Appendix A
Category Theory Language

This Appendix provides a swift summary of some of the basic notions of
category theory used in this book. Many of the terms are defined in Chapters 1
and 2, but we repeat them here for the convenience of the reader.

A.1 Categories

Definition A.1.1 A category C consists of the following: a class obj(C) of
objects, a set Hom¢(A, B) of morphisms for every ordered pair (A, B) of
objects, an identity morphism id4 € Hom¢g(A, A) for each object A, and a
composition function Hom¢(A, B) x Homg(B, C) — Home(A, C) for every
ordered triple (A, B, C) of objects. We write f: A — B to indicate that f is
a morphism in Hom¢ (A, B), and we write gf or go f for the composition of
f:A— B with g: B — C. The above data is subject to two axioms:

Associativity Axiom: (hg)f =h(gf)for fA—> B,g:B—> C,h:C—> D
Unit Axiom: idgof = f = foidy for f: A — B.

Paradigm A.1.2 The fundamental category to keep in mind is the category
Sets of sets. The objects are sets and the morphisms are (set) functions, that is,
the elements of Homges(A, B) are the functions from A to B. Composition of
morphisms is just composition of functions, and id 4 is the function id4(a) = a
for all a € A. Note that the objects of Sets do not form a set (or else we would
encounter Russell’s paradox of a set belonging to itself!); this explains the
pedantic insistence that obj(C) be a class and not a set. Nevertheless, we shall
often use the notation C € C to indicate that C is an object of C.

Examples A.1.3 Another fundamental category is the category Ab of abelian
groups. The objects are abelian groups, and the morphisms are group ho-
momorphisms. Composition is just ordinary composition of homomorphisms.
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The categories Groups of groups (and group maps) and Rings of rings (and
ring maps) are defined similarly.

If R is aring, R—mod is the category of left R-modules. Here the objects are
left R-modules, the morphisms are R-module homomorphisms, and composi-
tion has its usual meaning. The category mod—R of right R-modules is defined
similarly, and it is the same as R—-mod when R is a commutative ring.

A discrete category is one in which every morphism is an identity mor-
phism. Every set (or class!) may be regarded as a discrete category, since com-
position is forced by discreteness.

Small categories A.1.4 A category C is small if obj(C) is a set (not just a
class). Sets, Ab and R-med are not small, but a poset or a group may be
thought of as a small category as follows.

A partially ordered set, or poset, is a set P with a reflexive, transitive
antisymmetric relation <. We regard a poset as a small category as follows.
Given p, g € P the set Homp(p, q) is the empty set unless p < g, in which
case there is exactly one morphism from p to g (denoted p < g of course).
Composition is given by transitivity and the reflexive axiom (p < p) yields
identity morphisms.

A category with exactly one object * is the same thing as a monoid, that
is, a set M (which will be Hom(x, %)) equipped with an associative law of
composition and an identity element. In this way we may consider a group as
a category with one object.

The word “category” is due to Eilenberg and MacLane (1947) but was
taken from Aristotle and Kant. It is chiefly used as an organizing principle for
familiar notions. 1t is also useful to have other words to describe familiar types
of morphisms that we encounter in many different categories; here are a few.

A morphism f: B — C is called an isomorphism in C if there is a morphism
g:C — B such that gf =idg and fg = idc. The usual proof shows that if
g exists it is unique, and we often write g = f~!. An isomorphism in Sets
is a set bijection; an isomorphism in the category Top of topological spaces
and continuous maps is a homeomorphism; an isomorphism in the category of
smooth manifolds and smooth maps is called a diffeomorphism. In most alge-
braic categories, isomorphism has its usual meaning. In a group (considered as
a category), every morphism is an isomorphism.

A5 A morphism f: B — C is called monic in C if for any two distinct
morphisms eq, e3: A — B we have fe| # fes; in other words, we can cancel
f on the left. In Sets, Ab, R-mod, ..., in which objects have an underlying
set (“concrete” categories; see A.2.3), the monic morphisms are precisely the
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Category Theory Language 419

morphisms that are set injections (monomorphisms) in the usual sense. If B —
C is monic, we will sometimes say that B is a subobject of C. (Technically a
subobject is an equivalence class of monics, two monics being equivalent if
they factor through each other.)

A morphism f: B — C is called epi in C if for any two distinct morphisms
g1, 22:C —> D we have g| f # g2 f; in other words, we can cancel f on the
right. In Sets, Ab, and R—mod the epi morphisms are precisely the onto maps
(epimorphisms). In other concrete categories such as Rings or Top this fails;
the morphisms whose underlying set map is onto are epi, but there are other
epis.

Exercise A.1.1 Show that Z C Q is epi in Rings. Show that Q@ C R is epi in
the category of Hausdorff topological spaces.

A.1.6 An initial object (if it exists) in C is an object I such that for every
C in C there is exactly one morphism from / to C. A terminal object in C
(if it exists) is an object T such that for every C in C there is exactly one
morphism from C to 7. All initial objects must be isomorphic, and all terminal
objects must be isomorphic. For example, in Sets the empty set ¢ is the initial
object and any 1-point set is a terminal object. An object that is both initial and
terminal is called a zero object. There is no zero object in Sets, but 0 is a zero
object in Ab and in R-mod.

Suppose that C has a zero object 0. Then there is a distinguished element
in each set Hom¢(B, C), namely the composite B — 0 — C; by abuse we
shall write O for this map. A kernel of a morphism f: B — C is a morphism
it A — B such that fi = 0 and that satisfies the following universal property:
Every morphism e: A’ — B in C such that fe = 0 factors through A as e = ie’
for a unique ¢’: A’ — A. Every kernel is monic, and any two kernels of f are
isomorphic in an evident sense; we often identify a kernel of f with the cor-
responding subobject of B. Similarly, a cokernel of f: B — C is a morphism
p:C — D such that pf = 0 and that satisfies the following universal property:
Every morphism g: C — D’ such that gf = 0 factors through D as g =¢'p
for a unique g’: D — D'. Every cokemnel is an epi, and any two cokernels are
isomorphic. In Ab and R-mod, kernel and cokernel have their usual mean-
ings.

Exercise A.1.2 In Groups, show that monics are just injective set maps, and
kernels are monics whose image is a normal subgroup.

Opposite Category A.1.7 Every category C has an opposite category C°P.
The objects of C°P are the same as the objects in C, but the morphisms (and
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composition) are reversed, so that there is a 1-1 correspondence f — f°P
between morphisms f: B — C in C and morphisms f°P:C — B in C°P. If
f is monic, then f°P is epi; if f is epi, then f°P is monic. Similarly, taking
opposites interchanges kernels and cokernels, as well as initial and terminal
objects. Because of this duality, C°P is also called the dual category of C.

Example A.1.8 If R is a ring (a category with one object), R is the ring
with the same underlying set, but in which multiplication is reversed. The cat-
egory (R°P)-mod of left R°P-modules is isomorphic to the category mod-R
of right R-modules. However, (R—-mod)°P cannot be S—mod for any ring S
(see A4.7).

Exercise A.1.3 (Pontrjagin duality) Show that the category C of finite abelian
groups is isomorphic to its opposite category C°P, but that this fails for the
category 7 of torsion abelian groups. We will see in exercise 6.11.4 that 7°P
is the category of profinite abelian groups.

Products and Coproducts A.1.9 If {C;:i € I} is a set of objects of C, a
product [];c; Ci (if it exists) is an object of C, together with maps 7;: [[ C; —
C; (j € I) such that for every A € C, and every family of morphisms a;: A ~>
C;i (i € I), there is a unique morphism a: A — [] C; in C such that 7 = o;
for all i € I. Warning: Any object of C isomorphic to a product is also a
product, so [ C; is not a well-defined object of C. Of course, if [] C; exists,
then it is unique up to isomorphism. If I = {1, 2}, then we write C; x C3
for [_[l-e ; Ci. Many concrete categories (Sets, Groups, Rings, R-mod, . . .
A.2.3) have arbitrary products, but others (e.g., Fields) have no products at
all.

Dually, a coproduct |];c; Ci of a set of objects in C (if it exists) is an
object of C, together with maps ¢;: C; — [ C; (j € I) such that for every
family of morphisms «;: C; — A there is a unique morphism o:[[C; — A
such that atj =« for all j € I. That is, a coproduct in C is a product in C°P.
If 1 ={1,2}, then we write C; LI C; for |];., Ci. In Sets, the coproduct is
disjoint union; in Groups, the coproduct is the free product; in R-mod, the
coproduct is direct sum.

Exercise A.1.4 Show that Hom¢(A, [[Ci) = [];.; Home(A, C;) and that
Home(] | Ci, A) = [];; Home(Cy, A).
Exercise A.1.5 Let {o;: A; — C;} be a family of maps in C. Show that

1. If [T A; and [] C; exist, there is a unique map a: [[ A; — [] C; such that
mia = o;7; for all i. If every «; is monic, so is «.
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2. If ] A; and | | C; exist, there is a unique map o: | [ A; — | ] C; such that
tio; = ey for all i. If every «; is an epi, so is o

A.2 Functors

By a functor F:C — D from a category C to a category D we mean a rule
that associates an object F(C) (or FC or even F¢) of D to every object C of
C, and a morphism F(f): F(C1) = F(C2) in D to every morphism f:C; —
C2 in C. We require F to preserve identity morphisms (F(id¢) = idp¢) and
composition (F(gf) = F(g)F (f)). Note that F induces set maps

Hom¢(Cy, C2) — Homp(FCy, FC»)

forevery C1, C2in C. If G: D — £ is another functor, the composite GF:C —
£ is defined in the obvious way: (GF)(C) = G(F(C)) and (GF)(f) =
G(F(f)).

The identity functor id¢: C — C is the rule fixing all objects and morphisms,
that is, id¢(C) = C, ide(f) = f. Clearly, for a functor F:C — D we have
F oide = F =idp o F. Except for set-theoretic difficulties, we could form a
category CAT whose objects are categories and whose morphisms are func-
tors. Instead, we form Cat, whose objects are small categories; Homca (C, D)
is the set (!) of all functors from C to D, the identity of C is id¢, and composi-
tion is composition of functors.

Hom and Tensor Product A.2.1 Let R be a ring and M a right R-module.
For every left R-module N the tensor product M ®g N is an abelian group
and M ®pr — is a functor from R-mod to Ab. For every right R-module N,
Hompg(M, N) is an abelian group and Homg(M, —) is a functor from mod-R
to Ab. These two functors are discussed in Chapter 3.

Forgetful Functors A.2.2 A functor that does nothing more than forget some
of the structure of a category is commonly called a forgetful functor, and
written with a U (for “underlying”). For example, there is a forgetful functor
from R-meod to Ab (forget the R-module structure), one from Ab to Sets
(forget the group structure), and their composite from R—mod to Sets.

Faithful Functors A.2.3 A functor F:C — D is called faithful if the set maps
Hom¢(C, C") — Homp(FC, FC') are all injections. That is, if f; and f> are
distinct maps from C to C’ in C, then F(f}) # F(f>). Forgetful functors are
usually faithful functors, and a category C with a faithful functor U:C — Sets
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is called a concrete category. In a concrete category, morphisms are com-
pletely determined by their effect on the underlying sets. R—mod and Ab are
examples of concrete categories.

A subcategory B of a category C is a collection of some of the objects
and some of the morphisms, such that the morphisms of B are closed under
composition and include idp for every object B in B. A subcategory is a
category in its own right, and there is an (obvious) inclusion functor, which
is faithful by definition.

A subcategory B in which Homg(B, B’) = Hom¢(B, B') for every B, B’ in
B is called a full subcategory. We often refer to it as “the full subcategory on
the objects” obj(B), since this information completely determines B.

A functor F:C — D is full if the maps Hom¢(C, C') — Homp(FC, FC')
are all surjections. That is, every g: F(C) — F(C’) in D is of the form g =
F(f) for some f:C — C’. A functor that is both full and faithful is called
fully faithful. For example, the inclusion of a full subcategory is fully faithful.
The Yoneda embedding (see A.3.4) is fully faithful. Another example of a
fully faithful functor is “reflection” onto a skeletal subcategory, which we now
describe.

Skeletal Subcategories A.2.4 By a skeletal subcategory S of a category C we
mean a full subcategory such that every object of C is isomorphic to exactly
one object of S. For example, the full subcategory of Sets on the cardinal
numbers 0 = ¢, 1 = {¢}, . . . is skeletal. The category of finitely generated R-
modules is not a small category, but it has a small skeletal subcategory.

If we can select an object FC in S and an isomorphism 6¢-: C = FC for
each C in C, then F extends to a “reflection” functor as follows: if f: B —
C, then F(f)=6cf 051. Such a reflection functor is fully faithful. We will
discuss reflections and reflective subcategories more in A.6.3 below. The set-
theoretic issues involved here are discussed in [MacCW, 1.6].

Contravariant Functors A.2.5 The functors we have been discussing are
sometimes called covariant functors to distinguish them from contravariant
functors. A contravariant functor F:C — D is by definition just a covariant
functor from C°P to D. That is, it associates an object F(C) of D to every
object C of C, and a morphism F(f): F(C2) — F(Cy)in Dtoevery f:C; —
C; in C. Moreover, F(idc) =idrc and F reverses composition: F(gf) =
F(f)F(g).

The most important example in this book will be the contravariant functor
Hompg(—, N) from moed-R to Ab associated with a right R-module N. Its de-
rived functors Ext%(—, N) are also contravariant (see 2.5.2). Another example
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is a presheaf on a topological space X; this is by definition a contravariant
functor from the poset of open subspaces of X to the category Ab.

A.3 Natural Transformations

Suppose that F' and G are two functors from C to D. A natural transformation
n: F = G is a rule that associates a morphism n¢: F(C) - G(C) in D to
every object C of C in such a way that for every morphism f:C — C’ in C
the following diagram commutes:

Ff

F(C) — F(C)

nl ,Ln
Gf

G(C) — G(C).

This gives a precise meaning to the informal usage, “the map nc: F(C) —
G(C) is natural in C.” If each n¢ is an isomorphism, we say that 7 is a natural
isomorphism and write n: F = G.

Examples A.3.1

1. Let T(A) denote the torsion subgroup of an abelian group A. Then T
is a functor from Ab to itself, and the inclusion T(A) C A is a natural
transformation 7 = idap.

2. Let h: M — M’ be an R-module homomorphism of right modules. For
every left module N there is a natural map A @ N: M Qg N > M’ ®p
N, forming a natural transformation M®pg = M'®g. For every right
module N there is a natural map ny: Homg(M’', N) — Homg(M, N)
given by ny(f) = fh, forming natural transformation Homg(M', —) =
Homg(M, —). These natural transformations give rise to maps of Tor
and Ext groups; see Chapter 3.

3. In Chapter 2, the definitions of §-functor and universal §-functor will
revolve around natural transformations.

Equivalence A.3.2 We call a functor F:C — D an equivalence of categories
if there is a functor G: D — C and there are natural isomorphisms id¢ = G F,
idp = FG. For example, the inclusion of a skeletal subcategory is an equiv-
alence (modulo set-theoretic difficulties, which we ignore). The category of
based vector spaces (objects = vector spaces with a fixed basis, morphisms =
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matrices) is equivalent to the usual category of vector spaces by the forgetful
functor. Equivalence of categories is the useful version of “‘isomorphism” most
often encountered in practice. As a case in point, the category of based vector
spaces is not isomorphic to the category of vector spaces, in which the basis
choices are not explicitly given.

Functor Categories A.3.3 Given a category I and a category .A, the functors
F: I — A form the objects of the functor category A!. The morphisms in A’
from F to G are the natural transformations 7: F = G, the composition {7
of n with {: G = H is given by ({n); = ¢;n;, and the identity morphism of
F is given by (idr); = id f(;). (Exercise: show that Alisa category when /
is a small category.) We list several examples of funtor categories in Chapter 1,
section 7 in connection with abelian categories; if .4 is an abelian category, then
so is A’ (exercise A.4.3). Here is one example: If G is a group, the AbY is the
category of G-modules discussed in Chapter 6.

Example A.3.4 The Yoneda embedding is the functor h: I — Sets’ * given by
letting h; be the functor h;(j) = Hom;(}, i). This is a fully faithful functor. If
I is an Ab-category (see A.4.1 below), the Yoneda embedding is sometimes
thought of as a functor from I to Ab’ * (which is an abelian category). In
particular, the Yoneda embedding allows us to think of any Ab-category (or
any additive category) as a full subcategory of an abelian category. We discuss
this more in Chapter 1, section 6.

A.4 Abelian Categories

The notion of abelian category extracts the crucial properties of abelian groups
out of Ab, and gives homological algebra much of its power. We refer the
reader to [MacCW] or Chapter 1, section 3 of this book for more details.

A4.1 A category A is called an Ab-category if every hom-set Hom 4(C, D)
in A is given the structure of an abelian group in such a way that composition
distributes over addition. For example, given a diagram in .4 of the form

f g h
A— B —=C — D
g

we have h(g + g')f = hgf + hg'f in Hom(A, D). Taking A=B=C = D,
we see that each Hom(A, A) is an associative ring. Therefore, an Ab-category
with one object is the same thing as a ring. At the other extreme, R—mod is an
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Ab-category for every ring R, because the sum of R-module homomorphisms
is an R-module homomorphism.

We call A an additive category if it is an Ab-category with a zero object
0 and a product A x B for every pair A, B of objects of .A. This structure is
enough to make finite products the same as finite coproducts, and it is tradi-
tional to write A @ B for A x B. Again, R—mod is an additive category, but
so is the smaller category on objects {0, R, R2, R3,...} with Hom(R", R™) =
all m x n matrices in R,

Definition A.4.2 An abelian category is an additive category .A such that:

1. (AB1) Every map in .4 has a kernel and cokernel,
2. (AB2) Every monic in .4 is the kernel of its cokernel, and
3. Every epi in A is the cokernel of its kernel.

Thus monic = kernel and epi = cokernel in an abelian category. Again,
R-mod is an abelian category (kernel and cokernel have the usual mean-
ings).

Exercise A.4.1 Let A be an Ab-category and f: B — C a morphism. Show
that:

1. f is monic < for every nonzeroe: A > B, fe #0;
2. f isanepi < for every nonzero g:C — D, gf #0.

Exercise A.4.2 Show that A° is an abelian category if .4 is an abelian
category.

Exercise A.4.3 Given a category I and an abelian cateory A, show that the
functor category A/ is also an abelian category and that the kernel of n: B —
C is the functor A, A(i) =ker(n;).

In an abelian category every map f: B — C factors as
e m
B — im(f) —C

with m = ker(coker f) monic and e epi. Indeed, m is obviously monic; we
leave the proof that e is epi as an exercise. The subobject im( f) of C is called
the image of f, because in “concrete” abelian categories like R—mod (A.2.3)
the image is im(f) = { f(b): b € B} as a subset of C.

A sequence A —f> B-% Cof maps in an abelian category is called ex-
act (at B) if ker(g) =im(f). This implies in particular that the composite
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gf: A — C is zero. Homological algebra might be thought of as the study of
the circumstances when sequences are exact in an abelian category.

A.4.3 The following axioms for an abelian category .4 were introduced by
Grothendieck in [Tohoku]. Axioms (AB1) and (AB2) were described above.
The next four are discussed in Chapter 1, section 3; Chapter 2, sections 3
and 6; and in Chapter 3, section 5.

(AB3) For every set {A;} of objects of \A, the coproduct | | A; exists in A.
The coproduct is often called the direct sum and is often written as ®A;.
Rather than say that A satisfies (AB3), we often say that A is cocomplete
(see A.5.1).

(AB3*) For every set {A;} of objects of A, the product [] A; exists in A.
Rather than say that 4 satisfies (AB3*), we usually say that A4 is complete
(see A.5.1 below).

Example A44 Ab and R-mod satisfy both (AB3) and (AB3*), but the
abelian category of finite abelian groups satisfies neither and the abelian cat-
egory of torsion abelian groups satisfies (AB3) but not (AB3*). For purposes
of homological algebra, it is often enough to assume that [ A; and | | A; exist
for countable sets of objects {A;}; for example, this suffices to construct the
total complexes of a double complex in 1.2.6 or the functor l(i_n_]1 of Chapter 3,
section 5.

Exercise A.4.4 (Union and intersection) Let {A;} be a family of subobjects of
an object A. Show that if A is cocomplete, then there is a smallest subobject
3" A; of A containing all of the A;. Show that if A is complete, then there is a
largest subobject NA; of A contained in all the A;.

(AB4) A is cocomplete, and the direct sum of monics is a monic.
(AB4*) A is complete, and the product of epis is an epi.

Example A.4.5 Ab and R-mod satisfy both (AB4) and (AB4*). The abelian
category Sheaves(X) of sheaves of abelian groups on a fixed topological space
X (described in Chapter 1, section 7) is a complete abelian category that does
not satisfy (AB4*).

Exercise A.4.5

1. Let A be a complete abelian category. Show that A satisfies (AB4*)
if and only if products of exact sequences are exact sequences, that is,
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for every family {A; — B; — C;} of exact sequences in A the product
sequence

[Ta — 18 — []a
is also an exact sequence in A.

2. By considering A°P, show that a cocomplete abelian category satisfies
(AB4) if and only if direct sums of exact sequences are exact sequences.

A.4.6 For the last two axioms, we assume familiarity with filtered colimits
and inverse limits (see A.5.3 below). These axioms are discussed in Chapter 2,
section 6 and Chapter 3, section 5.

(ABS) A is cocomplete, and filtered colimits of exact sequences are exact.
Equivalently, if {A;} is a lattice of subobjects of an object A, and B is any
subobject of A, then

Y AinB=Bn_ A).

(AB5*) A is complete, and filtered inverse limits of exact sequences are
exact. Equivalently, if {A;} is a lattice of subobjects of A and B is any
subobject of A, then

N(A; + B) = B + (NA)).

Examples A.4.7

1. We show in 2.6.15 that Ab and R-mod satisfy (ABS). However, they
do not satisfy (AB5%), and this gives rise to the obstruction lim! A;

discussed in Chapter 2, section 7. Hence (R—-mod)®P cannot be S—mod
for any ring S.
2. Sheaves(X) satisfies (ABS) but not (AB5*); see A.4.5.
Exercise A.4.6 Show that (AB5) implies (AB4), and (AB5*) implies (AB4*).
Exercise A.4.7 Show that if A # 0, then A cannot satisfy both axiom (ABS5)
and axiom (AB5*). Hint: Consider ®A; — [] A;.
A.5 Limits and Colimits (see Chapter 2, section 6)
A.5.1 The limir of a functor F: I — A (if it exists) is an object L of A,

together with maps 7;: L — F; (I € I) in A which are “compatible” in the
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sense that for every o: j — i in I the map n; factors as Fym;: L — F; — F;,
and that satisfies a universal property: for every A € 4 and every system of
“compatible” maps fi: A — F; there is a unique A: A — L so that f; = m;A.
This universal property guarantees that any two limits of F are isomorphic.
We write lim;¢; F; for such a limit. For example, if / is a discrete category,
then lim;e; F; = [];¢; Fi, so products are a special kind of limit.

A category A is called complete if lim F; exists for all functors F: I — A
in which the indexing category [ is small. Many familiar categories like Sets,
Ab, R—mod are complete. Completeness of an abelian category agrees with
the notion (AB3*) introduced in A.4.3 by the following exercise, and will be
crucial in our discussion of ljr_n1 in Chapter 3, section 5.

Exercise A.5.1 Show that an abelian category is complete iff it satisfies
(AB3%),

Dually, the colimit of F: 1 — A (if it exists) is an object C = colim;¢; F;
of A, together with maps ¢;: F; — C in A that are “compatible” in the sense
that for every a: j — i in I the map ¢; factors as ; Fo: F; — F; — C, and that
satisfies a universal property: for every A € A and every system of “compati-
ble” maps f;: F; — A there is a unique y: C — A so that f; = y¢;. Again, the
universal property guarantees that the colimit is unique up to isomorphism,
and coproducts are a special kind of colimit. Since F: I — A is the same as a
functor FOP: J°P — AP it is also clear that a colimit in .A is the same thing as
a limit in AP,

A category A is called cocomplete if colim F; exists for all functors F: I —
A in which the indexing category [ is small. Many familiar categories like
Sets, Ab, R—mod are also cocomplete. Cocompleteness plays a less visible
role in homological algebra, but we shall discuss it and axiom (AB3) briefly in
Chapter 2, section 6.

Exercise A.5.2 Show that an abelian category is cocomplete iff it satisfies
axiom (AB3).

As a Natural Transformation A.5.2 There is a diagonal functor A: A — A!
that sends A € A to the constant functor: (AA); = A for alt i € I. The compat-
ibility of the maps n;: lim(F;) — F); is nothing more than the assertion that
is a natural transformation from A(lim ;) to F. Similarly, the compatibility
of the maps ¢;: F; — colim F; is nothing more than the assertion that ¢ is a
natural transformation from F to A(colim F;). We will see that lim and colim
are adjoint functors to A in exercise A.6.1.
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Filtered Categories and Direct Limits A.5.3 A poset [ is called filtered, or
directed, if every two elements i, j € I have an upper bound k € I (i <k and
J < k). More generally, a small category [ is called filtered if

1. Foreveryi, jelthereisak €I and arrowsi —> k&, j > kin I.
2. For every two arrows u, v:i — j there is an arrow w: j — k such that
wu = wv in Hom(i, k).

This extra generality is to include the following example. Let M be an abelian
monoid and write / for the “translation” category whose objects are the el-
ements of M, with Hom; (i, j) = {m € M:mi = j}. I is a filtered category,
because the upper bound in (1) is k =ij = ji, and in axiom (2) we can take
w=1 € Hom;(j,ij).

A filtered colimit in a category A is just the colimit of a functor A: I — A
in which [/ is a filtered category. We shall give such a colimit the special sym-
bol ccﬂ)m(A i), although (filtered) colimits over directed posets are often called

direct limits and are often written lim A;. We shall see in Chapter 1, section 6
e d

that filtered colimits in R—med (and other cocomplete abelian categories) are
well behaved; for example, they are exact and commute with Tor. This pro-
vides an easy proof (3.2.2) that S~ R is a flat R-module, using the translation
category of the monoid S.

Example A.5.4 Let I be the (directed) poset of nonnegative integers. A func-

tor A: I — A is just a sequence Ag —> A1 — A2 — --- of objects in .4, and

the direct limit lim;_, o, A; is our filtered colimit colim A;. A contravariant
RN

functor from 7 to A is just a tower --- — A2 - A] — Ag, and the “inverse
limit” is the filtered limit lim A; we discuss in Chapter 3, section 5.
—

A.6 Adjoint Functors (see sections 2.3 and 2.6)

A.6.1 A pair of functors L: A — B and R: B — A are called adjoint if there
is a set bijection for all A in .A and B in B:

~

T = t45: Homg(L(A), By — Hom 4(A, R(B)),

which is “natural” in A and B in the sense that for all f: A — A’ in A and
g: B — B’ in B the following diagram commutes.
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Homg(L(4'), B) —1> Homs(L(A), B) —> Homg(L(A), B))
le le Ie
Hom (A, R(B)) AN Hom (A, R(B)) e, Hom 4(A, R(B'))

That is, T is a natural isomorphism between the functors Homg(L, —) and
Hom 4(—, R) from A% x B to Sets. We say that L is the left adjoint of R,
and R is the right adjoint of L. We also say that (L, R) is an adjoint pair.

Here is a familiar example of a pair of adjoint functors. Let & be a field and
L:Sets — (k-vector spaces) the functor sending a set X to the vector space
with basis X. (L(X) is the set of formal linear combinations of elements of
X). This is left adjoint to the forgetful functor U, because Hom(L(X), V) is
the same as Homgets (X, U (V).

We will see many other examples of adjoint functors in Chapter 2, section 6.
The most important for Chapter 3 is the following adjunction between Hom
and tensor product. Let R be a ring and B a left R-module. For every abelian
group C  Homgyp(B, C) is aright R-module: (fr)(b) = f(rb). The resulting
functor Homap (B, —): Ab — mod-R has L(A) = A ®g B as its left adjoint.
(See 2.3.8 and 2.6.2.)

Exercise A.6.1 Fix categories I and .A. When every functor F: I — A has a
limit, show that lim: A’ — A is a functor. Show that the universal property of
lim F; is nothing more than the assertion that lim is right adjoint to A. Dually,
show that the universal property of colim F; is nothing more than the assertion
that colim: A’ — A is left adjoint to A.

Theorem A.6.2 An adjoint pair (L, R): A — B determines

1. A natural transformation n:id 4 = RL (called the unit of the adjunc-
tion), such that the right adjoint of f:L(A) — B is R(f)ons:A —
R(B).

2. A natural transformation &: LR = idg (called the counit of the adjunc-
tion), such that the left adjoint of g: A — R(B) isegpo L(g): L(A) — B.

Moreover, both of the following composites are the identity:

) LA EB LRLA) =5 L(A) and R(B) 25 RLR(B) 29 R(B).

Proof The map n4: A — RL(A) is the element of Hom(A, RL(A)) corre-
sponding to idp 4 € Hom(L(A), L(A)). The map £5: LR(B) — B is the el-
ement of Hom(L R(B), B) corresponding to idgp € Hom(R(B), R(B)). The
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rest of the assertions are elementary manipulations using the naturality of
and are left to the reader as an exercise. The lazy reader may find a proof in
[MacCW, IV.1]. <&

Exercise A.6.2 Suppose given functors L: 4 — B, R: 8 — A and natural
transformations 7n:id 4 = RL, ¢: LR = idg such that the composites (*) are
the identity. Show that (L, R) is an adjoint pair of functions.

Exercise A.6.3 Show that ¢ o (LRg) =¢ o (¢LR) and that (RLn)on =
(nRL) o n. That is, show that the following diagrams commute:

LRILRB) —X, Lr(B) A —  RLA)
,LeLR(B) lSB l'lA l'?RLA
LR(B) —> B RL(A) —2" RL(RL(A))

Reflective Subcategories A.6.3 A subcategory B of A is called a reflective
subcategory if the inclusion functor ¢: B C A has a left adjoint L: A — B; L
is often called the reflection of A onto B. If B is a full subcategory, then by
the above exercise B = R(B) for all B in B. The “reflection” onto a skeletal
subcategory is a reflection in this sense.

Here are two examples of reflective subcategories. Ab is reflective in
Groups; the reflection is the quotient L(G) = G/[G, G] by the commutator
subgroup. In 2.6.5 we will see that for every topological space X the category
of sheaves on X is a reflective subcategory of the category of presheaves on
X; in this case the reflection functor is called “sheafification.”
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