
1
Chain Complexes

1.1 Complexes of R -Modules

Homological algebra is a tool used in several branches of mathematics: alge-
braic topology, group theory, commutative ring theory, and algebraic geometry
come to mind. It arose in the late 1800s in the following manner. Let / and g
be matrices whose product is zero. If g • v = 0 for some column vector v, say,
of length n, we cannot always write v = f • u. This failure is measured by the
defect

d = n — rank(/) — rank(g).

In modern language, / and g represent linear maps

U -^> V - ^ * W

with gf = 0, and d is the dimension of the homology module

H = ker(g)/f(U).

In the first part of this century, Poincare and other algebraic topologists
utilized these concepts in their attempts to describe "n -dimensional holes" in
simplicial complexes. Gradually people noticed that "vector space" could be
replaced by "/^-module" for any ring R.

This being said, we fix an associative ring R and begin again in the category
mod-/? of right /^-modules. Given an /^-module homomorphism / : A —> B,
one is immediately led to study the kernel ker(/), cokernel coker(/), and
image im(/) of / . Given another map g: B —• C, we can form the sequence

(*) A -L B —> C.
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2 Chain Complexes

We say that such a sequence is exact (at B) if ker(g) = im(/) . This implies
in particular that the composite gf: A -> C is zero, and finally brings our
attention to sequences (*) such that gf = 0.

Definition 1.1.1 A chain complex C. of /^-modules is a family {Cn}nez of
/^-modules, together with jR-module maps d — dn\Cn^^ Cn-\ such that each
composite d o d: Cn -> Cn-2 is zero. The maps dn are called the differentials
of C.. The kernel of dn is the module of n-cycles of C, denoted Zn — Zn(C).
The image of dn+\\ Cn+i ->• Cn is the module of n-boundaries of C, denoted
#„ = Bn(C). Because d o d = 0, we have

for all n. The nth homology module of C. is the subquotient Hn(C) = Zn/Bn

of Cn. Because the dot in C is annoying, we will often write C for C .

Exercise 1.1.1 Set Cn = Z/8 for n > 0 and Cn = 0 for n < 0; for n > 0
let <4 send jc(mod8) to 4jc(mod8). Show that C. is a chain complex of
Z/8—modules and compute its homology modules.

There is a category Ch(mod-/?) of chain complexes of (right) /^-modules.
The objects are, of course, chain complexes. A morphism u.C. -> D is a
chain complex map, that is, a family of R-module homomorphisms un\Cn^>
Dn commuting with d in the sense that un-\dn = dn-\un. That is, such that
the following diagram commutes

[u

Exercise 1.1.2 Show that a morphism u: C ->• D. of chain complexes sends
boundaries to boundaries and cycles to cycles, hence maps Hn(C) -> Hn(D).
Prove that each Hn is a functor from Ch(mod-/?) to mod-^.

Exercise 1.1.3 (Split exact sequences of vector spaces) Choose vector spaces
[Bn, Hn}nej over a field, and set Cn = Bn 0 Hn 0 Bn-\. Show that the
projection-inclusions Cn —> #n_i C Cn-\ make {Cn} into a chain complex,
and that every chain complex of vector spaces is isomorphic to a complex of
this form.
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1.1 Complexes of R-Modules 3

Exercise 1.1.4 Show that {Hom#(A, Cn)} forms a chain complex of abelian
groups for every /^-module A and every R-module chain complex C. Taking
A = Zn, show that if Hn(HomR(Zn, C)) = 0, then Hn(C) = 0. Is the converse
true?

Definition 1.1.2 A morphism C. -» D. of chain complexes is called a quasi-
isomorphism (Bourbaki uses homologism) if the maps Hn{C) - • Hn{D) are
all isomorphisms.

Exercise 1.1.5 Show that the following are equivalent for every C.:

1. C is ejracf, that is, exact at every Cn.
2. C is acyclic, that is, Hn(C.) = 0 for all n.
3. The map 0 -» C. is a quasi-isomorphism, where "0" is the complex of

zero modules and zero maps.

The following variant notation is obtained by reindexing with superscripts:
Cn = C-n. A cochain complex C of /^-modules is a family {Cn} of R-
modules, together with maps dn\ Cn -> Cn+l such that dod = 0. Zn(C-) =
ker(dn) is the module of n-cocycles, Bn(C) = im^"" 1 ) c Cn is the mod-
ule of n-coboundaries, and the subquotient Hn(C) = Zn/Bn of Cn is the nth

cohomology module of C . Morphisms and quasi-isomorphisms of cochain
complexes are defined exactly as for chain complexes.

A chain complex C. is called bounded if almost all the Cn are zero; if
Cn = 0 unless a <n < &, we say that the complex has amplitude in [a, b]. A
complex C. is bounded above (resp. bounded below) if there is a bound b (resp.
a) such that Cn = 0 for all n > £ (resp. n < a). The bounded (resp. bounded
above, resp. bounded below) chain complexes form full subcategories of Ch
= Ch(/?-mod) that are denoted Ch^, Ch_ and Ch+ , respectively. The sub-
category Ch>o of non-negative complexes C. (Cn = 0 for all n < 0) will be
important in Chapter 8.

Similarly, a cochain complex C is called bounded above if the chain com-
plex C. {Cn = C~n) is bounded below, that is, if Cn = 0 for all large n\ C
is bounded below if C. is bounded above, and bounded if C. is bounded.
The categories of bounded (resp. bounded above, resp. bounded below, resp.
non-negative) cochain complexes are denoted Ch^, Ch~, Ch+ , and Ch-°,
respectively.

Exercise 1.1.6 (Homology of a graph) Let T be a finite graph with V vertices
(v\, • • •, vy) and E edges (e\, • • •, es)- If we orient the edges, we can form the
incidence matrix of the graph. This is a V x E matrix whose (ij) entry is +1
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4 Chain Complexes

if the edge ej starts at Vj, —1 if ej ends at vt, and 0 otherwise. Let Co be the
free R—module on the vertices, C\ the free R—module on the edges, Cn = 0
if n ^ 0, 1, and d: C\ —> Co be the incidence matrix. If T is connected (i.e.,
we can get from VQ to every other vertex by tracing a path with edges), show
that Ho(C) and H\(C) are free R—modules of dimensions 1 and V — E — 1
respectively. (The number V — E — 1 is the number of circuits of the graph.)
Hint: Choose basis {i>o, v\ — i>o, • • •, vy — VQ} for Co, and use a path from vo
to Vi to find an element of C\ mapping to V( — VQ.

Application 1.1.3 (Simplicial homology) Here is a topological application
we shall discuss more in Chapter 8. Let K be a geometric simplicial complex,
such as a triangulated polyhedron, and let Kk (0 < k < n) denote the set of
A:-dimensional simplices of K. Each ^-simplex has k + 1 faces, which are
ordered if the set KQ of vertices is ordered (do so!), so we obtain k + 1 set
maps 9/: Kk —> Kk-\(0 < i < k). The simplicial chain complex of K with
coefficients in R is the chain complex C., formed as follows. Let Ck be the free
/^-module on the set Kk\ set Ck = 0 unless 0 < k < n. The set maps 3, yield
k + 1 module maps Ck -> Ck-u which we also call 9/; their alternating sum
d = 5^(—1)'9; is the map Ck —> Ck-\ in the chain complex C.. To see that C.
is a chain complex, we need to prove the algebraic assertion that d o d = 0.
This translates into the geometric fact that each (k — 2)-dimensional simplex
contained in a fixed /:-simplex a of K lies on exactly two faces of a. The
homology of the chain complex C. is called the simplicial homology of K with
coefficients in R. This simplicial approach to homology was used in the first
part of this century, before the advent of singular homology.

Exercise 1.1.7 (Tetrahedron) The tetrahedron T is a surface with 4 ver-
tices, 6 edges, and 4 2-dimensional faces. Thus its homology is the homol-
ogy of a chain complex 0 -> R4 -> R6 -+ R4 -> 0. Write down the matrices
in this complex and verify computationally that H2(T) = HQ(T) = R and

Application 1.1.4 (Singular homology) Let X be a topological space, and
let Sk = Sk(X) be the free /^-module on the set of continuous maps from
the standard A:-simplex A* to X. Restriction to the ith face of A* (0 < i < k)
transforms a map A& —> X into a map A#-i —> X, and induces an /^-module
homomorphism 9/ from Sk to Sk-\. The alternating sums d = 2^(—1)^3/ (from
Sk to Sk-\) assemble to form a chain complex

d d d

-" —> S2 —> Si — • 50 —> 0,
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1.2 Operations on Chain Complexes 5

called the singular chain complex of X. The nth homology module of S.(X) is
called the nth singular homology of X (with coefficients in R) and is written
Hn(X; R). If X is a geometric simplicial complex, then the obvious inclusion
C.(X) —> Sm(X) is a quasi-isomorphism, so the simplicial and singular homol-
ogy modules of X are isomorphic. The interested reader may find details in
any standard book on algebraic topology.

1.2 Operations on Chain Complexes

The main point of this section will be that chain complexes form an abelian
category. First we need to recall what an abelian category is. A reference for
these definitions is [MacCW].

A category A is called an Ab-category if every hom-set Hom^(A, B) in
A is given the structure of an abelian group in such a way that composition
distributes over addition. In particular, given a diagram in A of the form

D

we have h{g + g')f = hgf + hg' f in Hom(A, D). The category Ch is an Ab-
category because we can add chain maps degreewise; if {fn} and {gn} are chain
maps from C. to D , their sum is the family of maps {fn + gn}.

An additive functor F.B-+A between Ab-categories B and A is a functor
such that each Homig(i5/, B) —> Hom^(FJB

/, FB) is a group homomorphism.
An additive category is an Ab-category A with a zero object (i.e., an ob-

ject that is initial and terminal) and a product A x B for every pair A, B of
objects in A. This structure is enough to make finite products the same as fi-
nite coproducts. The zero object in Ch is the complex "0" of zero modules
and maps. Given a family {Aa} of complexes of /^-modules, the product T\Aa

and coproduct (direct sum) 0 A a exist in Ch and are defined degreewise: the
differentials are the maps

FT - i and 0 4 : 0 aAa , n -* ©aAa,n_i,

respectively. These suffice to make Ch into an additive category.

Exercise 1.2.1 Show that direct sum and direct product commute with ho-
mology, that is, that ©Hn(Aa) = Hn(®Aa) and UHn(Aa) ^ Hn(YlAa) for
alln.
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6 Chain Complexes

Here are some important constructions on chain complexes. A chain com-
plex B is called a subcomplex of C if each Bn is a submodule of Cn and the
differential on B is the restriction of the differential on C, that is, when the
inclusions in : Bn^Cn constitute a chain map B —• C. In this case we can
assemble the quotient modules Cn/Bn into a chain complex

d d d
> Cn+\/Bn+\ —> Cn/Bn —> Cn-\/Bn-\ —> -"

denoted C/B and called the quotient complex. If / : B -> C is a chain map, the
kernels {ker(/n)} assemble to form a subcomplex of B denoted ker(/), and
the cokernels {coker(/n)} assemble to form a quotient complex of C denoted
coker(/).

Definition 1.2.1 In any additive category A, a kernel of a morphism f\B->
C is defined to be a map /: A -> B such that / / = 0 and that is universal with
respect to this property. Dually, a cokernel of / is a map e:C -+ D, which
is universal with respect to having ef = 0. In A, a map /: A -> B is monic
if ig = 0 implies g = 0 for every map g: A! —• A, and a map e: C - • D is
an <?/?/ if he = 0 implies /* = 0 for every map h:D -+ Df. (The definition of
monic and epi in a non-abelian category is slightly different; see A. 1 in the
Appendix.) It is easy to see that every kernel is monic and that every cokernel
is an epi (exercise!).

Exercise 1.2.2 In the additive category A = R-mod, show that:

1. The notions of kernels, monies, and monomorphisms are the same.
2. The notions of cokernels, epis, and epimorphisms are also the same.

Exercise 1.2.3 Suppose that A = Ch and / is a chain map. Show that the
complex ker(/) is a kernel of / and that coker(/) is a cokernel of / .

Definition 1.2.2 An abelian category is an additive category A such that

1. every map in A has a kernel and cokernel.
2. every monic in A is the kernel of its cokernel.
3. every epi in A is the cokernel of its kernel.

The prototype abelian category is the category mod-/? of /^-modules. In
any abelian category the image im(/) of a map / : B - • C is the subobject
ker(coker / ) of C; in the category of /^-modules, im(/) = {f(b) : b e B}.
Every map / factors as

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.002
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:48:24, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.002
https://www.cambridge.org/core


1.2 Operations on Chain Complexes 7

e m

B —> im(/) —> C

with e an epimorphism and m a monomorphism. A sequence

A -±+ B A C

of maps in A is called exact (at B) if ker(g) = im(/) .
A subcategory B of A is called an abelian subcategory if it is abelian, and

an exact sequence in B is also exact in A.
If A is any abelian category, we can repeat the discussion of section 1.1

to define chain complexes and chain maps in A—just replace mod-/? by A\
These form an additive category Ch(A), and homology becomes a functor
from this category to A. In the sequel we will merely write Ch for Ch(A)
when A is understood.

Theorem 1.2.3 The category Ch = Ch(A) of chain complexes is an abelian
category.

Proof Condition 1 was exercise 1.2.3 above. If / : B —> C is a chain map, I
claim that / is monic iff each Bn -> Cn is monic, that is, B is isomorphic to a
subcomplex of C. This follows from the fact that the composite ker(/) -> C
is zero, so if / is monic, then ker(/) = 0. So if / is monic, it is isomorphic to
the kernel of C —> C/B. Similarly, / is an epi iff each Bn -> Cn is an epi, that
is, C is isomorphic to the cokernel of the chain map ker(/) -> B,. <>

E x e r c i s e 1.2.4 Show that a sequence 0 —• A .-> B —• C -> 0 of chain c o m -
plexes is exact in C h jus t in case each sequence 0 ->• A n - > B n -> Cn —• 0 is
exact in A.

Clearly we can iterate this construction and talk about chain complexes of
chain complexes; these are usually called double complexes.

Example 1.2.4 A double complex (or bicomplex) in A is a family {Cp,q} of
objects of A, together with maps

dh: CPA —• Cp-i^q and dv: Cp,q -+ Cp,q-\

such that dh odh =dv odv = dvdh + dhdv = 0. It is useful to picture the
bicomplex C. as a lattice
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Chain Complexes

i I I
dh dh

C

dvi dv[

dh dh

' ' ' * Lp—\q < ^p,q *

dv[ dv[ dv[

dh dh

' ' ' < Cp-\,q-\ < Cp^q-l < Cp+\,q-\ < • • •

I i i

in which the maps dh go horizontally, the maps dv go vertically, and each
square anticommutes. Each row C*q and each column Cp* is a chain complex.

We say that a double complex C is bounded if C has only finitely many
nonzero terms along each diagonal line p + q = n, for example, if C is con-
centrated in the first quadrant of the plane (a first quadrant double complex).

Sign Trick 1.2.5 Because of the anticommutivity, the maps dv are not maps
in Ch, but chain maps f*q from C*q to C*^_i can be defined by introducing
± signs:

Using this sign trick, we can identify the category of double complexes with
the category Ch(Ch) of chain complexes in the abelian category Ch.

Total Complexes 1.2.6 To see why the anticommutative condition dvdh +
dhdv = 0 is useful, define the total complexes Tot(C) = Totn(C) and Tote(C)
by

Totn(C)rt= Y\ CP« and Tote(C)n= 0 CPiq.

p-\-q=n p-\-q=n

The formula d = dh + dv defines maps (check this!)

J : T o t n ( C ) n ^ T o t n ( C ) n _ i and d : Tot®(C)n - • Tote(C)n_i

such that d o d = 0, making Totn(C) and Tote(C) into chain complexes. Note
that Tote(C) = Totn(C) if C is bounded, and especially if C is a first quadrant
double complex. The difference between Totn(C) and Tote(C) will become
apparent in Chapter 5 when we discuss spectral sequences.
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1.2 Operations on Chain Complexes 9

Remark Totn(C) and Tote(C) do not exist in all abelian categories; they
don't exist when A is the category of all finite abelian groups. We say that
an abelian category is complete if all infinite direct products exist (and so
Totn exists) and that it is cocomplete if all infinite direct sums exist (and so
Tot® exists). Both these axioms hold in /?-mod and in the category of chain
complexes of /^-modules.

Exercise 1.2.5 Give an elementary proof that Tot(C) is acyclic whenever C
is a bounded double complex with exact rows (or exact columns). We will see
later that this result follows from the Acyclic Assembly Lemma 2.7.3. It also
follows from a spectral sequence argument (see Definition 5.6.2 and exercise
5.6.4).

Exercise 1.2.6 Give examples of (1) a second quadrant double complex C
with exact columns such that Totn(C) is acyclic but Tote(C) is not; (2) a
second quadrant double complex C with exact rows such that Tote(C) is
acyclic but Totn(C) is not; and (3) a double complex (in the entire plane) for
which every row and every column is exact, yet neither Totn(C) nor Tot®(C)
is acyclic.

Truncations 1.2.7 If C is a chain complex and n is an integer, we let r>nC
denote the subcomplex of C defined by

1 0 if i < n
Zn ifi=n

t if i>n.

Clearly Hi(r>nC) = 0 for i < n and Hi(r>nC) = Ht(C) for i > n. The com-
plex r>nC is called the (good) truncation of C below n, and the quotient
complex T<nC = C/(r>nC) is called the (good) truncation of C above n\
Hi(r<nC) is Ht(C) for i < n and 0 for i > n.

Some less useful variants are the brutal truncations o<nC and a>nC =
C/(cr<nC). By definition, (cr<nC)i is C[ if i < n and 0 if i > n. These have
the advantage of being easier to describe but the disadvantage of introducing
the homology group Hn(cr>nC) = Cn/Bn.

Translation 1.2.8 Shifting indices, or translation, is another useful operation
we can perform on chain and cochain complexes. If C is a complex and p an
integer, we form a new complex C[p] as follows:

C[p]n = Cn+P (resp. C[p]n = Cn~P)
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10 Chain Complexes

with differential {-\)pd. We call C[p] the pth translate of C. The way to
remember the shift is that the degree 0 part of C[p] is Cp. The sign convention
is designed to simplify notation later on. Note that translation shifts homology:

Hn(C[p]) = Hn+p(C) (resp. Hn(C[p]) = Hn~P(C)).

We make translation into a functor by shifting indices on chain maps. That is,
if / : C —• D is a chain map, then f[p] is the chain map given by the formula

f[p]n = fn+p (resp. f[pf = / " "* ) .

Exercise 1.2.7 If C is a complex, show that there are exact sequences of
complexes:

0 —> Z(C) —> C —> B(C)[-l] —> 0;

0 —• H(C) —> C/B(C) —> Z(C)[-1] —> H(C)[-l] —> 0.

Exercise 1.2.8 (Mapping cone) Let / : B —• C be a morphism of chain com-
plexes. Form a double chain complex D out of / by thinking of / as a chain
complex in Ch and using the sign trick, putting B[— 1] in the row q = 1 and
C in the row q = 0. Thinking of C and B[— 1] as double complexes in the
obvious way, show that there is a short exact sequence of double complexes

0 —> C — • D -^> B[-l] —> 0.

The total complex of D is cone(/0, the mapping cone (see section 1.5) of
a map / ' , which differs from / only by some ± signs and is isomorphic
to/.

1.3 Long Exact Sequences

It is time to unveil the feature that makes chain complexes so special from a
computational viewpoint: the existence of long exact sequences.

/ g

Theorem 1.3.1 Let 0 -> A. —> B. —> C.->0be a short exact sequence of
chain complexes. Then there are natural maps d: Hn(C) -> Hn-\(A), called
connecting homomorphisms, such that

. . . -£» Hn+i(C) - ^ Hn(A) - 4 Hn(B) ^ > Hn(C) ^ > Hn-X(A) - 4 • • •

is an exact sequence.
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1.3 Long Exact Sequences 11

/ g

Similarly, if 0 —> A —> B —• C —> 0 w a s/zo/t exacf sequence of
cochain complexes, there are natural maps 3: Hn(C) -> / /n + 1(A) <znd a /ong
exact sequence

>̂ //""^C) - ^ Hn(A) -U Hn(B) -^> //n(C) -^> #n+1(A) -^> • • •.

Exercise 1.3.1 Let 0 — • A - > £ - > C ^ 0 b e a short exact sequence of com-
plexes. Show that if two of the three complexes A, B, C are exact, then so is
the third.

Exercise 1.3.2 ( 3 x 3 lemma) Suppose given a commutative diagram

0 0 0

1 t i
0 —> A' —> B' —> C' —> 0

0 —

0 —

i
-*• A —

i
- • A" -

i
0

i
-> B —

1

1
0

1
-> c -

1
-• c" -

i
0

-* 0

-^ 0

in an abelian category, such that every column is exact. Show the following:

1. If the bottom two rows are exact, so is the top row.
2. If the top two rows are exact, so is the bottom row.
3. If the top and bottom rows are exact, and the composite A -» C is zero,

the middle row is also exact.

Hint: Show the remaining row is a complex, and apply exercise 1.3.1.

The key tool in constructing the connecting homomorphism 3 is our next
result, the Snake Lemma. We will not print the proof in these notes, because
it is best done visually. In fact, a clear proof is given by Jill Clayburgh at the
beginning of the movie Its My Turn (Rastar-Martin Elfand Studios, 1980). As
an exercise in "diagram chasing" of elements, the student should find a proof
(but privately—keep the proof to yourself!).

Snake Lemma 1.3.2 Consider a commutative diagram of R-modules of the
form
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12 Chain Complexes

Af —> B' —> C' —> 0

ft *l hi

0 —> A - U B —> C.

If the rows are exact, there is an exact sequence

ker(/) -> ker(g) -* ker(ft) -^» coker(/) - • coker(g) -> coker(/z)

with d defined by the formula

d{cf) = rxgp-\cf), cf e ker(/i).

Moreover, if A! -+ Bf is monic, then so is ker(/) —• ker(g), and if B —• C
w coker(/) ->• coker(g).

Etymology The term n̂aA:e comes from the following visual mnemonic:

ker(/) > ker(^) ^ ker(n) . s

coker(/) coker(n).

Remark The Snake Lemma also holds in an arbitrary abelian category C. To
see this, let A be the smallest abelian subcategory of C containing the ob-
jects and morphisms of the diagram. Since A has a set of objects, the Freyd-
Mitchell Embedding Theorem (see 1.6.1) gives an exact, fully faithful embed-
ding of A into /?-mod for some ring R. Since 3 exists in /?-mod, it exists in
A and hence in C. Similarly, exactness in R-mod implies exactness in A and
hence in C.
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1.3 Long Exact Sequences 13

Exercise 1.3.3 (5-Lemma) In any commutative diagram

A' —

4-=
A —

> B' -

> | =

•» B —

-* C -
4

-» c -

- • D'

4-

with exact rows in any abelian category, show that if a, b, d, and e are isomor-
phisms, then c is also an isomorphism. More precisely, show that if b and d
are monic and a is an epi, then c is monic. Dually, show that if b and d are
epis and e is monic, then c is an epi.

We now proceed to the construction of the connecting homomorphism 3 of
Theorem 1.3.1 associated to a short exact sequence

0-» A^ B^C-^0

of chain complexes. From the Snake Lemma and the diagram

0 0 0

1 I i
0 —+ ZnA — • ZnB —> ZnC

i i i
An -

4

i
An-\

-> Bn -

4
~> Bn-l -

i
Bn-x

4
- • Cn-l

i
Cn-\

i i i
0 0 0

we see that the rows are exact in the commutative diagram

An Bn Cn

dAn+\ dBn+\ dCn+\

d[ 4 4
0 —> Zn-X{A) -U Zn-i(b) ^-> Zn- i(C).
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14 Chain Complexes

The kernel of the left vertical is Hn(A), and its cokernel is Hn-\ (A). Therefore
the Snake Lemma yields an exact sequence

HniA) -^ HniB) - ^ HniC) —• Hn-l(A) -* «,_!(/?) - • Hr

The long exact sequence 1.3.1 is obtained by pasting these sequences together.

Addendum 1.3.3 When one computes with modules, it is useful to be able to
push elements around. By decoding the above proof, we obtain the following
formula for the connecting homomorphism: Let z e Hn(C), and represent it by
a cycle c e Cn. Lift the cycle to b e Bn and apply d. The element db of Bn-\
actually belongs to the submodule Zn-\(A) and represents d(z) e Hn-\(A).

We shall now explain what we mean by the naturality of 3. There is a
category S whose objects are short exact sequences of chain complexes (say,
in an abelian category C). Commutative diagrams

0 —> A —> B —> C —> 0

(*) I I I
0 —> Af —> Bf —> C' —> 0

give the morphisms in <S (from the top row to the bottom row). Similarly, there
is a category C of long exact sequences in C.

Proposition 1.3.4 The long exact sequence is a functor from S to C. That is,
for every short exact sequence there is a long exact sequence, and for every
map (*) of short exact sequences there is a commutative ladder diagram

a a
77 / A \ JT / D \ v "If ('(~*\ TT ( A \

I I I I
. . . - ^ Hn(A

f) — • Hn(B') — • Hn{C) ^ Hn-X{Af)—> . . . .

Proof All we have to do is establish the ladder diagram. Since each Hn is a
functor, the left two squares commute. Using the Embedding Theorem 1.6.1,
we may assume C = mod-/? in order to prove that the right square commutes.
Given z e Hn(C), represented by c e Cn, its image z! e Hn(C

f) is represented
by the image of c. If b e Bn lifts c, its image in B'n lifts d'. Therefore by 1.3.3
d(z') G Hn-\(A

r) is represented by the image of db, that is, by the image of a
representative of 3(z), so d(zf) is the image of 3(z). O
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1.4 Chain Homotopies 15

Remark 1.3.5 The data of the long exact sequence is sometimes organized
into the mnemonic shape

s\

This is called an exact triangle for obvious reasons. This mnemonic shape
is responsible for the term "triangulated category," which we will discuss in
Chapter 10. The category K of chain equivalence classes of complexes and
maps (see exercise 1.4.5 in the next section) is an example of a triangulated
category.

Exercise 1.3.4 Consider the boundaries-cycles exact sequence 0 —>• Z ->
C -> B(— 1) -» 0 associated to a chain complex C (exercise 1.2.7). Show that
the corresponding long exact sequence of homology breaks up into short exact
sequences.

Exercise 1.3.5 Let / be a morphism of chain complexes. Show that if ker(/)
and coker(/) are acyclic, then / is a quasi-isomorphism. Is the converse true?

Exercise 1.3.6 Let 0 - > A — • / ? - > C - > 0 b e a short exact sequence of dou-
ble complexes of modules. Show that there is a short exact sequence of total
complexes, and conclude that if Tot(C) is acyclic, then Tot(A) —• Tot(Z?) is a
quasi-isomorphism.

1.4 Chain Homotopies

The ideas in this section and the next are motivated by homotopy theory in
topology. We begin with a discussion of a special case of historical impor-
tance. If C is any chain complex of vector spaces over a field, we can always
choose vector space decompositions:

Cn = Zn@ B'n, B'n £ Cn/Zn = d(Cn) = fln_i;

Zn = Bn® H'n, H'n ̂  Zn/Bn = Hn{C).

Therefore we can form the compositions

Cn —• Zn —> Bn = Bn+Y c Cn+i
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16 Chain Complexes

to get splitting maps sn: Cn - • Cn+i, such that d = dsd. The compositions ds
and sd are projections from Cn onto Bn and Z?̂ , respectively, so the sum ds +
sd is an endomorphism of Cn whose kernel H'n is isomorphic to the homology
Hn(C). The kernel (and cokernel!) of ds -f sd is the trivial homology complex
//*(C). Evidently both chain maps //*(C) —• C and C —• //*(C) are quasi-
isomorphisms. Moreover, C is an exact sequence if and only if ds + sd is the
identity map.

Over an arbitrary ring R, it is not always possible to split chain complexes
like this, so we give a name to this notion.

Definition 1.4.1 A complex C is called split if there are maps sn\ Cn -> Cn+i
such that d = dsd. The maps sn are called the splitting maps. If in addition C
is acyclic (exact as a sequence), we say that C is split exact

Example 1.4.2 Let R = Z or Z/4, and let C be the complex

2-> Z/4 -h Z/4 - i * Z/4 -^> • • •.

This complex is acyclic but not split exact. There is no map s such that ds + sd
is the identity map, nor is there any direct sum decomposition Cn = Zn® B'n.

Exercise 1.4.1 The previous example shows that even an acyclic chain com-
plex of free R -modules need not be split exact.

1. Show that acyclic bounded below chain complexes of free R -modules
are always split exact.

2. Show that an acyclic chain complex of finitely generated free abelian
groups is always split exact, even when it is not bounded below.

Exercise 1.4.2 Let C be a chain complex, with boundaries Bn and cycles Zn

in Cn. Show that C is split if and only if there are /^-module decompositions
Cn = Zn® B'n and Zn = Bn®H'n. Show that C is split exact iff H'n = 0.

Now suppose that we are given two chain complexes C and D, together
with randomly chosen maps sn: Cn -> Dn+\. Let fn be the map from Cn to Dn

defined by the formula fn = dn+\sn + sn-\dn .

Dn
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1.4 Chain Homotopies 17

Dropping the subscripts for clarity, we compute

df = d(ds + sd) = dsd = (ds + sd)d = fd.

Thus / = ds -h sd is a chain map from C to D.

Definition 1.4.3 We say that a chain map / : C —> D is null homotopic if
there are maps sn: Cn -> Dn+\ such that / = ds + sd. The maps {$„} are
called a c/iam contraction of / .

Exercise 1.4.3 Show that C is a split exact chain complex if and only if the
identity map on C is null homotopic.

The chain contraction construction gives us an easy way to proliferate chain
maps: if g: C -> D is any chain map, so is g + (sd -f ds) for any choice of
maps sn. However, g + (sd + ds) is not very different from g, in a sense that
we shall now explain.

Definition 1.4.4 We say that two chain maps / and g from C to D are chain
homotopic if their difference / — g is null homotopic, that is, if

The maps {sn} are called a c/zam homotopy from f to g. Finally, we say that
/ : C -> £> is a chain homotopy equivalence (Bourbaki uses homotopism) if
there is a map g: D -> C such that g / and / g are chain homotopic to the
respective identity maps of C and D.

Remark This terminology comes from topology via the following observa-
tion. A map / between two topological spaces X and Y induces a map
/*: S(X) -> S(Y) between the corresponding singular chain complexes. It
turns out that if / is topologically null homotopic (resp. a homotopy equiv-
alence), then the chain map /* is null homotopic (resp. a chain homotopy
equivalence), and if two maps / and g are topologically homotopic, then /*
and g* are chain homotopic.

Lemma 1.4.5 If f:C -> D is null homotopic, then every map /*: Hn(C) —•

Hn(D) is zero. If f and g are chain homotopicy then they induce the same

maps Hn(C) - • Hn(D).

Proof It is enough to prove the first assertion, so suppose that / = ds + sd.
Every element of Hn(C) is represented by an n-cycle x. But then f(x) —
d(sx). That is, f(x) is an n-boundary in D. As such, f(x) represents 0 in
Hn(D). O
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18 Chain Complexes

Exercise 1.4.4 Consider the homology //*(C) of C as a chain complex with
zero differentials. Show that if the complex C is split, then there is a chain
homotopy equivalence between C and //*(C). Give an example in which the
converse fails.

Exercise 1.4.5 In this exercise we shall show that the chain homotopy classes
of maps form a quotient category K of the category Ch of all chain complexes.
The homology functors Hn on Ch will factor through the quotient functor
Ch->K.

1. Show that chain homotopy equivalence is an equivalence relation on
the set of all chain maps from C to D. Let HomK(C, D) denote the
equivalence classes of such maps. Show that HomK(C, D) is an abelian
group.

2. Let / and g be chain homotopic maps from C to D. If u: B —> C and
v: D - • E are chain maps, show that vfu and vgu are chain homotopic.
Deduce that there is a category K whose objects are chain complexes and
whose morphisms are given in (1).

3. Let /o, / i , go, and g\ be chain maps from C to D such that ft is chain
homotopic to g; (i = 1,2). Show that /o + f\ is chain homotopic to
go + g\. Deduce that K is an additive category, and that Ch -> K is an
additive functor.

4. Is K an abelian category? Explain.

1.5 Mapping Cones and Cylinders

1.5.1 Let / : /?. -» C. be a map of chain complexes. The mapping cone of
/ is the chain complex cone(/) whose degree n part is Bn-\ 0 Cn. In order
to match other sign conventions, the differential in cone(/) is given by the
formula

d(b, c) = (-d(b), d{c) - /(*>)), (b e Bn_,, c e Cn).

That is, the differential is given by the matrix

fin_i — • Bn-2
\-dB

l - f
Cn > Cn-\
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7.5 Mapping Cones and Cylinders 19

Here is the dual notion for a map / : B —• C of cochain complexes. The
mapping cone, cone(/), is a cochain complex whose degree n part is Bn+X ©
Cn. The differential is given by the same formula as above with the same signs.

Exercise 1.5.1 Let cone(C) denote the mapping cone of the identity map idc
of C; it has Cn-\ © Cn in degree n. Show that cone(C) is split exact, with
s(b, c) = (—c, 0) defining the splitting map.

Exercise 1.5.2 Let / : C ->• D be a map of complexes. Show that / is null
homotopic if and only if / extends to a map (—s, / ) : cone(C) —• D.

1.5.2 Any map /*: H*(B) -> //*(C) can be fit into a long exact sequence
of homology groups by use of the following device. There is a short exact
sequence

0 -* C -> cone(/) -^> B[-l] -> 0

of chain complexes, where the left map sends c to (0, c), and the right map
sends (b, c) to -b. Recalling (1.2.8) that Hn+\(B[-l]) ^ Hn(B), the homol-
ogy long exact sequence (with connecting homomorphism 9) becomes

> //n+1(cone(/)) - ^ Hn(B) - ^ Hn(C) -+ //n(cone(/)) -^ Hn-X(B) -^> • • •.

The following lemma shows that 3 = /*, fitting /* into a long exact sequence.

Lemma 1.5.3 The map d in the above sequence is /*.

Proof If b e Bn is a cycle, the element (—&, 0) in the cone complex lifts b via
8. Applying the differential we get (db, fb) = (0, fb). This shows that

fdbl O

Corollary 1.5.4 A map f:B->Cisa quasi-isomorphism if and only if the
mapping cone complex cone(f) is exact. This device reduces questions about
quasi-isomorphisms to the study of split complexes.

Topological Remark Let K be a simplicial complex (or more generally a cell
complex). The topological cone CK of K is obtained by adding a new vertex
s to K and "coning off" the simplices (cells) to get a new (n + 1)-simplex
for every old ^-simplex of K. (See Figure 1.1.) The simplicial (cellular) chain
complex C.(s) of the one-point space {s} is R in degree 0 and zero elsewhere.
C.(s) is a subcomplex of the simplicial (cellular) chain complex C.(CK) of
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20 Chain Complexes

CK

cone Cf

Figure 1.1. The topological cone CK and mapping cone Cf.

the topological cone CK. The quotient CXCK)/CXs) is the chain complex
cone(C # ) of the identity map of CXK). The algebraic fact that cone(C K) is
split exact (null homotopic) reflects the fact that the topological cone CK is
contractible.

More generally, if / : K —• L is a simplicial map (or a cellular map), the
topological mapping cone Cf of / is obtained by glueing CK and L together,
identifying the subcomplex K of CK with its image in L (Figure 1.1). This is
a cellular complex, which is simplicial if / is an inclusion of simplicial com-
plexes. Write CXCf) for the cellular chain complex of the topological map-
ping cone Cf. The quotient chain complex CXCf)/CXs) may be identified
with cone(/*), the mapping cone of the chain map /*: C(K) -> CXL).

1.5.5 A related construction is that of the mapping cylinder cyl(/) of a chain
complex map / : #. —• C. The degree n part of cyl(/) is Bn 0 Bn-\ © Cn, and
the differential is

d(b, b', c) = (d(b) + b', -d(b'), d{c) -

That is, the differential is given by the matrix

Bt

dB idB 0

0 -dB 0

0 - / dc
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-4
0

. 0

dB

fdB

-dB

4
-dcf

0 "
0

4-

7.5 Mapping Cones and Cylinders 21

The cylinder is a chain complex because

= 0.

Exercise 1.5.3 Let cyl(C) denote the mapping cylinder of the identity map
idc of C; it has Cn © Cn_i © Cn in degree n. Show that two chain maps
/ , g\C —• D are chain homotopic if and only if they extend to a map (/, s, g):
cyl(C) -> D.

Lemma 1.5.6 The subcomplex of elements (0, 0, c) is isomorphic to C, and
the corresponding inclusion a: C —>> cyl(/) is a quasi-isomorphism.

Proof The quotient cyl(/)/a(C) is the mapping cone of — id#, so it is null-
homotopic (exercise 1.5.1). The lemma now follows from the long exact ho-
mology sequence for

0 —> C -^> cyl(/) —> cone(-id5) —> 0. O

Exercise 1.5.4 Show that fi(b, bf, c) = f(b) + c defines a chain map from
cyl(/) to C such that /3a = idc- Then show that the formula s(b, b', c) =
(0, b, 0) defines a chain homotopy from the identity of cyl(/) to a/3. Conclude
that a is in fact a chain homotopy equivalence between C and cyl(/).

Topological Remark Let X be a cellular complex and let / denote the interval
[0,1]. The space / x X is the topological cylinder of X. It is also a cell com-
plex; every rc-cell en in X gives rise to three cells in / x X: the two n-cells,
0 x en and 1 x en, and the (n + l)-cell (0, 1) x en. If C.(X) is the cellular
chain complex of X, then the cellular chain complex C ( / x X ) o f / x I may
be identified with cyl(idc x), the mapping cylinder chain complex of the iden-
tity map on C.(X).

More generally, if / : X - • Y is a cellular map, then the topological map-
ping cylinder cyl(/) is obtained by glueing I x X and Y together, identifying
0 x X with the image of X under / (see Figure 1.2). This is also a cellular
complex, whose cellular chain complex C(cyl(/)) may be identified with the
mapping cylinder of the chain map C.(X) -> C.{Y).

The constructions in this section are the algebraic analogues of the usual
topological constructions I x X ~ X, cyl(/) ~ F, and so forth which were
used by Dold and Puppe to get long exact sequences for any generalized ho-
mology theory on topological spaces.
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22 Chain Complexes

IxX

IxX

Figure 1.2. The topological cylinder of X and mapping cylinder cyl(/).

Here is how to use mapping cylinders to fit /* into a long exact sequence
of homology groups. The subcomplex of elements (b, 0, 0) in cyl(/) is iso-
morphic to B, and the quotient cy\(f)/B is the mapping cone of / . The

composite B —> cyl(/) —> C is the map / , where ft is the equivalence of
exercise 1.5.4, so on homology /*: H(B) - • H(C) factors through H(B) ->
//(cyl(/)). Therefore we may construct a commutative diagram of chain com-
plexes with exact rows:

B cone(/) —>0

0 —> C —> cone(/) —> B[-l] —> 0.

The homology long exact sequences fit into the following diagram:

... ^ > Hn(B) -> //n(cyl(/)) -* Hn(cone(f)) - ^ Hn-i(B) -)

I1 /N Ih I
L]) - • //n(C) - • //n(cone(/)) - 4 Hn

Lemma 1.5.7 r/z/,s diagram is commutative, with exact rows.

Proof It suffices to show that the right square (with —3 and 8) commutes.
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7.5 Mapping Cones and Cylinders 23

Let (b, c) be an «-cycle in cone(/), so d{b) = 0 and f(b) = d(c). Lift it to
(0, b, c) in cyl(/) and apply the differential:

</(0, b, c) = (0 + fc, -rffe, Jc - /ft) = (b, 0, 0).

Therefore 9 maps the class of (b, c) to the class of b = —S(b, c) in Hn-\(B).
O

1.5.8 The cone and cylinder constructions provide a natural way to fit the
homology of every chain map f:B-^C into some long exact sequence (see
1.5.2 and 1.5.7). To show that the long exact sequence is well defined, we need
to show that the usual long exact homology sequence attached to any short
exact sequence of complexes

0 -> B -U C -£> D -> 0

agrees both with the long exact sequence attached to / and with the long exact
sequence attached to g.

We first consider the map / . There is a chain map cp: cone(/) -> D defined
by the formula <p(b,c) = g(c). It fits into a commutative diagram with exact
rows:

0 —> C —> cone(/) - ^ B[-l] —> 0

0 —> B —> cyl(/) —> cone(/) —> 0

II l> I*
0 —> B -U C -^-> D — • 0.

Since ft is a quasi-isomorphism, it follows from the 5-lemma and 1.3.4 that <p
is a quasi-isomorphism as well. The following exercise shows that cp need not
be a chain homotopy equivalence.

Exercise 1.5.5 Suppose that the B and C of 1.5.8 are modules, considered
as chain complexes concentrated in degree zero. Then cone(/) is the complex

0 ^ Z? —> C —• 0. Show that <p is a chain homotopy equivalence iff / : B c
C is a split injection.

To continue, the naturality of the connecting homomorphism 3 provides us
with a natural isomorphism of long exact sequences:
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24 Chain Complexes

Hn(B) —• #«(cyl(/)) —• Hn(cone(/»

I- I*

Exercise 1.5.6 Show that the composite

Hn{D) ^ Hn(com(f)) ^h Hn(B[-l]) ^ Hn

is the connecting homomorphism 3 in the homology long exact sequence for

Exercise 1.5.7 Show that there is a quasi-isomorphism B[— 1] -> cone(g)
dual to <p. Then dualize the preceding exercise, by showing that the com-
posite

Hn(D) -^ Hn-X{B) -^> Hn{cont(g))

is the usual map induced by the inclusion of D in cone(g).

Exercise 1.5.8 Given a map f.B^C of complexes, let v denote the in-
clusion of C into cone(/). Show that there is a chain homotopy equivalence
cone(i>) -> B[— 1]. This equivalence is the algebraic analogue of the topolog-
ical fact that for any map f:K->Lof (topological) cell complexes the cone
of the inclusion L c Cf is homotopy equivalent to the suspension of K.

Exercise 1.5.9 Let / : B -> C be a morphism of chain complexes. Show that

the natural map
exact sequence:
the natural maps ker(/)[—1] —> cone(/) —• coker(/) give rise to a long

//n(cone(/)) -^ Hn(coker(f))

Exercise 1.5.10 Let C and Cf be split complexes, with splitting maps s, s'.
If / : C - • C is a morphism, show that a(c, c') = ( - J ( C ) , S'{C') - s' fs{c))
defines a splitting of cone(/) if and only if the map /*: //*(C) -> //*(C7) is
zero.
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1.6 More on Abelian Categories 25

1.6 More on Abelian Categories

We have already seen that 7?-mod is an abelian category for every associative
ring R. In this section we expand our repertoire of abelian categories to include
functor categories and sheaves. We also introduce the notions of left exact and
right exact functors, which will form the heart of the next chapter. We give the
Yoneda embedding of an additive category, which is exact and fully faithful,
and use it to sketch a proof of the following result, which has already been
used. Recall that a category is called small if its class of objects is in fact a set.

Freyd-Mitchell Embedding Theorem 1.6.1 (1964) If A is a small abelian
category, then there is a ring R and an exact, fully faithful functor from
A into /?-mod, which embeds A as a full subcategory in the sense that
Honu(M, N) ^ Hom*(M, N).

We begin to prepare for this result by introducing some examples of abelian
categories. The following criterion, whose proof we leave to the reader, is
frequently useful:

Lemma 1.6.2 Let C c Abe a full subcategory of an abelian category A

1. C is additive oOeC, and C is closed under 0 .
2. C is abelian and C C A is exact <& C is additive, and C is closed under

ker and coker.

Examples 1.6.3

1. Inside /?-mod, the finitely generated /^-modules form an additive cate-
gory, which is abelian if and only if R is noetherian.

2. Inside Ab, the torsionfree groups form an additive category, while the
p-groups form an abelian category. (A is a p-group if (Va € A) some
pna = 0.) Finite p-groups also form an abelian category. The category
(Z//?)-mod of vector spaces over the field Z/'p is also a full subcategory
of Ab.

Functor Categories 1.6.4 Let C be any category, A an abelian category.
The functor category Ac is the abelian category whose objects are functors
F: C —> A. The maps in Ac are natural transformations. Here are some rele-
vant examples:

1. If C is the discrete category of integers, Ab c contains the abelian cate-
gory of graded abelian groups as a full subcategory.
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26 Chain Complexes

2. If C is the poset category of integers (•••—> n —> (n + 1) -> • • •) then
the abelian category Ch(*4) of cochain complexes is a full subcategory

3. If R is a ring considered as a one-object category, then /?-mod is the full
subcategory of all additive functors in Ab^.

4. Let X be a topological space, and U the poset of open subsets of X. A
contravariant functor F from U to A such that F(0) = {0} is called a
presheaf on X with values in A, and the presheaves are the objects of
the abelian category AU°P = Presheaves(X).

A typical example of a presheaf with values in K-mod is given by C°(U) =
{continuous functions / : U -> R}. If U C V the maps C°(V) -> C°(U) are
given by restricting the domain of a function from V to U. In fact, C° is a
sheaf:

Definition 1.6.5 (Sheaves) A sheaf on X (with values in A) is a presheaf F
satisfying the

Sheaf Axiom. Let {£//} be an open covering of an open subset U of X.
If {// G F(£/j)} are such that each /; and / ) agree in F(t// n Uj), then
there is a unique / G F(f/) that maps to every // under F(JJ) -+ F(Ui).

Note that the uniqueness of / is equivalent to the assertion that if / G F(U)
vanishes in every F(f//), then / = 0. In fancy (element-free) language, the
sheaf axiom states that for every covering {£/,-} of every open U the following
sequence is exact:

o_>F(t/) — n m - ) - ^

Exercise 1.6.1 Let M be a smooth manifold. For each open [/ in M, let
C°°(M) be the set of smooth functions from U to IR. Show that C°°(M) is
a sheaf on M.

Exercise 1.6.2 (Constant sheaves) Let A be any abelian group. For every
open subset U of X, let A(U) denote the set of continuous maps from U to
the discrete topological space A. Show that A is a sheaf on X.

The category Sheaves(X) of sheaves forms an abelian category contained in
Presheaves(X), but it is not an abelian subcategory; cokernels in Sheaves(X)
are different from cokernels in Presheaves(X). This difference gives rise to
sheaf cohomology (Chapter 2, section 2.6). The following example lies at the
heart of the subject. For any space X, let O (resp. O*) be the sheaf such that
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L6 More on Abelian Categories 27

O(U) (resp. O*(U)) is the group of continuous maps from U into C (resp.
C*). Then there is a short exact sequence of sheaves:

When X is the space C*, this sequence is not exact in Presheaves(X) because
the exponential map from C = O{X) to O*(X) is not onto; the cokernel is
Z = HX(X, Z), generated by the global unit 1/z. In effect, there is no global
logarithm function on X, and the contour integral ^j § f(z)dz gives the
image of f(z) in the cokernel.

Definition 1.6.6 Let F: A -> B be an additive functor between abelian cat-
egories. F is called left exact (resp. right exact) if for every short exact se-
quence 0 -» A -> B -> C -> 0 in A, the sequence 0 -> F(A) -> F(£) ->
F(C) (resp. F(A) -» F(B)^ F(C) -> 0) is exact in B. F is called exacf if
it is both left and right exact, that is, if it preserves exact sequences. A con-
travariant functor F is called left exact (resp. right exact, resp. exact) if the
corresponding covariant functor Fr\ Aop —• B is left exact (resp. . . . ).

Example 1.6.7 The inclusion of Sheaves(X) into Presheaves(X) is a left
exact functor. There is also an exact functor Presheaves(X) -» Sheaves(X),
called "sheafification." (See 2.6.5; the sheafification functor is left adjoint to
the inclusion.)

Exercise 1.6.3 Show that the above definitions are equivalent to the follow-
ing, which are often given as the definitions. (See [Rot], for example.) A (co-
variant) functor F is left exact (resp. right exact) if exactness of the sequence

0 -> A -> B -+ C (resp. A -+ B -> C -> 0)

implies exactness of the sequence

0 -* FA -> FB -+ FC (resp. FA^ FB-^ FC -> 0).

Proposition 1.6.8 Let A be an abelian category. Then Hom^(M, —) is a left
exact functor from A to Abfor every M in A. That is, given an exact sequence

f 8
0 —> A —> B —> C —»> 0 in A the following sequence of abelian groups is
also exact:

0 -> Hom(M, A) -£+ Hom(M, B) -^> Hom(M, C).
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28 Chain Complexes

Proof If a e Hom(M, A) then /*a = / o a; if this is zero, then a must be
zero since / is monic. Hence /* is monic. Since g o / = 0, we have #*/*(«) =
g o / o a = 0,so g*/* = 0. It remains to show that if P e Hom(M, B) is such
that g*p = g o p is zero, then P = f o a for some a. But if g o /3 = 0, then
P(M) c / (A) , so 0 factors through A. <0>

Corollary 1.6.9 Hom^(—, M) is a left exact contravariant functor.

Proof Honu(A, M) = Hom^M, A). <0>

Yoneda Embedding 1.6.10 Every additive category A can be embedded in
the abelian category Ab^°P by the functor h sending A to hA = Hom^(—, A).
Since each Hom^(M, —) is left exact, h is a left exact functor. Since the
functors hA are left exact, the Yoneda embedding actually lands in the abelian
subcategory C of all left exact contravariant functors from A to Ab whenever
A is an abelian category.

Yoneda Lemma 1.6.11 The Yoneda embedding h reflects exactness. That is,

a sequence A —> B —• C in A is exact, provided that for every M in A the
following sequence is exact:

Honu(M, A) -^> Honu(M, B) -^> Hom^(M, C).

Proof Taking M = A, we see that Pa = p*a*(idA) — 0. Taking M = ker(^),
we see that the inclusion t: ker(^) -> B satisfies P*(L) = Pi = 0. Hence there
is a a G Hom(M, A) with i = a*(a) = acr, so that ker(P) = im(t) c im(a).

O

We now sketch a proof of the Freyd-Mitchell Embedding Theorem 1.6.1;
details may be found in [Freyd] or [Swan, pp. 14-22]. Consider the failure of
the Yoneda embedding h:A-+ A b ^ to be exact: if0-+A->B^C-+0
is exact in A and M e A, then define the abelian group W(M) by exactness of

0 -> Honu(M, A) - • Honu(M, B) -+ Hom^(M, C) -> W(M) -» 0.

In general W(M) ^ 0, and there is a short exact sequence of functors:

(*) 0 -> hA -+ hB - • hc -> W -> 0.

W is an example of a weakly effaceable functor, that is, a functor such that
for all M e A and x e W(M) there is a surjection P -» M in A so that the
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1.6 More onAbelian Categories 29

map W(M) -> W(P) sends x to zero. (To see this, take P to be the pullback
M xc B, where M - • C represents JC, and note that P -> C factors through
B.) Next (see loc. cit.), one proves:

Proposition 1.6.12 If A is small, the subcategory W of weakly effaceable
functors is a localizing subcategory of Ab^°P whose quotient category is C.
That is, there is an exact "reflection" functor R from Ab^°P to C such that
R(L) = Lfor every left exact L and R(W) = 0ijfW is weakly effaceable.

Remark Cokernels in C are different from cokernels in Ab^o/\ so the inclu-
sion C c PibA°P is not exact, merely left exact. To see this, apply the reflection
R to (*). Since R(hA) = hA and R(W) = 0, we see that

0 - • hA -» hB -+ hc -+ 0

is an exact sequence in C, but not in

Corollary 1.6.13 The Yoneda embedding h\A^>Cis exact and fully faith-
ful.

Finally, one observes that the category C has arbitrary coproducts and has
a faithfully projective object P. By a result of Gabriel and Mitchell [Freyd,
p. 106], C is equivalent to the category /?-mod of modules over the ring
R = Homc(P, P). This finishes the proof of the Embedding Theorem.

Example 1.6.14 The abelian category of graded R -modules may be thought
of as the full subcategory of (]~[/GZ /?)-modules of the form 0/e2M/. The
abelian category of chain complexes of R-modules may be embedded in
S-mod, where

S = (Y\ R)[d]/(d2 = 0, [dr = rd}reR, {de; = ei-id}iez).
iel

Here e[\ \\ R -> R ->• \\ R is the ith coordinate projection.
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