
7

Lie Algebra Homology and Cohomology

Lie algebras were introduced by Sophus Lie in connection with his studies of
Lie groups; Lie groups are not only groups but also smooth manifolds, the
group operations being smooth. If G is a Lie group, the tangent space g of G
at the identity e e G is a Lie algebra over IR. The vector space of left invariant
vector fields on G is canonically isomorphic to g, and the Lie bracket [X, Y]
of vector fields X and Y may be defined as a vector field:

[X, Y]f = X(Yf) - Y(Xf), f a smooth function on G.

This rich interplay with Differential Geometry forms the original motivation
for the abstract study of Lie algebras. More history is given in 7.8.14 below.

7.1 Lie Algebras

Let k be a fixed commutative ring. A nonassociative algebra A is a ^-module
equipped with a bilinear product A <g)& A -> A. Note that we do not assume the
existence of a unit, so that 0 is the smallest possible nonassociative algebra. A
Lie algebra g is a nonassociative algebra whose product, written as [xy] or
[x, y] and called the Lie bracket, satisfies (for x, y, z e g):

Skew-symmetry: [x, x] = 0 (and hence [x, y] — —[y, x]);
JacobVs Identity: [JC, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

An ideal of g is a A:-submodule f) such that [g, f)] c fj, that is, for all g e g and
h e f) we have [g, h] e \). Note that an ideal is a Lie algebra in its own right,
and that the quotient g/J) inherits the structure of a Lie algebra as well. There
is a category whose objects are (fc-)Lie algebras; a morphism cp: g —> f) is a
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7.1 Lie Algebras 217

product-preserving fc-module homomorphism. Thus every ideal [ ) C 0 yields a

short exact sequence (!) of Lie algebras:

Example 7.1.1 An abelian Lie algebra is one in which all the Lie brackets
[x, y] = 0. Every ^-module has the structure of an abelian Lie algebra.

If g is any Lie algebra, define [g, g] to be the &-submodule of g generated
by all Lie brackets [JC, y] with x,y e Q. Then [g, g] is an ideal of g, and the
quotient gab = Q/[Q, g] is an abelian Lie algebra. Obviously, Qab is the largest
quotient Lie algebra of g that is abelian.

Example 7.1.2 The primordial Lie algebra is the Lie algebra a = Lie(A) of
an associative ^-algebra A (even if A is an algebra without a unit). This is the
underlying ^-module A, given the commutator product [JC, y] = xy — yx. We
leave it to the reader (exercise!) to verify Jacobi's identify, that is, that a is a
Lie algebra, and to check that this defines a functor "Lie" from the category of
(associative, possibly nonunital) A;-algebras to the category of Lie algebras.

Examples 7.1.3 If A is an associative ^-algebra, so is Mm(A), the m x m ma-
trices with coefficients in A. We write Qtm(A) for the Lie algebra Lie(Mm(A)).
If A = k, we write glm for Qlm(k).

Here are some famous Lie subalgebras of #im(A); if A = k, it is traditional
to drop the reference to A, writing merely, om, slm, tm, and nm instead of
om(&), slm(k), and so on.

1. The orthogonal algebra om(A) of all skew-symmetric matrices: {g :

2. The special linear algebra slm(A). If A is commutative, this is the al-
gebra of all matrices of trace 0. If A is not commutative, then we must
consider the trace as taking values in A/[A, A], because a matrix change
of basis changes the trace J2 8u by an element of [A, A]. Thus slm(A)
is the kernel of the trace map, yielding the short exact sequence of Lie
algebras:

0 - • slm(A) -> Qlm(A) ^ > A/[A, A] - • 0.

3. The upper triangular matrices tm(A) : {g : gtj = 0 if / < j}.
4. The strictly upper triangular matrices nm(A) : {g : gtj = 0 if i < j}.
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218 Lie Algebra Homology and Cohomology

Example 7.1.4 (Derivation algebras) Let A be a nonassociative (= not nec-
essarily associative) ^-algebra. A derivation D of A (into itself) is a fc-module
endomorphism of A such that the Leibnitz formula holds

D(ab) = (Da)b + a(Db) (a, b e A).

The set Der(A) of derivations of A is clearly a A:-submodule of Endfc(A).
Moreover, the commutator [D\, D2] of two derivations is a derivation, since

[D{D2]ab = Di(D2(ab)) - D2(Dx(ab))

= D{((D2a)b) + Dx(a(D2b)) - D2({Dxa)b) - D2(a{Dxb))

= (DiD2a)b + a(D\D2b) - (D2D\a)b - a(D2D\b)

Hence Der(A) is a Lie algebra; it is called the derivation algebra of A.

Example 7.1.5 Given a A;-module M, the free Lie algebra on M is a Lie al-
gebra f(M), containing M as a submodule, which satisfies the usual universal
property: Every ^-module map M —> Q into a Lie algebra extends uniquely to
a Lie algebra map f(M) - • g. In other words, as a functor f is left adjoint to
the forgetful functor from Lie algebras to modules

H o mfc-mod(M ' fl) = HomLie(f(Af), 0).

The existence of f (M) follows from general considerations of category the-
ory (the Adjoint Functor Theorem); a concrete construction will be given in
section 7.3. Clearly f(M) is unique up to isomorphism.

If X is a set, the free Lie algebra on X is f(M), where M is the free k-
module on the set X. Clearly

HomSets(X 0) ^ HomLie(f(X), 0),

so there is a corresponding universal property for f(X).

Exercise 7.1.1 Show that the free Lie algebra f({x}) = f(k) on the set {x} is
the 1-dimensional abelian Lie algebra k. Then show that f({x, y}) is a graded,
free ^-module having an infinite basis of monomials

x, y, [xy], [x[xy]], [y[xy]], [x[x[xy]fl, [x[y[xy]]], [y[y[xy]]],

(There are 6 monomials of degree 5. In general, there are \ S / | d ^ ( 0 2 ^ '
monomials of degree d, where JJL denotes the Mobius function [Bour, ch. 2,
sec. 3.3, thm. 2].)
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72 %-Modules 219

Exercise 7.1.2 (Product Lie algebra) If g and \) are Lie algebras, we can
make the fc-module g x () into a Lie algebra by a slotwise product: [(gi, h\),
(g2, ̂ 2)] = ([g\, g2\, [h\, h2]). Show that g X [) is the product in the category
of Lie algebras.

Nilpotent Lie Algebras 7.1.6 In analogy with group theory, we define the
lower central series of a Lie algebra g to be the following descending sequence
of ideals:

0 2 s2=[0,0] 2 o3 = to2,0] 2 • • • 2 0" = [0"-1,0] 2 • • •.

We say that g is a nilpotent Lie algebra if g" = 0 for some n. For example, the
strictly upper triangular Lie algebra nm(A) is nilpotent for every fc-algebra A;
nm(A)n is the ideal of matrices (gij) with gtj = 0 unless i > j + n. Abelian
Lie algebras are another obvious class of nilpotent Lie algebras.

Solvable Lie Algebras 7.1.7 Again following group theory, we define the
derived series of g to be the descending sequence of ideals

9 2 fl' = [fl, fl] 5 fl" = (fl')' 2 • • • 2 fl(ll) = [0(n-1}, S(n"1}] 2 • • • .

We say that g is a solvable Lie algebra if g^ — 0 for some n.

Lemma 7.1.8 Every nilpotent Lie algebra is solvable.

Proof It suffices to show that [g1, g7] c gl+-/, for then by induction we see
that g(n) c g". To see this we proceed by induction on 7, the case j = \ being
the definition g'+1 = [g1, g]. Inductively, we compute

[fl1", fly'+1] = [fl1", fS7', fl]] c [[fl1", fl], fl'] + [[fl1", fl'], g]

Example 7.1.9 The upper triangular Lie algebra tm(A) of a commutative k-
algebra A is solvable but not nilpotent.

7.2 g-Modules

Let g be a Lie algebra over k. A (left) g-module M is a ^-module equipped
with a fc-bilinear product g ®£ M —>• M (written x (8) m i-* xm) such that

[x, y]m = i(}?m) — v(xm) for all JC, v G g and m e M.
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220 Lie Algebra Homology and Cohomology

Examples 7.2.1

1. If A is an associative algebra and g = Lie(A), any left A-module may be
thought of as a left g-module in an obvious way.

2. The Lie bracket makes g itself into a left g-module (by Jacobi's identity).
This module is usually called the adjoint representation of g.

3. A trivial g-module is a ^-module M on which g acts as zero: xm = 0 for
all x e g, m e M.

A g-module homomorphism f:M-> N is a A>module map that is product-
preserving, that is, f(xm) = xf(m). We write HomB(M, N) for the set of all
such g-module homomorphisms. If a e k, then af is also a g-module map, so
therefore Homs(M, N) is a &-submodule of Hom^(M, N).

The left g-modules and g-module homomorphisms form a category called
g-mod. By the above remarks, it is an additive category. The following exer-
cise shows that it is in fact an abelian category.

Exercise 7.2.1

1. Let f:M—> N be a g-module homomorphism. Show that the ^-modules
ker(/), im(/) , and coker(/) are the kernel, image, and cokernel of / in
g-mod.

2. Show that a monic (resp., epi) in g-mod is also a monic (resp., epi) in
&-mod. By (1), this proves that g-mod is an abelian category.

Exercise 7.2.2 Let E = Endk(M) be the associative algebra of ^-module en-
domorphisms of a ^-module M. Show that maps $ <S> M -> M making M
into a g-module are in 1-1 correspondence with Lie algebra homomorphisms
Q -> Lie(£). Conclude that a g-module may also be described as a ^-module
M together with a Lie algebra homomorphism g -> Lie(End^(M)).

Exercise 7.2.3 There is also a category mod-g of right g-modules, whose
definition should be obvious. If M is a right g-module, show that the product
xm = —mx (x e g, m e M) makes M into a left g-module, and that this
induces a natural isomorphism of categories: g-mod = mod-g.

Many of the notions we introduced for G-modules in Chapter 6 have ana-
logues for g-modules. For example, there is a trivial g-module functor from
&-mod to g-mod; it is the exact functor obtained by considering a ^-module
as a trivial g-module. Consider the following two functors from g-mod to
A:-mod:
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72 ^-Modules 221

1. The invariant submodule M0 of a g-module M,

MQ = [m e M : xm = 0 for all x e g}.

Considering A: as a trivial g-module, we have M s = Hom0(&, M).
2. The coinvariants MQ of a g-module M, M0 = M/gM.

Exercise 7.2.4 Let M be a g-module.

1. Show that M9 is the maximal trivial g-submodule of M, and conclude
that —Q is right adjoint to the trivial g-module functor. Conclude that —s

is a left exact functor.
2. Show that MQ is the largest quotient module of M that is trivial, and

conclude that — s is left adjoint to the trivial g-module functor. Conclude
that — Q is a right exact functor.

We will see in the next section that the category g-mod has "enough" pro-
jectives and injectives in the sense of Chapter 2. Therefore we can form the
derived functors of —Q and — fl.

Definition 7.2.2 Let M be a g-module. We write #*(g, M) or //*Lie(g, M) for
the left derived functors L*(—Q)(M) of —0 and call them the homology groups
of g wzY/z coefficients in M. By definition, //o(g, M) = M0.

Similarly, we write //*(g, M) or H£ie(#, M) for the right derived functors
R*(—Q)(M) of —s and call them the cohomology groups of g vwYft coefficients
in M. By definition, //°(g, M) = M*.

Examples 7.2.3

0. If g = 0, MQ = M® = M. Since the higher derived functors of an exact
functor vanish, //*Lie(0, M) = #£ ie(0, M) = 0 for * / 0.

1. Let g be the free fc-module on basis {e\, • • •, ^ } , made into an (abelian)
Lie algebra with zero Lie bracket. Since a g-module is just a ^-module
with n commuting endomorphisms e\, • • •, en, it follows that g-mod is
isomorphic to the category /?-mod of left modules over the polynomial
ring R = k[e\, • • •, en]. If k is the trivial g-module, considered as an
/^-module on which the et act as zero, then Mg = k <8>R M and M® =
Hon\R(k, M). Therefore we have

#*Lie(0, M) = Torf (fc, M)and ^Lie(fl' M ) = Ext]?(^' M ) -

These functors were discussed in Chapter 3.
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222 Lie Algebra Homology and Cohomology

2. Let f be the free Lie algebra on a set X. In this case an f-module is
just a ̂ -module M with an arbitrary set {ex : x e X} of endomorphisms.
That is, the category f-mod is isomorphic to the category R-mod of left
modules over the free ring R = k{X] on the set X. If k denotes the trivial
f-module, then M^ — k <S>R M and M^ = Horn/?(A:, M). Therefore

#*Lie(f, M) = Torf (fc, M) and fl£ie(f, M) = Ext J (it, M).

We end this section with a calculation of the H* and //* groups for f.

Proposition 7.2.4 The ideal 3 = Xk{X] of the free ring k{X) is free as a
right k{X}-module with basis the set X. Hence

is a free resolution of k as a right k{X}-module.

Proof As a free ^-module, k{X} has for basis the set W of words in the
elements of the set X, and J is a free ^-module on basis W — {1}. Every
element of W — {1} has a unique expression of the form xw with x e X and
w e W, so {xw : x e X, w e W} is another basis for 3 as a /c-module. For each
x G X the &-span xk{X} of the set {xw : w e W} is isomorphic to k{X}, and 3
is the direct sum of the xk{X], both as ̂ -modules and as right k{X}-mod\xlts.
That is, J is a free right &{X}-module with basis X, as claimed. O

Corollary 7.2.5 If f is the free Lie algebra on a set X, then #^ie(f, M)
^Lie^' M ) = ° for al1 n - 2 and al1 ^-modules M. Moreover //0

Lie(f, k)

H°ie(f, k) = k, while

and fl£e(f,*)
xeX xeX

Proof Using the given free resolution of k, //^ie(f, M) is the homology of
the complex 0 - > 3 ( g ) / ? M - > M ^ 0 , and #Lie(f, M) is the homology of the
complex 0 -> M -> Horned, M) -> 0. For M = k, the differentials are zero.

•

Exercise 7.2.5 Let r be an ideal of a free Lie algebra f on a set X. Show that
i f t /O, then[f , t ] / t .
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7.3 Universal Enveloping Algebras 223

7.3 Universal Enveloping Algebras

The universal enveloping algebra UQ of a Lie algebra Q plays the same formal
role as the group ring 1G of a group G does. In particular, g-mod is naturally
isomorphic to the category t/g-mod of left £/g-modules. This isomorphism
provides an easy proof that g-mod has enough projectives and injectives in
the sense of Chapter 2, so that the derived functor definitions of //*(g, M) and
//*(g, M) make sense.

In this section we will develop some of the ring-theoretic properties of U$.
Since Ug will be a quotient ring of the tensor algebra 7"(g), we first describe
the tensor algebra T(M) of a ^-module M.

Definition 7.3.1 If M is any A;-module, the tensor algebra T(M) is the fol-
lowing graded associative algebra with unit generated by M:

T(M) = fc0M0(M(g)M)e(M<g)M<g)M)e..-e M®n © .. •.

Here M®n denotes M 0 • • • 0 M, the tensor product (over k) of n copies of M,
whose elements are finite sums of terms x\ 0 • • • 0 xn (JC/ e M). The product
0 in T(M) amounts to concatenation of terms. Writing /: M - • T(M) for the
evident inclusion, this means that T(M) is generated by i(M) as a ^-algebra.
Clearly T is a functor from &-mod to the category of (associative, unital) k-
algebras.

Here is a presentation of T(M) as an algebra. T(M) is the free algebra on
generators i(x), x e M, subject only to the /^-module relations on i(M):

ai(x) = i(ax) and i(x) + i(y) = i(x + v) (a G I:; i , j G M).

If M is a free module with basis {x\,...}, then T(M) is the free /:-algebra
^{xi, . . .}. In particular, T(k) is isomorphic to the polynomial ring k[x]. In
general T(M) is not a commutative algebra except when M = k or M = k/I
for some ideal / of k.

Exercise 7.3.1 Show that T is the left adjoint of the forgetful functor from k-
alg to &-mod, and that i\M^> T(M) is the unit of this adjunction. That is,
show that for every associative ^-algebra A,

, A).

Exercise 7.3.2 (Free Lie algebras) Given a ^-module M, consider the Lie al-
gebra Lie(!T(Af)) underlying the tensor algebra T(M). Let f denote the Lie
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224 Lie Algebra Homology and Cohomology

subalgebra generated by M. That is, elements of f are sums of iterated brack-
ets [x\, [x2[- • •, xn]]] of elements xt e M. Show that f satisfies the universal
property of a free Lie algebra of M (see 7.1.5). This provides a constructive
proof of the existence of free Lie algebras.

Definition 7.3.2 If g is a Lie algebra over k, the universal enveloping algebra
U(g) is the quotient of T(g) by the 2-sided ideal generated by the relations

(*) *([*> y]) = i(*)i(y) ~ i(y)i(x) (*, y e g).

Alternatively, Ug is the free algebra on generators i(x), x e g, subject to the
^-module relations on g as well as the relation (*). The relation (*) guarantees
that i preserves the Lie bracket, that is, that i:g-> Lie(t/g) is a Lie algebra
homomorphism and that Ug is a left g-module. Since the construction is natu-
ral in g, U is a functor from Lie algebras to associative A:-algebras. See [BAII,
section 3.9] [JLA, ch. V].

Exercise 7.3.3 Show that U is the left adjoint of the "Lie" algebra functor
described in 7.1.2 and that i is the unit of the adjunction. That is, for every
associative ^-algebra A, there is a natural isomorphism

HomLie(0, Lie(A)) = Homfc_aig(£/g, A).

This isomorphism explains the term "universal"; any Lie algebra map g ->•
Lie(A) extends to a unique ^-algebra map Ug -> A.

Theorem 7.3.3 If g is a Lie algebra, then every left g-module is naturally a
left Ug-module, and conversely. The category g-mod is naturally isomorphic
to the category Ug-mod of left Ug-modules.

Proof Let M be a ^-module and write E = End^(M) for the A:-algebra of all
A:-module endomorphisms of M. By adjointness,

HomLie(g, Lie(E)) = Honu_aig(£/g, End*(M)).

A g-module is a A:-module M together with a Lie algebra map g -> Lie(£)
(see exercise 7.2.2). But a f/g-module is a ^-module M together with an asso-
ciative algebra map Ug —> End^(M), so the theorem follows. O

Corollary 7.3.4 The category g-mod has enough projectives and enough
injectives in the sense of Chapter 2. In particular, Ug is a projective object
in g-mod.
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7.3 Universal Enveloping Algebras 225

Here is a more concrete description of the correspondence between g-
modules and (/^-modules. Given a 9-module M and a monomial x\ • • • xn

in Ug (xt e g), the formula

(x\ '"Xn)m =x\(x2(- - - (xnm))),m e M,

makes M into a £/g-module. Conversely, if M is a £/g-module and x e g ,
the formula im = i(x)m (m e M) makes M into a g-module because of the
relation (*) of 7.3.2.

Example 7.3.5 (Augmentation ideal) There is a unique ^-algebra homomor-
phism s: Ug —>> k, sending i(g) to zero, called the augmentation. This is clear
from the presentation of Ug, and s corresponds to the zero Lie algebra map
Q -> Lie(&) under the adjunction. It is the analogue for Lie algebras of the aug-
mentation map e: 1G -> Z of a group ring. Following that analogy, we define
the augmentation ideal 3 to be the kernel of e; 3 is evidently the (2-sided)
ideal of Ug generated (as a left ideal) by i(g). Therefore 3 is a £/g-module
and *=£

Corollary 7.3.6 Let M be a g-module. Then

Proof To show any two derived functors are isomorphic, we only need show
the underlying functors are isomorphic. Therefore we need only observe

k®UQM = (Ug/3) ®UQ M ^ M/3 M = M/QM = M0;

it, M) = Hom0(A:, M) = M s . <C>

We conclude this section by stating the Poincare-Birkhoff-Witt Theorem,
which gives the structure of Ug when k is a field (or more generally when g is
a free A:-module). A proof may be found in [JLA, V.2] or [CE, XIII.3]. Let {ea}
be a fixed ordered £-basis of g. If / = (a\, • • •, ap) is a sequence of indices,
we shall use the notation ej for the product eai • • • eap in Ug. The sequence
/ is called increasing if a\ < • • • < ap. By convention, we regard the empty
sequence 0 as increasing, and set e^ = 1. If / = (a) is a single index, note that
ea e g, but e^) = i(ea) is in Ug.
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226 Lie Algebra Homology and Cohomology

Poincare-Birkhoff-Witt Theorem 7.3.7 If g is a free k-module, then Ug is
also a free k-module. If{ea] is an ordered basis of g, then the elements ei with
I an increasing sequence form a basis ofUg.

Corollary 7.3.8 The map i: g —> Ugis an injection, so we may identify g with

Corollary 7.3.9 If \) eg is a Lie subalgebra, and k is a field, then Ug is a
free U\)-module.

Proof First pick an ordered basis for f), and then complete it to an ordered
basis of g. The ej with increasing / = (ai, • • •, ap) such that no eai is in J)
will form a basis of Ug over U\). O

Exercise 7.3.4 (Horn as a g-module) Let M and N be left g-modules. Then
Hom^(M, N) is a g-module by (xf){m) = xf(m) — f(xm), x e g, m e M.
Show that there is a natural isomorphism Hom0(M, N) = Hom^(M, N)®.

Exercise 7.3.5 (Cohomological dimension) Extend the natural isomorphism
Homfl(M, N) = Hom^(M, N)® of exercise 7.3.4 to a natural isomorphism of
8 -functors:

Ext^(M, N) = H£[e(g, Honu(M, A )̂)

By the Global Dimension Theorem (4.1.2), this proves that the global dimen-
sion of Ug equals the Lie algebra cohomological dimension of g (see 7.7.4).

Exercise 7.3.6 (Associated graded algebra) For any Lie algebra g, let Fp =
FpUg be the A:-submodule of Ug generated by all products x\ • • •*/ of ele-
ments of g with / < p. By convention, F$Ug = k, and clearly F\Ug = k + g.
Show that

k = F0Ug c FiUg c F2Ug c • •.

is an increasing filtration in the sense that Fp • Fq c Fp+q. Then show that
A = k 0 (F1/F0) 0 (F2/Fi) 0 • • • 0 (Fp/Fp-i) 0 • • • is a commutative, as-
sociative graded A:-algebra. Finally, if g is a free ^-module on basis {ea}, show
that F\/Fo = g and that A is a polynomial ring on the indeterminates ea:

Exercise 7.3.7 (Hopf algebra) In this exercise we show that Ug is a Hopf
algebra (see 6.7.15).
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7.3 Universal Enveloping Algebras 227

1. Use the universal property of Ug to show that U(g x J)) = Ug<g>k £/J). In
particular, U(g x g) = Ug ®£ Ug.

2. Show that the diagonal map A: g -> g x g induces a ring homomorphism
A: Ug -> £/g 0/: £/g with A(x) = x <g> 1 4- 1 0 x for x e g.

3. Show that there is an isomorphism s : Ug = (£/g)o/7, called the antipode,
and that the resulting isomorphism between left and right g-modules

mod-g = mod-t/g = (Ug)op-mod = Ug-mod = g-mod

is the correspondence xm = —mx of 1.23.
4. Show that the maps A and s make Ug into a Hopf algebra.

Exercise 7.3.8 (Products) Let g and rj be Lie algebras. Use the Kiinneth for-
mula (3.6.3) as in 6.1.13 to construct split exact sequences

p+q
=n-\

, k) (g> H«(l), k)

The map x is called the cross product. Composition with A*: Hn($ xg )
//n(g) gives a graded bilinear product on H*($,k), called the cw/?
uct. Show that the cup product makes //*(g, fc) into an associative graded-
commutative ^-algebra (see 6.7.11). Dually, when A: is a field, show that
#*(g, k) is a coalgebra (6.7.13).

Exercise 7.3.9 (Restricted Lie algebras) Let A: be a field of characteristic p ^
0. A restricted Lie algebra over A: is a Lie algebra g, together with a set map
x f-> x^ of g such that [x^p\ y] equals the p-fold product [x[x[- • • [jry]]]];
(a x)[P] = of^[^] for all a e k\ (x + j ) [ p ] = x[^] + j [ ^ ] + ^ f j " / 5/(JC, y),

where / • $/(JC, y) is the coefficient of A/"1 in the formal (p — l)-fold product
[Xx + y[--- [kx + y, x]]]. See [JLA, V.7].

1. If A is an associative ^-algebra, show that Lie(A) is a restricted Lie
algebra with a^ =ap.ln particular, this makes the abelian Lie algebra
k into a restricted Lie algebra.

2. Let w(g) denote the quotient of Ug by the ideal generated by all elements
xp — x W; u (g) is called the restricted universal enveloping algebra of g.
If g is n-dimensional over k, show that w(g) is ^^-dimensional as a vector
space.

3. A restricted g-module M is a g-module in which the /7-fold product
(x(x(- • • (xm)))) equals x^m for all m e M and x e g. Show that the
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228 Lie Algebra Homology and Cohomology

category of restricted g-modules is equivalent to the category of
modules.

4. Define the restricted cohomology groups //r?s(g, M) to be the right de-
rived functors of MQ on the category of restricted ^-modules. Show that
//r*s(0,M)^Ext*(g)(fc,M).

5. Show that there is a canonical map from //r?s(g, M) to the ordinary co-
homology //*(g, M).

1A Hl and Hx

The results in Chapter 6 for H\(G) and Hl(G) have analogues for H\($) and
H1(Q). AS there, we begin with the exact sequence of g-modules:

If M is a g-module, applying Tor* 0(—, M) yields

Hn(g, M) = Tor^0(/:, M) ^ T o r ^ j P , M), n > 2

and the exact sequence

(f) 0 -

Exercise 7.4.1 (Compare with exercise 6.1.4.)

1. Show that /: Q -> £/$ maps [g, 9] to 32. Conclude that it induces a map
1: ga* - • a/J2 , where O

ab = g/[fl, fl].
2. Show that there is a /:-module map a: f/g —• Qab sending 32 to zero and

i(x) to Jc. Hint: First define a map from the tensor algebra T(g) to gab

sending Q <S>k 9 to zero and then pass to the quotient U$.
3. Deduce from (1) and (2) that 3/32 = $ab.

Theorem 7.4.1 For any Lie algebra g, H\ (g, k) = gab.

Proof Taking M = k in (f) yields the exact sequence

But for the right g-module 3 the exercise 7.4.1 above yields

(UQ/3) £ 3/32 ^ g^ . O
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7A Hl and Hi 229

Corollary 7.4.2 If M is any trivial g-module, H\(g, M) = gab <g>k M.

Proof Since M = Affl, (t) yields H\(g, M)^3 ®UQ M^(3 ®UQ k)®kM^

gab ®it M. O

Exercise 7.4.2 Let g be a free ^-module on basis {e\, • • •, en}, made into an

abelian Lie algebra. Show that Hp(g,k) = Apg = k^p\ the pth exterior power

of the /[-module g. Hint: Ug = k[e\, • • •, en].

Exercise 7.4.3 Consider the Lie algebra g\m{A) of n x n matrices over an
associative ^-algebra A.

1. Write e?j for the matrix whose (/, j)-entry is a, all the other entries being
0. If /, j and k are distinct, show that

\pa pb T _ ab J r a b A _ ab _ ba
l-eij> ejk* — eik a n a leij> ejii — eii ejj '

2. Recall from 7.1.3 that the special linear Lie algebra sin(A) is the kernel
of the trace map from gin(A) to A/[A, A]. Show that for n > 3

Hi(8ln(A),k) = 0 and Hi(gln(A), k) ^ A/[A, A].

We now turn our attention to cohomology. Applying Ext^ (—, M) to the
sequence 0->3—>• Ug-> k —>• 0 yields

Hn(g, M) ̂  E x t ^ 1 ^ , M), n > 2

and the exact sequence

0 -> M0 -^ M -+ Homfl(3, M) -^ H 1 ^ , M) -^ 0.

To describe Hl(g, M), it remains to interpret Homg(3, Af) as derivations and
interpret the image of M as inner derivations.

Definition 7.4.3 If M is a g-module, a derivation from g into M is a ^-linear
map D:g-+ M such that the Leibnitz formula holds

D([x,y])=x(Dy)-y(Dx).

The set of all such derivations is denoted Der(g, M); it is a /c-submodule
of Hom^(g, M). Note that if g = M, then Der(g, g) is the derivation algebra
Der(g) of 7.1.4. If M is a trivial g-module, then Der(g, M) = Hom^(0a^, M).
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230 Lie Algebra Homology and Cohomology

Example 7.4.4 (Inner derivations) If m e Af, define Dm(x) = xm. Dm is a
derivation:

Dm([x, y]) = [x, y]m = x(ym) - y{xm).

The Dm are called the inner derivations of Q into Af, and they form a k-
submodule Derinn(g, M) of Der(g, Af).

Example 7.4.5 If cp: 3 -> M is a g-map, let D^:g - • M be defined by
D^(JC) = cp(i(x)). This too is a derivation:

£?([*, J]) = (pdMi(y) - i(y)i(x)) = x(p(i(y)) - y<p(i(x)).

As in the analogous discussion for group cohomology (6.4.4), the next step
is to show that every derivation is of the form D^.

Lemma 7.4.6 The map (pH> D^ is a natural isomorphism ofk-modules:

Proof The formula cp H> D<p defines a natural homomorphism, so it suffices
to show that it is an isomorphism. For this we use the fact (7.3.5) that the
product map U$ <8)kQ-+ (U$)Q = 3 is onto, and that its kernel is the ^-module
generated by the terms (u ® [xy] — ux <S) y + uy ® x) with u e UQ and x, y e

9-
Given a derivation D: g —>• M, consider the map

/ : tffl ®* fl - • M, / ( I I ® JC) = u(Dx).

Since D is a derivation, f(u (8) [xy] — wx 0 y + «y ® x) = 0 for all u, JC, and y.
Therefore / induces a map <p: 3 —> M, which is evidently a left g-module map.
Since Dy(x) = (p(i(x)) = / ( I <g> x) = Dx, we have lifted D to an element of
Hoirig(3, Af). On the other hand, given D = Dh for some /z e Hom0(J, Af),
we have cp(ux) = u(Dx) = uh{x) = h(ux) for all u e t/g, iGg . Hence (p = h
as maps from 3 = (C/g)g to Af. <>

Theorem 7.4.7 HX(Q, M) ^ Der(g , Af ) /Der i n n (g , M ) .

Proof If ^?: 3 —> Af extends to a g-map C/g —> Af sending 1 to m e Af, then

D<p(x) = <p(x • 1) = xm = D m (x) .
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7A Hl and Hi 231

Hence D^ is an inner derivation. This shows that the image of

M -> Homs(J, M) = Der(g, M)

is the submodule of inner derivations, as desired. O

Corollary 7.4.8 If M is a trivial Q-module

H\Q, M) £ Der(g, M) ^ HomLie(g, M) ^ Hom*(flfl*, M).

Semidirect Products 7.4.9 Given a Lie algebra g and a (left) g-module M,
we can form the semidirect product Lie algebra M ^ g , much as we did in
group theory. The ^-module underlying M xi g is the product M x g , and the
product is given by the formula

As in group theory, M xi g is a Lie algebra and both M x O and 0 x g are Lie
subalgebras.

We will study other Lie algebra extensions of g by M in section 7.6 below.
But first, here is an interpretation of Hl(g, M) in terms of automorphisms of
M x] g; it is the analogue of a result for semidirect products of groups (exercise
6.4.2). We say that a Lie algebra automorphism a of M x g stabilizes M and
g if o(m) = m for all m in M = M x 0 and if the induced automorphism on
the quotient g = (M xi g)/M is the identity, that is, if there is a commutative
diagram of Lie algebras:

0 —> M —> M xi g — • g —> 0

0 —> M —> M x g — > g — ^ 0 .

Exercise 7.4.4 If D is a derivation of g into Af, show that GD, defined by

) = (m + D(g), g),

is a Lie algebra automorphism of M xi g that stabilizes M and g. Then show
that Der(g, M) is isomorphic to the subgroup of Aut(M xi g) of all automor-
phisms stabilizing M and g. Evidently the inner derivations correspond to the
subgroup of all "inner" automorphisms of the form

a(m, g) = (m + ga, g), a e M.
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232 Lie Algebra Homology and Cohomology

In this way we can identify H1(Q, M) with a subquotient of Aut(M x g).

Exercise 7.4.5 (Extensions of g-modules) Use the natural isomorphism
Extl

u&(M, N) ^ Hl($, Homk(M, N)) of exercise 7.3.5 to interpret Hl in
terms of extensions of g-modules. In particular, show that Hl(#, N) classifies
extensions of g-modules of the form

Exercise 7.4.6 Let g be a restricted Lie algebra over a field of character-
istic / ? / 0 , and let N be a restricted g-module (exercise 7.3.9). Show that
ftL(g, N) classifies extensions of restricted g-modules of the form

Conclude that the natural map //rL(g, N) ->• H1(Q, M) is an injection.

7.5 The Hochschild-Serre Spectral Sequence

In this section we develop the Hochschild-Serre spectral sequence, which is
the analogue of the Lyndon/Hochschild-Serre spectral sequence for groups.
The analogue of a normal subgroup of a group is an ideal of a Lie algebra.
If \) is an ideal of g, then g/f) inherits a natural Lie algebra structure from g,
and there is an exact sequence of Lie algebra homomorphisms

The proof of the following lemma is exactly the same as the proof of the
corresponding result 6.8.4 for groups, and we omit it here.

Lemma 7.5.1 If \) is an ideal of a Lie algebra g and M is a %-module,
then both M^ and M^ are g/t)-modules. Moreover, the forgetful functor from
g/[)-mod to g-mod has —^ as left adjoint and —^ as right adjoint.

Hochschild-Serre Spectral Sequence 7.5.2 For every ideal f) of a Lie alge-
bra g, there are two convergent first quadrant spectral sequences:

E2
pq = Hpio/f), Hq(f), A/)) => Hp+q(g, M)

pq , M)) =» Hp+q(g, M).
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7.5 The Hochschild-Serre Spectral Sequence 233

Proof We claim that the functors — fl and —0 factor as follows.

g-mod —> g/f)-mod g-mod —> g/f)-mod

The proof of this claim is the same as the proof of the corresponding claim for
groups, and we leave the translation to the reader. To apply the Grothendieck
spectral sequence (5.8.3), we need only see that —j> preserves projectives and
that —̂  preserves injectives. This follows from the preceding lemma (see
2.3.10): — fj is left adjoint and —̂  is right adjoint to the forgetful functor, which
is an exact functor. O

Low Degree Terms 7.5.3 The exact sequences of low degree terms in the
Hochschild-Serre spectral sequence are

0, M) -> //i(0/f), Mj,) -> 0;

0 -> i / 1 ^ / ! ) , M^) -> Z/1^ , M) -> Z/ 1 ^ , M)fl/^ -^> #2(0/f), M^) - • / /2(0, M).

Exercise 7.5.1

1. Show that there is an exact sequence

#2(fl/f), *) 0 [fl, W - • (1^ - • g ^ -> (0/())^ ^ 0.

2. If M is a g/[)-module, show that there is an exact sequence

0 - • Der(0/f), M) -* Der(0, M) -> Hom0({)aZj, M) -> //2(0/f), M) - • H2(g, M).

3 . L e t ri3 b e t he n i l p o t e n t L i e a l g e b r a of s t r ic t ly u p p e r t r i a n g u l a r 3 x 3

m a t r i c e s o v e r k ( 7 . 1 .3 ) . U s i n g t h e e x t e n s i o n

0 -> ke\3 -> xi3(k) -> ken 0 ke23 -> 0,

calculate 7/*(n3, k) and //*(ri3, /:).
4. Let g be the Lie subalgebra of gl3 generated by e\\, en, <?i3, and ^23- Use

the extension 0->ri3—•$—•/:—•() to compute Z / 1 ^ k) and //2(g, A:).

Exercise 7.5.2 Suppose that f is a free Lie algebra on a set of generators of
a Lie algebra Q and that r is the kernel of the natural surjection f —> Q. Using
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234 Lie Algebra Homology and Cohomology

the low degree sequence 7.5.3, show that the analogue of Hopf's theorem 6.8.8
holds, that is, that

Exercise 7.5.3 (Inflation and restriction) The forgetful map g -mod^ f)-mod
is exact for every Lie algebra homomorphism \) -^ g. Show that the natural
injection M0 ->• M^ extends to a morphism res?: //*(g, M) -> H*(fy, M) of
5-functors, called the restriction map. If f) is an ideal of g, the inflation map is
the composite

inf: H*(o/t), M) ^> //*(g, m*>) -> //*(g, M).

Show that the edge maps of the Hochschild-Serre spectral sequence for
//*(g, M) are the inflation and restriction maps. (Cf. 6.7.1, 6.8.2.)

7.6 H2 and Extensions

In Chapter 6 we showed that H2(G; A) classified extensions of groups. There
is an analogous result for H^Q(Q, M), which we shall establish in this section.

Definition 7.6.1 An extension of Lie algebras (of g by M) is a short exact
sequence of Lie algebras

in which M is an abelian Lie algebra. Such an extension makes M into a
g-module in a well-defined way: If g e g and m e M, define gm to be the
product [g, m] in e, where 7t(g) = g. Since M is abelian, gm is independent
of the choice of g.

Exercise 7.6.1 Let M be a g-module, and form the semidirect product

1. Show that the induced g-module structure on M agrees with the original
g-module structure.

2. We say an extension splits if n has a Lie algebra section o\ g —• e. Show
that an extension splits if and only if e is isomorphic to the semidirect
product Lie algebra M x g constructed in 7.4.9, and that under this iso-
morphism 7i corresponds to the projection M x g —> g.
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7.6 H2 and Extensions 235

3. Let e = n?>{k) to be the Lie algebra of strictly upper triangular matrices.
Show that [e, e] is the 1-dimensional subalgebra ke\?> of matrices sup-
ported in the (1,3) spot, and that g = tab is a 2-dimensional abelian Lie
algebra. Finally, show that the following extension does not split:

Extension Problem 7.6.2 Given a g-module M, we would like to determine
how many extensions of g by M exist in which the induced action of g on
M recovers the given g-module structure of M. As with groups (6.6.2), we
say that two extensions 0 -» M -+ e; -> g - • 0 are equivalent if there is an
isomorphism tp\ t\ = e2 so that

0 —> M — • ei —> g —^ 0

0 —> M —> e2 —> Q —> 0

commutes, and we ask for a description of the set Ext(g, M) of equivalence
classes of extensions.

Classification Theorem 7.6.3 Let M be a ^-module. The set Ext(g, M) of
equivalence classes of extensions of Q by M is in 1-1 correspondence with

The canonical approach to classifying extensions of groups (Chapter 6, sec-
tion 6) has an analogue only for extensions in which $ is a free /:-module (e.g.,
if A: is a field). Rather than pursue that method, which calls for a canonical g-
module resolution of k and a notion of 2-cocycle (see exercise 7.7.5), we shall
resort to a more functorial method.

Suppose first that O ^ M ^ - e - ^ g — > 0 i s a n extension of g by an abelian
Lie algebra M. The low degree terms sequence of 7.5.3 with \) = M is

0 -> / / !(g, M) -> / / !(e, M) -+ Hom0(M, M) -^> //2(g, M) -> //2(e, M).

This sequence is natural with respect to extensions, so d2: Homg{M,M)^>
H2(g,M) depends only on the equivalence class of the extension in Ext(g,M).
Therefore assigning d2(idM) to the extension gives a well-defined set map
from Ext(g, M) to //2(g, Af), called the classifying map.

Before showing that the classifying map is a bijection, we consider a uni-
versal case. Choose a presentation ofg: 0 - ^ t — > f ^ g ^ O with f free on
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236 Lie Algebra Homology and Cohomology

some set. Modding out by the ideal [r, r] of f gives an extension of g by xab =
t / [ r , r ] :

Let u e H2(Q, xab) be the image of this extension under the classifying map.
If e -> g is a central extension of g by M, we can lift f —> g to a map f —> e.

This yields maps of Lie algebra extensions:

0 — • t —* f —• g —+ 0t —

1
xab _

M -

-> f
1

-»• f/[t,t]

1
0 Q

Comparing low degree term sequences (for the Hochschild-Serre spectral se-
quences 7.5.2) and using 7.2.5 yields a diagram

Homfl(M, M) —> H2(Q,M)

(r^, M) -^-> //2(g, M)

I ~ II

,2

Q 2M)

Exercise 7.6.2 In this exercise we show that u e //2(g, tah) is universal in
the sense that the class of any extension of g by M is <p*(u) for some <p e
Homg(t^, M). To do this, let cp: xab ->• M be the map induced from f —• e.
Considered as an element of Homg(r^^, M) we see from (*) that d2(<p) =
d2(idM) in //2(g, M). Show that the corresponding map <p*: //2(g, xah) ->
//2(g,M) sends w to t/2(idM).

Lemma 7.6.4 Every element of H2(Q, M) arises as the class of an extension.

Proof Since f is free, //2(f, M) = 0. By (*), every element of //2(g, M) is
d2(<p) for some element cp of
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7.6 H2 and Extensions 237

H\x, M ) S ^ Hom*(t**, A/)0 = Hornet**, M).

Regarding M as an f-module via f -> g, form the semidirect product M xi f.
The set f) = {(<p(—r), r) : r e r} is an ideal o f M x f ; set e = (M xi f)/f). Evi-
dently [) D M = 0 so we have an extension

0-> M -> e ^ g - > 0

together with a map f -> e over g. The resulting map from Hom0(M, M) to
, M) sends id^ to (p. By diagram (*), the class of this extension is
= d2(<p) as desired. O

We are now ready to prove the classification theorem. The above lemma
shows that the classifying map Ext(g, M) -> //2(g, M) is onto; it suffices to
show that this map is an injection. Suppose that O - » A f - > e / - * g - » O (/ =
1, 2) are two extensions of g by M that both map to 0 e //2(g, M).

Choosing lifts T[\ f -> e/, the above argument yields ^/ G Homg(t^, M)
with d2((pi) = 9 in diagram (*). By making f larger if necessary, we may
assume that f maps onto both ei and t^. (For this it suffices to add M to the
set of generators of f.) Since d2(cp2 — <pi) = 0, we see from (*) that there is a
derivation D: f -> M such that the class of D in //!(f, M) maps to <p2 — <p\ in
Hom0(t^, M). Define a map r: f —> ei by sending x e f to r\ (x) + D(x). This
is a Lie algebra homomorphism, since

= [Tl(x),Ti(y)]+x(Dy)-y(Dx)

There is no harm in replacing r\ by r, except that we replace cp\ by cp\ + D =
cp2 in Homfl(t^, M). We are now in the situation

0 —•> t —> f — • g — • 0

0 — • M —> tt —> g — • 0.

As f maps onto e/, we see that ker(< )̂ is an ideal of f and that t\ = f/ ker(^) =
t2- As this isomorphism is a homomorphism over g, ci, and e2 define the same
element of Ext(g, M). O
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Exercise 7.6.3 We saw in Corollary 7.2.5 that if f is a free Lie algebra on a
set, then Hn(f, M) = 0 for n > 2 and all f-modules M. Give a direct proof that
//2(f, M) = 0 by showing that all extensions O - * f j - * e - * f - * O split. Show
that conversely if g is free as a ^-module and H2(g, M) = 0 for all g-modules
M, then g is a free Lie algebra. Hint: Writing g = f/r for some free Lie algebra
f, with r c [f, f], it suffices to show that r = [f, r] (exercise 7.2.5). But H2(g,
t / [ f , t ] )=O.

Exercise 7.6.4 (Restricted extensions) Let k be a field of characteristic p ^ 0.
Let g be a restricted Lie algebra and M a restricted g-module such that M^ =
0. (See exercise 7.3.9.) A restricted extension e of g by M is a restricted Lie
algebra e containing M as a restricted ideal, together with a restricted ho-
momorphism e ->• g whose kernel is M. Let Extres(g, M) denote the equiva-
lence classes of restricted extensions of g by M, e and z' being equivalent if
there is a restricted homomorphism e —• er over g. Show that there is a natu-
ral isomorphism Extres(£, M) = H£S(Q, M) compatible with the isomorphism
Ext(g, M) = #2(g, M) of the Classification Theorem 7.6.3.

7.7 The Chevalley-Eilenberg Complex

Throughout this section g will denote a Lie algebra over k that is free as a
/c-module. We shall construct the t/g-module chain complex V*(g) originally
used by C. Chevalley and S. Eilenberg [ChE] in 1948 to define #*ie(g, M).

Let Ap# denote the //^-exterior product of the ^-module g, which is gen-
erated by monomials x\ A • • • A xp with X[ e g; see 4.5.1 above. Our chain
complex has Vp(g) = Ug <g>k Apg; since Apg is a free /c-module, Vp(g) is free
as a left Ug-modu\e. By convention, A°g = k and A1^ = g, so Vb = ^ 0 and
Vi = L̂ g 0A: g. We define e : Vo(g) = Ug -> A: to be the augmentation 7.3.5
and d: Vi(g) -> Vb(fl) t 0 be the product map d(u ® x) = ux from Ug (8) g to
£/g whose image is the augmentation ideal 3. By 7.3.5, we have an exact se-
quence

Vi(g) ^ V0(g) ^ k ^ 0.

Definition 7.7.1 For p > 2, let d: Vp(g) -> Vp_i(g) be given by the formula
d(u ® JCI A • • • A JCP) = 0\ + 02> where (for u eUg and x; G g):

—l)i+1wx/ (8) x\ A - • • A xi A • • • Axp

1 = 1

02 = T ^ ( — 1 ) I + I / ' M (8) [AT/JCy] A X\ A • • • A Xi A • • • A Xj A • • • A X
p.
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7.7 The Chevalley-Eilenberg Complex 239

(The notation xi indicates an omitted term.) For example, if p = 2, then

d(u <g>xAy) = ux<g)y — uy <g> x — w <g) [xy].

V*(g) with this differential is called the Chevalley-Eilenberg complex. It is
sometimes also called the standard complex.

Exercise 7.7.1 Verify that d2 = 0, so that V* is indeed a chain complex of
f/g-modules. Hint: Writing d(Ot) — On + 0/2, show that —On is the / = 1 part
of 02i and that 022 = 0. Then show that —0i2 is the i > 1 part of 021-

Theorem 7.7.2 V*(fl) —̂ > k is a projective resolution of the ^-module k.

Proof (Koszul) It suffices to show that Hn(V*($)) = 0 for n ^ 0.
Choose an ordered basis {ea} of Q as a ^-module. By the Poincare-Birkhoff-

Witt Theorem (7.3.7), Vn(g) is a free /:-module with a basis consisting of terms

(*) ej (8> (eai A • • • A ett/i)» a\ < • • • < an and / = (/?i, • • •, ^m) increasing.

We filter V*(g) by /c-submodules, letting F p Vn be the submodule generated by
terms (*) with m + n < p. Since [e,-e/] is a linear combination of the ea in g,
this is actually a filtration by chain subcomplexes

0 c FoV* c Fi V* c • • • c V*(a) = UFPV*.

This filtration is bounded below and exhaustive (see 5.4.2), so by 5.5.1 there is
a convergent spectral sequence

E°pq = FpVp+q/Fp-iVp+c! => Hp+q(V*(a)).

This spectral sequence is concentrated in the octant p > 0, q <0, p + q > 0.
The first column is FoV*, which is zero except in the (0,0) spot, where E®0 is

We claim that each column E^ is exact for p ^ O . This will prove that the

spectral sequence collapses at El, with El
pq =0 for (p,q) ^ (0, 0), yielding

the desired computation: Hn(V*) = 0 for n ^ 0.
Let Aq be the free A:-submodule of Ug on basis

{̂ 7 ; / = (f3h .. •, pq) is an increasing sequence}.

Then Aq = FqVo/Fq-iVo and E°pq = A-q ®k Ap+qg. Moreover, the formula
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240 Lie Algebra Homology and Cohomology

for the differential in V* shows that the differential d°: E®pq -> E® x is given
by

d°(a 0 eai A • • • A ean) = 0\ =

We saw in exercise 7.3.6 that A = AQ 0 A\ 0 • • • is a polynomial ring on the
indeterminates ea : A = k[e\, ei, • • •]• Comparing formulas for d, we see that
the direct sum 0 E^ of the chain complexes E^ is identical to the Koszul
complex

A ®k A*g = A*(0Aea) = K(x)

of 4.5.1 corresponding to the sequence x = (e\, ei, • • •). Since x is a regular
sequence, we know from loc. cit. that

Hn(x, A) = Hn(At 5A *fl)
OO

p=0

OO

p° >̂ — ffi F1

^p*^ ~~ V]7 P,n-pp=0

is zero for n ^ 0 and A/xA = k for n = 0. Since £Q0 = fc, it follows that
E\ = 0 for (/?, ^) ^ (0, 0), as claimed. <0>

Corollary 7.7.3 (Chevalley-Eilenberg) If M is a right %-module, then the
homology modules H*(Q, M) are the homology of the chain complex

M ®UQ V*(g) = M ®Ug UQ ®k A*g = M ®k A*g.

If M is a left ^-module, then the cohomology modules //*(g, M) are the coho-
mology of the cochain complex

Homg(V(g), M) = Hom9(£/g (g)* A*g, M) ^ Hom^(A*g, M).

In this complex, an n-cochain f:Ang^M is just an alternating k-multilinear
function f(x\,--',xn)ofn variables in g, taking values in M. The cobound-
ary 8f of such an n-cochain is the (n + I)-cochain

Sf(xu • • •, xn+i) =

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.008
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:44:53, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.008
https://www.cambridge.org/core


7.7 The Chevalley-Eilenberg Complex 241

Application 7.7.4 (Cohomological dimension) If g is n-dimensional as a
vector space over a field k, then Hl(g, M) = Hi(g, M) = 0 for all / > n. In-
deed, Alg = 0 in this range. The following exercise shows that Hn(g, M) ^ 0
for some g-module M, so that g has cohomological dimension n = dim^(g).

Exercise 7.7.2 If k is a field and g is n-dimensional as a vector space, show
that U$ has global dimension rc (4.1.2). To do this, we proceed in several steps.
First note that pduQ(k) < n because V*(g) is a projective resolution of k.

1. Let Ang = k be given the g-module structure

n

[ y , X \ A ••• A l n ] = ^ ] l i A ••• A [ y X i ] A ••• A * n .
i = l

Show that #"(0, A*g) = /:. This proves that pdUQ(Ang) = n and hence
thatg/.dim(£/g) > n.

2. Use the natural isomorphism Ext£^(M, N) = H^ic(g, Homk(M, N))
(exercise 7.3.5) and the Global Dimension theorem 4.1.2 to show that
gl. dim(Ug) < n, and hence that gl. dim(Ug) = n.

Exercise 7.7.3 Use the Chevalley-Eilenberg complex to show that

Exercise 7.7.4 (1-cocycles and module extensions) Let M be a left g-module.

If 0 -> M —> N —> k —> 0 is a short exact sequence of g-modules, and n e N
is such that n(n) = 1, define / : g -> M by f(x) = xn. Show that / is a 1-
cocycle in the Chevalley-Eilenberg complex Hom&(A*g, M) and that its class
[/] e Hl(g, M) is independent of the choice of n. Then show that Hl(g, M)
is in 1-1 correspondence with the equivalence classes of g-module extensions
of k by M. (Compare to exercise 7.4.5.)

Exercise 7.7.5 (2-cocycles and algebra extensions) Let M be a left g-module,
with g free as a ^-module.

1. If 0 ->• M —• e —> g —• 0 is an extension of Lie algebras, and a\ g ->
e is a ^-module splitting of n, show that the Lie algebra structure on
e = M x g may be described by an alternating ^-bilinear function f:gx
g -> M defined by

[cr(x), cr(y)] = a([xy]) + / (* , v), x, v e g.
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242 Lie Algebra Homology and Cohomology

Show that / is a 2-cocycle for the Chevalley-Eilenberg cochain complex
Hom^(A*g, M). Also, show that if a' is any other splitting of JT, then
the resulting 2-cocycle / ' is cohomologous to / . This shows that such
an extension determines a well-defined element [/] e H£iQ(Q, M).

2. Using part (1), show directly that #Lie(g, M) is in 1-1 correspondence
with equivalence classes of Lie algebra extensions of g by M. This is
the same correspondence as we gave in section 7.6 by a more abstract
approach.

Exercise 7.7.6 If M is a right g-module and g e g , show that the formula

(m ® x\ A • • • A xp)g = [mg] ® x\ A • • • A xp

m <S> x\ A • • • A [xtg] A • • • A Xp

makes M ® V*(g) into a chain complex of right g-modules. Then show that
the induced g-module structure on //*(g; M) is trivial.

7.8 Semisimple Lie Algebras

We now restrict our attention to finite-dimensional Lie algebras over a field k
of characteristic 0. We will give cohomological proofs of several main theo-
rems involving solvable and semisimple Lie algebras. First, however, we need
to summarize the main notions of the classical theory of semisimple Lie alge-
bras.

Definitions 7.8.1 An ideal of g is called solvable if it is solvable as a Lie
algebra (see 7.1.7). It is not hard to show that the family of all solvable ideals
of g forms a lattice, because the sum and intersection of solvable ideals is a
solvable ideal [JLA, 1.7]. If g is finite-dimensional, there is a largest solvable
ideal of g, called the solvable radical rad g of g. Every ideal f) of g contained
in rad g is a solvable ideal.

A Lie algebra g is called simple if it has no ideals except itself and 0, and
if [0̂  0] 7̂  0 (i-e-> 0 = [£J> 0])- F°r example, sln{k) is a simple Lie algebra for
n > 2 (as char(£) / 2).

A Lie algebra g is called semisimple if rad g = 0, that is, if g has no nonzero
solvable ideals. In fact, g is semisimple iff g has no nonzero abelian ideals; to
see this, note that the last nonzero term (rad g) ( n - 1 ) in the derived series for
rad g is an abelian ideal of g. Clearly simple Lie algebras are semisimple.

Lemma 7.8.2 If g is a finite-dimensional Lie algebra, then g/(radg) is a
semisimple Lie algebra.
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7.8 Semisimple Lie Algebras 243

Proof If not, g/radg contains a nonzero abelian ideal a = fj/radg. But
[a, a] = 0, so r/ = [I), ()] must lie inside rad g. Hence tf is solvable, and there-
fore so is f). This contradicts the maximality of rad g. O

Definition 7.8.3 (Killing form) If g is a Lie subalgebra of gln we can use ma-
trix multiplication to define the symmetric bilinear form /3(JC, y) = traceQty)
on g. This symmetric form is "g-invariant" in the sense that for JC, y, z G g
we have p([xy], z) = fi(x, [yz]), or equivalently 0([xy]9 z) + /3(JC, [ZJ]) = 0.
(Exercise!)

Now suppose that g is an n-dimensional Lie algebra over k. Left multiplica-
tion by elements of g gives a Lie algebra homomorphism

ad: g -> Lie(End^(g)) = gln,

called the adjoint representation of g. The symmetric bilinear form on g ob-
tained by pulling back /3 is called the Killing form of g, that is, the Killing
form is K(X, y) = trace(aJ(x)aJ(y)). The importance of the Killing form is
summed up in the following result, which we cite from [JLA, III.4]:

Cartan's Criterion for Semisimplicity 7.8.4 Let & be a finite-dimensional
Lie algebra over afield of characteristic 0.

L g is semisimple if and only if the Killing form is a nondegenerate sym-
metric bilinear form on the vector space g.

2. Ifg c $[n and g is semisimple, then the bilinear form /3(x,y) = trace (xy)
is also nondegenerate on g.

Structure Theorem of Semisimple Lie Algebras 7.8.5 Let g be a finite-
dimensional Lie algebra over a field of characteristic 0. Then g is semisimple
iff g = QI x g2 x • • • x gr is the finite product of simple Lie algebras g/. In
particular, every ideal of a semisimple Lie algebra is semisimple.

Proof If the g/ are simple, every ideal of g = gi x • • • x gr is a product of g; 's
and cannot be abelian, so g is semisimple.

For the converse, it suffices to show that every minimal ideal a of a semisim-
ple Lie algebra g is a direct factor: g = a x b. Define b to be the orthogonal
complement of a with respect to the Killing form. To see that b is an ideal of
g, we use the g-invariance of AT: for a e a, b e b, and x e g,

K(a,[x,b]) = K([ax],b) = 0

because [ax] e a. Hence [xb] e b and b is an ideal of g.
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244 Lie Algebra Homology and Cohomology

To conclude, it suffices to show that a Pi b = 0, since this implies g = a x b.

Now a fl b is an ideal of g; since a is minimal either a n b = a o r a H b = 0.

If a fl b = a, then K([a\a2], x) = tc(a\, [tf2*]) = 0 for every a\, #2 £ ci and

Jt e g. Since K is nondegenerate, this implies that \_a\a2\ = 0. Thus a is abelian,

contradicting the semisimplicity of g. Hence a f) b = 0, and we are done. <C>

Corollary 7.8.6 If$ is finite-dimensional and semisimple (and char(k) = 0),
then g = [g, g]. Consequently,

Proof If g = [g, g], then ga/? = 0. On the other hand, we saw in 7.4.1 and 7.4.8
that #1(0, it) ^ Qab and /^(g, it) ^ Hom*(flfl*, it). O

Corollary 7.8.7 Ifg c g[n w semisimple, then gc.sln = [gln, g[n].

Exercise 7.8.1 Suppose that A; is an algebraically closed field of characteristic
0 and that g is a finite-dimensional simple Lie algebra over k.

1. Use Schur's Lemma to see that Hom0(g, g) = k.
2. Show that g = Hom&(g, k) as g-modules.
3. If / : g ® g -> & is any g-invariant symmetric bilinear form, show that /

is a multiple of the Killing form K, that is, f = aic for some a e k.
4. If V is any ^-vector space and f:g<8>&^ V is any g-invariant symmet-

ric bilinear map, show that there is a v e V such that f(x,y) = ic(x,y)v.

Exercise 7.8.2 (Counterexample to structure theorem in char, p ^ 0) Let k
be a field of characteristic p ^ 0, and consider the Lie algebra gin, n > 3.
Show that the only ideals of Qin are $in = [g(n, g(n] and the center fc-1. If p\n,
show that the center is contained inside $in. This shows that pgin = &ln/k-l
has only one ideal, namely psin = sln/k-l, and that psln is simple. Conclude
that pgln is semisimple but not a direct product of simple ideals and show that

The Casimir Operator 7.8.8 Let g be semisimple and let M be an m-
dimensional g-module. If rj is the image of the structure map

then g = J) x ker(p), f) c g[m, and the bilinear form p on Pj is nondegenerate
by Cartan's criterion 7.8.4. Choose a basis [e\, • • •, er] of f); by linear algebra
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7.8 Semisimple Lie Algebras 245

there is a dual basis {e\ • • •, er} of rj such that /3(e,, e7) = <5/7. The element
CM = 5^ eie' e ^ 9 *s caHed the Casimir operator for M; it is independent of
the choice of basis for f). The following facts are easy to prove and are left as
exercises:

1. If x e g and |>/, x] = Y^cijeh t n e n [*» ^7] = 2Lc0"^-
2. CM is in the center of Ug and CM e 3. //mf: Use (1).
3. The image of CM in the matrix ring Endfc(M) is r/m times the identity

matrix. In particular, if M is nontrivial as a g-module, then r ^ O and CM
acts on M as an automorphism. Hint: By (2) it is a scalar matrix, so it
suffices to show that the trace is r = dim(rj).

Exercise 7.8.3 Let g = sl2 with basis x = (° *), y = (° °), A = (^_°1). If M is

the canonical 2-dimensional g-module, show that CM = 2xy — h + h2/2, while

its image in End(M) is the matrix (0 3/2)-

Theorem 7.8.9 Let gbe a semisimple Lie algebra over afield of characteris-
tic 0. If M is a simple ^-module, M ^ k, then

Hiie(g,M) = H^ie(g,M) = 0 for all 1.

Proof Let C be the center of Ug. We saw in 3.2.11 and 3.3.6 that //*(g, M) =
Tor* Q(k, M) and H*(Q, M) = Ext^ (k, M) are naturally C-modules; more-
over, multiplication by c e C is induced by c: k —• k as well as c: M -> M.
Since the Casimir element CM acts by 0 on A; (as CM € 3) and by the invertible
scalar r/m on M, we must have 0 = r/m on //*(g, M) and //*(g, M). This
can only happen if these C-modules are zero. O

Corollary 7.8.10 (Whitehead's first lemma) Let g be a semisimple Lie alge-
bra over a field of characteristic 0. If M is any finite-dimensional g-module,
then H^e(g, M) = 0. That is, every derivation from g into M is an inner
derivation.

Proof We proceed by induction on dim(M). If M is simple, then either M = k
and Hl(g, k) = g/[g, g] = 0 or else M ^ k and //*(g, M) = 0 by the theo-
rem. Otherwise, M contains a proper submodule L. By induction, H^{g, L) =
Hl(g, M/L) = 0, so we are done via the cohomology exact sequence

• • • Hl(g, L) -> Hl(g, M) -* Hl(g, M/L) • • •. O
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WeyPs Theorem 7.8.11 Let g be a semisimple Lie algebra over a field of
characteristic 0. Then every finite-dimensional g-module M is completely re-
ducible, that is, is a direct sum of simple g-modules.

Proof Suppose that M is not a direct sum of simple modules. Since dim(M)
is finite, M contains a submodule M\ minimal with respect to this property.
Clearly M\ is not simple, so it contains a proper g-submodule Mo. By induc-
tion, both MQ and M2 = M\/M$ are direct sums of simple g-modules yet M\
is not, so the extension M\ of M2 by Mo must be represented (3.4.3) by a
nonzero element of

fl2, M0) ^ fl£e(fl, Hom*(M2, Mo))

(see exercise 7.3.5), and this contradicts Whitehead's first lemma. <>

Corollary 7.8.12 (Whitehead's second lemma) Let g be a semisimple Lie al-
gebra over afield of characteristic 0. If M is any finite-dimensional g-module,

Proof Since //* commutes with direct sums, and M is a direct sum of simple
g-modules, we may assume that M is simple. If M ^ k we already know the
result by 7.8.9, so it suffices to show that H2(g, k) = 0, that is, that every Lie
algebra extension

splits. We claim that e can be made into a g-module in such a way that n is a
g-map. To see this, let x be any lift of x e Q to e and define x o y to be [x, y]
for y e e. This is independent of the choice of x because k is in the center of
e. The g-module axioms are readily defined (exercise!), and by construction
7i(x o y) = [JC, 7i(y)]. This establishes the claim.

By Weyl's Theorem e and g split as g-modules, and there is a g-module
homomorphism a: g —> e splitting n such that e = k x g as a g-module. If we
choose x = cr(x), then it is clear that a is a Lie algebra homomorphism and
that e = k x g as a Lie algebra. This proves that H2(g, k) — 0, as desired. O

Remark H3(sl2, k) = k (exercise 7.7.3), so there can be no "third Whitehead
lemma."

Levi's Theorem 7.8.13 Ifg is a finite-dimensional Lie algebra over afield of
characteristic zero, then there is a semisimple Lie subalgebra C of g (called a
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7.8 Semisimple Lie Algebras 247

Levi factor ofg) such that g is isomorphic to the semidirect product

g = (rad g) x C.

Proof We know that g/(rad g) is semisimple, so it suffices to show that the
following Lie algebra extension splits.

0 -* rad g -> g -> g/rad g -> 0

If rad g is abelian then these extensions are classified by //2(g/(rad g), rad g),
which vanishes by Whitehead's second lemma, so every extension splits.

If rad g is not abelian, we proceed by induction on the derived length of
rad g. Let r denote the ideal [rad g, rad g] of g. Since rad(g/t) = (rad g)/r is
abelian, the extension

0 -> (rad g)/r -> g/r -> g/(rad g) -* 0

splits. Hence there is an ideal f) of g containing r such that g/r = (rad g)/r x
f)/t and J)/t = g/(rad g). Now

rad(fj) = rad(g) n f) = t,

and t has a smaller derived length than rad g. By induction there is a Lie
subalgebra C of f) such that f) = r x £ and C = l)/t = g/rad g. But then £
is our desired Levi factor of g. <>

Remark Levi factors are not unique, but they are clearly all isomorphic to
g/(rad g) and hence to each other. Malcev proved (in 1942) that the Levi
factors are all conjugate by nice automorphisms of g.

Historical Remark 7.8.14 (see [Bour]) Sophus Lie developed the theory of
Lie groups and their Lie algebras from 1874 to 1893. Semisimple Lie alge-
bras over C are in 1-1 correspondence with compact, simply connected Lie
groups. In the period 1888-1894 much of the structure of Lie algebras over
C was developed, including W. Killing's discovery of the solvable radical and
semisimple Lie algebras, and the introduction of the "Killing form" in E. Car-
tan's thesis. The existence of Levi factors was announced by Cartan but only
proven (publicly) by E. E. Levi in 1905. Weyl's Theorem (1925) was origi-
nally proven using integration on compact Lie groups. An algebraic proof of
Weyl's theorem was found in 1935 by Casimir and van der Waerden. This and
J. H. C. Whitehead's two lemmas (1936-1937) provided the first clues that
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248 Lie Algebra Homology and Cohomology

enabled Chevalley and Eilenberg (1948 [ChE]) to construct the cohomology
//*(g, M). The cohomological proofs in this section are close parallels of the
treatment by Chevalley and Eilenberg.

Exercise 7.8.4 If g is a finite-dimensional Lie algebra over a field of charac-
teristic 0, show that g is semisimple iff Hl(g, M) = 0 for all finite-dimensional
g-modules M.

Exercise 7.8.5 (Reductive Lie algebras) A Lie algebra g is called reductive if
g is a completely reducible g-module (via the adjoint representation). That is,
g is reductive if g is a direct sum of simple g-modules. Now assume that g is
finite-dimensional over a field of characteristic 0, so that g = (rad g) xi C for
some semisimple Lie algebra C by Levi's theorem. Show that the following
are equivalent:

1. g is reductive
2. [fl,0] = £
3. rad(g) is abelian and equals the center of g
4. g = a x C where a is abelian and C is semisimple

Then show that g(m is a reductive Lie algebra, and in fact that glm =k x $lm.

7.9 Universal Central Extensions

A central extension e of a Lie algebra g is an extension 0-^ M -> e - % g -> 0 of
Lie algebras such that M is in the center of e (i.e., it is just an extension of Lie
algebras of g by a trivial g-module M in the sense of 7.6.1). A homomorphism

over g from e to another central extension 0 - • M' -> tf —> g -* 0 is a map
/ : e —> e' such that n — it1 f. e is called a universal central extension of g if
for every central extension tf of g there is a unique homomorphism f:z—> i'
over g. Clearly, a universal central extension of g is unique up to isomorphism
over g, provided it exists. As with groups (6.9.2), if g has a universal central
extension, then g must be perfect, that is, Q = [Q,Q].

Construction of a Universal Central Extension 7.9.1 We may copy the
construction 6.9.3 for groups. Choose a free Lie algebra f mapping onto g and
let r c f denote the kernel, so that g = f/r. This yields a central extension

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.008
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:44:53, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.008
https://www.cambridge.org/core


7.9 Universal Central Extensions 249

If g is perfect, [f, f] maps onto g, and we claim that

0 -> (r n [f, f])/[r, f] -> [f, f]/[r, f] -> g -+ 0

is a universal central extension of g. Note that #2(0, ^) = (r fl [f, f])/[t, f] by
exercise 7.5.2.

Theorem 7.9.2 A Lie algebra g has a universal central extension iff g is
perfect. In this case, the universal central extension is

(*) 0 -> //2(g, *) ~* [f, f]/[t, f] -> 0 -> 0.

We have seen that (*) is a central extension. Set e = [f, f]/[t, f]. Since
[f, f] maps onto g, any x,y ef may be written as x = x' + r, y = y' + 5- with
x\ yr e [f, f] and r,set. Thus in f/[r, f]

[x, y] - [*', / ] + [x7, 5] + [r, / ] + [r, s] = [x\ / ] .

7T
This shows that e is also a perfect Lie algebra. If 0 -^ M -> er —> 9 -> 0
is another central extension, lift f - • g to a map 0: f —• er. Since 7T0(t) = 0,
000 ^ M. This implies that 0([t, f]) = 1. As in 6.9.5, 0 induces a map / : e —•
er over g. If /1 is another such map, the difference 8 = f\ — f: e -> M is zero
because e = [e, e] and

/1 ([*?]) = U(x) + «(*), / (v ) + 8(y)] = [fix), f(y)} = / ( [* , y]).

Hence /1 = / , that is, / is unique. <>

By copying the proofs of 6.9.6 and 6.9.7, we also have the following two
results.

Lemma 7.9.3 // 0 - > M ^ e ^ g ^ 0 and 0 - • M' -+ tr -> g -> 0 ar^
central extensions, and e is perfect, there is at most one homomorphism from e
to e; over g.

Recognition Criterion 7.9.4 Call a Lie algebra g simply connected if every
central extension 0 - > M — ^ e ^ g — > 0 splits in a unique way as a product
Lie algebra e = g x M. A central extension 0 - > M ^ e - > g - > 0 / 5 universal
iff e is perfect and simply connected. Moreover, H\{t, k) = H2(z, k) = 0. In
particular, ifg is perfect and H2(t, k) = 0, then g is simply connected.
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250 Lie Algebra Homology and Cohomology

Corollary 7.9.5 Let g be a finite-dimensional semisimple Lie algebra over a
field of characteristic 0. Then H2(t,k) = 0 and g is simply connected.

Proof M = Hi(t, k) is a finite-dimensional g-module because it is a sub-
quotient of A2g in the Chevalley-Eilenberg complex. By Whitehead's second
lemma 7.8.12, H2(g, M) = 0, so the universal central extension is e = M x g.
By universality, we must have M = 0. O

Exercise 7.9.1 Show that simply connected Lie algebras are perfect.

Exercise 7.9.2 If 0 —• M, -> e£- —• gi -> 0 are universal central extensions,
show that 0 -> M\ x M2 - • t\ x ti -> g\ x 02 —• 0 is also a universal central
extension.

In the rest of this section, we shall use the above ideas in the construction of
Affine Lie algebras g corresponding to simple Lie algebras.

Let Q be a fixed finite-dimensional simple Lie algebra over a field k of char-
acteristic 0. Write g[t, t~l] for the Lie algebra Q <8>k k[t, t~l] over k[t, t~1].
Elements of g[f, t~l] are Laurent polynomials 5Z Jtif1 with JC, e Q and i e Z.
Since the Chevalley-Eilenberg complex V*(g[f, t~1]) is V*(g) ^ A:[r, t~l], we
have

//*(0U, ^~ 1 ] , k[t, t~1]) = //*(g, *) 0^ *[f, r x ] .

In particular, H\ = #2 = 0 (7.8.6, 7.8.12) so g[r, / - 1 ] is perfect and simply
connected as a Lie algebra over the ground ring k[t,t~1].

Now we wish to consider $[t, t~l] as an infinite-dimensional Lie algebra
over k. Since g[t, t~l] is perfect, we still have H\(g[t, t~l], k) = 0, but we
will no longer have H2(g[t,t~l],k) = 0. We now construct an example of a
nontrivial central extension of $[t, t~l] over k.

Affine Lie Algebras 7.9.6 If K: $ (8) Q -> k is the Killing form (7.8.3), set

Since /3 is alternating bilinear, it is a 2-cochain (7.7.3). Because & is a triv-
ial g[t, t"^-module, y0 is a 2-cocycle: if x = ^xit1, y = ^yjt-i, and z =
J2 Zktk, then the g-invariance of the Killing form gives
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7.9 Universal Central Extensions 251

8/3(x, y, z) = -P([xy]t z) + P([xz], y) - P([yz], x)

= £ -P(l*iyj]ti+j, zkt
k) + P([xiZk]ti+k, yjtJ) - P([yjzk]tJ+k, xtt1)

J2 [xiZkl yj) ~ U + k)K([yjZk], xt)

i+j+k=O

l+y+ifc=O

= 0.

The class [/3] e H2($[t, t~*]9k) corresponds to a central extension of Lie al-
gebras over k\

The Lie algebra g is called the Ajfine Lie algebra corresponding to g. It is a
special type of Kac-Moody Lie algebra. We are going to prove that Q is the
universal central extension of g[r, t~l] following the proof in [Wil].

Lemma 7.9.7 Q is perfect.

Proof Let p: g[t, t~l] -> g be the vector space splitting corresponding to the
2-cocycle p. If *, y e g then [p(xt*), p(yt~1)] = p([xy]) 4- i K(X, y) for i =
0, 1 so k c [g, g\. Since [g, g] maps onto the perfect g[t, t~l], we must have
S = [&§]. <>

N o w fix an arbi t rary centra l ex tens ion 0 —• M - > e — > ^ [ ^ , ^ - 1 ] —>- 0. If
o\ g[t, t~l] —> e is a vector space splitting of n, recall (exercise 7.7.5) that the
corresponding 2-cocycle fa\ A2(g[t, t~1]) —> M is defined by

and that conversely every 2-cocycle / determines a a such that / ' = fo. Let
denote the set of all splittings o of n such that

/^, y) = 0 for all x / j e g and / 6 1.

Lemma 7.9.8 S is nonempty for every central extension ofg[t, t 1 ] .

Proof Given any splitting a, write fl
G{x,y) for fa(xtl,y). Each /£(—, y)

is an element of Hom^(g, M), so we may think of fl
o as a 1-cochain, that
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252 Lie Algebra Homology and Cohomology

is, a map from g to Hom^(g, M). In fact, fl
a is a cocycle (exercise!). But

Hom^(g, M) is finite-dimensional, so by Whitehead's first lemma (7.8.10)
there exists <pl e Hom^(g, M) such that fl

G(x, y) = cpl([xy]). Assembling the
<pl into a ̂ -linear map <p:g[t, t~l] ->• Mby the rule 0>Q^*/f*) = Z^'(•*/)> we
see that the 2-cocycle 8(p: A2#[t, t~l] -» M satisfies

W l ) - - J2 fl(Xh y) = -fC£xtt\ y).

Hence the splitting r corresponding to the 2-cocycle / + 8<p is an element
of 5. O

Exercise 7.9.3 Show that S contains exactly one element.

Lemma 7.9.9 Ifk = C and a e S, then there exist dj e M such that

where K is the Killing form on g.

Proof Because a e S, we have

0 = &f(xtt\ yjtJ, z) = fo([xiz]t\ yjt
j) - fa([xit\ [z, yj]tj).

Therefore each fj(x, y) = fG(xtl, yt^) is a g-invariant bilinear form on g:

On the other hand the Killing form is a nondegenerate g-invariant bilinear
form on g. Since k = C, any g-invariant symmetric bilinear form must there-
fore be a multiple of K (exercise 7.8.1). Thus fj = KCIJ for some QJ e M.

Corollary 7.9.10 If k = C fl/i^/ a G 5, f/&en r/ier^ is a c e M such that for

Proof Setting c = ci,_i, it suffices to prove that c/,_/ = ic and that c// = 0
if / ^ — 7. As a e 5, QO = 0 for all /; since fa is skew-symmetric, we have
ctj = —Cjt. Since K is g-invariant and symmetric,

0 = 8fa(xt\ ytj, ztk) = -K(
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7.9 Universal Central Extensions 253

which yields 0 = <:,•+_/,* + Q+fc,y + cj+k,i- Taking i + j = I and k = — 1, so
that j -\-k = —i, we get

By induction on |/1 > 0, this yields c/,_/ = /c for all / G Z. Taking i + j +k =
s and k = 1, we get

Q- l , l = Q,;+l — Q+l,7-

Summing from / = 0 to s — 1 if s > 0 (or from / = s to — 1 if s < 0) yields
scs-\t\ = 0, so Q,I = 0 unless t = — 1. This yields Qj+i = C(+\j unless
/ + j — — 1. Fixing .y ^ 0, induction on |/1 shows that c/5_/ = 0 for all / G Z.

Theorem 7.9.11 (H. Garland) Let g be a finite-dimensional simple Lie alge-
bra over k = C Then the corresponding Affine Lie algebra § (7.9.6) is the
universal central extension of#[t, £ - 1].

Proof Let 0 -> M -> e —^ g[r, r 1 ] - > 0 be a central extension. Choose a
splitting a in S (7.9.8), and let c i ; G M be the elements constructed in lemma
7.9.9. Recall that there is a vector space splitting r. $[t, t~l] -> Q correspond-
ing to the 2-cocycle /?, which yields a vector space decomposition g = k x
g[r, r" 1] . Define F:k —> M by F(a) = aci7_i and extend this to a vector
space map from g to e by setting F(i{x)) = a(x) for x G g[r, ^~ 1 ] . Since

x, y]) + F(P(x, y))

, y])

and A: is in the center of g, F is a Lie algebra homomorphism Q -> e over
g[£, ^ - 1 ] . Since g is perfect, there is at most one such map, so F is unique.

•

Remark 7.9.12 If g is semisimple over C, then g = Q\ X • • • x gr for simple
Lie algebras g/. Consequently the universal central extension of g|>, t~l] is the
product

0 ^ ^ ^ f l i x . . . x g r ^ g[f, t~l] -+ 0.

If A; is a subfield of C and g is simple over k, g (8) C is semisimple over C
If g ® C is simple then since ^ ( g , k) <g>* C = //2(g ®it C, C) = C it follows
that g is still the universal central extension of g[>, t~1]. However, this fails if
g <g) C = gi x • • • x gr because then //2(g, ^) = A:r.
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