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Simplicial Methods in Homological Algebra

By now, the reader has seen several examples of chain complexes in which
the boundary maps Cn —• Cn-\ are alternating sums do — d\ H ± dn. The
primordial example is the singular chain complex of a topological space X\
elements of Cn(X) are formal sums of maps / from the ^-simplex An into X,
and d[ ( / ) is the composition of / with the inclusion A n _ iC Anof the ith face
of the simplex (1.1.4). Other examples of this phenomenon include Koszul
complexes (4.5.1), the bar resolution of a group (6.5.1), and the Chevalley-
Eilenberg complex of a Lie algebra (7.7.1). Complexes of this form arise from
simplicial modules, which are the subject of this chapter.

8.1 Simplicial Objects

Let A be the category whose objects are the finite ordered sets [n] = {0 < 1 <
• • • < n] for integers n > 0, and whose morphisms are nondecreasing mono-
tone functions. If A is any category, a simplicial object A in A is a con-
travariant functor from A to A, that is, A: Aop —> A. For simplicity, we write
An for A([n]). Similarly, a cosimplicial object C in A is a covariant functor
C: A —> A, and we write An for A([rc]). A morphism of simplicial objects is
a natural transformation, and the category SA of all simplicial objects in A is
just the functor category AA°P.

Example 8.1.1 (Constant simplicial objects) Let A be a fixed object of A.
The constant functor A —> A sending every object to A is called the constant
simplicial object in A at A. We have An = A for all n, and a* = identity
morphism for every a in A.
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8.1 Simplicial Objects 255

We want to give a more combinational description of simplicial (and cosim-
plicial) objects, and for this we need to study the simplicial category A di-
rectly. The reader interested in more details about simplicial sets may want to
read [May].

It is easy to see that for each n there are n + 1 maps [0] -> [n] but only one

map [n] -> [0]. There are (n+2) maps [1] -> [n] and more generally ("++I1)
maps [/] —> [n] in A. In order to make sense out of this chaos, it is useful
to introduce the face maps £; and degeneracy maps r\i. For each n and / =
0, • • •, n the map £/ : [n — 1] —> [n] is the unique injective map in A whose
image misses / and the map rji : [n + 1] —>> [n] is the unique surjective map in
A with two elements mapping to /. Combinationally, this means that

7 if / <

Exercise 8.1.1 Verify the following identities in A:

SjSi =£i£j-\ if i < j

rjjSt = | identity if / = j or i = j + 1
[ fij-i^- if/ >7 + 1.

Lemma 8.1.2 Every morphism a: [n] —> [m] m A /z«5 # unique epi-monic
factorization a — er\, where the monic e is uniquely a composition of face
maps

s = stx- - • Sis with 0 <is < • - - <i\ <m

and the epi r\ is uniquely a composition of degeneracy maps

rl = rlji'" Vh with O<ji<--<jt<n.

Proof Let is < • • • < i\ be the elements of [m] not in the image of a and
y'l < • • • < U be the elements of [n] such that a(j) = a(j + 1). Then if p =
n — t = m — s, the map a factors as

[n] ^ > [p] ^ [ml

The rest of the proof is straightforward. (Check this!) <0>
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256 Simplicial Methods in Homological Algebra

Proposition 8.1.3 To give a simplicial object A in A, it is necessary and
sufficient to give a sequence of objects An, Ai, • • • together with face operators
di'.An - • An-\ and degeneracy operators <j[\ An —• An+\ (i = 0, 1, • • •, n),
which satisfy the following usimplicial" identities

didj = dj-\di if i < j

if/ <j

I (7j-\di if/ < j

identify if i — j or / = j + 1

(Tjdi-i i f / > y + l.

Under this correspondence 3/ = A(£i) and O[ = A(rn).

Proof If A is simplicial, we obtain the above data by setting An = A([n])
and considering only faces and degeneracies. Conversely, given the data and
a map in A written in the standard form a = eix. - • rjjt of the lemma, we set
A(a) = Ojt - • • 9/r Since the simplicial identities control composition in A,
this makes A into a contravariant functor, that is, a simplicial object. <>

If we dualize the above discussion, we get cosimplicial objects. Recall that
a cosimplicial object is a covariant functor A: A - • A.

Corollary 8.1.4 To give a cosimplicial object A in A, it is necessary and suf-
ficient to give a sequence of objects A0, A1, • • • together with coface operators
dl: An~l —> An and codegeneracy operators ol\ A"+1 -> An (/ = 0, • • •, n)
which satisfy the "cosimplicial" identities

dJd( = didj~i if/ < j

aJa( =Giaj+x if i <j

I dloJ-x ifi<j
identity if / = j or i = j + I
dl-laJ i f / > y + l.

Example 8.1.5 (Simplices) The geometric n-simplex A" is the subspace
of IT+1

If we identify the elements of [n] with the vertices i>n = (1, 0, • • •, 0), • • •,
vn = (0, • • •, 0, 1) of A", then a map a: [n] -» [p] in A sends the vertices of
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8.1 Simplicial Objects 257

A" to the vertices of Ap by the rule a(v() = va^). Extending linearly gives a
map a*: An -+ Ap and makes the sequence A0, A1, • • •, A", • • • into a cosim-
plicial topological space. Geometrically, the face map ei induces the inclusion
of A""1 into A" as the ith face (the face opposite the vertex V(), and the degen-
eracy map rji induces the projection Aw+1 -> An onto the ith face that identi-
fies vt and vt+\. This geometric interpretation provided the historical origins
of the terms face and degeneracy operators.

Geometric Realization 8.1.6 If X is a simplicial set, its geometric realiza-
tion \X\ is a topological space constructed as follows. For each n > 0, topol-
ogize the product Xn x A" as the disjoint union of copies of the ^-simplex
An indexed by the elements x of Xn. On the disjoint union \\Xn x Aw,
define the equivalence relation ~ by declaring that (x,s) e Xm x Am and
(v, t) e Xn x A" are equivalent if there is a map a: [m] —> [n] in A such that
a*(y) = x and a*(s) = t. That is,

The identification space \J(Xn x An)/ ~ is the geometric realization |X|. It is
easy to see that in forming |Z| we can ignore every n-simplex of the form
Oi(y) x A", so we say that the elements <7;(j) are degenerate. An element
x e Xn is called non-degenerate if it is not of the form 07 (v) for some / < ft
and y e Xn-\\ the nondegenerate elements of Xn index the rc-cells of |X|,
which implies that |X| is a "CW complex." A more detailed discussion of the
geometric realization may be found in [May].

Example 8.1.7 (Classifying space) Let G be a group and consider the simpli-
cial set BG defined by BG0 = {1}, BG\ = G, • • •, BGn = Gn,- •. The face
and degeneracy maps are defined by insertion, deletion, and multiplication:

<*i(gu • • • ^ g n ) = ( g i , • • •, g i ,

I (g2, . . . , g n ) i f * = 0

(gu . . . , ^ i ^ / + i , • •. ,gn) ifO<i <n

(gi,..., gn-i) if i =n.
The geometric realization \BG\ of the simplicial set BG is called the clas-
sifying space of G. The name comes from the theory of fiber bundles; if
X is a finite cell complex then the set [X, \BG\] of homotopy classes of
maps X —• |Z?G| gives a complete classification of fiber bundles over X with
structure group G. We will see in 8.2.3 and 8.3.3 that \BG\ is an Eilenberg-
MacLane space whose homology is the same as the group homology //*(G)
of Chapter 6. Thus we recover definition 6.10.4 as well as 6.10.5.
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258 Simplicial Methods in Homological Algebra

Example 8.1.8 (Simplicial complexes) A (combinational) simplicial com-

plex is a collection K of nonempty finite subsets of some vertex set V such

that i f 0 ^ r C c r c V and a e K then r e K. If the vertex set is ordered, we

call K an ordered simplicial complex. To every such ordered simplicial com-

plex we associate a simplicial set SS(K) as follows. Let SSn(K) consist of

all ordered (n + l)-tuples (i>o, --- ,vn) of vertices, possibly including repeti-

tion, such that the underlying set {uo, • • •, vn] is in K. If a: [n] -> [p] is a map

in A, define a?*: SSP(K) -> SSn(K) by a*(uo, '",Vp) = (va(0), • • •, va(/i)).

Note that i>o < • • • < vn and that

9/(vo, • • •, vn) = (uo, • • •, V/-

a J ( u 0 , • - ,Vn) = (Vo, • • • , Vi , Ui , • • • , Vn).

The following exercises explain how combinatorial simplicial complexes
correspond to triangulated polyhedra. Clearly a triangulated polyhedron P
gives rise to a combinatorial simplicial simplex K whose elements correspond
to the faces of P, the vertices of P forming the vertex set V of K (see 1.1.3).

Exercise 8.1.2 Show that if K is an ordered combinatorial simplicial com-
plex, then SS(K) determines K, because there is a bijection between K and
the subset of SS(K) consisting of non-degenerate elements.

Exercise 8.1.3 Let K be the collection of all nonempty subsets of a vertex
set V having n + 1 elements. (K is the combinational simplicial complex
arising from the polyhedron A".) Show that the geometric realization |SS(AT)|
is homeomorphic to the geometric ^-simplex A".

Exercise 8.1.4 (Geometric simplicial complexes) If K is a combinatorial
simplicial complex (8.1.8), let | ^ | denote the geometric realization \SS(K)\ of
the simplicial set SS(K) associated to some ordering of K. Show that \K\ is
a triangulated polyhedron with one face eG for each a e K. (If a has n + 1
elements, then eo is homeomorphic to an n-simplex.) Therefore K is the
combinational simplicial complex arising from \K\. The polyhedron |̂ f| is
sometimes called the geometric simplicial complex associated to K.

Definition 8.1.9 (Semisimplicial objects) Let A5 denote the subcategory of
A whose morphisms are the injections e:[i]c-^ [n]. A semisimplicial object

K in a category A is a contravariant functor from As to A.

For example, an ordered combinational simplicial complex K yields a semi-

simplicial set with Kn = {r e K:T has n + 1 elements}. Every simplicial set
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8.2 Operations on Simplicial Objects 259

becomes a semi-simplicial set by forgetting the degeneracies, but the degen-
eracies provide a richer combinatorial structure.

The forgetful functor from simplicial objects to semi-simplicial objects
has a left adjoint L when A has finite coproducts; {LK)n is the coproduct
LJ/?<n LL ^pM> where for each p <n the index r\ runs over all the surjec-
tions [n] -+ [p] in A and Kp[rj] denotes a copy of Kp. The maps defining the
simplicial structure on LK are given in the following tedious exercise 8.1.5;
LK is called the left Kan extension of K along A5 C A in [MacCW, X.3].
When A is abelian we will give an alternate description of LK in exercise
8.4.3.

Exercise 8.1.5 (Left Kan extension) If a: [m] -> [n] is any morphism in A,
define LK(a): LKn -> LKm by defining its restrictions to Kp[t]] for each sur-
jection r\ as follows. Find the epi-monic factorization EY}' of rja with r/: [m] ->
[q] and e\ [q] ->• [n]; the restriction of LK(a) to ^[77] is defined to be the
map K(e) from Kp to the factor Kq[rjf] of the coproduct (LK)m. Show that
these maps make LK into a simplicial object of A.

Exercise 8.1.6 Show that a semi-simplicial object K is the same thing as
a sequence of objects KQ, K\, • • • together with face operators 9/: ^ ->•
ATn_i (/ = 0, • • •, n) such that if 1 < 7 then dtdj = dj-\dt.

dp 9o

Historical Remark 8.1.10 Simplicial sets first arose in Eilenberg and Zil-
ber's 1950 study [EZ] under the name "complete semi-simplicial sets" (c.s.s.).
For them, semi-simplicial sets (defined as above) were more natural, and the
adjective "complete" reflected the addition of degeneracies. By 1954, this ad-
jective was often dropped, and "semi-simplicial set" was a common term for a
c.s.s. By the late 1960s even the prefix "semi" was deleted, influenced by the
book [May], and "simplicial set" is now universally used for c.s.s. In view of
modern usage, we have decided to retain the original use of "semi-simplicial"
in definition 8.1.9.

8.2 Operations on Simplicial Objects

Definition 8.2.1 Let A be a simplicial (or semi-simplicial) object in an
abelian category A. The associated, or unnormalized, chain complex C =
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260 Simplicial Methods in Homological Algebra

C(A) has Cn = An, and its boundary morphism d: Cn -> Cn-\ is the alternat-
ing sum of the face operators 3,-: Cn —• Cn-\:

The (semi-) simplicial identities for 3/3y- imply that d2 = 0. (Check this!)

Example 8.2.2 (Koszul complexes) Let x = (x\, • • •, xm) be a sequence of
central elements in a ring R. Then the sequence Rm, A2Rm, • • •, An+lRm, • • •
of exterior products of Rm forms a semi-simplicial /^-module with

di(ea0 A • • • A ean) = xaieao A • • • A ea. A - • • A ean.

The Koszul complex K(x) of 4.5.1 is obtained by augmenting the chain com-
plex associated to the semi-simplicial module {An+lRm}. If R is a ^-algebra,
this defines an action of the abelian Lie algebra g = km on R, and K(x) coin-
cides with the Chevalley-Eilenberg complex 7.7.1 used to compute H*(Q, R).

An extremely useful observation is that if we apply a functor F: A - • B to
a simplicial object A in A, we obtain a simplicial object in B. Similar remarks
apply to semisimplicial and cosimplicial objects.

Example 8.2.3 (Simplicial homology) If R is a ring, the free module R[X]
on a set X is a functor Sets —• /?-mod. Whenever X = {Xn} is a (semi-)
simplicial set, R[X] = [R[Xn]} is a (semi-) simplicial /^-module. The chain
complex associated to R[X] is the chain complex used to form the simplicial
homology of the cellular complex |X| with coefficients in R. (See 1.1.3.)

Motivated by this example, we define the simplicial homology //*(X; R) of
any simplicial set X to be the homology of the chain complex associated to the
simplicial module R[X]. Thus H*(X\ R) = H*(\X\; R).

For example, consider the classifying space \BG\ of a group G (8.1.7). The
chain complex associated to R[BG] is the canonical chain complex used in
6.5.4 to compute the group homology //*(G; R) of G with coefficients in the
trivial G-module R. This yields the formula

//*(G; R) ^ H*(BG; R) = H*(\BG\; R).

Example 8.2.4 (Singular chain complex) Let X be a topological space. Ap-
plying the contravariant functor HomxOp(—, X) to the cosimplicial space {A"}
gives a simplicial set S(X) with Sn(X) = HomxOp(An, X), called the singu-
lar simplicial set of X. The singular chain complex of X used to compute the
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8.2 Operations on Simplicial Objects 261

singular homology of X with coefficients in /? (1.1.4) is exactly the chain com-
plex associated to the simplicial /^-module

Remark There is a natural continuous map |5(X)| —> X, which is a homotopy
equivalence if (and only if) X has the homotopy type of a CW complex. It
is induced from the maps Sn(X) x An ->• X sending (/, t) to fit). In fact,
S is the right adjoint to geometric realization: for every simplicial set K,
Horn-Top(I^1, X) = HomssetsC^ S(X)). These assertions are proven in [May,
section 16].

Example 8.2.5 For each « > 0 a simplicial set A[n] is given by the functor
HoniA(—, [n]). These are universal in the following sense. For each simplicial
set A, the Yoneda Embedding 1.6.10 gives a 1-1 correspondence between
elements a e An and simplicial morphisms / : A[n] —>> A; / determines the
element a/ = /(id[wj) and conversely fa is defined on A. e HomA([m], [n]) by

Exercise 8.2.1 Show that A[n] is the simplicial set SS(An) associated (8.1.8)
to the combinatorial simplicial complex underlying the geometric n-simplex
An.

Cartesian Products 8.2.6 The cartesian product A x B o f two simplicial

objects A and B is defined as (A x B)n = An x Bn with face and degeneracy

operators defined diagonally:

di(a, b) = (9/a, dtb) and crt(a, b) = (aria, O[b).

If B is a simplicial set and A is a simplicial object in a category A having
products, then we can also make sense out of A x B by defining An x Bn to
be the product of Bn copies of An. This construction is most interesting when
each Bn is finite, in which case A need only have finite products.

Exercise 8.2.2 If K and L are combinorial simplicial complexes (8.1.8),
there is a combinational simplicial complex P with |P | = \K\ x \L\ as poly-
hedra, defined by SS(P) = SS(K) x SS(L)\ see [May, 14.3] or [EZ]. Verify
this assertion by finding combinational simplicial complexes underlying the
square A1 x A1 and the prism A2 x A1 whose associated simplicial sets are
A[l] x A[l]and A[2] x A[l].

Fibrant Simplicial Sets 8.2.7 From the standpoint of homotopy theory, it
is technically useful to restrict one's attention to those simplicial sets X that
satisfy the following Kan condition:
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262 Simplicial Methods in Homological Algebra

For every n and k with 0 < k < n + 1, if xo, • • •, Xk-\,
Xn are such that 9/JC7 = 9/-iJt/ for all / < j (i and 7 not equal to k), then
there exists a y e A -̂f 1 such that dt(y) = JC/ for all / / A:.

We call such simplicial sets fibrant; they are sometimes called Kan com-
plexes after D. Kan, who first isolated this condition in 1955 and observed that
the singular simplicial set S(X) of a topological space X (8.2.4) is always fi-
brant. The class of fibrant simplicial sets includes all simplicial groups and all
simplicial abelian groups by the following calculation.

Lemma 8.2.8 If G is a simplicial group (a simplicial object in the category of
groups), then the underlying simplicial set is fibrant. A fortiori every simplicial
abelian group, and every simplicial R -module, is fibrant when considered as a
simplicial set.

Proof Suppose given x; e Gn (i ^ k) such that 9/x/ — 9/-ix/ for i < j . We
use induction on r to find gr e Gn+\ such that 9/(gr) = Xi for all / <r,i ^ k.
We begin the induction by setting g-\ = 1 e Gn+\ and suppose inductively
that g = gr-\ is given. If r = k, we set gr = g. If r ^ k, we consider u =
x~\drg). If i < r and / ^ k, then 3/(«) = 1 and hence di(aru) = 1. Hence
gr = g(oku)~l satisfies the inductive hypothesis. The element y = gn there-
fore has 3/ (y) — X[ for all i ^ k, so the Kan condition is satisfied. <>

Exercise 8.2.3 Show that A[«] is not fibrant if n ^ 0. Then show that any
fibrant simplicial set X is either constant (8.1.1) or has a non-degenerate "n-
cell" x e Xn for every n (8.1.6).

Exercise 8.2.4 Show that BG is fibrant for every group G but that BG is a
simplicial group if and only if G is abelian.

Fibrations 8.2.9 A map n: E -> B of simplicial sets is called a (Kan)^bra-
tion if

for every n, b e Bn+\ and k < n + 1, if JCO, • • •, JC*_I, jty+i, • • •, xn+\ e
En are such that 9/fr = n(xi) and d(Xj = dj-\xt for all / < j (/, j ^ k),
then there exists a y e En+\ such that n(y)=b and di(y) for all / ^ k.

This notion generalizes that of a fibrant simplicial set X, which is after all just
a simplicial set such that X —> * is a fibration. The following two exercises
give some important examples of fibrations.

Exercise 8.2.5 Show that every surjection E —> B of simplicial groups is a
fibration.
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8.3 Simplicial Homotopy Groups 263

Exercise 8.2.6 (Principal G-fibrations) We say that a group G acts on a sim-
plicial set X (or X is a simplicial G-set) if G acts on each Xn, and the action
commutes with the face and degeneracy operators. The orbit spaces Xn/G fit
together to form a simplicial set X/G\ if G acts freely on X(gx ^ x for every
g / 1 and every JC) we say that X -> X/G is a principal G-fibration. Show
that every principal G-fibration is a fibration.

Front-to-Back Duality 8.2.10 Simplicial constructions (e.g., homotopy in
8.3.11) always have a "front-to-back" dual formulation. Consider the invo-
lution "on A, which fixes every object [h\\ it is defined on the morphisms
in A by

d] = dn-i:[n-l]^[n] and G] = an-i\ [n + 1] -> [n].

We may think of it as reversing the ordering of [n] = (0 < 1 < • • • < n) to
get the ordering (n < • • • < 1 < 0). That is, if a: [m] —> [n] then a(i) = n —
a(m — i). If A is a simplicial object in A, then its front-to-back dual A is the
composition of A with this involution.

8.3 Simplicial Homotopy Groups

Given a fibrant simplicial set X (8.2.7) and a basepoint * e Xo, we define
7tn(X) as follows. By abuse of notation, we write * for the element <7Q (*) of
Xn and set Zn = {x e Xn : 3/(JC) = * for all / = 0, • • •, n}. We say that two
elements x and xf of Zn are homotopic, and write x ~ x7, if there is a j e Xn+\
(called a homotopy from x to JC') such that

Lemma/Definition 8.3.1 ifX is a fibrant simplicial set, then ~ w an equiva-
lence relation, and we set nn(X) — Zn/ ~.

Proof The relation is reflexive since y = (crnx) is a homotopy from JC to itself.
To see that ~ is symmetric and transitive, suppose given homotopies / and
y" from x to x' and from x to xr/. The Kan condition 8.2.7 applied to the
elements *,••• ,*, / , y" of Xn+\ with ^ = n + 2 yields an element z G Xn+2
with dnz = y\ dn+\z = y" and dtz = * for / < n. The element y = dn+2Z is a
homotopy from JC; to JC". (Check this!) Therefore x' ~ JC/;. O
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264 Simplicial Methods in Homological Algebra

Remark If X is a fibrant simplicial set, nn(X) agrees with the topological
homotopy group nn(\X\); see [May, 16.1]. Since 7rn(|X|) = jrn(\S(X)\), one
usually defines nn{X) as 7TnS(X) when X is not fibrant. Thus n\(X) is a
group, and nn(X) is an abelian group for n > 2.

Example 8.3.2 no(X) = XQ/ ~, where for each y e X\ we declare do(y) ~

Example 8.3.3 (Classifying space) Consider the classifying space BG of a
group G. By inspection Zn = {1} for n ^ 1 and Z\ = G. From this we deduce
that

Definition 8.3.4 If G is a group, then an Eilenberg-MacLane space of type
K(G, n) is a fibrant simplicial set ^ such that nnK — G and ntK = 0 for
i / n . Note that G must be abelian if n > 2. The previous example shows
that 5G is an Eilenberg-MacLane space of type K(G, 1). In the next section
(exercise 8.4.4), we will construct Eilenberg-MacLane spaces of type K(G, n)
for n > 2 as an application of the Dold-Kan correspondence 8.4.1. The term
"space," rather than "simplicial set," is used for historical reasons as well as to
avoid a nine-syllable name.

Exercise 8.3.1 If G is a simplicial group (or simplicial module), considered
as a fibrant simplicial set, show that any two choices of basepoint lead to
naturally isomorphic nn(G). Hint: Go acts on G.

If G is a simplicial group (or simplicial module), considered (by 8.2.8)
as a fibrant simplicial set with basepoint * = 1, it is helpful to consider the
subgroups

Nn(G) = {x e Gn : dtx = 1 for all i ^ n}.

Then Zn = ker(3n: Nn -> A^-i) and the image of the homomorphism dn+\\
Nn+\ -+ Nn is Bn = {x : x ~ 1}. Hence nn(G) is the homology group Zn/Bn

of the (not necessarily abelian) chain complex TV*

1 xr 9 l \r 9 2 \r

1 <r- NQ <— N\ <— N2 < .
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8.3 Simplicial Homotopy Groups 265

Exercise 8.3.2 Show that Bn is a normal subgroup of Zn, so that 7tn(G) is a
group for all n > 0. Then show that nn{G) is abelian for n > 1. //z>tf: Consider

and (a^Hcr^-iy) for*, j G Gn.

Exercise 8.3.3 If G —> G" is a surjection of simplicial groups with kernel G',
show that there is a short exact sequence of (not necessarily abelian) chain
complexes 1 -> NGr -» NG -> NG" —• 1. By modifying the discussion in
Chapter 1, section 3 show that there is a natural connecting homomorphism
d: nnG" -> nn-\G' fitting into a long exact sequence

• • * Kn+\G" > TCnG' - > 7TnG - > I n G ' ' > 7Tn-\G
f

Remark 8.3.5 More generally, suppose that n: E -> 5 is a fibration with £
and 5 fibrant. Suppose given basepoints *^ e £̂ o and *^ = TT(*E) € 5o; the
fibers Fn = TC~1(OQ(*)) form a fibrant simplicial subset F of E. Given b e Bn

with 3/(Z?) = * for all /, the fibration condition yields e e En with 7t(e) = b
and d((e) = * for all / < n. The equivalence class of dn(e) in nn-\(F) is
independent of the choices of e and induces a map dn:nn(B) —> nn-\(F)
fitting into a long "exact" sequence of homotopy "groups":

• • • nn+x(B) -^ nn(F) - • nn(E) ^ > nn(B) ^ nn^(F)

For more details, see [May].

This remark and exercise 8.3.3 show that the homotopy groups n* form a
(nonabelian) homological 8-functor. This observation forms the basis for the
subject of nonabelian homological algebra. We shall not pursue this subject
much, referring the reader to [DP] and [Swan 1]. Instead we use it as a model
to generalize the definition of homology to any abelian category A, even if the
objects of A have no underlying set structure.

Definition 8.3.6 (Homotopy groups) Suppose that A is a simplicial object in
an abelian category A. The normalized, or Moore, chain complex N(A) is the
chain complex with

n-\

^,(A)=P|kerO/:An->An_i)
i=0

and differential d = (— \)ndn. By construction, N(A) is a chain subcomplex of
the unnormalized complex C(A) and we define
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266 Simplicial Methods in Homological Algebra

nn(A) = Hn(N(A)).

If A is the category of abelian groups or /^-modules, this recovers the defi-
nition 8.3.1 of JTn(A) obtained by regarding A as a fibrant simplicial set and
taking homotopy.

Exercise 8.3.4 Show that N(A) is naturally isomorphic to its front-to-back
dual N(A) = TV (A), which has Nn(A) = {x e An : dtx = 0 for all i ^ 0} and
differential d0. (See 8.2.10.)

Now let D(A) denote the "degenerate" chain subcomplex of C(A) gener-
ated by the images of the degeneracies 07, so that Dn(A) = J2 °i (Cn-\A).

Lemma 8.3.7 C(A) = N(A) 0 D(A). Hence N(A) ^ C(A)/D(A).

Proof We will use an element-theoretic proof, which is valid by the Freyd-
Mitchell Embedding Theorem 1.6.1. An element of Dn(A) is a sum y =
]T Oj{xj) with xi e Cn-\(A). If y e Nn{A) and / is the smallest integer such
that Oi{xi) ̂  0, then 9/(v) = JC/, which is a contradiction. Hence DnC\Nn = 0.
To see that Dn + Nn = Cn, we pick y eCn and use downward induction on
the smallest integer j such that dj(y) / 0. The element y is congruent modulo
Dn to / = y — <7jdj(y), and for / < j the simplicial identities yield

3i(/) = di(y) - crj-idj-iddy) = 0.

Since 9/( / ) = 0 as well, yf is congruent modulo Dn to an element of Nn by
induction, and hence Dn + Nn = Cn. O

Theorem 8.3.8 In any abelian category A, the homotopy n*(A) of a simpli-
cial object A is naturally isomorphic to the homology //*(C) of the unnormal-
ized chain complex C = C(A):

Proof It suffices to prove that D(A) is acyclic. Filter D(A) by setting F$Dn —
0, FpDn = Dn if n < p and FpDn = ao(Cn_i) H h ap{Cn-\) otherwise.
The simplicial identities show that each FpD is a subcomplex. (Check this!)
Since this filtration is canonically bounded, we have a convergent first quad-
rant spectral sequence

El
pq = Hp+q{FpD/Fp-\D) =• Hp+q{D).
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8.3 Simplicial Homotopy Groups 267

Therefore it suffices to show that each complex FpD/Fp-\D is acyclic.
Note that (FpD/Fp-\D)n is a quotient of ap(Cn-\) and is zero for n < p.
In element-theoretic language, if x e Cn_i(A), the simplicial identities yield
inFpD/Fp-iD:

n

dcrp(x) = y (— Y)lGpdi—\(x)i
i=p+\

n+l n
d(Tp(x)-ap-\dcrp(x)= ^T, (-\)lopdi-\op(x) - ^ (-\)lofa

i=p+2 i=p+2

Hence {sn = (— \)p+lap} forms a chain contraction of the identity map of
FpD/Fp-\D, which is therefore null homotopic and hence acyclic (1.4.5).

O

Application 8.3.9 (Hurewicz homomorphism) Let X be a fibrant simplicial
set, and T[X] the simplicial abelian group that in degree n is the free abelian
group with basis the set Xn (8.2.3). The simplicial set map h: X - • Z[X] send-
ing X to the basis elements of Z[X] is called the Hurewicz homomorphism,
since on homotopy groups it is the map

7T*yA) —> TT^yiLyX\) = tl*L,\/LyX\) = r i*(A, IL)

corresponding via 8.2.4 and 8.3.1 to the topological Hurewicz homomorphism
7r*(|X|) -> H*{\X\\ Z). (To see this, represent an element <p of nn(\X\) by a
map f:An^ \X\ and consider / as an element of Sn(\X\). The class of h(f)
in HnZ[S(\X\)] = Hn(\X\); Z) is the topological Hurewicz element h(cp).)

Proposition 8.3.10 Let A be a simplicial abelian group. Then the Hurewicz
map h*\ TT*(A) -> //*(A; Z) = //*(|A|; Z) wa 5/7/1Y monomorphism.

Proof There is a natural surjection from the free abelian group Z[G] onto
G for every abelian group G, defined on the basis elements as the identity.
Thus there is a natural surjection of simplicial abelian groups j : Z[A] —>• A.
The composite simplicial set map jh: A —>• Z[A] -^ A is the identity, so on
homotopy groups j*h*:n*(A) -> 7r*(Z[A]) —> ^ ( A ) is the identity homo-
morphism. O
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268 Simplicial Methods in Homological Algebra

Remark The above proposition is the key result used to prove that every
simplicial abelian group has the homotopy type of a product of Eilenberg-
MacLane spaces of type K(nnA, ri)\ see [May, 24.5].

8.3.1 Simplicial Homotopies

8.3.11 Let A and B be simplicial objects in a category A. Two simplicial
maps / , g\ A -> B are said to be (simplicially) homotopic if there are mor-
phisms hi'. An -> Bn+\ in A (i = 0, ••-,«) such that 9o/*o = / and dn+\hn =
g, while

We call [hj] a simplicial homotopy from f to g and write f — g.
If .4 is an abelian category, or the category of sets, the next theorem gives

a cleaner definition of simplicial homotopy using the Cartesian product A x
A[l] of 8.2.6 and the two maps eo,e\: A — A x A[0] - • A x A[l] induced
by the maps £o, s\\ [0] —> [1] in A.

Theorem 8.3.12 Suppose that A is either an abelian category or the category
of sets. Let A, B be simplicial objects and f,g:A—> B two simplicial maps.
There is a one-to-one correspondence between simplicial homotopies from f
to g and simplicial maps h: A x A[l] —>> B such that the following diagram
commutes.

£0 E\

A —> A x A[l] <— A

B

Proof We give the proof when A is an abelian category. The set A[l]n con-
sists of the maps a?;: [n] —• [1] (/ = — 1, • • •, n), where a; is characterized by
of-^O) = {0, 1, • • • , / - 1}. Thus (A x A[l])n is the direct sum of n + 2 copies
of An indexed by the a?;. A map h^: (A x A[l])n -> Bn is therefore equiva-
lent to a family of maps nf : An -> Bn (i = — 1, • • •, n). Given a simplicial
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8.3 Simplicial Homotopy Groups 269

homotopy {hj} we define h{"\ = g, h^ = / and h\n) = di+\hi for 0 < i < n.
It is easily verified that dth

{n) = h{n~X)di and Oih{n) = /i("+1)a/, so that the
h^ form a simplicial map h such that /*£o = / and he\ = g. (Exercise!) Con-
versely, given h the maps hi = nf1 07: An —>• £n+i define a simplicial ho-
motopy from / to g. O

Exercise 8.3.5 (Swan) Show that the above theorem fails when A is the cat-
egory of groups, but that the theorem will hold if A x A[l] is replaced by
the simplicial group A * A[l], which in degree n is the free product of n + 2
copies of An indexed by the set A[l]n .

Exercise 8.3.6 In this exercise we show that simplicial homotopy is an addi-
tive equivalence relation when A is any abelian category. Let f, f\ g, gf be
simplicial maps A - • B, and show that:

1. / - / •
2. if / - g and f - gf, then (/ + / ' ) - (g + gf).
3. if / ~ g, then ( - / ) 2̂  (-g), (/ - g) ^ 0 and g ~ / .
4. if / ~ g and g — h, then f — h.

Lemma 8.3.13 L^ 4̂ be an abelian category and f,g:A^B two sim-
plicially homotopic maps. Then /*, g*\ N(A) ->- N(B) are chain homotopic
maps between the corresponding normalized chain complexes.

Proof By exercise 8.3.6 above we may assume that / = 0 (replace g by
g — / ) . Define sn = ^2(—\yhj as a map from An to Bn+\, where {hj} is
a simplicial homotopy from 0 to g. The restriction of sn to ZW(A) lands in
Zn(B), and we have

(Check this!) Therefore {(—l)"^} is a chain homotopy from 0* to g*. O

Path Spaces 8.3.14 There is a functor P: A -» A with P[n] = [/1 4- 1] such
that the natural map £o: [n] —> [n + 1] = P\n\ is a natural transformation
id A => P. It is obtained by formally adding an initial element 0' to each [n]
and then identifying (0; < 0 < • • • < n) with [n + 1]. Thus P(£/) = £;+i and
P(y//) = r\i+\. If A is a simplicial object in A, the path space PA is the sim-
plicial object obtained by composing A with P. Thus (PA)n = Aw+i, the /r/l

face operator on PA is the 9/+i of A, and the ith degeneracy operator on PA
is the oT/+i of A. Moreover, the maps 3Q: An+i ->• An form a simplicial map
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270 Simplicial Methods in Homological Algebra

PA —»• A. The path space will play a key role in the proof of the Dold-Kan
correspondence.

Exercise 8.3.7 (PAc^ AQ) Let A be a simplicial object, and write Ao for the
constant simplicial object at Ao- The natural maps CTQ+1: Ao -> An+\ form a
simplicial map t: Ao -> PA, and the maps An+i ->• Ao induced by the canoni-
cal inclusion of [0] = {0} in [n + 1] = (0 < 1 < • • • < n + 1) form a simplicial
map p: PA —> Ao such that pt is the identity on Ao. Use ao to construct a
homotopy from tp to the identity on PA. This shows that PA is homotopy
equivalent to the constant object Ao.

Exercise 8.3.8 If G is a group one usually writes EG for the simplicial set
P(BG). By the previous exercise 8.3.7, EG ^ {1}. Show that the surjection
do: EG —>• BG is a principal G-fibration (exercise 8.2.6). Then use the long
exact homotopy sequence of a fibration (exercise 8.3.3) to recalculate TT*(BG).

Exercise 8.3.9 (J. Moore) Let A be a simplicial object in an abelian category
A. Let A A denote the simplicial object of A which is the kernel of do: PA ->
A; AA is a kind of brutal "loop space" of A. To see this, let Ao[l] denote
the chain complex that is Ao concentrated in degree —1, and let cone(7VA) be
the mapping cone of the identity map of NA (1.5.1). Show that Nn(AA) =
Nn+\ (A) for all n > 0 and that there are exact sequences:

0 -> A0[l] - • NA[l] -> N(AA) -> 0,

0 -* A0[l] -> cone(NA)[l] -> N(PA) -+ 0.

That is, N(AA) is the brutal truncation a>0NA[l] of NA[l] and A^(PA) is
the brutal truncation of cone(NA)[l], in the sense of 1.2.7 and 1.2.8.

8.4 The Dold-Kan Correspondence

Let A be an abelian category. The normalized chain complex N(A) of a sim-
plicial object A of A (8.3.6) depends naturally on A and forms a functor TV
from the category of simplicial objects in A to the category of chain com-
plexes in A. The following theorem, discovered independently by Dold and
Kan in 1957, is called the Dold-Kan correspondence. (See [Dold].)

Dold-Kan Theorem 8.4.1 For any abelian category A, the normalized chain
complex functor N is an equivalence of categories between SA and Ch>o(*4).
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8.4 The Dold-Kan Correspondence 111

f simplicial \ N A \ c n a m complexes C in A
I objects in .A J ~ } with Cn = 0 for n < 0

Under this correspondence, simplicial homotopy corresponds to homology
(i.e., 7r*(A) = H*(NA)) and simplicially homotopic morphisms correspond to
chain homotopic maps.

Corollary 8.4.2 (See 2.4.7) The simplicial homotopy groups ix*A of a simpli-
cial object A of A form a universal 8-functor (the left derived functors of the
functor 7To).

Corollary/Definition 8.4.3 (Dual Dold-Kan correspondence) For any abe-
lian category A, there is an equivalence

f cosimplicial \ N* >Q } cochain complexes C in A1

objects in A J > 1 with Cn = 0 for n < 0 J '
N*A is a summand of the unnormalized cochain CA of A. We define the co-
homotopy of a cosimplicial object A to be the cohomology of N*A, that is, as
n'A = ///(A^*A). Then nlA ^ Hl{CA). Finally, if A has enough injectives,
the cohomotopy groups n*A are the right derived functors of the functor 7r°.

8.4.4 The equivalence in the Dold-Kan Theorem is concretely realized by an
inverse functor K:

ru (A\ K <ZA I s i m P l i c i a l
Ch>0(A) —> S A = \ .

[ objects in A

which is constructed as follows. Given a chain complex C we define Kn(C)
to be the finite direct sum @p<n 0 ^ Cp[r]], where for each p < n the index ij
ranges over all surjections [n] —> [p] in A and Cp[rj] denotes a copy of Cp.

If a: [m] —> [n] is any morphism in A, we shall define K(a): Kn(C) —>
Km(C) by defining its restrictions K(a, rj): Cp[n] —• Km(C). For each surjec-
tion rj: [n] -> [p], find the epi-monic factorization er\' of r\ot (8.1.2):

[m] -

n'i
[q] -

-> M

+ [pi

If p = q (in which case rja = nf) we take K(a, rj) to be the natural identifica-
tion of Cp[rj] with the summand Cp[r]f] of Km(C). If p = q + 1 and e = sp
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272 Simplicial Methods in Homological Algebra

(in which case the image of r]a is the subset {0, • • •, p — 1} of [/?]), we take
K (a, r}) to be the map

Otherwise we define K(a, rj) to be zero. Here is a picture of K(C):

Co 1= c0 e cx ^ c0 e cx e C\ © c 2 1= c0 e (co3 e (c2)
3 e c3 •

Exercise 8.4.1 Show that K(C) is a simplicial object of A. Since it is clearly
natural in C, this shows that K is a functor.

It is easy to see that NK(C) = C. Indeed, if 77: [n] -> [/?] and n / /?, then
r] = r]ix" - r]it and Cp[r/] = (a,, • • • <T/1Cp)[id/7] lies in the degenerate subcom-
plex D{K{C)). If r] is the identity map of [n], then 3/ restricted to Cn[idn]
is K(si, idn), which is 0 if i ^ n and d if / = ft. Hence Nn(KC) = Cn[idn]
and the differential is J. Therefore in order to prove the Dold-Kan Theorem
we must show that KN(A) is naturally isomorphic to A for every simplicial
object A in A.

We first construct a natural simplicial map X/ZA'- KN(A) —> A. If t]\ [n] ->
[p] is a surjection, the corresponding summand of KNn(A) is NP(A), and we

define the restriction of ^ to this summand to be NP(A) C Ap —> An. Given
a: [m] -> [/i] in A, and the epi-monic factorization st]f of rja in A (8.1.2) with
r)'\ [m] -> [q], the diagram

4 ^ —̂  M (A} c~ A v A

r\) _j iy p\r\j v̂_ .n p 7- rvn

*l [s is |«

KNm(A) D Nq(A) C Aq -^U Am

commutes because s: NP(A) —> Nq(A) is zero unless s = sp. (Check this!)
Hence \J/A is a simplicial morphism from KN(A) to A and is natural in A.
We have to show that \J/A is an isomorphism for all A. From the definition
of XJ/A it follows that NX/TA- NKN(A) —> N(A) is the above isomorphism
NK(NA) = NA. The following lemma therefore implies that X//A is an iso-
morphism, proving that TV and K are inverse equivalences.

Lemma 8.4.5 If f: B - • A is a simplicial morphism such that Nf: N(B) ->
N(A) is an isomorphism, then f is an isomorphism.
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8.4 The Dold-Kan Correspondence 273

Proof We prove that each fn\Bn^ An is an isomorphism by induction on
n, the case n = 0 being the isomorphism Bo = NoB = NoA = A. Recall from
exercise 8.3.9 that the brutal loop space AA is the kernel of 3o: PA -> A,
(PA)n = An +i, and that N(AA) is the translate ((NA)/AO)[1]. Therefore
NAf:N(AB)^ N(AA) is an isomorphism. By induction both fn and
(A/)n are isomorphisms. From the 5-lemma applied to the following diagram,
we deduce that / n + i is an isomorphism. <C>

9o

Exercise 8.4.2 Show that Af and K are adjoint functors. That is, if A is a
simplicial object and C is a chain complex, show that \j/ induces a natural
isomorphism:

HomsA(K(C), A) S HomCh(C, NA).

Exercise 8.4.3 Given a semi-simplicial object B in A, KC(B) is a simplicial
object. Show that KC is left adjoint to the forgetful functor from simplicial
objects to semi-simplicial objects. (Cf. exercise 8.1.5.) Hint: Show that if A is
a simplicial object, then there is a natural split surjection KC(A) -> A.

To conclude the proof of the Dold-Kan Theorem 8.4.1, we have to show
that simplicially homotopic maps correspond to chain homotopic maps. We
saw in 8.3.13 that if / ~ g then Nf and Ng were chain homotopic. Con-
versely suppose given a chain homotopy {sn} from f to g for two chain maps
f,g:C -+ C. Define ht\ K(C)n -> K(C')n+\ as follows. On the summand Cn

of K(C)n corresponding to r\ = id, set

1 07 / if / < n — 1

<*n-\f -onsn-\d \ii—n-\
on(f - sn-\d) -sn if/ —n.

On the summand Cp[rj] of K(C)n corresponding to rj: [n] -> [p], « ^ p, we
define /i, by induction on n — p. Let y be the largest element of [n] such that
rj(j) = rj(j + 1) and write 77 = rfrjj. Then cry maps Cp[rjf] isomorphically onto
Cp[rj]9 and we have already defined the maps hi on Cp[rj']. Writing h\ for the
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274 Simplicial Methods in Homological Algebra

composite of Cp[r]] = Cp[rjf] with hj restricted to Cp[rj'], we define

if 7 > i.

A straightforward calculation (exercise!) shows that {hi} form a simplicial
homotopy from K(f) to K(g). O

Exercise 8.4.4 (Eilenberg-MacLane spaces) Let G be an abelian group, and
write G[—n] for the chain complex that is G concentrated in degree n (1.2.8).

1. Show that the simplicial abelian group K(G[—n]) is an Eilenberg-
MacLane space of type K(G,n) in the sense of 8.3.4 and that the
loop space of exercise 8.3.9 satisfies AK(G[-n - 1]) = K(G[-n\) for
n > 0.

2. Suppose that a simplicial abelian group A is an Eilenberg-MacLane
space of type K(G, n). Use the truncation z>nNA (1.2.7) to show that
there are simplicial maps A <— B -> K(G[—n\) that induce isomor-
phisms on homotopy groups. Hence A has the same simplicial homotopy
type as K(G[—n]). A similar result holds for all Eilenberg-MacLane
spaces, and is given in [May, section 23].

Exercise 8.4.5 Suppose that A has enough projectives, so that the category of
SA of simplicial objects in A has enough projectives (exercise 2.2.2). Show
that a simplicial object P is projective in SA if and only if (1) each Pn is
projective in A, and (2) the identity map on P is simplicially homotopic to
the zero map.

Augmented Objects 8.4.6 An augmented simplicial object in a category A
is a simplicial object A* together with a morphism e\ Ao -> A-\ to a fixed
object A_i such that edo = sd\. If A is an abelian category, this allows us to
augment the associated chain complexes C(A) and N(A) by adding A_i in
degree — 1.

n A y£ A d()~dl A yd d

An augmented simplicial object A* -> A_i is called aspherical if izn(A*) =
0 for n / 0 and s: ;ro(A*) = A_i. In an abelian category, this is equivalent to
the assertion that the associated augmented chain complexes are exact, that
is, that C(A) and N(A) are resolutions for A-\ in A. For this reason, A*
is sometimes called a simplicial resolution of A_i. We will use aspherical
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8.5 The Eilenberg-Zilber Theorem 275

simplicial objects to construct canonical resolutions in 8.6.8. The following

exercise gives a useful criterion for A* —> A-\ to be aspherical.

An augmented simplicial object A* —> A_i is called {right) contractible
if there are morphisms fn: An —> An+i for all n (including f-\\ A-\ -> Ao)
such that ef-\ = id, dn+ifn = id for n > 0, ao/o = / - i £ , and a,-//i = //i-i3/
for all 0 < i < n. (It is called left contractible if its dual A -^» A_i (8.2.10) is
right contractible, that is, if ef-\ = id, dofn = id, 3_i/o = / - i £ , and 3//n =

Exercise 8.4.6 (Gersten)

1. If A is an abelian category, prove that every contractible augmented
simplicial object is aspherical, and that the associated augmented chain
complexes are split exact.

2. Now suppose that A is the category of sets. Let X be a fibrant simplicial
set with basepoint * and e\X -> X-\ an augmentation. Prove that if
X -+ X-\ is (left or right) contractible and /«(*) = * for all n, then X
is aspherical. Hint: Set y = fn(x) in 8.3.1.

8.5 The Eilenberg-Zilber Theorem

A bisimplicial object in a category A is a contravariant functor A from A x A
to A. Alternatively, it is a bigraded sequence of objects Apq (p,q > 0),
together with horizontal face and degeneracy operators dj*:Apq —>• Ap-\,q
and o^'.Apq ->• Ap+i>9 as well as vertical face and degeneracy operators
3": Apq —>> Ap^q-\ and cr-u: A ^ —> A ^ + i . These operators must satisfy the
simplicial identities (horizontally and vertically), and in addition every hori-
zontal operator must commute with every vertical operator.

There is an (unnormalized) first quadrant double complex CA = {Apq} as-
sociated to any bisimplicial object A. The horizontal maps dh are £](—1)*3^
and we use the sign trick (1.2.5) to define the vertical maps dv: Apq -> APtq-\

tobe(-l^E(-W-
Clearly we may regard a bisimplicial object as a simplicial object in the

catagory SA of simplicial objects in A. The Dold-Kan correspondence im-
plies that the category of bisimplicial objects is equivalent to the category of
first quadrant double chain complexes, the normalized double complex corre-
sponding to A being quasi-isomorphic to CA.

The diagonal diag(A) of a bisimplicial object A is the simplicial object
obtained by composing the diagonal functor A - > A x A with the functor A.
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276 Simplicial Methods in Homological Algebra

Thus diag(A)n = Ann, the face operators are 3/ = df d/\ and the degeneracy

operators are at = o^o?.

Eilenberg-Zilber Theorem 8.5.1 Let Abe a bisimplicial object in an abe-
lian category A. Then there is a natural isomorphism

Moreover there is a convergent first quadrant spectral sequence

El
pq = nv

q{Ap*), E2
pq = nh

pn
v
q{A) =» Tr

Proof We first observe that no = Ho. By inspection, we have decomposi-
tions Aio = OQ (Aoo) © Mo, ^oi = o"o (Aoo) © #oi, and An = cr^a^(Aoo) 0
^(Nl0) © ^ ( ^ o i ) 0 tfn. Now HoTot(CA) = A0o/O?(#io) + dv

{(NOi))
and 7Todiag(A) is the quotient of Aoo by

af dfaXNio e crfiNoi e #n) = af (#io) + ai'(#oi) + o.

Hence there is a natural isomorphism 7rodiag(A) = Ho Tot(A).
Now the functors diag(A) and Tot(CA) are exact, while 7r* and //* are

^-functors, so both 7r*diag(A) and //*Tot(CA) are homological <5-functors
on the category of bisimplicial objects in A. We will show that they are
both universal <5-functors, which will imply that they are naturally isomor-
phic. (The isomorphisms are given explicitly in 8.5.4.) This will finish the
proof, since canonical first quadrant spectral sequence associated to the double
complex CA has El

pq = H"(CP*) = nv
q{Ap*) and E2

pq = Hh
p(C(nv

q{Ap*))) =
Kp7Tq(A) and converges to Hp+q Tot(CA) = 7r/7+^diag(A).

To see that 7r* diag and //* Tot C are universal 5-functors, we may assume
(using the Freyd-Mitchell Embedding Theorem 1.6.1 if necessary) that A has
enough projectives. (Why?) We saw in exercise 2.2.2 that this implies that
the category of double complexes—and hence the category of bisimplicial
objects by the Dold-Kan correspondence—has enough projectives. By the next
lemma, diag and Tot C preserve projectives. Therefore we have the desired
result:

7r*diag = (L*7T0)diag = L*(7T*diag),

//*Tot C = (L*#o)Tot C = L*(H0Tot C). O

Lemma 8.5.2 The functors diag and Tot C preserve projectives.
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8.5 The Eilenberg-Zilber Theorem 277

Proof Fix a projective bisimplicial object P. We see from exercise 8.4.5 that
any bisimplicial object A is projective if and only if each Apq is projective
in A, each row and column is simplicially null-homotopic, and the vertical
homotopies hv

t are simplicial maps. Therefore diag(P) is a projective simpli-
cial object, since each diag(P)n = Pnn is projective and the maps hi = h^hv

t

form a simplicial homotopy (8.3.11) from the identity of diag(P) to zero. Now
Tot(CP) is a non-negative chain complex of projective objects, so it is projec-
tive in Ch>o(^4) if and only if it is split exact if and only if it is exact. But every
column of Tot(CP) is acyclic, since H*(CPp*) = 7r*(Pp*) = 0, so Tot(CP) is
exact by the Acyclic Assembly lemma 2.7.3 (or a spectral sequence argument).

O

Application 8.5.3 (Kunneth formula) Let A and B be simplicial right and
left /^-modules, respectively. Their tensor product (A ®R B) = Ap <S>R Bq is
a bisimplicial abelian group, and the associated double complex C(A 0 B)
is the total tensor product Tot C(A) <S>R C(B) of 2.7.1. The Eilenberg-Zilber
Theorem 8.5.1 states that

7r*diag(A ®R B) ^ //*(Tot C(A) ®R C(B)).

This is the form in which Eilenberg and Zilber originally stated their theorem
in 1953. Now suppose that X and Y are simplicial sets and set A = R[X],
B = R[Y] 8.2.3. Then diag(A ® B) = R[X x F], and the computation of the
homology of the product X x Y (8.2.6) with coefficients in R is

Hn(X xY;R) = 7rndiag(A ® B) ^ Hn(Joi C(X) <8> C(Y)).

The Kunneth formula 3.6.3 yields Hn(X x Y) £ @p+q=n HP(X) ® Hq(Y)
when R is a field. If R = 1 there is an extra Tor term, as described in 3.6.4.

The Alexander-Whitney Map 8.5.4 For many applications it is useful to
have an explicit formula for the isomorphisms in the Eilenberg-Zilber Theo-
rem 8.5.1. If p + q = n, we define fpq: Ann -+ Apq to be the map

The sum over p and q yields a map fn\ Ann -+ Totn(CA), and the fn assemble
to yield a chain complex map / from C(diag(A)) to Tot(CA). (Exercise!) The
map / is called the Alexander-Whitney map, since these two mathematicians
discovered it independently while constructing the cup product in topology.
Since / is defined by face operators, it is natural and induces a morphism of
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278 Simplicial Methods in Homological Algebra

universal 5-functors /*:7r*diagA -> H*Tot(CA). Moreover, /o: Aoo = Aoo>
so /* induces the natural isomorphism 7rodiag A = //oTot(CA). Therefore the
Alexander-Whitney map is the unique chain map (up to equivalence) inducing
the isomorphism /* of the Eilenberg-Zilber Theorem.

The inverse map V: Tot(CA) - • C(diagA) is related to the shuffle product
on the bar complex (6.5.11). The component Vpq: Apq -> Ann (n = p -\-q) is
the sum

\ V i \ u h h

over all (/?, g)-shuffles \x. The proof that V is a chain map is a tedious but
straightforward exercise. Clearly, V is natural, and it is easy to see that V*
induces the natural isomorphism //oTot(CA) = TTodiag A. Therefore V* is
the unique isomorphism of universal 5-functors given by the Eilenberg-Zilber
Theorem. In particular, V* is the inverse of the Alexander-Whitney map /*.

Remark The analogue of the Eilenberg-Zilber Theorem for semi-simplicial
simplicial objects is false; the degeneracies are necessary. For example, if
Apq is zero for p ^ 1, then 7Tidiag(A) = An need not equal H\ Tot(CA) =

8.6 Canonical Resolutions

To motivate the machinery of this section, we begin with a simplicial descrip-
tion of the (unnormalized) bar resolution of a group G. By inspecting the con-
struction in 6.5.1 we see that the bar resolution

is exactly the augmented chain complex associated to the augmented simpli-

cial G-module

< r>

in which B% is the free ZG-module on the set Gn. In fact, we can construct
the simplicial module #" directly from the trivial G-module Z using only the
functor F = ZG®Z: G-mod -> G-mod; B% is F"+ 1Z = ZG ® z • • • ®z ZG,
the face operators are formed from the natural map e\ ZG <S>z M -+ M, and
the degeneracy operators are formed from the natural map rf. M = 1 <g>z M ->
ZG ®z M.
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8.6 Canonical Resolutions 279

In this section we formalize the above process (see 8.6.11) so that it yields
augmented simplicial objects whose associated chain complexes provide
canonical resolutions in a wide variety of contexts. To begin the formalization,
we introduce the dual concepts of triple and cotriple. (The names "triple" and
"cotriple" are unfortunate because nothing occurs three times. Nonetheless
it is the traditional terminology. Some authors use "monad" and "comonad",
which is not much better.)

Definition 8.6.1 A triple (T, rj, /x) on a category C is a functor T:C -> C,
together with natural transformations rj: idc =>• T and [i\ T T => T, such that
the following diagrams commute for every object C.

TT(TC)

!„,
T(TC)

lbolically

= T(TTC) >

fiC

, we may write

• T(TC)

TC

these as JX(

TC • T(TC) <

-N. I . • -
TC

1 » = /x(/xT) and /x(T^y)

TC

= id =

Dually, a cotriple (_L, e, 6) in a category .4 is a functor ±: ^l -> ^4, together
with natural transformations s\ _L=̂  id^ and 8: ±=^_L_L, such that the follow-
ing diagrams commute for every object A.

_LA > 1(1A) ±A

\sA \s±A =/ I 5 \ =i
J_(_LA) >_L(J_J_A) = _L_L(_LA) ± A< 1(1A)

Symbolically, we may write these as (J_ 8)8 = (8 ±.)8 and (J_ e)<5 = id =
(e J_ )<5. Note the duality: a cotriple in A is the same as a triple in *4op.

Exercise 8.6.1 Provided that they exist, show that any product TlTa of triples
Ta is a triple and that any coproduct U ±a of cotriples ±a is again a cotriple.

Exercise 8.6.2 Show that the natural transformation s of a cotriple satisfies
the identity e(e J_) — £(J_ £). That is, for every A the following diagram com-
mutes:
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280 Simplicial Methods in Homological Algebra

l-BA

-L(J-A) > _LA

_LA - ^ A.

Main Application 8.6.2 (Adjoint functors) Suppose we are given an adjoint
pair of functors (F, U) with F left adjoint to U.

That is, Hom^(FC, B) = Homc(C, UB) for every C in C and # in S. We
claim that T = UF: C -> C is part of a triple (T, yy, /x) and that _L = FU: B ->
S is part of a cotriple (_L, £, 8).

Recall from A.6.1 of the Appendix that such an adjoint pair determines two
natural transformations: the unit of the adjunction 77: id^ —̂  UF and the counit
of the adjunction e: FU => idc- We define 8 and /z by

8B = F(riUB): F(UB) -+ F(UF(UB)), /xc - U(sFC): U(FU(FC)) -* f/(FC).

In the Appendix, A.6.2 and exercise A.6.3, we see that (sF) o (Fr;): FC ->
FC and {Us) o (yyC/): C/5 -> t / 5 are the identity maps and that e o (FC/e) =
^ o (sFU): FU(FU(B)) -> B. From these we deduce the triple axioms for

= id, ^(iyT) = ((Us) o (^t/))F = id,

o (UFUsF) = U(s o t /Fe)F = t/(e o e t /F )F =

By duality applied to the adjoint pair (£/op, Fop), (±, e, 8) is a cotriple on B.

Example 8.6.3 The forgetful functor U: G-mod ->• Ab has for its left ad-
joint the functor F(C) = ZG <S)j C. The resulting cotriple on G-mod has
_L= Ft / , and ± (Z) = ZG. The following construction of a simplicial object
out of the cotriple _L on the trivial G-module Z will yield the simplicial G-
module used to form the unnormalized bar resolution described at the begin-
ning of this section; see 8.6.11.

Simplicial Object of a Cotriple 8.6.4 Given a cotriple _L on A and an object
A, set ±n A =_L"+1 A and define face and degeneracy operators

dt = JJ s ±n~L. ± n + 1 A ->_L"A,

at = ±l 8 ±n-L. _L"+1 A ->J_"+2A.
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8.6 Canonical Resolutions 281

We claim that _L* A is a simplicial object in A. To see this, note that

3/(7/ =_L/ (e ±)S - L ^ W ' " (1) ±n~i= identity, and

3/+1C7/ =_L/ (J_ e)<5 J ^ W 1 ' (1) J.1 1"^ identity.

Similarly, we have

3/3/ + 1 - X1" (8(1. 8)) ±n~l = ±l (8(8 !_)) ±n~l = 3idh

= ±l ((!_ 8)8) I."'1 = A.1 ((8 ±)8) ±»-i = atah

The rest of the simplicial identities are formally valid. The map 8A : -L A —> A
satisfies 8do = ed\ (because e(e _L) = e(J_ 8)), so in fact _L* A —> A is an
augmented simplicial object.

Dually, given a triple T on C, we define Ln = T"+ 1C and dl = TI'T/T/1-1",

a1 = T'/LtT""1'. Since a triple T on C is the same as a cotriple T°P on Cop,
L* = T*+1C is a cosimplicial object in C for every object C of C.

Definition 8.6.5 Let _L be a cotriple in a category A. An object A is called
±-projective if e^: _L A -> A has a section / : A ->± A (i.e., if e ^ / = id^).
For example, if ± = F t / for an adjoint pair (F, £/), then every object FC is
_L-projective because Fy;: FC -> F(UFC) = ± (FC) is such a section.

Paradigm 8.6.6 (Projective /^-modules) If R is a ring, the forgetful functor
U: R-mod -> Sets has the free /^-module functor F as its left adjoint; we call
FU the free module cotriple. Since FU(P) is a free module, an /^-module
P is Ft/-projective if and only if P is a projective /^-module. This paradigm
explains the usage of the suggestive term "_L-projective." It also shows that a
cotriple on /?-mod need not be an additive functor.

_L-Projective Lifting Property 8.6.7 Let U.A^C have a left adjoint F,
and set J_ = FU. An object P is ^-projective if and only if it satisfies the
following lifting property: given a map g: A\ -> A^ in A such that UA\ —•
UAi is a split surjection and a map y: P —> A2, there is a map /3: P —>• A\
such that y = g/3.

Proof The lifting property applied to FU(P) - • P shows that P is _L-
projective. For the converse we may replace P by FU(P) and observe that
since HomA(FU(P), A) ^ Homc(UP,UA), the map HomA(FU(P),Ai) -+
HomA(FU(P), A2) is a split surjection. <C>
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282 Simplicial Methods in Homological Algebra

Exercise 8.6.3 Show that an object P is _L-projective if and only if there is
an A in A such that P is a retract of _L A. (That is, there are maps i: P -+.L A
and r: _L A —• P so that r/ = idp.)

Proposition 8.6.8 (Canonical resolution) Let L be a cotriple in an abelian
category A If A is any L-projective object, then the augmented simplicial ob-
ject _L* A —> A is aspherical, and the associated augmented chain complex
is exact.

0 <- A <—± A <—± A <—_L A <—

Proof For n > 0, set /„ =±n+lf: _L"+1 A ^_L"+2A, and set /_i = / . By
definition, dn+\fn =l_n+x (sf) = identity and 9o/o = (e J_)(J_ / ) = fe. If
n > 1 and 0 < i < n + 1, then (setting j = n — i and B =_L; A) naturality of s
with respect to g =J_7/ yields

difn = a1" ̂ ±5)a/± g) = a1" g)af" ̂ ) = &-&•

We saw (in 8.4.6 and exercise 8.4.6) that such a family of morphisms {fn}
makes _L* A -> A "contractible," hence aspherical. O

Corollary 8.6.9 7/" 4̂ /s abelian and U:A->C is a functor having a left
adjoint F:C —> A, then for every C in C the augmented simplicial object
_L* (FC) —• FC w contractible, hence aspherical in A.

Proposition 8.6.10 Suppose that U:A-+C has a left adjoint F:C - • A.

Then for every A in A the augmented simp
left contractible in C and hence aspherical.
Then for every A in A the augmented simplicial object U(-L*A) —> U A is

Proof Set /_i = r\U\ UA -+ UFUA = U(± A) and fn = rjU ±n. Then the
{/„} make £/(_L* A) left contractible in the sense of 8.4.6. (Check this!) O

8.6.1 Applications

Group Homology 8.6.11 If G is a group, the forgetful functor U: G-mod - •
Ab has a left adjoint F(C) = 1G <S>i C. For every G-module M, the re-
sulting simplicial G-module _L* M -> M is aspherical because its underly-
ing simplicial abelian group £/(_!_* M) -> UM is aspherical by 8.6.10. More-
over by Shapiro's Lemma 6.3.2 the G-modules _L"+1M = F(C) are acyclic
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8.6 Canonical Resolutions 283

for //*(G; —) in the sense of 2.4.3. Therefore the associated chain complex
C(JL* M) is a resolution by //*(G; — )-acyclic G-modules. It follows from
2.4.3 that we can compute the homology of the G-module M according to the
formula

//*(G; M) = #*(C(J_* M)G) = TT*((_L* M)G),

using the homotopy groups of the simplicial abelian group (_L* M)Q.
If we take M = Z, C(_L* 2) is exactly the unnormalized bar resolution of

6.5.1. The proof given in 6.5.3 that the bar resolution is exact amounts to a
paraphrasing of the proof of proposition 8.6.10.

The Bar Resolution 8.6.12 Let k -> R be a ring homomorphism. The for-
getful functor U: R-mod -> /;-mod has F(M) = R 0& M as its left adjoint,
so we obtain a cotriple _L= FU on /?-mod. Since the homotopy groups of the
simplicial /^-module _L*M may be computed using the underlying simplicial
^-module £/(_L*M), it follows that _L*M -> M is aspherical 8.4.6 (J_*M is
a simplicial resolution of M). The associated augmented chain complexes are
not only exact in /?-mod, they are split exact when considered as a complex
of /:-modules by 8.6.10. The unnormalized chain complex fi(R, M) associ-
ated to ±* M is called the (unnormalized) bar resolution of a left 7?-module
M. Thus P(R, M)o = R®kM, and 0(R, M)n is fl®^1) ®k M. Note that
P(R,M) = P(R, R)®RM:

0 «- M ^ - R<g>kM <- R<g>kR<g)kM < .

The normalized bar resolution of M, written B(R, M), is the normalized chain
complex associated to _L* M and is described in the following exercise.

Exercise 8.6.4 Write R for the cokernel of the ^-module homomorphism
k -> R sending 1 to 1, and write <g) for <S>k- Show that the normalized bar res-
olution has Bn(R, M) = R 0 R 0 • • • (8) R (8) M with n factors ^ , with (well-
defined) differential

d(ro <g> r\ 0 • • • rn <g> m) = r$r\ 0 ?2 0 • • • 0 rn <S> nt

n-\

V' 0 • • • 0 m

(-1)% 0 n 0 • • • 0 rn-\

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.009
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:47:58, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.009
https://www.cambridge.org/core


284 Simplicial Methods in Homological Algebra

Proposition 8.6.13 Suppose k is commutative. If M (resp. M') is a left mod-
ule over a k-algebra R (resp. Rf), then there is a chain homotopy equivalence
of bar resolutions of the R 0 Rr-module M 0 M':

Tot(j0(/?, M) <8>* P(R', Mf)) -^> P(R ®k R\ M ®k Af').

Proof Let A (resp. Af) denote the simplicial ^-module R®* 0 M (resp.
/̂<g>* ^ ^ / ^ where (8) denotes 0£. The diagonal of the bisimplicial ^-module

A 0 A7 is the simplicial ^-module [p] i-> (R®P 0 M) 0 (/?/<8^ 0 M) ^ (R 0
/ O 0 p 0 (M 0 MO whose associated chain complex is P(R 0 /?', M 0 MO-
The Eilenberg-Zilber Theorem (in the Kiinneth formula incarnation 8.5.3)
gives a chain homotopy equivalence V from the total tensor product Tot
C(A 0 A') = Tot C(A) 0 C(A0 = Tot P(R, M) 0 P(R\ Mf) to C diag (A 0
AO = P(R 0 /?r, M 0 MO. •

Remark The homotopy equivalence Tot P(R, R) 0 ^(Z?', /?') - ^
R 0 /?0 is fundamental; applying <S)R®R>(M 0 MO to it yields the proposition.

Exercise 8.6.5 (Shuffle product) Use the explicit formula for the shuffle map
V of 6.5.11 and 8.5.4 to establish the explicit formula (where \x ranges over all
(p, g)-shuffles):

V((r0 0 • • • 0 rp 0 m) 0 (r£ 0 • • • 0 rr
q 0 m')) =

^ ( - l ) M ( r o 0 r'o) 0 w^{\) 0 • • • 0 w^p+q) 0 (m 0 mO-

Here the r/ are in /?, the rj are in R\ m e M, m' e Mr, and u;i, • • •, wp+q

is the ordered sequence of elements r\ 0 1, • • •, rp 0 1, 1 0 r[, • • •, 1 0 r'q of

Free Resolutions 8.6.14 Let R be a ring and FU the free module cotriple,
where U: R-mod ->• Sets is the forgetful functor whose left adjoint F(X) is
the free module on X. For every R -module M, we claim that the augmented
simplicial /^-module (FU)*M —> M is aspherical (8.4.6). This will prove that
FU*M is a simplicial resolution of M, and that the associated chain complex
C = C(FU*M) is a canonical free resolution of M because

{ M i = 0
0 iVO
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8.6 Canonical Resolutions 285

Indeed, the underlying augmented simplicial set U(FU)*M ->• UM is fi-
brant and contractible by 8.6.10. If we choose [0] = rj(O) as basepoint in-
stead of 0, then the contraction satisfies /n([0]) = [0] for all n, and therefore
U(FU)*(M) is aspherical (by exercise 8.4.6). As the sets 7inU(FU)*M are
independent of the choice of basepoint (exercise 8.3.1), the augmented simpli-
cial 7?-module FU*(M) —> M is also aspherical, as claimed.

Sheaf Cohomology 8.6.15 Let X be a topological space and Sheaves(X)
the category of sheaves of abelian groups on X (1.6.5). If T is a sheaf we
can form the stalks Tx and take the product T(JF) = Ylxex x*(^x) of the
corresponding skyscraper sheaves as in 2.3.12. As Fx = x* and UxiJ7) = Tx

are adjoint, each FXUX(T) = x*{Tx) is a triple. Hence their product T is
a triple on Sheaves(X). Thus we obtain a coaugmented cosimplicial sheaf
T —> (T*+1.F) and a corresponding augmented cochain complex

The resulting resolution of T by the F-acyclic sheaves T*+1(.F) is called the
Godement resolution of T, since it first appeared in [Gode]. (The proof that
the Godement resolution is an exact sequence of sheaves involves interpreting

as a sheaf on the disjoint union X8 of the points of X.)

Example 8.6.16 (Commutative algebras) Let & be a commutative ring and
Commalg the category of commutative fc-algebras. Let P* -> R be an aug-
mented simplicial object of Commalg; if its underlying augmented simplicial
set is aspherical we say that P* is a simplicial resolution of R.

The forgetful functor U: Commalg —>• Sets has a left adjoint taking a set
X to the polynomial algebra k[X] on the set X\ the resulting cotriple _L on
Commalg sends R to the polynomial algebra on the set underlying R. As with
free resolutions 8.6.14, £/(_!_* R) -> UR is aspherical, so X* R is a simplicial
resolution of R. This resolution will be used in 8.8.2 to construct Andre-
Quillen homology.

Another cotriple ±s on arises from the left adjoint Sym of the forgetful
functor U'\ Commalg -> /:-mod. The Symmetric Algebra Sym(M) of a k-
module M is defined to be the quotient of the tensor algebra T(M) by the
2-sided ideal generated by all (JC <g> y — y <g> x) with JC, y e M (under the iden-
tification i:M ^ T(M)). From the presentation of T(M) = k © M 0 • • • 0
M®m 0 • • • in 7.3.1 it follows that Sym(M) is the free commutative algebra
on generators /(JC), X e M, subject only to the two ^-module relations on M:

ai(x) = i(ax) and i{x) + i(y) = i(x + y) (a e k; JC, y e M).
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286 Simplicial Methods in Homological Algebra

Thus any /c-module map M -> R into a commutative ^-algebra extends
uniquely to an algebra map Sym(M) -> R. This gives a natural isomorphism
Hom^(M, R) = Homcommaig(Sym(M), /?), proving that Sym is left adjoint
U. The resulting cotriple on Commalg sends R to the symmetric algebra
±S(R) = Sym(U'R) and we have a canonical adjunction e: Sym(U'R) ->• R.
As the simplicial ^-module (/'(-L* /?) —> £/'/? is aspherical, J_£ /? —• /? is an-
other simplicial resolution of R in Commalg, and there is a simplicial map
_L*7? ->J-f/?, natural in /?.

Exercise 8.6.6 Let X be a set and M the free ^-module with basis X. Show
that Sym(M) is the commutative polynomial ring k[X]. Then show that the
map _L* k[X] -^J-f fc[X] is a simplicial homotopy equivalence.

Exercise 8.6.7 In general, show that Sym(M) = k 0 M 0 S2(M) 0 • • • ©
Sn{M) 0 • • •, where Sn(M) is the module (M <g> • • • ® M)Sn of coinvariants
for the evident permutation action of the nth symmetric group Yln

 o n t n e n~
fold tensor product of M.

8.7 Cotriple Homology

Suppose that A is a category equipped with a cotriple J_= (_L, £, 5) as de-
scribed in the previous section, and suppose given a functor E: A -> M with
.M some abelian category. For each object A in A we can apply E to the aug-
mented simplicial object ±*A -> A to obtain the augmented simplicial object

! ) - > £ ( A ) i n M

Definition 8.7.1 (Barr and Beck [BB]) The cotriple homology of A with
coefficients in E (relative to the cotriple _L) is the sequence of objects
Hn(A; E) = nnE(±*A). From the Dold-Kan correspondence, this is the same
as the homology of the associated chain complex C(E _L* A):

0 <- E(±A) J— E(±2A) ^— £(_L3A) < .

Clearly cotriple homology is functorial with respect to maps A —> Ar in
A and natural transformations of the "coefficient functors" E —> E''. The
augmentation gives a natural transformation e^\ //o(A; E) = TTQ(E _L* A) ->
E(A), but at this level of generality e£ need not be an isomorphism. (Take
±=0.)

Dually, if (T, 77, /x) is a triple on a category C and E: C —• A4 is a functor,
the fn/?/e cohomology of an object C with coefficients in £ is the sequence of
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8.7 Cotriple Homology 287

objects Hn(C\ E) = 7r"£(T*+1C), which by definition is the cohomology of
the associated cochain complex

0 -> E(TC) -^» E(T2C) -^ £(T3C) -» • • •

associated to the cosimplicial object £(T*+ 1C) of M. By duality, Hn(C\ E)
is the object Hn(C; Eop) in the opposite category M°v corresponding to
£°P; Cop -> Mop; we shall not belabor the dual development of triple coho-
mology.

Another variant occurs when we are given a contravariant functor E
from A to M. In this case E(±*A) is a cosimplicial object of M. We set
Hn(A; E) = 7TnE(A.*A) and call it the cotriple cohomology of A with co-
efficients in E. Of course if we consider _L to be a triple on Aop and take as
coefficients E: Aop —> Ai, then cotriple cohomology is just triple cohomology
in disguise.

Example 8.7.2 (Tor and Ext) Let R be a ring and _L the free module cotriple
on mod-/? (8.6.6). We saw in 8.6.14 that the chain complex C(_L*M) is a
free resolution of M for every R-module M. If N is a left R-module and we
take E(M) = M ®R N, then homology of the chain complex associated to
E(.L*M) = (_L*M) <S)R N computes the derived functors of E. Therefore

Similarly, if N is a right /^-module and E(M) = Hom#(M, N), then the co-
homology of the cochain complex associated to £(_L*M) = Hom/?(_L*M, N)
computes the derived functors of E. Therefore

Hn(M; Hom*(-, N)) = Extn
R(M, N).

Definition 8.7.3 (Barr-Beck [BB]) Let J_ be a fixed cotriple on A and M
an abelian category. A theory of ±-left derived functors (Ln, A, 9) is the as-
signment to every functor E: A ->• M a sequence of functors EnE\A->M,
natural in E, together with a natural transformation A: LQE => E such that

1. X : LQ(E±) ^ E± and Ln(E±) = 0 fovn ^ 0 and every E.
2. Whenever S\ 0 -> E1 -> E ->• E" -> 0 is an exact sequence of functors

such that 0 - • E'L-^ E A_-^ E"_L—• 0 is also exact, there are "connect-
ing" maps 9: LnE" —>• Ln-\E\ natural in E, such that the following se-
quence is exact:

• • • LnE
r -> LnE - • LnE" -^ Ln-iE

f - • Ln-XE • • •.
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288 Simplicial Methods in Homological Algebra

Uniqueness Theorem 8.7.4 Cotriple homology //*(—; E) is a theory of 1-
left derived functors. Moreover, if (Ln, A, 3) is any other theory of 1-left
derived functors then there are isomorphisms LnE = Hn{—; E), natural in
E, under which X corresponds to s and d corresponds to the connecting map
forH*(-;E).

Proof A theory of left derived functors is formally similar to a universal (ho-
mological) 5-functor on the functor category A4^, the El. playing the role of
projectives. The proof in 2.4.7 that left derived functors form a universal 8-
functor formally goes through, mutatis mutandis, to prove this result as well.

8.7.1 Relative Tor and Ext

8.7.5 Fix an associative ring k and let k —> R be a ring map. The forget-
ful functor £/:mod-/? - • mod-A: has a left adjoint, the base-change functor
F(M) = M <S>k R- If N is a left /^-module, the relative Tor groups are defined
to be the cotriple homology with coefficients in <8)RN (relative to the cotriple
± = FU):

ToTp/k(M, N) = Hp(M; ®RN) = TTP((_L*M) ®R N),

which is the homology of the associated chain complex C(±*M <g> N) (8.3.8).
Since (_L^+1M) ®R N = {1PM) ®k R ®R N ^ 1?M ®k N, we can give an
alternate description of this chain complex as follows. Write 0 for ®£ and
R®P for R 0 R 0 • • 0 R, so that _L^M = M (8) R®P. Then (_L*M 0 N) is
the simplicial abelian group [p] \-+ M 0 R®p 0 Â  with face and degeneracy
operators

9/ (m 0 n 0 • • • 0 r^ 0 n) =
mr\ (8) 7*2 0 • • • (8) rp 0 n if i = 0
m 0 • • • 0 r/r/+i (8) • • • 0 n if 0 < / < p
m (8) n (8) • • • 0 f/7-i 0 r^fl if / = p\

ai(m (g> r\ g> - - • g> rp <g> n) = m <g) - • - g) r/_i 0 1 0 n 0 • • • 0 n.

RI k

(Check this!) Therefore Tor*; (M, Â ) is the homology of the chain complex

O^M^iV ^ M®R®N<^-M®R®2®N< M(g>

As in 2.7.2, one could also start with left modules and form the cotriple homol-
ogy of the functor M<S)R'. R-mod —• Ab relative to the cotriple lf{N) = R (8>&
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8.7 CotripleHomology 289

TV on /?-mod. The resulting simplicial abelian group [p] H> M (g) R®p 0 TV is
just the front-to-back dual (8.2.10) of the one described above. This proves
that relative Tor is a "balanced" functor in the sense that

Tor*/k(M, N) = HP(M; ®RN) = Hp(N; M®R).

If TV is a right R-module we define the relative Ext groups to be the cotriple
cohomology with coefficients in the contravariant functor Hom#(—, N):

Extp
R/k(M, N) = HP{M; Hom*(-, N)) = ixp Hom/K-UM, TV),

which is the same as the cohomology of the associated cochain complex
C(Hom/?(-U Af, A0). Since HomR(M ®k R, N) = Horn* (Af, N) by 2.6.3,
Hom/?(±*M, N) is naturally isomorphic to the cosimplicial abelian group
[p] h^ Hom^(M 0 R®p, N) = {^-multilinear maps M x Rp -+ N} with

I f(mro,ru • • •, rp) if / = 0
f(m,...,n-iri,...) ifO<i<p
f(m,ro, ...,rp-\)rp if i = p\

(crlf)(m, n , • • •, rp-\) = f(m, • • •, r,-, 1, ri+\, • • •, rp-\).

Exercise 8.7.1 Show that Tor£A(M, N) = M®RN and Ext°R/k(M, N) =

, N).

Example 8.7.6 Suppose that R = k/I for some ideal / of k. Since _LM =
M for all M, (J_*M) (8) Â  and Hom/?(±*M, iV) are the constant simplicial
groups M <g> N and Hom(M, N), respectively. Therefore Torf/k(M, N) =
Extl

R,k(M, N) = 0 for / ^ 0. This shows one way in which the relative Tor
and Ext groups differ from the absolute Tor and Ext groups of Chapter 3.

Just as with the ordinary Tor and Ext groups, the relative Tor and Ext groups
can be computed from J_-projective resolutions. For this, we need the follow-
ing definition.

Definition 8.7.7 A chain complex P* of /^-modules is said to be k-split if
the underlying chain complex U(P*) of ^-modules is split exact (1.4.1). A
resolution P* -> M is called £-split if its augmented chain complex is £-split.

Lemma 8.7.8 If 8:0 - • M1 —• M ->• M" - • 0 is a k-split exact sequence of

R-modules, there are natural long exact sequences
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290 Simplicial Methods in Homological Algebra

• • • Torf /k(M\ N) -> Torf /k(M, N) -> Torf lk{M", N) -^> Tor^\(Mf, N) • • •

• • • Ext*R/k(M", N) -> Ext*R/k(M, N) -> Ext*R/k(M', N) -?•* Ext*^(M", N) • - •

Proof Since U(£) is split exact, for every p>\ the complexes ( ± / 7 + 1

£)®RN = U(S) <g>* (rt®^ <g>/? A )̂ and Hom/e(±^ + 1 5 , iV) = Hom^(f/^ ®k

R®p, N) are exact. Taking (co-) homology yields the result. <0>

By combining adjectives, we see that a "&-split _L-projective resolution" of
an /^-module M is a resolution P* -^ M such that each P( is ±-projective and
the augmented chain complex is &-split.

0 <- M +±- Po ^ Pi ^ P2 - • •.

For example, we saw in 8.6.12 that the augmented bar resolutions B(R, M) —•
M and /3(/?, M) -> M are ^-split _L-projective resolutions for every /^-module
M.

Comparison Theorem 8.7.9 Let P* -* M be a k-split L-projective reso-
lution and f: M —> N an R-module map. Then for every k-split resolution
Q* —> N there is a map f:P*-> Q* lifting f. The map f is unique up to
chain homotopy equivalence.

Proof The proof of the Comparison Theorem 2.2.6 goes through. (Check
this!) <>

Theorem 8.7.10 If P* ^ M is any k-split ±-projective resolution of an R-
module M, then there are canonical isomorphisms:

Torf /k(M, N) ^ H*(P ®R N),

Ext*R/k(M, N) ^ H* Hom/?(P, N).

Proof Since ®RN is right exact and Hom/?(—, N) is left exact, we have iso-

morphisms Tor*7*(M, N)^M <S)RN^ HO(P ®R N) and Ext°R/k(M, N) ^

Hom/?(Af, N) = H°HomR(P, N). Now the proof in 2.4.7 that derived func-
tors form a universal 8-functor goes through to prove this result. <>

Lemma 8.7.11 Suppose R\ and R2 are algebras over a commutative ring
k; set _L; = /?/0 and J-12 = R\<S)R2(S)' If P\ is -L\-projective and P2 is J_2-
projective, then P\ (8) Pi is -L\2-projective.
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8.7 Cotriple Homology 291

Proof In general Pi is a summand of Ri 0 P;, so P\ 0 ft is a summand of

J-12 (P\ ® ft) = (# 1 ® ft) ® (#2 0 ft). <>

Application 8.7.12 (External products for Tor) Suppose /: is commutative,
and we are given right and left R\-modules M\ and N\ (resp. /?2-modules M2
and A^2). Choose £-split J_;-projective resolutions Pi —> Ni\ Tot(Pi 0 ft) is
therefore a &-split J_i2-projective resolution of the R\ 0 / ^ - m o d u l e TVi 0 #2-
(Why?) Tensoring with M\ 0 M2 yields an isomorphism of chain complexes

Tot{(Mi 0 / ?1 Px) 0 (M2 0/?2 P2)} = (Mi 0 M2) ®RI®R2 Tot(Pi 0

Applying homology yields the external product for relative Tor:

Torf /k(Mu Ni) 0^ TorJ2A(M2, A 2̂) -^ Tor^0 i ? 2 ) / / :(Mi 0 M2, TVi 0 N2).

As in 2.7.8, the (porism version of the) Comparison Theorem 2.2.7 shows that
this product is independent of the choice of resolution. The external product is
clearly natural in M\, N\, M2, N2 and commutes with the connecting homo-
morphism 8 in all four arguments. (Check this!) When i = j = 0, it is just the
interchange (Mi 0 ^ N\) 0* (M2 0/?2 N2) ^ (Mi 0 M2) 0/?1(g)/?2 (N\ 0 N2).

The bar resolutions P(Rt, Ni) of 8.6.12 are concrete choices of the P(. The
shuffle map V: Tot fi(Ru N\) 0 P(R2, N2) -+ fi{R\ 0 R2, N\ 0 N2) of 8.6.13
and exercise 8.6.5 may be used in this case to simplify the construction (cf.
[MacH, X.7]).

Exercise 8.7.2 (External product for Ext) Use the notation of 8.7.12 to pro-
duce natural pairings, commuting with connecting homomorphisms:

I, N2) ®k Ext£2/jk(Af2, N2) -+ E x t J + ^ ^ / ^ M i 0 M2, Nx 0

If i = j = 0, this is just the map

Hom(Mi, N\) 0 Hom(M2, A 2̂) -^ Hom(Mi 0 M2, N\ 0 N2).

Example 8.7.13 Suppose that R is a flat commutative algebra over k. If /
is an ideal of R generated by a regular sequence x = (jq, • • •, Xd), then T =
Torf /k(R/I, R/I) is isomorphic to (R/I)d and

TorR/k(R/I, R/I) ^ A(T for / > 0.
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292 Simplicial Methods in Homological Algebra

In particular these vanish for / > d. To see this, we choose the Koszul reso-
lution K(x) -> R/I (4.5.5); each Kt(x) = AlRd is _L-projective. Since every
differential in R/I 0 # K(X) is zero, we have

Torf>/k(R/I, R/I) ^ R/I ®R Kt(x) ^ AT.

More is true: we saw in exercise 4.5.1 that K(x) is a graded-commutative
DG-algebra, so Tor* (R/I, R/I) is naturally a graded-commutative R/I-
algebra, namely via the exterior algebra structure. This product may also be
obtained by composing the external product

Torf /k(R/I, R/I)®TovR/k(R/I, R/I) -> TorR®R/k (R/I® R/I,

with multiplication arising from R® R -> R and R/I ® R/I —• R/I. Indeed,
the external product is given by K(x) 0 K(x) and the multiplication is re-
solved by the Koszul product K(x) ® K(x) - • K(x); see exercise 4.5.5.

Theorem 8.7.14 (Products of rings) Let k -> R and k -> R' be ring maps.
Then there are natural isomorphisms

ToriRxR')/k(M xMr,N x N') ^ Torf /k(M, N) 0 Torf /k(Mf, Nf),

Exf{RxR,)/k(M x M\N x N') = Ext*R/k(M, N) 0 Ext*R/k(M\ Nf).

Here M and N are R-modules, Mr and N' are R -modules, and we consider
M x M' and N x Nf as (R x Rf)-modules by taking products componentwise.

Proof Write _L and U for the cotriples ®R and ®R\ so that ± 0 ± ' is
the cotriple ®(R x R'). Since (_L 0 A.')(M x Mf) ^ (_L M) 0 (_L Mr) 0 (_Lr

M) 0 (Lf Mr), both ±M = M ® R and ± ' Mr = Mf ® /?' are (_L 0 ±0-
projective (/? x /^-modules (exercise 8.6.3). The bar resolutions f$(R, M) ->
M and fi(Rf, M') -+ M' are therefore &-split (± 0 .LO-projective resolutions;
so is the product f$(R,M) x /*(/?', Mf) -> M x Afr. Using this resolution to
compute relative Tor and Ext over R x Rf yields the desired isomorphisms, in
view of the natural /:-module isomorphisms

(M x Mr) ®{RxR>) (N x Nf) ^ (M 0/? Â ) 0 (Mr 0 ^ ^ ) ,

Hom/?x/?/(M x M\N x A^r) ^ Horn*(M, iV) 0 Hom^(Mr, A^r). <>

Call a right /^-module P relatively flat if P 0/? TV* is exact for every &-split
exact sequence of left /^-modules N*. As in exercise 3.2.1 it is easy to see that
P is relatively flat if and only if Torf /k(P, N) = 0 for * ^ 0 and all left mod-
ules N.
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8.7 CotripleHomology 293

Relatively Flat Resolution Lemma 8.7.15 If P -> M is a k-split resolution

ofM by relatively flat R-modules, then Torf /lc(M, N) ^ H*(P (g)/? N).

Proof The proof of the Flat Resolution Lemma 3.2.8 goes through in this
relative setting. O

Corollary 8.7.16 (Flat base change for relative Tor) Suppose R —> T is a
ring map such that T is flat as an R-module. Then for all T-modules M and
all R-modules N:

Torf//C(M, N) ^ Torl/k(M, T ®R N).

Moreover, if R is commutative and M = L ®R T these are isomorphic to

TorR/k(L ®R T,N)^T ®R Torf M (L, N).

Proof This is like the Flat base change 3.2.9 for absolute Tor. Write P -+ M
for the &-split resolution associated to J_* M -> M, with J_ = <S>RT. The right
side is the homology of the chain complex P <S>T (T <S>R N) = P <8>R N, SO

it suffices to show that each Pn = (±n M) 0^ T is a relatively flat /^-module.
Because k is commutative there is a natural isomorphism P ®RN = T ®R
N <g>k (_Ln M) for every N. If N* is a &-split exact sequence of left /^-modules,
so is N* <8>k (-Ln M); since T is flat over R, this implies that P ®R N* =
T ®R N* (g)* (±n M) is exact. <>

Exercise 8.7.3 (Localization) Let S be a central multiplicative set in R, and
M, N two R-modules. Show that

Tors~*R/k(S~lM, S~lN) ^ TorR/k(S~lM, N) ^ S~l Torf /k(M, N).

Vista 8.7.17 (Algebraic K -theory) Let 1Z be the category of rings-without-
unit. The forgetful functor U\Tl^> Sets has a left adjoint functor F:Sets —•
1Z, namely the free ring functor. The resulting cotriple ±:7Z-+ 1Z takes a
ring R to the free ring-without-unit on the underlying set of R. For each
ring R, the augmented simplicial ring _L* R -> R is aspherical in the sense
of 8.4.6: the underlying (based, augmented) simplicial set £/(_L* R) -> UR
is aspherical. (To see this, recall from 8.6.10 that £/(JL* R) is flbrant and
left contractible, hence aspherical). If G: 1Z -> Groups is any functor, the ±-
left derived functors of G (i.e., derived with respect to _L) are defined to be
LnG(R) = 7rnG(_L* R), the homotopy groups of the simplicial group G(_L*
R). This is one type of non-abelian homological algebra (see 8.3.5).
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294 Simplicial Methods in Homological Algebra

Classical examples of such a functor G are the general linear groups
GLm(R), defined for a ring-without-unit R as the kernel of the augmenta-
tion GLm(l 0 R) -> GLm(I). The inclusion of GLm(R) in GLm+\(R) by
M H> (cf ?) allows us to form the infinite general linear group GL(R) as the
union UGLm(R). By inspection, LnGL(R) = limm^oo LnGLm(R).

One of the equivalent definitions of the higher AT-theory of a ring /?, due to
Gersten and Swan, is

Kn(R) = Ln-2GL(R) = nn-2GL(U R) for n > 3,

while K\ and A^ are defined by the exact sequence

0 -> K2(R) -» L0GL(R) -> GL(R) -> #i(fl) -> 0.

If /? is a free ring, then Kn(R) = 0 for n > 1, because GL(_L* 7?) -
is contractible (8.6.9). If R has a unit, then LoGL(R) is the infinite Stein-
berg group St(R) = lim Stn(R) of 6.9.13; St(R) is the universal central ex-
tension of the subgroup E(R) of GL(R) generated by the elementary matrices
(6.9.12). For details we refer the reader to [Swanl].

8.8 Andre-Quillen Homology and Cohomology

In this section we fix a commutative ring k and consider the category Com-
malg = A:-Commalg of commutative A:-algebras R. We begin with a few defi-
nitions, which will be discussed further in Chapter 9, section 2.

8.8.1 The Kdhler differentials of R over k is the /^-module £lR/k having the
following presentation: There is one generator dr for every r e R, with da = 0
if a G k. For each r, s e R there are two relations:

d(r + s) = (dr) + (ds) and d(rs) = r(ds) + s(dr).

If M is a /c-module, a k-derivation D: R -> M is a ^-module homomorphism
satisfying Z)(rs) = r(Z)1s

<) + s(Dr); the map d: R ^ &R/k (sending r to dr)
is an example of a ^-derivation. The set Devk(R, M) of all ^-derivations is an
/^-module in an obvious way.

Exercise 8.8.1 Show that the ^-derivation d: R —>• £2R/JC is universal in the
sense that Der^(/?, M) = HomR(QR/k, M).

Exercise 8.8.2 If R = k[X] is a polynomial ring on a set X, show that
is the free /^-module with basis {dx : x G X}. If f̂ is a A:-algebra,
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8.8 Andre-Quillen Homology and Cohomology 295

conclude that QK[X]/K = K <S>k &k[X]/k- These results will be generalized in
exercise 9.1.3 and theorem 9.1.7, using 9.2.2.

Recall from 8.6.16 that there is a cotriple _L on Commalg, ±R being
the polynomial algebra on the set underlying R. If we take the resulting
augmented simplicial ^-algebra _]_*/? -> R, we have canonical maps from
-LnR= _Ln+1 R to R for every n. This makes an /^-module M into a
±n /^-module. The next definitions were formulated independently by M.
Andre and D. Quillen in 1967; see [Q].

Definitions 8.8.2 The Andre-Quillen cohomology Dn(R/k,M) of R with
values in an ^-module M is the cotriple cohomology of R with coefficients

Dn(R/k, M) = nn Derfc(_U#, M) = Hn(R; Der*(-, M)).

The cotangent complex i-R/k = LR/IC(-L*R) of the ^-algebra R is defined
to be the simplicial /^-module [n] \-+ R <8>(±nR) &(±nR)/k> The Andre-Quillen
homology of R with values in an R-module M is the sequence of R-modules

When M = R, we write D*(R/k) for the /^-modules D*(R/k, R) = 7T*LR/k.
There is a formal analogy: D* resembles Tor* and D* resembles Ext*.

Indeed, the cotangent complex is constructed so that Hom#([L/?/&, M) =
Der£(_U#, M) and hence that D*(R/k, M) ^ 7r*Hom/?(L/?/^, M). To see
this, note that for each n we have

®(±nR) &(±nR)/k, M) = Hom±nR(Q(±nR)/k, M) ^ Derk(±nR, M).

Exercise 8.8.3 Show that D°(R/k, M) ^ Der*(#, M) and D0(R/k, M) ^
M ®

Exercise 8.8.4 (Algebra extensions [EGA, IV]) Let Exalcomm^(/?, M) de-
note the set of all commutative fc-algebra extensions of R by M, that is, the
equivalence classes of commutative algebra surjections E -> R with kernel
M, M2 = 0. Show that

Exalcomnu(/?, M)^Dl(R,M).

Hint: Choose a set bijection E = R x M and obtain an element of the mod-
ule Homsets(-L/?, M) = Der^(_L2/?, M) by evaluating formal polynomials
f e±R in the algebra E.
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296 Simplicial Methods in Homological Algebra

Exercise 8.8.5 Polynomial A:-algebras are _L-projective objects of Commalg
(8.6.7). Show that if R is a polynomial algebra then for every M and / ^ 0
Dl(R/k, M) = Di(R/k, M) = 0. We will see in exercise 9.4.4 that this van-
ishing also holds for smooth A:-algebras.

Exercise 8.8.6 Show that for each M there are universal coefficient spectral
sequences

E2
pq = TorR

p(Dq(R/k), M) =» Dp+q(R/k, M);

E{q = Extp
R(Dq(R/k), M) => Dp+q(R/k, M).

If A: is a field, conclude that

Dq(R/k, M) ^ Dq{R/k) <S>R M and Dq(R/k, M) ^ HomR(Dq(R/k), M).

In order to give the theory more flexibility, we need an analogue of the fact
that _L-projective resolutions may be used to compute cotriple homology. We
say that an augmented simplicial A;-algebra P* —> R is a simplicial polynomial
resolution of R if each P, is a polynomial ^-algebra and the underlying aug-
mented simplicial set is aspherical. The polynomial resolution _L* R —• R is
the prototype of this concept. Since polynomial ^-algebras are _L-projective,
there is a simplicial homotopy equivalence P* —>±.*R (2.2.6, 8.6.7). There-
fore Der*(P*, M) ^ Der*(_L* R, M) and D*(R/k, M) ^ nn Der^(P*, M).
Similarly, there is a chain homotopy equivalence between the cotangent com-
plex !_/?/£ and the simplicial module D_/?/£(P*): [n] \-^ R (g)pn Qpn/k- (Exer-
cise!) Therefore we may also compute homology using the resolution P*.

8.8.3 Here is one useful application. Suppose that k is noetherian and that R
is a finitely generated /c-algebra. Then it is possible to choose a simplicial poly-
nomial resolution P* —• R so that each Pn has finitely many variables. Conse-
quently, if M is a finitely generated /^-module, the /^-modules Dq(R/k, M)
and Dq{R/k, M) are all finitely generated.

8.8.4 (Flat base change) As another application, suppose that R and K are
/:-algebras such that Torf (K, R)=0 for i / 0. This is the case if K is flat
over k. Because these Tors are the homology of the ^-module chain complex
C(K<S)k -L*R), it follows that K<g>k X*R -> K <g>k R is a simplicial polyno-
mial resolution (use 8.4.6). Therefore

D*(K®kR IK, M) ^ n*DerK(K®k ±*R, M)

£ 7T* Der*(_U/?, M) = D*(/?/^, M)
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8.8 Andre-Quillen Homology and Cohomology 297

for every K ® /^-module M. Similarly, from the fact that QK[X]/JC = K <&k
&k[X]/k for a polynomial ring k[X] it follows that LK®R/K — K <S>k ^-R/k and
hence that D*(K®kR /K) = K <g>k D*(R/k). This family of results is called
Flat base change.

Exercise 8.8.7 Show that D*(R/k, M) = D*(R/k, M)=0ifRis any local-
ization ofk.

8.8.5 As a third application, suppose that R is free as a ^-module. This will
always be the case when k is a field. We saw in 8.6.16 that the forgetful
functor U'\ Commalg ->• &-mod has a left adjoint Sym; the resulting cotriple
±S(R) = Sym(U'R) is somewhat different than the cotriple _L Our assump-
tion that R is free implies that Sym(UfR) is a polynomial algebra, and free
as a fc-module. Hence J_£ (R) —>• R is also a simplicial polynomial resolu-
tion of R. Therefore D*(R/k, M) is isomorphic to the cotriple cohomology
7r*(±f R, M) of R with respect to the cotriple ±s. Similarly, LR/k and Ls

R/k =
{R ®(±SR) &(±s

nR)/k} a r e homotopy equivalent, and D*(R/k, M) = n*(M <8>R

8.8.6 (Transitivity) A fourth basic structural result, which we cite from [Q],
is Transitivity. This refers to the following exact sequences for every A;-algebra
map K -> R and every R -module M:

0 - • DerK(R, M) -+ Derk(R, M) -> Derk(K, M) -?-> Exalcomm/^(/?, M) -+

Exalcomm^C/?, M) -+ Exalcomm^C/i:, M) -^> D2(R/K, M) -+ • • •

• Dn{R/K, M) - • Dn(R/k, M) -> Dn(K/k, M) -^ Dn+l(R/K, M) -+ • • •,

and its homology analogue:

• • • - • Dn+l(R/K) -^R®K Dn{K/k) -+ Dn{R/k) - • Dn{R/K) -^ D

The end of this sequence is the first fundamental sequence 9.2.6 for

Exercise 8.8.8 Suppose that A: is a noetherian local ring with residue field
F = R/m. Show that Dl(F/k) = D\(F/k) = m/m2, and conclude that if R
is a ^//-algebra we may have D*(R/k, M) / D*(R/(k/I), M).

Exercise 8.8.9 (Barr) In this exercise we interpret Andre-Quillen homology
as a cotriple homology. For a commutative A>algebra R, let Commalg//?
be the "comma" category whose objects are ^-algebras P equipped with
an algebra map P —> R, and whose morphisms P -+ Q are algebra maps
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298 Simplicial Methods in Homological Algebra

such that P -> R factors as P -> Q -> R. Let Diff: Commalg/7? -> R-mod
be the functor Diff(P) = Qp/k <8>p R. Show that J_ induces a cotriple on
Commalg//?, and that if we consider R as the terminal object in Commalg//?,
then the cotriple homology groups (8.7.1) are Andre-Quillen homology:

Dn(R/k) = Hn(R; Diff) and Dn(R/k, M) = Hn(R; Diff ®R M).

8.8.1 Relation to Hochschild Theory

When A: is a field of characteristic zero, there is a much simpler way to calcu-
late D*(R/k, M) and D*(R/k, M), due to M. Barr [Barr].

Barr's Theorem 8.8.7 Suppose C*(R) is an R-module chain complex, natu-
ral in R for each R in Commalg, such that

L H0(C*(R)) ^ QR/k for each R.
2.IfR is a polynomial algebra, C*(R) - • QR/JC is a split exact resolution.
3. For each p there is a functor Fp\ fc-mod -> &-mod such that Cp(R) =

R ®k Fp(UR), where UR is the k-module underlying R.

Then there are natural isomorphisms

Dq(R/k, M) ^ Hq HomR(C*(R), M) and

Dq(R/k, M) 9* Hq(M ®R C*(R)).

Proof We give the proof for cohomology, the proof for homology being simi-
lar but more notationally involved. Form the first quadrant double complex

with horizontal differentials coming from C* and vertical differentials coming
from the naturality of the Cp. We shall compute H* Tot(£n) m t w o ways.

If we fix q, the ring ±^R is polynomial, so by (2) C*(±qR) - • &±sR/fc is

split exact. Hence Hp HomR(C*(±%R), M) = 0 for p ^ 0, while

H°HomR(C*(±%R), M) ^ Hom^C^^/^, M) ^ Derk(±
s
qR, M).

Thus the spectral sequence 5.6.2 associated to the row-filtration on EQ degen-
erates at E2 to yield Hq Tot(£0) = Hq Der^(±f/?, M) = Dq(R/k, M).

On the other hand, if we fix p and set G(L) = Homk(Fp(L), M) we see
by condition (3) that £Q* = G(U±%R). But the augmented simplicial k-
module U±1R -> UR is left contractible (8.4.6), because ±sR = Sym(UR)
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8.8 Andre-Quillen Homology and Cohomology 299

(see 8.6.10). As G is a functor, E?* -> G(UR) = HomR(Cp(R), M) is
also left contractible, hence aspherical. Thus Hq(E^) = 0 for q ^ 0, and
H°(E^*) = HomR(Cp(R), M). Thus the spectral sequence 5.6.1 associated
to the column filtration degenerates at £2 as well, yielding HpTot(Eo) =

R),M). O

Preview 8.8.8 In the next chapter, we will construct the Hochschild homol-
ogy //*(/?, R) of a commutative A:-algebra R as the homology of a natural R-
module chain complex C%(R) with Ch

p{R) = R ®k Fp(UR), Fp{L) being the
/7-fold tensor product (L <S>k L <S>k • • • <8>k L). There is a natural isomorphism
H\(R, R) = QR/k and the map C\(R) -> CQ(R) is zero. We will see in 9.4.7
that if R is a polynomial algebra, then Hn(R, R) = ^n

Ri^ so C\ does not quite
satisfy condition (2) of Barr's Theorem.

To remedy this, we need the Hodge decomposition of Hochschild homol-

ogy from 9.4.15. When Q c k there are natural decompositions Fp(L) =

0F p (L) ( / ) such that each C%(R)(i) = R ®k F*(UR)(i) is a chain subcomplex

of C*(R) and C*(R) = ©C^(/?)(/). If M is an fl-module (an R-R bimod-

ule via mr = rm), set //n
( 0(#, M) = Hn(M ®R C%(R){i)) and H£t)(R, M) =

Hn HomR(C%(R){i\ M). The Hodge decomposition is

Hn(R, M) = 0//n
(/)(/?, M) and Hn(R, M) = ®H^(R, M).

If R is a polynomial algebra, then H^\R, R)=0 for i ^ n, and //^(tf, /?) ^
fi^/^ is a free /^-module (exercise 9.4.4). In particular, since C^{R)^ = 0 for

/ > n the augmented complex C%(R)^ -> £2^^[—/] is split exact for all /.

If we let CP(R) be Ch
p+l(R)(l\ then the above discussion show that C*

satisfies the conditions of Barr's Theorem 8.8.7. In summary, we have proven

the following.

Corollary 8.8.9 Suppose that k is a field of characteristic zero. Then Andre-
Quillen homology is a direct summand of Hochschild homology, and Andre-
Quillen cohomology is a direct summand of Hochschild cohomology:

Dq(R/k, M) ^ H^X(R, M) and Dq(R/k, M) ^ H^l(R, M).
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