomology of 2.5.4. Hint: Compose /?*(incl) with the exact functors
Presheaves(X) -> Ab sending T to T(U).

Application 2.6.6 Let / : X —»• Y be a continuous map of topological spaces.
For any sheaf T on X, we define the direct image sheaf f*T on Y by
(f^)(V) = Tif^V) for every open V in Y. (Exercise: Show that f*T is
a sheaf!) For any sheaf 5 on F, we define the inverse image sheaf f~xQ to be
the sheafification of the presheaf sending an open set U in X to the direct limit
lim Q( V) over the poset of all open sets V in Y containing f(U). The follow-
ing exercise shows that f~l is right exact and that /* is left exact because they
are adjoint. The derived functors Rl /* are called the higher direct image sheaf
functors and also play a key role in algebraic geometry. (See [Hart] for more
details.)
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54 Derived Functors

Exercise 2.6.2 Show that for any sheaf T on X there is a natural map
f~xf*T - • T, and that for any sheaf Q on Y there is a natural map Q —•
f*f~xQ . Conclude that f~l and /* are adjoint to each other, that is, that
there is a natural isomorphism

, T) = Homr(£, f+T).

Exercise 2.6.3 Let * denote the one-point space, so that Sheaves(*) = Ab.

1. If / : X - • * is the collapse map, show that /* and f~x are the global
sections functor F and the constant sheaves functor, respectively. This
proves that F is right adjoint to the constant sheaves functor. By 2.6.1, F
is left exact, as asserted in 2.5.4.

2. If x: * -> X is the inclusion of a point in X, show that JC* and x~l are the
skyscraper sheaf and stalk functors of 2.3.12.

Application 2.6.7 (Colimits) Let / be a fixed category. There is a diagonal
functor A from every category A to the functor category A1; if A e A, then
A A is the constant functor: (A A)/ = A for all i. Recall that the colimit of a
functor F: I -+ A is an object of A, written colim/6/ F/, together with a nat-
ural transformation from F to A (colim F;), which is universal among natural
transformations F -> AA with A e A. (See the appendix or [MacCW, III.3].)
This universal property implies that colim is a functor from A1 to A, at least
when the colimit exists for all F: I -> A.

Exercise 2.6.4 Show that colim is left adjoint to A. Conclude that colim is a
right exact functor when A is abelian (and colim exists). Show that pushout
(the colimit when / i s • < > •) is not an exact functor in Ab.

Proposition 2.6.8 The following are equivalent for an abelian category A:

1. The direct sum 0A/ exists in A for every set {A/} of objects in A.
2. A is cocomplete, that is, colim/ ej A/ exists in Afar each functor A\I —>

A whose indexing category I has only a set of objects.

Proof As (1) is a special case of (2), we assume (1) and prove (2). Given
A: / —• A the cokernel C of

(p:i-*j iel

<*i[<P\ •-• <P(fli) - ai

solves the universal problem defining the colimit, so C = colim A/. <>
iel
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2.6 Adjoint Functors and Left/Right Exactness 55

Remark Ab, mod-/?, Presheaves(X), and Sheaves(X) are cocomplete be-
cause (1) holds. (If / is infinite, the direct sum in Sheaves(X) is the sheafifica-
tion of the direct sum in Presheaves(Z)). The category of finite abelian groups
has only finite direct sums, so it is not cocomplete.

Variation 2.6.9 (Limits) The limit of a functor A: I -> A is the colimit of
the corresponding functor Aop: Iop —• Aop, so all the above remarks apply in
dual form to limits. In particular, lim: A1 —> A is right adjoint to the diagonal
functor A, so lim is a left exact functor when it exists. If the product YlAi of
every set {A;} of objects exists in A, then A is complete, that is, lim/e/ A,-
exists for every A: / —• A with / having only a set of objects. Ab, mod-7?,
Presheaves(X), and Sheaves(X) are complete because such products exist.

One of the most useful properties of adjoint functors is the following result,
which we quote without proof from [MacCW, V.5].

Adjoints and Limits Theorem 2.6.10 Let L.A^B be left adjoint to a
functor R.B -> A, where A and B are arbitrary categories. Then

1. L preserves all colimits (coproducts, direct limits, cokernels, etc.). That
is, if A: I -> A has a colimit, then so does LA: I -+ B, and

L(colim A/) = colim L(At).
iel iel

2. R preserves all limits (products, inverse limits, kernels, etc.). That is, if
B: I —> B has a limit, then so does RB: I -> A, and

R(lim Bt) = lim R(Bt).
iel iel

Here are two consequences that use the fact that homology commutes
with arbitrary direct sums of chain complexes. (Homology does not commute
with arbitrary colimits; the derived functors of colim intervene via a spectral
sequence.)

Corollary 2.6.11 If a cocomplete abelian category A has enough projectives,
and F:A—> B is a left adjoint, then for every set {A/} of objects in A:

Proof If Pi -»• Ai are projective resolutions, then so is ©/",- ->• ©A,. Hence

,). O
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56 Derived Functors

Corollary 2.6.12 Tor*(A, 0;G/#;) = 0 ; € / Tor*(A, Bt).

Proof If P -> A is a projective resolution, then

Tor*(A, 0fl/) = #*(P ® (05/)) ^ / /*(0(P (8) Bt)) ^ 0//*(P

Definition 2.6.13 A nonempty category / is called filtered if

1. For every /, j e I there are arrows \k to some k e I.

2. For every two parallel arrows w, i>: / = £ j ' there is an arrow w: j —• k

such that wu = wv.

A filtered colimit in A is just the colimit of a functor A: / —• .4 in which /
is a filtered category. We shall use the notation colim(A;) for such a filtered

colimit.
If / is a partially ordered set (poset), considered as a category, then condi-

tion (1) always holds, and (2) just requires that every pair of elements has an
upper bound in /. A filtered poset is often called directed; filtered colimits over
directed posets are often called direct limits and are often written lim A/.

We are going to show that direct limits and filtered colimits of modules
are exact. First we obtain a more concrete description of the elements of
colim(Ar).

Lemma 2.6.14 Let I be a filtered category and A: / ->• mod-/? a functor.
Then

1. Every element a e colim(A/) is the image of some element at e A; (for

some i e / ) under the canonical map A/ —> colim(A/).

2. For every i, the kernel of the canonical map A/ —>> colim(A/) is the union

of the kernels of the maps <p: A/ —> Aj (where cp:i —> j is a map in I).

Proof We shall use the explicit construction of colim(A/). Let A/: A/ —•

0;G/A; be the canonical maps. Every element a of colim A/ is the image of

for some finite set J = {/i, • • •, in}. There is an upper bound i in / for
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2.6 Adjoint Functors and Left/Right Exactness 57

{/l, • • •, i'n}; using the maps Aj -> A; we can represent each aj as an ele-
ment in A; and take at to be their sum. Evidently, a is the image of at, so (1)
holds.

Now suppose that at e A; vanishes in colim(A;). Then there are cpjk'. j -^ k

in / and ajk e Aj so that A./(a/) = Yl^k(<Pjk{aj)) — ^j(aj) m ©A/. Choose
an upper bound t in I for all the /, y, £ in this expression. Adding kt((pitai) —
Xi(ai) to both sides we may assume that i =t. Adding zero terms of the form

[kt(pjt{aj) - kk(pjk(aj)] + frt<Pjt(-aj) ~ *-k<Pjk(-aj)],

we can assume that all the fc's are t. If any <pjt are parallel arrows in /, then by
changing t we can equalize them. Therefore we have

kt(at) = kt(^2<pjt(aj))

with all the y's distinct and none equal to t. Since the kj are injections, all the
aj must be zero. Hence (pit(at) = at = 0, that is, at e ker(<^/f). <C>

Theorem 2.6.15 Filtered colimits (and direct limits) of R-modules are exact,
considered as functors from (mod-/?)7 to mod-/?.

Proof Set A = mod-/?. We have to show that if / is a filtered category (e.g.,
a directed poset), then colim: ̂ l7 —̂  4̂. is exact. Exercise 2.6.4 showed that

colim is right exact, so we need only prove that if t: A —• B is monic in

A1 (i.e., each t{ is monic), then colim (A/) -> colim (B/) is monic in A. Let

a e colim(A/) be an element that vanishes in colim(/?;). By the lemma above,

a is the image of some at e A/. Therefore U(at) e B[ vanishes in corim(/?;), so

there is some cp\ i -> j so that

0 = (p(ti(ai)) = tj((p(at)) in Bj.

Since tj is monic, <p(ai) = 0 in Aj. Hence a = 0 in colim(A/). O

Exercise 2.6.5 (AB5) The above theorem does not hold for every cocomplete
abelian category A. Show that if A is the opposite category Abo/? of abelian
groups, then the functor colim: A1 —>* A need not be exact when / is filtered.

An abelian category A is said to satisfy axiom (AB5) if it is cocomplete
and filtered colimits are exact. Thus the above theorem states that mod-/? and
/?-mod satisfy axiom (AB5), and this exercise shows that Abo/7 does not.
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58 Derived Functors

Exercise 2.6.6 Let / : X -> Y be a continuous map. Show that the inverse
image sheaf functor f~l: Sheaves(F) -* Sheaves(X) is exact. (See 2.6.6.)

The following consequences are proven in the same manner as their coun-
terparts for direct sum. Note that in categories like /?-mod for which filtered
colimits are exact, homology commutes with filtered colimits.

Corollary 2.6.16 If A = R-mod (or A is any abelian category with enough
projectives, satisfying axiom (AB5)), and F: A-> B is a left adjoint, then for
every A: I —> A with I filtered

L*F(colim(A/)) = colim L*F(A).

Corollary 2.6.17 For every filtered B: I -> /?-mod and every A e mod-/?,

Tor*(A, colim(£/)) ^ colimTor*(A, Bt).

2.7 Balancing Tor and Ext

In earlier sections we promised to show that the two left derived functors
of A <S>R B gave the same result and that the two right derived functors of
Hom(A, B) gave the same result. It is time to deliver on these promises.

Tensor Product of Complexes 2.7.1 Suppose that P and Q are chain com-
plexes of right and left /^-modules, respectively. Form the double complex
P ®R Q = {Pp®R Qq) using the sign trick, that is, with horizontal differen-
tials d <S> 1 and vertical differentials (— \)p ® d. P <S>R Q is called the tensor
product double complex, and Tote(P ®R Q) is called the (total) tensor prod-
uct chain complex of P and Q.

Theorem 2.7.2 Ln(A®R)(B) ^ Ln(®RB)(A) = Tor£(A, B) for all n.

Proof Choose a projective resolution P —> A in mod-/? and a projective
resolution Q —> B in /?-mod. Thinking of A and B as complexes concen-
trated in degree zero, we can form the three tensor product double complexes
P 0 g, A <S> Q, and P <g> B. The augmentations € and rj induce maps from
P 0 Q to A (8) Q and P ® B.
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i
A®Q2

A®Q0

P0®Q2

i
PX®Q2

P0®Qi

d

P2®Q0

Using the Acyclic Assembly Lemma 2.7.3, we will show that the maps

A 0 Q = Tot(A ® Q) ^ Tot(P (8) Q) ^ > Tot(P ® B) = P ® B

are quasi-isomorphisms, inducing the promised isomorphisms on homology:

L*(A®R)(B) <=- //*(Tot(P (8) 2)) ^ > L^^/^^CA).

Consider the double complex C obtained from P <g> Q by adding A (g)
<2[— 1] in the column p = —1. The translate Tot(C)[l] is the mapping cone
of the map € ® Q from Tot(P ® Q) to A (8) £ (see 1.2.8 and 1.5.1), so in or-
der to show that e <g> Q is a quasi-isomorphism, it suffices to show that Tot(C)
is acyclic. Since each <8>Qq is an exact functor, every row of C is exact, so
Tot(C) is exact by the Acyclic Assembly Lemma.

Similarly, the mapping cone of P (8) rj: Tot(P 0 Q) —• P (8) B is the trans-
late Tot(D)[l], where D is the double complex obtained from P 0 Q by
adding P 0 2?[— 1] in the row g = — 1. Since each Pp0 is an exact functor, ev-
ery column of D is exact, so Tot(D) is exact by the Acyclic Assembly Lemma
2.7.3. Hence cone(P 0 rj) is acyclic, and P 0 rj is also a quasi-isomorphism.

Acyclic Assembly Lemma 2.7.3 Let C be a double complex in mod-/?.
Then
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60 Derived Functors

• Totn(C) is an acyclic chain complex, assuming either of the following:
1. C is an upper half-plane complex with exact columns.
2. C is a right half-plane complex with exact rows.

• Tote(C) is an acyclic chain complex, assuming either of the following:
3. C is an upper half-plane complex with exact rows.
4. C is a right half-plane complex with exact columns.

Remark The proof will show that in (1) and (3) it suffices to have every di-
agonal bounded on the lower right, and in (2) and (4) it suffices to have every
diagonal bounded on the upper left. See 5.5.1 and 5.5.10.

Proof We first show that it suffices to establish case (1). Interchanging rows
and columns also interchanges (1) and (2), and (3) and (4), so (1) implies (2)
and (4) implies (3). Suppose we are in case (4), and let xnC be the double
subcomplex of C obtained by truncating each column at level n:

I Cpq if q>n

kzr(dv:Cpn^Cp,n-i) ifq=n .
0 if q < n

Each xnC is, up to vertical translation, a first quadrant double complex with
exact columns, so (1) implies that Tote(rwC) = Totn(rnC) is acyclic. This
implies that Tote(C) is acyclic, because every cycle of Tote(C) is a cycle
(hence a boundary) in some subcomplex Tote(rnC). Therefore (1) implies (4)
as well.

In case (1), translating C left and right, suffices to prove that #o(Tot(C)) is
zero. Let

c = ( • • • , c-PiP, • • •, c_2,2, c_i,i, co.o) e H C-P,P = T o t ( O o

be a 0-cycle; we will find elements b-p,p+\ by induction on p so that

dv(b-p,p+i) + dh(b-p+Up) = c-PtP.

Assembling the b's will yield an element b of J~[ C-p,p+\ such that d(b) = c,
proving that Ho(Tot(C)) = 0. The following schematic should help give the
idea.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.003
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:42:20, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.003
https://www.cambridge.org/core


2.7 Balancing Tor and Ext 61

fi

i
-P,P

 < ' b-k

i
•P+UP

b- p+2,p-l

C-2,2

I
coo <—i O(=b\o)

i
0

We begin the induction by choosing b\o = 0 for p = — 1. Since Co,-i = 0,
dv(coo) = 0; since the 0th column is exact, there is a &oi € Coi so that
dv(bo\) = coo- Inductively, we compute that

J"(c_p,p - dh(b-p+hp)) = dv(c-pp) + dhdv(b-p+hp)

= dv(c-pp) + dh{c-p+hp-x) - dhdh(b-.p+2,p-n

= 0.

Since the — pth column is exact, there is a b-p,p+i so that

d\b-p,p+l) = C-p,p - dh(b-p+hp)

as desired. O

Exercise 2.7.1 Let C be the periodic upper half-plane complex with Cpq =
ILjA for all p and q > 0, all differentials being multiplication by 2.
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62 Derived Functors

1* I2 U
••• <— I/A <— I/A <— I/A <— •••

| 2 I* | 2
2 2 2 2

. . . <— 1/4 <— 1/4 <— 1/4 <— . . .

1. Show that #0(Totn(C)) ^ 1/2 on the cycle ( . . . , 1, 1, 1) e UC-P,P

even though the rows of C are exact. Hint: First show that the 0-
boundaries are \\ 21/4.

2. Show that Tote(C) is acyclic.
3. Now extend C downward to form a doubly periodic plane double com-

plex D with Dpq = 1/4 for all /?, q el. Show that #o(Totn(D)) maps
onto //o(Totn C) = 1/2. Hence Totn(D) is not acyclic, even though ev-
ery row and column of D is exact. Finally, show that Tote(D) is acyclic.

Exercise 2.7.2

1. Give an example of a 2nd quadrant double chain complex C with exact
columns for which Tot®(C) is not an acyclic chain complex.

2. Give an example of a 4th quadrant double complex C with exact columns
for which Totn(C) is not acyclic.

Hom Cochain Complex 2.7.4 Given a chain complex P and a cochain com-
plex / , form the double cochain complex Hom(P, / ) = {Hom(Pp, 7^)} using
a variant of the sign trick. That is, if / : Pp - • Iq, then dhf: Pp+\ -> Iq by
(dhf)(p) = f(dp), while we define dvf:Pp-> 7«+1 by

(dvf)(p) = (-l)P^+ld(fp) for p e Pp.

Hom(P, /) is called the Hom double complex, and Totn(Hom(P, /)) is called
the (total) Hom cochain complex. Warning: Different conventions abound in
the literature. Bourbaki [BX] converts Hom(P, 7) into a double chain complex
and obtains a total Hom chain complex. Others convert / into a chain complex
Q with Qq = I~q and form Hom(P, Q) as a chain complex, and so on.

Morphisms and Hom 2.7.5 To explain our sign convention, suppose that C
and D are two chain complexes. If we reindex D as a cochain complex, then
an fi-cycle / of Hom(C, D) is a sequence of maps fp: Cp -> Dn~p = Dp-n
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2.7 Balancing Tor and Ext 63

such that fpd = (—l)ndfp+\, that is, a morphism of chain complexes from
C to the translate D[—n] of D. An ^-boundary is a morphism / that is null
homotopic. Thus Hn Hom(C, D) is the group of chain homotopy equivalence
classes of morphisms C —• D[—n], the morphisms in the quotient category K
of the category of chain complexes discussed in exercise 1.4.5.

Similarly, if X and Y are cochain complexes, we may form Hom(X, Y) by
reindexing X. Our conventions about reindexing and translation ensure that
once again an rc-cycle of Hom(X, Y) is a morphism X -»• Y[—n] and that
Hn Hom(X, Y) is the group of chain homotopy equivalence classes of such
morphisms. We will return to this point in Chapter 10 when we discuss RHom
in the derived category D(A).

Exercise 2.7.3 To see why Tot0 is used for the tensor product P ®R Q of
right and left /^-module complexes, while Totn is used for Horn, let / be a
cochain complex of abelian groups. Show that there is a natural isomorphism
of double complexes:

HomAb(Tote(P <g>R Q), / ) = Hom*(P, Totn(HomAb(2, /)) .

Theorem 2.7.6 For every pair of R-modules A and B, and all n,

Extn
R(A, B) = Rn HomR(A, -)(B) ^ Rn Hom/?(-,

Proof Choose a projective resolution P of A and an injective resolution /
of B. Form the first quadrant double cochain complex Hom(P, / ) . The aug-
mentations induce maps from Hom(A, /) and Hom(P, B) to Hom(P, / ) . As
in the proof of 2.7.2, the mapping cones of Hom(A, / ) —> Tot(Hom(P, /))
and Hom(P, B) —> Tot (Horn (P, /)) are translates of the total complexes ob-
tained from Hom(P, / ) by adding Hom(A, / ) [ - l ] and Hom(P, # ) [ - l ] , re-
spectively. By the Acyclic Assembly Lemma 2.7.3 (or rather its dual), both
mapping cones are exact. Therefore the maps

Hom(A, /) - • Tot(Hom(P, /)) <- Hom(P, B)

are quasi-isomorphisms. Taking cohomology yields the result:

#* Hom(A, - ) ( £ ) = H*Hom(A, /)

^ H* Hom(P, B) = P* Hom(-, B)(A). O
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t
Hom(A,f)

HomCA,/1)

Hom(A,/°)

t
Hom(P0,P) I,/2)

Hom(P0,7°) —-> Hom(/'1J Hom(/>2,/°)

Hom(P0,#) Hom(/>2,#)

Definition 2.7.7 ([CE]) In view of the two above theorems, the following
definition seems natural. Let T be a left exact functor of p "variable" modules,
some covariant and some contravariant. T will be called right balanced under
the following conditions:

1. When any one of the covariant variables of T is replaced by an injective
module, T becomes an exact functor in each of the remaining variables.

2. When any one of the contravariant variables of T is replaced by a pro-
jective module, T becomes an exact functor in each of the remaining
variables. The functor Horn is an example of a right balanced functor,
as i sHom(A®£,C) .

Exercise 2.7.4 Show that all p of the right derived functors R*T(A\,--,
A/, • • •, Ap)(Ai) of T are naturally isomorphic.

A similar discussion applies to right exact functors T which are left bal-
anced. The prototype left balanced functor is A 0 B. In particular, all of the
left derived functors associated to a left balanced functor are isomorphic.

Application 2.7.8 (External product for Tor) Suppose that R is a commuta-
tive ring and that A, A', B, Bf are R -modules. The external product is the map

Tor/(A, B) ®R Tory (A7, Bf) -+ Tor/+;(A 0/? A', B 0/? Bf)
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constructed for every i and j in the following manner. Choose projective reso-
lutions P -> A, P' -> A', and Pr / -> A (8) A'. The Comparison Theorem 2.2.6
gives a chain map Tot(P 0 Pr) -> P" which is unique up to chain homotopy
equivalence. (We saw above that Ht Tot(P 0 P') = Tor,(A, A'), so we actu-
ally need the version of the Comparison Theorem contained in the porism
2.2.7.) This yields a natural map

Hn(P 0 B 0 P' 0 B') ^ /Jn(P (8) P ' (8) B (8) #r) - • //n(Pr / ® B ® Bf)

= Torn(A®A',B®Bf).

On the other hand, there are natural maps #/(C) 0 / ( / (C) -> ///+7 Tot(C ®
Cr) for every pair of complexes C, Cr; one maps the tensor product c <g> c'
of cycles c e Q and c' e C- to c ® cf e Q 0 Cj. (Check this!) The external
product is obtained by composing the special case C = P <S> B, C = P' 0 B'\

Tor/(A, B) (g) Tor,-(A', B') = Ht(P 0 B ) 0 Hj(P' (8) Bf) -+ Hi+j(P ® B ® Pf ® Bf)

with the above map.

Exercise 2.7.5

1. Show that the external product is independent of the choices of P, P r, P"
and that it is natural in all four modules A, Ar, B, B'.

2. Show that the product is associative as a map to Tor*(A 0 A! 0 A", B 0
B' 0 B").

3. Show that the external product commutes with the connecting homomor-
phism 8 in the long exact Tor sequences associated to 0 -> BQ -> B —•

4. (Internal product) Suppose that A and 5 are /^-algebras. Use (1) and (2)
to show that Tor^(A, B) is a graded /^-algebra.
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