
Spectral Sequences

5.1 Introduction

Spectral sequences were invented by Jean Leray, as a prisoner of war during
World War II, in order to compute the homology (or cohomology) of a chain
complex [Leray]. They were made algebraic by Koszul in 1945.

In order to motivate their construction, consider the problem of computing
the homology of the total chain complex 7* of a first quadrant double complex
£**. As a first step, it is convenient to forget the horizontal differentials and
add a superscript zero, retaining only the vertical differentials dv along the
columns E^.

If we write El
p for the vertical homology Hq(E^) at the (/?, q) spot, we

may once again arrange the data in a lattice, this time using the horizontal
diffentials dh.
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5.1 Introduction 121

Now we write £^ for the horizontal homology Hp{E\q) at the (/?, g) spot.

In a sense made clearer by the following exercises, the elements of E2
pq are a

second-order approximation of the homology of T* = Tot (£**).

Exercise 5.1.1 Suppose that the double complex E consists solely of the two
columns p and p — 1. Fix n and sctq=n — p, so that an element of Hn(T)
is represented by an element {a, b) e Ep-i,q+\ x Epq. Show that we have
calculated the homology of T = Tot(E) up to extension in the sense that there
is a short exact sequence

0 - * E2
p_lq+l - * Hp+q{T) - • E2

pq - 0.

Exercise 5.1.2 (Differentials at the E2 stage)

1. Show that E2
pq can be presented as the group of all pairs (a,b) in

Ep-\,4+1 x Epq such that 0 = dvb = dva + dhb, modulo the rela-
tion that these pairs are trivial: (a, 0); (dhx, dvx) for JC e Ep,q+\\ and
(0, dhc) for all c e EP+\A with dvc = 0.

2. If J^(a) = 0, show that such a pair (a, &) determines an element of
Hp+q(T).

3. Show that the formula d(a, b) = (0, dh{a)) determines a well-defined
map

d: Elq ^> E2p-2q + V

Exercise 5.1.3 (Exact sequence of low degree terms) Recall that we have

assumed that E® vanishes unless both p > 0 and q > 0. By diagram chasing,

show that EQQ = Ho(T) and that there is an exact sequence

H2(T) -> E2
0 -U E2

X -+ Hi(T) -+ Ejo - • 0.
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122 Spectral Sequences

E3

Figure 5.1. The steps E2 and E3 of the spectral sequence.

There is an algorithm for computing H*(T) up to extension, called a spec-
tral sequence, and we have just performed the first two steps of this algorithm.
The next two steps are illustrated in Figure 5.1.

5.2 Terminology

Definition 5.2.1 A homology spectral sequence (starting with Ea) in an
abelian category A consists of the following data:

1. A family {Er
pq} of objects of A defined for all integers p, q, and r > a

2. Maps dpq: Er
pq ->• Er

 +r_x that are differentials in the sense that
drdr = 0, so that the "lines of slope — (r + l ) / r " in the lattice E^ form
chain complexes (we say the differentials go "to the left")

3. Isomorphisms between Er
p+

l and the homology of E^ at the spot Er
q:

Er
pf ^ ker(d^)/image (dr

p+rq_r+l)

Note that Ep+
l is a subquotient of Zs£ . The total degree of the term Er

pq

is n = p + q; the terms of total degree n lie on a line of slope —1, and each
differential dpq decreases the total degree by one.

There is a category of homology spectral sequences; a morphism /:£ '—>

E is a family of maps fpq: Zs^ -> £ ^ in ^l (for r suitably large) with dr fr =

frdr such that each fr+l is the map induced by fr on homology.

Example 5.2.2 A first quadrant (homology) spectral sequence is one with
Er

pq = 0 unless p > 0 and q > 0, that is, the point (/?,#) belongs to the first
quadrant of the plane. (If this condition holds for r = a, it clearly holds for all
r.) If we fix p and q, then Zs^ = E ^ 1 for all large r (r > max{/?, q + 1} will
do), because the dr landing in the (/?, <?) spot come from the fourth quadrant,
while the dr leaving Er

pq land in the second quadrant. We write E^q for this
stable value of Epq.
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5.2 Terminology 123

Dual Definition 5.2.3 A cohomology spectral sequence {starting with Ea) in
A is a family {E?q} of objects (r > a), together with maps dpq going "to the
right":

. Fp+r,q-r+l

which are differentials in the sense that drdr = 0, and isomorphisms between
Er+\ and the homology of Er. In other words, it is the same thing as a homol-
ogy spectral sequence, reindexed via Epq = Er_p_q, so that dr increases the
total degree p + q of Er

pq by one.

There is a category of cohomology spectral sequences; a morphism f\Ef->

E is a family of maps fr
pq: Zi/^ -> Zs/^ in A (for r suitably large) with

drfr = frdr such that each fpq
x is the map induced by fr

pq.

Mapping Lemma 5.2.4 Let f: {Er
pq} —• {Epq} be a morphism of spectral

sequences such that for some fixed r, fr : Er
pq = Epq is an isomorphism for

all p and q. The 5-lemma implies that fs\ Es
pq = Epqfor all s >r as well.

Bounded Convergence 5.2.5 A homology spectral sequence is said to be
bounded if for each n there are only finitely many nonzero terms of total
degree n in E^. If so, then for each p and q there is an ro such that Er

pq =
Er+q

l for all r > r0. We write E™q for this stable value of Er
pq.

We say that a bounded spectral sequence converges to //* if we are given a
family of objects Hn of A, each having a finite filtration

0 = FsHn c • •. c Fp-iHn c FpHn c Fp+iHn c •.. c F,//n = #„,

and we are given isomorphisms E^q = FpHp+q/Fp-\Hp+q. The traditional
symbolic way of describing such a bounded convergence is like this:

^pq ^ np+q-

Similarly, a cohomology spectral sequence is called bounded if there are
only finitely many nonzero terms in each total degree in £**. In a bounded
cohomology spectral sequence, we write Ef£j for the stable value of the terms
E?q and say the (bounded) spectral sequence converges to H* if there is a
finite filtration

0 = FfHn c • • • Fp+lHn c FpHn - •• c F 5 / / " = Hn so that

Eg = FpHp+«/Fp+lHp+q.
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124 Spectral Sequences

Example 5.2.6 If a first quadrant homology spectral sequence converges to
//*, then each Hn has a finite filtration of length n + 1:

0 = F-{Hn c FQHn c • • • c F ^ i f t , c Fw//n = //„.

The bottom piece FoHn = E^ of Hn is located on the y-axis, and the top quo-
tient Hn/Fn-\Hn = E^ is located on the x-axis. Note that each arrow landing
on the jc-axis is zero, and each arrow leaving the j-axis is zero. Therefore each
E^ is a subobject of ZSQW, and each E^ is a quotient of E%0. The terms EQH on
the y-axis are called the fiber terms, and the terms Er

nQ on the jc-axis are called
the base terms for reasons that will become apparent in the next section. The
resulting maps E^n -^ E^ c Hn and Hn - • E^ c E%0 are known as the edge
homomorphisms of the spectral sequence for the obvious visual reason. Simi-
larly, if a first quadrant cohomology spectral sequence converges to H*, then
Hn has a finite filtration:

0 = FnJrlHn c FnHn c . . . c FlHn c F°Hn = Hn.

In this case, the bottom piece FnHn = E^ is located on the x-axis, and the
top quotient Hn/FlHn = E®£ is located on the j-axis. In this case, the edge
homomorphisms are the maps E%° -> E^ c Hn and Hn -> E®£ c E%n.

Definition 5.2.7 A (homology) spectral sequence collapses at Er(r > 2) if
there is exactly one nonzero row or column in the lattice {Er }. If a collapsing
spectral sequence converges to //*, we can read the Hn off: Hn is the unique
nonzero Er

pq with p + q =n. The overwhelming majority of all applications
of spectral sequences involve spectral sequences that collapse at El or E2.

Exercise 5.2.1 (2 columns) Suppose that a spectral sequence converging to
//* has E2

pq = 0 unless p = 0, 1. Show that there are exact sequences

0 . 172 . Tj . rr2 . r\

Exercise 5.2.2 (2 rows) Suppose that a spectral sequence converging to //*
has E2

q = 0 unless q = 0, 1. Show that there is a long exact sequence

P>* p~\~\,0 p—1,1 P pO p—2,1 P ^

If a spectral sequence is not bounded, everything is more complicated, and
there is no uniform terminology in the literature. For example, a filtration in
[CE] is "regular" if for each n there is an TV such that Hn(FpC) = 0fovp<N,
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5.2 Terminology 125

and all filtrations are exhaustive. In [MacH] exhaustive filtrations are called
"convergent above." In [EGA, 0ni(11.2)] even the definition of spectral se-
quence is different, and "regular" spectral sequences are not only convergent
but also bounded below. In what follows, we shall mostly follow the terminol-
ogy of Bourbaki [BX, p. 175].

E°° Terms 5.2.8 Given a homology spectral sequence, we see that each ££+1

is a subquotient of the previous term Er
pq. By induction on r, we see that there

is a nested family of subobjects of Ea
pq\

such that Er
p = Zr

pq/Bpq. We introduce the intermediate objects

and Z S

p = Zpq/Bpq.

oo

r=a

and define E™q = Z™q/B™. In a bounded spectral sequence both the union
and intersection are finite, so B^q = Br

pq and Z™q = Zr
pq for large r. Thus we

recover our earlier definition: E^q = Er
pq for large r.

Warning: In an unbounded spectral sequence, we will tacitly assume that B™,
Z ^ , and E^q exist! The reader who is willing to only work in the category of
modules may ignore this difficulty. The queasy reader should assume that the
abelian category A satisfies axioms {ABA) and (AB4*).

Exercise 5.2.3 (Mapping Lemma for E°°) Let / : {Er
pq} -> {E^q} be a mor-

phism of spectral sequences such that for some r (hence for all large r

by 5.2.4) fr : Er
pq = Epq is an isomorphism for all p and q. Show that

/ ° ° : Efq = E™ as well.

Definition 5.2.9 (Bounded below) Bounded below spectral sequences have
good convergence properties. A homology spectral sequence is said to be
bounded below if for each n there is an integer s = s(n) such that the terms
Ea

pq of total degree n vanish for all p < s. Bounded spectral sequences are
bounded below. Right half-plane homology spectral sequences are bounded
below but not bounded.

Dually, a cohomology spectral sequence is said to be bounded below if
for each n the terms of total degree n vanish for large p. A left half-plane
cohomology spectral sequence is bounded below but not bounded.

Definition 5.2.10 (Regular) Regularity is the most useful general condition
for convergence used in practice; bounded below spectral sequences are also
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126 Spectral Sequences

regular. We say that a spectral sequence is regular if for each p and q the
differentials dpq (or d?q) leaving Er (or E?q) are zero for all large r. Note
that a spectral sequence is regular iff for each p and q: Z™q = Zr

pq for all
large r.

Convergence 5.2.11 We say the spectral sequence weakly converges to //* if
we are given objects Hn of A, each having a filtration

• • • c Fp-iHn c FpHn c Fp+iHn £'-QHn,

together with isomorphisms /3pq:E™q = FpHp+q/Fp-\Hp+q for all p and q.
Note that a weakly convergent spectral sequence cannot detect elements of
C)FpHn, nor can it detect elements in Hn that are not in UFpHn.

We say that the spectral sequence {Er
pq} approaches //* (or abuts to //*)

if it weakly converges to H* and we also have Hn = UFpHn and nFpHn =0
for all n. Every weakly convergent spectral sequence approaches UFpH*/ D

We say that the spectral sequence converges to H* if it approaches //*, it
is regular, and Hn = \im(Hn/FpHn) for each n. A bounded below spectral

sequence converges to //* whenever it approaches //*, because the inverse
limit condition is always satisfied in a bounded below spectral sequence.

To show that our notion of convergence is a good one, we offer the fol-
lowing Comparison Theorem. If {Er

pq} and {Epq} weakly converge to //*
and H#, respectively, we say that a map h: //* - • H^ is compatible with a
morphism f\E-^E'\fh maps Fpi/W to FpH'n and the associated maps
FpHn/Fp-xHn - • FpH'JFp-iH'n correspond under 0 and ^ to / ~ : E™q - •

Comparison Theorem 5.2.12 Ler {̂ E1 }̂ «n^ {Epq} converge to //*
respectively. Suppose given a map h: //* —> H^ compatible with a morphism
f\E-> E' of spectral sequences. If fr : Er

pq = Epq is an isomorphism for
all p and q and some r (hence for r = oo by the Mapping Lemma), then
h: //* —• H# is an isomorphism.

Proof Weak convergence gives exact sequences

0 —* Fp-iHn/FsHn —y FpHn/FsHn —+ E™n_p —> 0

I i I*
0 - ^ Fp^H'n/FsH'n —> FpH'jFsH'n — • 4 ~ _ p — • 0.
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5.3 The Leray-Serre Spectral Sequence 127

Fixing s, induction on p shows that FpHn/FsHn = FpH'nIFsH'n for all p.
Since Hn = UFpHn, this yields Hn/FsHn ^ Hr

n/FsH'n for all s. Taking inverse
limits yields the desired isomorphism Hn = Hn. O

Remark The same spectral sequence may converge to two different graded
groups //*, and it can be very difficult to reconstruct a picture of //* from
this data. For example, knowing that a first quadrant spectral sequence has
E°^q = Z/2 for all p and q does not allow us to determine whether 7/3 is Z/16
or Z/2 0 Z/8, or even the group (Z/2)4. The Comparison Theorem 5.2.12
helps us reconstruct //* without the need for convergence.

Multiplicative Structures 5.2.13 Suppose that for r = a we are given a bi-
graded product

(*) Epiq]
 X Ep2q2 ~*

such that the differential dr satisfies the Leibnitz relation

(**) dr(xlx2)=dr(xl)x2 + (-l)pixidr(x2), xt € Er
p.qr

Then the product of two cycles (boundaries) is again a cycle (boundary), and
by induction we have (*) and (**) for every r > a. We shall call this a multi-
plicative structure on the spectral sequence. Clearly this can be a useful tool in
explicit calculations.

5.3 The Leray-Serre Spectral Sequence

Before studying the algebraic aspects of spectral sequences, we shall illustrate
their computational power by citing the topological applications that led to
their creation by Leray. The material in this section is taken from [MacH,
XI.2].

Definition 5.3.1 A sequence F —> E —> B of based topological spaces is
called a Serre fibration if F is the inverse image TT~1(*B) of the basepoint
of B and if n has the following "homotopy lifting property": if P is any
finite polyhedron and / is the unit interval [0, 1], g: P —> E is a map, and
H: P x / —> B is a homotopy between ng — H(—, 0) and h\ — H(—, 1),

P x I —> B
H
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128 Spectral Sequences

there is a homotopy G: P x / —• E between g and a map g\ = G(—, 1) which
lifts H in the sense that TTG = H. The spaces F, £, and B are called the
F/frer, total space {Espace totale for Leray), and Base space, respectively. The
importance of Serre fibrations lies in the fact (proven in Serre's thesis) that
associated to each fibration is a long exact sequence of homotopy groups

• • • nn+x{B) - ^ nn(F) -> jtn(E) -> nn(B) - ^ .. •.

In order to simplify the presentation below, we shall assume that B is sim-
ply connected, that is, that no(B) = TT\(B) = 0. Without this assumption, we
would have to introduce the action of n\(B) on the homology of F and talk
about the homology of B with "local coefficients" in the twisted bundles
Hq(F).

Theorem 5.3.2 (Leray-Serre spectral sequence) Let F —U- E -^> B be a
Serre fibration such that B is simply connected. Then there is a first quadrant
homology spectral sequence starting with E2 and converging to H*(E):

E2
pq = Hp(B; Hq(F)) => Hp+q(E).

Addendum 1 HQ(B) = Z, so along the y-axis we have El = Hq(F). Because

E2
pq = 0 for p < 0, the groups El, • • •, E^1 = E^° are successive quotients

of EQ . The theorem states that E^ = FoHq(E), so there is an "edge map"

This edge map is the map /*: Hq(F) -> Hq(E).

Addendum 2 Suppose that TTO(F) = 0, so that HQ(F) = Z. Along the x-
axis we then have E2

G = Hp(B). Because E2
pq = 0 for q < 0, the groups

E3
0, • • •, Entx = E^Q are successive subgroups of E2

0. The theorem states

that £°Q = Hp(E)/Fp-\Hp{E), so there is an "edge map"

This edge map is the map 7r*: Hp(E) ->• Hp(B).

Remark The Universal Coefficient Theorem 3.6.4 tells us that

HP(B\ Hq(F)) ^ Hp(B) (8) Hq(F) 0 Torf (HP-X(B), Hq{F)).
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5.3 The Leray-Serve Spectral Sequence 129

Therefore the terms E2
q are not hard to calculate. In particular, since 7t\{B) —

0 we have H\(B) = H\(B; Hq(F)) = 0 for all q. By the Hurewicz homomor-
phism, TT2(B) ^ H2(B) and therefore H2(B; Hq(F)) ^ H2(B) <g> Hq(F) for
all q as well.

Application 5.3.3 (Exact sequence of low degree terms) In the lower left
corner of this spectral sequence we find

17

z

0

0

0

•

^H2(B)

•

H3(B) H4(B)

The kernel of the map d2 = j | 0 is the quotient E^ of H2(E), because the
maps ^ 0 a r e z e r o for r > 3. Similarly, the cokernel of d2 is the subgroup E^
of H\(E). From this we obtain the exact homology sequence in the following
diagram:

JT3(B) 7T2(F)

I I
H2(F)

7T2(E)

H2(E)

1T2{B) JZ\{F) 7TX(E)

1- I
0.

Here the group labeled X contains the image in H2{F) of E\x = H2(B) 0
H\{F) and elements related to E\o = H3(B). Thus H2(B) ® // i(F) is the first
obstruction involved in finding a long exact sequence for the homology of a
fibration.

Application 5.3.4 (Loop spaces) Let PB denote the space of based paths in
B, that is, maps [0, 1] —• B sending 0 to *#. The subspace of based loops
in B (maps [0, 1] - • B sending 0 and 1 to *#) is written QB. There is a
fibration Q.B ̂  PB —* B, where 7r is evaluation at 1 e [0, 1]. The space
PB is contractible, because paths may be pulled back along themselves to the
basepoint, so Hn(PB) = 0 for n ^ 0. Therefore, except for E^ = Z, we have
a spectral sequence converging to zero. From the low degree terms (assuming
that TT\{B) = 0!), we see that H\(QB) ^ H2(B) and that

H4(B) -^> H2(B) ® //2(£) -^> H2(QB) -> //3(£) -> 0

is exact. We can use induction on n to estimate the size of Hn(QB).
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130 Spectral Sequences

Exercise 5.3.1 Show that if n > 2 the loop space QSn has

Hp{llb ) =
Z if (n - 1) divides /?, /? > 0
0 otherwise.

l-+ E - % 5" is a fibration whoseApplication 5.3.5 (Wang sequence) If F
base space is an n-sphere (n / 0, 1), there is a long exact sequence

dn

Hq-i(F)

In particular, / ^ ( F ) = Hq(E) if 0 < q < n - 2.

Hq-x(E)

Proof Hp(S
n) = 0 for /? ^ 0, n and J W 1 ) = //b(5n) = Z. Therefore the

nonzero terms F^ all lie on the two vertical lines p = 0, n and F ^ = Hq(F)
for /? = 0 or n. All the differentials dr

pq must therefore vanish for r ^ n, so
F ^ = F ^ and En

p+
X = E™. The description of En+l as the homology of En

amounts to the exactness of the sequences

0 HAF)
dn

Hq+n-l(F) 0.

On the other hand, the filtration of Hq(E) is given by the F ^ , so it is deter-
mined by the short exact sequence

0 Hn(E) 0.

The Wang sequence is now obtained by splicing together these two families of
short exact sequences. <0>
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5.4 Spectral Sequence of a Filtration 131

Example 5.3.6 The special orthogonal group SO(3) is a 3-dimensional Lie
group acting on 52 c U3. This action gives rise to the Serre fibration

SO(l) -> 50(3) - > 5 2 .

Because SO(l) = 51, we get Hi(SO(3)) = 1 and the exact sequence

0 -> H2(5O(3)) -> Z - % Z -> Hi(50(3)) -> 0.

Classically, we know that TTI5O(3) = Z/2, so that Hi (50 (3)) = Z/2. There-
fore H2(5O(3)) = Z, although H2(5O(3)) -> H2(52) is not an isomorphism.

Application 5.3.7 (Gysin sequence) If Sn -^ E —> B is a fibration with 5
simply connected and n ^ 0, there is an exact sequence

•••—>• Hp-n(B) —> Hp£ —>> Hp(B) —• Hp-n-i(B) —> Hp-\(E) —>•

In particular, Hp(E) = Hp(B) for 0 < p < n.

Proof This is similar to the Wang sequence 5.3.5, except that now the nonzero
terms E2

pq all lie on the two rows q =0,n. The only nontrivial differentials are

dn
p+

l from HP(B) = En+l to En+_l_Un = ^ - « - i ( B ) . •

Exercise 5.3.2 If rc 7̂  0, the complex projective rc-space CPn is a simply con-
nected manifold of dimension In. As such Hp(CPn) = 0 for p > 2n. Given
that there is a fibration 51 - • 52 r t + 1 -> C(Pn, show that for 0 < p < In

0 /? odd J

5.4 Spectral Sequence of a Filtration

A filtration F on a chain complex C is an ordered family of chain subcom-
plexes • • • c FP-\C c FpC c . . . of C. In this section, we construct a spectral
sequence associated to every such filtration; we will discuss convergence of
the spectral sequence in the next section.

We say that a filtration is exhaustive if C — UFpC. It will be clear from the
construction that both UFPC and C give rise to the same spectral sequence. In
practice, therefore, we always insist that filtrations be exhaustive.
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132 Spectral Sequences

Construction Theorem 5.4.1 A filtration F of a chain complex C naturally

determines a spectral sequence starting with E®pq = FpC p+q / Fp-\C p+q and

E\q = Hp+q(E%).

Before constructing the spectral sequence, let us make some elementary
remarks about the "shape" of the spectral sequence.

Definition 5.4.2 A filtration on a chain complex C is called bounded if for
each n there are integers s < t such that FsCn = 0 and FtCn = Cn. In this case,
there are only finitely many nonzero terms of total degree n in E^, so the
spectral sequence is bounded. We will see in 5.5.1 that the spectral sequence
always converges to //*(C).

A filtration on a chain complex C is called bounded below if for each n there
is an integer s so that FsCn = 0, and it is called bounded above if for each
n there is a t so that FtCn = Cn. Bounded filtrations are bounded above and
below. Being bounded above is merely an easy way to ensure that a filtration
is exhaustive. Bounded below filtrations give rise to bounded below spectral
sequences. The Classical Convergence Theorem 5.5.1 of the next section says
that the spectral sequence always converges to //*(C) when the filtration is
bounded below and exhaustive.

Example 5.4.3 (First quadrant spectral sequences) We call the filtration
canonically bounded if F-\C = 0 and FnCn = Cn for each n. As E®pq =
FpCp+qIFp-\Cp+q, every canonically bounded filtration gives rise to a first
quadrant spectral sequence (converging to //*(C)). For example, the Leray-
Serre spectral sequence 5.3.2 arises from a canonically bounded filtration of
the singular chain complex S*(E).

Here are some related notions, which we introduce now in order to give a
better perspective on the construction of the spectral sequence.

Definition 5.4.4 A filtration on a chain complex C is called Hausdorff if
PiFpC = 0. It will be clear from the construction that both C and its Hausdorff
quotient Ch = C/ n FpC give rise to the same spectral sequence.

A filtration on C is called complete if C = lim C/FpC. Complete filtra-

tions are Hausdorff because HFpC is the kernel of the map from C to

its completion C = lim C/FpC (which is also a filtered complex: FnC =

lim FnC/FpC). Bounded below filtrations are complete, and hence Hausdorff,

because FsHn(C) = 0 for each n. The following addendum to the Construc-
tion Theorem 5.4.1 explains why the most interesting applications of spectral
sequences arise from complete filtrations. It will follow from exercise 5.4.1.
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5.4 Spectral Sequence of a Filtration 133

Addendum 5.4.5 The two spectral sequences arising from C and C are the
same.

The Construction 5.4.6 For legibility, we drop the bookkeeping subscript q
and write r\p for the surjection FpC —> FpC/Fp-\C = E®p. Next we introduce

Ar
p = {ce FPC : d(c) e / > _ r C } ,

the elements of FpC that are cycles modulo Fp-rC ("approximately cycles")

and their images Zr
p = r]p(A

r
p) in E°p and Br

p±
l
r = rjp^r(d(Ar

p)) in E°p_r. The

indexing is chosen so that Zr
p and Bp = r)p(d(Ar~^r_l)) are subobjects of E^.

Set Z£° = tf?LlZ
r
p and B™ = V%xB

r
p. Assembling the above definitions,

we see that we have defined a tower of subobjects of each E^:

Note that Ar
p D Fp-\C = Ar~_\, so that Zr

p S Ar
p/A

r~_\. Hence

Let d£: ££ -» ££_r be the map induced by the differential of C. To define the

spectral sequence, we only need to give the isomorphism between £ r + 1 and

Lemma 5.4.7 The map d determines isomorphisms

"7? I rjr-\-\ = fjT+1 / T%Y
LplLp > Bp-r/Vp-r'

Proof This is largely an exercise in decoding notation. First, note that d(Ar
p)n

Fp-r-iC = d(Ar+l), so that Br
p±

l
r ̂  d(Ar

p)/d(Ar+l) and hence Br
pt\/B

r
p_r

is isomorphic to d(Ar
p)/d(Ar

p
+l + Ar~}x). The other term Zr

p/Z
r^1 is isomor-

phic to Ar
p/{Ar+x + Ar~_\). As the kernel of d: Ar

p -> Fp_rC is contained in

, the two sides are isomorphic. O

Resuming the construction of the spectral sequence, the kernel of dp is

[z € Ap:d(z) e d(Ar-_\) + Ar
pZ\_x\ _ A'~_\ + A?1 Zp+

l

= u^A^r Bp-
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134 Spectral Sequences

By lemma 5.4.7, the map dp factors as

EP = ZP'BP Zp'Zp > Bp-r/Bp-r ^ Lp-rlBp-r ~ Ep-r'

From this we see that the image of dp is Bpt
l
r/B

r
p_r; replacing p with p + r,

the image of d£+ r is #£+ 1/#p- This provides the isomorphism

needed to complete the construction of the spectral sequence. <>

Observation Fix p and k > 1, and set C" = C/Fp-kC, C" = Fp+kC/Fp-kC.
The complex Cr is bounded below, C" is bounded, and there are maps C - •
Cr <- C/;. For 0 < r < k these maps induce isomorphisms on the associated
groups Ar

p/Fp_kC and {d(Ar~^r_{) -f Fp-kC}/Fp-kC. (Check this!) Hence
the associated groups Z£, 5^ and Er

p are isomorphic. That is, the associated
spectral sequences for C, C\ and C/r agree in the (/?, ^) spots through the £*
terms.

Exercise 5.4.1 Recall that the completion C is also a filtered complex. Show
that C/Fp-kC and C/Fp-kC are naturally isomorphic.

We can now establish the addendum 5.4.5. For each p, q, and k, we
have shown that the maps C ^> C ^> C induce isomorphisms between the
corresponding Ek

pq terms. Letting k go to infinity, we see that the map

{fpq- Er
pq(C) -^ Er

pq(C)} °f spectral sequences is an isomorphism, because
each fr is an isomorphism.

Exercise 5.4.2 Show that the spectral sequences for C, UFpC, and C/fl FPC
are all isomorphic.
Multiplicative Structure 5.4.8 Suppose that C is a differential graded alge-
bra (4.5.2) and that the filtration is multiplicative in the sense that for every s
and t, (FsC)(FtC) c F5+rC. Since E°pn_p is FpCn/Fp-XCn, it is clear that
we have a product

F° x F° -+ F°
p\q\ piqi p\+P2,q\+qi

satisfying the Leibnitz relation. Hence the spectral sequence has a multiplica-
tive structure in the sense of 5.2.13. Moreover, we saw in exercise 4.5.1 that
/ /* (C) is an algebra and that the images FpH*(C) of the H*{FpC) form a
multiplicative system of ideals in / / * ( C ) . Therefore whenever the spectral
sequence (weakly) converges to / / * (C) it follows that £ ° ° is the associated
graded algebra of / / * ( C ) . This convergence is the topic of the next section.
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5.5 Convergence 135

Exercise 5.4.3 (Shifting or Decalage) Given a filtration F on a chain complex
C, define two new filiations F and DecF on C by FpCn = Fp-nCn and
(DecF)pCn = {x e Fp+nCn : dx e Fp+n-iCn-i}. Show that the spectral
sequences for these three filtrations are isomorphic after reindexing: Epq (F) =
Er

pHq_n(F) for r > 0, and Er
pq{F) £ Er

pz}n,q+n(J*cF) for r > 2.
Exercise 5.4.4 (Eilenberg-Moore) Let / : B -» C be a map of filtered chain
complexes. For each r > 0, define a filtration on the mapping cone cone(/)

1.5.1 by
Fpcone(f)n = Fp-rBn-{ 0 FpCn.

Show that Er
p(conef) is the mapping cone of f : ££(5) - • Er

p(C). By 1.5.2
this gives a long exact sequence

• • • £ ; + r (cone / ) -* Er
p(B) -> ^ ( C ) -* ^ ( c o n e / )

5.5 Convergence
A filtration on a chain complex C induces a filtration on the homology of
C : FpHn(C) is the image of the map Hn(FpC) - • Hn{C). If the filtration on
C is exhaustive, then the filtration on Hn is also exhaustive (Hn = UFpHn),
because every element of Hn is represented by an element c of some FpCn

such that d(c) = 0. If the filtration on C is bounded below then the filtration on
each Hn{C) is also bounded below, since FpC = 0 implies that FpHn(C) = 0.
Exercise 5.5.1 Give an example of a complete Hausdorff filtered complex
C such that the filtration on Ho(C) is not Hausdorff, that is, such that

Here are the two classical criteria used to establish convergence; we will
discuss convergence for complete filtrations later on.
Classical Convergence Theorem 5.5.1

7. Suppose that the filtration on C is bounded. Then the spectral sequence

is bounded and converges to H*(C):

El
pq = Hp+qiFpC/Fp-xC) => Hp+q(C).

2. Suppose that the filtration on C is bounded below and exhaustive. Then
the spectral sequence is bounded below and also converges to //*(C).

Moreover, the convergence is natural in the sense that if f:C —> C

is a map of filtered complexes, then the map /*: //*(C) —>• //*(Cr) is

compatible with the corresponding map of spectral sequences.

Example 5.5.2 (First quadrant spectral sequences) Suppose that the filtration

is canonically bounded (F-\C = 0 and FnCn = Cn for each «), so that the

spectral sequence lies in the first quadrant. Then it converges to //*(C). Along

the j-axis of Ex we have E\ = Hq(FoC), and EQ° is a quotient of this (see

5.2.6). Along the x-axis, £"L is the homology Hp(C) of C's top quotient chain

complex C,Cn = Cn/Fn-\Cn\ E™0 is therefore a subobject of Hp(C).

Corollary 5.5.3 If the filtration is canonically bounded, then £^° is the image

ofHq(F0C) in Hq(C) and E™ is the image ofHp(C) in Hp(C).available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.006
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136 Spectral Sequences

Proof By definition, E™ = F0Hq(C) is the image of Hq(F0C) in Hq(C).
Now consider the exact sequence of chain complexes 0 —> FP-\C —> Cp —>
Cp -> 0. From the associated homology exact sequence we see that the image
of HP(C) in HP(C) is the cokernel of the map from Hp(Fp-\C) to HP(C),
which by definition is E™0 = Hp{C)/Fp-\Hp(C). O

Proof of Classical Convergence Theorem Suppose that the filtration is exhaus-
tive and bounded below (resp. bounded). Then the filtration on //* is exhaus-
tive and bounded below (resp. bounded), and the spectral sequence is bounded
below (resp. bounded). By Definition 5.2.11, the spectral sequence will con-
verge to //* whenever it weakly converges. For this, we observe that since the
filtration is bounded below and p and n are fixed, the groups Ar

p = {c e FpCn :
d(c) e Fp-rCn-\} stabilize for large r; write A^ for this stable value, and ob-
serve that since Zr

p = r]p(A
r
p) we have Z£° = rjp(A^). Now A™ is the kernel

of d: FpCn -> FpCn-u (dC) n FpC is the union of the d(Ar
p+r), and A™_{ is

the kernel of the map r]p: A™ -> E°pq. Thus

FpHn(C)/Fp-iHn(C) = A p

) / npd(UAr
p+r)

= Z?/Bf = E™. O

When the filtration is not bounded below, convergence is more delicate. Of
course we have to work within an abelian category such as R-mod, because
we need axiom (AB4*) in order to even talk about E°° (see 5.2.8). But there
are more basic problems. For example, the filtration on H*(C) need not be
Hausdorff. This is not surprising, since by 5.4.5 the completion C has the same
spectral sequence but different homology. (And see exercise 5.5.1.)

Example 5.5.4 Let C be the chain complex 0 - • Z -^> 1 -> 0, and let FpC
be 2?C. Then the Hausdorff quotient of #*(C) is zero, because FpH*{C) =

H*(C) for all p, even though H0(C) = 1/3. Each row of E° is 1/2 ^ - 1/2
and the spectral sequence collapses to zero at /s1, so the spectral sequence is
weakly converging (but not converging) to //*(C). It converges to //*(C) = 0.

Theorem 5.5.5 (Eilenberg-Moore Filtration Sequence for complete com-
plexes) Suppose that C is complete with respect to a filtration by subcom-
plexes. Associated to the tower {C/FpC] is the sequence of 3.5.8:

0 - • lim lHn+l(C/FpC) -» Hn(C) - % lim Hn(C/FpC) - • 0.
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5.5 Convergence 137

This sequence is associated to the filtration on H*(C) as follows. The left-
hand term lim1 Hn+\(C/FpC) is r\FpHn(C), and the right-hand term is the

Hausdorjf quotient of //*(C):

H FpHn(C) = lim Hn(C)/FpHn(C) ^ lim Hn(C/FpC).

Proof Taking the inverse limit of the exact sequences of towers

0 -> {FpH^C)} -> //*(C) - • {H*(C)/FPH*(C)} -> 0;

0 -> {

shows that #*(C)/ n FpH*(C) is a subobject of lim H*(C)/FpH*(C), which

is in turn a subobject of lim//w(C/FpC). Now combine this with the lim1

sequence of 3.5.8. <0>

Corollary 5.5.6 If the spectral sequence weakly converges, then //*(C) =

A careful reading of the proof of the Classical Convergence Theorem
5.5.1 yields the following lemma for all Hausdorff, exhaustive filtrations. To
avoid confusion, we reintroduce the fixed subscripts q and n = p + q. Write
A™q = C\™=lA

r
pq, recalling that in our notation Ar

pq = {c e FpCn : d(c) e
Fp-rCn-x}. In E°pq = FpCn/Fp-xCn, r]p(A^q) is contained in Z ^ and con-
tains B™q = r)p{FpC H d(C)). (Check this!) Hence e~ = r]p(A™)/B™ is
contained in E^q.

Lemma 5.5.7 Assume that the filtration on C is Hausdorff and exhaustive.
Then

1. A™q is the kernel of d: FpCn -> FpCn-\;
2. FpHn{C)^A™q/U%xd(Arp+rq_r+l),

3. The subgroup efq of E™q is related to H*(C) by

Proof Recall that FpHn(C) is the image of the map Hn(FpC) -> Hn(C).
Since DFpC = 0, the kernel of d: FpCn -> FpCn-\ is A~ , so Hn(FpC) =
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138 Spectral Sequences

A™q/d{FpCn+\). As UFpC = C, the kernel of A™q -> //«(C) is the union

Vd(Ar
p+rq_r+l). For part (3) observe that Afq n F p - i C = A ~ _ u + 1 by def-

inition, so that rjpA™q = A^q/A^_^ + 1 . Hence we may calculate in E®pq

FpHn(C)/Fp-XHn(C) ^ A~ /A~_ u + 1 + \Jd(Ar
p+rq_r+x)

= *%> O

Corollary 5.5.8 (Boardman's Criterion) Let Qp denote lim1 {Ar } for fixed

p and q. The inclusions Ar~x + 1 C Ar
pq induce a map a: Qp-\ -> Qp, and

there is an exact sequence

0 ^ epq~~* Epq ~^ Qp-l ^ Qp ~^ |™ {Zpq} ~^ °*

In particular, if the filtration is Hausdorff and exhaustive, then the spectral
sequence weakly converges to H*(C) if and only if the maps a: Qp-\ —> Qp

are all injections.

Proof The short exact sequence of towers from 5.4.6

yields

Now mod out by B™, recalling that e™q is t](A™q)/B™. O

Exercise 5.5.2 Set Rp = nr image{H(FrC) -+ H(FpC)}. Show that the
spectral sequence is weakly convergent iff the maps Rp-\ ->• Rp are injections
for all p. Hint: Rp C Qp.

Exercise 5.5.3 Suppose that the filtration on C is Hausdorff and exhaustive.
If for any/? + ^ = n w e have Er

pq = 0, show that FpHn(C) = Fp-\Hn(C).
Conclude that Hn{C) = nFpHn(C), provided that every Er

pq with p + q
equalling n vanishes.

Proposition 5.5.9 (Boardman) Suppose that the filtration on Cn is complete,
and form the tower of groups Qp = lim^A^ n_p] as in 5.5.8 along the maps

a:Qp-\-+ Qp.ThenlimQp = 0. O
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5.5 Convergence 139

Proof Let / denote the poset of negative numbers - — < p — l<p<p + l<
• • • < 0. For each negative p and t, the subgroups A(p, t) = At

p~
p = [c e

FpCn : d(c) G FtCn-\} of Cn form a functor A: / x / -> Ab, that is, a
"double tower" of subgroups. If we fix t and vary /?, then for p < t we
have A(/7, t) = F^CV Hence we have lim A(/?, r) = lim FpCn = 0 and

< — P <—p

lim1 A(p, t) = lim1 FpCn = 0 (see 3.5.7). We assert that the derived func-

tor Rl lim/x/ from double towers to abelian groups fits into two short exact

sequences:

0 -> lim1 (lim A(/?, 0) -> Rl lim A(/?, 0 -» lim (lim1 A(/?, 0) -* 0,
^— *— Ixl <— <—

t p t p

0 - • lim1 (lim A(p, 0) -^ ^ 1 lim A(p, r) -> lim (lim1 A(p, t)) -> 0.
^ — <— /x/ ^ — <—

p t p t

We will postpone the proof of this assertion until 5.8.7 below, even though it
follows from the Classical Convergence Theorem 5.5.1, as it is an easy appli-
cation of the Grothendieck spectral sequence 5.8.3. The first of the sequences
in (f) implies that Rl lim/x/ A(p, t) = 0, so from the second sequence in (t)
we deduce that lim (lim1 A(p, t)) = 0.

To finish, it suffices to prove that lim1 A(p, t) is isomorphic to Qp for each

p < 0. Fix /?, so that there is a short exact sequence of towers in t:

(*) 0 -> {A(/?, /? + *)}-> {Mp, 0} -+ {A(/7, 0M(/7, /? + t)} -+ 0.

If r7 < p + f the map A(p, t')/A(p, p + t') -^ A(p, t)/A(p, p H- t) is obvi-
ously zero. Therefore the third tower of (*) satisfies the trivial Mittag-Leffler
condition (3.5.6), which means that

lim A(/?, t)/A(p, p + t) = lim1 A(p, t)/A(p, p + t)=0.
t t

From the lim exact sequence of (*) we obtain the described isomorphism

Qp = lim A1 = lim A(p, p + t) = lim A(/?, f)• O

Complete Convergence Theorem 5.5.10 Suppose that the filtration on C is
complete and exhaustive and the spectral sequence is regular (5.2.10). Then

1. The spectral sequence weakly converges to H*(C).
2. If the spectral sequence is bounded above, it converges to H*(C).
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Zero
differentials

into here

Cannot affect
Epq f or p > t Nonzero

differentials
in this range

Region describing the image
of Hn(Q in Hn(C/FtQ

0 0 • •

0

p-M p = t

Figure 5.2. Complete convergence for regular, bounded above spectral sequences.

Proof When the spectral sequence is regular, Z ^ equals Zr
pq = t]pA

r
pq for

large r. By Boardman's criterion 5.5.8, all the maps Qp-\ —• Qp are onto,
and the spectral sequence weakly converges if and only if Qp = 0 for all p.
This is indeed the case since the group lim Qp maps onto each Qp (3.5.3),

and we have just seen in 5.5.9 that lim Qp = 0. This proves (1).

To see that the spectral sequence converges to //*(C), it suffices to show
that the filtration on //*(C) is Hausdorff. By the Eilenberg-Moore Filtration
Sequence 5.5.5, it suffices to show that the tower {Hn(C/FtC)} is Mittag-
Leffler for every n, since then its lim1 groups vanish by 3.5.7. Each C/FtC
has a bounded below filtration, so it has a convergent spectral sequence whose
associated graded groups E^q{C/FtC) are subquotients of E®pq(C) for p > t.
For m < t, the images of the maps E™q(C/FmC) E™{C/FtC) are the
associated graded groups of the image of H*{C/FmC) —> H*(C/FtC), so it
suffices to show that these images are independent o f m a s m - ^ - o o .

Now assume that the spectral sequence for C is regular and bounded above.
Then for each n and t there is an M such that the differentials Er

pq{C) ->
Er +x_r(C) are zero whenever p + q = n, p > t, and p — r < M. By
inspection, this implies that E™q(C) — E™q(C/FmC) for every p + q =n with
p > t and every m<M. Thus the image of E™(C/FmC) -> E™(C/FtC) is
independent of m < M for p + q =n and p > t, as was to be shown. <0>

Exercise 5.5.4 (Complete nonconverging spectral sequences) Let Z < x >
denote an infinite cyclic group with generator x, and let C be the chain com-
plex with

oo 1=0
Ci = 0 Z < xi >, Co = f~[ Z < v/ >, Cn = 0 for n ^ 0, 1

1 = 1 l = - 0 0

and d: C\ -> Co defined by d(x[) = vi_, - y_/. For p < 0 define FpC\ = 0
and FpCo = Y\i<p ~D-<yi>\ this is a complete filtration on C.
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5.6 Spectral Sequences of a Double Complex 141

1. Show that FpHo(C) = HQ(C) for every p < 0, so that the filtration on
Ho(C) is not Hausdorff. (Since C\ is countable and Co is not, we have
HQ{C) / 0.) Hence no spectral sequence constructed with this filtration
can approach //*(C), let alone converge to it; such a spectral sequence
will weakly converge to //*(C) if and only if it converges to zero.

2. Here is an example of an (essentially) second quadrant spectral sequence
that weakly converges but does not converge to //*(C). For p > 1 define
FpC\ — C\ and FpCo = Co- The resulting spectral sequence has E®0 =
C\, E°p_p = 1 <yp> for p < 0 and E°pq = 0 otherwise. Show that
dr(xr) is [vi_r] and dr(xt) = 0 for i ^ r, and conclude that Efq = 0 for
every p and q.

3. Here is a regular spectral sequence that does not converge to //*(C). For
p > 1 let FPC\ be the subgroup of C\ spanned by x\, • • •, xp and set
FpCo = Co. The resulting spectral sequence has E°p {_ = Z < xp > for
p>l,E°p_p = Z<yp>forp<0 and E°pq = 0 otherwise. Show that
this spectral sequence is regular and converges to zero.

The following result generalizes the Comparison Theorem 5.2.12 to non-
convergent spectral sequences.
Eilenberg-Moore Comparison Theorem 5.5.11 Let f : B —• C be a map of
filtered complexes of modules, where both B and C are complete and exhaustive.
Fix r > 0. Suppose that fr : Er

pq{B) = Er
pq{C) is an isomorphism for all p

and q. Then f : H*(B) -> //*(C) is an isomorphism.

Proof Consider the filtration on the mapping cone complex given by the formula
Fpcone(/) = Fp-rB[—1] 0 FpC. This filtration is complete and exhaustive.
Since fr is an isomorphism, the long exact sequence of Exercise 5.4.4 shows
that £^ ( cone / ) = 0 for all p and q. By 5.5.10, this spectral sequence con-
verges to //*cone(/). Hence cone(/) is an exact complex, and 1.5.4 applies.

O
5.6 Spectral Sequences of a Double Complex

There are two filtrations associated to every double complex C, resulting in
two spectral sequences related to the homology of Tot(C). Playing these spec-
tral sequences off against each other is an easy way to calculate homology.

Definition 5.6.1 (Filtration by columns) If C = C** is a double complex, we
may filter the (product or direct sum) total complex Tot(C) by the columns of
C, letting lFn Tot(C) be the total complex of the double subcomplex

pq if P < n
if p > n

*
*
*
*

*
*
*
*

0
0
0
0

0
0
0
0
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142 Spectral Sequences

of C. This gives rise to a spectral sequence {!Er
pq}, starting with !E®pq = Cpq.

The maps d° are just the vertical differentials d° of C, so

Epq ~

The maps dl: Hq(Cp*) —• Hq(Cp-\^) are induced on homology from the

horizontal differentials dh of C, so we may use the suggestive notation:

'E2
pq = Hh

pH^C).

If C is a first quadrant double complex, the filtration is canonically bounded,
and we have the convergent spectral sequence discussed in section 5.1:

!E2
pq = Hh

pH
v
q{C) => Hp+q(Jot(C)).

If C is a fourth quadrant double complex (or more generally if Cpq = 0
in the second quadrant), the filtration on Totn(C) is bounded below but is
not exhaustive. The filtration on the direct sum total complex Tote(C) is
both bounded below and exhaustive, so by the Classical Convergence The-
orem 5.5.1 the spectral sequence 'E^ converges to //*(ToteC) and not to
//*(TotnC).

If C is a second quadrant double complex (or more generally if Cpq = 0
in the fourth quadrant), the filtration on the product total complex Totn(C)
is complete and exhaustive. By the Complete Convergence Theorem 5.5.10,
the spectral sequence !E^ weakly converges to //*(Totn C), and we have the
Eilenberg-Moore filtration sequence (5.5.5)

0 -> \imlHn+i(C/T<nC) -> Hn(Totn C) -> lim Hn(C/r<nC) -> 0.

We will encounter a spectral sequence of this type in Chapter 9, 9.6.17.

Definition 5.6.2 (Filtration by rows) If C is a double complex, we may also
filter Tot(C) by the rows of C, letting n Fn Tot(C) be the total complex of

if q>n

0 0 0 0 0 0
0 0 0 0 0 0

* * * * * *
* * * * * *

Since FpTol(C)/Fp-i Tot(C) is the row C*p,
 nE°pq = Cqp and uEx

pq =

Hq(C*p). (Beware the interchange of p and q in the notation!) The maps

d] are induced from the vertical differentials dv of C, so we may use the

suggestive notation
uEpq -

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.006
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:43:51, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.006
https://www.cambridge.org/core


5.6 Spectral Sequences of a Double Complex 143

Of course, this should not be surprising, since interchanging the roles of p
and q converts the filtration by rows into the filtration by columns, and inter-
changes the spectral sequences lE and nE.

As before, if C is a first quadrant double complex, this filtration is canon-
ically bounded, and the spectral sequence converges to //*Tot(C). If C is a
second quadrant double complex (or more generally if Cpq = 0 in the fourth
quadrant), the spectral sequence nE^ converges to //*Tote(C). If C is a
fourth quadrant double complex (or if Cpq = 0 in the second quadrant), then
the spectral sequence nEr^ weakly converges to //* Totn(C). O

Application 5.6.3 (Balancing Tor) In Chapter 2, 2.7.1, we used a disguised
spectral sequence argument to prove that Ln(A<g>)(B) = Ln(<g>B)(A), that is,
that Tor*(A, B) could be computed by taking either a projective resolution
P —> A or a projective resolution Q —• B. In our new vocabulary, there are
two spectral sequences converging to the homology of Tot(P ® Q). Since
Hq(Pp ®Q) = PP® Hq(A), the first has

iE2 =\H*(P®B) = Lp(®B)(A) if 0 = 0 j
pq 1 0 otherwise J

This spectral sequence collapses to yield Hp(P <g) Q) = Lp(®B)(A). There-
fore the second spectral sequence converges to Lp((g)B)(A). Since H^(P

Qn) = Hq(P) ® Qn,

nE2 =[Hv
p(A®Q) = Lq(A®)(B) if q = 0 ]

pq JO otherwise}'

This spectral sequence collapses to yield Hp{P (8) Q) = Lp(A<g))(B), whence
the result.

Theorem 5.6.4 (Kunneth spectral sequence) Let P be a bounded below com-
plex of flat R-modules and M an R-module. Then there is a boundedly con-
verging right half-plane spectral sequence

E2
pq = 7orR

p(Hq{P), M) => Hp+q(P ®R M).

Proof Let Q —> M be a projective resolution and consider the upper half-
plane double complex P (8) Q. Since Pp is flat, H"(P <g) g) = Pp <g) Hq{Q),
so the first spectral sequence has

iE2 =\Hp(P®M) ifq=O )
pq I 0 otherwise I'
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144 Spectral Sequences

This spectral sequence collapses to yield HP(P (8>© = Hp(P (8) M). Since
Qq is flat, Hq(P (8) Qn) = Hq(P) (8) Qn, so the second spectral sequence has
the desired E2 term

E2
pq = Hp(Hq(P) ) , M). O

Kiinneth Formula 5.6.5 In Chapter 3, 3.6.1, we could have given the follow-
ing spectral sequence argument to compute H*(P (8) Af), assuming that d(P)
(and hence Z) is flat. The flat dimension of Hq(P) is at most 1, since

is a flat resolution. In this case only the columns p = 0, 1 are nonzero, so all
the differentials vanish and E2

pq = Efq. The 2-stage filtration of HP(P 0 Q)
yields the Kiinneth formula.

0 0
0 0
0 0
0 0

Hq(P)®M Tovx(Hq(P),M)
0 0
0 0
0 0
0 0

Exercise 5.6.1 Give a spectral sequence proof of the Universal Coefficient

Theorem 3.6.5 for cohomology.

Theorem 5.6.6 (Base-change for Tor) Let f.R-^Sbea ring map. Then

there is a first quadrant homology spectral sequence

E2
pq = Tor£(Tor£(A, S), B)

for every A e mod-/? and B e S-mod.

, B)

Proof Let P -> A be an /^-module projective resolution, and Q —• B an S-
module projective resolution. As in 2.7.1, form the first quadrant double com-
plex P 0 Q and write H*(P (8) Q) for #*(Tot(P ®R Q)). Since Pp®R is an
exact functor, the pth column of P (8) Q is a resolution of Pp 0 B. There-
fore the first spectral sequence 5.6.1 collapses at lEl = Hq{P ® Q) to yield
//*(/" ® Q) = /f*(P ® 5) = Torf (A, 5) . Therefore the second spectral se-
quence 5.6.2 converges to Torf (A, B) and has

llE\q = Hq(P Qp) =

S) 05 , S) 05

and hence the prescribed E term: Hp(
JIEl

pq) = Tor£(Tor^(A, 5), <0>
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5.7 Hyperhomology 145

Exercise 5.6.2 (Bourbaki) Given rings R and 5, let L be a right /^-module,
M an R-S bimodule, and TV a left S-module, so that the tensor product L 0 #
M 0 s N makes sense.

1. Show that there are two spectral sequences, such that

lE\q = Tor£(L, Tor*(M, AO) nE2
pq = Tor£(Tor*(L, M), N)

converging to the same graded abelian group //*. Hint: Consider a dou-
ble complex P 0 M 0 Q, where P -* L and Q^ N.

2. If M is a flat S-module, show that the spectral sequence lIE converges
to Torf (L, M 05 N). If M is a flat /^-module, show that the spectral
sequence lE converges to Torf (L 0/? M, iV).

Exercise 5.6.3 (Base-change for Ext) Let f:R-+ S be a ring map. Show that
there is a first quadrant cohomology spectral sequence

E{q = Extf (A, Ext^(S, B)) ^ E x t ^ ( A , B)

for every S-module A and every /^-module B.

Exercise 5.6.4 Use spectral sequences to prove the Acyclic Assembly Lem-
ma 2.7.3.

5.7 Hyperhomology

Definition 5.7.1 Let A be an abelian category that has enough projectives. A
(left) Cartan-Eilenberg resolution P** of a chain complex A* in A is an upper
half-plane double complex (Ppq = 0 if q < 0), consisting of projective objects

of A, together with a chain map ("augmentation") P*o —> A* such that for
every p

1. If Ap — 0, the column Pp* is zero.
2. The maps on boundaries and homology

Hp(e):Hp(P,dh)^Hp(A)

are projective resolutions in A. Here Bp{P,dh) denotes the horizon-
tal boundaries in the (/?, q) spot, that is, the chain complex whose qth

term is dh(Pp+\,q). The chain complexes Zp(P, dh) and Hp(P, dh) =
Zp(P', dh)/Bp(P', dh) are defined similarly.
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146 Spectral Sequences

Exercise 5.7.1 In a Cartan-Eilenberg resolution show that the induced maps

fzP- p > A

are projective resolutions in A. Then show that the augmentation Tote(P) —•
A is a quasi-isomorphism in A; when A isn't bounded below, you will need to
assume axiom (AB4) holds.
Lemma 5.7.2 Every chain complex A* has a Cartan-Eilenberg resolution
P** -> A.

Proof For each p select projective resolutions Pp^ of Bp(A) and P ^ of
Hp(A). By the Horseshoe Lemma 2.2.8 there is a projective resolution P^

of Zp(A) so that

n -> pB _> p z -> p ^ _• 0

is an exact sequence of chain complexes lying over

0 -> Bp(A) -> ZP(A) - • Hp(A) -> 0.

Applying the Horseshoe Lemma again, we find a projective resolution P ^ of
Ap fitting into an exact sequence

We now define P** to be the double complex whose pth column is P^ ex-
cept that (using the Sign Trick 1.2.5) the vertical differential is multiplied by
(— \)p; the horizontal differential of P** is the composite

p A r>B r ^ pZ r_^ r>A

V+i,* ~^ rp* ^ v * ^ rp*-

The construction guarantees that the maps ep\ Ppo -> Ap assemble to give a
chain map €, and that each Bp(€) and Hp(e) give projective resolutions (check
this!). O

Exercise 5.7.2 If / : A —• B is a chain map and P -> A, g -> B are Cartan-
Eilenberg resolutions, show that there is a double complex map / : P —> g
over / . //mr: Modify the proof of 2.4.6 that L*/ is a homological <5-functor.

Definition 5.7.3 Let f,g\D^E be two maps of double complexes. A
chain homotopy from f to g consists of maps sh \ Dpq —• Ep+\,q and sv

pq\

Dpq -» £p,^+i so that

hsh + shdh)- / = (dhsh + shdh) + (dvs
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5.7 Hyperhomology 147

sv dh + dhsv = s hdv + dvsh = 0.

This definition is set up so that {sh +sv:Tot(D)n -> Tot(£)n+i} forms an
ordinary chain homotopy between the maps Tot(/) and Tot(g) from Tote(D)
toTot e(£).

Exercise 5.7.3

1. If / , g: A —• B are homotopic maps of chain complexes, and f,g\P^>
Q are maps of Cartan-Eilenberg resolutions lying over them, show that
/ is chain homotopic to g.

2. Show that any two Cartan-Eilenberg resolutions P, Q of A are chain ho-
motopy equivalent. Conclude that for any additive functor F the chain
complexes Tot® (F(P)) and Tot®(F(<2)) are chain homotopy equiva-
lent.

Definition 5.7.4 (D_*F) Let F: A —• B be a right exact functor, and assume
that A has enough projectives. If A is a chain complex in A and P -> A is
a Cartan-Eilenberg resolution, define L,-F(A) to be //; Tote(F(P)). Exercise
5.7.3 shows that L/F(A) is independent of the choice of P.

If / : A ->• ^ is a chain map and / : P -> Q is a map of Cartan-Eilenberg
resolutions over / , define L,-F(/) to be the map i//(Tot(/)) from L,-F(A) to
L/F(5). The exercise above implies that 0_/F is a functor from Ch(*4) to B, at
least when B is cocomplete. The D_/F are called the /^/r hyper-derived functors
of F.

Warning: If £ is not cocomplete, Tot®(F(P)) and L/F(A) may not exist for
all chain complexes A. In this case we restrict to the category Ch+(*4) of all
chain complexes A which are bounded below in the sense that there is a po
such that Ap = 0 for p < p0. Since Ppq = 0 if p < po or q < 0, Tote(F(P))
exists in Ch(B) and we may consider L,-F to be a functor from Ch+(,4) to B.

O

Exercises 5.7.4

1. If A is an object of A, considered as a chain complex concentrated in
degree zero, show that Q_;F(A) is the ordinary derived functor L(F(A).

2. Let Ch>o(^4) be the subcategory of complexes A with Ap = 0 for p < 0.
Show that the functors L/F restricted to Ch>o(.4) are the left derived
functors of the right exact functor H$F.

3. (Dimension shifting) Show that fl_/F(A[n]) = Ln+/F(A) for all n. Here
A[n] is the translate of A with A[n]( = Aw+/.
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Lemma 5.7.5 IfO-+A^B-+C^O is a short exact sequence of bound-
ed below complexes, there is a long exact sequence

• • • L/+iF(C) - ^ hF(A) -> liF(B) -> L/F(C) - ^ • • •.

Proof By dimension shifting, we may assume that A, #, and C belong to
Ch>o(*4). The sequence in question is just the long exact sequence for the
derived functors of the right exact functor HQF. O

Proposition 5.7.6 There is always a convergent spectral sequence

uE2
pq = (LpF)(Hq(A)) => Lp+qF(A).

If A is bounded below, there is a convergent spectral sequence

!E2
pq = Hp(LqF(A)) =» Lp+qF(A).

Proof We have merely written out the two spectral sequences arising from the
upper half-plane double chain complex F(P). <>

Corollary 5.7.7

1. If A is exact, LtF(A) = Ofor all i.
2. Any quasi-isomorphism f: A -> B induces isomorphisms

3. If each Ap is F-acyclic (2.4.3), that is, LqF(Ap) = Ofor q^O, and A
is bounded below, then

1PF(A) = HP(F(A)) for all p.

Application 5.7.8 (Hypertor) Let R be a ring and B a. left /^-module. The
hypertor groups Torf (A*, B) of a chain complex A* of right /^-modules are
defined to be the hyper-derived functors 0_;F(A*) for F = ®RB. This extends
the usual Tor to chain complexes, and if A is a bounded below complex of
flat modules, then Torf (A*, B) = ///(A* ® B) for all i. The hypertor spectral
sequences coming from 5.7.6 are

uE2
pq = Tovp(Hq(A), B) => Tor^(A*, B)
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5.7 Hyperhomology 149

and (when A is bounded below)

lE\q = Torq(Ap, B), l'E2
pq = HpTorq(A*, B) => Tor^(A*, B).

Even more generally, if B* is also a chain complex, we can define the hypertor
of the bifunctor A <S>R B to be

Torf (A*, £*) = Hi Tote(/> 0 * g) ,

where P —• A and <2 -* # are Cartan-Eilenberg resolutions. Since Tot(P (8)
2) is unique up to chain homotopy equivalence, the hypertor is independent
of the choice of P and Q. If B is a module, considered as a chain complex,
this agrees with the above definition (exercise!); by symmetry the same is true
for A. By definition, hypertor is a balanced functor in the sense of 2.7.7. A
lengthy discussion of hypertor may be found in [EGA, III.6].

Exercise 5.7.5 Show that there is a convergent spectral sequence

IIE2PI= 0 ToT$(Hq>(A*)9Hq»(B*))^Tor*+q(A*,B*).
q>+q"=q

If A* and B* are bounded below, show that there is a spectral sequence

lE\q = HpToteTorq(A*, £*) => Tor^(A*, £*).

Exercise 5.7.6 Let A be the mapping cone complex 0 —> A\ —> AQ
with only two nonzero rows. Show that there is a long exact sequence:

Cohomology Variant 5.7.9 Let ^l be an abelian category that has enough in-
jectives. A (right) Cartan-Eilenberg resolution of a cochain complex A* in A
is an upper half-plane complex /** of injective objects of A, together with an
augmentation A* -> 7*° such that the maps on coboundaries and cohomology
are injective resolutions of BP(A) and HP(A). Every cochain complex has a
Cartan-Eilenberg resolution A -> I. If F.A-+B is a left exact functor, we
define WE {A) to be W Totn(F(/)) , at least when Totn(F(/)) exists in B. By
appealing to the functor Fop: Aop -> Bop, we see that WF is a functor from

+ (the complexes A* with Ap = 0 for p << 0) to S, and even from
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Ch(*4.) to B when B is complete. The W F are called the right hyper-derived
functors of F.

If A is in Ch(,4), the two spectral sequences arising from the upper half-
plane double cochain complex F(I) become

llEp
2
q = (RpF)(Hq(A)) => Rp+qF(A), weakly convergent; and

lEp
2
q = Hp(RqF(A)) => Rp+qF(A), if A is bounded below.

Hence [R*F vanishes on exact complexes and sends quasi-isomorphisms of
(bounded below) complexes to isomorphisms.

Application 5.7.10 (Hypercohomology) Let X be a topological space and
T* a cochain complex of sheaves on X. The hypercohomology Hl(X, J7*) is
(RT(JF*), where F is the global sections functor 2.5.4. This generalizes sheaf
cohomology to complexes of sheaves, and if T* is a bounded below complex
of injective sheaves, then D-D'CX, T*) = //'(TCT7*)). The hypercohomology
spectral sequence is uEpq = HP(X, Hq(F*)) => Hp+q(X,

5.8 Grothendieck Spectral Sequences

In his classic paper [Tohoku], Grothendieck introduced a spectral sequence
associated to the composition of two functors. Today it is one of the organi-
zational principles of Homological Algebra.

Cohomological Setup 5.8.1 Let A, B, and C be abelian categories such that
both A and B have enough injectives. We are given left exact functors G: A -^
B and F:B^C.

G

A — • B

FG\ / F

C

Definition 5.8.2 Let F: B -> C be a left exact functor. An object B of B is
called F-acyclic if the derived functors of F vanish on B, that is, if RlF{B) =
0 for i ^ 0. (Compare with 2.4.3.)

Grothendieck Spectral Sequence Theorem 5.8.3 Given the above cohomo-
logical setup, suppose that G sends injective objects of A to F-acyclic objects
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5.8 Grothendieck Spectral Sequences 151

ofB. Then there exists a convergent first quadrant cohomological spectral se-
quence for each A in A:

JEpq = (RpF)(RqG)(A) => Rp+q(FG)(A).

The edge maps in this spectral sequence are the natural maps

(RpF)(GA) -> RP(FG)(A) and Rq(FG)(A) -> F(RqG(A)).

The exact sequence of low degree terms is

0 -> (RlF)(GA) -> Rl(FG)A -> F(RlG(A)) -> (R2F)(GA) -> R2(FG)A.

Proof Choose an injective resolution A ->• / of A in A, and apply G to get a
cochain complex G(I) in #. Using a first quadrant Cartan-Eilenberg resolution
of G(/), form the hyper-derived functors RnF(G(I)) as in 5.7.9. There are
two spectral sequences converging to these hyper-derived functors. The first
spectral sequence is

lEp
2
q = Hp((RqF)(GI)) => (Rp+qF)(GI).

By hypothesis, each G{I?) is F-acyclic, so (R?F)(G(/^)) = 0 for q^O.
Therefore this spectral sequence collapses to yield

(RpF)(GI) ^ Hp(FG(I)) = Rp(FG)(A).

The second spectral sequences is therefore

nEpq = (RpF)Hq(G(I)) => RP(FG)(A).

Since Hq(G(I)) = RPG(A), it is Grothendieck's spectral sequence. O

Corollary 5.8.4 (Homology spectral sequence) Let A, B, and C be abelian
categories such that both A and B have enough projectives. Suppose given
right exact functors G: A—> B and F:B-+C such that G sends projective ob-
jects of A to F-acyclic objects ofB. Then there is a convergent first quadrant
homology spectral sequence for each A in A:

E2
pq = (LpF)(LqG)(A) =• Lp+q(FG)(A).

The exact sequence of low degree terms is

L2(FG)A - • (L2F)(GA) -+ F(L\G(A)) - • L\(FG)A -+ (L\F)(GA) -> 0.
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Proof Dualizing allows us to consider Gop: Aop -* Bop and Fop: Bop -> Cop,
and the corollary is just translation of Grothendieck's spectral sequence using
the dictionary LpF = RpFop, and so on. <0>

Applications 5.8.5 The base-change spectral sequences for Tor and Ext of
section 5.7 are actually special instances of the Grothendieck spectral se-
quence: Given a ring map R -» S and an S-module B, one considers the
composites

fl-mod ^ > S-mod ^ > Ab

and

/?-mod > S-mod > Ab.

Leray Spectral Sequence 5.8.6 Let / : X —• Y be a continuous map of topo-
logical spaces. The direct image sheaf functor /* (2.6.6) has the exact functor
f~l as its left adjoint (exercise 2.6.2), so /* is left exact and preserves injec-
tives by 2.3.10. If T is a sheaf of abelian groups on X, the global sections of
f*T is the group (f+FW) = T(f~xY) = T{X). Thus we are in the situation

/•
Sheaves(X) — • Sheaves(F)

r\ /r

Ab

The Grothendieck spectral sequence in this case is called the Leray spectral
sequence: Since RPT is sheaf cohomology (2.5.4), it is usually written as

Epq = Hp(Y; RqUf) => Hp+q(X\ T).

This spectral sequence is a central tool to much of modern algebraic geometry.

We will see other applications of the Grothendieck spectral sequence in
6.8.2 and 7.5.2. Here is one we needed in section 5.5.9.

Recall from Chapter 3, section 5 that a tower • • • A\ -> AQ of abelian groups
is a functor / —> Ab, where / is the poset of whole numbers in reverse order.
A double tower is a functor A: I x I —> Ab; it may be helpful to think of the
groups A(j as forming a lattice in the first quadrant of the plane.
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Proposition 5.8.7 (lim1 of a double tower) For each double tower A: I x
/ - • Ab we have lim A;;- = lim lim A;y, a short exact sequence

7x7

0 -> lim /(lim jAn) -> ( Rl lim J An -> lim /(lim !• An) -> 0,
—̂ —̂ V 7x7/ +— ^—^

(/?2 lim ) A/,- = lim /(lim ! A/7), and I /?" lim | A// = 0 for rc > 3.7x77 ^ ^ ' ^ - 7 ^ ^ IxIJ

We may form the inverse limit as lim A/y = lim lim A/y, that is, as the

composition of lim : (Ab7)7 -> Ab7 and lim : Ab7 —• Ab. From 2.3.10 and
< j 4 i

2.6.9 we see that lim preserves injectives; it is right adjoint to the "constant

tower" functor. Therefore we have a Grothendieck spectral sequence

E{q = lim f lim q. Atj => (Rp+q lim) Atj.

Since both Ab and Ab7 satisfy (A£4*), lim^ = lim* = 0 for p, q ^ 0, 1.

Thus the spectral sequence degenerates as described. O

5.9 Exact Couples

An alternative construction of spectral sequences can be given via "exact cou-
ples" and is due to Massey [Massey]. It is often encountered in algebraic topol-
ogy but rarely in commutative algebra.

It is convenient to forget all subscripts for a while and to work in the cat-
egory of modules over some ring (or more generally in any abelian category
satisfying axiom AB5). An exact couple 8 is a pair (Z), E) of modules, to-
gether with three morphisms i, j , k

D - U D

E

which form an exact triangle in the sense that kernel = image at each vertex.

Definition 5.9.1 (Derived couple) The composition jk from E to itself satis-
fies (jk)(jk) = j(kj)k = 0, so we may form the homology module H(E) =
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ker(jk)/image(jk). Construct the triangle

H(E)

where i' is the restriction of i to i(D), while j ' and k' are given by

L k'([e])=k(e).

The map j ' is well defined since i(d) = 0 implies that for some e e E d =
k(e) and j(d) = jk(e) is a boundary. Similarly, k(jk(e)) = 0 implies that the
map k' is well defined. We call £' the derived couple of £. A diagram chase
(left to the reader) shows that £f is also an exact couple.

If we iterate the process of taking exact couples r times, the result is called
the rth derived couple £r of 8.

Dr - U Dr

Er

Here Dr = ir(D) is a submodule of D, and Er = H(Er~l) is a subquotient
of E. The maps i and A: are induced from the / and k of 8, while y ^ sends

rd to

Exercise 5.9.1 Show that H(E) = k~l(iD)/j(ker(i)) and more generally,
that Er = Zr/Br, with Zr = k~x{irD) and Br = j(ker(ir)).

With this generic background established, we now introduce subscripts (for
Dpq and Epq) in such a way that / has bidegree (1 , -1) , k has bidegree
(-1,0) , and

bidegree (j) — {—a, a).

Thus / and j preserve total degree (p -h q), while k drops the total degree by
1. Setting D'pq = i(Dp-\^q+\) c Dpq and letting E'pq be the corresponding
subquotient of Epq, it is easy to see that in 81 the maps / and k still have bide-
grees (1, —1) and (—1, 0), while / now has bidegree (—1 — a, 1 + a). It is
convenient to reindex so that 8 = 8a and 8r denotes the (r — a)th derived cou-
ple of £, so that j ^ has bidegree (—r, r) and the Er-differential has bidegree
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k i i{r)

^pq P~\,q P,<7~1 ^ p

In summary, we have established the following result.

Proposition 5.9.2 An exact couple £ in which i, /:, a/tJ y /rave bidegrees
(1, —1), (—1,0), am/ (—a, a) determines a homology spectral sequence {Er

pq}
starting with Ea. A morphism of exact couples induces a morphism of the
corresponding spectral sequences.

Example 5.9.3 (Exact couple of a filtration) Let C* be a filtered chain com-
plex of modules, and consider the bigraded homology modules

Dx
pq = Hn(FpC), El

pq = Hn(FpC/Fp-iQ, n = p + q.

Then the short exact sequences 0 -> Fp_\ -> Fp - • Fp/Fp-\ -> 0 may be
rolled up into an exact triangle of complexes (see Chapter 10 or 1.3.6)

®FpC
 l- > ®FpC

0\ i/@rip

®FpC/Fp-XC

whose homology forms an exact couple

®Hp+q(FpC) • ®Hp+q{FpC)

®Hp+q{FpC/Fp-XC)

Theorem 5.9.4 Let C* be a filtered chain complex. The spectral sequence
arising from the exact couple £} (which starts at El) is naturally isomorphic
to the spectral sequence constructed in section 5.4 (which starts at E°).

Proof In both spectral sequences, the groups Er
p are subquotients of E®p =

FpCp+q/Fp-\Cp+q\ we shall show they are the same subquotients. Since the
differentials in both are induced from d:C -> C, this will establish the result.

In the exact couple spectral sequence, we see from exercise 5.9.1 that the
numerator of Er in El is k~l(ir~lDl) and the denominator is 7*(ker i*""1).
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If c e FpCn represents [c] e Hn(FpC/Fp-\C), then d(c) e FP-\C and k([c])
is the class of d(c). Therefore the numerator in Fp/Fp-\ for Er is Zr

p = {c e
FPC : d(c) =a+ d(b) for some a e Fp-rC, b e FpC}/Fp-\C. Similarly, the
kernel of ir~l: Hn{FpC) -> Hn(Fp+r-\C) is represented by those cycles c e
FpC with c = d(b) for some b e Fp+r-\C. That is, ker(/ r - 1) is the image of
A!r~_l in Hn(FpC). Since j is induced on homology by r\p, we see that the

denominator is Bp = r]pd(Ar~^r_l). Since the spectral sequence of section 5.4
had Er

p = Zr
p/B

r
p, we have finished the proof. <>

Convergence 5.9.5 Let 8 be an exact couple in which i, j , and k have bide-
grees (—1,1), (—a, a) and, (—1,0), respectively. The associated spectral
sequence is related to the direct limits Hn = lim Dp,n-p of the Dpq along

the maps /: Dpq - • Dp+\^q-\. Let FpHn denote the image of Dp+a,q-a in
Hn (p + q = n); the system . . . Fp-\Hn c FpHn c . . . forms an exhaustive
filtration of Hn.

Proposition 5.9.6 There is a natural inclusion of FpHn/Fp-\Hn in E^D
n_p.

The spectral sequence Er
pq weakly converges to H* if and only if:

Z°° = nrk~l(irD) equals k~l(0) = j(D).

Proof Fix p, q, and n = p + q. The kernel Kp+a,q-a of Dp+a,q-a -> Hn is
the union of the ker(/r), so j(Kp+a,q-a) = Uj(ker(/r)) = UBr

pq = B™. (This
is where axiom A B5 is used.) Applying the Snake Lemma to the diagram

0 —> Kp-\+a —> Dp+a-\ —> Fp-\Hn —>0

i I' i
0 —> Kp+a —> Dp+a —> FpHn —> 0

yields the exact sequence

O^B™^ j(Dp+aiq-a) -+ FpHn/Fp-xHn -> 0.

But j(Dp+a,q-a) = ^ - 1 (0) , so it is contained in Zr
pq = k~l(irDp-r-\,q+r)

for all r. The result now follows. O

We say that an exact couple is bounded below if for each n there is an inte-
ger f{n) such that Dpq = 0 whenever p < f(p + q). In this case, for each p
and q there is an r such that ir(Dp-r-\,q+r) = ir(0) = 0, i.e., Zr

pq = k~l(0).
As an immediate corollary, we obtain the following convergence result.
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5.9 Exact Couples 157

Classical Convergence Theorem 5.9.7 If an exact couple is bounded below,
then the spectral sequence is bounded below and converges to //* = lim D.

Epq => HP+q

The spectral sequence is bounded and converges to H* if for each n there is a

p such that Dp,n-p —^ Hn.

Exercise 5.9.2 (Complete convergence) Let £ be an exact couple that is
bounded above (DPiq = 0 whenever p > f(p + q)). Suppose that the spec-
tral sequence is regular (5.2.10). Show that the spectral sequence converges to
Dn = lim Dp^n-p.

Application 5.9.8 Here is an exact couple that does not arise from a filtered
chain complex. Let C* be an exact sequence of left /^-modules and M a right
/^-module. Let Zp c Cp be the kernel of d: Cp -> Cp\ associated to the short
exact sequences 0 -> Zp ->• Cp - • Zp-\ -> 0 are the long exact sequences

• • -Tor^M, Zp) -U Torq(M, Cp) - ^ Torq(M, Zp-i) - U Tor^_i(M, Zp)--

which we can assemble into an exact couple S = £° with

D°pq = Tor^(M, Zp) and E°pq = Tor^(M, Cp).

By inspection, the map d = jk:Torq(M, Cp) -> Tor^(M, Cp-\) is induced
via Tor^(M, —) by the differential d: Cp -> Cp-\, so we may write

El
pq = Hp(Jorq(M,C*)).

More generally, if we replace Tor*(M, —) by the derived functors L*F of any
right exact functor, the exact couple yields a spectral sequence with EQ

pq =
LqF(Cp) and El

pq = Hp(LqF(C)). These are essentially the hyperhomol-
ogy sequences of section 5.7 related to the hyperhomology modules D_*F(C),
which are zero. Therefore this spectral sequence converges to zero whenever
C* is bounded below.

Bockstein Spectral Sequence 5.9.9 Fix a prime £ and let //* be a (graded)
abelian group. Suppose that multiplication by I fits into a long exact sequence

ln-\
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158 Spectral Sequences

If we roll this up into the exact couple

then we obtain a spectral sequence with E® = E*, called the Bockstein spectral
sequence associated to //*. This spectral sequence was first studied by W.
Browder in [Br], who noted the following applications:

1. H* = H*(X;Z) and £* = //*(X; l/l) for a topological space X
2. H* = 7r*(X) and £* = 7r*(X; Z/l) for a topological space X
3. //* = //*(G; Z) and £* = #*(G; Z/£) for a group G
4. //* = //*(C) for a torsionfree chain complex C, and £* = H*(C/£C)

We note that the differential d = jd sends £"£ to Er
n_v so that the bigrading

subscripts we formally require for a spectral sequence are completely artificial.
The next result completely describes the convergence of the Bockstein spectral
sequence. To state it, it is convenient to adapt the notation that for q e 1

qH* = {x e //* :qx = 0}.

Proposition 5.9.10 For every r > 0, there is an exact sequence

H H

In particular, if Tn denotes the l-primary torsion subgroup of Hn and Qn

denotes the infinitely I-divisible part ofiHn, then there is an exact sequence

ln

Proof For r = 0we are given an extension

0 -> Hn/iHn ^E°n^+ tHn-i -> 0.

Now Er is the subquotient of E° with numerator d~l(lrH) and denominator
j(irH) by the above exercise, so from the extension

0 -• H/IH -U d~\lrH) -^ {fH O iH)-* 0

the result is immediate. <>
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Corollary 5.9.11 If each Hn is finitely generated and dim(//n <8> Q) = dn,
then the Bockstein spectral sequence converges to E%° = (Z/p)dn and is
bounded in the sense that E^° = Er

n for large r.

Actually, it turns out that the Bockstein spectral sequence can be used to
completely describe //* when each Hn is finitely generated. For example, if X
is a simply connected //-space whose homology is finitely generated (such as
a Lie group), Browder used the Bockstein spectral sequence in [Br] to prove

For this, note that j induces a map Hn -> Er
n for each r. If X e Er

n has
a(x) = pry, then d(x) = j^a(x) = j(y) in the notation of the proposition.
In particular, x is a cycle if and only if a(x) is divisible by pr+x. We can
summarize these observations as follows.

Corollary 5.9.12 In the Bockstein spectral sequence

1. Elements of En that survive to Er but not to £ r + 1 (because they are
not cycles) correspond to elements of exponent p in Hn-\, which are
divisible by pr but not by / / + 1 .

2. An element y G Hn yields an element j(y) of Er for all r; if j (y) ^ 0
in Er~l, but j(y) = 0 in Er, then y generates a direct summand of Hn

isomorphic toZ/pr.

Exercise 5.9.3 Study the exact couple for H = Z//?3, and show directly that
E2 # 0 but E3 = 0.
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