
6
Group Homology and Cohomology

6.1 Definitions and First Properties

Let G be a group. A (left) G-module is an abelian group A on which G acts
by additive maps on the left; if g e G and a e A, we write ga for the action of
^ o n a . Letting Home (A, B) denote the G-set maps from A to B, we obtain a
category G-mod of left G-modules. The category G-mod may be identified
with the category 1 G-mod of left modules over the integral group ring ILG.
It may also be identified with the functor category AbG of functors from the
category "G" (one object, G being its endomorphisms) to the category Ab of
abelian groups.

A trivial G-module is an abelian group A on which G acts "trivially," that is,
ga = a for all g e G and a e A. Considering an abelian group as a trivial G-
module provides an exact functor from Ab to G-mod. Consider the following
two functors from G-mod to Ab:

1. The invariant subgroup AG of a G-module A,

AG = {a e A : ga = a for all g e G and a e A}.

2. The coinvariants Ac of a G-module A,

Ac = A/submodule generated by {(ga — a): g e G,a e A}.

Exercise 6.1.1

1. Show that AG is the maximal trivial submodule of A, and conclude that
the invariant subgroup functor —G is right adjoint to the trivial module
functor. Conclude that —G is a left exact functor.
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6.1 Definitions and First Properties 161

2. Show that Ac is the largest quotient module of A that is trivial, and
conclude that the coinvariants functor — G is left adjoint to the trivial
module functor. Conclude that — G is a right exact functor.

Lemma 6.1.1 Let A be any G-module, and let Z be the trivial G-module.

Then AG = ~l ®ZG A and A° = HoniG(Z, A).

Proof Considering Z as a Z—ZG bimodule, the "trivial module functor"
from Z—mod to ZG-mod is the functor Hom^Z, —). We saw in 2.6.3 that
Z ®ZG ~~ is its left adjoint; this functor must agree with its other left adjoint
(-)G- For the second equation, we use adjointness: AG = HomAb(Z, AG) =
HomG(Z, A). <>

Definition 6.1.2 Let A be a G-module. We write //*(G; A) for the left de-
rived functors L*(—G)(A) and call them the homology groups of G with co-
efficients in A; by the lemma above, H*{G\ A) ^ Torp(Z, A). By defini-
tion, Ho(G; A) = Ac. Similarly, we write //*(G; A) for the right derived
functors /?*(—G)(A) and call them the cohomology groups of G with coef-
ficients in A; by the lemma above, H*(G; A) = Ext|G(Z, A). By definition,
H°(G;A) = AG.

Example 6.1.3 If G = 1 is the trivial group, Ac = AG = A. Since the higher
derived functors of an exact functor vanish, if*(l; A) = / /*(1 ; A) = 0 for

Example 6.1.4 Let G be the infinite cyclic group T with generator t. We may
identify IT with the Laurent polynomial ring Z[t,t~1]. Since the sequence

is exact,

Hn{T\ A) = Hn(T; A) = 0 forn ^ 0, 1, and

Hi(T; A) ^ H°(T; A) = AT, Hl(T\ A) = H0(T; A) = AT.

In particular, H\(T; Z) = Hl(T; Z) = Z. We will see in the next section that
all free groups display similar behavior, because pdcQ-) — 1.

Exercise 6.1.2 (kG-modules) As a variation, we can replace Z by any com-
mutative ring k and consider the category kG-mod of ^-modules on which
G acts ^-linearly. The functors Ac and AG from kG-mod to &-mod are left
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162 Group Homology and Cohomology

(resp. right) exact and may be used to form the derived functors Tor£G and
Ext£G. Prove that if A is a &G-module, then we have isomorphisms of abelian
groups

//*(G; A) ^ Tor*G(£, A) and #*(G; A) ^ Ext|G(fc, A).

This proves that //*(G; A) and //*(G; A) are ^-modules whenever A is a kG-
module. Hint: If P -> Z is a projective ZG-resolution, consider P <S>jk -» A:.

We now return our attention to Ho and / / ° .

Definition 6.1.5 The augmentation ideal of ZG is the kernel 3 of the ring
map ZG —% Z which sends X!wg£ t 0 Z!ng- Because {1} U [g — 1 : g e G,
g 7̂  1} is a basis for ZG as a free Z-module, it follows that 3 is a free Z-
module with basis {g — I : g e G, g ^ 1}.

Example 6.1.6 Since the trivial G-module Z is ZG/3, //o(G; A) = AG is
isomorphic to Z <8)ZG A = ZG/3 <S>ZG A = A/3 A for every G-module A. For
example, //0(G; Z) = Z/3Z = Z, //0(G; ZG) = ZG/3 ^ Z, and H0(G\ 3) =
3/32.

Example 6.1.7 (A = ZG) Because ZG is a projective object in ZG-mod,
H*(G; ZG) = 0 for * ^ 0 and H0(G; ZG) = Z. When G is a finite group,
Shapiro's Lemma (6.3.2 below) implies that H*(G\ ZG) = 0 for * / 0. This
fails when G is infinite; for example, we saw in 6.1.4 that Hl(T; IT) = Z for
the infinite cyclic group T.

The following discussion clarifies the situation for H°(G; ZG) : If G is
finite, then //°(G; ZG) ^ Z, but H°(G; ZG) = 0 if G is infinite.

The Norm Element 6.1.8 Let G be a finite group. The norm element N of
the group ring ZG is the sum N = ^2gec g- The norm is a central element of

ZG and belongs to (ZG)G, because for every h e G hN = J2g
 n8 = J2g' 8

f =

N, and Nh = N similarly.

Lemma 6.1.9 The subgroup H°(G;ZG) = (ZG)G of ZG is the 2-sided ideal
Z-NofZG (isomorphic to Z) generated by N.

Proof If a = J2ng§ *s m {ZG)G, then a — ga for all g e G. Comparing
coefficients of g shows that all the ng are the same. Hence a = nN for some
neZ. O
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6.1 Definitions and First Properties 163

Exercise 6.1.3

1. Show that if G is an infinite group, then H°(G; TG) = (IG)G = 0.
2. When G is a finite group, show that the natural map Z • N = (ZG)G —>

( Z G ) G = Z sends the norm TV to the order #G of G. In particular, it is an
injection.

3. Conclude that 3 is ker(ZG -^> ZG) = {a e IG : Na = 0} when G is
finite.

Proposition 6.1.10 Let G be a finite group of order m, and N the norm. Then
e = N/m is a central idempotent element o/QG and ofZG[—].IfAisaQ_G-
module, or any G-module on which multiplication by m is an isomorphism,

H0(G; A) = #°(G; A) = eA and #*(G; A) = //*(G; A) = 0 for * / 0.

Proof N2 = (J2g) - N = m- N, so e2 = e in R = ZG[^]. Note that R =

eR x (1 — e)R as a ring, that eR = Z[^] , and that the projection e from
/?-mod to (£/?)-mod c Ab is an exact functor. Let A be an /^-module; we
first show that eA = AG = AG. Clearly N • A c AG, and if a e AG, then
N - a = m • a, that is, a = e • a. Therefore eA = AG. By exercise 6.1.3 (3),
3[1] = ker(# - i> fl) = (l - e)R. Hence (1 - e)A = (1 - e)R ®R A equals
3[1] ®^ A = ^A; therefore AG = A/3A = A/(l - e)A = eA.

Because e/^ is projective over R, Tor*(eR, A) = Extn
R(eR, A) = 0 if n ^ 0.

Since /? is flat over ZG, flat base change for Tor (3.2.29) yields

Hn(G\ A) = Torf G(Z, A) = Tor^(Z <g> R, A) = Tor*(eR, A) = 0 if n ^ 0.

For cohomology, we modify the argument used in 3.3.11 for localization of

Ext. If P —>• Z is a resolution of Z by projective ZG-modules, then P [ ^ ] —>

Z[^] is a resolution of Z[^] — eR by projective /^-modules. Because A is

an /^-module, adjointness yields HomaCP, A) = Hom/?(P[^], A). Thus for
n^Owe have

Hn(G', A) = HnHomG(P, A) ^ HnHom^(P[-], A) = Ext"(eR, A) = 0. O
m

We now turn our attention to the first homology group H\.

Exercise 6.1.4

1. Define 6: G -+ 3/32 by 0(g) = g - 1. Show that 0 is a group homomor-
phism and that the commutator subgroup [G, G] of G maps to zero.
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164 Group Homology and Cohomology

2. Define a: 3 -> G/[G, G] by a(g - 1) = g, the (left) coset of g. Show
that a(32) = 1, and deduce that 0 and a induce an isomorphism 3/32 =
G/[G, G].

Theorem 6.1.11 For any group G, H\(G; Z) ^ 3/32 ^ G/[G, G].

The sequence 0 -> 3 -> ZG —• 2 —• 0 induces an exact sequence

; ZG) -> #i(G; Z) -> 3 G -> (ZG)G -^ Z -> 0.

Since ZG is projective, H\(G; ZG) = 0. The right-hand map is the isomor-
phism ( Z G ) G = IG/3 = Z, so evidently H\(G\ T) is isomorphic to 3Q =
3/32. By the previous exercise, this is isomorphic to G/[G, G]. O

Theorem 6.1.12 If A is any trivial G-module, H0(G; A) = A, H\{G; A) ^
G/[G, G] 0j A, and for n > 2 there are (noncanonical) isomorphisms:

Hn(G; A) ^ Hn(G; Z)®ZA® Torf (#n_i(G; Z), A).

Proof If P -> Z is a free right ZG-module resolution, //*(G; A) is the ho-
mology of P <S>ZG A = (P (8>ZG 2) % A. Now use the Universal Coefficient
Theorem. <C>

Exercises 6.1.5 Let A be a trivial G-module.

1. Show that Hl(G', A) is isomorphic to the group HomGroups(G, A) =
HoniAb(G/[G, G], A) of all group homomorphisms from G to A.

2. Conclude that Hl(G; Z) = 0 for every finite group.
3. Show that in general there is a split exact sequence

0 - • Extl
z(Hn-i(G; Z), A) - • Hn{G\ A) -> HomAb(#n(G; Z), A) - • 0.

Exercise 6.1.6 If G is finite, show that Hl(G; C) = 0 and that / /2(G; Z) is
isomorphic to the group Hl(G, C*) = HomGroups(G, C*) of all 1-dimension-
al representations of G. Here G acts trivially on Z, C, and on the group C* of
complex units.

We now turn to the product G x H of two groups G and H. First note that
Z[G x H] ^ ZG (8) Z/f. Indeed, the ring maps from ZG and Z/ / to Z[G x H]
induce a ring map from ZG 0 1H to Z[G x H], Both rings have the set
G x / / as a Z-basis, so this map is an isomorphism. The Kunneth formula
gives the homology of G x H:

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.007
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:49:48, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.007
https://www.cambridge.org/core


6.1 Definitions and First Properties 165

Proposition 6.1.13 (Products) For every G and H there is a split exact se-
quence:

0 " • W HP(G> Z> ® Hq(H; T) -»• Hn(G x / / ; Z)

i Torf (#p(G; I), Hq(H; /)) — 0.

P+g

=n-\

Proof Let P ->• 2 be a free ZG-resolution and Q —• 2 a free Z//-resolution,
and write P 0j Q for the total tensor product chain complex (2.7.1), which
is a complex of ZG ® Z//-modules. By the Kunneth formula for complexes
(3.6.3), the homology of P 0 ^ Q is z e r o except for //o(P ®z (2) = 2. Hence
P ®z Q -> 2 is a free ZG ® Z//-module resolution of Z, and H*(G x 7/; Z)
is the homology of

(P <8>z G) 0ZG0Z// Z ^ (P ®ZG Z) 0 Z ( 2 0 M Z).

Moreover, //*(G; Z) = 7/*(P ®IG Z) and 7/*(//; Z) = (Q ®IH Z). As each
Pn ®TG Z is a free Z-module, the proposition follows from the Kunneth for-
mula for complexes. O

Exercise 6.1.7 (kG-modules) Let A; be a field, considered as a trivial mod-
ule. Modify the above proof to show that Hn(G x H;k) = @ HP(G\ k) <8>k

Hn-p(H\k) for attn.

Cohomology Cross Product 6.1.14 Keeping the notation of the preceding
proposition, there is a natural homomorphism of tensor product double com-
plexes:

At: HomG(P, Z) ® HomH(Q, Z) -> HomGxH(P 0 Z Q, Z),

/ ' ) U ® 30 = f(x)f'(y), xePp,ye Qq.

The cra55 proJwcr x: //^(G; Z) ® / /^(H; Z) -> HP^(G X H;I) is the
composite obtained by taking the cohomology of the total complexes.

Hp(G\ Z) ® H^(//; Z) —-• / /^ [Hom G (P , Z) 0

x //; Z) = Hp+q[HomGxH(P 0 2, Z)]
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166 Group Homology and Cohomology

Exercise 6.1.8 Suppose that each Pp is a finitely generated ZG-module. (For
example, this can be done when G is finite; see section 6.5 below.) Show in
this case that \JL is an isomorphism. Then deduce from the Kiinneth formula
3.6.3 that the cross product fits into a split short exact sequence:

0 -* (±) Hp(G\ Z) <g> //*(//; Z) -^> //"(G x H; Z)

-> 0 Torf (//^(G; Z), #<?(//; Z)) -> 0.

=n+l

Exercises 6.1.9

1. Show that the cross product is independent of the choice of P and Q.
2. If H = 1, show that cross product with 1 e / /°(1; Z) is the identity map.

3. Show that the cross product is associative in the sense that the two maps

HP(G; Z) <g> Hq(H\ Z) <8> Hr(I; Z) -> HpJrq+r(G x H x / ; Z)

given by the formulas (x x y) x z and x x (y x z) agree.

Exercise 6.1.10 Let k be a commutative ring.

1. Modify the above construction to obtain cross products HP(G; k) <g>k

Hq(H; k) - • Hp+q(G x H;k). Then verify that this cross product is
independent of the choice of P and Q, that it is associative, and that the
cross product with le / /°( l ; k) = k is the identity.

2. If k is a field, show that Hn(G x H;k)^@ HP(G\ k) ®k H
n~p{H\ k)

for all n.
We will return to the cross product in section 6.7, when we introduce the

restriction map H*(G x G) -> //*(G) and show that the cross product makes
//*(G;Z)intoaring.

Hyperhomology 6.1.15 If A* is a chain complex of G-modules, the hyper-
derived functors L/(—G)(A*) of 5.7.4 are written as H/(G; A*) and called
the hyperhomology groups of G. Similarly, if A* is a cochain complex of G-
modules, the hypercohomology groups HP(G; A*) are just the hyper-derived
functors Kl(—G)(A*). The generalities of Chapter 5, section 7 become the
following facts in this case. The hyperhomology spectral sequences are

nE2
pq = HP(G; Hq(A*)) => Mp+q(G; A*); and

lE2
pq = Hp(Hq(G; A*)) =*• Up+q(G\ A*) when A* is bounded below,
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6.2 Cyclic and Free Groups 167

and the hypercohomology spectral sequences are

llElq = Hp(G; Hq(A*)) =» Mp+q(G\ A*), weakly convergent; and

lEp
2
q = Hp(Hq(G; A*)) => Hp+q(G; A*) if A is bounded below.

In particular, suppose that A is bounded below. If each A/ is a flat ZG-module,
then H;(G; A*) = / / ; ( ( A * ) G ) ; if each A' is a projective ZG-module, then
Ui(G;A*) = Hi((A*)G).

Exercise 6.1.11 Let T be the infinite cyclic group. Show that there are short
exact sequences

0 -> Hq{A*)T -> Uq{T\ A*) -* Hq-X{A*)T -> 0;

0 -» H ^ - ^ A ^ r -> IHI^(r; A*) -> Hq(A*)T -> 0.

Exercise 6.1.12 Let fc be a commutative ring and G a group such that all
the ^-modules //*(G; fc) are flat. (For example, this is true for G = T.)
Use the hypertor spectral sequence (5.7.8) to show that Hn(G x H; k) =
0 HP(G\ k) <S>k Hn-P(H; k) for all n and H.

6.2 Cyclic and Free Groups

Cyclic and free groups are two classes of groups for which explicit calcula-
tions are easy to make. We first consider cyclic groups.

Calculation 6.2.1 (Cyclic groups) Let Cm denote the cyclic group of order
m on generator a. The norm in iCm is the element N=\+G+G2 + h
am~\ so 0 = om - 1 = (a - \)N in ZCm. I claim that the trivial Cm-module
Z has the periodic free resolution

Indeed, since I-N = (IG)G and 3 = {a e IG : Na = 0} by exercise 6.1.3,

there are exact sequences

O^I-N<^1G^3^O and 0^3 <^- iCm <- Z • TV <- 0.

The periodic free resolution is obtained by splicing these sequences to-
gether. Applying <8>ZGA and HOIIIG(- , A) and taking homology, we find the
following result:
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168 Group Homology and Cohomology

Theorem 6.2.2 If A is a module for the cyclic group G = Cm, then

A/(o-\)A ifn = O
Hn(Cm; A) = \ AG/NA if n = 1, 3, 5, 7,.

{a e A : Na = 0}/(a - 1)A if n = 2, 4, 6, 8,.

/"(Cm; A) = = l ,3 ,5 ,7 ,
= 2,4,6,8,

Exercise 6.2.1 Show for G = Cm that when / / ^ G ; A) = 0 there is an exact
sequence

; A) -^ 0.

Example 6.2.3 Taking A = Z we find that

Z ifn = 0
//«(Cm; Z) = { T/m if n = 1, 3, 5, 7 , . . . [ ;

0 if n = 2, 4, 6, 8,. .

Hn(Cm;I) =
I ifn = 0
0 ifn = l ,3 ,5 ,7 ,
I/m ifn = 2 ,4 ,6 ,8 , . . .

Exercise 6.2.2 Calculate #*(Cm xC n ;Z) and 7^*(Cm x Cn\ I).

Definition 6.2.4 (Tate cohomology) Taking full advantage of this periodicity,
we set

. A ) =
= f AG/NA if n € Z is even |

1 {a e A : NA = 0}/(a - I)A if rc e Z is odd J'

More generally, if G is a finite group and A is a G-module, we define the Tate
cohomology groups of G to be the groups

Hn(G;A) =

Hn(G;A) ifn>\
AG/NA ifn = 0
{aeA:Na = 0}/JA if n = - 1
Hi-n(G;A) ifn<-2
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6.2 Cyclic and Free Groups 169

Exercise 6.2.3 If G is a finite group and 0 - > A — • t f ^ C ^ - O i s a n exact
sequence of G-modules, show that there is a long exact sequence

• • • Hn~l(G; C) -> Hn{G\ A) -> Hn(G; B) -> Hn(G; C) -> Hn+X(G; A) • • •.

Application 6.2.5 (Dimension-shifting) Given a G-module A, choose a short
exact sequence 0->K-+P^A^0 with P projective. Shapiro's Lemma
(6.3.2 below) implies that #*(G, P) = 0 for all * e Z. Therefore Hn{G\ A) ^
/ / n + 1 (G; A'). This shows that every Tate cohomology group Hn(G; A) deter-
mines the entire theory.

Proposition 6.2.6 Let G be the free group on the set X, and consider the
augmentation ideal 3 ofiG. Then 3 is a free TG-module with basis the set
X-l = {x-l:xeX}.

Proof We have seen that 3 is a free abelian group with Z-basis {g — 1 : g e G,
g zfz 1}. We claim that another Z-basis is {g(x — 1) : g e G, x e X}. Every g e
G may be written uniquely as a reduced word in the symbols {x,x~l :x e X};
write G(JC) (resp. G(x~1)) for the subset of all g e G ending in the symbol x
(resp. in x~l) so that G — {1} is the disjoint union (over all x e X) of the sets
G(x) and G(x~l). The formulas

(gx - 1) = g(x - 1) + (g - 1) if gx e G(x)

(gx~l - 1) = -(gx-l)(x - 1) + (g - 1) if s*-1 e 1

and induction on word length allow us to uniquely rewrite the basis {g — 1 :
g ^ 1} in terms of the set {g(x — 1)}, and vice versa. Therefore {g(x — 1) :
g € G, x G X} is a Z-basis of 3, and X - 1 = {JC - 1 : x e X} is a ZG-basis. O

Corollary 6.2.7 If G is a free group on X, then Z has the free resolution

0 ^3^ZG->Z^0.

Consequently, pdG(l) = 1, that is, Hn(G; A) = Hn(G; A) = 0 for n # 0, 1.
Moreover, //0(G; Z) ^ #°(G; Z) ^ Z, while

and #!(G; Z) ̂  ]~| Z.

Proof //*(G; A) is the homology of 0 -> 3 ®ZG A -> A -> 0, and #*(G; A)
is the cohomology of 0 - • A -> Home (3, A) -> 0. For A = Z, the differen-
tials are zero. O
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170 Group Homology and Cohomology

Remark Conversely, Stallings [St] and Swan [SwCdl] proved that if Hn(G,A)
vanishes for all n ^ 0, 1 and all G-modules A, then G is a free group.

Exercise 6.2.4 Let G be the free group on {s, t], and let T c G be the free
group on {t}. Let 1! denote the abelian group Z, made into a G-module (and a
7-module) by the formulas s • a = t • a = — a.

1. Show that H0(G, I!) = H0(T, I!) = 1/2.
2. Show that HX(T, I!) = 0 but H{(G, I!) ^ Z.

Free Products 6.2.8 Let G*// denote the free product (or coproduct) of the
groups G and H. By [BAII, 2.9], every element of G*// except 1 has a unique
expression as a "reduced" word, either of the form g\h\g2h2g3 • • • or of the
form h\g\h2g2h3 • • • with all gi e G and all hi e H (and all g;, hi ^ 1).

Proposition 6.2.9 Let 3G> ^H, and 3G*H denote the augmentation ideals of
1G, 1H, and A = Z(G*#), respectively. Then

?G*H = OG ®IG A) 0 OH ®ZH A).

Proof As a left ZG-module, A = Z(G*//) has a basis consisting of {1}
and the set of all reduced words beginning with an element of H. Therefore
3G ®IG A has a Z-basis B\ consisting of the basis [g — \\g e G, g / 1} of
3G and the set of all terms

(g - l ) ( h i g i h 2 -••) = ( g h \ g \ h 2 • ' • ) - ( h \ g \ h 2 • • • ) •

Similarly, 3H ®IH A has a Z-basis B2 consisting of {h — 1} and the set of
all terms

(h - l)(g\h\g2 -") = (hg\h\g2 • • •) - (g\h\g2 • • •)•

By induction on the length of a reduced word w in G*//, we see that w — 1
can be written as a sum of terms in B\ and B2. This proves that B = B\ U B2

generates 3G*H- In any nontrivial sum of elements of B, the coefficients of the
longest words must be nonzero, so B is linearly independent. This proves that
B forms a Z-basis for 3G*H, and hence that 3G*H has the decomposition we
described. O

Corollary 6.2.10 For every left (G*H)-module A, andn > 2:

Hn(G*H; A) ^ Hn(G; A) 0 Hn(H; A);

Hn(G*H; A) ^ Hn(G; A) 0 Hn(H; A).
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6.3 Shapiro's Lemma 171

Remark When n = 0, the conclusion fails even for A = Z. We gave an exam-
ple above of a (r*r)-module 1! for which the conclusion fails when n = 1.

Proof We give the proof of the homology assertion, the cohomology part
being entirely analogous. Write A for Z(G*//). Because Tor^(A, A) = 0 for
n > 1, we see that Tor^(Z, A) = TOT^_XOG*H, A) for n > 2. Hence in this
range

Hn(G*H; A) = Tor£(Z, A) ^ T o r ^ C ^ , A)

^ T o r ^ C J c ®ZG A, A) 0 TOT^OH ®ZH A, A).

Since A is free over 1G and ZH, base-change for Tor (3.2.9 or 5.6.6) implies
that

T o r ^ C t e ®1G A, A) ^ T o r ^ C ^ , A) ^ TorfG(Z, A) = Hn(G; A).

By symmetry, TOT^PH ®ZH A, A) ^ Hn(H; A). O

Exercise 6.2.5 Show that if A is a trivial G*//-module, then for n = 1 we
also have

; A) ^ //i(G; A) 0 # i ( / / ; A);

Hl(G*H; A) = /^(G; A) 0 H^/ / ; A).

6.3 Shapiro's Lemma

For actually performing calculations, Shapiro's Lemma is a fundamental tool.
Suppose that H is a subgroup of G and A is a left ^//-module. We know
(2.6.2) that IG ®jH A and Hom#(ZG, A) are left ZG-modules. Here are
their names:

Definition 6.3.1 ZG <g>2# A is called the induced G-module and is written
Ind^(A). Similarly, Hom//(ZG, A) is called the coinduced G-module and is
written Coind^(A).

Shapiro's Lemma 6.3.2 Let H be a subgroup of G and A an //-module.
Then

//*(G; Indg(A)) ^ / /*(/ / ; A); and //*(G; Coindg(A)) ^ / /* (# ; A).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.007
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:49:48, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.007
https://www.cambridge.org/core


172 Group Homology and Cohomology

Proof Note that ZG is a free ///-module (any set of coset representatives
will form a basis). Hence any projective right ZG-module resolution P —• Z is
also a projective ///-module resolution. Therefore the homology of the chain
complex

(ZG

is both

TorJG(Z, ZG ®ZH A) ^ //*(G; Indg(A))

and Tor^(Z, A) ^ #*(//; A). Similarly, if P -+ Z is a projective left ZG-
module resolution, then there is an adjunction isomorphism of cochain com-
plexes:

HomG(/>, Hom//(ZG, A)) ^ Hom//(P, A).

The cohomology of this complex is both

Ext|G(Z, Hom//(ZG, A)) ^ #*(G; Coindg(A))

and Ext^(Z, A) ^ / /*(/ / ; A). <>

Corollary 6.3.3 (Shapiro's Lemma for H = 1) If A is an abelian group, then

A if * = 0 j
; ZG (g)2 A) = //*(G; HomAb(ZG, A)) = , Q .f +

Lemma 6.3.4 / / r ^ index [G : //] w^nite, Indg(A) = Coindg(A).

Proof Let X be a set of left coset representatives for G// / , so that X forms a
basis for the right //-module ZG. Ind^(A) is the sum over X of copies x (8) A
of A, with g(jc ® a) = y <g> ha if gx = yh in G. Now X"1 = {x~l : x e X]
is a basis of ZG as a left //-module, so Coind^(A) is the product over X of
copies TTXA of A, where nxa represents the //-map from ZG to A sending
x"1 to a € A and z~l to 0 for all z ^ x in X. Therefore if gx = yh, that is,
y~lg = hx~l, the map g(7ixa) sends j " 1 to

(7Txa)(y-lg) = (nxa)(hx~l) = h • ( T T ^ U " 1 ) = *a

and z~l to 0 if z ^ y in X. That is, g{nxa) = ny(ha). Since X = [G : / /] is
finite, the map Ind^(A) -> Coind^(A) sending x <g> a to 7rxa is an //-module
isomorphism. <C>
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6.3 Shapiro's Lemma 173

Corollary 6.3.5 If G is a finite group, then #*(G; 1G <g>z A) = Ofor * ^ 0
and all A.

Corollary 6.3.6 (Tate cohomology) If G is finite and P is a projective G-
module,

H*(G;P) = 0 for all * .

Proof It is enough to prove the result for free G-modules, that is, for mod-
ules of the form P = TG ®z F, where F is free abelian. Shapiro's Lemma
gives vanishing for * ^ 0, - 1 . Since PG = (IG)G <g> F = N • P, we get
//°(G; P) = 0. Finally, H~\G; P) = 0 follows from the fact that N = #G
on the free abelian group PG = P/3P = F. O

Hilbert's Theorem 90 6.3.7 (Additive version) Let K c L be a finite Galois
extension of fields, with Galois group G. Then L is a G-module, LG = LG =

//*(G; L) = #*(G; L) = 0 for * / 0.

Proof The Normal Basis Theorem [BAI, p. 283] asserts that there is an x e L
such that the set {g(x): g e G} of its conjugates forms a basis of the /T-vector
space L. Hence L = ZG ®zK asa G-module. We now cite Shapiro's Lemma.

O

Example 6.3.8 (Cyclic Galois extensions) Suppose that G is cyclic of order
m, generated by a. The trace tr(x) of an element x e L is the element x +
ax H h am~xx of # . In this case, Hilbert's Theorem 90 states that there is
an exact sequence

Indeed, we saw in the last section that for * / 0 every group #*(G; L) and
//*(G; L) is either K/tr(L) or ker(tr)/(a - 1)K.

As an application, suppose that char(^) = p and that [L : K] = p. Since
^r(l) = p • 1 = 0, there is an x e L such that (cr — l)x = 1, that is, ax =
x + 1. Hence L = K(x) and xp — x e K because

o(xp - x) = (JC + l ) p - (JC + 1) = xp - x.
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174 Group Homology and Cohomology

Remark If G is not cyclic, we will see in the next section that the vanishing of
Hl(G; L) is equivalent to Noether's Theorem [BAI, p. 287] that if D: G -> L
is a map satisfying D(gh) — D(g) + g • D(h), then there is an x e L such that

Application 6.3.9 (Transfer) Let H be a subgroup of finite index in G. Con-
sidering a G-module A as an //-module, we obtain a canonical map from A to
Hom//(2G, A) = Coindg(A) ^ Indg(A) and from Coindg(A) ^ ZG <g>z//

A to A. Applying Shapiro's Lemma, we obtain transfer maps //*(G; A) —•
//*(/ / ; A) and / /* ( / / ; A) -> #*(G; A). We will return to these maps in exer-
cise 6.7.7 when we discuss restriction.

6.4 Crossed Homomorphisms and H1

If A is a bimodule over any ring R, a derivation of R in A is an abelian group
homomorphism D: R —> A satisfying the Leibnitz rule: D(rs) = rD(s) +
D(r)s. When R = HG and A is a left ZG-module, made into a bimodule
by giving it a trivial right G-module structure, this definition simplifies as
follows:

Definition 6.4.1 A derivation (or crossed homomorphism) of G in a left G-
module A is a set map D:G -> A satisfying D(gh) = gD(h) + D(g). The
family Der(G, A) of all derivations is an abelian group in an obvious way:

Example 6.4.2 (Principal derivations) If a e A, define Da(g) = ga — a; Da

is a derivation because

Da(gh) = (gha - go) + (ga - a) = gDa(h) + Dfl($).

The A* are called the principal derivations of G in A. Since Da + Dt, =
D(a+b), the set PDer(G, A) of principal derivations forms a subgroup of
Der(G, A).

Exercise 6.4.1 Show that PDer(G, A) ^ A/AG.

Example 6.4.3 If <p:3 -> A is a G-map, let D^.G -> A be defined by
D<p(g) = (p(g — 1). This is a derivation, since

= <p(gh - 1) =
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6.4 Crossed Homomorphisms and Hx 175

Lemma 6.4.4 The map cp \-^ Dy is a natural isomorphism ofabelian groups

HomGQ, A)^Der(G, A).

Proof The formula defines a natural homomorphism from Home (3, A) to
Der(G, A), so it suffices to show that this map is an isomorphism. Since {g —
1 : g zfz 1} forms a basis for the abelian group 3, if D<p(g) = 0 for all g, then
(p = 0. Therefore the map in question is an injection. If D is a derivation,
define cp{g — 1) = D(g) e A. Since {g — 1 : g / 1} forms a basis of 3, <p
extends to an abelian group map cp: 3 -> A. Since

- 1)) = cp(gh - 1) -

= D(gh)-D(g) =

(p is a G — m a p . A s Z)^ = D , the m a p in ques t ion is a lso a surject ion. <>

Theorem 6.4.5 Hl{G\ A) ^ Der(G, A)/PDer(G, A).

Proof The sequence 0 ^ 3 - > Z G - > Z - > 0 induces an exact sequence

0 —• HomG(Z, A) - > HomG(2G, A) —• HomG(a, A) —• Ext^G(2, A) —> 0.

AG ^ A - ^ Der(G, A) —• / / ' ( G ; A )

Now A - • Home(3, A) sends a e A to the map <p sending (g — 1) to (g — \)a.
Under the identification of Home(3, A) with Der(G, A), (p corresponds to
the principal derivation D^ = Da. Hence the image of A in Der(G, A) is
PDer(G, A), as claimed. O

Corollary 6.4.6 If A is a trivial G -module,

~~~ GroupsHl{G- A) ^ Der(G, A) ^HomGrouPs(G, A).

Proof PDer(G, A) = A/AG = 0 and a derivation is a group homomorphism.
•

Hilbert's Theorem 90 6.4.7 (Multiplicative version) Let K c L be a finite
Galois extension of fields, with Galois group G. Let L* denote the group of
units in L. Then L* is a G-module, and Hl(G\ L*) = 0.
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176 Group Homology and Cohomology

Proof Using multiplicative notation, a derivation is a map #: G —> L* such
that 0(gh)/0(g) = g - 0(h). These are "Noether's equations"; the usual Theo-
rem 90 [BAI, p. 286] states that if 0 satisfies Noether's equations then 0(g) =
(g • x)/x for some x e L*, that is, 0 is a principal derivation. <C>

Example 6.4.8 (Cyclic Galois extensions) Hilbert originally proved his The-
orem 90 for cyclic field extensions in his 1897 report, Theorie der Alge-
braische Zahlkorper. Let K C L be a cyclic Galois extension of fields, with
Galois group Cm. The norm Nx of an element x e L is the product Ug(x);
as Hl(Cm; L*) = {x : Nx = l}/(a - 1)L* (see 6.2.2), we may rephrase
Hilbert's Theorem 90 as stating that whenever Nx = 1, there is a y e L such
that x = (ay)/y. Since H2(Cm\ L*) = L*G/{Nx : x e L*} = K*/NL*,

is exact. (See exercise 6.2.1.) For the cyclic extension R c C it is easy to cal-
culate that H2(C2\ C*) = Z/2, so the higher analogue of the additive version
of Theorem 90 fails for #*(G; L*).

Remark The group H2(G; L*) is usually nonzero. We will return to this topic
in 6.6.11, identifying H2(G\ L*) with the relative Brauer group Br(L/K)
of all simple algebras A with center K and dim^ A=n2,n = [L: K], such
that A 0 K L is the matrix ring Mn(L). The nonzero element of Br(C/R) =
H2(C2', C*) = Z/2 corresponds to the 4-dimensional quaternion algebra H,
which has center R and H ®R C = M2(C).

In order to indicate the historical origins of the terminology "crossed homo-
morphism," we introduce the semidirect product A xi G of a group G with a
G-module A. A xi G is a group whose underlying set is the product A x G,
and whose multiplication is given by the formula

(a, g) • (&, h) = (a + gb, gh).

The semidirect product contains A = A x 1 as a normal subgroup. It also
contains the subgroup 0 x G, which maps isomorphically onto the quotient
G = (Ax G)/A.

Definition 6.4.9 If a is an automorphism of A xi G, we say that a stabilizes
A and G if a (a) = a for a e A and the induced automorphism on G = (A XJ
G)/A is the identity.
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6.5 The Bar Resolution 111

Exercise 6.4.2 If D is a derivation of G in A, show that &D, defined by

eD(a, g) = {a + D(g), g),

is an automorphism of A x G stabilizing A and G, and that Der(G, A) is iso-
morphic to the subgroup of Aut(A x G) consisting of automorphisms stabiliz-
ing A and G. Show that PDer(G, A) corresponds to the inner automorphisms
of A x G obtained by conjugating by elements of A, with the principal deriva-
tion Da given by Da(g) = a~lga. Conclude that Hl(G; A) is the group of
outer automorphisms stabilizing A and G.

Example 6.4.10 (Dihedral groups) Let C2 act on the cyclic group Z/ra = Cm

by a {a) = —a. The semidirect product Cm xi C2 is the dihedral group Dm

of symmetries of the regular ra-gon. Our calculations in section 6.2 show
that Hx(Cr, Cm) = Cm/2Cm. If m is even, Dm has an outer (= not inner)
automorphism with <p(0, a) = (1, a). If m is odd, every automorphism of Dm

is inner.

6.5 The Bar Resolution

There are two canonical resolutions B* and B" of the trivial G-module 1 by
free left ZG-modules, called the normalized and unnormalized bar resolu-
tions, respectively. We shall now describe these resolutions.

(**) 0 4- Z <4- B% <?- B\ <?- B^ 4 .

Bo and B£ are ZG. Letting the symbol [ ] denote 1 e ZG, the map e: Bo —• Z
sends [ ] to 1. For « > 1, #" is the free ZG-module on the set of all symbols
[gi ® • • • ® gn] with g; G G, while Bn is the free ZG-module on the (smaller)
set of all symbols [gi| • • • \gn] with the gt e G — {1}. We shall frequently iden-
tify Bn with the quotient of B% by the submodule Sn generated by the set of all
symbols [gi ® • • • ® gn] with some g/ equal to 1.

Definition 6.5.1 For n > 1, define the differential J: #" -> £" , to be d =
'* At — 1

E?=o(-1)''*. where:

do([g\ 0 • • • 0 gn]) = g\[g2 0 • • • (8) g«];

di([g\ ® • • • ® gn]) = [gi ® • • • ® g/g/+i 0 • • • 0 gn] for 1 = 1 , . . . , n - 1;

) • • • 0 gn]) = [gl <8> • • • ® gn-l].
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178 Group Homology and Cohomology

The differential for B* is given by formulas similar for those on #", except
that for / = 1 , . . . , n — 1

[gi I • • • l#g/+i I • • • Ign] when gigf+i ^ 1
0

To avoid the clumsy case when gigi+i = 1, we make the convention that
[gil • ' ' \8n] = 0 if any g{• = 1. Warning: With this convention, the above for-
mula for di([g\\ • • •]) does not hold when gi or gi+\ = 1; the formula for the
alternating sum d does hold because the d{ and d;_i terms cancel.

Examples 6.5.2

1. The image of the map d: B\ —• BQ is the augmentation ideal 3 because
d([g]) = g[ ] - [ ] = (g - 1)[ ]. Therefore (*) and (**) are exact at Bo.

2. d([g\h]) = g[h]-[gh] + [g].
3. d([f\g\h]) = f[g\h] - [fg\h] + [f\gh] - [f\g].
4. If G = C2, then Bn = 7LG for all n on [a \ • • • \o] and (*) is familiar from

6.2.1:

0 <_ z <^- 1G <^- TG ?±1 ZG £ ± • • •.

Exercises 6.5.1

1. Show that d o J = 0, so that 5" is a chain complex, //mr: If / < j — 1,
show that d(dj = dj-\d(.

2. Show that d(Sn) lies in Sn-\9 so that iS* is a subcomplex of #".
3. Conclude that B* is a quotient chain complex of #".

Theorem 6.5.3 77ie sequences (*) (2nJ f**J «re ^xac .̂ Thus both B* and B"
are resolutions oft by free left ZG-modules.

Proof It is enough to prove that (*) and (**) are split exact as chain com-
plexes of abelian groups. As the proofs are the same, we give the proof in the
B* case. Consider the abelian group maps sn determined by

sn:Bn-> Bn+u sn(go[g\\'- \gn]) = [go\g\\'" \gnl

Visibly, es-\ — 1 and dsQ + s-\e is the identity map on BQ. If n > 1, the
first term of dsn(go[g\ I • • • \gn]) is gofgiI • • • \gnl and the remaining terms are
exactly the terms of sn-\d(go[g\\ • • • \gn]) with a sign change. This yields
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6.5 The Bar Resolution 179

the final identity dsn + sn-\d = 1 needed to show that {sn} forms a chain
contraction of (*). <0>

Application 6.5.4 (Homology) For every right G-module A, //*(G; A) is the
homology of the chain complex A ® B*. (If A is a left G-module, we must
take the homology of Br^ <g> A, where #* is the mirror image bar resolution.)
In particular, we see that H\{G; 7L) is the quotient of the free abelian group on
the symbols [g], g e G, by the relations that [1] = 0 and [/] + [g] = [fg] for
all / , g e G. This recovers the calculation in 6.1.11 that

Application 6.5.5 (Cohomology) If A is a left G-module, H*(G; A) is the
cohomology of either HomdB", A) or HomoC^*, A). An n-cochain is a set
map cp from Gn = G x • • • x G to A; elements of Home(/?", A) are just n-
cochains. A cochain <p is normalized if <p(gi, • • •) vanishes whenever some
g; = 1; these are the elements of Homc(5n , A). The differential dep of an n-
cochain is the (n + l)-cochain

" ,gn-\)-

The rc-cochains such that dep = 0 are n-cocycles, and the n-cochains dip are
called n-coboundaries. We write Zn(G; A) and Bn(G; A) for the groups of all
ft-cocycles and n-coboundaries, respectively. Thus Hn(G\ A) = Zn(G; A)/
£"(G; A).

Example 6.5.6 A 0-cochain is a map 1 —> A, that is, an element of A. If
a G A, then da is the map G —> A sending g to ga —a. Thus a is a 0-cocycle
iff a e AG, and the set Bl(G\ A) of 1-coboundaries is the set PDer(G, A) of
principal derivations.

The set ZX(G\A) of 1-cocyles is Der(G, A), because a 1-cocyle is a
function D with D(l) = 0 and gD(h) - D(gh) + D(g) = D(d[g\h]) = 0.
Therefore, the bar resolution provides a direct proof of the isomorphism
Hl(G\ A) ^Der(G, A)/PDer(G, A) of 6.4.5.

Example 6.5.7 B2(G; A) is the set of all \j/\ G x G -> A such that ^ ( 1 , g) =
1) and

= / • fi(g) - P(fg) + 0(f) for some f5:G-+A.
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180 Group Homology and Cohomology

Z2(G; A) is the set of all 2-cochains \fr\ G x G -> A such that ^r(l, g) =
1r(g9 1) and

/ • V(S, h) - Mfg, h) + VK/, gh) - T/K/, g) = 0 for every f,g,he G.

Theorem 6.5.8 Let G be a finite group with m elements. Then for n^O and
every G-module A, both Hn(G; A) and Hn(G; A) are annihilated by m, that
is, they are Z/m-modules.

Proof Let r\ denote the endomorphism of #*, which is multiplication by (m —
N) on Bo and multiplication by m on Bn, n ^ 0. We claim that rj is null
homotopic. Applying A® or Hom(—, A), will then yield a null homotopic
map, which must become zero upon taking homology, proving the theorem.

Define vn: Bn -> Bn+\ by the formula

Vn([g\\ • ' • \gn]) = ( - l ) n + 1 ] £ t e l I ' ' ' \gn\gl

geG

Setting co = [g\ | • • • \gn] and e = (— l)w + 1 , we compute for n ^ 0

dvn(co) = € £ { £ ! [ . • • | g ] + ^ ( - D ' [ - • • \gigi + l\' " \ g ] ~ €[• • • \gn-l\gng] + € « }

As the sums over all g e G of [• • • |grtg] and [• • • \g] agree, we see that
(dv + vd)(co) is 62XI(o = mco. Now dvo([]) = d{- Y^lgD = (m - N)[],
where Â  = ^ g is the norm. Thus {vn} provides the chain contraction needed
to make rj null homotopic. <0>

Corollary 6.5.9 Let G be a finite group of order m> and A a G-module. If A
is a vector space over Q, or a Z[^]-module, then Hn(G; A) = Hn(G; A) = 0
for n ^ 0. (We had already proven this result in 6.1.10 using a more abstract
approach.)

Corollary 6.5.10 If G is a finite group and A is a finitely generated G-
module, then Hn(G; A) and Hn(G; A) are finite abelian groups for all n^O.

Proof Each A <g)/G Bn and HomG(Bn, A) is a finitely generated abelian
group. Hence Hn(G; A) and Hn(G\ A) are finitely generated Z/m-modules
when n ^ O . <>
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6.5 The Bar Resolution 181

Shuffle Product 6.5.11 When G is an abelian group, the normalized bar
complex B* is actually a graded-commutative differential graded algebra (or
DG-algebra; see 4.5.2) under a product called the shuffle product. If p > 0 and
q > 0 are integers, a (/?, q)-shuffle is a permutation a of the set {1, — •, p + q]
of integers in such a way that cr(l) < a(2) < • • • < cr(p) and cr(/? -f 1) <
• • • <o{p + q). The name comes from the fact that the (/?, g)-shuffles de-
scribe all possible ways of shuffling a deck of p + q cards, after first cutting
the deck between the p and (p + l)st cards.

If G is any group, we define the shuffle product *: Bp<g)j Bq -> Bp+q by

a[gl\ • • • \gp\ * £[#/H-ll • ' • \gp+q] = ^(-l^flfct&T-ill&r-^l ' ' ' l&r-Up+f)]'
cr

where the summation is over all (p, g)-shuffles cr. The shuffle product is
clearly bilinear, and [ ] *[g\ | • • • \gq] = [g\ | • • • |g^], so B* is a graded ring with
unit [ ], and the inclusion of ZG = BQ in B* is a ring map.

Examples 6.5.12 [g] * [ft] = [g|ft] - [h\g], and

[/] * [*|ft] = [/Isl*] - [g|/|ft] + [g\h\fl

Exercise 6.5.2

1. Show that the shuffle product is associative. Conclude that B* and Z 0 ^ G
5* are associative rings with unit.

2. Recall (from 4.5.2) that a graded ring R* is called graded-commutative if
x * y = (—l)pqy * JC for all x e Rp and y e Rq. Show that 5* is graded-
commutative if G is an abelian group.

Theorem 6.5.13 If G is an abelian group, then B* is a differential graded
algebra.

Proof We have already seen in exercise 6.5.2 that B* is an associative graded-
commutative algebra, so all that remains is to verify that the Leibnitz identity
4.5.2 holds, that is, that

d(x * y) = (dx) * y + (-l)px * dy,

where x and y denote a[gi\--\gp] and b[gp+\\ • • • \gp+q], respectively.
Contained in the expansion of x*y, we find the expansions for (dx)*y and
(—l)px*dy. The remaining terms are paired for each i < p < j9 and each
(/?, g)-shuffle a which puts i immediately just before j , as

{-Yfabl • • \gigj\ • • •] a n d (-lf+lab[- • • \g]gi\ • • •].
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182 Group Homology and Cohomology

(The terms with j just before / arise from the composition of a with a trans-
position.) As G is abelian, these terms cancel. O

Corollary 6.5.14 For every abelian group G and commutative 1LG-algebra
R, //*(G; R) is a graded-commutative ring.

Proof B* <8)JG ^ is a graded-commutative DG-algebra (check this!); we
saw in exercise 4.5.1 that the homology of such a DG-algebra is a graded-
commutative ring. <C>

6.6 Factor Sets and H2

The origins of the theory of group cohomology go back—at least in nascent
form—to the landmark 1904 paper [Schur]. For any field k, the projective
linear group PGLn(k) is the quotient of the general linear group GLn(k)
by the diagonal copy of the units k* of k. If G is any group, a group map
p\G —> PGLn(k) is called a projective representation of G. The pullback

E = {(a, g) e GLn(k) xG:a = p(g)}

is a group, containing k* = k* x 1, and there is a diagram

1 —> k* —> E —> G —> 1

II U | p
1 —> k* —> GLn(k) — • PGLn(k) —> 1.

Schur's observation was that the projective representation p of G may be
replaced by an ordinary representation p' if we are willing to replace G by the
larger group E, and it raises the issue of when E is a semidirect product, so
that there is a representation G c-> E —> GLn(k) lifting the projective repre-
sentation. (See exercise 6.6.5.)

Definition 6.6.1 A group extension (of G by A) is a short exact sequence

of groups in which A is an abelian group; it is convenient to write the group
law in A as addition, whence the term "0" on the left. The extension splits if
n\ E -> G has a section a: G —> E.
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6.6 Factor Sets and H2 183

Given a group extension of G by A, the group G acts on A by conjugation
in E\ to avoid notational confusion, we shall write ga for the conjugate gag~x

of a in E. This induced action makes A into a G-module.

Exercise 6.6.1 Show that an extension O ^ A ^ £ ^ G ^ 1 splits if and
only if E is isomorphic to the semidirect product A xi G (6.4.9).

Exercise 6.6.2 Let G = Z/2 and A = Z/3. Show that there are two exten-
sions of G by A, the (split) product Z/6 = A x G and the dihedral group D3.
These extensions correspond to the two possible G-module structures on A.

Exercise 6.6.3 (Semidirect product) Let A be a G-module and form the split
extension

0 -> A-> A xi G-> G ^ 1.

Show that the induced action of G on A agrees with the G-module structure.

Extension Problem 6.6.2 Given a G-module A, we would like to determine
how many extensions of G by A exist in which the induced action of G on A
agrees with the given G-module structure, that is, in which 8a = g • a.

In order to avoid duplication and set-theoretic difficulties, we say that two
extensions 0—>>A—»£/—»G->1 are equivalent if there is an isomorphism
<p : E\ = £2 so

0 —> A —> E\ —> G —> 0

0 —> A —> E2 —> G —^ 0

commutes, and we ask for the set of equivalence classes of extensions. Here is
the main result of this section:

Classification Theorem 6.6.3 The equivalence classes of extensions are in
1-1 correspondence with the cohomology group H2(G; A).

Here is the canonical approach to classifying extensions. Suppose given an
extension 0 -> A -> E —> G -+ 1; choose a set map a\G -+ E such that
tr(1) is the identity element of E and na(g) = g for all g e G. Both cr(gh)
and cr(g)cr(h) are elements of E mapping to gh e G, so their difference lies in
A. We define

[g,h]=cr(g)cr(h)a(ghrl.
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184 Group Homology and Cohomology

Note that [g, h] is an element of A that depends on our choice of E and a.

Definition 6.6.4 The set function [ ]: G x G —> A defined above is called the
factor set determined by E and o.

Lemma 6.6.5 If two extensions 0 - > A - » E j - » G - > - l with maps oi'.G ->
E[ yield the same factor set, then the extensions are equivalent.

Proof The maps O[ give a concrete set-theoretic identification E\ = A x G =
£2; we claim that it is a group homomorphism. Transporting the group struc-
ture from E\ to A x G, we see that the products (a, 1) • (b, 1) = (a + b, 1),
(a, 1) • (0, g) = (a, g), and (0, g) • (0, 1) = (ga, g) are fixed. Therefore the
group structure on A x G is completely determined by the products (1, g) •
(l,/i), which by construction is ([g, h], gh). By symmetry, this is also the
group structure induced from E2, whence the claim. <>

Corollary 6.6.6 If E were a semidirect product and a were a group homo-
morphism, then the factor set would have [g, h] = Ofor all g,h e G. Hence if
an extension has [ ] = 0 as a factor set, the extension must be split.

Recall (6.5.7) that a (normalized) 2-cocycle is a function [ ] : G x G -> A
such that

1. [g,l] = [hg] = 0 forallgeG.
2. f[g, h] - [fg, h] + [/, gh] - [f g] = 0 for all f,g,he G.

Theorem 6.6.7 Let A be a G -module. A set function [ ] :G x G —> A is a
factor set iff it is a normalized 2-cocycle, that is, an element of Z2(G, A).

Remark Equations (1) and (2) are often given as the definition of factor set.

Proof If [ ] is a factor set, formulas (1) and (2) hold because cr(l) = 1 and
multiplication in E is associative (check this!).

Conversely, suppose given a normalized 2-cocycle, that is, a function [ ]
satisfying (1) and (2). Let E be the set A x G with composition defined by

(fl, g) • (ft, h) = (a + (g-b) + [g, hi gh).

This product has (0,1) as identity element, and is associative by (2). Since

(0, g) - (-g~l -a-g-1- [g, g~ll g~l) = (0, 1),
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6.6 Factor Sets and H2 185

E is a group. Evidently A x 1 is a subgroup isomorphic to A and E/A x 1
is G. Thus 0 — • A ^ £ - > G — > - l i s a n extension, and the factor set arising
from G = 0 x G c - > £ i s our original function [ ]. (Check this!) <0>

Change of Based Section 6.6.8 Fix an extension 0 -> A -> E - % G -> 1.
A fowed section of 7r is a map a:G -> E such that a ( l ) = 1 and 7rcr(g) = g
for all g. Let of be another based section of n. Since o'(g) is in the same coset
of A as a(g), there is an element fi(g) e A so that a'{g) = /3(g)cr(g). The
factor set corresponding to or is

[g, h]' = P(g)a(g)l3(h)(j(h)G(ghrlp(ghrl

= Pig) + l 1

The difference [g, h\ - [g, h] is the coboundary d0(g, h) = )8(g) - j8(g/i) H-
g • f}(h). Therefore, although the 2-cocyle [] is not unique, its class in
H2(G; A) = Z2(G, A)/B2(G, A) is independent of the choice of based sec-
tion. Therefore the factor set of an extension yields a well-defined set map ^
from the set of equivalence classes of extensions to the set H2{G\ A).

Proof of Classification Theorem Analyzing the above construction, we see
that the formula a'(g) = P(g)cr(g) gives a 1-1 correspondence between the
set of all possible based sections o' and the set of all maps ft: G -> A with
)S(1). If two extensions have the same cohomology class, then an appropriate
choice of based sections will yield the same factor sets, and we have seen that
in this case the extensions are equivalent. Therefore ^ is an injection. We have
also seen that every 2-cocycle [ ] is a factor set; therefore *I> is onto. O

Exercise 6.6.4 Let p:G -> H be a group homomorphism and A an H-
module. Show that there is a natural map Z2p on 2-cocycles from Z2(// , A)
to Z2(G, A) and that Z2p induces a map p*: H2(H\ A) -+ H2(G; A). Now
let 0 - • A - • E -^-> H -+ 1 be an extension and let E' denote the pullback
E xH G = {(*?, g) G E x G : n(e) = p(g)}. Show that p* takes the class of
the extension E to the class of the extension Ef.

0 —> A —> E' —> G — • 1E' -

1
E -

-> G

u
-* H
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186 Group Homology and Cohomology

Exercise 6.6.5 (Schur) For any field k and any n, let y denote the class
in H2(PGLn(k); k*) corresponding to the extension 1 —• k* —• GLn(k) ->
PGLn(k) —> 1. If p: G -> PGLn(k) is a projective representation, show that
p lifts to a linear representation G -> GLn(k) if and only if p*(y) = 0 in

Exercise 6.6.6 If & is an algebraically closed field, and /xm denotes the sub-
group of k* consisting of all mth roots of unity in k, show that H2(G\ /xm) =
H2(G; k*) for every finite group G of automorphisms ofk order m. Hint: Con-
sider the "Kummer" sequence 0 ->• fim —• k* —• A:* - • 1.

Theorem 6.6.9 (Schur-Zassenhaus) 7f m aw J /i are relatively prime, any ex-
tension 0—>A—^£->G—>> I of a group G of order m by a group A of order

n is split.

Proof If A is abelian, the extensions are classified by the groups H2(G; A),
one group for every G-module structure on A. These are zero as A is a Z[^]-
module (6.1.10).

In the general case, we induct on n. It suffices to prove that E contains
a subgroup of order m, as such a subgroup must be isomorphic to G under
E —>• G. Choose a prime p dividing n and let S be a /7-Sylow subgroup of A,
hence of E. Let Z be the center of S; Z ^ 1 [BAI, p. 75]. A counting argument
shows that m divides the order of the normalizer N of Z in E. Hence there is
an extension 0 — > ( A D N ) - + N ^ G ^ 1. If N ^ E, this extension splits
by induction, so there is a subgroup of TV (hence of E) isomorphic to G. If
N = E, then Z < E and the extension 0 -> A/Z ->• £ / Z - • G -> 1 is split by
induction. Let E' denote the set of all x e E mapping onto the subgroup G/

of E/Z isomorphic to G. Then E' is a subgroup of E, and 0 -> Z - • £ / - •
Gr —• 1 is an extension. As Z is abelian, there is a subgroup of Z ,̂ hence of E,
isomorphic to Gr. O

Application 6.6.10 (Crossed product algebras) Let L/K be a finite Galois
field extension with G = Gal(L/K). Given a factor set [ ] of G in L*, we
can form a new associative ^-algebra A on the left L-module L[G] using the
"crossed" product:

J^ £ > *]a*(s • bh)(gh), (ag, bh e L).

It is a straightforward matter to verify that the factor set condition is equivalent
to the associativity of the product x on A. A is called the crossed product
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6.6 Factor Sets and H2 187

algebra of L and G over K with respect to [ ]. Note that L is a subring of
A and that dim^ A = n2, where n = [L : K]. As we choose to not become
sidetracked, we refer the reader to [BAII, 8.4] for the following facts:

1. A is a simple ring with center K and A ®K L = Mn(L). By Wedder-
burn's Theorem there is a division algebra A with center K such that

2. Every simple ring A with center K and A ®K L = Mn(L) is isomorphic
to a crossed product algebra of L and G over K for some factor set [ ].

3. Two factor sets yield isomorphic crossed product algebras if and only if
they differ by a coboundary.

4. The factor set [ ] = 1 yields the matrix ring Mn(K), where n = [L : K].
5. If A and A' correspond to factor sets [ ] and []', then A (S>K Ar =

Mn(A"), where A" corresponds to the factor set [ ] + [ ]'.

Definition 6.6.11 The relative Brauer group Br(L/K) is the set of all sim-
ple algebras A with center K such that A <S>K L = Mn(L), n = [L : K]. By
Wedderburn's Theorem it is also the set of division algebras A with center K
and A <8>A: L = Mr(L), r2 = dim# A. By (l)-(3), the crossed product algebra
construction induces an isomorphism

H2(Gal(L/K); L*) ^ > Br(L/K).

The induced group structure [A][Ar] = [A"] on Br(L/K) is given by (4)
and (5).

Crossed Modules and H3 6.6.12 Here is an elementary interpretation of
the cohomology group //3(G; A). Consider a 4-term exact sequence with A
central in TV

(*) O - » A - » W - ^ E - ^ » G - > 1 ,

and choose a based section o: G —• E of n; as in the theory of factor sets,
the map []: G x G -* ker(7r) defined by [g, h] — cr(g)a(h)a(gh)~l satisfies
a nonabelian cocycle condition

U,g\Ug,h\ = a{f)\g,h\ [f,ghl

where ff^[g,h] denotes the conjugate <j(f)[g, h]a(f)~l. Since ker(7r) =
a(N), we can lift each [/, g] to an element [[/, g]] of N and ask if an analogue
of the cocycle condition holds—for some interpretation of a^\[g, h]]. This
leads to the notion of crossed module.
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188 Group Homology and Cohomology

A crossed module is a group homomorphism a: N -> E together with an
action of E on N (written (e, n) *->> eri) satisfying the following two condi-
tions:

1. For all m,n e N, a (m)n = mnm~l.
2. For all e e E, n e N, a(en) = ea(n)e~K

For example, the canonical map TV —• Aut(N) is a crossed module for any
group N. Crossed modules also arise naturally in topology: given a Serre
fibration F —• E -> B, the map TC\{F) —> TT\(E) is a crossed module. (This
was the first application of crossed modules and was discovered in 1949 by
J. H. C. Whitehead.)

Given a crossed module TV —> E, we set A — ker(a) and G = coker(of); G
is a group because a(N) is normal in E by (2). Note that A is in the center of
TV and G acts on A, so that A is a G-module, and we have a sequence (*).

Returning to our original situation, but now assuming that N -> E is a
crossed module, the failure of [[/, g]] to satisfy the cocycle condition is given
by the function c:G3 -* A defined by the equation

c(/ , g, h)[[f g]] [[fg, h]] = ^[[g, h]] [[/, gh]].

The reader may check that c is a 3-cocyle, whose class in H3(G; A) is inde-
pendent of the choices of a and [[/, g]]. As with Yoneda extensions (3.4.6),
we say that (*) is elementarily equivalent to the crossed module

if there is a morphism of crossed modules between them, that is, a commuta-
tive diagram compatible with the actions of E and E' on N and N'

0 —> A —> N -^> E —> G —> 1N —

i
N' -

-> E

i
- • E'0 —> A —> N' —> E —> G —> 1.

Since our choices of a and [[/, g]] for (*) dictate choices for Nf -> E\ these
choices clearly determine the same 3-cocycle c. This proves half of the fol-
lowing theorem; the other half may be proven by modifying the proof of the
corresponding Yoneda Ext Theorem in [BX, section 7.5].

Crossed Module Classification Theorem 6.6.13 Two crossed modules with
kernel A and cokernel G determine the same class in H3(G; A) if and only if
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6.7 Restriction, Corestriction, Inflation, and Transfer 189

they are equivalent (under the equivalence relation generated by elementary
equivalence). In fact, there is a 1-1 correspondence for each G and A:

f equivalence classes of crossed modules ] ~
\ a \ <—> elements of / /3(G; A).

6.7 Restriction, Corestriction, Inflation, and Transfer

If G is fixed, //*(G; A) and //*(G; A) are covariant functors of the G-module
A. We now consider them as functors of the group G.

Definition 6.7.1 If p: H ->• G is a group map, the forgetful functor p# from
G-mod to //-mod is exact. For every G-module A, there is a natural surjec-
tion (p#A)n -> Ac and a natural injection AG -> (p#A)H. These two maps
extend uniquely to the two morphisms p* = cor^ (called corestriction) and
p* = res^ (called restriction) of 5-functors:

corg: / /*(/ / ; p*A) -> //*(G; A) and resg: //*(G; A) -* / /* ( / / ; p#A)

from the category G-mod to Ab (2.1.4). This is an immediate consequence of
the theorem that //*(G; A) and //*(G; A) are universal 6-functors, once we
notice that r*(A) = / /*(/ / ; p#A) and T*(A) = H*(H\ p#A) are 5-functors.

Subgroups 6.7.2 The terms restriction and corestriction are normally used
only when H is a subgroup of G. In this case 7LG is actually a free ZH-
module, a basis being given by any set of coset representatives. Therefore
every projective G-module is also a projective //-module, and we may use
any projective G-module resolution P —>> Z to compute the homology and co-
homology of H. If A is a G-module, we may calculate cor^ as the homology
//*((*) of the chain map a: P (8)// A -> P ®G A; similarly, we may calculate
res^ as the cohomology H*(fi) of the map ft: Homc(P, A) ->• Hom//(P, A).

Exercise 6.7.1 Let H be the cyclic subgroup Cm of the cyclic group Cmn.
Show that the map cor^: //*(Cm; 2) -+ H*(Cmn; Z) is the natural inclusion
Z/m <-* Z/mrc for * odd, while resg: H*(Cmn; Z) -> H*(Cm; Z) is the natu-
ral projection Z/mn ->• Z/m for * even. (See 6.2.3.)

Inflation 6.7.3 Let H be a normal subgroup of G and A a G-module. The
composites

inf: H*(G/H; AH) ^ //*(G; AH) - • //*(G; A) and
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190 Group Homology and Cohomology

coinf: //*(G; A) -> //*(G; AH) -^> //*(G///; AH)

are called the inflation and coinflation maps, respectively. Note that on H° we
have inf: (AH)G/H = AG and on Ho we have coinf: Ac = (AH)G/H-

Example 6.7.4 If A is trivial as an //-module, inflation = restriction and
coinflation = corestriction. Thus by the last exercise we see that (for * odd) the
map coinf: //*(Cm; Z) -> H*(Cmn', Z) is the natural inclusion Z/m ^ Z/mn,
while (for * even) inf: H*(Cmn; Z) —> H*(Cm; Z) is the natural projection

Z/mn -> Z/m.

Exercise 6.7.2 Show that the following compositions are zero for / ^ 0:

//*(G///; AH) - ^ #*(G; A) -^> / /*(/ / ; A);

//*(//; A) ^ > //*(G; A) c - ^ //*(G///; AH).
In general, these sequences are not exact, but rather they fit into a spectral
sequence, which is the topic of the next section. (See 6.8.3.)

Functoriality of //* and Corestriction 6.7.5 Let C be the category of pairs
(G, A), where G is a group and A is a G-module. A morphism in C from
(//, B) to (G, A) is a pair (p: H —• G,cp: B -^ p#A), where p is a group
homomorphism and <p is an //-module map. Such a pair (p, cp) induces a map
cor^ o (p: H*(H; B) -> //*(G; A). It follows (and we leave the verification as
an exercise for the reader) that //* is a covariant functor from C to Ab.

We have already seen some examples of the naturality of //*. Corestriction
is //* for (p, B = p#A) and coinflation is //* for (G - • G/H, A - • A//).

Functoriality of //* and Restriction 6.7.6 Let P be the category with the
same objects as C, except that a morphism in V from (//, /?) to (G, A) is a
pair {p.H^G cp: p#A —• B). (Note the reverse direction of cpl) Such a pair
(p, <p) induces a map <p o res^: //*(G; A) —> / /*( / / ; 5) . It follows (again as
an exercise) that //* is a contravariant functor from V to Ab.

We have already seen some examples of the naturality of //*. Restriction is
H* for (p, p#A = B) and inflation is //* for (G - • G/// , AH -» A). Conju-
gation provides another example:

Example 6.7.7 (Conjugation) Suppose that H is a subgroup of G, so that
each g e G induces an isomorphism p between H and its conjugate gHg~l.
If A is a G-module, the abelian group map jig\ A -> A {a M» ga) is actually
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6.7 Restriction, Corestriction, Inflation, and Transfer 191

an //-module map from A to p#A because jJLg{ha) = gha = (ghg~l)ga =
p(h)/jiga for all h e H and a e A. In the category C of 6.7.5, (p, //g) is
an isomorphism (//, A) = (gHg~l, A). Similarly, (p,/x"1) is an isomor-
phism (//, A) ^ (gHg~\ A) in P . Therefore we have maps / /*(/ / ; A) -+
H*(gHg-1-, A) and H*(gHg~l\ A) -> / /* ( / / ; A).

One way to compute these maps on the chain level is to choose a projec-
tive ZG-module resolution P —> Z. Since the P/ are also projective as Z//-
modules and as Z[gHg~^-modules, we may compute our homology and
cohomology groups using P. The maps iig\ Pi -> P; (p h-> gp) form an //-
module chain map from P to p#P over the identity map on Z. Hence the map
//*(// ; A) -> H*(gHg~l; A) is induced from

P ®H A^P <8>gHg-\ A, x <S>a\-^ gx <S> ga.

Similarly, the map H*(gHg~l; A) - • #*( / / ; A) is induced from

Hom//(P, A) -> Homg / / g-i(P, A), (̂  h-> (/? H 1

T h e o r e m 6 .7 .8 Conjugation by an element g e G induces the identity auto-
morphism on //*(G; Z) and //*(G; Z).

Proof The maps P ® Z -> P <g> Z and HomG(P, Z) -> HomG(P, Z) are the
identity. <>

Corollary 6.7.9 If H is a normal subgroup of G, then the conjugation action
ofG on Z induces an action ofG/H on //*(G; Z) and 7/*(G; Z).

Example 6.7.10 (Dihedral groups) The cyclic group Cm is a normal sub-
group of the dihedral group Dm (6.4.10), and Dm/Cm = C2. To determine the
action of C2 on the homology of Cm, note that there is an element g of Dm

such that gcrg~l
 =<T~1. Let p: Cm -> Cm be conjugation by g. If P denotes

the (a — 1, N) complexof 6.2.1, consider the following map from P to p # P :

0 <— Z <— ZG +^- ZG ^- ZG ^ - ZG ^— ZG +^- ZG • • •

I I " 4 ~°[ °2[ °2[ ("a)3l
l - C T - 1 N 1 - C T " 1 A ^ l - C T - 1

0 <— Z <— ZG < ZG <— ZG < ZG <— ZG < ZG • • •

An easy calculation (exercise!) shows that the map induced from conjugation
by g is multiplication by (-I)'" on H2i-\(Cm; Z) and H2i(Cm; I).
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192 Group Homology and Cohomology

6.7.1 Cup Product

As another application of the naturality of //*, we show that H*(G; Z) is an
associative graded-commutative ring, a fact that is familiar to topologists.

In 6.1.14 we constructed a cross product map x from//*(G; Z)(g)//*(//; Z)
to H*(G x H; Z). When G = / / , composition with the restriction A* =
res^ x G along the diagonal map A : G - > G x G gives a graded bilinear prod-
uct on //*(G; Z), called the cup product. If JC, j e H*(G; Z), the cup product
JC U j is just A*(JC x j ) .

Exercise 6.7.3 (Naturality of the cross and cup product) Show that the
cross product is natural in G and H in the sense that (P*JC) x (a*y) =
(p x CT)*(JC x y) in #^+* (G' x # ' ; Z) for every p:G' ^ G and a: if' -> if,
JC e / /P(G; Z), and y e Hq(H; Z). Conclude that the cup product is natural in
G, that is, that (p*x\) U (p*x2) = p*(x\ U JC2).

Theorem 6.7.11 (Cohomology ring) 77ze cup product makes //*(G; Z)
an associative, graded-commutative ring with unit. The ring structure is natu-
ral in the group G.

Proof Since the composites of A with the maps A x l , l x A : G x G - >

G x G x G are the same, and the cross product is associative (by exercise

6.1.9),

x U (y U z) = x U A*(y x z) = A*(JC x A*(v x z))

= A*(l x A)*(JC xy xz) = A*(A x 1)*(JC x y x z)

= A*(A*(JC xy) xz) = A*(x x y) U z = (x U y) U z.

If 7r: G —>* 1 is the projection, the compositions (1 x 7t)A and (n x 1)A are
the identity on //*(G; Z), and the restriction 7r* sends 1 e / /°(1; Z) to 1 e
//°(G; Z) = Z. Since we saw in exercise 6.1.9 that the cross product with
1 G //°(G; Z) is the identity map,

X U 1 = A*(X X 7T*(1)) = A * ( l X 7T)*(JC X 1) = JC X 1 = JC,

and 1 U I = I similarly. Hence the cup product is associative with unit 1.
To see that the cup product is graded-commutative, it suffices to show that

the cross product (with G = H) is graded-commutative, that is, that y x x =
(-l)ijx x y for JC e Hl{G\ T) and y e Hj(G; I). This is a consequence of
the following lemma, since if r is the involution r(g, h) = (/i, g) on G x G,
we have ;y U JC = A*(j x JC) = A*T*(JC x y). O
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6.7 Restriction, Corestriction, Inflation, and Transfer 193

Lemma 6.7.12 Let r: G x H -> H x G be the isomorphism z(g, h) = (h, g)
and write r* for the associated restriction map / / * ( / / x G, Z) —> H*(G x
//, Z). Then for xeHP(G;I) and yeHq(H;T), we have r*(y x x) =

Proof Let P -» Z be a free ZG-resolution and (2 —• Z a free Z//-resolution.
Because of the sign trick 1.2.5 used in taking total complexes, the maps a <g>
b i-> {—\)pqb (8) a from Pp ® Q^ to Qq ® Pp assemble to give a chain map
T': Tot(P ® g) -> Tot(G <8> P) over r. (Check this!) This gives the required
factor of (—l)pq, because r* is obtained by applying Hom(—, Z) and taking
cohomology. O

Exercise 6.7.4 Let fi e H2(Cm; Z) = Z/ra be a generator. Show that the ring
H*(Cm\ Z) is the polynomial ring Z[/J], modulo the obvious relation that

Exercise 6.7.5 This exercise uses exercise 6.1.10.

1. Show that there is a cup product on H*(Gm, k) for any commutative ring
k, making H* into an associative, graded-commutative ^-algebra, natural
inG.

2. Suppose that k = Z/ra and G = Cm, with m odd. Show that the graded
algebra H*(Cm; Z/m) is isomorphic to the ring Z/m[cr, /3]/(<J2 = /3cr =
0), with ere//1 and£e/ / 2 .

Coalgebra Structure 6.7.13 Dual to the notion of a ^-algebra is the notion
of a coalgebra over a commutative ring &. We call a ^-module / / a coalge-
bra if there are module homomorphisms A: / / —>• H <g>k H (the coproduct)
and e: / / -> A: (the counit) such that both composites (e ® 1) A and ( l 0 e ) A
(mapping H -> H ® H -> H) are the identity on / / . We say that the coal-
gebra is coassociative if in addition (A(g)l)A = ( l ® A ) A as maps / / -»
H(g>H^H<g)H<g)H. For example, / / = kG is a cocommutative coalge-
bra; the coproduct is the diagonal map from kG to k(G x G) = kG <g> kG and
satisfies A(g) = g <g> g, while the counit is the usual augmentation e(g) = l.
More examples are given below in (9.10.8).

Lemma 6.7.14 Suppose that k is afield, or more generally that //*(G; k) is
flat as a k-module. Then //*(G; k) is a cocommutative coalgebra.

Proof Recall from exercises 6.1.7 and 6.1.12 that //*(G x G; k) is isomor-
phic to H*(G; k) <g)jc //*(G; k), so the diagonal map A : G - > G x G induces
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194 Group Homology and Cohomology

a map A*: //*(G; k) -> #*(G; k) ®k #*(G; k). The projection e: G -> 1 in-
duces a map 6:* from //*(G; k) to //*(1; A:) = k. Since (e x 1) A = (1 x e)A as
maps G -> G x G -> G and (A x 1) A = (1 x A) A as maps G-+ G x G-*
G x G x G, we have the required identities (e* ® 1) A* = (1 (g) £*)A* and

= (1® A*)A*. O

Definition 6.7.15 (Hopf algebras) A bialgebra is an algebra H, together with
algebra homomorphisms A and s making H into a cocommutative coalgebra.
We call H a Hopf algebra if in addition there is a A;-module homomorphism
s:H -+ H (called the antipode) such that both maps x(s <S> 1)A and x( l ®
s)A (from H->H®H-^H®H^H) equal the the projection H -^
k^ H.

For example, the involution s(g) = g~l makes kG into a Hopf algebra,
because (s <S> l)A(g) = g~l <g> g and (1 (8) s)A(g) = ^ (E) g"1. We will see
another example in exercise 7.3.7.

Exercise 6.7.6 Suppose that G is an abelian group, so that the product
/i: G x G ^ G is a group homomorphism and that A: is a field. Show that
#*(G; k) and H*(G\ k) are both Hopf algebras.

Transfer Maps 6.7.16 Let H be a normal subgroup of finite index in G, and
let A be a G-module. The sum Yl 8a o v e r m e right cosets [Hg] of H yields
a well-defined map from A to A//. This map sends (ga — a) to zero, so it
induces a well-defined map Jr: Ac -> A//. Since //*(G; A) is a universal <5-
functor, tr extends to a unique map of 5-functors, called the transfer map:

tr:H*(G',A)-> H*(H;A).

Similarly, the sum J^8a o v e r t n e teft cosets {gH} of / / yields a well-
defined map from AH to A. The image is G-invariant, so it induces a well-
defined map tr: AH -> AG. This induces a map of 5-functors, also called the
transfer map:

tr :H*(H\A)-> H*(G; A).

Lemma 6.7.17 The composite cor^ o tr is multiplication by the index [G :
H] on //*(G; A). Similarly, the composite tr o res^ is multiplication by [G :
H]onH*(G;A).

Proof In Ac and AG, the sums over the cosets are just ^ga = ( ^ g) - a =
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6.8 The Spectral Sequence 195

[G : H]a. The corresponding maps between the 5-functors are determined by
their behavior on AQ and AH, so they must also be multiplication by [G : / / ] .

Exercise 6.7.7 Show that the transfer map defined here agrees with the trans-
fer map defined in 6.3.9 using Shapiro's Lemma. Hint: By universality, it suf-
fices to check what happens on HQ and H°.

Exercise 6.7.8 Use the transfer maps to give another proof of 6.5.8, that
when G is a finite group of order m = [G : 1] multiplication by m is the zero
map on Hn(G; A) and Hn{G; A) for n ± 0.

6.8 The Spectral Sequence

The inflation and restriction maps fit into a filtration of //*(G; A) first studied
in 1946 by Lyndon. The spectral sequence codifying this relationship was
found in 1953 by Hochschild and Serre. We shall derive it as a special case
of the Grothendieck spectral sequence 5.8.3, using the following lemma.

Lemma 6.8.1 If H is a normal subgroup of G, and A is a G-module, then
both AH and AH are G/H-modules. Moreover, the forgetful functor p # from
G/H-mod to G-mod has —H as left adjoint and —H as right adjoint.

Proof A G///-module is the same thing as a G-module on which H acts triv-
ially. Therefore AH and AH are G///-modules by construction. The universal
properties of AH —> A and A -> AH translate into the natural isomorphisms

HomG(A, p*B) = HomG///(A//, B) and

HomG(p##, A) ^ HomG///(#, AH),

which provide the required adjunctions. O

Lyndon/Hochschild-Serre Spectral Sequence 6.8.2 For every normal sub-
group H of a group G, there are two convergent first quadrant spectral se-
quences:

E2
pq = Hp(G/H; Hq(H; A)) => Hp+q{G\ A);

E{q = Hp(G/H; Hq(H; A)) => Hp+q(G; A).
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196 Group Homology and Cohomology

The edge maps #*(G; A) -+ / /*(G/#; AH) and H*(H; A)G/H -> #*(G; A)
in the first spectral sequence are induced from the coinfiation and corestric-
tion maps. The edge maps H*(G/H; AH) -> #*(G; A) and //*(G; A) ->
/ /* ( / / ; A)G/H in the second spectral sequence are induced from the inflation
and restriction maps.

Proof We claim that the functors — Q and —G factor through G/H-mod as
follows:

~H -H

G-mod > G/H-mod G-mod > G/H-mod
G ^^ f̂ G/H —G \^ }£

Ab Ab

To see this, let A be a G-module; we saw in the last lemma that A// and
AH are G///-modules. The abelian group (AH)G/H is obtained from A by
first modding out by the relations ha — a with h e H, and then modding
out by the relations ga — a for g e G/H. If g is the image of g e G then
ga — a = ga — a, so we see that (AH)G/H is A/3A = Ac-

Similarly, (AH)G/H is obtained from A by first restricting to the subgroup
of all a e A with ha =a, and then further restricting to the subgroup of all
a with ga = a for g e G/H. If g is the image of g e G, ga = ga. Thus
(AH)G/H = AG

Finally, we proved in Lemma 6.8.1 that —# is left adjoint to an exact func-
tor, and that —H is right adjoint to an exact functor. We saw in 2.3.10 that this
implies that — # preserves projectives and that —H preserves injectives, so that
the Grothendieck spectral sequence exists. The description of the edge maps is
just a translation of the description given in 5.8.3. O

Low Degree Terms 6.8.3 The exact sequences of low degree terms in the
Lyndon-Hochschild-Serre spectral sequence are

H2(G; A) ^ > H2(G/H; AH) -^ HX(H; A)G/H ^ > HX{G; A) ^ f HX(G/H; AH) -> 0;

0 -* H\G/H; AH) -^> H\G\ A) - ^ Hl{H\ A)G/H -^ H2(G/H; AH) -^> H2(G; A).

Example 6.8.4 If H is in the center of G, G/H acts trivially on / /*(/ / ; A)
and / /* ( / / ; A), so we may compute the E2 terms from H*(H\ Z) and Uni-
versal Coefficient theorems. For example, let G be the cyclic group Cim and
H = Cm for m odd. Then Hp(C2\ Hq(Cm; Z)) vanishes unless p = 0 or q = 0.
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6.8 The Spectral Sequence 197

The groups Z/2 lie along the Jt-axis, and the groups 1/m lie along the y-axis.
The spectral sequence collapses at E2 to yield the formula for H*(C2m; 2) that
we derived in 6.2.3.

0

Z/m

0

Z/m

Z

0

0

0

Z/2

0

0

0

G =

0

Z/2

c2m

0

0

Z/m

0

0

z

0

0

0

Z/2

0

0

0

G

0

zi:

= D2m

I 0

Example 6.8.5 (Dihedral groups) Let G be the dihedral group D2m = Cm x
C2 and set H = Cm. If m is odd, then once again Hp(C2\ Hq(Cm)) vanishes
unless p = 0 or q = 0. As before, the groups Z/2 lie along the jc-axis, but
along the y-axis we now have Hq(Cm)c2- From our calculation 6.7.10 of the
action of C2 on H*(Cm) we see that Hq(Cm)c2 is z e r o unless q = 0, when it is
Z, or q = 3 (mod 4), when it is Z/m. Summarizing, we have computed that

Hn(D2m;I) =
Z/2 ifn = 1 (mod 4)
Z/2m ifn = 3 (mod 4)
0 otherwise

Example 6.8.6 (Gysin sequence) A central element t of infinite order in G
generates an infinite cyclic subgroup T. As in 5.3.7 the spectral sequence
collapses to the long exact "Gysin" sequence for every trivial G-module k :

Hn-2(G/T;k)->Hn-i(G;k)-

Exercise 6.8.1 The infinite dihedral group DOQ is the semidirect product T x
C2, where o e C2 acts as multiplication by —1 on the infinite cyclic group
T (crtcr~l = t~l). Show that a acts as multiplication by —1 on H\(T; Z), and
deduce that

Hn(Doo; Z) ^
ifn = 0
if n = 1,3,5,7,
if n = 2, 4, 6, 8,
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198 Group Homology and Cohomology

Hint: By naturality, //*(C2) is a summand of //*(Doo)-

Presentations 6.8.7 A presentation of a group by generators and relations
amounts to the same thing as a short exact sequence of groups 1 -> R -> F —>
G —> 1, where F is the free group on the generators of G and R is the normal
subgroup of F generated by the relations of G. Note that R is also a free
group, being a subgroup of the free group F. The spectral sequence of this
extension has E2

pq = 0 for q / 0, 1 and Hn(F\ 1) = 0 for n ^ 0, 1. Therefore
the differentials Hn+2(G; T) -> Hn(G; H\(R)) must be isomorphisms for n >
1, and we have the low degree sequence

[—1
The action of G on R/[R/R] is given by g • r = frf~l, where f e F lifts g e
G and r e /?. The following calculation shows that (R/[R/R])G = R/[F, R]:

(g - 1) • r = frf~l - r EE / r / ~ V"1 = [/, r] .

By inspection of the low degree sequence, we see that we have proven the
following result, which was first established in [Hopf].

Hopf's Theorem 6.8.8 IfG = F/R with F free, then H2{G\ 1) ^ R?lF{^].

6.9 Universal Central Extensions

A central extension of G is an extension 0 -> A —• X —> G —> 1 such that
A is in the center of X. (If n and A are clear from the context, we will just
say that X is a central extension of G.) A homomorphism over G from X
to another central extension 0 -> # -> F —• G - • 1 of G is a map / : X ->
y such that JT = rf. X is called a universal central extension of G if for
every central extension 0 ->• 5 - • y —̂ > G -^ 1 of G there exists a unique
homomorphism / from X to y over G.

^ G —> I0 -

0 -

-> A —

i
-> B -

-» X

rri

-> Y

Clearly, a universal central extension is unique up to isomorphism over G,
provided that it exists. We will show that a necessary and sufficient condition
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6.9 Universal Central Extensions 199

for a universal central extension to exist is that G is perfect; recall that a group
G is perfect if it equals its commutator subgroup [G, G].

Example 6.9.1 The smallest perfect group is A5. The universal central ex-
tension of As describes A 5 as the quotient PSL2(¥s) of the binary icosahedral
group X = SL2(F5) by the center of order 2, A = zb(^) [Suz, 2.9].

(~o -1)

0 —> 1/2 — ^ - U SL2(F5) —> PSL2(F5) —> 1.

Lemma 6.9.2 If G has a universal central extension X, then both G and X
are perfect.

Proof If X is perfect, then so is G. If X is not perfect, then B = X/[X, X] is
a nonzero abelian group, 0 ^ 5 ^ - 5 x G - > G - ^ l i s a central extension,
and there are two homomorphisms X —>• B x G over G : (0, n) and (/?r, 7r).

O

Exercises 6.9.1

1. I f O ^ A ^ X - > G ^ l i s any central extension in which G and X
are perfect groups, show that H\{X\ Z) = 0 and that there is an exact
sequence

H2(X; Z) -^> H2(G; I) -> A -> 0.

2. Show that if G is perfect then central extensions 0-^A-+X^G^» 1
are classified by Hom(//2(G; Z), A). (Use exercise 6.1.5.)

Remark The above exercises suggest that //2(G; Z) has something to do with
universal central extensions. Indeed, we shall see that the universal central
extension 0 - > A ^ X ^ G - + l h a s A = H2(G; I). The group H2(G; Z) is
called the Schur multiplier of G in honor of Schur, who first investigated the
notion of a universal central extension of a finite group G in [Schur].

As indicated in section 6.6, Schur was concerned with central exten-
sions with A = C*, and these are classified by the group //2(G; C*) =
Hom(//2(G; Z), O ) . Since G is finite, #2(G; O ) is the Pontrjagin dual
(3.2.3) of the finite group H2(G; I). Hence the groups //2(G; C*) and
H2(G\ Z) are noncanonically isomorphic.

Construction of a Universal Central Extension 6.9.3 Choose a free group
F mapping onto G and let R c F denote the kernel. Then [/?, F] is a normal
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200 Group Homology and Cohomology

subgroup of F, and the short exact sequence l - * / ? - > - F - * G - * l induces
a central extension

0 -> R/[R, F] -> F/[R, F] -> G -> 1.

Now suppose that G is perfect. Since [F, F] maps onto G, there is a surjection
from [F, F]/[#, F] to G; its kernel is the subgroup (R n [F, F])/[#, F],
which Hopf's Theorem 6.8.8 states is the Schur multiplier H2(G; I). We shall
prove that

0 -> (R H [F, F])/[tf, F] -> [F, F]/[R, F] -> G -> 1

is a universal central extension of G.

Lemma 6.9.4 [F, F]/[R, F] is a perfect group.

Proof Since [F, F ] and F both map onto G, any x e F may be written as

x = x'r with x1 e [F, F ] and r e R. Writing y e F as / s with / e [F, F ] and

s e R,we find that in F/[R, F]

Thus every generator [JC, y] of [F, F]/[R, F] is a commutator of elements x'
a n d / o f [F,F]/[/?,F]. <0>

Theorem 6.9.5 A group G has a universal central extension if and only if G
is perfect. In this case, the universal central extension is

[F, F] n
(*) 0->//2(G, ) - • _ — — • G - M .

Here l^R^F^G-^ I is any presentation of G.

Proof If G has a universal central extension, then G must be perfect by 6.9.2.
Now suppose that G is perfect; we have just seen that (*) is a central extension
and that [F, F]/[R, F] is perfect. In order to show that (*) is universal, let
0 -» B —• Y —> G —• 1 be another central extension. Since F is a free group,
the map F -^ G lifts to a map h: F —• Y. Since xh{R) = 1, h{R) is in the
central subgroup B of Y. This implies that h([R, F]) = 1. Therefore h induces
a map
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6.9 Universal Central Extensions 201

such that XX) = iz, that is, such that r\ is a homomorphism over G. The follow-
ing lemma shows that rj is unique and finishes the proof that (*) is universal.

Lemma 6.9.6
central extensions, and X is perfect, there is at most one homomorphism f
from X to Y over G.

Proof If f\ and f2 are two such homomorphisms, define a set map <p: X —>• B
by the formula f\(x) = f2(x)(p(x). Since B is central,

f\(xxr) = f2(x)cp(x)f2(x
f)(p(xf) = f2(xx')(p(x)cp(x').

Hence cp(xx') = (p(x)(p(xf), that is, <p is a group homomorphism. Since B is an
abelian group, cp must factor through X/[X, X] = l. Hence cp(x) = 1 for all JC,
that is, / = / ' . O

Exercise 6.9.2 (Composition) I f O - + £ ^ 7 - ^ > X - > l and 0 ^ A ->

X —> G - • 1 are central extensions, show that the "composition" 0 ->

ker(7rp) —> y —> G -> 1 is a central extension of G. If X is a universal cen-

tral extension of G, conclude that every central extension 0 -> B —> Y —>>
X —>• 1 splits.

Recognition Criterion 6.9.7 A central extension 0 - • A ->• X ^ > G -^ 1
is universal if and only if X is perfect and every central extension of X splits
as a direct product of X with an abelian group.

Proof The 'only if direction follows from the preceding exercise. Now sup-
pose that X is perfect and that every central extension of X splits. Given
a central extension 0 -> B —• Y —> G -> 1 of G, we can construct a ho-
momorphism from X to y over G as follows. Let P be the pullback group
{(JC, y) e X x y : 7T(JC) = r(y)}. Then in the diagram

B —> P > X

0 —> B —> Y - ^ G —> I

the top row is a central extension of X, so it is split by a map o\ X ->- P.
The composite / : X —• P -» 7 is the homomorphism over G we wanted to
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202 Group Homology and Cohomology

construct. Since X is perfect, / is unique (6.9.6); this proves that X is a
universal central extension of G. <>

Corollary 6.9.8 IfO^A-^X->G^ 1 is a universal central extension,
then

Corollary 6.9.9 IfG is a perfect group and #2(G; Z) = 0, then every central
extension ofG is a direct product of G with an abelian group.

0 - ^ A - > A x G ^ G ^ l

Proof Evidently 0 -> 0 -> G = G -» 1 is the universal central extension of
G. <>

Example 6.9.10 (Alternating groups) It is well known that the alternating
groups A n are perfect if n > 5. From [Suz, 3.2] we see that

1 1/6 if n = 6 , 7
1/2 i f n = 4 , 5 o r r c > 8
0 ifn = l ,2 ,3

We have already mentioned (6.9.1) the universal central extension of A5.
In general, the regular representation An -> SOn-\ gives rise to a central
extension

0 -> Z/2 -* An -> An -> 1

by restricting the central extension

0 -> Z/2 -> Spin^.^lR) -> 5On_i ^ 1.

If « 7̂  6, 7, An must be the universal central extension of An.

Example 6.9.11 It is known [Suz, 1.9] that if F is a field, then the spe-
cial linear group SLn(F) is perfect, with the exception of SL2($2) = D$ and
5L2(F3), which is a group of order 24. The center of SLn(F) is the group
/jLn(F) of nth roots of unity in F (times the identity matrix / ) , and the quo-
tient of SLn(F) by IJLH{F) is the projective special linear group PSLn(F).
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6.10 Covering Spaces in Topology 203

When F = F^ is a finite field, we know that H2(SLn(¥q)\ Z) = 0 [Suz, 2.9]. It
follows, again with two exceptions, that

0 -» fining) —> 5LW(F^) -> P S L , , ^ ) -> 1

is the universal central extension of the finite group PSLn(\fq).

Example 6.9.12 The elementary matrix e\. in GLn(R) is the matrix that co-
incides with the identity matrix except for the single nonzero entry X in the
(/, j) spot. The subgroup En(R) of GLn(R) generated by the elementary ma-
trices is a perfect group when n > 3 because \e\., e^k] = e\^ for / ^ k. We now
describe the universal central extension of En(R).

Definition 6.9.13 Let R be any ring. For n > 3 the Steinberg group Stn(R) is
the group that is presented as having generators xf- (X e R, 1 < /, j < n) and
relations

" XiJXiJ =XiJ '

2. [**•, x^k] = xf^ for / ^ A:; and

3. [xfj, xfy = 1 for j ^ it and i ^ €.

There is a homomorphism Stn(R) -^ £n(/?) sending JC?". to e^ because these
relations are also satisfied by the elementary matrices. It is known [Milnor]
[Swan, p. 208] that Stn(R) is actually the universal central extension of En(R)
for n > 5. The kernel of Stn(R) -* En(R) is denoted ^2(ft> ^) and may be
identified with the Schur multiplier. The direct limit K2(R) of the groups
K2(n, R) is an important part of algebraic ^-theory. See [Milnor] for more
details and computations.

6.10 Covering Spaces in Topology

Let G be a group that acts on a topological space X. We shall assume that
each translation X -> X arising from multiplication by an element g e G is
a continuous map and that the action is proper in the sense that every point
of X is contained in a small open subset U such that every translate gU is
disjoint from U. Under these hypotheses, the quotient topology on the orbit
space X/G is such that the projection p: X ->• X/G makes X into a covering
space of X/G. Indeed, every small open set U is mapped homeomorphically
onto its image in X/G.
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204 Group Homology and Cohomology

Example 6.10.1 Let Y be a connected, locally simply connected space, so
that its universal covering space Y -> Y exists. The group G = n\(Y) acts
properly on X = F, and 7 /G = Y.

Lemma 6.10.2 IfG acts properly on X, the singular complex S*(X) of X is
a chain complex of free ZG-modules, and S*(X)G is the singular complex of
X/G.

Proof Let Bn denote the set of continuous maps a: An —> X. G acts on Bn,
with go being the composition of a with translation by g e G. Since Sn(X)
is the free Z-module with basis 23, Sn(X) is a G-module. Since translation
by g sends the faces of or to the faces of go, the boundary map d: Sn(X) ->
Sn-\(X) is a G-map, so Sn(X) is a G-module complex.

Let B'n denote the set of continuous maps af\ An - • X/G. The unique path
lifting property of a covering space implies that any a'\ An - • X/G may be
lifted to a map a: An -+ X and that every other lift is go for some g e G.
As the ga are distinct, this proves that S = G x ^ a s a G-set. Choosing one
lift for each a' gives a map B' - • S, hence a basis for 5n(X) as a free ZG-
module. This proves that the natural map from Sn(X) to Sn(X/G) induces an
isomorphism Sn(X)G ^ Sn(X/G). O

Corollary 6.10.3 If G acts properly on X, #*(X, Z) and H*\X, Z) are G-
modules.

Definition 6.10.4 (Classifying space) A CW complex with fundamental
group G and contractible universal covering space is called a classifying space
for G, or a model for BG\ by abuse of notation, we will call such a space
BG, and write EG for its universal covering space. From the Serre fibration
G-+ EG-+ BGwz see that

0 otherwise

It is well known that any two classifying spaces for G are homotopy equiva-
lent. One way to find a model for BG is to find a contractible CW complex X
on which G acts properly (and cellularly) and take BG = X/G.

Theorem 6.10.5 H*(BG;Z)^ #*(G; Z) and //*(£G; Z) ^ #*(G; Z).

Proof Since H*(EG) = //*(point) is 0 for * ^ 0 and Z for * = 0, the chain
complex S*(EG) is a free ZG-module resolution of Z. Hence //*(G; Z) =
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6.10 Covering Spaces in Topology 205

H*(S*(EG) <g)ZG Z) = H*(S*(EG)G) = H*(S*(BG)) = H*(BG; Z). Simi-
larly, //*(G; Z) is the cohomology of

HomG(S*(£G), Z) = HomAb(S*(£G)G, Z) = HomAb(S*(£G), Z),

the chain complex whose cohomology is H*(BG; Z). <>

Remark The relationship between the homology (resp. cohomology) of G and
BG was worked out during World War II by Hopf and Freudenthal (resp. by
Eilenberg and MacLane). MacLane asserts in [MacH] that this interplay "was
the starting point of homological algebra." Here are some useful models of
classifying spaces.

Example 6.10.6 The circle Sl and the complex units C* are two models for

expressing R (resp. C) as the universal cover of Sl (resp. C*) are well known.

Example 6.10.7 The infinite sphere S°° is contractible, and G = C2 acts
properly in such a way that S°°/G = RP°°. Hence we may take RP°° as our
model for BC2.

Example 6.10.8 Let S be a Riemann surface of genus g / 0. The funda-
mental group G = TT\(S) has generators a\, • • •, ag, b\, • • •, bg and the single
defining relation [a\, b\][a2, b2] • • • [ag, bg] = 1. One knows that the univer-
sal cover X of S is the hyperbolic plane, which is contractible. Thus S is the
classifying space BG.

Example 6.10.9 Any connected Lie group L has a maximal compact sub-
group K, and the homogeneous space X = L/K is diffeomorphic to Rd,
where d = dim(L) — dim(K). If F is a discrete torsionfree subgroup of L,
then F H K = {!}, so F acts properly on X. Consequently, the double coset
space F\X = F\L/K is a model for the classifying space BF.

For example, the special linear group SLn(R) has SOn(R) as maximal
compact, so X = SOn(R) \ SLn(R) ^ Kd where d = ^ ^ - 1. SLn(l) is a
discrete but not torsionfree subgroup of SLn(R). For N > 3, the principal con-
gruence subgroup F(N) of level N is the subgroup of all matrices in SLn(Z)
congruent to the identity matrix modulo N. One knows that F(N) is torsion-
free, so XI F(N) is a model for BF(N).
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206 Group Homology and Cohomology

Theorem 6.10.10 Let G act properly on a space X with TTQ(X) = 0. Then for
every abelian group A there are spectral sequences

JE2
pq = Hp(G; Hq{X, A)) => Hp+q(X/G, A);

llElq = HP(G; Hq(X, A)) => Hp+q(X/G, A).

Proof Let us write H*(G; —) for the hyperhomology functors D_*(—G) de-
fined in 6.1.15 (or 5.7.4). Since C = S*(X) ®j A is a chain complex of G-
modules, there are two spectral sequences converging to the group hyperho-
mology D-O*(G; C). Shapiro's Lemma 6.3.2 tells us that Hq(Sn(X) ®j A) is
0 for q ^ 0 and Sn(X/G) ®zAforq=0 (6.10.2). Hence the first spectral
sequence collapses to yield

Hp(G; C) = Hp(S*(X/G) ® A) = HP(X/G, A).

The second spectral sequence has the desired E2 term

nE2
pq = Hp(G; HqC) = Hp(G; Hq(X, A)).

Similarly, if we write H*(G; —) for the group hypercohomology K*(—G) and
D for HomAb(SOT> A), there are two spectral sequences (6.1.15) converging
to H*(G; D). Since

Dn = Hom(ZG ® Sn(X/G), A) = Hom(ZG, Hom(Sn(X/G), A)),

Shapiro's Lemma tells us that the first spectral sequence collapses to yield
H*(G; D) = H*(X/G, A), and the second spectral sequence has the desired
Ei term

llE{q = Hp(G; Hq(D)) = HP{G\ Hq(A)). O

Remark There is a map from X/G to BG such that X -+ X/G -> BG has
the homotopy type of a Serre fibration. The spectral sequences (6.10.10) may
then be viewed as special cases of the Serre spectral sequence 5.3.2.

6.11 Galois Cohomology and Profinite Groups

The notion of profinite group encodes many of the important properties of the
Galois group Gdl(L/K) of a Galois field extension (i.e., an algebraic extension
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6.11 Galois Cohomology and Profinite Groups 207

that is separable and normal but not necessarily finite). The largest Galois
extension of any field K is the separable closure Ks of K; Ks is the subfield
of the algebraic closure K consisting of all elements separable over K, and
KS = K if char(X) = 0.

Ks is also the union UL; of the partially ordered set {L; : / e 1} of all finite
Galois field extensions of K. If K C L/ c L;, the Fundamental Theorem of
finite Galois theory [BAI, 4.5] states that there is a natural surjection from
Gal(Lj/K) to Gdl(Lt/K) with kernel Gal(L7/L/). In other words, there is
a contravariant functor Gal(—/K) from the filtered poset / to the category of
finite groups.

KrulPs Theorem 6.11.1 The Galois group Gal(Ks/K) of all field automor-
phisms of K fixing K is isomorphic to the inverse limit lim Gd\(Li/K) of finite
groups.

Proof Since the L; are splitting fields over K, any automorphism a of Ks

over K restricts to an automorphism a\ of L/. The resulting restriction maps
Gal(Ks/K) -> Gal(L//^T) are compatible and yield a group homomorphism
0 from GQ\.(KSIK) to the set lim Gal(L//^T) of all compatible families (at) e

n Gal(Li/K). If a / 1, then a(x) ^ x for some x e Ks = UL,-; if x G L/,
then Qf/(x) = a(jc) / x. Therefore 0(a) ^ 1, that is, 0 is injective. Conversely,
if we are given (ot{) in limGal(L//^T), define a e Gal(X5/AT) as follows. If

x e Ks, choose L( containing x and set a(x) = at(x)\ compatibility of the a/'s
implies that a(x) is independent of the choice of /. Since any x, y e Ks lie in
some Li, a is a field automorphism of Ks, that is, an element of Gal(Ks/K).
By construction, (p(a) = (a/). Hence 0 is surjective and so an isomorphism.

Example 6.11.2 If F^ is a finite field, its separable and algebraic closures co-

incide. The poset of finite extensions ¥qn of F^ is the poset of natural numbers,

partially ordered by divisibility, and Gal(F^/F^) is lim(Z/nZ) = I = l\p Tp.

For every prime /?, let K be the union of all the F̂ n with (/?, n) = 1; then

There is a topology on Gal(X5/#) = limGal(L//^) that makes it into a

compact Hausdorff group: the profinite topology. To define it, recall that the
discrete topology on a set X is the topology in which every subset of X is both
open and closed. If we are given an inverse system {Xi} of topological spaces,
we give the inverse limit lim Xi the topology it inherits as a subspace of the
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208 Group Homology and Cohomology

product FIX/. If the X; are all finite discrete sets, the resulting topology on
X = lim X; is called the profinite topology on X. Since each Gdl(Li/K) is a

finite discrete set, this defines the profinite topology on Gdl(Ks/K). To show
that this is a compact Hausdorff group, we introduce the concepts of profinite
set and profinite group.

Profinite Sets 6.11.3 A profinite set is a set X that is the inverse limit lim X;

of some system {X;} of finite sets, made into a topological space using the
profinite topology described above. The choice of the inverse system is not
part of the data; we will see below that the profinite structure is independent of
this choice.

The Cantor set is an interesting example of a profinite set; the subspace
{0, 1, j , . . . , i , . . . } of R is another. Profinite groups like Zp and Ga\(Ks/K)
form another important class of profinite sets.

Some elementary topological remarks are in order. Any discrete space is
Hausdorff; as a subspace of FIX;, limX; is Hausdorff. A discrete space is

compact iff it is finite. A topological space X is called totally disconnected
if every point of X is a connected component, and discrete spaces are totally
disconnected.

Exercise 6.11.1 Suppose that {X;} is an inverse system of compact Hausdorff
spaces. Show that lim Xi is also compact Hausdorff. Then show that if each of

the Xi is totally disconnected, lim X; is also totally disconnected. This proves

one direction of the following theorem; the converse is proven in [Magid].

Theorem 6.11.4 Profinite spaces are the same thing as totally disconnected,
compact Hausdorff topological spaces. In particular, the profinite structure of
X = lim Xi depends only upon the topology and not upon the choice of inverse

system {Xi}.

Exercise 6.11.2 Let X be a profinite set.

1. Show that there is a canonical choice of the inverse system {X;} making
X profinite, namely the system of its finite topological quotient spaces.

2. Show that every closed subspace of X is profinite.
3. If X is infinite, show that X has an open subspace U that is not profinite.

Definition 6.11.5 A profinite group is a group G that is an inverse limit of fi-
nite groups, made into a topological space using the profinite topology. Clearly
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6.11 Galois Cohomology and Profinite Groups 209

G is a profinite set that is also a compact Hausdorff topological group. In fact,
the converse is true: Every totally disconnected compact Hausdorff group is a
profinite group. A proof of this fact may be found in [Shatz], which we recom-
mend as a good general reference for profinite groups and their cohomology.

Examples 6.11.6 (Profinite groups)

1. Any finite group is trivially profinite.
2. The p-adic integers 1p = lim Z/plZ are profinite by birthright.

3. Krull's Theorem 6.11.1 states that GdX{Ks/K) is a profinite group.
4. (Profinite completion) Let G be any (discrete) group. The profinite com-

pletion G of G is the inverse limit of the system of all finite quotient

groups G/H of G. For example, the profinite completion of G = Z is

I = lim(Z/nZ), but the profinite completion of G = Q/Z is 0. The ker-

nel of the natural map G ->• G is the intersection of all subgroups of

finite index in G.

Exercise 6.11.3 Show that the category of profinite abelian groups is dual to
the category of torsion abelian groups. Hint: Show that A is a torsion abelian
group iff its Pontrjagin dual Hom(A, Q/Z) is a profinite group.

Exercise 6.11.4 Let G be a profinite group, and let H be a subgroup of G.

1. If H is closed in G, show that H is also a profinite group.
2. If H is closed and normal, show that G/H is a profinite group.
3. If H is open in G, show that the index [G : H] is finite, that H is closed

in G, and therefore that H is profinite.

It is useful to have a canonical way of writing a profinite group G as the
inverse limit of finite groups, and this is provided by the next result.

Lemma 6.11.7 If G is a profinite group, let U be the poset of all open normal
subgroups U of G. Then U forms a fundamental system of neighborhoods of
1, each G/U is a finite group, and G = lim G/U.

Proof If G = lim G/, then the £/,- = ker(G —• Gt) are open normal subgroups

of G and the natural map G -> lim G; factors through lim G/U(. Since lim is

left exact, this yields G = lim G/Ut and shows that {£/;} (hence U) forms a

fundamental system of neighborhoods of 1. Hence every open subgroup U of
G contains some £/,-, and this suffices to show that G = \im{G/U : U e U}.

(Check this!) O
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210 Group Homology and Cohomology

Exercise 6.11.5 (Fundamental Theorem of Galois theory) Prove that the
usual correspondence of Galois theory induces a bijection between the set
of topologically closed subgroups H of G = Gdl(Ks/K) and the set of in-
termediate fields K C L C Ks. (Here L = (KS)

H and H = {g\gx = x for all
x € L}.) Show that the closed normal subgroups of G correspond to the Galois
extensions L of K. Conclude that if L/K is any Galois field extension, then
Gal(L//O is a profinite group: Gal(L/iO = G/H.

To connect this result to more familiar Galois theory, show that the open
subgroups H ofGa\(Ks/K) correspond to the finite field extensions of K, and
that the open normal subgroups of Ga\(Ks/K) correspond to the finite Galois
extensions of A'.

In order to discuss the cohomology of profinite groups, we need to introduce
an appropriate notion of G-module.

Definition 6.11.8 Let G be a profinite group. A discrete G-module is a G-
module A such that, when A is given the discrete topology, the multiplication
map G x A -> A is continuous. The next exercise provides a more elementary
description of this.

Exercise 6.11.6

1. If A is a discrete G-module, show that for every a e A the stabilizer U =
{g e G : ga = a} is an open subgroup of G, and a e Au, the submodule
fixed by U.

2. If A is any G-module, let UAU denote the union of all subgroups Au as
U runs over the set of open subgroups of G. Show that A is a discrete
G-module «=^ UAU = A.

Examples 6.11.9 The field Ks is a discrete Gal(^/X')-module for every K.
If G is a finite group, every G-module is discrete, because G x A has the
discrete topology.

A map of discrete G-modules is defined to be just a G-module map, so
that the category Co of discrete G-modules is a full additive subcategory of
G-mod. The following exercise shows that in fact Co is an abelian subcate-
gory of G-mod.

Exercise 6.11.7 Let / : A -> B be a map of discrete G-modules. Show that
the G-modules ker(/) = [a e A : f(a) = 0}, / (A) , and coker(/) = B/f(A)
are discrete G-modules. Conclude that CG is an abelian category and that the
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6.11 Galois Cohomology and Profinite Groups 211

inclusion CG C G-mod is an exact functor. Then show that for all discrete
G-modules A and all G-modules B,

HomG(A, B) = HomG(A, UBU).

Conclude that the inclusion CG C G-mod has the functor U(-)u as right ad-
joint.

Lemma 6.11.10 The abelian category CG has enough injectives.

Proof We may embed any discrete G-module A in an injective G-module / .
By the above exercise, A c UIU c / . Since U(—)u is right adjoint to the exact
functor CG C G-mod, it preserves injectives (2.3.10). Consequently UIU is
an injective object in CG- •

Remark CG does not have enough projectives.

Profinite Cohomology 6.11.11 The cohomology groups H*(G\ A) of a
profinite group G with coefficients in a discrete G-module A are defined to be
the right derived functors of the functor CG -> Ab sending A to AG, applied
to A.

From this definition, we see that //°(G; A) = AG and that when G is a finite
group, H*(G; A) agrees with the usual group cohomology.

In fact, many of the results for the cohomology of finite groups carry over
to profinite groups. For example, there is a category of profinite groups, a mor-
phism being a continuous group homomorphism, and H*(G; A) is contravari-
ant in G via the restriction maps. Indeed, the entire discussion of the functori-
ality of H* in sections 6.3 and 6.7 carries through verbatim to our context. Of
course, the inflation maps inf: H*(G/H; AH) -> //*(G; A) are only defined
when H is a closed normal subgroup of G, because the map G -> G/H is only
continuous when H is a closed normal subgroup of G. Similarly, whenever
H is a closed normal subgroup of G, we can construct a Lyndon/Hochschild-
Serre spectral sequence (6.8.2):

Ep
2
q = HP(G/H; Hq(H\ A)) =» Hp+q(G; A).

Since CG doesn't have enough projectives, we need to modify the discussion
in section 6.5 about the bar construction in order to talk about cocycles.

Cochains and cocycles 6.11.12 If A is a discrete G-module, let Cn(G, A)
denote the set of continuous maps from Gn to A. (When n = 0, C°(G, A) = A
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212 Group Homology and Cohomology

because G° = {1}.) Under pointwise addition, Cn(G, A) becomes an abelian
group, a subgroup of the group of n-cochains Home (#", A) described in
6.5.4. The explicit formula for d shows that C*(G, A) is a subcomplex of the
cochain complex HomG(#", A).

Exercise 6.11.8 Show that a map cp:Gn-+A is continuous iff cp is locally
constant, that is, iff each point of Gn has a neighborhood on which cp is con-
stant.

Exercise 6.11.9 Show that Cn(G, —) is an exact functor from CG to Ab.
Hint: If g: B ->• C is onto, use the fact that every continuous <p: Gn -» C is
locally constant to lift cp to Cn(G, B).

Exercise 6.11.10 Show that Cn(G, A) = lim Cn(G/U, Au), where U runs

through all open normal subgroups of G.

Theorem 6.11.13 Let G be a profinite group and A a discrete G-module.
Then

#*(G; A) ^ H*(C*(G, A))

^limH*(G/U; Au),

where U runs through all open normal subgroups of G.

Proof For simplicity, set Tn(A) = //n(C*(G, A)). We first calculate that

T°(A) = ker(A -^> Cl(G, A))

= {aeA:(VgeG) 0= (da)(g) = ga - a}

= AG.

Since C*(G, A) = lim C*(G/U; Au), and lim commutes with cohomology

(2.6.15), we see that Tn(A) = lim Hn{C*{G/U, Au)) = lim Hn(G/U\ Au).

It now suffices to show that the {Tn} form a universal cohomological 8-
functor in the sense of 2.1.4, for this will imply that Tn(A) = Hn(G;A). To
see that they form a 5-functor, l e t O - > A — > - # - > C ^ > 0 b e a short exact
sequence of discrete G-modules. By exercise 6.11.9, each sequence

0 -> Cn(G, A) -+ Cn(G, B) -* Cn{G, C) -+ 0
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6.11 Galois Cohomology and Profinite Groups 213

is naturally exact, so we get a short exact sequence of cochain complexes.
The associated long exact cohomology sequence with its natural coboundary
8n: Tn{C) -> Tn+X(A) makes {Tn} into a cohomological 5-functor.

To see that {Tn} is universal, it suffices to show that each Tn (except T°)
vanishes on injective objects, for then Tn will be effaceable in the sense of
exercise 2.4.5. If / is an injective object in CG and U is an open normal
subgroup of G, then Iu is an injective object in CG/U = G/U-mod because
(as in 6.8.1) —u is right adjoint to the forgetful functor. Hence if n ^ 0, then

Tn(I) = limHn(G/U; Iu) = 0. O

Corollary 6.11.14 For n > 1, the Hn(G\ A) are torsion abelian groups.

Proof Each G/U is a finite group, so Hn(G/U, Au) is a torsion group. O

Exercise 6.11.11 Let G be the profinite group Zp. Show that

1P / e v e n

0 i odd

Low Dimensions 6.11.15 We have already seen that //°(G; A) = AG. A cal-
culation using the complex C*(G, A) shows that Hl(G; A) is the group of
continuous derivations of G in A, modulo the (ctn.) principal derivations,
and that Hl(G; Z) is the group of continuous maps from G to Z. Similarly,
H2(G; A) is the group of classes of continuous factor sets of G in A. If A is
finite, H2(G\ A) classifies the profinite extensions of G by A. (The discrete
group A is only profinite when it is finite.)

Hilbert's Theorem 90 6.11.16 Let K be a field and set G = Gz\(Ks/K).
Then Ks and its units K* are discrete G-modules with (KS)

G = K and
(K*)G = K*. Moreover

2. Hl(G;K*)=0.

Proof Let U be an open normal subgroup of G and L = K^ the correspond-
ing Galois extension of K, so that G/U = Gel(L/K) and (K*)u = L*. By
Hilbert's Theorem 90 for L/K (6.3.7, 6.4.7), we see that

Hl(G/U;L*) =
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214 Group Homology and Cohomology

Now take the limit over all U to get the result. <C>

Brauer group 6.11.17 The classical Brauer group of K is the set of all
equivalence classes of central simple ^-algebras A (with equivalence relation
M( (A) ss My (A')). It is also isomorphic to the set of all finite-dimensional
division ^-algebras A with center K. The relative Brauer groups Br(L/K)
of 6.6.11 were constructed so that Br(K) is the union of the relative groups
Br(L/K). On the other hand, since Br(L/K) = H2(Ga\(L/K), L*) by
6.6.11, H2(G\ K*) is also the direct limit of the Br(L/K), because if U
is an open normal subgroup and L = (Ks)

u, then G/U' = Ga\(L/K) and
(K*)u = L*. Therefore Br(K) is naturally isomorphic to the profinite co-
homology group H2(G; K*). The following result provides a cohomological
proof of the fact that each Br(L/K) is a subgroup of Br (K).

Proposition 6.11.18 If K C L is a Galois field extension with Galois group
G = Ga\(L/K), there is an exact sequence

0 -> Br(L/K) - ^ Br(K) - ^ Br(L)G -> //3(G; L*) - • H3(K, K*).

In particular, Br(L/K) is the kernel of Br (K) -> Br(L).

Proof Let H C Ga\(Ks/K) be the closed normal subgroup corresponding
to L, so that G = Ga\(Ks/K)/H. The Hochschild-Serre spectral sequence
6.11.11 is

Ep
2
q = Hp(G\ Hq(H\ K*)) => H*(Gz\(Ks/K); K*).

Along the jc-axis we find HP(G\ L*). By Hilbert's Theorem 90 for L, the row
q = 1 vanishes. The exact sequence of low degree terms is the sequence in
question. <>

Exercise 6.11.12 Let F^ be a finite field. Show that Br(L/\fq) = 0 for every
finite extension L of F^ and conclude that Br(^q) = 0. Hint: Gal(L/F^) is
cyclic of order n = [L: \fq] and the norm map TV: L* —• K* is onto (6.4.8).

Vista 6.11.19 Many deep results about the Brauer group can be established
more easily using cohomological machinery. We list a few here, referring the
reader to [Shatz] for more details.

• If char(#) = p^0, Br(K) is divisible by p.
• (Tsen's Theorem) If K is a function field in one variable over an alge-

braically closed field, then Br{K) = 0.
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6.11 Galois Cohomology and Profinite Groups 215

Br(R) = Z/2, the quaternion algebra H being nontrivial. (See 6.4.8.)
(Hasse) If AT is a local field, that is, the p-adic rationals Q p , or a finite
extension of Q p , then there is a canonical isomorphism Br(K) = Q/Z.
The element of Q/Z corresponding to a central simple ^-algebra A is
called the Hasse invariant of A.
The Brauer group of Q injects into Br(R) = Z/2 plus the direct sum
over all primes p of the groups Br(Qp) = Q/Z, with cokernel Q/Z.
Thus the Hasse invariants uniquely determine Z?r(Q), and the sum of the
Hasse invariants is zero.
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