
10
The Derived Category

There are many formal similarities between homological algebra and algebraic
topology. The Dold-Kan correspondence, for example, provides a dictionary
between positive complexes and simplicial theory. The algebraic notions of
chain homotopy, mapping cones, and mapping cylinders have their historical
origins in simplicial topology.

The derived category D(A) of an abelian category is the algebraic ana-
logue of the homotopy category of topological spaces. D(^4) is obtained from
the category Ch(*4) of (cochain) complexes in two stages. First one con-
structs a quotient K(A) of Ch(A) by equating chain homotopy equivalent
maps between complexes. Then one "localizes" K(A) by inverting quasi-
isomorphisms via a calculus of fractions. These steps will be explained below
in sections 10.1 and 10.3. The topological analogue is given in section 10.9.

10.1 The Category K(A)

Let A be an abelian category, and consider the category Ch = Ch(*4) of
cochain complexes in A. The quotient category K = K(A) of Ch is defined as
follows: The objects of K are cochain complexes (the objects of Ch) and the
morphisms of K are the chain homotopy equivalence classes of maps in Ch.
That is, Homx(A, B) is the set Homch(^> B)/ ~ of equivalence classes of
maps in Ch. We saw in exercise 1.4.5 that K is well defined as a category and
that K is an additive category in such a way that the quotient Ch(A) -> K(A)
is an additive functor.

It is useful to consider categories of complexes having special properties. If
C is any full subcategory of Ch(A), let /C denote the full subcategory of K(A)
whose objects are the cochain complexes in C. K is a "quotient category" of C
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370 The Derived Category

in the sense that

, B) = HomK(A, B) = HomCh(A, B)/ - = Homc(A, B)/ - .

If C is closed under 0 and contains the zero object, then by 1.6.2 both C and
/C are additive categories and C -> /C is also an additive functor.

We write Kb(A), K~(A), and K+(.4) for the full subcategories of K(.4)
corresponding to the full subcategories Ch^, Ch~, and Ch+ of bounded,
bounded above, and bounded below cochain complexes described in section
1.1. These will be useful in section 5 below.

Of course, we could have equally well considered chain complexes in-
stead of cochain complexes when constructing K. However, the historical ori-
gins of derived categories were in Grothendieck's study of sheaf cohomology
[HartRD], and the choice to use cochains is fixed in the literature.

Having introduced the cast of categories, we turn to their properties.

Lemma 10.1.1 The cohomology H*(C) of a cochain complex C induces a
family of well-defined functors Hl from the category K(A) to A.

Proof As we saw in 1.4.5, the map «*: Hl(A) -> Hl(B) induced by u: A -»
B is independent of the chain homotopy equivalence class of u. O

Proposition 10.1.2 (Universal property) Let F\ Ch(^4) -> V be any functor
that sends chain homotopy equivalences to isomorphisms. Then F factors
uniquely through K(A).

Ch(.4)

1
KM)

F
—> V

Proof Let cyl(Z?) denote the mapping cylinder of the identity map of B\ it
has Bn 0 Z?"+1 0 Bn in degree n. We saw in exercise 1.5.4 that the inclusion
a(b) = (0, 0, b) of B into cyl(Z?) is a chain homotopy equivalence with ho-
mopy inverse ft(br, b,"b) = b' + b\ /3a = id# and aj3 ~ idcyi(#). By assump-
tion, F(a): F(B) -> F(cy\(B)) is an isomorphism with inverse F(/3). Now
the map a'\ B - • cyl(B) defined by a'(b) = (fe, 0, 0) has $a! = id#, so

F(a) = F(a)F(P)F(a) = F(a)F(Pa) = F(a).

Now suppose there is a chain homotopy s between two maps / , g: B -> C.
Then y = (/, 5, g): cy\(B) -> C is a chain complex map (exercise 1.5.3).
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10.1 The Category K(A) 371

Moreover, ya' = f and ya = g. Hence in T> we have

F{f) = F(y)F(a') = F(y)F(a) = F(g).

It fol lows that F factors th rough the quot ient K(^4) of Ch(^4). <>

Exercise 10.1.1 Taking F to be Ch(.4) -> K(A), the proof shows that
a': B —• cyl(B) is a chain homotopy equivalence. Use an involution on cyl(Z?)
to produce an explicit chain homotopy pa' ~ idcyi(#).

Definition 10.1.3 (Triangles in K(*4)) Let u\ A -> B be a morphism in Ch.
Recall from 1.5.2 that the mapping cone of u fits into an exact sequence

0-+ B - % cone(w) -^-> A [ - l ] -> 0

in Ch. (The degree n part of cone(w) is An + 1 0 Bn and An + 1 is the degree n
part of A[— 1]; see 1.2.8.) The strict triangle on u is the triple («, v, 8) of maps
in K; this data is usually written in the form

cone(w)

s/ \v

u
A > B.

Now consider three fixed cochain complexes A, B and C. Suppose we are
given three maps w.A^B, v: B ->• C, and w.C —• A[— 1] in K. We say
that (w, i>, w;) is an exact triangle on (A, B, C) if it is "isomorphic" to a strict
triangle (u', v\ 8) on u'\ A' -^ B' in the sense that there is a diagram of chain
complexes,

U V W

fi [g [h [f[-l]

A' - ^ B' - ^ cone(u') —> A^-l],

commuting in K (i.e., commuting in Ch up to chain homotopy equivalences)
and such that the maps / , g, h are isomorphisms in K (i.e., chain homotopy
equivalences). If we replace w, v, and w by chain homotopy equivalent maps,
we get the same diagram in K. This allows us to think of (w, i>, w) as a triangle
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372 The Derived Category

in the category K. A triangle is usually written as follows:

C

B.

Corollary 10.1.4 Given an exact triangle (w, v,w) on (A, B, C), the coho-
mology sequence

... X H\A) X H\B) X H\C) ^ ///+1(A) X • • •

w exact. Here we have identified H*(A[-1]) and //*+1(A).

Proof For a strict triangle, this is precisely the long exact cohomology se-
quence of 1.5.2. Exactness for any exact triangle follows from this by the def-
inition of a triangle and the fact that each Hl is a functor on K. O

Example 10.1.5 The endomorphisms 0 and 1 of A fit into the exact triangles

A 0 A [ - 1 ] 0

/ \ / \

o l
A > A A —> A.

Indeed, cone(O) = A 0 A[— 1] and we saw in exercise 1.5.1 that cone(l) is a
split exact complex, that is, cone(l) is isomorphic to zero in K.

Example 10.1.6 (Rotation) If (w, v, w) is an exact triangle, then so are its
"rotates"

A[- l ] B

B - ^ C and C[+l] ~W[l\ A.

To see this, we may suppose that C = cone(w). In this case, the assertions
amount to saying that the maps cone(f) —• A[— 1] and B[— 1] -> cone(<5)
are chain homotopy equivalences. The first was verified in exercises 1.5.6
and 1.5.8, and the second assertion follows from the observation that
cone(5) = cyl(—u)[— 1].
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10.2 Triangulated Categories 373

Remark 10.1.7 Given a short exact sequence 0 - • A - % B —> C —• 0 of
complexes, there may be no map C —> A[— 1] making (w, i>, w) into an exact
triangle in K(*4), even though there is a long exact cohomology sequence
begging to be seen as coming from an exact triangle (but see 10.4.9 below).
This cohomology sequence does arise from the mapping cylinder triangle

and the quasi-isomorphisms /3:cyl(w) -> B and <p:cone(w) -> C of exer-
cises 1.5.4 and 1.5.8.

Exercise 10.1.2 Regard the abelian groups Z/2 and Z/4 as cochain com-
plexes concentrated in degree zero, and show that the short exact sequence

0 -> Z/2 —> Z/4 —> Z/2 —• 0 cannot be made into an exact triangle (2, 1,
w) on (Z/2, Z/4, Z/2) in the category K(.4).

10.2 Triangulated Categories

The notion of triangulated category generalizes the structure that exact trian-
gles give to K(.4). One should think of exact triangles as substitutes for short
exact sequences.

Suppose given a category K equipped with an automorphism T'. A triangle
on an ordered triple (A, B, C) of objects of K is a triple (w, i>, w) of mor-
phisms, where u: A ->• B, v: B ->• C, and w.C —• T(A). A triangle is usually
displayed as follows:

A —> B

A morphism of triangles is a triple (/, g, h) forming a commutative diagram
inK:

A —

if

A! —

-> B -

is

-> B' -

-> C —>

-+ c' —>

TA

IT

TA'.
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374 The Derived Category

Definition 10.2.1 (Verdier) An additive category K is called a triangulated
category if it is equipped with an automorphism T: K ->• K (called the trans-
lation functor) and with a distinguished family of triangles (w, v, w) (called
the exact triangles in K), which are subject to the following four axioms:

(TR1) Every morphism u: A -> B can be embedded in an exact triangle
(w, v, w). If A = B and C = 0, then the triangle (idA, 0, 0) is exact.
If (M, U, W) is a triangle on (A, B, C), isomorphic to an exact triangle
(u\ i/, u/) on (A7, #' , C'), then (w, t>, w) is also exact.

A —> B —> C —> TA

|= 1= |= | =
, u' , v' , w'

A! —> B' —> C' —> TA!

(TR2) (Rotation). If (w, v, w) is an exact triangle on (A, B,C), then both
its "rotates" (v,w,—Tu) and (—T~lw, u, v) are exact triangles on
(B, C, TA) and (T~lC, A, B), respectively.

(TR3) (Morphisms). Given two exact triangles

C C'

w/ \u and w'/ \u'

II Uf

A —> B A —> B'

with morphisms / : A - • Ar, g: B -+ B' such that gu = u' f, there exists
a morphism /*: C ->• C so that (/, g, h) is a morphism of triangles.

U V W

A —> B —> C —> TA

/ u' , v> , w'
A! —> B' —> C' —> TA!

(TR4) (The octahedral axiom). Given objects A,B,C,Af, Bf, C in K, sup-
pose there are three exact triangles: (w, j , 3) on (A, B, C')\ (v, x, i) on
(5, C, A'); (UM, y, 6) on (A, C, £r). Then there is a fourth exact triangle
(/, 8, (Tj)i) on (C7, .B7, A')

A1

(Tj)i/ \ g
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10.2 Triangulated Categories 375

such that in the following octahedron we have (1) the four exact triangles
form four of the faces; (2) the remaining four faces commute (that is, 3 =
8f: C -> B' -> TA and x = gy: C -> B' -* A')\ (3) yv = fj: B -> B'\
and (4) u8 = ig: B' -> £.

Exercise 10.2.1 If (w, t>, w;) is an exact triangle, show that the compositions
vu, wv, and (Tu)w are zero in K. /fmf: Compare the triangles (id^, 0, 0) and
(w, f, w;).

Exercise 10.2.2 (5-lemma) If (/, g, h) is a morphism of exact triangles, and
both / and g are isomorphisms, show that h is also an isomorphism.

A

if
Af •

B

u
B1 c

TA

TA!

Remark 10.2.2 Every exact triangle is determined up to isomorphism by any
one of its maps. Indeed, (TR3) gives a morphism between any two exact tri-
angles (w, v, w) on (A, B, C) and (w, v\ wf) on (A, B, Cf), and the 5-lemma
shows that it is an isomorphism. In particular, the data of the octahedral axiom
are completely determined by the two maps A - % B —% C.

Exegesis 10.2.3 The octahehral axiom (TR4) is sufficiently confusing that it
is worth giving another visualization of this axiom, following [BBD]. Write
the triangles as straight lines (ignoring the morphism C -> T(A)), and form
the diagram
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376 The Derived Category

C

The octahedral axiom states that the three lines through A, B, and C determine
the fourth line through (C", Bf, Af). This visualization omits the identity 3 =
Sf.

Proposition 10.2.4 K(A) is a triangulated category.

Proof The translation TA = A[— 1] is defined in 1.2.8. We have already seen
that axioms (TR1) and (TR2) hold. For (TR3) we may suppose that C =
cone(w) and C' = cone(V); the map h is given by the naturality of the map-
ping cone construction.

It remains to check the octahedral axiom (TR4). For this we may assume
that the given triangles are strict, that is, that Cf = cone(w), A! — cone(u), and
B' = cone(uii). Define fn from (C')n = Bn 0 An+1 to {Bf)n = Cn 0 An+X

by fn(b, a) = (v(b), a), and define gn from (B')n = Cn 0 An+1 to (A')n =
Cn 0 Bn+X by gn(c, a) = (c, u(a)). Manifestly, these are chain maps, d = Sf
and x = gy. Since the degree n part of cone(/) is (Cn 0 An+X) 0 (Bn+l 0
Art+2), there is a natural inclusion y of Af into cone(/) such that the following
diagram of chain complexes commutes.

C

C

B>

B'

A'

IK

cone(/)

C'[-l]

To see that y is a chain homotopy equivalence, define <p:cone(/) —> A! by
(p(c, an+\, b, an+2) = (c,b + u(an+\)). We leave it to the reader to check that

cp is a chain map, that (py = id^/ and that yep is chain homotopic to the identity
map on cone(/). (Exercise!) This shows that (/, g, (Tj)i) is an exact triangle,
because it is isomorphic to the strict triangle of / . <>

Corollary 10.2.5 Let C be a full subcategory of C\\{A) and Kits correspond-
ing quotient category. Suppose that C is an additive category and is closed
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10.2 Triangulated Categories 377

under translation and the formation of mapping cones. Then /C is a triangu-
lated category.

In particular, Kb(A), K~(A), andK+(A) are triangulated categories.

Definition 10.2.6 A morphism F: K7 —• K of triangulated categories is an
additive functor that commutes with the translation functor T and sends exact
triangles to exact triangles. There is a category of triangulated categories and
their morphisms. We say that K7 is a triangulated subcategory of K if K7 is a
full subcategory of K, the inclusion is a morphism of triangulated categories,
and if every exact triangle in K is exact in K7.

For example, Kb, K+ , and K~ are triangulated subcategories of K(*4).
More generally, /C is a triangulated subcategory of K in the above corollary.

Definition 10.2.7 Let K be a triangulated category and A an abelian cate-
gory. An additive functor H:K —> A is called a (covariant) cohomological
functor if whenever (w, v, w) is an exact triangle on (A, B, C) the long se-
quence

^> H(TlA) -^> H{TlB) -^> H{TlC) -^> H(Ti+lA) -^> • • •

is exact in A. We often write Hl(A) for H(TlA) and H°(A) for H{A) be-
cause, as we saw in 10.1.1, the zeror/l cohomology H°:K(A) —> A is the
eponymous example of a cohomological functor. Here is another important
cohomological functor:

Example 10.2.8 (Horn) If X is an object of a triangulated category K, then
HomxC^, —) is a cohomological functor from K to Ab. To see this, we have
to see that for every exact triangle (w, v, w) on (A, B, C) that the sequence

HomK(X, A) - ^ HomK(X, B) - ^ HomK(X C)

is exact; exactness elsewhere will follow from (TR2). The composition is zero
since vu = 0. Given g e HomxC^, B) such that vg = 0 we apply (TR3) and
(TR2) to

X = X —> 0 —> TX

a|/ U 1° 3iTf
U V W

A —> B —> C —> TA

and conclude that there exists an / e HomK(X, A) so that uf = g.
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378 The Derived Category

Exercise 10.2.3 If K is triangulated, show that the opposite category Kop

is also triangulated. A covariant cohomological functor H from Kop to A is
sometimes called a contravariant cohomological functor on K. If Y is any
object of K, show that HOITIK(-, Y) is a contravariant cohomological functor
onK.

Exercise 10.2.4 Let A1 be the category of graded objects in A, a morphism
from A = {An} to B = {Bn} being a family of morphisms fn: An -> Bn. De-
fine TA to be the translated graded object A[— 1], and call (w, u, w) an exact
triangle on (A, B, C) if for all n the sequence

A U D V ^ W A U D

An —> Bn —> Cn —> An-\ —> Bn-\

is exact. Show that axioms (TR1) and (TR2) hold, but that (TR3) fails for
A = Ab. If A is the category of vector spaces over a field, show that A?- is
a triangulated category, and that cohomology //*: K(A) -» A1 is a morphism
of triangulated categories.

Exercise 10.2.5 Let H be a cohomological functor on a triangulated category
K, and let K# denote the full subcategory of K consisting of those objects
A such that Hl(A) = 0 for all /. Show that K// is a triangulated subcategory
ofK.

Exercise 10.2.6 (Verdier) Show that every commutative square on the left in
the diagram below can be completed to the diagram on the right, in which all
the rows and columns are exact triangles and all the squares commute, except
the one marked "-" which anticommutes. Hint: Use (TR1) to construct every-
thing except the third column, and construct an exact triangle on (A, Bf, D).
Then use the octahedral axiom to construct exact triangles on (C, D, B"),
(A," D, CO, and finally (C, C", C).

i

A —>

4
A' — •

B

i
B'

i

A —>

4
A' — •

4
A" — •

-1
r(A) A

B'

i
B"

i
T(B)

-^ C

i

i
—• c"

— • T(A)

— • T(A')

—> T(A")

- IT,

-^ T2(A)
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10.3 Localization and the Calculus of Fractions 379

10.3 Localization and the Calculus of Fractions

The derived category D(*4) is defined to be the localization Q~lK(A) of
category K(*4) at the collection Q of quasi-isomorphisms, in the sense of the
following definition.

Definition 10.3.1 Let S be a collection of morphisms in a category C. A
localization of C with respect to S is a category S~lC, together with a functor
q:C-> S~lC such that

1. q(s) is a isomorphism in S~lC for every s e S.
2. Any functor F:C - • V such that F(s) is an isomorphism for all s e S

factors in a unique way through q. (It follows that S~lC is unique up to
equivalence.)

Examples 10.3.2

1. Let S be the collection of chain homotopy equivalences in Ch(^4). The
universal property 10.1.2 for Ch(^4) -> K(A) shows that K(A) is the
localization S~lCh(A).

2. Let Q be the collection of all quasi-isomorphisms in Ch(A). Since Q
contains the S of part (1), it follows that

-lCh(A) = Q-l(S-lCh(A)) = Q~lQ-lCh(A) = Q-l(S-lCh(A)) = Q~lK(A) = D(A).

Therefore we could have defined the derived category to be the localization
Q~lCh(A). However, in order to prove that Q~lCh(A) exists we must first
prove that Q~lK(A) exists, by giving an explicit description of the mor-
phisms.

Set-Theoretic Remark 10.3.3 If C is a small category, every localization
S~lC of C exists. (Add inverses to the presentation of C by generators and
relations; see [MacH, II.8].) It is also not hard to see that S~lC exists when
the class S is a set. However, when the class S is not a set, the existence of
localizations is a delicate set-theoretic question.

The standard references [Verd], [HarRD], [GZ] all ignore these set-theoretic
problems. Some adherents of the Grothendieck school avoid these difficulties
by imagining the existence of a larger universe in which C is small and con-
structing the localization in that universe. Nevertheless, the issue of whether
or not S~lC exists in our universe is important to other schools of thought,
and in particular to topologists who need to localize with respect to homology
theories; see [A, III. 14].
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380 The Derived Category

In this section we shall consider a special case in which localizations S~~lC
may be constructed within our universe, the case in which S is a "locally small
multiplicative system." This is due to the presence of a kind of calculus of
fractions.

In section 10.4 we will see that the multiplicative system Q of quasi-
isomorphisms in K(^4) is locally small when A is either mod-/? or
Sheaves(X). This will prove that D(A) exists within our universe. We will
also see that if A has enough injectives (resp. projectives), the existence of
Cartan-Eilenberg resolutions 5.7.1 allows us to forget about the set-theoretical
difficulties in asserting that D+(^l) exists (resp. that D~(y4) exists).

Definition 10.3.4 A collection S of morphisms in a category C is called a
multiplicative system in C if it satisfies the following three self-dual axioms:

1. S is closed under composition (if s, t e S are composable, then st e S)
and contains all identity morphisms (id* e S for all objects X in C).

2. (Ore condition) If t: Z -> Y is in 5, then for every g: X —• Y in C there
is a commutative diagram "gs = tf" in C with s in S.

f
w —
i
x J

-+ z
1

7

^ Y

(The slogan is "f lg = fs x for some / and sT) Moreover, the sym-
metric statement (whose slogan is "fs~l = t~lg for some t and g") is
also valid.

3. (Cancellation) If / , g: X -> Y are parallel morphisms in C, then the fol-
lowing two conditions are equivalent:

(a) sf = sg for some s e S with source Y.
(b) ft = gt for some t e S with target X.

Prototype 10.3.5 (Localizations of rings) An associative ring R with unit
may be considered as an additive category 1Z with one object • via R —
Endft(-). Let 5 be a subset of R closed under multiplication and containing
1. If R is commutative, or more generally if S is in the center of R, then S is
always a multiplicative system in 1Z\ the usual ring of fractions S~lR is also
the localization S~l1Z of the category 1Z.

If S is not central, then S is a multiplicative system in 1Z if and only if
S is a "2-sided denominator set" in R in the sense of [Faith]. The classical
ring of fractions S~lR is easy to construct in this case, each element being
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10.3 Localization and the Calculus of Fractions 381

represented as either fs~l or t~lg (f,geR and s, t e S), and again S~~lR is
the localization of the category 1Z.

The construction of the ring of fractions S~lR serves as the prototype for
the construction of the localization S~lC. We call a chain in C of the form

fs"l:X^-Xi -U Y

a (left) "fraction" if s is in S. Call fs~l equivalent to X <— X2 —> Y just in
case there is a fraction X <— X3 -* Y fitting into a commutative diagram in C:

V T \ /

x <— x3 —• y .

*\ i f*
x2

It is easy to see that this is an equivalence relation. Write Horns(X, Y) for the
family of equivalence classes of such fractions. Unfortunately, there is no a
priori reason for this to be a set, unless S is "locally small" in the following
sense.

Set-Theoretic Considerations 10.3.6 A multiplicative system 5 is called lo-
cally small (on the left) if for each X there exists a set Sx of morphisms in S,
all having target X, such that for every X\ -» X in S there is a map X2 -> Xi
in C so that the composite X2 -» Xi -> X is in S*.

If S is locally small, then Horns(X, Y) is a set for every X and Y. To see

this, we make Sx the objects of a small category, a morphism from Xi —> X

to X2 —U X being a map X2 -> Xi in C so that r is X2 -> Xi -^> X. The 0re
condition says that by enlarging Sx slightly we can make it a filtered category
(2.6.13). There is a functor Homc(—, Y) from Sx to Sets sending s to the set
of all fractions fs~l, and Horns(X, Y) is the colimit of this functor.

Composition of fractions is defined as follows. To compose X *r- X' —> Y

with y <— Y' —• Z we use the Ore condition to find a diagram

w

x'

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.011
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:46:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.011
https://www.cambridge.org/core


382 The Derived Category

with 5 in 5; the composite is the class of the fraction X —̂ W -> Z in
Homs(X, Z). The slogan for the Ore condition, t~lg = fs~l, is a symbolic
description of composition. It is not hard to see that the equivalence class
of the composite is independent of the choice of Xf and Y', so that we have
defined a pairing

Hom5(X, Y) x Hornby, Z) -* Hom5(X, Z).

(Check this!) It is clear from the construction that composition is associative,
and that X = X = X is a 2-sided identity element. Hence the Hom5(X, Y) (if
they are sets) form the morphisms of a category having the same objects as C;
it will be our localization S~lC.

Gabriel-Zisman Theorem 10.3.7 ([GZ]) Let S be a locally small multiplica-
tive system of morphisms in a category C. Then the category S~lC constructed
above exists and is a localization ofC with respect to S. The universal functor

q:C^ S~XC sends f:X-+Y to the sequence X = X - A Y.

Proof To see that q:C -> S~1C is a functor, observe that the composition

of X = X -U Y and Y = Y -^ Z is X = X -^ Z since we can choose
t = idx and / = g. If s is in S, then q(s) is an isomorphism because the com-
posi t ion ofX = X^+Y<mdY<^X = XisX = X = X ( take W = X).
Finally, suppose that F: C -> T> is another functor sending S to isomorphisms.
Define S~lF: S~lC -* V by sending the fraction fs~l to F(f)F(s)~l. Given
g and f, the equality gs = tf in C shows that F(g)F(s) = F(t)F(f), or
F(t~lg) = F(fs~l); it follows that S - 1 F respects composition and is a func-
tor. It is clear that F = (S~lF) o q and that this factorization is unique. <>

Corollary 10.3.8 S~lC can be constructed using equivalence classes of

"right fractions" t~lg:X —> Yf <— Y, provided that S is "locally small

on the right" (the dual notion to locally small, involving maps Y —> Yf in S).

Proof 5 ° P is a mult ipl icat ive sys tem in C°P. S ince C o p -> ( ,S o P) - 1 C o p is a
local izat ion, so is its dual C - > [ (S o p )~" 1 (C o p ) ] o p . Bu t this is const ructed us ing
the fractions t ~l g. <>

Corollary 10.3.9 Two parallel maps f,g:X—> Y in C become identified in
S~lC if and only ifsf = sgfor some s-.X^-* X in S.
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10.3 Localization and the Calculus of Fractions 383

Exercise 10.3.1

1. If Z is a zero object (resp. an initial object, a terminal object) in C, show
that q(Z) is a zero object (resp. an initial object, a terminal object) in
S~lC.

2. If the product X xY exists in C, show that q(X x Y) = q(X) x q(Y) in
S~lC.

Corollary 10.3.10 Suppose that C has a zero object. Then for every X in C:

q(X) = 0 in S~lC <& S contains the zero map X —> X.

Proof Since q(0) is a zero object in S~lC, q(X) = 0 if and only if the parallel
maps 0, idx: X -> X become identified in S~[C, that is, iff 0 = sO = s for
some s. <>

Corol lary 10.3.11 If C is an additive category, then so is S~XC, and q is an
additive functor.

Proof If C is an additive category, we can add fractions from X to Y as
follows. Given fractions /isj~ l and fis^1, we use the Ore condition to find
an s: X2 -> X in S and / / , ft X2 -> Y so that f{ s~l - f[s~x and f2 s^1 -

f{s~x\ the sum {f[ + f£)s~l is well defined up to equivalence. (Check this!)
Since q(X x Y)^q(X) x q(Y) in S~lC (exercise 10.3.1), it follows that
S~lC is an additive category (A.4.1) and that q is an additive functor. O

It is often useful to compare the localizations of subcategories with S~XC.
For this we introduce the following definition.

Definition 10.3.12 (Localizing subcategories) Let B be a full subcategory of
C, and let S be a locally small multiplicative system in C whose restriction
S fl B to B is also a multiplicative system. For legibility, we will write S~[B
for (S fl B)~lB. B is called a localizing subcategory of C (for S) if the natural
functor S~lB - • S~lC is fully faithful. That is, if it identifies S~lB with the
full subcategory of S~lC on the objects of B.
Lemma 10.3.13 A full subcategory B of C is localizing for S iff (1) holds.
Condition (2) implies that B is localizing if S is locally small on the left, and
condition (3) implies that B is localizing ifS is locally small on the right.

1. For each B and Br in B, the colimit HomsnisiB, B') (taken in B) maps
bijectively to the colimit Homs(B, Bf) (taken in C).
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384 The Derived Category

2. Whenever C —> B is a morphism in S with B in B, there is a morphism
Bf -> C in C with B' in B such that the composite B' -> B is in S.

3. Whenever B —> C is a morphism in S with B in B, there is a morphism
C -+ B' in C with Bf in B such that the composite B - • Bf is in S.

Proof The statement that S~lB -> S~lC is fully faithful means that the mor-
phisms coincide (A.2.3), which by the Gabriel-Zisman Theorem 10.3.7 is as-
sertion (1). Part (2) states that every left fraction B +- C -> B" is equivalent
to a fraction B <- B' —> B", which must lie in the full subcategory B. In
particular, if two left fractions B are equivalent via a fraction B <- C —> B"
with C in C, they are equivalent via a fraction with C in B. Thus (2) implies (1)
when S is locally small on the left. Replacing 'left' by 'right' and citing 10.3.8
proves that (3) implies (1) when S is locally small on the right. O
Corollary 10.3.14 If B is a localizing subcategory ofC, and for every object
C in C there is a morphism C -> B in S with B in B, then S~lB = S~XC.

Suppose in addition that S C\ B consists of isomorphisms. Then

B^S~lB^S-lC.
Example 10.3.15 Assume D(A) exists. The subcategories Kb(A), K+(.4),
and K~(A) of K(A) are localizing for Q (check this). Thus their localizations
exist and are the full subcategories Db(A), D+(*4), and D~(A) of D(A) whose
objects are the cochain complexes which are bounded, bounded below, and
bounded above, respectively.

Example 10.3.16 Let S be a multiplicative system in a ring, and let E be
the collection of all morphisms A —• B in mod-/? such that S~lA -> S~lB
is an isomorphism. It is not hard to see that £ is a multiplicative system in
mod-/?. The subcategory mod-S~lR is localizing, because the natural map
A -> S~l A is in £ for every /^-module A. Since E Pi mod-.S'"1/? consists of
isomorphisms, we therefore have

mod-S~lR = E~lmod-R.

Exercise 10.3.2 (Serre subcategories) Let A be an abelian category. An
abelian subcategory B is called a Serre subcategory if it is closed under sub-
objects, quotients, and extensions. Suppose that B is a Serre subcategory of A,
and let £ be the family of all morphisms f in A with ker(/) and coker(/)
inB.

1. Show that £ is a multiplicative system in A. We write A/B for the
localization £~lA (provided that it exists).

2. Show that q(X) = 0 in A/B if and only if X is in B.
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10.4 The Derived Category 385

3. Assume that B is a small category, and show that £ is locally small. This
is one case in which A/B = Z~lA exists. More generally, A/B exists
whenever A is well-powered, that is, whenever the family of subobjects
of any object of A is a set; see [Swan, pp.44ff].

4. Show that A/B is an abelian category, and that q: A —• A/B is an exact
functor.

5. Let S be a multiplicative system in a ring /?, and let mod^/? denote
the full subcategory of /^-modules A such that S~lA = 0. Show that
mods/? is a Serre subcategory of mod-/?. Conclude that mod-S"1/? =
mod-/? /mods R-

10.4 The Derived Category

In this section we show that D(*4) is a triangulated category and that D+(y4)
is determined by maps between bounded below complexes of injectives. We
also show that D(A) exists within our universe, at least if A is mod-/? or
Sheaves(X).

For this we generalize slightly. Let K be a triangulated category. The system
S arising from a cohomological functor H.K —> A is the collection of all
morphisms s in K such that Hl(s) is an isomorphism for all integers /. For
example, the quasi-isomorphisms Q arise from the cohomological functor H°.

Proposition 10.4.1 If S arises from a cohomological functor, then

1. S is a multiplicative system.
2. S~lK is a triangulated category, and K -+ S~lK is a morphism of tri-

angulated categories (in any universe containing S~lK).

Proof We first show that the system S is multiplicative (10.3.4). Axiom (1)
is trivial. To prove (2), let / : X —• Y and s:Z -> Y be given. Embed s in an
exact triangle (s, u, 8) on (Z, F, C) using (TR1). Complete uf:X -* C into
an exact triangle (t, uf, v) on (W, X, C). By axiom (TR3) there is a morphism
g such that

t uf v

W —> X —> C —> W[-l]

g[ if I iTg
s u 8

Z —> Y —> C —> Z [ - l ]

is a morphism of triangles. If H*(s) is a isomorphism, then //*(C) = 0 .
Applying this to the long exact sequence of the other triangle, we see that
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386 The Derived Category

H*(t) is also an isomorphism. The symmetric assertion may be proven simi-
larly, or by appeal to K°P -* A0?.

To verify axiom (3), we consider the difference h = f — g. Given s: Y -> Yf

in S with sf = sg, embed s in an exact triangle (M, S, 8) on (Z, Y, Yf). Note
that //*(Z) = 0. Since HomK(X, - ) is a cohomological functor (by 10.2.8),

HomK(X, Z) - % HomK(X, Y) - % HomK(X, F')

is exact. Since s(f — g) = 0, there is a g: X —• Z in K such that / — g = ug.
Embed g in an exact triangle 0, g, w) on (X', X, Z). Since gt = 0, ( / — g)/ =
wg/ = 0, whence / / = gt. And since H*(Z) = 0, the long exact sequence for
H shows that H*(Xf) = H*(X), that is, t e S. The other implication of axiom
(3) is analogous and may be deduced from the above by appeal to Kop - • Aop.

Now suppose that S~lK exists. The formula T(fs~l) = T(f)T(s)~l de-
fines a translation functor T on S~lK. To show that 5 - 1 K is triangulated,
we need to define exact triangles. Given wsj~ : A —> 5, i>5̂ ~ : B —> C, and
u ;^ 1 : C ^^ Cr -> T(A), the Ore conditionfor S yields morphisms ri: A! -> A
and r2: 5 ' -^ ,B in 5 and w': Ar -> 5' , v'\ B' -> C' in C so that iisj"1 = ^M^f1

and vs^ = s^v't^ . We say that (us^\ vs^ , 1^3 ) is an ^x^c^ triangle in
5 - 1 K just in case (u\ vf, w) is an exact triangle in K. The verification that
5~1K is triangulated is left to the reader as an exercise, being straightforward
but lengthy; one uses the fact that Horns(X, Y) may also be calculated using
fractions of the form t~lg. O

Corollary 10.4.2 (Universal property) Let F: K - • L be a morphism of tri-
angulated categories such that F(s) is an isomorphism for all s in S, where
S arises from a cohomological functor. Since q:K-> S~lK is a localization,
there is a unique functor F'\ 5~*K -> L such that F = Ff o q. In fact, F' is a
morphism of triangulated categories.

Corollary 10.4.3 D(.A), Db(A), D+(.4) and D~{A) are triangulated cate-
gories (in any universe containing them).

Proposition 10.4.4 Let R be a ring. Then D(A) exists and is a triangulated
category if A is mod-/?, or either of

• P res heave s(X), presheaves of R-modules on a topological space X, or
• Sheaves(X), sheaves of R-modules on a topological space X.

Proof We have to prove that the multiplicative system Q is locally small
(10.3.6). Given a fixed cochain complex of /^-modules A, choose an infinite
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10.4 The Derived Category 387

cardinal number K larger than the cardinality of the sets underlying the A1 and
R. Call a cochain complex B petite if its underlying sets have cardinality < /c;
there is a set of isomorphism classes of petite cochain complexes, hence a set
Sx of isomorphism classes of quasi-isomorphisms A! -> A with A! petite.

Given a quasi-isomorphism B -> A, it suffices to show that B contains a
petite subcomplex B' quasi-isomorphic to A. Since //*(A) has cardinality
< /c, there is a petite subcomplex Bo of B such that the map /0*: H*(Bo) ->
//*(A) is onto. Since ker(/0*) has cardinality </^, we can enlarge Bo to a
petite subcomplex #1 such that ker(/0*) vanishes in H*(B\). Inductively, we
can construct an increasing sequence of petite subcomplexes Bn of B such that
the kernel of H*(Bn) -> //*(A) vanishes in H*(Bn+i). But then their union
B' = U Bn is a petite subcomplex of # with

#*(£') ^ lim #*(£„) = #*(A).

The proof for presheaves is identical, except that K must bound the number
of open subsets U as well as the cardinality of A(U) for every open subset
U of X. The proof for sheaves is similar, using the following three additional
facts, which may be found in [Hart] or [Gode]: (1) if A: bounds card A(U)
for all U and the number of such U, then K also bounds the cardinality of
the stalks Ax for xeX (2.3.12); (2) a map B -» A is a quasi-isomorphism in
Sheaves(Z) iff every map of stalks Bx -+ Ax is a quasi-isomorphism; and (3)
for every directed system of sheaves we have //*(lim Bn) = lim H*(Bn). <>

Remark 10.4.5 (Gabber) The proof shows that D(A) exists within our uni-
verse for every well-powered abelian category A that satisfies (AB5) and has
a set of generators.

We conclude with a discussion of the derived category D+(*4). Assuming
that A has enough injectives and we are willing to always pass to complexes
of injectives, there is no need to leave the homotopy category K+(^4). In
particular, D+(^4) will exist in our universe even if D(*4) may not.

Lemma 10.4.6 Let Y be a bounded below cochain complex of injectives.
Every quasi-isomorphism t:Y -^ Z of complexes is a split injection in K(.4).

Proof The mapping cone cone(0 = T(Y) 0 Z is exact (1.5.4), and there is a
natural map cp: cone(0 -> T(Y). The Comparison Theorem of 2.3.7 (or rather
its proof; see 2.2.6) shows that cp is null-homotopic, say, by a chain homotopy
v = (k, s) from T(Y) 0 Z to Y. The first coordinate of the equation — y =
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388 The Derived Category

, z) = (vd + dv)(j, z) yields the equation

y = (kdy + sty — dky) + (dsz — sdz).

Thus ds = sd (i.e., 5 is a morphism of complexes) and st = idy + dk — kd,
that is, k is a chain homotopy equivalence st — idy. Hence st = idy in K+CA).

Corollary 10.4.7 If I is a bounded below cochain complex of injectives, then

for every X. Dually, if P is a bounded above cochain complex of projectives,
then

HomD M )(P, X) ^ HomK(^)(P, X).

Proof We prove the assertion for Y = / , using the notation of the lemma. Ev-
ery right fraction t~lg: X -^> Z ^— F is equivalent to sg = (st)t~lg: X ->
y. Conversely, if two parallel arrows f,g:X-+ Y in K(^4) become identified
in D(*4) = Q~lK(A), then r / = tg for some quasi-isomorphism t: Y -> Z by
10.3.9, which implies that / = stf = stg = g in K(.A). •

Exercise 10.4.1 In the situation of the lemma, show that (tk, l):cone(0 ->
Z induces an isomorphism Z = F ® cone(0 in

Theorem 10.4.8 Suppose that A has enough injectives. Then D+(*4) exists in
our universe because it is equivalent to the full subcategory K+(X) ofK^(A)
whose objects are bounded below cochain complexes of injectives

Dually, if A has enough projectives, then the localization D~(A) ofK~(A)
exists and is equivalent to the full subcategory K~(P) of bounded above
cochain complexes of projectives in K~(^4) :

Proof Recall from 5.7.2 that every X in Ch+(.A) has a Cartan-Eilenberg reso-
lution X —>> / with Tot(/) in K+(X); since X is bounded below, this is a quasi-
isomorphism (exercise 5.7.1). If Y —> X is a quasi-isomorphism, then so is
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10.4 The Derived Category 389

Y -> Tot(7); by 10.3.13(3), K + (J ) is a localizing subcategory of K+CA). This
proves that D+(*4) = S~1K+{1), and by 10.3.14 it suffices to show that every
quasi-isomorphism in K+(X) is an isomorphism. Let Y and X be bounded be-
low cochain complexes of injectives and t\Y —* X a. quasi-isomorphism. By
lemma 10.4.6, there is a map s: X -> Y so that st = idy in K+(*4). Interchang-
ing the roles of X and Y, s and t, we see that us = idx for some u. Hence t is
an isomorphism in K+(X) with t~l = s.

Dually, if A has enough projectives, then Aop has enough injectives and
D~(A) = D + C4°P)°P ^ K+CP°P)°P ^ K"0P). O

Example 10.4.9 Every short exact sequence 0 -> A - % B —% C -> 0 of
cochain complexes fits into an exact triangle in D(*4), isomorphic to the strict
triangle on u. Indeed, the quasi-isomorphism <p: cone(w) —>- C of 1.5.8 allows
us to form the exact triangle (w, v, 5^- 1) on (A, 5 , C). This construction
should be contrasted with the observation in 10.1.7 that there may be no simi-
lar exact triangle («, v, w) in K(A).

Note that the construction of D(*4) implies the following two useful criteria.
A chain complex X is isomorphic to 0 in D(*4) iff it is exact. A morphism
/ : X ->• Y in Ch(.4) becomes the zero map in D(A) iff there is a quasi-
isomorphism s:Y —> Y' such that sf is null homotopic (chain homotopic to
zero). The following exercise shows the subtlety of being zero.

Exercise 10.4.2 Give examples of maps / , g in Ch(*4) such that (1) / =
0 in D(^4), but / is not null homotopic, and (2) g induces the zero map

on cohomology, but g ^ 0 in D(A). Hint: For (2) try X: 0 -> I -^» Z -> 0,

Y: 0 -> 1 - U Z/3 -^ 0, g = (1, 2).

Exercise 10.4.3 (K#(*4) and D#(.A)) Let S be a Serre subcategory of A, and
let 7r: ^l -^ A/B be the quotient map constructed in exercise 10.3.2.

1. Show that H = TTH°: K(A) -> A -> >t/B is a cohomological functor,
so that K//(*4) is a triangulated category by exercise 10.2.5. The notation
KB(A) is often used for KH(A), because of the description in part (2).

2. Show that X is in KB(A) iff the cohomology H((X) is in B for all i.
3. Show that K#(^4) is a localizing subcategory of K(*4), and conclude that

its localization Dg(A) is a triangulated subcategory ofD(A) (10.2.6).
4. Suppose that B has enough injectives and that every injective object of

B is also injective in A. Show that there is an equivalence D+(B) =
D+C4).
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390 The Derived Category

Exercise 10.4.4 (Change of Universe) This is a continuation of the previ-
ous exercise. Suppose that our universe is contained in a larger universe U,
and that mod-/? and Sheaves(X) are small categories in U. Let MOD-/?
and SHEAVES(X) denote the categories of modules and sheaves in U,
respectively. Show that mod-/? and Sheaves(X) are Serre subcategories
of MOD-/? and SHEAVES(X), respectively. Conclude that D(mod-/?) =
Dmod-/?(M O D -^) andD(Sheaves(X)) = DSheaves(X) (SHEAVES (X)).

Exercise 10.4.5 Here is a construction of D(A) when A is mod-/?, valid
whenever A has enough projectives and satisfies (AB5). It is based on the
construction of CW spectra in algebraic topology [LMS]. Call a chain complex
C cellular if it is the increasing union of subcomplexes Cn, with Co = 0, such
that each quotient Cn/Cn-\ is a complex of projectives with all differentials
zero. Let Kcen denote the full subcategory of K(A) consisting of cellular
complexes. Show that

1. For every X there is a quasi-isomorphism C —> X with C cellular.
2. If C is cellular and X is acyclic, then every map C -> X is null-

homo topic.
3. If C is cellular and / : X -> Y is a quasi-isomorphism, then

/* : HomKU)(C, X) ^ UomKiA)(C, Y).

4. (Whitehead's Theorem) If / : C —• D is a quasi-isomorphism of cellular
complexes, then / is a homotopy equivalence, that is, C = D in K(^4).

5. Keen is a localizing triangulated subcategory of K(*4).
6. The natural map is an equivalence: Kcen = T>(A).

Exercise 10.4.6 Let /? be a noetherian ring, and let M(/?) denote the category
of all finitely generated /?-modules. Let Dfg(/?) denote the full subcategory of
D(mod-/?) consisting of complexes A whose cohomology modules Hl (A) are
all finitely generated, that is, the category DM(/?)(mod-/?) of exercise 10.4.3.
Show that Dfg(/?) is a triangulated category and that there is an equivalence
D~(M(/?)) = D^(/?). Hint: M(/?) is a Serre subcategory of mod-/? (exer-
cise 10.3.2).

10.5 Derived Functors

There is a category of triangulated categories; a morphism F :K -> K' of
triangulated categories is a (covariant) additive functor that commutes with the
translation functor T and sends exact triangles to exact triangles. Morphisms
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10.5 Derived Functors 391

are sometimes called covariant d-functors; a morphism Kop —> K' is of course
a contravariant 9-functor.

For example, suppose given an additive functor F:A-+ B between two
abelian categories. Since F preserves chain homotopy equivalences, it extends
to additive functors Ch(A) -> Ch(S) and K(A) - • K(B). Since F commutes
with translation of chain complexes, it even preserves mapping cones and ex-
act triangles. Thus F: K(A) -> K(S) is a morphism of triangulated categories.

We would like to extend F to a functor D(.4) -> D(B). If F: A -> B is
exact, this is easy. However, if F is not exact, then the functor K(A) -> K(S)
will not preserve quasi-isomorphisms, and this may not be possible. The thing
to expect is that if F is left or right exact, then the derived functors of F will
be needed to extend something like the hyper-derived functors of F.

Our experience in Chapter 5, section 7 tells us that the right hyper-derived
functors RlF work best if we restrict attention to bounded below cochain
complexes. With this in mind, let K denote K+(^4) or any other localizing
triangulated subcategory of K(A), and let D denote the full subcategory of the
derived category D(A) corresponding to K.

Definition 10.5.1 Let F :K -> K(S) be a morphism of triangulated cate-
gories. A (total) right derived functor of F on K is a morphism RF:D —•
D(B) of triangulated categories, together with a natural transformation £ from
qF: K -> K(S) -> D(S) to (RF)q: K -> D -> D(S) which is universal in
the sense that if G: D —• D(#) is another morphism equipped with a natural
transformation t;:qF => Gg, then there exists a unique natural transformation
77: RF => G so that £4 = T^A ° ?A f°r every A in D.

This universal property guarantees that if RF exists, then it is unique up to
natural isomorphism, and that if K' c K, then there is a natural transformation
from the right derived functor R'F on D' to the restriction of RF to D'. If there
is a chance of confusion, we will write RhF, R + F , R#F, and so on for the
derived functors of F on Kb(A), K+C4), KB(A), etc.

Similarly, a (total) left derived functor of F is a morphism LF: D ->• D(S)
together with a natural transformation £: (LF)q ^ qF satisfying the dual uni-
versal property (G factors through rj: G => LF). Since LF is R(Fop)°P, where
Fo p : Kop -^ K(#op), we can translate any statement about RF into a dual
statement about LF.

Exact Functors 10.5.2 If F: A - • B is an exact functor, F preserves quasi-
isomorphisms. Hence F extends trivially to F: D(*4) —> D(/3). In effect, F is
its own left and derived functor. The following two examples generalize this
observation.
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392 The Derived Category

Example 10.5.3 Let K + ( J ) denote the triangulated category of bounded be-
low complexes of injectives. We saw in 10.4.8 that every quasi-isomorphism
in K+(T) is an isomorphism, so K+(X) is isomorphic to its derived category

D+ (J) . The functor qFq-l:D+(I)^ K+(T) -^> K+(B) -> D+(B) satisfies
qF = (qFq~l)q, so it is both the left and right total derived functor of F.

Similarly, for the category K~(V) of bounded above cochain complexes of
projectives, we have K~(V) = D~(P). Again, qFq~l is both the left and right
derived functor of F.

Definition 10.5.4 Let F :K —• K(B) be a morphism of triangulated cate-
gories. A complex X in K is called F-acyclic if F(X) is acyclic, that is, if
Hl(FX) ^ 0 for all i. (Compare with 2.4.3.)

Example 10.5.5 (F-acyclic complexes) Suppose that K is a triangulated
subcategory of K(*4) such that every acyclic complex in K is F-acyclic. If
s: X ->• Y is a quasi-isomorphism in K, then coneO) and hence F(cone(»)
is acyclic. Since F preserves exact triangles, the cohomology sequence shows
that F(s)* : H*(FX) ^ H*(FY), that is, that F(s) is a quasi-isomorphism.
By the universal property of the localization D = <2-1K there is a unique
functor Q~lF from D to D(B) such that qF = (Q~lF)q. Once again, Q~lF
is both the left and right derived functor of F.

Existence Theorem 10.5.6 Let F: K+(A) -> K(B) be a morphism of trian-
gulated categories. If A has enough injectives, then the right derived functor
R + F exists on D+(^4), and if I is a bounded below complex of injectives, then

Dually, if A has enough projectives, then the left derived functor L~F exists
on D~(*4), and if P is a bounded above cochain complex of projectives, then

Proof Choose an equivalence U:D+(A) —^ K+(X) inverse to the natural

map 7:K+(X) -=> D + (^ ) of 10.4.8, and define RF to be the composite
qFU:

D+CA) -=> K+(X) -^> K+(B) -?

To construct f we use the natural isomorphism of 10.4.7

HomD+(A)(qX, TUqX) ^ HomK+(v4)(X, UqX).
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10.5 Derived Functors 393

Under this isomorphism there is a natural map fx'- X -> UqX in K+(*4) cor-
responding to the augmentation rj:qX —• TUqX in D+CA). We define §x to
be the natural transformation qF(fx):qF(X) -> qF(UqX) ^ (qFU)(qX).
It is not hard to see that § has the required universal property, making
(RF, f) into a right derived functor of F. As usual, the dual assertion that
the composite

D~(A) ^ > K~(V) -^ K~(B) -U D~(B)

is a left derived functor of F follows by passage to Fo p . O

Corollary 10.5.7 Let F'.A^Bbean additive functor between abelian cat-
egories.

1. If A has enough injectives, the hyper-derived functors Rl F(X) are the
cohomology ofRF(X): WF(X) ^ HlR^F(X)for all i.

2. If A has enough projectives, the hyper-derived functors IL;F(X) are the
cohomology ofLF(X): L;F(X) ^ H^L'F(X)for all i.

Remark 10.5.8 The assumption in 5.7.4 that F be left or right exact was
not necessary to define W F or IL/F; it was made to retain the connection
with F. Suppose that we consider an object A of A as a complex concen-
trated in degree zero. The assumption that F be left exact is needed to ensure
that the K'F(A) are the ordinary derived functors RlF(A) and in particu-
lar that K°F(A) = F(A). Similarly, the assumption that F be right exact is
needed to ensure that Q_;F(A) is the ordinary derived functor LiF(A), and that

= F(A).

Exercise 10.5.1 Suppose that F: K+(*4) -> K(C) is a morphism of triangu-
lated categories and that B is a Serre subcategory of A. If A has enough in-
jectives, show that the restriction of R + F to D^(*4) is the derived functor
R^F. If in addition B has enough injectives, which are also injective in A, this

proves that the composition D+(#) -» D+(.4) —> D+(C) is the derived func-
tor R + F | S of the restriction F\B of F to B, since we saw in exercise 10.4.3
that in this case D+(£) ^

Generalized Existence Theorem 10.5.9 ([HartRD, 1.5.1]) Suppose that Kr

is a triangulated subcategory ofK such that

1. Every X in K has a quasi-isomorphism X -> X' to an object
ofKr.
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394 The Derived Category

2. Every exact complex in K7 is F-acyclic (10.5.4).

Then D^>DandRF:D = Df^-+ D(B) is a right derived functor of F.

Proof By (1) and 10.3.14, K' is localizing and D' -=» D. Now modify the
proof of the Existence Theorem 10.5.6, using F-acyclic complexes. <C>

Definition 10.5.10 Let F: A - • B be an additive functor between abelian cat-
egories. When A has enough injectives, so that the usual derived functors Rl F
(of Chapter 2) exist, we say that F has cohomological dimension n if Rn F = 0
for all / > n, yet RnF ^0. Dually, when A has enough projectives, so that the
usual derived functors L\F exist, we say that F has homological dimension n
if LiF = 0 for all / > n, yet LnF / 0.

Exercise 10.5.2 If F has finite cohomological dimension, show that every
exact complex of F-acyclic objects (2.4.3) is an F-acyclic complex in the
sense of 10.5.4.

Corollary 10.5.11 Let F.A-^Bbean additive functor. If F has finite coho-
mological dimension n, then RF exists on D(A), and its restriction to D+(*A)
is R + F . Dually, if F has finite homological dimension n, then LF exists on

), and its restriction to D~(A) is L~F.

Proof Let K' be the full subcategory of K(^4) consisting of complexes of F-
acyclic objects in A (2.4.3). We need to show that every complex X has a
quasi-isomorphism X -^ Xr with Xr a complex of F-acyclic objects. To see
this, choose a Cartan-Eilenberg resolution X -> / and let r / be the double
subcomplex of / obtained by taking the good truncation z<n(I

p) of each col-
umn (1.2.7). Since each Xp - • Ip is an injective resolution, each r<n(I

p) is a
finite resolution of Xp by F-acyclic objects. Therefore X' = Tot(r/) is a chain
complex of F-acyclic objects. The bounded spectral sequence HpHq{xI) =>>

Hp^(Xf) degenerates to yield //*(X) ^ > //*(X0, that is, X -+ X1 is a
quasi-isomorphism. O

10.6 The Total Tensor Product

Let R be a ring. In order to avoid notational problems, we shall use the letters
A, B, and so on to denote cochain complexes of /^-modules. For each cochain
complex A of right /^-modules the total tensor product complex 2.7.1 is a
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10.6 The Total Tensor Product 395

functor F(B) = Tote(A ®R B) from K(/?-mod) to K(Ab). Since fl-mod has
enough projectives, its derived functor L~F: D~(/?-mod) —> D(Ab) exists by
10.5.6.

Definition 10.6.1 The total tensor product of A and B is

A ®\B = L" Tote(A ®R -)B.

Lemma 10.6.2 If A, Af, and B are bounded above cochain complexes and
A —• Af is a quasi-isomorphism, then A (g)̂  B = A! (g)̂  B.

Proof We may change B up to quasi-isomorphism to suppose that B is a
complex of flat modules. In this case A (g)̂  B is Tote(A <g>R B) and A! (g)̂  B
is Tote(A/ $/? B) by 10.5.5. Now apply the Comparison Theorem 5.2.12 to
Ep

x
q(A)-> Epq(Af), where

R BP ^ Hp+q(A ®Jj B).

The spectral sequences converge when A, A7, and B are bounded above 5.6.2.

•

Theorem 10.6.3 The total tensor product is a functor

(g^:D~(mod-/?) x D~(/?-mod) -> D"(Ab).

Its cohomology is the hypertor of 5.7.8:

Torf (A, B) ^ H~l{A ®\ B).

Proof For each fixed B, the functor F(A) = A®\B from K"(mod-/?) to
D~(Ab) sends quasi-isomorphisms to isomorphisms, so F factors through the
localization D~(mod-/?) of K~(mod-/?). If P and Q are chain complexes
of flat modules, then by definition the hypertor groups Tor^(P, Q) are the
homology of Tote P ®R Q. Reindexing the chain complexes as cochain com-
plexes, the cochain complex Tote(P <S>R Q) is isomorphic to P (g)̂  Q. O

Corollary 10.6.4 If A and B are R-modules, the usual Tor-group Torf (A, B)
of Chapter 3 is H~l(A 0 ^ B), where A and B are considered as cochain
complexes in degree zero.

Exercise 10.6.1 Form the derived functor LTote(— ®R B) and show that
A (g)̂  B is naturally isomorphic to L~ T o t e ( - 0/? B)A in D(Ab). This iso-
morphism underlies the fact that hypertor is a balanced functor (2.7.7).
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396 The Derived Category

Exercise 10.6.2 If A is a complex of R\-R bimodules, and B is a complex
of R-R2 bimodules, A ®R B is a double complex of R1-R2 bimodules. Show
that the total tensor product may be refined to a functor

0^ : D~(R\-mod-R) x D~(R-mod-R2) -> D~(Ri-mod-R2).

By "refine" we mean that the composition to D(Ab) induced by the usual
forgetful functor is the total tensor product in D(Ab). Then show that if R is a
commutative ring, we may refine it to a functor

5 j x D~(/?-mod) -> D~(/?-mod),

and that there is a natural isomorphism A ^ f i = 5 0 ^ A .

Remark 10.6.5 (see [HartRD, II.4]) If X is a topological space with a sheaf
Ox of rings, there is a category of Ox-modules [Hart]. This category has
enough flat modules (see [Hart, exercise III.6.4]), even though it may not
have enough projectives, and this suffices to construct the total tensor product
S (g>£, T of complexes of Ox-modules.

10.6.1 Ring Homomorphisms and L/*

10.6.6 Let / : / ? - > S be a ring homomorphism. By the Existence Theorem
10.5.6, the functor / * = — <S>R S from /^-modules to ^-modules has a left-
derived functor

L / * = L ( - ®R S): D-(mod-fl) -* D"(mod-5).

The discussion in 5.7.8 shows that the hypertor groups are

Torf (A, S) = L//*(A) ^ #- f ' (L/*A).

If S has finite flat dimension n (4.1.1), then / * has homological dimen-
sion n, and we may extend the derived functor L / * using 10.5.11 to L/*:
D(mod-#) -> D(mod-S).

The forgetful functor /*: mod-S1 - • mod-/? is exact, so it "is" its own de-
rived functor f*:D(mod-S) -> D(mod-Z?). The composite /*(L/*)A is the
total tensor product A (g)̂  S because, when A is a bounded above complex of
flat modules, both objects of the derived category are represented by A <8>R S.
We will see in the next section that /* (= R/*) and L / * are adjoint functors
in a suitable sense.
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10.6 The Total Tensor Product 397

Remark If we pass from rings to schemes, the map / reverses direction, going
from Spec(S) to Spec(/?). This explains the use of the notation /*, which
suggests a covariant functor on Spec(/?). Of course /* is not always exact
when we pass to more general schemes, and one needs to replace /* by R/*;
see [HartRD, II.5.5].

Lemma 10.6.7 If f: R —• S is a commutative ring homomorphism, there is a
natural isomorphism in D~(mod-S) for every A, B in D~(mod-/?):

L/*(A) ®£ L/*(fi) -^ L/*(A <g>L B).

Proof Replacing A and B by complexes of flat /^-modules, this is just the
natural isomorphism (A ®R S) ®s (S ®R B) = (A ®R B) ®R S. O

Exercise 10.6.3 (finite Tor-dimension) The Tor-dimension of a bounded
complex A of right /^-modules is the smallest n such that the hypertor
Tor^(A, B) vanish for all modules B when / > n. If A is a module, the Tor-
dimension is just the flat dimension of 4.1.1.

1. Show that A has finite Tor-dimension if and only if there is a quasi-
isomorphism P ->• A with P a bounded complex of flat /^-modules.

2. If A has finite Tor-dimension, show that the derived functor A ®^ — on
D~(R-mod) extends to a functor

L(A®R):D(R-mod) -> D(Ab).

3. Let / : R - • S be a ring map, with S of finite flat dimension over R.
Show that the forgetful functor f*:Db(mod-S) -> D^(mod-#) sends
complexes of finite Tor-dimension over S to complexes of finite Tor-
dimension over R.

10.6.2 The Derived Functors of T and /*

10.6.8 Let I be a topological space, and F the global sections functor
from Sheaves(X) (sheaves of abelian groups) to Ab; see 2.5.4. For sim-
plicity, we shall write D(Z), D+(X), and so on for the derived categories
D(Sheaves(Z)), D+(Sheaves(X)), and so on. By 2.3.12 the category
Sheaves(Z) has enough injectives. Therefore F has a right-derived functor
R + F : D+(X) —• D+(Ab), and for every sheaf T the usual cohomology func-
tors H[(X,T) of 2.5.4 are the groups //'(R+FCF)). More generally, if T* is
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398 The Derived Category

a bounded below complex of sheaves on X, then the hypercohomology groups
of 5.7.10 are given by:

In algebraic geometry, one usually works with topological spaces that are
noetherian (the closed subspaces satisfy the descending chain condition) and
have finite Krull dimension n (the longest chain of irreducible closed subsets
has length n). Grothendieck proved in [Tohuku, 3.6.5] (see [Hart, III.2.7]) that
for such a space the functors Hl(X, —) vanish for / > n, that is, that F has
cohomological dimension n. As we have seen in 10.5.11, this permits us to
extend R + F to a functor

Now let / : X -> Y be a continuous map of topological spaces. Just as for
f, the direct image sheaf functor /* (2.6.6) has a derived functor

If T is a sheaf on X, its higher direct image sheaves (2.6.6) are the sheaves

When X is noetherian of finite Krull dimension, the functor /* has finite
cohomological dimension because, by [Hart, III.8.1], /?7*CF) is the sheaf on
Y associated to the presheaf sending U to Hl(f~l(U), J7). Once again, we
can extend R/* from D+(X) to a functor R/*: D(X) -> D(F).

RF is just a special case of R/*. Indeed, if Y is a point, then Sheaves(F) =
Ab and F is /*; it follows that RF is R/*.

10.7 ExtandRHom

Let A and B be cochain complexes. In 2.7.4 we constructed the total Horn
cochain complex Horn (A, B), and observed that Hn Horn*(A, B) is the group
of chain homotopy equivalence classes of morphisms A ->• B[—n\. That is,

HomKcA)(A, TnB) = //"(Horn (A, B)).

Both Horn (A, —) and Horn (—, B) are morphisms of triangulated functors,
from K(^4) and K(^4)op to K(Ab), respectively. In fact, Horn* is a bimorphism

Horn- : K(A)op x K(A) -* K(Ab).
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10.7 Ext andRHom 399

(Exercise!) In this section we construct an object RHom(A, B) in the derived
category D(^4) and prove that if A and B are bounded below, then

HomDM)(A, TnB) = //"(RHom(A, B)).

Since D+(^4) is a full subcategory of D(y4), this motivates the following.

Definition 10.7.1 Let A and B be cochain complexes in an abelian category
A. The nth hyperext of A and B is the abelian group

Ext" (A, B) = HomDC4)(A, TnB).

Note that since D(A) is a triangulated category, its Hom-functors Ext"(A, —)
and Ext"(—, 5) are cohomological functors, that is, they convert exact trian-
gles into long exact sequences (10.2.8). Since K(*4) is a triangulated category,
its Hom-functors //"Horn (A, —) and //"Horn (—, B) are also cohomologi-
cal functors, and there are canonical morphisms

//" Horn (A, B) = HomK(^)(A, TnB) -> HomD(^)(A, TnB) = Ext"(A, B).

Definition 10.7.2 Suppose that A has enough injectives, so that the derived
functor R+Hom (A, — ):D+(*4) —> D(Ab) exists for every cochain complex
A. We write RHom(A, B) for the object R + Horn-(A, -)B of D(Ab).

Lemma 10.7.3 If A -> A! is a quasi-isomorphism, then RHom(Ar, B) —̂ >

Proof We may change B up to quasi-isomorphism to suppose that B is a
bounded below cochain complex of injectives. But then RHom(A', B) =
Horn (Ar, B) is quasi-isomorphic to RHom(A, B) = Horn (A, B), because
we saw in 10.4.7 that

/ /" Horn (A', B) = HomK(^)(A/, TnB)

^ HomDU)(A/, TnB) ^ HomDM)(A, TnB)

^ HomKU)(A, TnB) = Hn Horn (A, B). O

Theorem 10.7.4 If A has enough injectives, then KHom is a bifunctor

RHom:D(^)op x D + U) -> D(Ab).

Dually, if A has enough projectives, then RHom is a bifunctor

RHom:D"(^)op x D(A) -» D(Ab).
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400 The Derived Category

In both cases, we have Ext"(A, B) ^ //"(RHom(A, B)).

Proof The lemma shows that, for each fixed B, the functor F{A) = RHom(A,
B) from K(v4.)op to D(Ab) sends quasi-isomorphisms to isomorphisms, so
F factors through the localization D(,4)op of K(A)op. Therefore, to com-
pute //"(RHom(A, B)) we may suppose that B is a bounded below cochain
complex of injectives. But then by the construction of RHom(A, B) as
Horn (A, B) we have

Hn RHom(A, B) = Hn Horn (A, B) = HomKU)(A, B) = HomD(^)(A, B). O

Corollary 10.7.5 If A has enough injectives, or enough projectives, then for
any A and B in A the group Extn(A, B) is the usual Ext-group of Chapter 3.

Proof If B -> / is an injective resolution, then the usual definition of Ext"(A,
B) is //"Hom(A, / ) = //"TotHom(A, / ) ̂  //nRHom(A, B). Similarly, if
P -> A is a projective resolution, the usual Ext"(A, B) is Hn Hom(P, B) =
HnRHom(A,B). O

Exercise 10.7.1 (balancing RHom) Suppose that A has both enough injec-
tives and enough projectives. Show that the two ways of defining the functor
RHom:D~(^4)op x D+(*4) - • D+(Ab) are canonically isomorphic.

Exercise 10.7.2 Suppose that A has enough injectives. We say that a bounded
below complex B has injective dimension n if Ext' (A, B) = 0 for all / > n and
all A in A, and Ext"(A, B) ^ 0 for some A.

1. Show that B has finite injective dimension o there is a quasi-isomorph-
ism B —• / into a bounded complex I of injectives.

2. If B has finite injective dimension, show that RHom(—, B): D(.4)op —•
D(Ab) of 10.7.4 is the derived functor 10.5.1 of Hom(-, B).

10J.I AdjointnessofLf*andf*

We can refine the above construction slightly when A is the category /?-mod
of modules over a commutative ring R. For simplicity we shall write D(/?),
D+(/?), and so on for the derived categories D(/?-mod), D+(/?-mod), and
so on. Write Hom^(A, B) for Horn*(A, B), considered as a complex of R-
modules. If we replace D(Ab) by D(R) in the above construction, we obtain
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10.7 Ext andRHom 401

an object RHom#(A, B) in D(R) whose image under D(R) —• D(Ab) is the
unrefined RHom(A, B) of 10.7.2.

Suppose now that / : R -> S is a map of commutative rings. The forget-
ful functor f*:mod-S -> mod-/? is exact, so it is its own derived functor
f*:D(S) -> D(R). If A is in D(S), the functor /*RHom5(A, - ) :D + (5 ) ->
D(/?) is the right derived functor of /* Hom,s(A, —) because if / is a complex
of injectives, then /* RHoms(A, /) = /* Homs(A, / ) . The universal property
of derived functors yields a natural map:

(t) £:/*RHom5(A, B) -> RHom*(/*A, /*£) .

Theorem 10.7.6 If f: R —> S is a map of commutative rings, then the functor
L/*: D'(R) -> D"(5) w fe^f adjoint to /*: D+(5) -> D+(#). TTiaf w,/or A in
D~(R) and B in D+(5) there is a natural isomorphism

(*) HomD(5)(L/*A, B) -=> HomD W(A, /*B).

77ẑ  adjunction morphisms are T]A'> A —>• f*Lf*A and SB'- L/*(/*Z?) —> B, r^-
spectively. Moreover, the isomorphism (*) comes from a natural isomorphism

x : /*RHoms(L/*A, B) ^ > RHom^CA, /*£) .

Prao/ Since /* is exact, / * L / * is the left derived functor of /*/*; the univer-
sal property gives a map TJA'- A —• L(/*/*)A = /*L/*A. Using (t), this gives
the map

r : /*RHom5(L/*A, B) - U RHomJ?(/*L/*A, /*B) X - RHom^CA, /*5).

To evaluate this map, we suppose that A is a bounded above complex of
projective /^-modules. In this case the map r is the isomorphism

Tot(/*Hom5(A ®R S, B)) ^ Tot(Hom/?(A, Hom.sCS, B)))

Passing to cohomology, r induces the adjoint isomorphism (*). <0>

Remark For schemes one needs to be able to localize the above data to form
the Ox-module analogue of RHom#. By 3.3.8 one needs A to be finitely pre-
sented in order to have an isomorphism S~l Hom#(A, B) = Homs-\R(S~lA,
S~lB). Thus one needs to restrict A to a subcategory of D(X) which is locally
the Dfg(/?) of exercise 10.4.6; see [HartRD, II.5.10] for details.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.011
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:46:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.011
https://www.cambridge.org/core


402 The Derived Category

Exercise 10.7.3 Let X be a topological space. Given two sheaves £, T on
X, the sheaf horn is the sheaf Hom{8, T) is the sheaf on X associated to the
presheaf sending U to Hom(£|(/, ,F|L0; s e e [Hart, exercise II.1.15]. Mimic
the construction of RHom to obtain a functor

RHom:D(X)op x D+(X) -> D(X).

Now suppose that f:X -> Y is a continuous map, and that X is noetherian
of finite Krull dimension. Generalize (f) for S in D~(X), JF in D+(X) to
obtain a natural map in D+(F) :

f: R/*

10.8 Replacing Spectral Sequences

We have seen that the objects RF(A) in the derived category are more flex-
ible than their cohomology groups, the hyper-derived functors IR'F(A) =
HlRF(A). Of course, if we are interested in the groups themselves, we
can use the spectral sequence E{q = (RPF)(H«A) =>> RP^F(A) of 5.7.9.
Things get more complicated when we compose two or more functors, be-
cause then we need spectral sequences to compute the Zs2-terms of other
spectral sequences.

Example 10.8.1 Consider the problem of comparing the two ways of form-
ing the total tensor product of three bounded below cochain complexes A e
D~(mod-#), B e D-(/?-mod-S), and C e D^S-mod). Replacing A and C
by complexes of projectives, we immediately see that there is a natural iso-
morphism

(*) A <8>£ (B <g>£ C) ^ (A <g>5? B) ®5 C.

However, it is quite a different matter to try to establish this quasi-isomorph-
ism by studying the two hypertor modules Torf (A, B) and Tors(B,C)\
Cf. [EGA, III.6.8.3]. Another way to establish the isomorphism (*) is to set
F = Tot(A®/?) and G = Tot(®5C). Since FG = GF, (*) follows immedi-
ately from the following result.

Composition Theorem 10.8.2 Let K c K(A) and Kf c K(S) be localizing
triangulated subcategories, and suppose given two morphisms of triangulated
categories G:K - • K7, F:Kf -+ K(C). Assume that RF, RG, and R(FG)
exist, with RF(D) c Dr. Then:
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10.8 Replacing Spectral Sequences 403

1. There is a unique natural transformation £ = £f,G'-R(FG) =>> RF o
RG, such that the following diagram commutes in D(C)for each A in K.

qFG(A) -^> (RF)(qGA)

KqA

R(FG)(qA) • (RF)(RG)(qA)

2. Suppose that there are triangulated subcategories Ko c K, KQ C Kf sat-
isfying the hypotheses of the Generalized Existence Theorem 10.5.9 for
G and F, and suppose that G sends Ko to KQ. Then f is an isomorphism

f : R(FG) ^ (RF) o (RG).

Proof Part (1) follows from the universal property 10.5.1 of R(FG). For (2)
it suffices to observe that if A is in Ko, then

R(FG)(qA) = qFG(A) £ RF(q(GA)) ^ RF(RG(qA)). O

Corollary 10.8.3 (Grothendieck spectral sequences) Let A, B, and C be
abelian categories such that both A and B have enough injectives, and sup-
pose given left exact functors G: A^ B and F:B —> C.

G
A — • B

FG\ / F

C

IfG sends injective objects of A to F-acyclic objects ofBy then

? : R+(FG) ^ (R+F) o (R+G).

If in addition G sends acyclic complexes to F-acyclic complexes, and both
F and G have finite cohomological dimension, then R(FG):D(*4) —>• D(C)
exists, and

In both cases, there is a convergent spectral sequence for all A:

Ep
2
q = (RpF)(RqG)(A) => Rp+q(FG)(A).

If A is an object of A this is the Grothendieck spectral sequence of 5.8.3.
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404 The Derived Category

Proof The hypercohomology spectral sequence 5.7.9 converging to
(RP+iF)(RG(A)) has E™ term (RPF)HHRG(A)) = (RPF)(R«G(A)).

O

Remark 10.8.4 Conceptually, the composition of functors R(FG) = (RF) o
(RG) is much simpler than the original spectral sequence. The reader having
some familiarity with algebraic geometry may wish to glance at [EGA, III.6],
and especially at the "six spectral sequences" of III.6.6 or III.6.7.3, to appreci-
ate the convenience of the derived category.

Exercise 10.8.1 If F, G, H are three consecutive morphisms, show that as
natural transformations from R(FGH) to RF o RG o RH we have

£G,H ° KF,GH = KF,G ° £FG,H-

In the rest of this section, we shall enumerate three consequences of the
Composition Theorem 10.8.2, usually replacing a spectral sequence with an
isomorphism in the derived category. We will implicitly use the dual formula-
tion LF o LG = L(FG) of the Composition Theorem without comment.

10.8.1 The Projection Formula

10.8.5 Let / : R - • S be a ring homomorphism, A a bounded above com-
plex of right /^-modules, and B a complex of left S-modules. The func-
tor /*:mod-/? -> mod-iS sends A to A <S)R S, SO it preserves projectives.
Since /*(A) ®s B = (A ®R S) ®s B ^ A ®R f*B, the Composition Theorem
10.8.2 yields

(*) L/*(A) ^ f i ^ A ^ (f^B)

in D(Ab). If S is commutative, we may regard B as an S-S bimodule and f*B
as an /?-£ bimodule. As we saw in exercise 10.6.2, this allows us to interpret
(*) as an isomorphism in D(S). From the standpoint of algebraic geometry,
however, it is better to apply /* to obtain the following isomorphism in D(R):

This is sometimes called the "projection formula"; see [HartRD, II.5.6] for the
generalization to schemes. The projection formula underlies the "Base change
for Tor" spectral sequence 5.6.6.
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10.8 Replacing Spectral Sequences 405

Exercise 10.8.2 Use the universal property of ®^ to construct the natural
map L/*(A) ®£ B -+ A ®\ (/*£).

10.8.6 Similarly, if g: S —• T is another ring homomorphism, we have
(gf)* = g*f*. The Composition Theorem 10.8.2 yields a natural isomor-
phism

This underlies the spectral sequence Tor£(Tor*(A, 5), T) => Tor*+^(A, T).

10.8.2 Adjointness of ®L and RHom

Theorem 10.8.7 If R is a commutative ring and B is a bounded above com-
plex of R-modules, then ®\B\ D~(R) ->• D~(R) is left adjoint to the functor
RHom* (5, - ) : D+(#) -> D+(^). That is, for A in D~(R) and C in D+(R)
there is a natural isomorphism

HomD(/?)(A, RHom/^B, C)) = HomD(^)(A 0 ^ B, C).

This isomorphism arises by applying / /° to the isomorphism

(t) RHom/?(A, RHom/KB, C)) -=> RHom/?(A ®\ B, C)

in D+(/?). The adjunction morphisms are r]A'. A —• RHom/?(5, A

, C) ®^ 5 -> C.

Proof Fix a projective complex A and an injective complex C. The functor
A ®5? ~ preserves projectives, while the functor Hom/?(—, C) sends pro-
jectives to injectives. By the Composition Theorem 10.8.2, the two sides
of (t) are both isomorphic to the derived functors of the composite functor
Hom(A, Hom(£, C)) = Hom(A ®R B, C). <C>

Exercise 10.8.3 Let R be a commutative ring and C a bounded complex of
finite Tor dimension over R (exercise 10.6.3). Show that there is a natural
isomorphism in D(R):

RHom#(A, B) ® \ C ^ > RHom/?(A, B ® \ C).
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406 The Derived Category

Here A is in D(R) and B is in D+(/?). For the scheme version of this result,
see[HartRD,II.5.14].

We now consider the effect of a ring homomorphism / : / ? — • S upon
RHom. We saw in 2.3.10 that Hom/?(£\ —): mod-/? -> mod-S preserves in-
jectives. Therefore for every S-module complex A, and every bounded below
R -module complex B, we have

RHoms(A, RHom#(S, B)) ^ RHomR(f*A, B).

This isomorphism underlies the "Base change for Ext" spectral sequence of
exercise 5.6.3.

Exercise 10.8.4 Suppose that S is a flat /^-module, so that / * is exact and
L / * = /*. Suppose that A is quasi-isomorphic to a bounded above complex
of finitely generated projective modules. Show that we have a natural isomor-
phism for every B in D+(/?):

L / * RHom#(A, B) -> RHom5(L/*A, L /*£ ) .

Exercise 10.8.5 (Lyndon/Hochschild-Serre) Let H be a normal subgroup of
a group G. Show that the functors AH = A <S>ZH ^ a nd A77 = Horn//(2, A) of
Chapter 6 have derived functors A (g)^ 2: D(G-mod) ->• D(G///-mod) and
RHom# (Z, A): D(G-mod) -> D(G///-mod) such that

A ®^ Z = (A ®^ Z) <8)G/// Z and

RHomG(Z, A) ^ RHomG/H(2, RHom^(Z, A)).

Use these to obtain the Lyndon/Hochschild-Serre spectral sequences 6.8.2.

10.8.3 Leray Spectral Sequences

10.8.8 Suppose that / : X -> Y is a continuous map of topological spaces.
We saw in 5.8.6 that /* preserves injectives and that the Leray spectral
sequence

E{q = Hp(Y\ Rqf*F) => Hp+q(X; T)
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10.9 The Topological Derived Category 407

arose from the fact that F(X, T) is the composite F(F, f*T). The Composi-
tion Theorem 10.8.2 promotes this into an isomorphism for every T in D+(X):

Of course, if X and Y are noetherian spaces of finite Krull dimension, then this
isomorphism is valid for every T in D(X).

We can generalize this by replacing F(F, —) by g*, where g: Y ->• Z is
another continuous map. For this, we need the following standard identity.

Lemma 10.8.9 (gf)*F = g*(UF) for every sheaf T on X.

Proof By its very definition (2.6.6), for every open subset U of X we have

= Hf-lg~lU) = iUD{g-lU) = g*(f*F)(U). O

Corollary 10.8.10 For every T in D+(X) there is a natural isomorphism

in D(Z). If moreover X and Y are noetherian of finite Krull dimension, then
this isomorphism holds for every T in D(X).

Exercise 10.8.6 If T is an injective sheaf, the sheaf horn Hom(£, T) is F-
acyclic ("flasque") by [Gode, II.7.3.2]. For any two sheaves £ and T, show
that Homx(£, T) = F(X, Hom(£, J7)). Then use the Composition Theorem
10.8.2 to conclude that there is a natural isomorphism

RHom(£, T) ^ (RF) o RHom(£, T)

of bifunctors from D-(X)°P x D+(X) to D(Ab).

10.9 The Topological Derived Category

At the same time (1962-1963) as Verdier was inventing the algebraic notion
of the derived category [Verd], topologists (e.g., D. Puppe) were discovering
that the stable homotopy category D(<S) was indeed a triangulated category.
In this last section we show how to construct this structure with a minimum
of topology, mimicking the passage from chain complexes to the homotopy
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408 The Derived Category

category K(Ab) in section 10.1 and the localization from K(Ab) to the derived
category D(Ab). This provides a rich analogy between derived categories and
stable homotopy theory, which has only recently been exploited (see [Th] and
[Rob], for example).

Our first task is to define the category of spectra S. Here is the "modern"
(coordinatized) definition, following [LMS].

Definition 10.9.1 A spectrum E is a sequence of based topological spaces En

and based homeomorphisms an: En —^ QEn+\. A map of spectra f:E—>
F is a sequence of based continuous maps fn: En —> Fn strictly compatible
with the given structural homeomorphisms. As these maps are closed under
composition, the spectra and their maps form a category S. The sequence of
1-point spaces forms a spectrum *, which is the zero object in 5, because
Hom<s(*, E) = Hom<s(£, *) = {point} for all E. The product E x F of two
spectra is the spectrum whose nth space is En x Fn.

Historically, spectra arose from the study of "infinite loop spaces;" EQ is an
infinite loop space, because we have described it as the /7-fold loop space EQ =
QpEp for all p. The most readable reference for this is part III of Adams' book
[A], although it is far from optimal on the foundations, which had not yet been
worked out in 1974.

Looping and Delooping 10.9.2 If E is a spectrum, we can form its loop
spectrum QE by setting (£lE)n — Q(En), the structural maps being the
Q(an). More subtly, we can form the delooping Q~*E by reindexing and
forgetting Eo: (Q~1E)n = En+\. Clearly QQ~lE = Q~lQE = E, so Q is a
automorphism of the category S. When we construct a triangulated structure
on the stable homotopy category, Q~l will become our "translation functor."

Example 10.9.3 (Sphere spectra) There is a standard map from the m-sphere
Sm to the QSm+l (put Sm at the equator of Sm+l and use the longitudes). The
n-sphere spectrum Sn is obtained by applying Ql and taking the colimit

Of course, to define the negative sphere spectrum S" we only use i > —n.
The zero-th space of the sphere spectrum S° is often written as Q^S00. Note
that our notational conventions are such that for all integers n and p we have

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.011
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:46:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.011
https://www.cambridge.org/core


10.9 The Topological Derived Category 409

Definition 10.9.4 (The stable category) The homotopy groups of a spectrum
E are:

nnE = 7Tn+i(Ei) for i > 0, n + i > 0.

These groups are independent of the choice of /, because for all m ni+\Em =
TTi (QEm). We say that / : £ —• F is a weak homotopy equivalence if / induces
an isomorphism on homotopy groups. Let W denote the family of all weak
homotopy equivalences in <S. The stable homotopy category, or topological
derived category D(<S), is the localization W~lS of S at W.

Of course, in order to see that the stable category exists within our universe
we need to prove something. Mimicking the procedure of section 1 and sec-
tion 3, we shall first construct a homotopy category K(<S) and prove that the
system W of weak homotopy equivalences form a locally small multiplicative
system in K(<S) (10.3.6). Then we shall show that the homotopy category of
"CW spectra" forms a localizing subcategory K(Scw) of K(5) (10.3.12), and
that we may take the topological derived category to be K(Scw)- This paral-
lels theorem 10.4.8, that the category D+(Ab) is equivalent to the homotopy
category of bounded below complexes of injective abelian groups.

For this program, we need the notion of homotopy in S and the notion
of a CW spectrum, both of which are constructed using prespectra and the
"spectrification" functor £2°°. Let SX denote the usual based suspension of a
topological space X, and recall that maps SX —> Y are in 1-1 correspondence
with maps X —> QY.

Definition 10.9.5 Aprespectrum D is a sequence of based topological spaces
Dn and based continuous maps S(Dn) -» Dn+i, or equivalently, maps Dn ->
QDn+1. If C and D are prespectra, a function f: C —• D is a sequence of based
continuous maps fn'-Cn -> Dn which are strictly compatible with the given
structural maps. There is a category V of prespectra and functions, as well as a
forgetful functor S ->• V. A CW prespectrum is a prespectrum D in which all
the spaces Dn are CW complexes and all the structure maps SDn —»> Dn+i are
cellular inclusions.

Warning: Terminology has changed considerably over the years, even since
the 1970s. A prespectrum used to be called a "suspension spectrum," and the
present notion of spectrum is slightly stronger than the notion of
"£2-spectrum," in which the structural maps were only required to be weak
equivalences. Our use of "function" agrees with [A], but the category of CW
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410 The Derived Category

prespectra in [A] has more morphisms than just the functions; see [A, /?.14O]
or [LMS, p.2] for details.

10.9.6 There is a functor Q°°:V -> S, called "specification." It sends a
CW prespectrum D to the spectrum £2°°D whose nth space is

where the colimit is taken with respect to the iterated loops on the maps Dj ->
C2D/+1. The structure maps (Q°°D)n -> (Q°°D)n+i are obtained by shifting
the indices, using the fact that Q commutes with colimits. The effect of £2°°
on functions should be clear.

A CW spectrum is a spectrum of the form E = Q°°D for some CW prespec-
trum D. The full subcategory of S consisting of CW spectra is written as Sew-
Although the topological spaces En of a CW spectrum are obviously not CW
complexes themselves, they do have the homotopy type of CW complexes.

Exercise 10.9.1 Show that Q°°E ^ £ in <S for every spectrum E.

Topology Exercise 10.9.2 If D is a CW prespectrum, show that the structure
maps Dn -> £2Dn+\ are closed embeddings. Use this to show that

Analogy 10.9.7 There is a formal analogy between the theory of spectra and
the theory of (chain complexes of) sheaves. The analogue of a presheaf is a
prespectrum. Just as the forgetful functor from sheaves to presheaves has a
left adjoint (sheafification), the forgetful functor from spectra to prespectra has
£2°° as its left adjoint. The reader is referred to the Appendix of [LMS] for
the extension of £2°° to general spectra, as well as the verification that £2°° is
indeed the left adjoint of the forgetful functor.

Just as many standard operations on sheaves (inverse image, direct sum,
cokernels) are defined by sheafification, many standard operations on spectra
(cylinders, wedges, mapping cones) are defined on spectra by applying £2°° to
the corresponding operation on prespectra. This is not surprising, since both
are right adjoint functors and therefore must preserve coproducts and colimits
by 2.6.10.

Example 10.9.8 (Coproduct) Recall that the coproduct in the category of
based topological spaces is the wedge vaXa, obtained from the disjoint union
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10.9 The Topological Derived Category 411

by identifying the basepoints. If {Da} is a family of prespectra, their wedge
is the prespectrum whose nth space is (vDa)n = v(Da)n; it is the coproduct
in the category of prespectra. (Why?) Since £2°° preserves coproducts, vDa =
Q°°{v(Da)n} is the coproduct in the category of spectra.

Example 10.9.9 (Suspension) The suspension SE of a spectrum E is Q°°
applied to the prespectrum whose nth space is SEn and whose structure maps
are the suspensions of the structure maps SEn -> En+\. Adams proves in
[A, III.3.7] that the natural maps En —> QS(En) induce a weak homotopy
equivalence E -> QSE, and hence a weak homotopy equivalence

Definition 10.9.10 (Homotopy category) The cylinder spectrum cyl(E) of
a spectrum E is obtained by applying £2°° to the prespectrum (/+ A E)n =
[0, 1] x En/[0, 1] x {*}. Just as in ordinary topology, we say that two maps
of spectra /o, f\\ E -> F are homotopic if there is a map h: cyl(E) - • F such
that the ft are the composites E = {/} x E ^ cyl(E) -> F. It is not hard to
see that this is an equivalence relation (exercise!).

We write [E, F] for the set of homotopy classes of maps of spectra; these
form the morphisms of the homotopy category K(<S) of spectra. The full sub-
category of K(<S) consisting of the CW spectra is written as K(Scw)-

Exercise 10.9.3 Show that E x F and E v F are also the product and co-
product in K(«S).

Proposition 10.9.11 K(5) is an additive category.

Proof Since K(<S) has a zero object * and a product E x F, we need only
show that it is an Ab-category (Appendix, A.4.1), that is, that every Horn-
set [E, F] has the structure of an abelian group in such a way that composi-
tion distributes over addition. The standard proof in topology that homotopy
classes of maps into any loop space form an abelian group proves this; one
splits cyl(F) into [0, ^] x F/ ~ and [ | , l ] x F / ~ and concatenates loops.
We leave the verification of this to readers familiar with the standard proof. O

Corollary 10.9.12 The natural map E v F —• E x F is an isomorphism
inK(S).

The role of CW spectra is based primarily upon the two following funda-
mental results.
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412 The Derived Category

Proposition 10.9.13 For each spectrum E there is a natural weak homotopy
equivalence C —> E, with C a CW spectrum. In particular, K(Scw) is a lo-
calizing subcategory ofK(S) in the sense of 10.3.12.

Proof Let Sing(Z) denote the singular simplicial set (8.2.4) of a topological
space X, and |Sing(X)| - • X the natural map. Since |Sing(Z)| is a CW com-
plex, the cellular inclusions S|Sing(En)| ^ |Sing(SEn)| <^ |Sing(£n+i)|
make |Sing(£)| into a CW prespectrum and give us a function of prespec-
tra |Sing(£)| —• E. Taking adjoints gives a map of spectra C -* E, where
C = ft°°|Sing(£)|. Since 7r*|Sing(X)| = TT*(X) for every topological space
X, we have

for all m and /. Since nn(C) = colim/^oo7rn+/(|Sing(£'n+/)| by the topology
exercise 10.9.2, it follows that C -> E is a weak homotopy equivalence. O

Whitehead's Theorem 10.9.14

1. If C is a CW spectrum, then for every weak homotopy equivalence
f\E -* F of spectra (10.9.4) we have /* : [C, E] = [C, F].

2. Every weak homotopy equivalence of CW spectra is a homotopy equiva-
lence (10.9.10), that is, an isomorphism in K(<S).

Proof See [A, pp. 149-150] or [LMS, p.30]. Note that (1) implies (2), by
setting C — F. O

Corollary 10.9.15 The stable homotopy category D(5) exists and is equiva-
lent to the homotopy category of CW spectra

Proof The generalities on localizing subcategories in section 3 show that
D(5) ^ W~lK(Scw)' But by Whitehead's Theorem we have K(SCw) =

l O

We are going to show in 10.9.18 that the topological derived category
D(<S) = K(Scw) is a triangulated category in the sense of 10.2.1. For this
we need to define exact triangles. The exact triangles will be the coflbration
sequences, a term that we must now define. In order to avoid explaining a tech-
nical hypothesis ("cofibrant") we shall restrict our attention to CW spectra.
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10.9 The Topological Derived Category 413

Mapping Cones 10.9.16 Suppose that u: E -> F is a map of spectra. The
sequence of topological mapping cones cone(wn) = cone(£n) UM Fn form a
prespectrum (why?), and the mapping cone of f is defined to be the spectrum
£2°°{cone(/n)}. Applying £2°° to the prespectrum functions in: Fn —• cone(/n)
and cone(/n) —• SEn give maps of spectra i:F -> cone(/) and j:cone(/) - •
Sis. The triangle determined by this data is called the Puppe sequence associ-
ated to / :

E - ^ F - U cone(w) - U S£.

A cofibration sequence in K(<ScwO is a ny triangle isomorphic to a Puppe se-

quence. Since * —> E —> E —»> * is a Puppe sequence, the following ele-

mentary exercise shows that cofibration sequences satisfy axioms (TRl) and

(TR2).

Exercise 10.9.4 (Rotation) Use the fact that SEn is homotopy equivalent to
the cone of in: Fn -> cone(/n) to show that SE = cone(/). Then show that

i j -Su

F —> cone(w) —> SE > SF

is a cofibration sequence.

We say that a diagram of spectra is homotopy commutative if it commutes
in the homotopy category K(5).

Proposition 10.9.17 Every homotopy commutative square of spectra

u

E —> F

if is

E' ^ F>

can be made to commute. That is, there is a homotopy commutative diagram

E —> cyl(w)

| / is'

E> X F>
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414 The Derived Category

in which the bottom square strictly commutes in S and the map — is a homo-
topy equivalence.

Proof Let cy\(un) denote the topological mapping cylinder of un (Chapter
1, section 5). The mapping cylinder spectrum cyl(w) is £2°° of the prespec-
trum {cy\(un)}. It is homotopy equivalent to F because the homotopy equiv-
alences Fn —=•> cy\(un) are canonical. The map cyl(E) ->• F' expressing the
homotopy commutativity of the square corresponds to a prespectrum function
from {cy\(En)} to F'\ together with g they define a prespectrum function from
{cyl(un)} to F1 and hence a spectrum map g'\ cyl(w) -> F'. The inclusions of
En into the top of cy\(un) give the middle row after applying Q°°. It is now
a straightforward exercise to check that the diagram homotopy commutes and
that the bottom square commutes. O

Theorem 10.9.18 K(Scw) is a triangulated category.

Proof We have already seen that axioms (TRl) and (TR2) hold. For (TR3) we
may suppose that C = cone(w) and C' — cone(w') and that gu = u' f in <S; the
map h is given by the naturality of the mapping cone construction.

It remains to check the octahedral axiom (TR4). For this we may assume
that the given triangles are Puppe sequences, that is, that C' = cone(w), A' =
cone(f), and B' = cone(vu). We shall mimic the proof in 10.2.4 that the
octahedral axiom holds in K(*4). Define a prespectrum function {fn} from
[cone(un)} to [cone(vnun)} by letting fn be the identity on cone(A^) and vn

on Bn. Define a prespectrum function {gn} from {cone(vnun)} to {cone(i;n)}
by letting gn be cont(un)\ cone(A^) -> cone(Bw) and the identity on C. Man-
ifestly, these are prespectrum functions; we define / and g by applying £2°°
to {fn} and {gn}. Since it is true at the prespectrum level, d is the composite

cone(w) —> cone(i>w) —> SA and x is the composite C —> cone(uw) —>•
cone(u). (Check this!)

Since cone(/n) is a quotient of the disjoint union of cone(cone(A^)),
cone(#n), and Cn, the natural maps from cone(Bn) and Cn to cone(/n) induce
an injection cone(f^) c-> cone(fn). As n varies, this forms a function of pre-
spectra. Applying £2°° gives a natural map of spectra y: cone(u) -^ cone(/)
such that the following diagram of spectra commutes in S:

SCf

C' - ^ B' —> cone(/) —> SC'.
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10.9 The Topological Derived Category 415

To see that y is a homotopy equivalence, define (pn: cone(/n) - • cone(fn) by
sending cone(#n) and Crt to themselves via the identity, and composing the
natural retract cone (cone (An)) —> cone(0 x An) with cont(un)\ cone(An) ->
cone(#n). Since the ^ are natural, they form a function of prespectra; ap-
plying £2°° gives a map of spectra (p: cone(/) -> cone(i>). We leave it to the
reader to check that (py is the identity on cone(t>) and that yep is homotopic
to the identity map on cone(/). (Exercise!). This shows that (/, g, (Tj)i) is
a cofibration sequence (exact triangle), because it is isomorphic to the Puppe
sequence of / . <>

Geometric Realization 10.9.19 By the Dold-Kan correspondence (8.4.1),
there is a geometric realization functor from Ch(Ab) to Sew- Indeed, if A is a
chain complex of abelian groups, then the good truncation zA = r>o(A) corre-
sponds to a simplicial abelian group, and its realization \rA\ is a CW complex.
In the sequence

TA —> rcone(A) —> r (A[- l ] ) ,

the map 8 is a Kan fibration (8.2.9, exercise 8.2.5). Since the mapping cone
is contractible (exercise 1.5.1), there is a weak homotopy equivalence \xA\ ->
£2|rA[—1]|, and its adjoint S\zA\ - • \rA[—1]| is a cellular inclusion. (Check
this!) Thus the sequence of spaces |rA[—n]\ form a CW prespectrum; ap-
plying £2°° gives a spectrum. This construction makes it clear that the func-
tor |r|: Ch(Ab) -> Sew sends quasi-isomorphisms to weak equivalences and
sends the translated chain complex A[n] to fiw|r A|. In particular, it induces a
functor on the localized categories |r |: D(Ab) —> D(<S).

Vista 10.9.20 Let HZ denote the geometric realization |rZ| of the abelian
group Z, regarded as a chain complex concentrated in degree zero. It turns
out that HZ is a "ring spectrum" and that D(Ab) is equivalent to the stable
category of "module spectra" over HZ. This equivalence takes the total tensor
product (g)| in D(Ab) to smash products of module spectra over HZ. See
[Rob] and {A. Elmendorf, I. Kriz, and J. P. May, "£oo Modules Over Eoo Ring
Spectra," preprint (1993)}.
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