
9
Hochschild and Cyclic Homology

In this chapter we fix a commutative ring k and construct several homology
theories based on chain complexes of ^-modules. For legibility, we write 0
for ®k and R®n for the n-fold tensor product R 0 • • • 0 R.

9.1 Hochschild Homology and Cohomology of Algebras

9.1.1 Let R be a A:-algebra and M an R—R bimodule. We obtain a simplicial
^-module M 0 R®* with [n] H> M 0 #®" (M 0 fl®° = M) by declaring

I mri 0 r2 0 • • • 0 rn if / = 0

m 0 r\ 0 • • • 0 r;r;+i 0 • • • 0 rn if 0 < / < n
rnm 0 r\ 0 • • • 0 rw_i it i = n

O[(m 0 r\ 0 • • • 0 rn) = m 0 • • • 0 T{ 0 1 0 r i + i 0 • • • 0 rn,
where m e M and the r; are elements of R. These formulas are ^-multilinear,
so the 3/ and O[ are well-defined homomorphisms, and the simplicial identities
are readily verified. (Check this!) The Hochschild homology H*(R, M) of R
with coefficients in M is defined to be the /:-modules

Hn(R, M) = nn(M 0 R®*) = HnC(M 0 R®*).

Here C(M 0 R®*) is the associated chain complex with d = J](—1)^3/ :
9o—d\ d d

For example, the image of 3o — 3i is the A;-submodule [M, R] of M that is gen-
erated by all terms mr-rm (m e M,r e R). Hence Ho(R, M) = M/[M, R].
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9.1 Hochschild Homology and Cohomology of Algebras 301

Similarly, we obtain a cosimplicial ^-module with [n] i-> Homk(R®n, M) =
{^-multilinear maps / : Rn -> M} (Hom(/?®°, M) = M) by declaring

[ r o / ( r i , . . . , r n ) i f i = 0
O7)(r0 , , rn) = j /(r0 , . . . , n-m, . . .) if 0 < i < /i

I /(ro, . . . ,rn_i)rn if / = n

The Hochschild cohomology H*(R9 M) of R with coefficients in M is defined
to be the ^-modules

Hn(R, M) = 7rn(Uomk(R®*, M)) = HnC(Homk(R®*, M)).

Here C Hom^(/?*, M) is the associated cochain complex

0 —> M > H o m k ( R , M ) — > H o m k ( R (8) R , M) — > ••-.

For example, it follows immediately that

H°(R, M) = {meM :rm = mr for all r e R}.

Exercise 9.1.1 If R is a commutative fc-algebra, show that M ® R®* is a
simplicial /^-module via r • (m ® n <g> • • •) = (rm) (8) r\ <g> • • • . Conclude that
each Hn(R, M) is an /^-module. Similarly, show that Hom/?(/?®*, M) is a
cosimplicial /^-module, and conclude that each Hn(R, M) is an /^-module.

Exercise 9.1.2 If 0 -> Mo -^ Mi -> M2 —• 0 is a ^-split exact sequence of
bimodules (8.7.7), show that there is a long exact sequence

d-> Ht(R, M0) -> //;(/?, Mi) - • Ht(R, M2) -^ Hi-i(R, Mo) • • •.

Example 9.1.2 (Group rings) Let R be the group ring k[G] of a group G, and
M a right G-module. Write eM for M considered as a G—G bimodule with
trivial left G-module structure (gm = m for all g e G, m e M). If Z?" denotes
the unnormalized bar resolution of 6.5.1, then //*(G; M) is the homology of
M ®IG B*> m e chain complex that in degree / is M ® (ZG)®1. By inspec-
tion, this is the same complex used in 9.1.1 to define the Hochschild homol-
ogy of ZG, provided that we take coefficients in the bimodule eM. Similarly,
//*(G; M) is the cohomology of the chain complex Homo(5", M), which is
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302 Hochschild and Cyclic Homology

the same as the complex Hoiri£((2G)®*,£M) used to define Hochschild coho-
mology. Thus

#*(G; M) ^ H*(ZG;SM) and #*(G; M) = H*(lG; eM).

The above definitions, originally given by G. Hochschild in 1945, have the
advantage of being completely natural in R and M. In order to put them into
a homological framework, it is necessary to consider the enveloping algebra
Re = R®k 7?°P of R. Here 7?op is the "opposite ring"; flop has the same un-
derlying abelian group structure as R, but multiplication in Rop is the opposite
of that in R (the product r • s in R°v is the same as the product sr in R). The
main feature of R°v is this: A right /^-module M is the same thing as a left
/?op-module via the product r • m = mr because associativity requires that

(r • s) • m = (sr) • m = m(sr) = (ms)r = r • (ms) = r • (s • m).

Similarly a left /^-module N is the same thing as a right /?op-module via
n - r = rn. Consequently, the main feature of Re is that an R—R bimodule
M is the same thing as a left /^-module via the product (r (8) s) • m = rms,
or as a right /?£-module via the product m • (r ® s) = smr. (Check this!) This
gives a slick way to consider the category R-mod-R of R—R bimodules as
the category of left /^-modules or as the category of right /^-modules. In
particular, the canonical R—R bimodule structure on R makes R into both a
left and right /^-module.

Lemma 9.1.3 Hochschild homology and cohomology are isomorphic to rel-
ative Tor and Ext for the ring map k -> Re = R (8) R°v :

H*(R, M) ^ Torf 7*(M, /?) and H*(R, M) ^ Ext£v*(rt, M).

Proof Consider the unnormalized bar resolution fi(R, R) of R as a left /?-
module (8.6.12). Each term £(/?, #)„ = /?®/I+1 ® /? is isomorphic as an /?-/?
bimodule to fl <8> fl0/I ® /? ^ (/? ® /?op) (8) /? 0 n and hence is _L-projective
(8.6.5), where _L = /?£(8). Since )0(R, R) is a /:-split _L-projective resolution
of the /^-module 7?, 8.7.10 yields

Torf A ( M , /?) = H*(M ®Re P(R, R)) and

Ext^ / i t(/?, M) = //*Hom r(i0(/?, /?), M).

On the other hand, the isomorphism M ®Re (R <S> R®n <8> R) ^ M ® Rn send-
ing m (g) (ro 0 • • • 0 fVj+i) to (rn+imro) 0 (ri (8) • • • <8) rn) identifies M ®Re
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9.1 Hochschild Homology and Cohomology of Algebras 303

P(R, R) with the chain complex C(M ® R®*) used to define Hochschild ho-
mology. Similarly, the isomorphism HomRe(R®R®n®R, M) -> Hom^/?®",
M) sending / to / ( I , —, 1) identifies Hom#e(/*(/?, /?), M) with the cochain
complex C(Homk(R®*, M)) used to define Hochschild cohomology. O

Next we show that in good cases, such as when A; is a field, we can identify
Hochschild homology and cohomology with the absolute Tor and Ext over the
ring Re.

Lemma 9.1.4 If P and Q are flat (resp. projective) k-modules, then so is

P®Q.

Proof Let £ be an exact sequence of ^-modules. If P and Q are flat, then
by definition £ 0 P and hence £ <g> P 0 Q are exact; hence P 0 Q is flat. If
P and Q are projective, then Hom(<2, £) and hence Hom(P, Hom(<2, £)) =
Hom(P 0 Q, £) are exact; as we saw in 2.2.3, this implies that P 0 Q is
projective. <>

Corollary 9.1.5 IfR is flat as a k-module, then //*(/?, M) ^ Torf (M, /?). / /
/? is projective as a k-module, then H*(R, M) = Ext^(/?, M).

If /? is flat (resp. projective), then each R®n is a flat (resp. projective)
^-module, and hence each fi(R, R)n = Re 0 R®n is a flat (resp. projective)
Re-modu\Q. Thus f$(R, R) is a resolution of /? by flat (resp. projective) Re-
modules. It follows that the relative Tor (resp. relative Ext) modules are iso-
morphic to the absolute Tor (resp. absolute Ext) modules. O

Here are three cases in which H*(R, M) is easy to compute. First, let us
recall from 7.3.1 that the tensor algebra of a ^-module V is the graded algebra

T(v) = k e v e (v (8) v) e • • • e v®j e • • •.

Proposition 9.1.6 Let T = T(V) be the tensor algebra of a k-module V, and
let M be a T — T bimodule. Then ///(T, M) = 0 for i ^ 0, 1 and there is an
exact sequence

0 -> H\(T, M) -+ M <g> V - ^ M -+ H0(T, M) -> 0

where b is the usual map b(m (8) v) = mv — vm. In particular, if a denotes the
cyclic permutation o (v\ (g> • • • (g) Vj) = Vj ® v\ 0 • • • Vj-\ ofV®J and we write
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304 Hochschild and Cyclic Homology

and (V®-7)̂ . for the invariants and covariants of this group action,
then we have

H0(T,T) = k®®(V*J
7 = 1

)„, Hi(T,T)
OO

7 = 1

Proof The formula d(t 0 v 01') = tv 0 t' — t 0 i;f' defines a T—T bimodule
map from T 0 V 0 7 to T 0 T. As the kernel / of the multiplication /x: 7 0
r -> r is generated by the elements i; 0 1 — 1 ® i; = d{\ 0 f 0 1) and {id =
0, the image of d is / . As d is a direct sum (over /? and g) of maps from
V®? 0 V 0 VV to V®/^1 0 v®* and to V®^ 0 V®**1, each of which is an
isomorphism, d is an injection. (Check this!) Hence

is a _L-projective resolution of the Te-module T\ \JL is £-split by the map id 0
Te Ik

1: r —>> 7 0 7. Hence we can compute Tor^ (M, T) using this resolution.
Tensoring with M yields H((T, M) = 0 for / ^ 0, 1 and the advertised exact
sequence for H\ and H$. O

Exercise 9.1.3 (Polynomials) If R = k[x\, • • •, xm], show that /?g is isomor-
phic to the polynomial ring k[y\9 • • •, yn,zi, • • •, zm] and that the kernel of
Re ->• /? is generated by the regular sequence x = (ji — z\, • • •, ym — zm)- Us-
ing the Koszul resolution K(x) of 4.5.5, show that Hp(R, R) = HP(R, R) =
AP(Rn) for p = 0, • • •, n, while HP(R, M) = H?(R, M) = 0 for p > n and
all bimodules M. This is a special case of Theorem 9.4.7 below.

Exercise 9.1.4 (Truncated polynomials) If R = A:[jc]/(jcn+1 = 0), let u = x 0
1 - 1 0 x and v = xn 0 1 + xn~l 0 JC H h JC 0 JC""1 + 1 0 xn as elements

in /?*. Show that

<— K <— K < / v << 7\ -< 7v -< 7\ ^ • • •

is a periodic /^-resolution of /?, and conclude that //;(/?, M) and Hl(R, M)
l

n+l
are periodic of period 2 for / > 1. Finally, show that when —j-r e R we have

///(/?, /?) ^ ^ ' ( / ? , /?) ^ R/(xnR) for all / > 1.

Let k —> I be a commutative ring map. If /? is a fc-algebra, then Ri = R 0£ t
is an ^-algebra. If M is an Rg—R^ bimodule then via the ring map R —>
/fy (r M> r 0 1) we can also consider M to be an R—R bimodule. We would
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9.I Hochschild Homology and Cohomology of Algebras 305

like to compare the Hochschild homology H%(R, M) of the fc-algebra R with
the Hochschild homology H*(Ri, M) of the ^-algebra Ri = R®1.

Theorem 9.1.7 (Change of ground ring) Let R be a k-algebra and k —> I a
commutative ring map. Then there are natural isomorphisms for every Rg—Ri
bimodule M:

H*(R, M) ^ H^Rti M) and H£(R, M) ^ H?(Ri, M).

Proof The unnormalized chain complexes used for computing homology are
isomorphic by the isomorphisms M ®k R <S>k • • • ®fc R = M <S>i (R ®k £) 0£
-•®£(R®kt)- Similarly, the unnormalized cochain complexes used for com-
puting cohomology are isomorphic, by the bijection between ^-multilinear
maps Rn —• M and ^-multilinear maps (Ri)n -^ M. O

Theorem 9.1.8 (Change of rings) Let R be a k-algebra and M an R—R
bimodule.

1. (Product) If R' is another k-algebra and Mf an Rf—Rf bimodule, then

H*(R xR',Mx Mf) ^ H*(R, M) 0 H*(R\ Mf)

H*(R x Rf,M x Mf) ^ //*(/?, M) 0 H*(^ , Mf).

2. (Flat base change) If R is a commutative k-algebra and R —> T is a ring
map such that T is flat as a (left and right) R-module, then

H*(T, T®RM®RT)^T®R //*(/?, M).

3. (Localization) If S is a central multiplicative set in R, then

H*(S~lR, S~lR) £ //*(/?, S~lR) ^ S~lH*(R, R).

Proof For (1), note that (R x R')e £ Re x R'e x (R ® #/0P) x (R' (8) /?°P);
since M and M' are left Re and /^^-modules, respectively, this is a special case
of relative Tor and Ext for products of rings (8.7.14). For (2), note that Re ->
Te makes Te flat as an /^-module (because Te <g>Re M = T <g>R M ®R T). By
flat base change for relative Tor (8.7.16) we have

, M)^T ®R TorfA( /? , M).

The first part of (3) is also flat base change for relative Tor 8.7.16 with T =
S~lR, and the isomorphism H*(R, S~lR) = S~lH*(R, R) is a special case
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306 Hochschild and Cyclic Homology

of the isomorphism Tor*/k(S~lM, N) ^ S~l Torf A ( M , N) for localization
(3.2.10 or exercise 8.7.3). O

Here is one way to form R—R bimodules. If M and TV are left 7?-modules,
Hom£(M, N) becomes an R—R bimodule by the rule rfs : m H> rf(sm).
The Hochschild cohomology of this bimodule is just the relative Ext of 8.7.5:

Lemma 9.1.9 Let M and N be left R-modules. Then

Hn(R, Homk(M, N)) ^ Extn
R/k(M, N).

Proof Let B = B(R, R) be the bar resolution of R. Thinking of M as an R—k
bimodule, we saw in 2.6.2 that the functor ®RM: R-mod-R —• R-mod-k is
left adjoint to the functor Hom^(M, —). Naturality yields an isomorphism of
chain complexes:

HomR(B ®R M, N) = HomR-R(B, Hom^(M, N)).

As B <S>R M is the bar resolution B(R, M), the homology of the left side
is the relative Ext. Since the homology of the right side is the Hochschild
cohomology of R with coefficients in Hom(M, N), we are done. <>

9.2 Derivations, Differentials, and Separable Algebras

It is possible to give simple interpretations to the low-dimensional Hochschild
homology and cohomology modules. We begin by observing that the kernel of
the map d: Hom^(/?, M) -> Homk(R 0 R, M) is the set of all ^-linear func-
tions / : / ? - > M satisfying the identity

f(ron) = rof(r\) + f(ro)r\.

Such a function is called a k-derivation (or crossed homomorphism); the
^-module of all ^-derivations is written Der^(7?, M) (as in 8.8.1). On the
other hand, the image of the map d: M —> Hom&(/?, M) is the set of all k-
derivations of the form fm(r) — rm—mr\ call fm a principal derivation and
write PDer(/?, M) for the submodule of all principal derivations. Taking Hl,
we find exactly the same situation as for the cohomology of groups (6.4.5):

Lemma 9.2.1 Hl(R, M) = Derk(R, M)/PDerk(R, M).
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9.2 Derivations, Differentials, and Separable Algebras 307

Now suppose that R is commutative. Recall from 8.8.1 that the Kdhler
differentials of R over k is the /^-module QR/k defined by the presentation:
There is one generator dr for every r e R, with da = 0 if a e k. For each
n , r2 e R there are two relations:

d(ro + n) = d(r0) + d(n) and d(ror\) = ro(dr\) + (dro)ri.

We saw in exercise 8.8.1 that Derk(R, M) = Hom#(£2/?/£, M) for every right
R -module M. If we make M into a bimodule by setting rm — mr for all r e /?,
m e M then Hl(R, M)= Der^(/?, M). This makes the following result seem
almost immediate from the Universal Coefficient Theorem (3.6.2), since the
chain complex C(M ® fl®*) is isomorphic to M ®/? C(/e ® fl®*).

Proposition 9.2.2 Let R be a commutative k-algebra, and M a right R-
module. Making M into an R—R bimodule by the rule rm = mr, we have
natural isomorphisms Ho(R, M) = M and H\(R, M) = M ®R QR/JC> In par-
ticular,

Proof Since rm = mr for all m and r, the map 3o — 3i: M (8) R -> M is zero.
Therefore Ho = M and H\(R, M) is the quotient of M <g>k R by the relations
that for all m e M, rt e R mr\ ® ri — m ® r\ri + rim ® ri = 0. It follows
that there is a well-defined map //i(Z?, M) ->• M ®/e ^7?/^ sending m ® r
io m ® dr. Conversely, we see from the presentation of £lR/k that there is
an R-bilinear map M x QR/k -> i^i(/?, M) sending (m, ri^r2) to the class
of mri ® r2; this induces a homomorphism M ®/? QR/k -> ^i(/?, M). By
inspection, these maps are inverses. O

Corollary 9.2.3 If S is a multiplicatively closed subset of R, then

Proof The Change of Rings Theorem (9.1.8) states that H{(S~lR, S~lR) =
l R ) . O

Alternate Calculation 9.2.4 For any ^-algebra R, let / denote the kernel of
the ring map e: R (g) R - • R defined by e(r\ (8) ri) = r\ri. Since r v^ r ® 1
defines a /c-module splitting of e, the sequence 0-* I ^ Re —> R -> 0 is k-
split. As H\(R, Re) = 0, the long exact homology sequence (exercise 9.1.2)
yields

, M) ^ ker(/ ® ^ M -> /M).
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308 Hochschild and Cyclic Homology

If R is commutative and rm = mr, then IM = 0 and H\(R,M) =
I /I2 ® RM. In particular, if we take M = R this yields

Explicitly, the generator dr e ^IR/U corresponds to 1 0 r — r 0 1 e I /I2.
(Check this!)

Example 9.2.5 Let k be a field and R a separable algebraic field extension
of k. Then QR/]C = 0. In fact, for any r e R there is a polynomial /(JC) e &[;c]
such that f(r) = 0 and / ' ( r ) ^ 0. Since d: R -> £2#/£ is a derivation we have
f\r)dr = d(f(r)) = 0, and hence dr = 0. As SlR/k is generated by the dr's,
we get ft/?/* = 0.

Exercise 9.2.1 Suppose that R is commutative and M is a bimodule satisfy-
ing rm = mr. Show that there is a spectral sequence

£ ^ = TovR
p(Hq(R, R), M) => //^+^(/?, M).

Use this to give another proof of proposition 9.2.2. Then show that if M (or
every #*(/?, R)) is a flat /^-module, then //«(/?, M) = Hn(R, R) 0/? M for
all/i.

The following two sequences are very useful in performing calculations.
They will be improved later (in 9.3.5) by adding a smoothness hypothesis.

First Fundamental Exact Sequence for Q, 9.2.6 Let k - • R -> T be maps
of commutative rings. Then there is an exact sequence of T-modules:

The maps in this sequence are given by a(dr 0 0 = tdr and /3(dt) = dt.

Proof Clearly p is onto. By the Yoneda Lemma (1.6.11), in order for this
sequence of T-modules to be exact at Qr/k, it is sufficient to show that for
every T -module TV the sequence

a* P*

be exact. But this is just the sequence of derivation modules

?, N) <- Der^(r, N) <r- Der^(r, N),
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9.2 Derivations, Differentials, and Separable Algebras 309

and this is exact because any ^-derivation D:T -+ N satisfying D(R) = 0 is
an /^-derivation. O

Second Fundamental Exact Sequence for Q 9.2.7 Let / be an ideal of
a commutative A;-algebra R. Then there is an R -module map 8:1 /I2 —>
&R/k ®/? R/I defined by 8(x) = dx <g> 1, fitting into an exact sequence

I/12 ^ QR/k ®R R/I -^ n{K/n/k -> 0.

Proof If JC G / and r e R, then 8(rx) = dx <g) r as dr ® x = 0; if r e I then
rx G I2 and <5(rx) = 0. Hence 8 is well defined and /^-linear. Once more we
use the Yoneda Lemma 1.6.11 to take an /^//-module Af and consider

Hom^/7( / / / 2 , N) / - Deik(R, N) £- Der*(/?//, N) <r- 0.

If D: R -> N is a ^-derivation, then (5*D)(x) = D(x), so if <$*£> = 0, then
D(I) = 0, and D may be considered as a ̂ -derivation on R/L O

9.2.7 Finite Separable Algebras

A finite-dimensional semisimple algebra R over a field A: is called separable if
for every extension field k C £ the ̂ -algebra Ri = R <8)k I is semisimple.

Lemma 9.2.8 7/" ̂  w a ^n/fe ^e/J extension of k, this definition agrees
with the usual definition of separability: every element of K is separable
over k.

Proof If x G K is not separable, its minimal polynomial / G k[X] has mul-
tiple roots in any splitting field L Then K <g) I contains k(x) <g> £ = l[X]/f,
which is not reduced, so K (8) € is not reduced. Otherwise we can write K =
k(x), where the minimal polynomial f of x has distinct roots in any field ex-
tension I of k. Hence K ®l = £[X]/(f) is reduced, hence semisimple. O

Corollary 9.2.9 A finite-dimensional commutative algebra over afield is sep-
arable if and only if it is a product of separable field extensions.

Proof A finite commutative algebra R is semisimple if and only if it is a
product of fields. R is separable if and only if these fields are separable. <>

The matrix rings Mm(k) form another important class of separable algebras,
since Mm{k) <g)k I = Mm(£). More generally, Wedderburn's Theorem states
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310 Hochschild and Cyclic Homology

that every semisimple ring R is a finite product of simple rings, each isomor-
phic to Mm(A) for some m and some division algebra A; R is separable if and
only if each of its simple factors is separable.

Suppose that Mm(A) is separable. If F is the center of A, then F 0 I is
a subring of A 0 I and Afw(A) 0 £,, so F must also be a finite separable
extension of k. It is easy to see that if I is a splitting field of F, then F 0 £ is
a finite product of copies of I, so each of the simple factors of Mm (A) 0 1 has
center I. As we saw in 6.6.10 (see [BAII, 8.4]), there exists a finite extension
L of I such that L 0£ Mm(A) = L 0 | (I 0£ Mm(A)) is a product of matrix
rings over L. In summary, we have proven that if R is separable over k, then
there is a finite extension L of k such that /? 0 L is a finite product of matrix
rings Mm/(L).

Lemma 9.2.10 If R = Mm(k), then R is aprojective Re-module.

Proof The element e = J2 ^ 1 0 *ii of Re = Mm(k) 0 Mm(k)°v is idempotent
(e2 = e) and the product map s: R 0 /?op - • /? sends e to J ] ea = 1- Define
a: /? ->• /?g by a(r) = re. Since the basis elements etj of /? satisfy etje =
gn 0 l̂y- = g -̂y, we have r^ = er for all r e / ? ; hence a is an /?—R bimodule
map. Since ea is the identity on R, this shows that R is a summand of /?^. <>

Theorem 9.2.11 Let R be an algebra over afield k. The following are equiv-
alent:

1. R is a finite-dimensional separable k-algebra.
2. R is projective as a left Re-module.
3. H*(R, M) = Ofor all*^0 and all bimodules M.
4. //*(/?, M) = Ofor all*^0 and all bimodules M.

Proof From the "pd" and "fd" lemmas of 4.1.6 and 4.1.10 we see that (2),
(3), and (4) are equivalent. If R is separable, choose k c I so that Rt is a finite
product of matrix rings Rj = Mmi(i). Since every R—R bimodule is a product
M = TlMi of Ri-Rt bimodules M; we have H*(R, M) = UH*(Ri, Mt) = 0
by 9.1.8 and the above lemma. Thus (1) =» (3).

Now assume that (2) holds for R. Then (2), (3), and (4) hold for every R 0 1
because R 0 I is projective over the ring

(R£)
e = (R 0 I) <s,t (R 0 £)op = (R 0 R°V) 0 £ = (/?*) 0 L

We have isolated the proof that dim(R) < oo in lemma 9.2.12 following this
proof. Now each Rg is semisimple if and only if Rt has global dimension 0
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9.3 H2, Extensions, and Smooth Algebras 311

(4.2.2). If M and N are left /^-modules, we saw in 9.1.3 and 9.1.9 that

Ext^(M, N) = Ext*Ri/k(M, N) ^ //*(#£, Hom^(M, N)).

As (4) holds for /fy, the right side is zero for * / 0 and all M, TV; the Global
Dimension Theorem (4.1.2) implies that Ri has global dimension 0. Hence (2)
=>d). O

Lemma 9.2.12 (Villamayor-Zelinsky) Let R be an algebra over afield k. If
R isprojective as an Re-module, then R is finite-dimensional as a vector space
over k.

Proof Let {JC/} be a basis for R as a vector space and {f1} a dual basis for
Homk(R, k). As Re is a free left /^-module on basis {1 <8) */} with dual basis
{1 <8> /<} c HomR(Re, R), we have

u = ]T(1 0 f)(u) (8) xt for all u e Re".

Now if /? is a projective /^-module, the surjection s\Re ^ R must be split.
Hence there is an idempotent e e Re such that Re - e = R and e(e) = 1. In
particular, (1 <g) r — r (g> l)e = 0 for all r e R. Setting « = ( l 0 r ) g = ( r 0 l)g
yields

(*) r = e(u) = J2(l (8) //)((r ® l)g) - JC/ = r

Therefore the sum in (*) is over a finite indexing set independent of r. Writing
£ = J^ eapxa (8) JĈ  with âyg e A: allows us to rewrite (*) as

r =

Therefore the finitely many elements xaxi span /̂  as a vector space. O

9.3 H2, Extensions, and Smooth Algebras

From the discussion in Chapter 6, section 6 about extensions and factor sets
we see that H2(R, M) should have something to do with extensions. By a
(square zero) extension of R by M we mean a /:-algebra E, together with
a surjective ring homomorphism s\E ->• R such that ker(£) is an ideal of
square zero (so that ker(£) has the structure of an R—R bimodule), and an
7?-module isomorphism of M with ker(e). We call it a Hochschild extension
if the short exact sequence 0 ^ M - > £ - > / ? ^ 0 i s &-split, that is, split
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312 Hochschild and Cyclic Homology

as a sequence of ^-modules. Choosing such a splitting a\ R —• E yields a k-
module decomposition E = R 0 M, with multiplication given by

(*) (n, wi)(r2, w2) = (nr2 , nm 2 -f m\r2 + / ( n , r2)).

We call the function f:R<g)R^ M the factor set of the extension corre-
sponding to the splitting a. Since the product (ro, 0)(n, 0)(r2, 0) is associa-
tive, the factor set must satisfy the cocycle condition

, r2) - / ( ron , r2) + /(ro, nr 2 ) - /(ro, n>2 = 0.

Conversely, any function satisfying this cocycle condition yields a Hochschild
extension with multiplication defined by (*). (Check this!) A different choice
a'\ R ->• E of a splitting yields a factor set / ' , and

= o\ri)[a\r2) - cr(r2)] - W

+ [or /(n)-or(n)]a(r2) ,

which is the coboundary of the element (crf — a) e Hom(/?, M). Hence a
Hochschild extension determines a unique cohomology class, independent of
the choice of splitting a.

The trivial extension is obtained by taking E = R 0 M with product
(ri, rai)(r2, ra2) = (n^2, rim2 + mir2). Since its factor set is / = 0, the trivial
extension yields the cohomology class 0 e H2(R, M).

As with group extensions, we say that two extensions E and E' are equiv-
alent if there is a ring isomorphism <p : E = E' making the familiar diagram
commute:

0 —> M —> E —> R —> 0

0 —> M —> E! —> R —> 0.

Since E and E' share the same factor sets, they determine the same cohomol-
ogy class. We have therefore proven the following result.

Classification Theorem 9.3.1 Given a k-algebra R and an R — R bimodule
M, the equivalence classes of Hochschild extensions are in 1-1 correspon-
dence with the elements of the Hochschild cohomology module H2(R, M).
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9.3 H2, Extensions, and Smooth Algebras 313

Here is a variant of the Classification Theorem 9.3.1 when R is a commutative
^-algebra. If a commutative algebra E is a Hochschild extension of R by an
R-R bimodule M, then M must be symmetric in the sense that rm — mr for
every m e M andr e i?. A moment's thought shows that symmetric bimodules
are the same thing as i^-modules.

If we choose a ^-splitting a : 7? —>• E for a commutative Hochschild ex-
tension, then the corresponding factor set / must satisfy f(r\, ri) = /0*2, n ) ,
because <x(ri) and a(>2) must commute in E. Let us call such a factor set sym-
metric. If / is a symmetric factor set, the equation (*) shows that multiplication
in E is commutative.

Let us write H2(R, M) for the submodule of H2(R, M) consisting of the
equivalence classes of symmetric factor sets. With this notation, we can sum-
marize the above discussion as follows

Commutative Extensions 9.3.1.1 Let R be a commutative k-algebra and
M an R-module. Then the equivalence classes of commutative Hochschild ex-
tensions ofRbyM are in 1-1 correspondence with the elements of the module
H}{R, M).
Remark Let A: be a field. This classification, together with Exercise 8.8.4, proves
that H2(R, M) is just the Andre-Quillen cohomology Dl(R, M). The charac-
teristic zero version of this was given in 8.8.9.
9.3.2 We say that a A:-algebra is quasi-free (over k) if for every square-zero
extension 0 - * M ^ £ - ^ > r - > 0 o f a ^-algebra T by a T-T bimodule
M and every algebra map v : R -> 7\ there exists a k-algebra homomorphism
u : R - • E lifting v in the sense that eu — v. For example, it is clear that every
free algebra is quasi-free over k.

k —> R

I / ;v
0 ^ M ^ E —> T —* 0

s

If R is quasi-free and / is a nilpotent ideal in another A:-algebra E, then every
algebra map R - • E/J may be lifted to a map R - • E. In fact, we can lift it
successively to R - • E/J2, to i? ->- E/J3, and so on. Since J m = 0 for some
w, we eventually lift it to R -> £ / J m = £.
Proposition 9.3.3 (J.H.C. Whitehead-Hochschild) / / k is a field, then a k-
algebra R is quasi-free iff and only if H2(R, M) = 0 for all R-R bimod-
ules M.
Proof If R is quasi-free, every extension of R by a bimodule M must be trivial,
so H2(R, M) = 0 by the Classification Theorem 9.3.1. Conversely, given an
extension 0 - • M -> E -> r -> 0 and v: /? -> 7\ let D be the pullback D =
{(r, e) e R x r : v(r) = e? in T}. Then D is a subring ofRxE and the kernel
of D -> /? is a square zero ideal isomorphic to M.
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314 Hochschild and Cyclic Homology

0 —> M —> D —> R —^ 0

II i | v
0 —> M —> E —> T — • 0.

Since k is a field, D is a Hochschild extension of R and is classified by an
element of H2(R, M). So if H2(R, M) = 0, then there is a fc-algebra splitting
a: R ->• D of D -> /?; the composite of a with D -> E is a lifting of R - • 7\
Quantifying over all such M proves that 7?! is quasi-free. <>

Corollary 9.3.3.1 If R is an algebra over afield k and H2(R, M) = Ofor
every R — R bimodule M, then any k-algebra surjection E -> R with nilpotent
kernel must be split by a k-algebra injection a : R -> E.

Exercise 9.3.1 (Wedderburn's Principal Theorem) Let R be a finite-dimen-
sional algebra over a field k, with Jacobson radical J — J(R). It is well known
that the quotient R/J is a semisimple ring ([BAII, 4.2]). Prove that if R/J
is separable, then there is a /c-algebra injection R/JcR splitting the natural
surjection R -» R/J. Hint: Use the General Version 4.3.10 of Nakayama's
Lemma to show that J is nilpotent.

9.3.1 Smooth Algebras

For the rest of this section, all the algebras we consider will be commutative.
We say that a commutative A:-algebra is smooth (over k) if for every square-

zero extension 0 —> M -> E —> T —> Oof commutative/:-algebras and every
algebra map v : R -> 7\ there exists a />algebra homomorphism u : R -> E
lifting v in the sense that su = v. For example, it is clear that every polynomial
algebra R = k[x\,..., xn] is smooth over k.

Proposition 9.3.4 (Whitehead-Hochschild) Let R be an algebra over afield
k. Then R is smooth if and only ifH2(R, M) = Ofor all R-modules M.

IfR is smooth, then any surjection E —> R of commutative k-algebras with
nilpotent kernel J must be split by a k-algebra injection o : R —> E.

Proof The proof of the Whitehead-Hochschild result 9.3.3, and the arguments

in 9.3.2, go through with no changes for commutative algebras. <̂

Exercise 9.3.2
1. (Localization) If R is smooth over k and S c R is a central multiplicative

set, show that S~lR is smooth over k.
2. (Transitivity) If R is smooth over K and K is smooth over k, show that

R is smooth over k.
3. (Base change) If R is smooth over k and A: —> £ is any ring map, show

that R <g>k I is smooth over I.
4. If k is a field, show that any filtered union of smooth algebras is smooth.
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9.3 H2, Extensions, and Smooth Algebras 315

Exercise 9.3.3 Let 0 -> M —> E —> T —> 0 be a square zero algebra exten-
sion and u: R -> E a A:-algebra map. If u'\ R —» F is any ^-module map with
£w' = £w, then uf = u + D for some ^-module map D: /? -> M. Show that w'
is a ^-algebra map if an3 only if D is a /^-derivation.
Fundamental Sequences for Q with Smoothness 9.3.5 Let k ->• /? —• r
be maps of commutative rings.

1. If T is smooth over /?, then the first fundamental sequence 9.2.6 becomes
a split exact sequence by adding 0 -> on the left:

0 -> £2R/k <g)R T —> QT/k —> &T/R -> 0.

2. If T = / ? / / and T is smooth over k, then the second fundamental se-
quence 9.2.7 becomes a split exact sequence by adding 0 -> on the left:

0 -> / / / 2 _ ^ j ^ ®R R/I _^ Q(R/I)/k -> 0.

Proof For (1), let TV be a T-module, and D: R -+ N a ^-derivation. Define
a ring map <p from /? to the trivial extension T 0 N by <p(r) = ( / ( r ) , Dr).
By smoothness, the projection T 0 TV -> T is split by an /^-module homo-
morphism o\T -+ T 0 N. Writing cr(t) = (f, D'r), then Dr: r -> Â  is a it-
derivation of r such that D ' / = D. (Check this!) Now take TV to be QR/k (g)/?
T\ D' corresponds to a T-bilinear map y: Qr/k -> /̂?/A; 0/? ^- If D is the
derivation D(r) = dr (8) 1, then ya? is the identity on TV and y splits a.

For (2), note that smoothness of T = R/I implies that the sequence 0 ->•

I/I2 -* R/I2 -U R/I -^ 0 is split by a fc-algebra map a: / ? / / -> R/I2. The
map D=l-af:R-> R/I2 satisfies fD = f - (fcr)f = 0, so the image of
D lies in I/I2 and D is a derivation. Moreover the restriction of D to / is the
natural projection / —• I /I2. By universality, D corresponds to an /^-module
map 0: QR/k -^ I /I2 sending rds to rD(s). Thus 0 kills IQR/k and factors
through QR/k ®R R/I, with 08 the identity on I/I2. O

We are going to characterize those field extensions K that are smooth over
k. For this, we recall some terminology and results from field theory [Lang,
X.6]. Let k be a field and K a finitely generated extension field. We say that K
is separately generated over k if we can find a transcendence basis (t\, • • •, tr)
of K/k such that K is separably algebraic over the purely transcendental field
k(t\, • • •, tr). If char(/c) = 0, or if k is perfect, it is known that every finitely
generated extension of k is separably generated.

Proposition 9.3.6 Ifk is afield, every separably generated extension field K
is smooth over k.
Proof K is separably algebraic over some purely transcendental field F =
k(t\, • • •, tr). As F is a localization of the polynomial ring k[t\, • • •, tr], which
is smooth over &, F is smooth over k. By transitivity of smoothness, it suffices
to prove that K is smooth over F. Since K is a finite separable algebraic
extension of F, we may write K = F(x), where f(x) = 0 for some irreducible
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316 Hochschild and Cyclic Homology

polynomial / with f'{x) ^ 0. Suppose given a map v: K —• T and a square
zero extension 0 - > M - > £ — > - r ^ 0 . Choosing any lift v e E of v(x) e T,
we have f(y + m) = / ( j ) + f'(y)m for every m e M. Since v(/(x)) = 0
and v(/r(jc)) is a unit of 7\ / (y ) e M and / ' (y) is a unit of E. If we put
m = —f(y)/f'(y), then f(y + ra) = 0, so we may define a lift AT —• E by
sending ;t to y + m. O

Corollary 9.3.7 Ifk is a perfect field, every extension field K is smooth over
k. In particular, every extension field is smooth when char(k) — 0.

Proof If Ka is a finitely generated extension subfield of K, then Ka is
separablygeneratedandhencesmooth.IfMisa^r-module,then///(ATa, M) =
0. As tensor products and homology commute with filtered direct limits, we
have H?(K, M) = lim H}(Ka, M) = 0. Hence K is smooth. O

When char(&) / 0 and k is not perfect, the situation is as follows. Call K
separable (over k) if every finitely generated extension subfield is separably
generated. The proof of the above corollary shows that separable extensions
are smooth; in fact the converse is also true [Mat, 20.L]:

Theorem 9.3.8 Let k c K be an extension of fields. Then

K is separable over k <£• K is smooth over k.

Remark 9.3.9 One of the major victories in field theory was the discovery
that a field extension k c K is separable if and only if for any finite field
extension k c £ the ring K <S>k £ is reduced. If char(A:) = p, separability is also
equivalent to MacLanefs criterion for separability: K is linearly disjoint from
the field I = kl/p°° obtained from k by adjoining all /7-power roots of elements
of k. See [Mat, 27.F] and [Lang, X.6]. Here is the most important part of this
relationship.

Lemma 9.3.10 Let K be a separably generated extension of a field k. Then
for every field extension k C I the ring K (g)* I is reduced.

Proof It is enough to consider the case of a purely transcendental extension
and the case of a finite separable algebraic extension. If K = k(x) is purely
transcendental, then each K (8) £ = £(x) is a field. If A' is a finite separable
extension, we saw that K <g> I is reduced for every £ in 9.2.8 O

Exercise 9.3.4 A commutative algebra R over a field k is called separable
if R is reduced and for any algebraic field extension k c £ the ring R (g>*• £ is
reduced. By the above remark, this agrees with the previous definition when R
is a field. Show that
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1. Every subalgebra of a separable algebra is again separable.
2. The filtered union of separable algebras is again separable.
3. Any localization of a separable algebra is separable.
4. If char(fc) = 0, or more generally if k is perfect, every reduced A>algebra

is separable; this completely classifies separable algebras over k.
5. An artinian fc-algebra R is separable if and only if R is a finite product of

separable field extensions of k (see 9.2.9).
6. A finite-dimensional algebra R is separable in the sense of this exercise

if and only if it is separable in the sense of section 9.2.1.

9.3.2 Smoothness and Regularity

For the next result, we shall need the Hilbert-Samuel function hR(n) = length
of R/mn of a d-dimensional noetherian local ring R. There is a polynomial
HR(t) of degree d, called the Hilbert-Samuel polynomial, such that hR(n) =
HR(n) for all large n\ see [Mat, 12.C&H]. For example, if R is the localization
of the polynomial ring K[x\, • • •, Xd\ at the maximal ideal M = (xi, • • •, xj),
then hR(n) = HR(n) = ( W ^ 1 ) = n ( n + 1 ) ^ + ^ 1 ) for all n > 1.

Theorem 9.3.11 Let R be a noetherian local ring containing afield k. If R is
smooth over k, then R is a regular local ring.

Proof Set d = dim#(m/m2), and write S for the local ring of K[x\, • • •, Xd\
at the maximal ideal Af = (jq, • • •, xt). Note that S/M2 = K © m/m2. By re-
placing k by its ground field if necessary, we may assume that the residue field
K = R/xn is also smooth over k. This implies that the square zero extension
R/m2 -> K splits, yielding an isomorphism R/m2 = K © (m/m2) = S/M2.
Since R is smooth, we can lift R -+ R/m2 = S/M2 to maps /? -> S/Mn for
every rc. By Nakayama's Lemma 4.3.9, if R maps onto S/Mn, then /? maps
onto S/Mn+l (because m(S/Mn+l) contains Mn/Mn+l). Inductively, this
proves that R/mn maps onto S/Mn for every n and hence that hR{n) > hs(n)
for all n. Therefore the Hilbert polynomial HR(t) has degree > d, and hence
dim(R) > d. Since we always have dim(R) < d (4.4.1), this yields dim(/?) =
d, that is, R is a regular local ring. O

Definition 9.3.12 A commutative noetherian ring R is called regular if the
localization of R at any prime ideal is a regular local ring (see 4.4.1). We say
that R is geometrically regular over a field k if R contains k, and for every
finite field extension k c •£ the ring /? (g>fc € is also regular.

Corollary 9.3.13 Let R be a commutative noetherian ring containing afield
k.IfR is smooth over k, then R is geometrically regular over k.

Proof If R is smooth over k, then so is every localization of R. Hence R is
regular. For each k c I, R (8) t is smooth over I, hence regular. <>
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318 Hochschild and Cyclic Homology

Remark In fact the converse is true: Geometrically regular A:-algebras are
smooth over k; see [EGA, 0/v(22.5.8)].

Theorem 9.3.14 If R is a smooth k-algebra, then QR/JC is a projective R-
module.

Proof We will show that QR/JC satisfies the projective lifting property. Sup-
pose given an /^-module surjection u: M —> N and a map v: SlR/k —> N.If I
is the kernel of Re —> R, then the square zero algebra extension Re/12 -> R is
trivial, that is, Re/I2 = R 0 I/I2 as a A:-algebra. Moreover, I/I2 = QR/k by
9.2.4. We thus have a diagram of ^-algebras

Re — • Re/I2 ^ R 0 n^/ik

( 1 , M )

/? 0 M • R ® N.

The kernel of R(BM-^R®N is the square zero ideal 0 0 ker(w). By base
change (exercise 9.3.2) Re = R <g)k R is smooth over R, hence over k, so Re —>
R (& N lifts to a fc-algebra map w: Re —> R 0 M. Since w(/) is contained in
0 0 M (why?), w(/2) = 0. Thus w induces an ^-module lifting I/I2 - • M
of u. <>

Remark T h e rank of ^2/?/^ is given in 9.4.8.

Application 9.3.15 (Jacobian criterion) Suppose that R = k[x\, • • •, xn]/J,
where 7 is the ideal generated by polynomials f\, • • •, fm. The second fun-
damental sequence 9.2.7 is

J/J2 ^ R n ^ QR/IC - • 0,

where Rn denotes the free /^-module on basis {dx\, • • •, dxn}. Since J/J2

is generated by f\, • • •, fm the map 8 is represented by the m x n Jacobian
matrix (dfi/dxj). Now suppose that R is smooth, so that this sequence is
split exact and J/J2 is also a projective /^-module. If M is a maximal ideal
of k[x\, • • •, xn] with residue field K = R/M, and d = dim(/?M), then 7M
is generated by a regular sequence of length n — d, so (J/J2) ®R K is a
vector space of dimension ft — d. Therefore the Jacobian matrix (dfi/dxj) has
rank n — d when evaluated over K = R/M. This proves the necessity of the
following criterion; the sufficiency is proven in [EGA, 0iv(22.6.4)], and in
[Mat, section 29].

Jacobian criterion: R is smooth if and only if the Jacobian matrix
(dfi/dxj) has rank n — dim(/?A/) when evaluated over R/M for every
maximal ideal M.
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9.4 Hochschild Products 319

9.4 Hochschild Products

There are external and internal products in Hochschild homology, just as there
were for absolute Tor (and Ext) in 2.7.8 and exercise 2.7.5, and for relative
Tor (and Ext) in 8.7.12 and exercise 8.7.2. All these external products involve
two fc-algebras R and Rf and their tensor product algebra R (g) Rf. To obtain
internal products in homology we need an algebra map R 0 R -> R, which
requires R to commutative. This situation closely resembles that of algebraic
topology (pretend that R is a topological space X; the analogue of R being
commutative is that X is an //-space). We shall not discuss the internal prod-
uct for cohomology, since it is entirely analogous but needs an algebra map
R -> R 0 R, which requires R to be a Hopf algebra (or a bialgebra).

We begin with the external product for Hochschild homology. Let R and Rf

be ^-algebras. Since the bar resolution fi(R, R) is an R—R bimodule resolu-
tion of R and P(R', Rf) is an R'—R' bimodule resolution of R\ their tensor
product P(R, R) 0 fi(R', R) comes from a bisimplicial object in the category
bimod of (R ® Rf)-(R 0 R') bimodules. In 8.6.13 we showed that the shuffle
product V induces a chain homotopy equivalence in bimod:

, R) <8> p(R\ Rf) -^> p(R <S> R\ R 0 R').

If M is an R—R bimodule and M' is an R'—R' bimodule, then we can tensor
over (R 0 R')e with M 0 M' to obtain a chain homotopy equivalence

Tot{(M ®Re fi(R, R)) ® (Mf ®R,e /3(R', /?'))} - ^ (M ® M') ®{Rmr £{R ® R', R ® R').

Recall from 9.1.3 that the Hochschild chain complex C(M 0 R®*) is isomor-
phic to M ®Re P(R, R). Hence we may rewrite the latter equivalence as

Tot{C(M 0 R®*) (8) C(Mf 0 fl/(8)*)} -^> C((M 0 Mr) 0 (R 0 T?7)0*).

If we apply Hombimod(—, M ® ^ 0 we get an analogous cochain homotopy
equivalence

Tot Hombimod(£(/?, R) (8) )8(/?', /?'), M ® M') ^+C Yiomk((R ® Z?')0*, M <8> Mr),

but the natural map from Hom/?(/3, M) (8) Hom/?/(^
/, Mr) to

P\ M <8) Mr) is not an isomorphism unless R or R' is a finite-dimensional al-
gebra. The Kiinneth formula for complexes (3.6.3) yields the following result.

Proposition 9.4.1 (External products) The shuffle product V induces natural
maps
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320 Hochschild and Cyclic Homology

Hi(R, M) 0 Hj(R\ Mf) -^> Hi+j(R 0 #', M 0 M'),

Hl(R, M) 0 Hj(R\ Mf) -^> Hi+j(R 0 /?', M 0 M').

For i = j =0 these products are induced by the identity map on M 0 M'. 7f
/: w a field, the direct sum of the shuffle product maps yields natural isomor-
phisms

Hn(R 0 /?', M 0 Mf) = [//*(#, M) 0 H*{R\ M')]n

Hi(R,M)<g>Hj(R\M/).
i+j=n

Similarly, the shuffle product V: #*(/?, M) ® //*(/?r, Mr) -* //*(/? (8) /?',
M 0 Mr) w a« isomorphism when either R or R' is finite-dimensional over
a field k.

Remark The explicit formula for V in exercise 8.6.5 shows that the external
product is associative from H(R, M) (8) H(R\ Mf) (8) H{R", M") to H(R ®
R' <g>R/\M®M'®M").

Exercise 9.4.1 Let 0 —• Mo - • Mi -> M2 -> 0 be a ^-split exact sequence of
R—R bimodules. Show that V commutes with the connecting homomorphism
9 in the sense that there is a commutative diagram

#/(/*, Mi) (8) Hj(R\ Ml) -^> Hi+j(R 0 R\ M2 ® M7)

Rf, Mo

P.4.7 Internal Product

Now suppose that /? is a commutative ^-algebra. Then the product /? 0 /? ->•
/? is a /:-algebra homomorphism. Composing the external products with this
homomorphism yields a product in Hochschild homology

Hp(R, M) 0 /^( /? , Mr) -> H p + 9 (« , M 0 ^ M;).

Here M 0 W is an /? - /^ bimodule by r(m 0 mr)^ = (r/n) 0 (m^). When
M = Mr = /?, the external products yield an associative product on H*(R, R).
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9.4 Hochschild Products 321

In fact, more is true. At the chain level, the shuffle product 8.6.13 gives a map

Tot C(R ® fl®*) ® C(R ® /?®*) -^» C((/? <g> /?) 0 (/? 0 /?)®*) - ®

Proposition 9.4.2 If R is a commutative k-algebra, then

1. C(R<8> R®*) = R (SiRe P(R, R) is a graded-commutative differential
graded k-algebra (4.5.2).

2. H*(R, R) is a graded-commutative k-algebra.

Proof It suffices to establish the first point (see exercise 4.5.1). Write C* for
C(R ® R®*) = R ®Re p(R, R). The explicit formula for V (exercise 8.6.5)
becomes

n ® • • • ® p o

^) (8) r M -

where /x ranges over all (/?, g)-shuffles. The product V is associative, be-
cause an (n, p, q)-shuffle may be written uniquely either as the composi-
tion of a (/?, g)-shuffle and an (n, p + g)-shuffle, or as the composition of
an (n, /?)-shuffle and an (n + p, g)-shuffle. Interchanging p and q amounts
to precomposition with the shuffle v — (p + 1, • • •, p + q, 1,••,/?); since
(—l)y = (—l)pq the product V is graded-commutative. Finally, we know that
V: Tot(C* (8) C*) —> C* is a chain map. Therefore if we set p = (ro, n , • • •, 0?)
and pr = (T*Q, r^+i, • • •, rp+^) and recall the sign trick 1.2.5 for dv we have the
Leibnitz formula:

+ dv){p (8) pr) = (dp)Vpr + (-\)PpV(dpf). O

Corollary 9.4.3 If R is commutative and M is an R—R bimodule, then
H*(R, M) is a graded H*(R, R)-module.

9.4.2 The Exterior Algebra Q*R/k

As an application, recall that H\(R, R) is isomorphic to the /^-module QR/JC of
Kahler differentials of R over k. If we write Qn

R ,k for the nth exterior product
then the exterior algebra Q*R,k on QR/IC is
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322 Hochschild and Cyclic Homology

Note that Q°R ,k = R and £ll
R,k = QR/IC- &*R/k *s m e ^ree graded-commutative

/^-algebra generated by £2/?/&; if ^* is a graded-commutative /^-algebra, then
any R-module map £2R/JC —>• K\ extends uniquely to an algebra map Q*R ,k —>

Corollary 9.4.4 If R is a commutative k-algebra, the isomorphism £l\ik =
H\ (R, R) extends to a natural graded ring map \j/\ &*R,k -> H*(R, R). IfQ C
R, this is an injection, split by a graded ring surjection e: H*(R, R) —> Q*R ,k.

Proof Since //*(/?, R) is graded-commutative, the first assertion is clear. For
the second, define a map e: R®n+l -> Qn

R,k by the multilinear formula

e(ro <S> r\ (8) • • • ® rn) = —jodr\ A • • • A drn.
n\

The explicit formula for V shows that e(pVp') = e(p) A e(pf) in Sl*R,k. There-
fore e is a graded /^-algebra map from 7?®*+1 to ^^/^. An easy calculation
shows that e(b(ro <g> • • • 0 rn+\)) — 0. (Check this!) Hence e induces an alge-
bra map HH*(R, R) -> &*R,k. To see that e splits \/r, we compute that

A • • • A drn) = g((r0 ® n)V(l ® r2)V •

= e(r0 (8) n ) A e(\ <g> r2) A • • • A e(l ® rn)

= rodr\ A r2 A • • • A rn. ^

Definition 9.4.5 We say that a commutative A:-algebra R is essentially of fi-
nite type if it is a localization of a finitely generated ^-algebra. If k is noethe-
rian, this implies that R and Re — R (g) R are both noetherian rings (by the
Hilbert Basis Theorem).

Proposition 9.4.6 Suppose that R is a commutative algebra, essentially of
finite type over afield k. If R is smooth over k, then Re is a regular ring.

Proof We saw in 9.3.13 that smooth noetherian /:-algebras are regular. By
smooth base change and transitivity (exercise 9.3.2), Re = R (8) R is smooth
over R and hence smooth over k. Since Re is noetherian, it is regular. <>

Theorem 9.4.7 (Hochschild-Kostant-Rosenberg) Let R be a commutative al-
gebra, essentially of finite type over a field k. If R is smooth over k, then \j/ is
an isomorphism of graded R-algebras:

^:Q%/k^ H*(R,R).
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9.4 Hochschild Products 323

Proof As with any R-module homomorphism, x// is an isomorphism if and
only if \// ®R Rm is an isomorphism for every maximal ideal m of /?. The
Change of Rings Theorem (9.1.8) states that //*(/?, R) 0/? Rm ^ H*(Rm, Rm).
Since Q*R ,k <8)R Rm = ^^m/^, ^ ®R ^m is obtained by replacing R by Rm.
Hence we may assume that R is a local ring.

Let / be the kernel ofR®R-^R and M the pre-image of m in Re =
R (g) R. M is a maximal ideal in the regular ring Re, so S = (R6)M is a regular
local ring. By flat base change (8.7.16) H*(R, R) ^ Torf/k(R, R). Since S
and R = S/IM are regular local rings, IM is generated by a regular sequence
of length d = dim(R) = dim(S) — dim(R); see exercise 4.4.2. We also saw in

S / Ic

8.7.13 that the external product makes Tor*7 (/?, R) isomorphic to A*QR/JC =
^R,k as a graded-commutative /^-algebra. Since the external product can also
be computed via the bar resolution and the shuffle product (8.7.12), the above

SI k

product agrees with the internal product on H*(R, R) = Tor* (R, R). <>
Remark 9.4.8 We saw in 9.3.14 and 8.7.13 that QR/IC is a projective mod-
ule whose localization at a maximal ideal m of R is a free module of rank
dim(/?m). Hence for d = dim(R) = max{dim(/?m)} we have Qd

R/k ^ 0 and
Hn(R, R) = Qn

R/k = 0 for n > d. The converse holds: If Hn(R,R) = 0 for
all large n, then R is smooth over k. See L. Avramov and M. Vigue-Poirrier,
"Hochschild homology criteria for smoothness," International Math. Research
Notices (1992, No.l), 17-25.

Exercise 9.4.2 Extend the Hochschild-Kostant-Rosenberg Theorem to the
case in which k is a commutative noetherian ring; if R is smooth over k and
essentially of finite type, then \\r : Q*R,k = H*(R, R). Hint: Although S and
R = S/I may not be regular local rings, the ideal / is still generated by a
regular sequence of length d.

9 A3 Hodge Decomposition

When Q c R and R is commutative, we shall show (in 9.4.15) that the
Hochschild chain complex C%(R) = C(R <g) R®*) decomposes as the direct
sum of chain complexes C%(R)(l\ The resulting decompositions H*(R, R) =
0/ / i o ( /? , R) and H*(R, R) = ®H^(R9 R) are called the Hodge decomposi-
tions of Hochschild homology and cohomology in order to reflect a relation-
ship with the Hodge decomposition of the cohomology of complex analytic
manifolds. (This relationship was noticed by Gerstenhaber and Schack [GS];
see Remark 9.8.19 for more details.) In the process, we will establish the
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324 Hochschild and Cyclic Homology

facts needed to apply Barr's Theorem (8.8.7), showing that the summand

H*X\R, R) may be identified with the Andre-Quillen homology modules

If R does not contain Q, there is a filtration on //*(/?, R) but need be no
decomposition [Q]. This filtration may be based on certain operations Xk; see
[Loday, 4.5.15]. When Q C R the eigenspaces of the Xk give the decomposi-
tion; A* acts as multiplication by ±kl on C^(R){i) and hence on //*(0(fl, R)
and H*^(R, R). For this reason, the Hodge decomposition is often called the
X- decomposition.

The symmetric group £„ acts on the ft-fold tensor product R®n and hence
on M 0 R®n by permuting coordinates: o(m 0 r\ 0 • • • 0 rn) = m 0 rG-\l 0
• • • 0 r r i r Consider, for example, the effect of the signature idempotent
£n — r̂ J2aexn(~^a(r °f Q^«» t n e definition of the shuffle product V shows
that in R 0 R®n we have the identity:

n!en(r0 0 r\ 0 • • • 0 rn) = ro(l 0 n)V • • • V(l 0 rn).

This element is an n-cycle in the Hochschild complex representing the ele-
ment 1r(rodr\ A • • • A drn) of Hn(R, R), where xjs : Q*R/k

 c ^ //*(/?, /?) is the
injection discussed in 9.4.4. The formula for the chain-level splitting e: R 0
#®* _• fi^^ of iff is skew-symmetric, so we also have e(ro 0 r\ 0 • • • 0
rn) = c(en(ro 0 r\ 0 • • • 0 rn)). Hence ^ factors through en(R 0 /?(8)").

The following criterion for recognizing the signature idempotent will be
handy. Consider the action of £„ on the module R 0 R®n.

Barr's Lemma 9.4.9 If u e QT,n satisfies bu{\ 0 r\ 0 • • • 0 rn) = Ofor all
algebras R, then u = cenfor some c e Q.

Proof Write u = ^coa with caeQ. We consider its action on the ele-
ment x = (1 0 r\ 0 • • • 0 rn) of R 0 R®n, where R is the polynomial ring
k[r\, . . . , rn]. In b{ux) = J2 cob{\ 0 rG-\x 0 • • • 0 ra-in) the term

1 0 ro-xx 0 • • • 0 r^ - i f^ - i^ ! ) 0 • • • 0 ra-\n

occurs once with coefficient (— l)lco and once with coefficient (— l)lcTa,
where r is the transposition (/, i + 1). Since these terms form part of a
basis for the free /:-module R 0 R®n, we must have ca = —cTG for all
a and all r = (/, / + 1). Hence co = (— \)°c\ for all <J€T<n, and therefore
u = ciJ2(-l)acr==ci£n. O

To fit this into a broader context, fix n > 1 and define the "shuffle" elements
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9.4 Hochschild Products 325

spq of ZEn to be the sum J^(—l)M/x over all (/?, #)-shuffles in En (so by
convention spq = 0 unless p + q =n). Let sn be the sum of the spq for 0 <
p < n.

Lemma 9.4.10 bsn = sn-\b for every n.

Proof If p + q = n, x = ro <8> • • • ® rp and y = 1 ® r p + i (8) • • • <g> rn, then
= spq(ro <8> • • • 0 rn). Since /?®*+1 is a DG-algebra (9.4.2), we have

bspq(r0 ® • • • ® rn) = Z7(xV>;) = (fejc)Vy + (-l)pxV(by)

= sP-l,q((bx) ® v) + (- l)% ff_i( jc (

Summing over /? gives Z?5n = sn-\b. <>

Propos i t i on 9 .4 .11 ( [GS]) The minimal polynomial for sn€QlEn is

fn(x) = X(JC — A.2) - • • (JC — kn), where A.,- = 2' - 2.

Therefore the commutative subalgebra Q[sn] o/QDn contains n uniquely de-

termined idempotents en , / = 1 , . . . , n SMC/I /̂ifl/ ^ = ^ A./^ anJ Q[sn] =

%\ In particular, ef e^ = Ofor i # j . O

Definition 9.4.12 The idempotents e£ are called the Eulerian idempotents

of QE n . Because sn has only n eigenvalues, e^ = 0 for / > n. By convention,

4 0 ) = 1 and 4 0 ) = 0 otherwise.

Proof If n = 1 then s\ = 0, while if r = (1, 2) then 52 = 1 — r satisfies
JC(JC — 2). For n > 3 w e proceed by induction. Since bsn = sn-\b, we have
bfn-i(sn) = fn-\(sn-i)b = 0. By Barr's Lemma, fn-i(sn) = csn for some
constant c. To evaluate c, note that snsn = Xnen because sn has kn terms and
£na = {—\)n6n for every a€E n . Thus

fn-\{Sn) =Snfn-l(Sn) = fn-l(SnSn) = fn-\{K^n) — C8n ^ 0 ,

where c = A.n/W_i(l) # 0. Thus fn(sn) = csn(sn - Xn) - 0. <C>

Corollary 9.4.13 e£ is the signature idempotent en.

Proof Q[sn] contains sn = fn-\(sn)/c, and snsn = knen. O

Corollary 9.4.14 bef = e{^_xb for i < n, and be^ = 0.
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326 Hochschild and Cyclic Homology

Proof For all /, let pt(x) be the product of the terms (x — kj)/(k( — kj) for

j ^ i, j < n, so that Pi(sn) = ell a nd Pi(sn-\) = en-v t m s *s t n e Lagrange
interpolation formula for diagonalizable operators and is most easily checked
using Q[sn] = f] Qen\ Since bsn — sn-\b, we have

bef = bPi(sn) = A-^n-i)* - ^ i * .

As a special case, we have the formula be™ — en-\b = 0- ^

Definition 9.4.15 Suppose that R is a commutative ^-algebra containing Q.

For / > 1, let C%(R){i) denote the summand e^R ® /?0/I of C^(/?) = R ®
. By 9.4.14, each c£(/?)(/) is a chain subcomplex of C*{R). For i = 0 we

let C%(R){{)) denote the complex that is R, concentrated in degree zero, so that

C%(R) is the direct sum of the chain subcomplexes C%(R)^ for / > 0. We

define H%\R, R) to be Hn(C%(R)(i)). The resulting formula

Hn(R, R) = H^l)(R, R)®---® H^n)(R, R), n^O,

is called the Hodge decomposition of Hochschild homology. Similarly, we
define H^iR, R) to be Hn HomR(C^(R)(i\ R) and call the resulting formula

Hn(R, R) = H^iR, R) 0 • • • 0 Hfn)(R, R), n / 0,

the Hodge decomposition of Hochschild cohomology.
The Hodge decomposition (or A-decomposition) arose implicitly in [Barr]

(via 9.4.9 and 8.8.7) and [Q] and was made explicit in [GS].

Exercise 9.4.3 Let C%(R){i) denote the summand e^R ® (R/k)®n of the

normalized Hochschild complex R ® (R/k)®n. Show that H^}(R, R) =

Exercise 9.4.4 Show that H^n){R, R) = Qn
R/R for every R. Conclude that if

R is smooth and essentially of finite type over k, then Hn(R, R) = Hnn)(R, R).

9.5 Morita Invariance

Definition 9.5.1 Two rings R and S are said to be Morita equivalent if there
is an R—S bimodule P and an S—R bimodule Q such that P <S)s Q = R
as R—R bimodules and Q <g)R P = S as S—S bimodules. It follows that the
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9.5 Morita Invariance 327

functors (g^Pimod-/? - • mod-S and <g)sQ.mod-S - • mod-/? are inverse
equivalences, because for every right /^-module M we have (M 0/? P) <S>s
Q = M ®R (P ®s Q) = M and similarly for right S-modules.

Exercise 9.5.1 Show that

1. Morita equivalence is an equivalence relation.
2. If R and S are Morita equivalent, so are R°v and Sop.
3. If R and S are Morita equivalent, then the bimodule categories

R-mod-R and S-mod-S are equivalent (via Q<S>R — <8>RP).

Proposition 9.5.2 The matrix rings Mm(R) are Morita equivalent to R.

Proof Let P be the module of row vectors (n, • • •, rm) of length m and Q
the module of column vectors of length m. The matrix ring S = Mm(R) acts
on the right of P and the left of Q by the usual matrix multiplication, so P is
an R—S bimodule and Q is an S—R bimodule. Matrix multiplication yields
bimodule maps P <g>s Q -> R and Q <S>R P -+ S: if p = (p\, • • •, pm) and

q = (qi,..., qm)T', then p <g> q maps to Y^ PiQi a n d q <8> p maps to the matrix

(qtPj). It is easy to check that these maps are isomorphisms (do so!). O

Corollary 9.5.3 The isomorphism R-mod-R -> Mm(R)-mod-Mm(R) as-
sociates to an R — R bimodule M the Mm(R)—Mm(R) bimodule Mm(M) of
all m x m matrices with entries in M.

Lemma 9.5.4 If P and Q define a Morita equivalence between R and S, then
P is a finitely generated projective left R-module. P is also a finitely generated
projective right S-module.

Proof Given p e P and q e Q we write p • q and q • p for the elements of R
and S corresponding to p 0 q e P <g>s Q and q (8) p e Q <8)R P, respectively.
As Q <8)R P = S, we can write 1 = q\ • p\ -\ h qm • pm for some m. Define
e:P-+Rm bye(p) = (p • qu • • •, p • qm) and/z: Rm -» P by h(ru • • •, rm) =
Y2riPi> e a nd h are left /^-module homomorphisms. Since he(p) = Y1(P '
qi)Pi = ^2 p(<li ' Pi) — P> this expresses P as a summand of Rm in /?-mod.
The proof that P is a summand of some Sn in mod-5 is similar. O

Exercise 9.5.2 Show that the bimodule structures induce ring isomorphisms

Conclude that if all projective R-modules are free, then any ring which is
Morita equivalent to R must be a matrix ring Mm(R).
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328 Hochschild and Cyclic Homology

Lemma 9.5.5 If L is a left R-module and Q is a projective right R-module
then Hi(R,L® Q) = Ofori / 0 and HQ(R, L <g> Q) ^ Q®RL.

Proof By additivity, it suffices to prove the result with Q = R. The standard
chain complex (9.1.1) used to compute //*(/?, L ® R) is isomorphic to the bar
resolution fi(R, L) of the left ^-module L (8.6.12), which has ///(£) = 0 for
i 7̂  0 and H0(p) ^R®RL. O

Theorem 9.5.6 (R. K. Dennis) Hochschild homology is Morita invariant.
That is, if R and S are Morita equivalent rings and M is an R — R bimodule,
then

//*(/?, M) = //*(£, Q®RM®R P).

Proof Let L denote the S—R bimodule Q ®R M. Consider the bisimplicial k-
module Xtj = S®( <g)L<g> R®j (8) P, where the j t h row is the standard complex
9.1.1 for the Hochschild homology over S of the S-S bimodule L <g) R®J ® P
and the ith column is the standard complex for the Hochschild homology of
the R-R bimodule P ® S01' (g> L (with the P rotated). Using the sign trick
1.2.5, form a double complex C**. We will compute the homology of Tot(C)
in two ways.

L&R&R&P <—

i i
L 0 / ? 0 P <— S®L<g>R<g) P <—

I I i
L®P <— 5(8)L(8)P <— S® S® L® P . . .

Since P is a projective right 5-module, the j t h row is exact except at / = 0,
where H0(C*j) = P ®s (L ® R®J) ^ M ® R®J (9.5.5). The vertical differ-
entials of the chain complex HQ(C*J) make it isomorphic to the standard com-
plex for the Hochschild homology of M. Thus /// Tot(C) ^ Ht(R, M) for all
/. On the other hand, since P is a projective left /^-module, the ith column
is exact except at j = 0, where #0(Q*) = S®* ® L ®s P (9.5.5). The hor-
izontal differentials of 7/o(Q*) make it isomorphic to the standard complex
for the Hochschild homology of L ®s P = Q <8>R M ®S P- Thus Ht Tot(C) =
Ht(S, Q®RM®S P) for all i. O
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9.5 Morita Invariance 329

Definition 9.5.7 (Trace) The usual trace map from Mm{R) to R is the map
sending a matrix g = (gij) to its trace Yl §a- More generally, given an R—R
bimodule M we can define maps trace,* from Mm(M) <g> Mm(R)®n to M <S>
R®n by the formula

These maps are compactible with the simplicial operators 9/ and 07 (check
this!), so they assemble to yield a simplicial module homomorphism from
Mm(M)®Mm(/?)®* to M®R®*. They therefore induce a map on Hochschild
homology, called the trace map.

Corollary 9.5.8 The natural isomorphism of theorem 9.5.6 is given by the
trace map H*(Mm(R), Mm{M)) -> H*(R, M).

Proof Let us write F = F(R,S,P, Q,M) for the natural isomorphism //*(/?,
M) -> H*(S, Q <8> M <S> P) given by the bisimplicial fc-module X of theorem
9.5.6. Fixing R, set S' = R and S = Mm(R), Pr = R and P = Rm, Q'= R
and Q = (Rm)T. The diagonal map A: R -+ Mm(R) sending r e R to the

r 0
is compatible with the maps P' -+ P and Qrdiagonal matrix

0
Q sending p e P' and q e Qf to (/?, 0, • • •, 0 ) r and (q, 0, • • •, 0), respectively.
It therefore yields a map A: X(R, S\ P', Qr) -+ X(R, S, P, Q). (Check this!)
This yields a commutative square

Hn(R,M)
F'

Hn(R,R®RM®RR) = Hn(R,M)

Hn(R,M) — • Hn(Mm(R),Q®M®P) = Hn(Mm(R), Mm(M)).

It follows that A is an isomorphism. At the chain level, we have

A(ra (8) r\ > rm) =
m
0
0

0

0

0
0
0

r1
09

1 0

0 1. . . 6 ? ) . . . 6 ? )

n 1

rn

0

0

Clearly tracen(A(m ® n ® • • • ® rn)) = m (8) r\ (8) • • • ® rn, so the trace map
H*(Mm(R), Mm(M)) —> //*(/?, M) is the inverse isomorphism to A. <>
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330 Hochschild and Cyclic Homology

Exercise 9.5.3 For m < n, consider the (nonunital) inclusion r. Mm(R) c->

Mn(R) sending g to ^ . Show that t induces a chain map t* from the

complex Mm(M) ® Mm{R)®* to the complex Mn(M) 0 Mn(R)®* for every
R-module M. Then show that this chain map is compatible with the trace maps
(i.e., that trace = trace o**), and conclude that i* induces the Morita invariance
isomorphism

H*(Mm(R), Mm(M)) ^ H*(Mn(R), Afn(Af)).

Exercise 9.5.4 Let e//(r) denote the matrix with exactly one nonzero entry,
namely r, occurring in the (/, j) spot. Show that

trace enin) ® ^23(^2) ® • • • ® en\(rn) = r\ <S> - • • <8) rn.

Then show that for any permutation o of {1, 2, • • - , «}

r\ (g) • • • (g) rn if cr e Cn
trace ^al,a2(^l) (8) ean,G\(rn) =

1 0 if not,

where Cw is the subgroup of the symmetric group generated by (12 • • • n).

9.6 Cyclic Homology

The simplicial ^-module ZR = R® R®* used to construct the Hochschild
homology modules //*(/?, R) has a curious "cyclic" symmetry, which is sug-
gested by writing a generator ro 0 r\ 0 • • • 0 rw of R (8) 7?®" in the circular
form illustrated here.

The arrow —• serves as a place marker, and there are n + 1 of the symbols
0 . The n + 1 face and degeneracy operators replace the appropriate symbol 0
by a product or a "(8)10," respectively. This symmetry defines an action of the
cyclic group Cn+i on R 0 R®n\ the generator t of Cn+i acts as the operator
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9.6 Cyclic Homology 331

t (ro <8> • • • <8> rn) = rn <g> ro <g> • • • 0 rn- \. We may visualize t as a rotation of the
above circular representation (with the place marker fixed). Clearly d(t = tdi-\
and Git = tO[-\ for / > 0; for / = 0 we have dot = dn and aot = t2an. (Check
this!) This leads to the notion of an abstract cyclic ^-module: a simplicial k-
module with this extra cyclic symmetry. After giving the definition in this
fashion, we shall construct a category AC such that a cyclic /c-module is a
contravariant functor from AC to &-mod, paralleling the definition in Chapter
8 of a simplicial object.

Definition 9.6.1 A cyclic object A in a category A is a simplicial object to-
gether with an automorphism tn of order n + 1 on each An such that d(t =
tdt-i and O[t — tO[-\ for / ^ 0, dtfn = dn and crotn = t^+lon. (Writing t in-
stead of tn is an abuse of notation we shall often employ for legibility.)

We will use the term "cyclic module" for a cyclic object in the category of
modules. For example, there is a cyclic ^-module ZR associated to every k-
algebra R\ ZnR is R®n+l and the rest of the structure was described above.

Example 9.6.2 We will also use the term "cyclic set" for a cyclic object in
the category of sets. For example, let G be a group. The simplicial set BG
(8.1.7) may be considered as a cyclic set by defining t on BGn — Gn to be
t(gu '",8n) = (go, gw-, gn-i), w h e r e go = (gi-- gn)~l- A n o t h e r cycl ic
set is ZG, w h i c h has (ZG)n = G " + 1 ,

(go, • • • , g i g i + i , ' -,gn) if i<n

O7(#0, '-',gn) = (gO, ' • • , gi, 1, gi + 1, ' ' ')

t(gO, " ' , gn) = (gn, gO, • ' • , gn-l)-

As the notation suggests, there is a natural inclusion BG C ZG and the free
^-modules k(ZG)n fit together to form the cyclic ^-module Z(kG).

We now propose to construct a category AC containing A such that a cyclic
object in A is the same thing as a contravariant functor from AC to A. Recall
from Chapter 8, section 1 that the simplicial category A has for its objects
the finite (ordered) sets [n] = {0, 1, • • •, n], morphisms being nondecreasing
monotone functions. Let tn be the "cyclic" automorphism of the set [n] defined
b y t n ( 0 ) = n a n d t n ( j ) = j - l f o r j / 0 .

Definition 9.6.3 Let HorriAc(l/*L [p]) denote the family of formal pairs
(ot,tl), where 0 <i <n and a: [n] —> [p] is a nondecreasing monotone func-
tion. Let Home(|>i], [/?]) denote the family of all set maps <p: [n] -> [p]
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332 Hochschild and Cyclic Homology

which factor as <p = atl
n for some pair (a, tl) in HorriAc(l/*L [/?])• Note that

<p(i) < <?(* + 1) 5 • • * < <p(i — 1) in this case. Therefore the obvious surjec-
tion from HOIIIAC([«], IPY) to Homcfl/i], [/?]) is almost a bijection—that is,
(p uniquely determines (a, tl) such that <p — at1 unless cp is a constant map,
in which case <p determines a (a = <p) but all n + 1 of the pairs (<p,tl) yield
the set map cp. We identify HoniA([n], [p]) as the subset of all pairs (a, 1) in

HomAc(M, [p]).
There is a subcategory C of Sets, containing A, whose objects are the sets

[n], n>0, and whose morphisms are the functions in Homcfl/z], [/?]). To see
this we need only check that the composition of\l/ = pt3

m and (p = atl
n is in C,

and this follows from the following identities of set functions for the functions
S{\ [n — 1] —>• [n] and rjji [n + 1] —> [n] generating A (see exercise 8.1.1)

n , - = nl and ^Vntl+l / =

i - \ t n - \ « > O J

Proposition 9.6.4 (A. Connes) The formal pairs in Horn^ciWAp]) form
the morphisms of a category AC containing A, the objects being the sets [n]
for n > 0. Moreover, a cyclic object in a category A is the same thing as a
contravariant functor from AC to A.

Proof We need to define the composition (y,tk) of (/3,tJ) e
and (a, tl) e HorriAcfl/*], [p]) in such a way that if / = j = 0, then (y, tk) =
(a/3, 1). If f$ is not a constant set map, then the composition tlpt-i in C is not
constant, so there is a unique (/3f, tk) such that tl fit* = firtk; we set (y, ^ ) =
(«)8', ^ ) . If ft is constant, we set (y, ^ ) = («)3, f-7'). By construction, the pro-
jections from HomAc to Hom^ are compatible with composition; as C is a
category, it follows that the (id,l) are 2-sided identity maps and that composi-
tion in AC is associative (except possibly for the identity (<p o (ft, t->)) o x/r =
cp o ((/J, t-i) o \]/) when p is constant, which is easily checked). Thus AC is a
category and A - • AC - • C are functors. The final assertion is easily checked
using the above identities for tst and trjj. O

Remark The original definition given by A. Connes in [Connes] is that
HomAc(M> [p]) is the set of equivalence classes of continuous increasing
maps of degree 1 from S1 = {z € C: \z\ = l j t o ^ 1 sending the (n + l)st roots
of unity to (p + l)st roots of unity. Connes also observed that AC is isomor-
phic to its opposite category (AC)op. See [Loday] for more details.
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9.6 Cyclic Homology 333

Exercise 9.6.1 Show that the automorphisms of [n] in AC form the cyclic
group Cw+i of orders + 1.

Definitions 9.6.5 Let A be a cyclic object in an abelian category A. The chain
complex C%(A) associated to the underlying simplicial object of A (8.2.1)
is called the Hochschild complex of A. It is traditional to write b for the
differential of C%(A), so that b = d0 - d\ + • • • ± dn goes from C%(A) = An to
C%_{(A) = An-\. The Hochschild homology HH*(A) of A is the homology
of C*(A); when A = ZR (9.6.1) we will write HH*(R) for HH*(ZR) =
H*(R, R). The acyclic complex of A, C%(A), is the complex obtained from
C%(A) by omitting the last face operator. Thus C%(A) = An, and we write bf

for the resulting differential do — d\ -\ =F dn-\ from An to An-\.

Exercise 9.6.2 Show the "acyclic" complex C%(A) is indeed acyclic. Hint:
The path space PA (8.3.14) is a simplicial resolution of An.

Definition 9.6.6 (Tsygan's double complex) If A is a cyclic object in an abe-
lian category, there is an associated first quadrant double complex CC**(A),
first found by B. Tsygan in [Tsy], and independently by Loday and Quillen in
[LQ]. The columns are periodic of order two: If p is even, the pth column is
the Hochschild complex C\ of A; if p is odd, the pth column is the acyclic
complex C% of A with differential — b'. (The minus sign comes from the sign
trick of 1.2.5.) Thus CCpq(A) is Aq, independently of p. The qth row of
CC**(A) is the periodic complex associated to the action of the cyclic group
Cq+\ on Aq, in which the generator acts as multiplication by {—\)qt. Thus the
differential Aq -» Aq is multiplication by 1 — (—l)qt when p is odd; when p
is even it is multiplication by the norm operator

l-t N l-t N

A2 < A2 < A2 < A2 <

1+f N 1+r N
A\ < A\ <— A\ < A\ <—

i"
l-t N l-t N

An < AQ <— An < An <—

Tsygan's double complex CC**(A)
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334 Hochschild and Cyclic Homology

Definition 9.6.7 The cyclic homology HC*(A) of a cyclic object A is the
homology of Tot CC**(A). The cyclic homology HC*(R) of an ^-algebra
R is the cyclic homology of the cyclic object ZR (= R <S> R®*) of 9.6.1. In
particular, HC0(A) = HH0(A) and HC0(R) = R/[R, Rl

One of the advantages of generalizing from algebras to cyclic objects is that
a short exact sequence 0 ^ A - > # ^ C ^ 0 o f cyclic objects gives rise to
short exact sequences of Hochschild complexes as well as Tsygan complexes,
which in turn give rise to long exact sequences

• • • HHn(A) -> HHn(B) -> HHn(C) -> HHn+x(A) • • •

• • • HCn(A) -> HCn(B) -> HCn(C) -> HCn-X{A)

Lemma 9.6.8 CC**(A) is a double complex.

Proof Set r] = (-l)q. We have to see that b{\ - rjt) = (1 + rjt)b' and Nb =
b'N as maps from Aq to Aq-\. Now b — b' = rjdq and the cyclic relations
imply that bt = dq — tbf, yielding the first relation. The cyclic relations also
imply that

b^Y.i-tY^'1 and b =
i=0 i=0

(Check this!) S ince (1 - r]t)N — 0, w e have tlN = rfN on A q . S ince N{\

rjt) = 0, we have Nt( = (-rjYN on Aq-\. Thus

i=0

q-\
nb'N = r) Y^i-tydq^N = f]q+l ^(-ritydqN = NdqN.

i=0

This yields the second relation, Nb = b'N. O

Corollary 9.6.9 Let An/ ~ denote the quotient of An by the action of the
cyclic group. These form a quotient chain complex A*/ ~ of the Hochschild
complex C%(A):

Indeed, A*/ ~ w the cokernel of the chain map CC\* —> CCo*, so there is a
natural map from Hn(A*/ ~) to HCn(A).
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9.6 Cyclic Homology 335

Remark Some authors define the cyclic homology of R to be Hn(R®*+1 / ~ ) ,
especially when k = C The following lemma states that their definition is
equivalent to ours.

Lemma 9.6.10 If k contains Q, then HC*(A) may be computed as the ho-
mology of the quotient complex A*/ ~ of the Hochschild complex.

Proof Filtering Tsygan's double complex 9.6.6 by rows yields a spectral se-
quence starting with group homology of the cyclic groups:

El
pq = Hp(Cq+i; Aq) => HCp+q(A).

The edge map from HC*(A) to the homology of E\ = Ho(Cq+\; Aq) =

Aq/ ~ arises from the augmentation CCoq —• Aq/ ~, so the £ 2 edge map
maps Hn(A*/ ~) to HCn(A). In characteristic zero the group homology van-
ishes (6.1.10) and the spectral sequence degenerates at £ 2 . <0>

Remark Filtering Tsygan's double complex by columns yields the even more
interesting spectral sequence 9.8.6 (see exercise 9.8.2).

The three basic homomorphisms S, B, and / relating cyclic and Hochschild
homology are obtained as follows. The inclusion of C%(A) as the column p =
0 in CC^(A) yields a map /: HHn(A) -> HCn{A). Now let CC^\ denote the
double subcomplex of CC**(A) consisting of the columns p = 0, 1; the inclu-
sion of Cj(A) into CC®1 induces an isomorphism HHn(A) ^ Hn Tot(CC^)
because the quotient is the acyclic complex C%(A). The quotient double com-
plex CC[-2] = CC/CC°\ which consists of the columns p > 2, is isomor-
phic to CC** except that it has been translated 2 columns to the right. The quo-
tient map Tot(CC**) - • Tot(CC[-2]) therefore yields a map S: HCn(A) ->
HCn-2(A). The short exact sequence of double complexes

0 -> CC01 - U CC(A) - ^ CC[-2] -> 0

yields the map B: HCn-\(A) -^ HHn(A) and the following "SBI" sequence.

Proposition 9.6.11 (SBI sequence) For any cyclic object A there is a long
exact "SBI" sequence

• • • HCn+l(A) -±> HCn-X(A) -^> HHn(A) - U HCn(A) -^> //Cn

/n particular, there is a long exact sequence for every algebra R:

• • • HCn+l(R) ^ > HCn-i(R) -^ Hn(R, R) - U HCn(R) -?-> HC
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336 Hochschild and Cyclic Homology

Remark In the literature the "SBI" sequence is also called "Connes' se-
quence" and the "Gysin" sequence. See exercise 9.7.4 for an explanation.

Corollary 9.6.12 If A-> A1 is a morphism of cyclic objects with
HHn(A

f), then the induced maps HCn(A) —> HCn(A') are all isomorphisms.

Proof This follows from induction on n via the 5-lemma and 9.6.7. <0>

Application 9.6.13 Let R be a ^-algebra. The explicit formula in 9.5.7 for
the trace map Z(MmR) —>• Z(R) shows that it is actually a map of cyclic
^-modules. Since it induces isomorphisms on Hochschild homology, it also
induces isomorphisms

HC*{MmR) ^ HC*{R).

Exercise 9.6.3 For m < n, show that the nonunital inclusion t\Mm(R) ^
Mn(R) of exercise 9.5.3 induces a cyclic map ZMm(R) - • ZMn(R), which
in turn induces isomorphisms

Example 9.6.14 Since Hn(k,k) = 0 for n / 0, the SBI sequence quickly
yields

k if^ is even

with the maps S: HCn+2(k) -^ HCn(k) all isomorphisms. The same calcula-
tion applies for any finite separable algebra R over a field k because we saw in
9.2.11 that Hn(R,R) = 0 for all n ± 0.

HCi 9.6.15 The SBI sequence interprets HC\(R) as a quotient of H\(R, R):

H0(R, R) -^> HX(R, R) -+ HCi(R) -> 0.

Now suppose that R is commutative, so that HQ(R, R) = R and H\(R, R) =
QR/IC- The map B: R -> &R/k maps r e R to dr. (Check this!) Therefore we
may identify B with d and make the identification

HCi(R)^QR/k/(dR).
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9.6 Cyclic Homology 337

Example 9.6.16 Since Hn(k[x], k[x]) = 0 for n > 2, the S: HCn+2(k[x]) ->
HCn(k[x]) are isomorphisms for all n > 1 and there is an exact sequence

0 -+ HC2(k[x]) -^> k[x] -^» ^[JC]/A; -^> # C i (£[*]) -* 0.

If & contains Q, then xndx = d(xn+l/n + 1) for all n >0, so d is onto and
HC\(k[x]) = 0. This yields the calculation

k[x] ifn = 0
HCn(k[x]) = { k if n > 2 is even

0 if n > 1 is odd.

Similar remarks pertain to the Laurent polynomial ring k[x, x~l], except that
the map d:k[x, x~l] —> ^ ^ x- i ] /^ = k[x,x~l] has cokernel A: (on dx/x)
when Q c L Thus when Q c ^ w e have

HCn(k[x,x~l])^k for all n > 1.

Remark We will compute HC*(R) for a smooth algebra R in 9.8.11 and
9.8.12 in terms of de Rham cohomology.

Exercise 9.6.4 Consider the truncated polynomial ring R = k[x]/(xn+l) over
a field k of characteristic 0. We saw in exercise 9.1.4 that dim^ H((R, R) =
n for i > 0. Show explicitly that HC\(R) = 0. Then use the SBI sequence
to show that HCt(R) = 0 for all odd i, while for even / ^ 0 HQ(R) ^
HQ(k) © H((R, R) = kn+l. Another approach will be given in exercise 9.9.2.

9.6.1 Variations: HP and HN

9.6.17 We may use the periodicity of Tsygan's first quadrant double complex
CC**(A) to extend it to the left, obtaining an upper half-plane double complex
CC^(A). (See 9.6.6.) The periodic cyclic homology of A is the homology of
the product total complex

If we truncate CC^ to the left of the 2pth column, we obtain Tsygan's double
complex 9.6.6 translated 2p times. These truncations {CC**[—2p]} form a
tower of double chain complexes in the sense of Chapter 3, section 5. The
homology of this tower of double complexes is the tower of ^-modules

^> HCn+A(A) -^ HCn+2(A) -^ HCn(A).
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338 Hochschild and Cyclic Homology

As we saw in 3.5.8, this means that there is an exact sequence

0 -> lim xHCn+lp+\(A) -> HPn(A) -> lim HCn+2p(A) -> 0.

Moreover, it is visually clear from the periodicity of CC^(A) that each map
S: HPn+2(A) - • HPn(A) is an isomorphism. This accounts for the name "pe-
riodic cyclic homology": the modules HPn(A) are periodic of order 2.

Similarly, we can consider the "negative" subcomplex CC^(A) of the peri-
odic complex CC^(A) consisting of the columns with p < 0. This is a second
quadrant double complex. The negative cyclic homology of A is defined to be
the homology of the product total complex of CC^(A):

We leave it to the reader to check that there is an SBI exact sequence 9.6.11
for I: HN*^> HP* fitting into the following commutative diagram:

H P n + l ( A ) —• H C n - i ( A ) — > H N n ( A ) —• / / / ^ ( A ) —• / / C n _ 2 ( A ) •••

i' I' I*
//A^n(A) HNn^(A) = HNn-i(A)

9.7 Group Rings

In this section we fix a commutative ring k and a group G. Our goal is to
compute HH* and //C* of the group ring kG (9.7.5 and 9.7.9). To prepare
for this we calculate //C* of kBG, which we call HC*(G).

In 9.6.2 we saw that BG could be regarded as a cyclic set by defining
t(g\, - - •> gn) = ((g\- • - gn)~l, gu • - <> gn-i)- Applying the free /c-module

functor to BG therefore yields a cyclic ^-module kBG. If we adopt the no-
tation HH*(G) = HH*(kBG), HC*(G) = HC*(kBG), and so on, then we
see (using 8.2.3) that

HHn(G) = nn{kBG) = Hn(BG; k) = Hn{G\ k).
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9.7 Group Rings 339

Theorem 9.7.1 (Karoubi) For each group G,

HCn(G) ^ Hn(G\ k) 0 Hn-2(G; k) 0 Hn-A(G\ k) 0 •. •.

Moreover, the maps S:HCn(G) -> HCn-2(G) are the natural projections
with kernel Hn(G; k), and the maps B are zero.

Remark It is suggested to write Karoubi's Theorem in the form HC*(G) =

Proof Consider the path space EG = P(BG) of EG (8.3.14 and exercise

8.3.8), which as a simplicial set has (EG)n — G" + 1 and 9/(go> •••>£«) =

(• • •, g/gj+i, • • •) for i ^ n and dn(go, • • •, gn) = (go, • • •, gn-i). If we define

*(gO, ' - , g n ) = ( g O - ' g n , (gl'" g n ) ~ \ gU g2, ' ' ' , ^ n - l ) ,

then the cyclic identities (tnJrX = 1, drf = tdt-i, etc.) are readily verified. (Do
so!) Therefore EG is also a cyclic set, and the projection n: EG —• 5G,
which forgets go, is a morphism of cyclic sets. Applying the free ^-module
functor, n: kEG -> kBG is a morphism of cyclic ^-modules. More is true:
The group G acts on EG by g(go, gi, • • •) = (ggo. gi> • • •) in a way that
makes kEG into a cyclic left £G-module, and &#G = k (S>kG kEG. In partic-
ular, Tsygan's double complex CC**(kEG) is a double complex of free kG-
modules and CC**(kBG) = k ®kG CC**(kEG). It follows that HC*(G) =
H*Tot(CC**(kBG)) is the hyperhomology H*(G; TotCC**(££G)) of the
group G (6.1.15), because each summand CCpq(kEG) of TotCC**(kEG) is
a free (hence flat) kG-modu\c.

We saw in exercise 8.3.7 that the augmentation EG ->• 1 is a simplicial
homotopy equivalence. Applying the free module functor, the augmentation
kEG -> k is a simplicial homotopy equivalence. Hence C%(kEG) is a res-
olution of the trivial £G-module k, just as C%(kEG) is a resolution of the
fc.G-module 0. Fitting these together, Tsygan's double complex CC**(kEG)
is a "resolution" (in the sense of hyperhomology) of the trivial chain complex

which has K( = 0 for / < 0 or / odd and K( = k for / even, / > 0. But the
hyperhomology of K* is easy to compute:

oo

HCn(G) = Hn(G; Km) = 0 Hn_2,(G; *) = 0 Ha-2i(G; k).
i=0
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340 Hochschild and Cyclic Homology

The assertions that the maps S: HCn(G) —• HCn-2(G) are the natural projec-
tions with kernel HHn(G) = Hn(G; k), and that the maps B: HCn-\(G) ->
HHn(G) are thus all zero, follow from a visual inspection of 0-0*(G; K*). <>

Corollary 9.7.2

HPn(G) = lim HCn+2i(G) = ( [ £ > *» ( G ; « ' ^ * ™

Exercise 9.7.1 When Q c it, use kBG/ ~ to compute HC*(G).

We now turn to the Hochschild homology of the group ring kG. Let < G >
denote the set of conjugacy classes of elements of G. Our first step is to find a
decomposition of the cyclic set ZG of 9.6.2 and the cyclic module Z(kG) =
k(ZG) which is indexed by < G > . There is a cyclic set map from ZG to the
trivial cyclic set < G > , which sends (go, gi, • • •, gn) £ (ZG)n = Gn+l to the
conjugacy class of the product go • • • g« in < G>. (Check this!) For n = 0 this
yields an isomorphism

HC0(kG) = HH0(kG) ^ >

Indeed, the kernel of the surjection kG -+ k<G> is generated by the el-
ements x-gxg-l=g-l(gx)-(gx)g-l=b(g~1®gx), and HCo(k<G>) =
k<G> .

Definition 9.7.3 For J C G G , let Zn{G, x) denote the subset of Gn+l = ZnG
consisting of all (go, • • •, gn) such that go • • • gn is conjugate to JC, that is,
Zn(G,x) is the inverse image of <x> e <G> . As n varies, these form
a cyclic subset Z(G,x) of ZG. Note that Z(G, 1) is isomorphic to the
cyclic set BG (forget go). Applying the free A:-module functor gives cyclic
fc-submodules kZ(G, x) of kZ(G), one for each conjugacy class. We shall
write HH*(G,x) for HH*(kZ(G,x)), HC*(G, x) for HC*(kZ(G,x)), etc.
for simplicity. As Z(G) is the disjoint union of the cyclic sets Z(G, JC), kZ(G)
is the direct sum of the kZ(G, x). Therefore HH*(kG) = 0 X ////*(G, x) and

To describe HH*(G,x) etc. we recall that the centralizer subgroup of x e
G is the subgroup CG(X) = {g £ G : gxg~l = x}. If x' is conjugate to x, then
Cc(xf) and CGM are conjugate subgroups of G. In fact, if we let G act on
itself by conjugation, then CG(X) is the stabilizer subgroup of x\ if we choose
a set {v} of coset representatives for G/CG(X), then for each x' conjugate to x
there is a unique coset representative y such that vjc'y"1 = x.
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9.7 Group Rings 341

Proposition 9.7.4 For each x e G the inclusion CG(X) ^ G induces isomor-
phisms HH*(CG(x), x) ^ HH*(G, x) and HC*(CG(x), x) = HC*(G, x).

Proof Write H for CG(X), and choose a set {y} of coset representatives
for G// / , the coset of H being represented by y = 1. Given (go, • • •, gn) £
Zn(G, x), let j / be the (unique) coset representative such that yi(gi+\ • • • gngo
'-gi)yfl =x and set

Each y^jg. j r 1 is in # (check this!), so p(g0, • • •, gn) e Zn(// , x). By in-
spection, p: Z(G, x) -» Z(// , x) is a cyclic morphism splitting the inclusion
i: Z(// , x)c—• Z(G, x). There is a simplicial homotopy /* from the identity
map of Z(G, x) to tp defined by

7 = 0, • • •, n. (Check this!) Hence the inclusion Z(// , x) c Z(G, JC) is a sim-
plicial homotopy equivalence. This implies that kZ(H,x) c kZ(G, x) is
also a homotopy equivalence. Hence HH*(H, x) = n*kZ(H, x) is isomor-
phic to ////*(G, JC) = 7T*£Z(G, JC), which in turn implies that HC*(H, x) =
HC*(G,x). O

Corollary 9.7.5 For each x e G, HH*(G, x) ^ H*(CG(x); k). Hence

HH*(kG)= ^ H*(CG(x)',k).
xe<G>

Proof We have to show that HH*{CG(X), X) is isomorphic to H*(CG(X); k)
for each x, so suppose x is in the center of G. There is an isomorphism
Z(G, 1) - • Z(G, x) of simplicial sets given by (g0, • • •, gn) \-> (xgo, gu - •,
gn). Therefore H*(G\k) = HH*(kBG) = HH*(G,1) is isomorphic to
HH*(G,x). O

Remark One might naively guess from the above calculation that HC*(kG)
would be the sum of the modules HC*(CG(x)) = H*(CG(x); k) <g> HC*(k).
However, when G is the infinite cyclic group T and Q c fc, we saw in 9.6.16
that for n > 1

t[r, t~1]) = k^ HCn{T).

Therefore if Q c k, then for all x ^ 1 in T we have HCn(T, x)=0,n
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342 Hochschild and Cyclic Homology

Exercise 9.7.2 Show that tn~x ® t e Z\{kT, tn) represents the differential
tn~ldt in HH\(kT) = QkT/k, and use this to conclude that for general k.

k, i = 0
HCt(T, tn) ^ { k/nk, i > 1 odd

Tor(Jfc, Z/n), i > 2 even.

Lemma 9.7.6 / / Q c ^ ^n J x e G is a central element of finite order, then

h x) ^ HC*(G) ^ //*(G; k) (8) //C*(£).

Proof Let G denote the quotient of G by the subgroup [x] generated by JC,
and write g for the image of g e G in G. The map of cyclic sets Z(G, JC) —>
Z(G, 1) sending (go, • - , gn) to (^o, • • • ,gn) induces the natural map from
H*(G\ k) = ////*(G, JC) to #*(G; k) ^ ////*(G, 1), because its composition
with the simplicial isomorphism Z(G, 1) - • Z(G,x) is the natural quotient
map. The Hochschild-Serre spectral sequence E2

pq — Hp(G; Hq({x}\ k)) =>>
Hp+q(G\ k) degenerates since Q c k (6.1.10) to show that the natural map
Hp(G; k) -> Hp(G; k) is in fact an isomorphism. This yields HC*(G) ^
HC*(G) by Karoubi's Theorem 9.7.1, as well as HC*(G, x) ^ HC*(G, 1) ^

O

Corollary 9.7.7 IfQ<^k and G is a finite group, then

xe<G>

Remark When A: is a field of characteristic zero, Maschke's Theorem states
that kG is a semisimple (hence separable) ^-algebra. In 9.2.11 we saw that this
implied that HHn(kG) = 0 for n ^ 0, so the SBI sequence yields an alternate
proof of this corollary.

Example 9.7.8 (G = Ci) Things are more complicated for general k, even
when G is the cyclic group Ci — {1, x] of order 2. For example, when k — lL
the group HCn(C2, x) is Z for n even and 0 for n odd, which together with
Karoubi's Theorem for HC*(C2) yields

I Z e Z' n even

This calculation may be found in {G. Cortinas, J. Guccione, and O. Villa-
mayor, "Cyclic homology of K[Z/pI]" K-theory 2 (1989), 603-616}.
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9.7 Group Rings 343

Exercise 9.7.3 (Kassel) Set k = 1 and show that HPn(lC2) is not the inverse
limit of the groups HCn+2i(%-C2) by showing that

HP0(C2, x) ^ Urn 1//C2/+i(C2, JC) = Z2/Z,

where Z2 denotes the 2-adic integers. Hint: Show that the SBI sequence breaks
up, conclude that S is multiplication by 2, and use 3.5.5.

Theorem 9.7.9 (Burghelea) Suppose that Q c k. Then HC*(kG) is the di-
rect sum of

x e <G> x e <G>
finite order finite order

and

Here W(x) denotes the quotient group CcM/{xn}.

Proof We have already seen that HC*(kG) is the direct sum over all x in
< G > of the groups HC*(CG(x), JC), and that if x has finite order this equals
HC*(CG(X)). Therefore it remains to suppose that x e G is a central element
of infinite order and prove that //C*(G,x) ^ //*(G/T; ifc), where T is the
subgroup of G generated by x. For this, we pull back the path space E(G/T)
of 9.7.1 to Z(G, *).

Let £ be the cyclic subset of E(G/T) x Z(G,x) consisting of all pairs
0 , z) which agree in B(G/T). Forgetting the redundant first coordinates of
e and z, we may identify En with (G/T) x G" in such a way that (for £o £

(gO, gl , • . . , g n - l ) , « =W

O, gl, ' ' ' , g/i) = (gO ' ' ' 8n, (gl ' ' • gn)"1 , gl , ' ' ' , gn-l)-

As in the proof of Karoubi's theorem 9.7.1, the action of G/T on the go co-
ordinate makes E into a cyclic G/T-set and makes the morphism of cyclic
sets n: E —> Z(G, x) into a principal G/T-fibration (exercise 8.2.6). There-
fore kZ(G, x) = k <S*kG/T kE, Tsygan's double complex CC**(kE) consists
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344 Hochschild and Cyclic Homology

of free ^G/T-modules and CC**kZ(G,x) = k ®UG/T CC**(kE). We will
prove that TotCC**(kE) is a free kG/T-module resolution of k, so that

G, x) = H*(k ®kG/T TotCC^(kE)) ^ H*(G/T; k).

The homotopy sequence for the principal G/T-fibration E -> Z(G,x)
(exercise 8.2.6 and 8.3.5) shows that 7r,-(£) = 0 for i ^ 1 and n\(E) = T.
The natural cyclic map Z(7\ x) -> £, which sends (to, ••-,tn)e Tn+l to
(1, fi, • • •, tn) e En = (G/T) x Gn induces isomorphisms on simplicial ho-
motopy groups and therefore on simplicial homology (see 8.2.3). That is,
#/ /*(7\ JC) = HH*(kE). It follows that if Q c jfc, then

Hence the natural map from CCoo(kE) = kG/T to k = HCo(kE) provides
the augmentation making Tot CC**(kE) - • k into a free kG/T -resolution of
k, as claimed. <C>

Exercise 9.7.4 Show that the SBI sequence for Z(G,x) may be identified
with the Gysin sequence of 6.8.6:

. . . Hn(G; k)
 c_^f

 Hn(G/T; k) -+ Hn.2(G/T; k) -+ Hn-i(G; k) • • •.

Hint: Compare C%(G, x) -> CC**{G,x) to the coinflation map for G
G/T.

9.8 Mixed Complexes

We can eliminate the odd (acyclic) columns in Tsygan's double complex 9.6.6
CC**(A), and obtain a double complex B**(A) due to A. Connes. To do this,
fix the chain contraction sn = tan\ An -> An+i of the acyclic complex C%(A)
and define B: An —> An+\ to be the composite (1 + (—l)nt)sN, where TV
is the norm operator on An. (Exercise: Show that s is a chain contraction.)
Setting rj = (—1)", we have

B2 = (1 - r)t)sN(l + rjt)sN = 0

bB + Bb = b{\ + r)t)sN + (1 - rjt)sNb = (1 - rjt)(brs + sb')N

= (l-rjt)N = O.
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9.8 Mixed Complexes 345

Connes' double complex B**(A) is formed using b and B as vertical and
horizontal differentials, with Bpq = Aq-p for p > 0. We can formalize this
construction as follows.

B B B

M3 <— M2 <— Mi <— MQ

I*
M2

I"

B B

M2 <— Mi <— Mo

Mi ^— Mo

M0

Definition 9.8.1 (Kassel) A mixed complex (M, b, B) in an abelian category
A is a graded object {Mm: m > 0} endowed with two families of morphisms
b: Mm -> Mm_i and B: Mm -> Mm+i such that b2 = B2 = bB + Bb = 0.
Thus a mixed complex is both a chain and a cochain complex.

The above calculation shows that every cyclic object A gives rise to a
mixed complex (A, b, B), where A is considered as a graded object, b is the
Hochschild differential on A and B is the map constructed as above.

Definition 9.8.2 (Connes' double complex) Let (M, b, B) be a mixed com-
plex. Define a first quadrant double chain complex #**(M) as follows. Bpq

is Mq-P if 0 < p <q and zero otherwise. The vertical differentials are the b
maps, and the horizontal differentials are the B maps.

We write H*(M) for the homology of the chain complex (M, b), and
HC*(M) for the homology of the total complex Tot(#**(M)). HC*(M) is
called the cyclic homology of the mixed complex (M, b, B), a terminology
which is justified by the following result.

Proposition 9.8.3 If A is a cyclic object, then HC*(A) is naturally isomor-
phic to the cyclic homology of the mixed complex (A, b, B).

Proof For each 0 < p <q, set t = q — p and map Bpq = At to CC2p,t ®
CCip-\,t+\ = At 0 Ar+i by the map (1, sN). The direct sum over /?, q gives
a morphism of chain complexes Tot(B**) -> Tot(CC**). (Check this!) These
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346 Hochschild and Cyclic Homology

two complexes compute HC*(A,b, B) and HC*(A), respectively by 9.8.2
and 9.6.6; we have to see that this morphism is a quasi-isomorphism. For
this we filter B** by columns and select the "double column" filtration for
CC** : FpCC = e{CCst : t < 2p). The morphism Tot(#**) -» Tot(CC**) is
filtration-preserving, so it induces a morphism of the corresponding spectral
sequences 5.4.1. To compare these spectral sequences we must compute the
El terms. Clearly El

pq(B) = Hq-P(A). Let Tp denote the total complex of the
2-column double complex obtained from the (2/7 — l)st and (2p)th columns
of CC**; the degree p + q part of Tp is CC2p,q-P 0 CC2p-\,q-P+i. The
translates (1.2.8) of C%(A) and C%(A) fit into a short exact sequence 0 —•

- 2p] -> Tp^ C%(A)[-2p] -> 0, so the spectral sequence 5.4.1

associated to the double column filtration of CC has EQ
pq = (Tp)p+q and

El
pq(CC) = Hp+q(Tp) ^ Hp+q(C*(A)[-2p]) = Hq-P(A).

By inspection, the map El
pq(B) -» Epq(CC) is an isomorphism for all p

and q. By the Comparison Theorem (5.2.12), Tot(#) -> Tot(CC) is a quasi-
isomorphism. <̂

Remark If A is a cyclic object, any other choice of the chain contraction
s, such as sn = {—\)nan, will yield a slightly different mixed complex M =
(A, b, Bf). The proof of the above proposition shows that we would still have
HC*(M) = HC*(A). Our choice is dictated by the next application and by the
historical selection s(ro (8) • • • ® rn) = 1 (8) ro <8> • • • (8) rn for A = ZR in [LQ].

Application 9.8.4 (Normalized mixed complex) By the Dold-Kan Theorem
8.4.1, the Hochschild homology of a cyclic fc-module A may be computed
using either the unnormalized chain complex C^(A) or the normalized chain
complex C*(A) = C%(A)/D*(A), obtained by modding out by the degener-
ate subcomplex D*(A). Since D*(A) is preserved by t (why?) as well as our
choice of s, it is preserved by B = (1 ± t)s(J2 ± tl). Hence B passes to the
quotient complex C*(A), yielding a mixed complex (C*(A), b, B). Since the
morphism of mixed complexes from (A, b, B) to (C*(A), b, B) induces an
isomorphism on homology, it follows (say from the SBI sequence 9.8.7 be-
low) that it also induces an isomorphism on cyclic homology: HC*(A) =

One advantage of the normalized mixed complex is that it simplifies the
expression for B = (1 ± t)sN. Since ts = t2an = a$t — 0 on Cn(A), we have

B = tGnN — ton + (-l)nt2crn-i -\ h {-\)mtl + lon-i H h (-l)n/"+1cro.
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9.8 Mixed Complexes 347

In particular, if R is a A:-algebra and A — ZR, then in Cn(A) = Bn(R, R):

n

rn) = ^ (
i=0

Example 9.8.5 (Tensor algebra) Let T = T(V) be the tensor algebra (7.3.1)
of a fc-module V. If v\, • • •, Vj • e V, write (v\ • • • uy) for their product in the
degree j part V®y of T\ the generator a of the cyclic group Cj acts on V®J
bycr(i;i •••VJ) = (VJV\ • • • Vj-\). In 9.1.6 we saw that Ht(T, T) =Ofor/ ^ 0,
so to use Connes' double complex 9.8.2 it suffices to describe the map

B: H0(T, T) = 0 ( V ^ ) a -> QiV®')* = H{(T, T).

Of course the definition of B: T -+ T (8) T yields B(r) = l ® r + r (8 ) l for

every r e R. If we modify this by elements of the form Z?(ro ® r\ <g> rj) =

ron (8) 7*2 — ro 0 rir2 + r^r® 0 ri we obtain a different representative of the

same element of H\(T, T). Thus for r = (v\ • • • uy) we have

B(r) = r ® 1 + 1 ® r ~ v\ ® (V2- - Vj) + (V2- • • Vj) ® v\ + r ® 1

(^3 * * * Vj) + (l>3 ' ' ' VyVl) 0 U2

• Vj) (8) u 1 + r 0 1

Upon identifying the degree j part of T <S> V with V®-7' and ignoring the degen-
erate term r <8> 1 by passing to C*, we see that B(r) = (1 + cr -\ \- aj~l)r
as a map from (V®-7')̂  to (V<8>-7')or. Identifying 5 with the norm map for the
action of Cj on V®-7, we see from Connes' complex and 6.2.2 that

00

HCn(T) = HCn(k) 0 0 Hn(Cj\ V®j).

In particular, if Q c k, then HCn(T) = HCn(k) for all n / 0.

Exercise 9.8.1 If R has an ideal / with I2 = 0 and / ? / / = ifc, show that

n+l
HCn(R) = HCn{k) 0
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348 Hochschild and Cyclic Homology

Connes' Spectral Sequence 9.8.6 The increasing filtration by columns on
B**(M) gives a spectral sequence converging to HC*(M), as in 5.6.1. Since
the pth column is the translate M[—p] of (M, ± b), we have

El
pq = Hq-P(M) => HCp+q(M)

with dl differential //;(M) —• Hi+\(M) induced by Connes' operator B.
This quickly yields HC0(M) = H0(M), HC\(M) = Hi(M)/B(M0) and a se-
quence of low degree terms

H\ (M) -^» H2(M) -U HC2(M)-> H0(M) -^ H\ (M) -UHC\(M) -> 0.

In order to extend this sequence to the left, it is convenient to proceed as
follows. The inclusion of M* as the column p = 0 of B = S**(M) yields a
short exact sequence of chain complexes

0 -> M* - U Tot(S) -^> Tot(B)[-2] ^ 0,

since B/M* is the double complex obtained by translating B up and to the
right. The associated long exact sequence in homology is what we sought:

• • • HCn+l(M) -^> HCn-i(M) ^ > Hn(M) -U HCn(M) -^> HCn-2(M)

(9.8.7)

We call this the "SBI sequence" of the mixed complex M, since the proof
of 9.8.3 above shows that when M = (A, b, B) is the mixed complex of a
cyclic object A this sequence is naturally isomorphic to the SBI sequence of
A constructed in 9.6.11. As in loc. cit., if M -> M' is a morphism of mixed
complexes such that //*(M) ^ //*(M0, then HC*(M) ^ HC*{Mf) as well.

Exercise 9.8.2 Show that the spectral sequence 5.6.1 arising from Tsygan's
double complex CC**(A), which has E\ = HHq(A), has for its d2 differ-
ential the map HHq{A) -» HHq+\(A) induced by Connes' operator B. Then
show that this spectral sequence is isomorphic (after reindexing) to Connes'
spectral sequence 9.8.6. Hint: Show that the exact couple 5.9.3 of the filtration
on B** is the derived couple of the exact couple associated to CC**(A).

Notational consistency Our uses of the letter "Z?" are compatible. The map
B\ Mm -> Mm+i defining the mixed complex M induces the dl differentials
B: Hm(M) -> Hm+\(M) in Connes' spectral sequence because it is used for
the horizontal arrows in Connes' double complex 9.8.2. This is the same
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map as the composition BI: Hm(M) -+ HCm(M) —• Hm+\(M) in the SBI se-
quence (9.8.7). (Exercise!)

Trivial Mixed Complexes 9.8.8 If (C*, b) is any chain complex, we can
regard it as a trivial mixed complex (C*, b, 0) by taking B = 0. Since the
horizontal differentials vanish in Connes' double complex we have

Hcn(c^ b, 0) = Hn(o e Hn-2(C) 0 Hn-*(C) e • • •.

Similarly, if (C*, B) is any cochain complex, we can regard it as the trivial
mixed complex (C*, 0, B). Since the rows of Connes' double complex are the
various brutal truncations (1.2.7) of C, we have

HCn(C\ 0, B) = Cn/B(Cn~l) 0 Hn~2(C) 0 Hn~4(C) 0 • • •.

The de Rham complex 9.8.9 provides us with an important example of this
phenomenon.

9.8.1 de Rham Cohomology

9.8.9 Let R be a commutative ^-algebra and Q*R,k the exterior algebra of
Kahler differentials discussed in sections 9.2 and 9.4. The de Rham differential

d\ £ln
R,k —• £lnju\ is characterized by the formula

d(rodr\ A • • • A drn) = dro A dr\ A • • • A drn (rt e R).

We leave it to the reader to check (using the presentation of QR/JC in 8.8.1;
see [EGA, IV. 16.6.2]) that d is well defined. Since d2 = 0, we have a cochain
complex (Q*R,k, d) called the de Rham complex', the cohomology modules
HdR^ = H*(Q*R/k) are called the (algebraic) de Rham cohomology of R.
All this is an algebraic parallel to the usual construction of de Rham cohomol-
ogy for manifolds in differential geometry and has applications to algebraic
geometry that we will not pursue here. The material here is based on [LQ].

Exercise 9.8.3 Show that d makes Q*R/k into a differential graded algebra
(4.5.2), and conclude that H%R(R) is a graded-commutative ^-algebra.

If we consider (Q*R,k, d) as a trivial mixed complex with b — 0, then by
9.8.8

HCn(n*R/k, 0, d) = nn
R/k/dQ"-l 0 Hn

dR
2(R) 0 • • •.
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350 Hochschild and Cyclic Homology

In many ways, this serves as a model for the cyclic homology of R. For ex-
ample, in 9.4.4 we constructed a ring homomorphism \jr: Q*R,k - • H*(R, R),
which was an isomorphism if R is smooth over k (9.4.7). The following result
allows us to interpret the dx differentials in Connes' spectral sequence.

Lemma 9.8.10 The following square commutes:

®R/k - ^ Hn(R,R)

' I I"
^R/k > Hn+l(R, R)-

Proof Given a generator co = r$dr\ A • • • A drn of &n
R/k, ^(co) is the class of

(r0 ® n)V(l ® r2)V • • • V(l <g> rn) = nl£n(r0 (g) • • • <g> rn)

where a ranges over all permutations of {1, • • •, n] and V denotes the shuf-
fle product on fi(R, R) given in 9.4.2. Passing to the normalized complex
Bn(R,R), defining <j(0)=0 and applying #, the description in 9.8.4
gives us

where / ranges over the cyclic permutations p \-+ p + / of {0, 1, • • •, n}. Since
every permutation /x of {0, 1, • • •, n} can be written uniquely as a composite
tcr, this expression equals the representative of yjf{drQ A dr\ A • • • A Jrw) :

(n + 1 ) M 1 ® r0 (8) • • • (8) rn)

Porism Suppose that l/(n + 1)! e R. The above proof shows that

B(n\en)(ro ® • • • ® rn) = (n + l)!

Dividing by n\ gives the identity Ben = £n+\B.
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9.8 Mixed Complexes 351

Corollary 9.8.11 If R is smooth over k, the E terms of Connes' spectral

sequence are

F2

ifp>0.

We will now show that in characteristic zero this spectral sequence collapses
at E2; we do not know if it collapses in general. Of course, when R is smooth,
the sequence of low-degree terms always yields the extension (split if 1/2 e
R):

0 -> Q2
R/k/dQR/k -> HC2(R) -> HJ}R(R) -> 0.

9.8.12 Assuming that R is commutative and Q c /?, we saw in 9.4.4 that the
maps e: R®n+l -> £ln

R,k defined by e(ro <S> • • •) = rodr\ A • • • A drn/n\ satis-
fied eb = 0 and e\j/ = identity. In fact, e is a morphism of mixed complexes
from (#®*+1, 6, B) to (fij / fc, 0, J) because by 9.8.4

eB(ro <S> • • • ) = / 7 777^ A ' ' ' A drn A dro A • • • A drt-\ = de(r0 <g> • • •)•
^—' (n + 1)!

Therefore ^ induces natural maps

w -• Hcn(n*R/k) = Qn
R/k/dQn

R-[
k e //^z(/?) e # £ r ( / o e • • • .

Theorem 9.8.13 If R is a smooth commutative algebra, essentially of finite
type over afield k of characteristic 0, then e induces natural isomorphisms

HCn(R) ^ Qn
R/k/dQn

R-l
k 0 Hn

dR
2(R) 0 Hn

dR\R) ® • • •,

iel

Proof On Hochschild homology, e induces maps Hn{R,R)-^ HHn(Q*R,k) =
Qn

R,k. When R is smooth, the Hochschild-Kostant-Rosenberg Theorem 9.4.7
states that these are isomorphisms. It follows (9.8.7) that e induces isomor-
phisms on HC* and HP* as well. O

Exercise 9.8.4 When R is commutative and Q C /?, show that Q^^/dQ^l

and HdR (R) are always direct summands of HCn(R). I do not know if the

other HdR
21 (R) are direct summands.
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352 Hochschild and Cyclic Homology

Exercise 9.8.5 Show that the SBI sequence for a trivial mixed complex
(C*, 0, B) is not split in general. Conclude that the SBI sequence of a smooth
algebra R need not split in low degrees. Of course, if R is smooth and finitely
generated, we observed in 9.4.8 that Hn(R, R) = 0 for n > d = dim(R), so
the first possible non-split map is S: HCd+\(R) —

9.8.2 Hodge Decomposition

There is a decomposition for cyclic homology analogous to that for Hoch-
schild homology. To construct it we consider Connes' double complex S**
(9.8.2) for the normalized mixed complex (C*(fl), b, B). Lemma 9.8.15 be-
low shows that B sends C%(R)(i) to C^+1(/?)( /+1). Therefore there is a double

subcomplex B*l of B** whose pth column is the complex C%(R)(i~p) shifted
p places vertically.

1* I'
(/-I) B B -(1

- (n D - a w D D - (w D

Definition 9.8.14 (Loday) If i > 1, then HC^(R) = HnTot B{Jl Because

4 0 ) = 0 for n / 0, HCiO)(R) = HC^0)(R) = R. The Hodge decomposition of
HCn forn > 1 is

Hcn(R) = Hc{
n

l\R) e HC^ e • • • e HC^\R).

Lemma 9.8.15 e^B = Be^ for every n and i < n.

Proof When n = i = 1 we have Be[l\ro <g> r\) = B(ro 0 r\) = 1 (g) ro <S> r\ —
1 (8) r\ (8) ro, which is S2B(ro (g) r\). More generally, if / = n, the equality
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proceed by induction. Set F = e^^B — Bel} . The following calculation
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sn+\B = Bsn was established in the porism to lemma 9.8.10. For / < n, we
proceed by induction
shows that b(F) = 0:

be^B = e^l)bB = -e^Bb = -Bef_xb = -Bbe™ =

Now observe that there is an element u of QX^+i such that

M(1 0 r0 <g) • • • <8> rn) = e^Biro 0 • • • ® rn) - Be%\r0 (g) • • • (8) rn).

By Barr's Lemma 9.4.9, u — cen and it suffices to evaluate the constant c.

Because / < n w e have e«+i^_}!1
1^ = 0 and Ene^ = 0. Therefore

4°(r0 ® '' • ® rn)

= 0.

This gives the desired relation u = sn+\u = 0. O

Corollary 9.8.16 HC^n)(R) = Qn
R/k/dQn

R-l
k.

Proof Filtering B+l by columns and looking in the lower left-hand corner,

we see that HC^iR) is the cokernel of the map B = d: H^_~1\R, R) ->

H^n)(R,R). O

Theorem 9.8.17 When Q c / ? , the SB I sequence breaks up into the direct
sum of exact sequences

Proof The quotient double complex B(^/C^(R)(i) is a translate of B{^1\ O

Corollary 9.8.18 Let k be afield of characteristic zero. Then

HC^(R) ^ H^\R, R) ^ Dn-i(R/k)

(Andre-Quillen homology) for n > 3, while for n = 2 there is an exact se-
quence

0 -> Dx(R/k) -> HC(
2
l) -+ H$R(R/k) -+ 0.
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354 Hochschild and Cyclic Homology

Exercise 9.8.6 Show that if R is smooth over k, then HC%](R) = 0 for i <

n/2, while ifn/2 < / < n we have HcH\R) ^ Hf~n{R/k).

Exercise 9.8.7 Show that there is also a Hodge decomposition for HP*(R):

If R is smooth, show that HP^n(R) ^ H^~n(R/k).

Remark 9.8.19 (Schemes) It is possible to extend Hochschild and cyclic
homology to schemes over k by formally replacing R by Ox and R®n by
O®n to get chain complexes of sheaves on X, and then taking hyperco-
homology (Chapter 5, section 7). For details, see [G-W]. If X is smooth
over k and contains Q, it turns out that HH^{X) = Hl~n{X, &x) and
HPn\x) = Hjl^~n(X). If X is a smooth projective scheme and p = i — n,

then HC%\X) is the pth level FPHf~n{X) of the classical Hodge filtration
on H%R(X) = H*(X(Q; k). This direct connection to the classical Hodge
filtration of H^R(X) justifies our use of the term "Hodge decomposition."

9.9 Graded Algebras

Let R = ®Ri be a graded ^-algebra. If ro, • • •, rp are homogeneous elements,
define the weight of ro ® • • • ® rp e R®P+l to be u; = J2 \ri l» where |r/1 = y
means that r/ G /?7-. This makes the tensor product R®P+l into a graded fc-
module, (/?<8>P+1)M; being generated by elements of weight w. Since the face
and degeneracy maps, as well as the cyclic operator t, all preserve weight,
the {(R®p+l)w} form a cyclic submodule (ZR)W of ZR = R®*+1 and al-
lows us to view ZR = (&(ZR)W as a graded cyclic module or cyclic ob-
ject in the abelian category of graded ^-modules (9.6.1). As our definitions
work in any abelian category, this provides each HHp(R) = HHp(ZR) and
HCP(R) = HCP(ZR) with the structure of graded ^-modules: HHp(R)w =
HHp((ZR)w) and HCP(R)W = HCP((ZR)W). We are going to prove the fol-
lowing theorem, due to T. Goodwillie [Gw].

Goodwillie's Theorem 9.9.1 If R is a graded k-algebra, then the image of
S: HCp(R)w —> HCp-2(R)w is annihilated by multiplication by w. In par-
ticular, i / Q C R, then S = 0 on HC*(R)wfor w ^ 0, and the SBI sequence
splits up into short exact sequences

0 -+ HCP-X(R)W -^ HHp(R)w -U HCP(R)W -+ 0.
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If R is positively graded (R = Ro® R\® - •), then clearly (Z/?)o = Z(RQ),

so that the missing piece w = 0 of the theorem has HC(R)o = HC(Ro).

Corollary 9.9.2 If R is positively graded and Q c R, then HP*(R) =
HP*(R0).

Corollary 9.9.3 (Poincare Lemma) If R is commutative, positively graded,
and Q C R, then

Proof It suffices to show that the weight w part of the de Rham complex
(&*R/k, d) of 9.8.9 is zero for w / 0. This is a direct summand (by 9.4.4,
exercise 9.4.4) of the chain complex (HH*(R)W, BI), which is exact because
the kernel of BI: HHp(R)w -» HHp+x{R)w is HCP-\(R)W. O

Example 9.9.4 The tensor algebra T = T(V) of a ^-module V may be
graded by setting Tt = V®1'. We saw in 9.1.6 that HHn(T) = 0 for n ^ 0, 1.
If Q ^ k9 this immediately yields HCn(T)w = 0 for n / 0 and w ^ 0, and
hence we have HCn{T) = HCn(k) for n / 0. If Q qL k, the explicit calcu-
lation in 9.8.5 shows that HCn(T)w ^ Hn(Cw\ V®w), which is a group of
exponent w as the cyclic group Cw has order w.

Exercise 9.9.1 Given a fc-module V we can form the ring R = k 0 V with
V2 = 0. If we grade R with R\ = V and fix w ^ 0, show that

Exercise 9.9.2 Let R be the truncated polynomial ring k[x]/(xm+{), and sup-
pose that Q c k. We saw that HHn(R) ^ £m for all n ^ 0 in exercise 9.1.4.
Show that HCn(R) = 0 for n odd, while for n even HCn(R) ^ fcm+1. Com-
pare this approach with that of exercise 9.6.4.

Exercise 9.9.3 (Generating functions) Let k be a field of characteristic zero,
and suppose that R is a positively graded /c-algebra with each Rt finite-
dimensional. Show that h(n, w) = dim HHn(R)w is finite and that for every
w / O w e have

dim HCn(R)w = (-l)n

i=0
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356 Hochschild and Cyclic Homology

Now set hw(t) = J2 h(n> w)*11, fw(t) = J2 d i m HCn(R)w tn, and show that

MO = d+O/u;(O.
In order to prove Goodwillie's Theorem, we work with the normalized

mixed complex C*(R) of R. First we describe those maps F\R®m+x —•
Cn(R) which are natural with respect to the graded ring R (and k). For
each sequence of weights w = (wo, • • •, wm) we must give a map Fw from
RWo 0 ''' 0 ^u;m to Cn{R). Let 7^ denote the free fc-algebra on elements
xo, - — , xm, graded so that JC/ has weight u;/. Given r,- 6 i?^. there is a graded
algebra map Tw -> R sending JC,- to n; the map Cn(Tw) -> Cn(#) must send
v = Fu;(xo 0 • • • (8) Jcm) to F^ro 0 • • • (8) rm). Thus F^ is determined by the
element y = yQto, • • •, *m) of Cn(Tw) = TW <g> fw <g> • - -, that is, by a ^-linear
combination of terms Mo <8> • • • ® Mn, where the Mj are noncommutative
monomials in the X(, and Mj ^ 1 for / ^ 0. In order for y to induce a natural
map Fw we must have multilinearity:

Xy(x0, -",xm) = y(xo, • • •, A.*,-, • • •, x m )

for all / and all kek. Changing k if necessary (so that for each j there is a
A e k such that A; ^ A), this means there can be at most one occurrence of
each xi in each monomial Mo ® • • • <g> Mn in y(^o, • • •, Jcm).

If n > m + 2, then at least two of the monomials Mi must be one in each
term Mo 0 • • • 0 Mn of y. This is impossible unless y = 0. If n = m + 1, then
we must have Mo = 1 in each term, and y must be a linear combination of the
monomials 1 0 XGQ 0 • • • 0 xom as cr runs over all permutations of {0, • • •, m}.
An example of such a natural map is B; the universal formula in this case
is given by y = B(xo 0 • • • 0 xm), where only cyclic permutations are used.
From this we make the following deduction.

Lemma 9.9.5 Any natural map F: R®m+l -» Cm+\(R) must satisfy FB =
BF = 0, and induces a map F: Cm(R) -> Cm+i(/?).

Examples 9.9.6 If m = n, there is a natural map D: Cm(R) -> Cm(R) which
is multiplication by w — J2 Wi o n Rw0 0 • • • 0 RWm- When m — 0, D is the
map from R = Co(R) to itself sending r e Rw to wr. The formula

^(r0 0 • • • 0 rm) = (-l)m-\Drm)r0 0 n 0 • • • 0 rm_i

gives a natural map e: Cm(R) ->• Cm-\(R). This map is of interest because
£& + Z?e = 0 (check this!), and also because of its resemblance to the face
map dn (which is natural on R®m+l but does not induce a natural map Cm ->
Cm-\).
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Proof of Theorem 9.9.1 Since D commutes with B and b, it is a map of
mixed complexes and induces an endomorphism of HC*(R) — namely, it is
multiplication by w on HC*(R)W. We must show that DS = 0. To do this we
construct a chain contraction Se + SE of DS: Totn £** - • Tot«_2 5**, where
#** is Connes' double complex for the normalized complex C*(R) and S is
the periodicity map Bpq -+ Bp-\,q-\. The map e\ Bpq —• Bp+\,q is the map
Cm -> Cm_i given in 9.9.6, and £ will be a map # M -> Bp,q+\ induced by
natural maps Em: Cm -> Cm+i. If we choose E so that /) equals

(*) (e + £)(£ + b) + (5 + ft)(g + E) = eB + Be + Eb + bE

I*

on Cm(R), then S ê + £") will be a chain contraction of DS. Note that the term
eB of (*) does not make sense on Boq, but the term SeB does.

All that remains is to construct Em: Cm(R) -> Cm+i(/?), and we do this by
induction on m, starting with Eo = 0 and £i (ro 0 n ) = 1 ® Dri 0 ^o. Because

(eB + fle)(r0) = e(l 0 r0) =

r\) = e(l®ro<8>ri-l<g)ri® r0)

+ b{\ ® Drx ® r0)

+

the expression (*) equals D on Co(R) and Ci(/?). For m > 2, we assume
^m-i, ^m-2 constructed; for each w we need to find elements y e Cm+\(TW)
such that

by + O£ + Be + £m_i6)(jc0 (8) • • • ® xm) = D(x0 ® • • • <8> xm)

in Cm(Tw). Set z = (D - eB - Be - Em-\b)(xo (8) • • • (g) xm); by induction
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and (*),

bz = (Db + ebB + Bbe - bEm-\b - Em-2b
2)(x0 ® • • • ® xm)

= (D-eB-Be- bEm-X ~ Em-2b)b(x0 ® • • • ® JCOT)

= 0.

We saw in 9.1.6 that Hm(Tw, Tw) = 0 for m > 2, so the normalized complex
C^Tu;) and hence its summand C*(TW)W of weight w are exact at m. Thus
there is an element y in (^+1(7^)^ such that by = z. Since y has weight tu/
with respect to each X[, there can be at most one occurrence of each x\ in each
monomial in y(xo, • • •, xm). Hence if we define

Em(ro ® • • • ® rm) = v(ro, • • •, rm),

then Em is a natural map from Cm(R) to Cm+i(/£) such that (*) equals D
on Cm(R). This finishes the construction of E and hence the proof of Good-
willie's Theorem. <>

Remark 9.9.7 The "weight" map D: R -+ R is a derivation, and Good-
willie's Theorem 9.9.1 holds more generally for any derivation acting on a
^-algebra R; see [Gw], All the basic formulas in the proof—such as the for-
mula (*) for D—were discovered by G. Rinehart 20 years earlier; see sections
9, 10 of "Differential forms on general commutative algebras, Trans. AMS 108
(1963), 195-222.

As an application of Goodwillie's Theorem, suppose that / is an ideal in a k-
algebra R. Let Z{R, I) denote the kernel of the surjection Z(R) -> Z(R/I);
we define the cyclic homology modules HC*(R, I) to be the cyclic homol-
ogy of the cyclic module Z(R, I). Since cyclic homology takes short exact
sequences of cyclic modules to long exact sequences, we have a long exact
sequence

• • • HCn+x(R) -> HCn+i(R/I) -+ HCn(R, I) -> HCn(R) -+ HCn(R/I)

Thus HC*(R, I) measures the difference between HC*(R) and HC*(R/I).

We can filter each module ZpR = /?(g)/7+1 by the submodules Fl
p generated

by all the /'° (8) • • • <8> Ilp with IQ -\- • — + ip = i. Since the structure maps
3/, <T/, t preserve this filtration, the F^ are cyclic submodules of ZR. As F*

is Z(R, /) , we have F°/F* = Z(R/I).

Exercise 9.9.4 If A: is a field, show that the graded cyclic vector spaces

and Z(grR) are isomorphic, where gr(R) = R/I 0 I/I2 0 - 0

. . . is the associated graded algebra of / c R.
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9.9 Graded Algebras 359

Proposition 9.9.8 Let k be afield of characteristic zero. lflm+l = 0, then the
mapsSi:HCp+2i(R, / ) - > HCp(R, /) are zero for i >m{p + 1).

Proof By the above exercise, HC*(grR)w ^ HC*(F?/F?+l). Since gr(R)
is graded, the map S is zero on all but the degree zero part of HC*(grR).
Hence Sl = 0 on HC*(Fl/F/+1). Since F^,+1 = 0 for i > m(p + 1), the map
Sl factors as

Fl/Fl+l) = HCP(R, / ) ,

which is the zero map. O

Corollary 9.9.9 / / / is a nilpotent ideal of R, then HP*(R,I) = 0 and

Proof The tower {//C*+2/ (R, I)} satisfies the trivial Mittag-Leffler condition.

Exercise 9.9.5 If / is a nilpotent ideal of R and k is a field with char(fc) = 0,
show that H%R(R) ^ H*R(R/I). Hint: Study the complex (HH*(R), BI).

9.9.1 Homology of DG-Algebras

9.9.10 It is not hard to extend Hochschild and cyclic homology to DG-alge-
bras, that is, graded algebras with a differential d: Rn —• Rn-\ satisfying the
Leibnitz identity d(ron) = (dro)r\ + (-l)|rolro(<iri); see 4.5.2. (Here |ro| = j
if ro e Rj.) If we forget the differential, we can consider ZR (9.6.1) as a
graded cyclic module as in Goodwillie's Theorem 9.9.1. If we lay out the
Hochschild complex in the plane with (R®q+l)p in the (p, q) spot, then there
is also a "horizontal" differential given by

q
d(ro 0 • • • 0 rq) = /~^(— l)'r°'H l"'r'~1'ro 0 • • • <8> drt <g> • • • 0 rq.

i=0

Thus the Hochschild complex becomes a double complex C%(R, d)*\ we de-
fine the Hochschild homology HH^G(R) to be the homology of ToteC^(/?)*.
If R is positively graded, then Ch(R, d) lies in the first quadrant and there is
a spectral sequence converging to HH®G(R) with E2

pq = Hp(HHq(R)*).
Warning: If R is a graded algebra endowed with differential d = 0, then
HH®G(R) is the sum of the HHq(R)p with p + q = n and not HHn(R).
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360 Hochschild and Cyclic Homology

In the literature (e.g., in [MacH, X]) one often considers DG-algebras to
have a differential d\Rn -> Rn+X and Rn = 0 for n < 0. If we reindex Rn

as R-n this is a negatively graded £>G-algebra. It is more natural to convert
C%(R, d)* into a cochain double complex in the fourth quadrant and to write
HHn

DG(R) for HH?n
G(R).

Exercise 9.9.6 If R° = k and Rl = 0, construct a convergent fourth quadrant
spectral sequence converging to HH^G(R) with E™ = HpHH-q(R).

Exercise 9.9.7 Let (/?*, d) be a £>G-algebra and M a chain complex that is
also a graded R -module in such a way that the Leibnitz identity holds with
ro G M, r\ e R. Define H®G(R, M) to be the homology of the total complex
(M ® /?®*)p obtained by taking ro e M in 9.9.10. If M and /? are positively
graded, show that there is a spectral sequence

E2
pq = Hh

pHq(R, M) => H™(R, M).

We now return to the cyclic viewpoint. The chain complexes Zq(R)* =
(#0*+ 1)* fit together to form a cyclic object Z(R,d) in Ch(fc-mod), the
abelian category of chain complexes, provided that we use the sign trick to
insert a sign of (—l)I^KIrol+-+l^-il) m the formulas for dq and t. (Check
this!) As in any abelian category, we can form HH* and HC* in Ch(&-mod).
However, since C%(Z(R, d)) is really a double complex whose total complex
yields HH^G(R) it makes good sense to imitate 9.6.7 and define HC®G(R)
as H* Tot® CC**Z(R, d). If R is positively graded, then we can define
HP®G(R) using the product total complex of CC^Z(R, d). All the major
structural results for ordinary cyclic homology clearly carry over to this DG-
setting.

Proposition 9.9.11 / / / : (/?, d) -> (R\ df) is a homomorphism of flat DG-
algebras such that H*(R) = H*(Rf), then f induces isomorphisms

G(Rf) and HC?G(R) ^ HC°G(Rf).

Proof As each R®n is also flat as a ^-module, the chain maps

are quasi-isomorphisms for all n. Filtering by rows 5.6.2 yields a convergent
spectral sequence

E\a =
pq
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9.9 Graded Algebras 361

By the Comparison Theorem 5.2.12, we have HH°G(R,d) = HH®G(R\d').
The isomorphism on HC®G follows formally using the 5-lemma and the SBI
sequence 9.6.11. <>

Vista 9.9.12 (Free loop spaces) Suppose that X is a fixed simply connected
topological space, and write C*(X) for the DG-algebra of singular chains
on X with coefficients in a field k\ the singular cohomology H*(X) of X is
the cohomology of C*(X). Let X1 denote the space of all maps / : / —• X, /
denoting the interval [0,1]; the free loop space AX is {/ e X1: / (0) = / ( I )}
and if * e X is fixed, the loop space QX is {/ e X1: / (0) = / ( I ) = *}. The
general machinery of the "Eilenberg-Moore spectral sequence" [Smith] for the
diagram

QX —

i
* —

-» AX

i
-+ X

— • X1

i
A

—> X x X

yields isomorphisms:

Hn(QX) ^ #//£G(C*(X), k) ^ HH°f(C*(X), k)\

Hn(AX) ^ HHn
DG(C*(X)) ^ HHDG{C*(X)).

We say that a space X is formal (over k) if there are DG-algebra homo-
morphisms C*(X) ^- R —> H*(X) that induce isomorphisms in cohomol-
ogy. Here we regard the graded ring H*(X) as a DG-algebra with d = 0,
either positively graded as a cochain complex or negatively graded as a
chain complex. Proposition 9.9.11 above states that for formal spaces we
may replace C*(X) by H*(X) in the above formulas for Hn(QX) and
//"(AX).

All this has an analogue for cyclic homology, using the fact that the topo-
logical group S1 acts on AX by rotating loops. The equivariant homology
Hf(AX) of the S^space AX is defined to be //*(AX x5i ESl), the sin-
gular homology of the topological space AX xsi ESl = {(A.,e) e AX x
ESl:X(l) = n(e)}. Several authors (see [Gw], for example) have identified
Hf(AX) with the cyclic homology HC?G(R*) of the DG-algebra R* whose
homology is H*(QX).
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362 Hochschild and Cyclic Homology

9.10 Lie Algebras of Matrices

In this section we fix a field k of characteristic zero and an associative k-
algebra with unit R. Our goal is to relate the homology of the Lie algebra
gim(R) =Lie(Mm(R)) ofmxm matrices, described in Chapter 7, to the
cyclic homology of R. This relationship was discovered in 1983 by J.-L. Lo-
day and D. Quillen [LQ], and independently by B. Feigin and B. Tsygan. We
shall follow the exposition in [LQ].

The key to this relationship is the map

H^ie(Qlm(R); k) - ^ HC*(Mm(R)) ^ HC*(R)

constructed as follows. Recall from 7.7.3 that the homology of a Lie algebra g
can be computed as the homology of the Chevalley-Eilenberg complex A*g =
k <8>UQ V*(£0, with differential

d(x\ A • • • A Xp) = 2_J(~-1)*+ I / ' [*M xj] A X\ A • • - A Xi A - • • A Xj A - • - A Xp.

On the other hand, we saw in 9.6.10 that the cyclic homology of R may be
computed using the quotient complex C*(R) = C%(R)/ ~ of the Hochschild
complex Cj(/O. Define X: A^+1glm(fl) -> C*(Mm(fl)) by

where the sum is over all possible permutations a of {1, • • •, p}. (Exercise:
Why is X well defined?)

Lemma 9.10.1 X is a morphism of chain complexes, and induces maps

X*: Hp+l(Qlm(R); k) ^ HCP(R).

Moreover X is compatible with the usual nonunital inclusion c Mm{R) c->

Mm+\(R), i{g) = \ , in the sense that the following diagram commutes.

_,, A trace

A*+1
flIw+1(rt) —> C*(Mm+i(/?)) > C*(/?).
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9.10 Lie Algebras of Matrices 363

Proof Commutativity of the right square amounts to the assertion that i* is
compatible with the trace maps, and was established in exercise 9.5.3. Now set
co = xo A • • • A xp with xt e &lm(R). The formula for X shows that t*(Xco) =
X(txo A • • • A ixp) = k(cco), which gives commutativity of the left square. It
also shows that

bk(co) = (-l

t h e s u m b e i n g o v e r all p e r m u t a t i o n s v of {0, 1, • • • , / ? } . S i n c e

CO = (—l)*+ < / ' + 1JC| A Xj A Xo A • • • A JC; A • • • A Xj A • • • A Xp

for / < j , it is readily verified (do so!) that k(dco) — b(Xco). This proves that X
is a morphism of complexes. O

Primitive Elements 9.10.2 An element x in a coalgebra H (6.7.13) is called
primitive i fA(jc)=jc®l + l®jc. The primitive elements form a submodule
Prim(//) of the A:-module underlying H. If H is a graded coalgebra and A is a
graded map, the homogeneous components of any primitive element must be
primitive, so Prim(//) is a graded submodule of H.

We saw in exercise 7.3.8 that the homology H = H*(Q; k) of any Lie alge-
bra $ is a graded coalgebra with coproduct A: H —> H (& H induced by the
diagonal g - ^ g x g . When 9 is the Lie algebra gl(R) = Uglm(/?), we are go-
ing to prove in 9.10.10 that Prim Hi($\ k) ^ HQ-\(R).

The first step in the proof is to recall from exercise 7.7.6 that any Lie group Q
acts on AnQ by the formula [x\ A • • • A xn, g] = J2 *i A • • • A [xtg] A • • • A xn.
This makes the Chevalley-Eilenberg complex A*g into a chain complex of
right g-modules, and $ acts trivially on //*(£j; k) = //*(A*g), again by exercise
7.7.6. Applying this to $lm(R), we observe that A*$[m(R) is a chain complex
of modules over glm(7?) and hence over the simple Lie algebra sim = 5im(k) of
matrices over k with trace 0 (7.1.3, 7.8.1). Therefore we may take coinvariants
to form the chain complex Ho(slm; A*$lm(R)).

Proposition 9.10.3 Taking coinvariants gives a quasi-isomorphism of com-
plexes

A*Qim(R) ^ H0(slm; A*Qlm(R)).

Proof Weyl's Theorem 7.8.11 states that, like every finite-dimensional s\m-
module, An$[m(k) is a direct sum of simple modules. As R is a free ^-module,
each AnQlm(R) = An$[m(k) (8) R is also a direct sum of simple modules. Write
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364 Hochschild and Cyclic Homology

Qn for the direct sum of the simple modules on which slm acts non-trivially,
so that A*glm(R) = Q* 0 Ho(slm; A*$lm(R)) as an slm-module complex. As
sim acts trivially on the homology of A*glm(R) by exercise 7.7.6, the complex
<2* has to be acyclic, proving the proposition. <>

Corollary 9.10.4 If m > n the maps Hn(gim(R); k) -> HCn-\(R) are split
surjections.

Proof Let e//(r) denote the matrix which is r in the (z, j) spot and zero
elsewhere. Exercise 9.5.4 showed that if we set

co = co(r\, • • •, rn) = e\2(r\) A ̂ 23(̂ 2) A • • • A en-\tn(rn-i) A en\(rn),

then co e An$lm(R) satisfies trace(A&>) = (—l)n~Vi (8) • • • ® rn. Moreover

-dco = ei3(rir2) A • • • + enin) A ̂ 24(̂ 2^3) A • • •

Modulo coinvariants this equals — co(b(r\ ® • • • ® rn)). Therefore co defines a
chain complex homomorphism from the translated cyclic complex R®*/ — =
(/j®*+i/ - ) [ - l ] to H0(slm\ A*Qlm(R)). As co is split by trace(A), the result
follows upon taking homology. <C>

Invariant Theory Calculation 9.10.5 Let En be the symmetric group of per-
mutations of {1, • • •, n] and (sgn) the 1-dimensional £„-module on which
or e Tin acts as multiplication by its signature (— \)°. If £„ acts on V®n by
permuting coordinates, then AnV = V®n <8>kxn (sgn). In particular,

An$lm(R) = (glm(k) 0 R)®n ®kxn (sgn) = (Qlm(k)®n 0 R®») ̂ E / z (sgn).

To compute the coinvariants, we pull a rabbit out of the "hat" of classical in-
variant theory. The action of £„ on V®n gives a homomorphism from kTn to
End(V®n) = End(V)0"; the Lie algebra Q associated (7.1.2) to the associa-
tive algebra End(V) also acts on V®n and the action of Ew is ^-invariant, so
the image of kY,n belongs to the invariant submodule (EndCV)®")0 = (g®")0.
The classical invariant theory of [Weyl] asserts that kTn = (&®n)Q whenever
dim(V) > n. If dim(V) = m, then $ = $lm(k) = k x slm(k) and the abelian
Lie algebra k acts trivially on (g®*). By Weyl's Theorem (7.8.11), g®" is a
direct sum of simple 5im (k)-modules, so

kTn^(Q®n)5l^(Q®»)5[m(kh m>n.
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9.10 Lie Algebras of Matrices 365

Tensoring with the trivial g-module R®n therefore yields (for m>n):

H0(slm; Angim(k)) = H0(5im; (gi^ ® R®n) ®*En (sgn))

; gl®n) ® R®

The action of Hn on /:£„ in the final term is by conjugation.

Corollary 9.10.6 (Stabilization) For every associative k-algebra R and every
n the following stabilization homomorphisms are isomorphisms:

Hn(gln(R); k) ^ Hn(g[n^(R); k) ^ ---^ Hn(gi(R); k).

Proof The invariant theory calculation shows that the first n + 1 terms (resp.
n terms) of the chain complex Ho(slm\ A*$lm(R)) are independent of ra, as
long as m > n + 1 (resp. m > n). This yields a surjection Hn(gin(R); k) ->
Hn(gln+i(R); k) and stability for m > n + 1. For the more subtle invariant
theory needed to establish stability for m = n,wt cite [Loday, 10.3.5]. O

Remark 9.10.7 (Loday-Quillen) It is possible to describe the obstruction to
improving the stability result to m = n — 1. If R is commutative, we have a
naturally split exact sequence

tfn(0ln-i(*); *) -+ Hn(gln(R); k) ^ > Qn
R-l/dQn

R-2
k -+ 0.

The right-hand map is the composite of A*: Hn(gin(R); k) -+ HCn-\(R), de-
fined in 9.10.1, and the projection HCt{R) -> Q^^/dQ1'^ of 9.8.12. The
proof of this assertion uses slightly more invariant theory and proposition
9.10.9 below; see [LQ, 6.9]. If R is not commutative, we only need to replace
Q^l/dQ^j by a suitable quotient of AnR; see [Loday, 10.3.3 and 10.3.7]
for details.

9.10.8 In order to state our next proposition, we need to introduce some stan-
dard facts about /)G-coalgebras, expanding upon the discussion of graded
coalgebras in 6.7.13 and 9.10.2.

If V is any vector space, the exterior algebra A*(V) is a graded coalgebra
with counit e: A*(V) -> A*(0) = k induced by V - • 0 and coproduct

A: A*(VP) - • A*(V x V) ^ (A*V) (8) (A*V)

induced by the diagonal V ^ V x V . (Check this!) In particular, A*g is a
graded coalgebra for every Lie algebra Q. Since g -> 0 and g -> g x g are
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366 Hochschild and Cyclic Homology

Lie algebra maps, //o(J); A*g) is a coalgebra for every Lie subalgebra rj of
g. (Check this!) In particular, Ho(slm(k); A*gim(R)) is a graded coalgebra for
eachra.

A differential graded coalgebra (or DG-coalgebra) C is a graded coalgebra
endowed with a differential d making it into a chain complex in such a way
that s\ C* —• £ and A: C —• C(8)C are morphisms of complexes. For example,
A*g and Ho(slm(k); A*g[m(7?)) are Z)G-coalgebras because s and A arise
from Lie algebra homomorphisms. By the Kunneth formula 3.6.3, A induces
a map

making the homology of a DG-coalgebra C again into a graded coalgebra.
Moreover, if x e Cn is primitive (9.10.2), then dx e Cn-\ is primitive, because

A(dx) = dA(x) =d(x®l + l®x) = (dx) <8> 1 + 1 <g> (dx).

Therefore the graded submodule Prim(C) is a chain subcomplex of C.

Proposition 9.10.9 The chain complex L* = H0(sl(k); A*QI(R)) is a DG-
coalgebra whose primitive part Prim(L^) is the translate C*-\(R) = 7?®*/ ~
of the chain complex for cyclic homology.

Proof Recall from the discussion 9.10.5 on invariant theory that we have

Ln = (kHn (8) R®n) (8)^En (sgn).

This Tin -module splits into a direct sum of modules, one for each conjugacy
class of elements of £„. Let Un be the conjugacy class of the cyclic permuta-
tion T = (12 • • • n)\ we first prove that Vnm(Ln) is (kUn <g> Rn) ®£En (sgn). If
a G Y,n and r; e R, then consider the element x = a (g> (r\ <g> • • • (8) rn) of Ln.
We have

A(x) = ^ ( 0 7 (8) (• • • 0 n (8) • • •)) 0 (ay (8) (• • • <g) ry (g) • • •)),

where the sum is over all partitions (/, J) of {1, • • •, n] such that a (I) = I
and a(J) = 7, and where 07 (resp. 07) denotes the restriction of a to / (resp.
to J). (Check this!) By inspection, x is primitive if and only if a admits no
nontrivial partitions (/, 7), that is, if and only if a e Un.

Now En acts on Un by conjugation, the stabilizer of r being the cyclic group
Cn generated by r. Hence Un is isomorphic to the coset space Tn/Cn = {Cno}
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9.10 Lie Algebras of Matrices 367

and k[T,n/Cn] = k ®kcn kYtn. From this we deduce the following sequence of
isomorphisms:

Prim(Ln) ^ (kUn 0 R®n) ®*E|I (sgn)

= R®n ®kcn (sgn)

^ R®n/ ~ ,

because R®n ®kcn (sgn) is the quotient of R®n by 1 - ( - l ) n r . Note that this
sequence of isomorphism sends the class of

co = en(n) A e23(>2) A . . . A enX(rn) e AnQin(R)

to (— \)n~lr\ (8) • • • 0 rn. We leave it as an exercise for the reader to show that
the class of dco e An~lgln(R) is sent to b(r\ <g> • • • 0 rn). This identifies the
differential d on Prim(L*) with the differential b of R®*/ — up to a sign. O

Theorem 9.10.10 (Loday-Quillen, Tsygan) Let k be afield of characteristic
zero and R an associative k-algebra. Then

1. The restriction of trace (X) to primitive elements is an isomorphism

Prim Hn(Qi(R)- k) ^ HCn-i(R).

2. H*(#[(R); k) is a graded Hopf algebra, isomorphic to the tensor product

Sym ( 0//C2/-i(*) J ®k A* f ®HC2i(R)) .

Proof The direct sums ®:gim(R) x $ln(R) -+ &m+n(
R) sending (x,y) to

x ® y = f g ^ j yield chain complex homomorphisms

Because we have taken coinvariants, which allow us to move the indices
o f &lm+n around inside g[m+/i+i» t h e m a P s Vmn, Mm,«+h and /xm+i,n are
compatible. Taking the limit as m,n -> oo yields an associative product /x
on L* = f/o(sl; A*gl(/?)). This makes L* into a DG-algebra as well as a
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368 Hochschild and Cyclic Homology

DG-coalgebra. In fact L* is a graded Hopf algebra (6.7.15) because the for-
mula (*, x) 0 (y, y)^(x®y,x®y) in Qlm+n(R) x Qlm+n(R) shows that
A: L*^* L*<& L* is an algebra map. It follows that //*($[(/?); k) = //*(L*)
is also a Hopf algebra.

The classification of graded-commutative Hopf algebras H* over a field k of
characteristic zero is known [MM]. If Ho = k, then //* = Sym(P^) 0 A*(PO),
where Pe (resp. Po) is the sum of the Prim(//,-) with / even (resp. / odd). Thus
(1) implies (2). Applying this classification to L*, a simple calculation (exer-
cise!) shows that Prim Hn(L*) = HnPnm(L*). But //wPrim(L*) = HCn-\{R)
by Proposition 9.10.9. O

Exercise 9.10.11 (Bloch, Kassel-Loday) Use the Hochschild-Serre spectral
sequence (7.5.2) for si c &l to show that H2(s{2(R); k) = HC\{R).
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