
4
Homological Dimension

4.1 Dimensions

Definitions 4.1.1 Let A be a right ^-module.

1. The projective dimension pd(A) is the minimum integer n (if it exists)
such that there is a resolution of A by projective modules

0 -> Pn -> > Pi -> Po -> A -> 0.

2. The injective dimension id(A) is the minimum integer n (if it exists)
such that there is a resolution of A by injective modules

0 -> A -> E° -> F 1 -> • £ n -> 0.

3. The flat dimension fd{A) is the minimum integer n (if it exists) such
that there is a resolution of A by flat modules

0 -> Fn -> • Fi -> Fo -> A -> 0.

If no finite resolution exists, we set pd(A), id(A), or fd(A) equal to oo.
We are going to prove the following theorems in this section, which allow

us to define the global and Tor dimensions of a ring R.

Global Dimension Theorem 4.1.2 The following numbers are the same for
any ring R:

1. sup{id(B) : B e mod-/?}
2. sup{pd(A): A e mod-/?}
3. sup{pd(R/I) : / is a right ideal of R]
4. sup{d : Ext^(A, B) / 0 for some right modules A, B}
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92 Homological Dimension

This common number (possibly oo ) is called the (right) global dimension of
R, r.gl. dim(R). Bourbaki [BX] calls it the homological dimension of R.

Remark One may define the left global dimension l.gl.dim(R) similarly. If
R is commutative, we clearly have t.gl. d\m(R) = r.gl. d\m(R). Equality also
holds if R is left and right noetherian. Osofsky [Osof] proved that if every one-
sided ideal can be generated by at most #n elements, then \l.gl.dim(R) —
r.gl.dim(R)\ < n + 1. The continuum hypothesis of set theory lurks at the
fringe of this subject whenever we encounter non-constructible ideals over
uncountable rings.

Tor-dimension Theorem 4.1.3 The following numbers are the same for any
ring R:

1. sup{ fd(A) : A is a right R-module]
2. sup{ fd(R/J) :J is a right ideal of R}
3. sup{ fd(B) .Bis a left R-module}
4. sup{fd(R/I) :I is a left ideal of R}
5. swp{d : TorJ(A, B) ^ Ofor some R-modules A, B}

This common number (possibly oo) is called the Tor-dimension of R. Due to
the influence of [CE], the less descriptive name weak dimension of R is often
used.

Example 4.1.4 Obviously every field has both global and Tor-dimension
zero. The Tor and Ext calculations for abelian groups show that R = 7L has
global dimension 1 and Tor-dimension 1. The calculations for R = Z/m show
that if some p2\m (so R isn't a product of fields), then T/m has global dimen-
sion oo and Tor-dimension oo.

As projective modules are flat, fd(A) < pd(A) for every /^-module A. We
need not have equality: over 2, fd(Q) = 0, but pd(Q) = 1. Taking the supre-
mum over all A shows that Tor-dim(/?) < r.gl.dim(R). We will see exam-
ples in the next section where Tor-dim(/?) ^ r.gl.dim(R). These examples
are perforce non-noetherian, as we now prove, assuming the global and Tor-
dimension theorems.

Proposition 4.1.5 IfR is right noetherian, then

1. fd(A) = pd(A) for every finitely generated R-module A.
2. Tor-dim(fl) = r.gl. dim(R).

Proof Since we can compute Tor-dim(/?) and r.gl.dim(R) using the mod-
ules R/I, it suffices to prove (1). Since fd(A) < pd(A), it suffices to suppose
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4.1 Dimensions 93

that fd(A) —n < oo and prove that pd(A) < n. As R is noetherian, there is a
resolution

0 -> M - • />„_! -> • • • -* Pi - • Po -> A -> 0

in which the P; are finitely generated free modules and M is finitely presented.
The fd lemma 4.1.10 below implies that the syzygy M is a flat P-module, so
M must also be projective (3.2.7). This proves that pd(A) < n, as required. <C>

Exercise 4.1.1 Use the Tor-dimension theorem to prove that if R is both left
and right noetherian, then r.gl. dim(R) =l.gl. dim(R).

The pattern of proof for both theorems will be the same, so we begin with
the characterization of projective dimension.

pd Lemma 4.1.6 The following are equivalent for a right R-module A:

1. pd(A)<d.
2. Extn

R(A, B) = 0foralln>d and all R-module s B.

3. Ex4+1(A, B) = Ofor all R-modules B.
4. IfO - • Md -> Pd-X -+ Pd-2 -+ > P\ -+ Po -> A -+ 0 is any reso-

lution with the P 's projective, then the syzygy Md is also projective.

Proof Since Ext*(A, B) may be computed using a projective resolution of A,
it is clear that (4) =>• (1) =>• (2) => (3). If we are given a resolution of A as
in (4), then Ext^+1(A, B) ^ Ext1 (Md, B) by dimension shifting. Now Md is
projective iff Ext1 (Md, B)=0 for all B (exercise 2.5.2), so (3) implies (4). <C>

Example 4.1.7 In 3.1.6 we produced an infinite projective resolution of A =
Z/p over the ring R = Z//?2. Each syzygy was Z/p, which is not a projective
Z//?2-module. Therefore by (4) we see that Z/p has pd = oo over R = Z/p2.
On the other hand, Z/p has pd = 0 over R = Z/p and pd = 1 over R = Z.

The following two lemmas have the same proof as the preceding lemma.

id Lemma 4.1.8 The following are equivalent for a right R-module B:

1. id(B)<d.
2. Ext^(A, B) = 0foralln>d and all R-modules A.

3. Ex4+1(A, B) = Ofor all R-modules B.

4. IfO^ B-+ E°-+ > Ed~l -+ Md ^Oisa resolution with the El

injective, then Md is also injective.
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94 Homological Dimension

Example 4.1.9 In 3.1.6 we gave an infinite injective resolution of B = Z/p
over R = Z/p2 and showed that Extn

R(Z/p, Z/p) = Z/p for all n. Therefore
Z/p has id = oo over R = Z/p2. On the other hand, it has id = 0 over R =
Z/p and id = 1 over Z.

fd Lemma 4.1.10 The following are equivalent for a right R-module A:

1. fd(A)<d.
2. Tor*(A, B) = Ofor alln>d and all left R-modules B.
3. Tor^+1(A, B) = Ofor all left R-modules B.
4. IfO —> Md -> Fd-\ —> Fd-2 -^•-•^Fo^A^Oisa resolution with

the F( all flat, then Mj is also aflat R-module.

Lemma 4.1.11 A left R-module B is injective ijfExlx{R/I, B) = Ofor all left
ideals I.

Proof Applying Hom(-, B) to 0 - • / -+ R -> R/I -> 0, we see that

Hom(#, B) - • Hom(/, B) -> Extl(R/I, B) -+ 0

is exact. By Baer's criterion 2.3.1, B is injective iff the first map is surjective,
that is, iff Ext1 (R/I, B) = 0. O

Proof of Global Dimension Theorem The lemmas characterizing pd(A) and
id(A) show that sup(2) = sup(4) = sup(l). As sup(2) > sup(3), we may
assume that d = sup{pd(R/I)} is finite and that id(B) > d for some R-
module B. For this B, choose a resolution

0 ^ B-^ £° -> El -> > Ed~l -> M -+ 0

with the £'s injective. But then for all ideals / we have

0 = Ex4+1(#//, B) ^ Extl
R(R/I, M).

By the preceding lemma 4.1.11, M is injective, a contradiction to id(B) > d.
O

Proof of Tor-dimension theorem The lemma 4.1.10 characterizing fd(A) over
R shows that sup(5) = sup(l) > sup(2). The same lemma over Rop shows that
sup(5) = sup(3) > sup(4). We may assume that sup(2) < sup(4), that is, that
d = s\xp{fd(R/J) : J is a right ideal} is at most the supremum over left ideals.
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4.2 Rings of Small Dimension 95

We are done unless d is finite and fd(B) > d for some left /^-module B. For
this B, choose a resolution 0 —• M -> Fd-\ -> > Fo —>• B - • 0 with the

F's flat. But then for all ideals J we have

0 = Tor^+1 (R/J, B) = Torf {R/J, M).

We saw in 3.2.4 that this implies that M is flat, contradicting fd(B) > d. O

Exercise 4.1.2 IfO—>A-^2?^C->0isan exact sequence, show that

1. pd(B) < max{/?d(A), pd(C)} with equality except when pd(C) =
pd(A) + l.

2. id(B) < max{/J(A), id(C)} with equality except when id(A) =

3. /rf(B) < max{/J(A), fd(C)} with equality except when fd(C) =

Exercise 4.1.3

1. Given a (possibly infinite) family {A/} of modules, show that

= sup{pd(A/)}.

2. Conclude that if S is an /^-algebra and P is a projective S-module con-
sidered as an /^-module, the pdR(P) < pdR(S).

3. Show that if r.gl.dim(R) = oo, there actually is an /^-module A with
pd(A) = oo.

4.2 Rings of Small Dimension

Definition 4.2.1 A ring R is called (right) semisimple if every right ideal is a
direct summand of R or, equivalently, if R is the direct sum of its minimal ide-
als. Wedderburn's theorem (see [Lang]) classifies semisimple rings: they are
finite products R = fl[=i Ri of matrix rings Ri = Mni{Di) — End£>.(V/) (tit =
dim(V/)) over division rings D,-. It follows that right semisimple is the same as
left semisimple, and that every semisimple ring is (both left and right) noethe-
rian. By Maschke's theorem, the group ring k[G] of a finite group G over a
field k is semisimple if char(£) doesn't divide the order of G.

Theorem 4.2.2 The following are equivalent for every ring R, where by "R-
module" we mean either left R-module or right R-module.
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96 Homological Dimension

1. R is semisimple.
2. R has (left and/or right) global dimension 0.
3. Every R-module is projective.
4. Every R-module is injective.
5. R is noetherian, and every R-module is flat.
6. R is noetherian and has Tor-dimension 0.

Proof We showed in the last section that (2) o (3) <& (4) for left /^-modules
and also for right /^-modules. R is semisimple iff every short exact sequence
0 -> / -> R -> R/I -> 0 splits, that is, iff pd(R/I) = 0 for every (right
and/or left) ideal / . This proves that (1)4» (2). As (1) and (3) imply (5), and
(5)4^ (6) by definition, we only have to show that (5) implies (1). If / is an
ideal of R, then (5) implies that R/I is finitely presented and flat, hence pro-
jective by 3.2.7. Since R/I is projective, R ->• R/I splits, and / is a direct
summand of R, that is, (1) holds. O

Definition 4.2.3 A ring R is quasi-Frobenius if it is (left and right) noetherian
and R is an injective (left and right) /^-module. Our interest in quasi-Frobenius
rings stems from the following result of Faith and Faith-Walker, which we
quote from [Faith].

Theorem 4.2.4 The following are equivalent for every ring R:

1. R is quasi-Frobenius.
2. Every projective right R-module is injective.
3. Every injective right R-module is projective.
4. Every projective left R-module is injective.
5. Every injective left R-module is projective.

Exercise 4.2.1 Show that Z/m is a quasi-Frobenius ring for every integer m.

Exercise 4.2.2 Show that if R is quasi-Frobenius, then either R is semisimple
or R has global dimension oo. Hint: Every finite projective resolution is split.

Definition 4.2.5 A Frobenius algebra over a field A: is a finite-dimensional al-
gebra R such that R = Hom/:(/?, k) as (right) R-modules. Frobenius algebras
are quasi-Frobenius; more generally, Hom^(R,k) is an injective /^-module
for any algebra R over any field k, since k is an injective ^-module and
Hoiri£(/?, —) preserves injectives (being right adjoint to the forgetful functor
mod-/? —• mod-A:). Frobenius algebras were introduced in 1937 by Brauer
and Nesbitt in order to generalize group algebras k[G] of a finite group, espe-
cially when char(k) = p divides the order of G so that k[G] is not semisimple.
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4.2 Rings of Small Dimension 97

Proposition 4.2.6 IfG is a finite group, then k[G] is a Frobenius algebra.

Proof Set R = k[G] and define / : R -> k by letting f(r) be the coefficient
of g = 1 in the unique expression r = 5ZgeG rg£ °^ e v e r v element r e k[G].
Let a: R —• Homfc(/?, &) be the map a(r): x M* f(rx). Since a(r) = / r , a is
a right /^-module map; we claim that a is an isomorphism. If a(r) = 0 for
r = X! rg£> then r = 0 as each rg = f(rg~l) = a(r)(g~l) = 0. Hence a is an
injection. As R and Homk(R, k) have the same finite dimension over k, a must
be an isomorphism. O

Vista 4.2.7 Let R be a commutative noetherian ring. R is called a Goren-
stein ring if id(R) is finite; in this case id(R) is the Krull dimension of R,
defined in 4.4.1. Therefore a quasi-Frobenius ring is just a Gorenstein ring of
Krull dimension zero, and in particular a finite product of 0-dimensional local
rings. If R is a 0-dimensional local ring with maximal ideal m, then R is quasi-
Frobenius <& ann/?(m) = {r e R : rm = 0} = R/xn. This recognition criterion
is at the heart of current research into the Gorenstein rings that arise in alge-
braic geometry.

Now we shall characterize rings of Tor-dimension zero. A ring R is called
von Neumann regular if for every a e R there is an x e R for which ax a = a.
These rings were introduced by J. von Neumann in 1936 in order to study
continuous geometries such as the lattices of projections in "von Neumann
algebras" of bounded operators on a Hilbert space. For more information about
von Neumann regular rings, see [Good].

Remark A commutative ring R is von Neumann regular iff R has no nilpotent
elements and has Krull dimension zero. On the other hand, a commutative ring
R is semisimple iff it is a finite product of fields.

Exercise 4.2.3 Show that an infinite product of fields is von Neumann regu-
lar. This shows that not every von Neumann regular ring is semisimple.

Exercise 4.2.4 If V is a vector space over a field k (or a division ring k\
show that R = Endk(V) is von Neumann regular. Show that R is semisimple
iff dim^V) < oo.

Lemma 4.2.8 If R is von Neumann regular and I is a finitely generated right
ideal of R, then there is an idempotent e (an element with e2 = e) such that
I = eR. In particular, I is a projective R-module, because /? = / 0 ( l — e)R.

Proof Suppose first that I =aR and that ax a = a. It follows that e = ax is
idempotent and that I = eR. By induction on the number of generators of
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98 Homological Dimension

/ , we may suppose that / = aR + bR with a e I idempotent. Since bR =
abR + (1 - a)bR, we have / = aR + cR for c = (1 - a)&. If eye = c, then
/ = cy is idempotent and af — a(\ — a)by = 0. As / a may not vanish, we
consider e — / ( I — a). Then £ e / , ae = 0 = ea, and e is idempotent:

e2 = / ( I - a)f(\ - a) = / ( / - fl/)(l - fl) = /2(1 - a) = / ( I - fl) = e.

Moreover, e/? = cR because c = fc = ffc = / ( I — a)fc = efc. Finally, we
claim that / equals J = (a + e)R. Since a + e e I, we have J c / ; the reverse
inclusion follows from the observation that a = (a -f e)a e J and e = (a +
e)e e 7 . •

Exercise 4.2.5 Show that the converse holds: If every fin. gen. right ideal / of
R is generated by an idempotent (i.e., R~ I © R/I), then R is von Neumann
regular.

Theorem 4.2.9 The following are equivalent for every ring R:

1. R is von Neumann regular.
2. R has Tor-dimension 0.
3. Every R-module is flat.
4. R/I is protective for every finitely generated ideal I.

Proof By definition, (2) <£• (3). If / is a fin. generated ideal, then R/I is
finitely presented. Thus R/I is flat iff it is projective, hence iff R = I © R/I
as a module. Therefore (3) =>> (4) <& (1). Finally, any ideal / is the union of
its finitely generated subideals 7a, and we have R/I = lim(R/Ia). Hence (4)

implies that each R/I is flat, that is, that (2) holds. <C>

Remark Since the Tor-dimension of a ring is at most the global dimen-
sion, noetherian von Neumann regular rings must be semisimple (4.1.5). Von
Neumann regular rings that are not semisimple show that we can have Tor-
dim(R) < gl. dim(/?). For example, the global dimension of f l ^ i C is > 2,
with equality iff the Continuum Hypothesis holds.

Definition 4.2.10 A ring R is called (right) hereditary if every right ideal is
projective. A commutative integral domain R is hereditary iff it is a Dedekind
domain (noetherian, Krull dimension 0 or 1 and every local ring Rm is a
discrete valuation ring). Principal ideal domains (e.g, Z or k[t]) are Dedekind,
and of course every semisimple ring is hereditary.

Theorem 4.2.11 A ring R is right hereditary iffr.gl. dim(R) < 1.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.005
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:43:16, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.005
https://www.cambridge.org/core


4.3 Change of Rings Theorems 99

I -> R-> R/I -> 0 show that R is heredi-Proof The exact sequences 0
taryiffr.g/.dim(/?) < 1.

Exercise 4.2.6 Show that R is right hereditary iff every submodule of every
free module is projective. This was used in exercise 3.6.2.

4.3 Change of Rings Theorems

General Change of Rings Theorem 4.3.1 Let f'.R^Sbea ring map, and
let A be an S-module. Then as an R-module

pdR(A)<pds(A)

Proof There is nothing to prove if pds(A) = oo or pdR(S) = oo, so assume
that pds(A) = n and pdR(S) = d are finite. Choose an S-module projective
resolution Q —> A of length n. Starting with /^-module projective resolutions
of A and of each syzygy in Q, the Horseshoe Lemma 2.2.8 gives us /^-module
projective resolutions P*q —> Qq such that P*q —> P*,q-2 is zero. We saw in
section 4.1 that pdR(Qq) < d for each q. The truncated resolutions P*q -+ Qq

of length d (Ptq = 0 for i > d and Pdq = Pdq/im(Pd+i,q), as in 1.2.7) have
the same property. By the sign trick, we have a double complex P** and an
augmentation PQ* -> G*-

0

i
Qn

Q\

Go

0

0

I
POn

0

i
Pin

0

i
Pdn

Poi

Poo

0

1
Pn <-

1
Put <-

1

- P21 <— ••• *-

i
- P20 ̂ — ••• «-

i

i
- Pd\

1
- PdO

i
0 0 0

The argument used in 2.7.2 to balance Tor shows that Tot(P) -> Q is a quasi-
isomorphism, because the rows of the augmented double complex (add Q[— 1]

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.005
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:43:16, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.005
https://www.cambridge.org/core


100 Homological Dimension

in column -1) are exact. Hence Tot(P) -> A is an /^-module projective reso-
lution of A. But then pdR(A) is at most the length of Tot(P), that is, d + n.

O

Example 4.3.2 If R is a field and pds(A) ^ 0, we have strict inequality.

Remark The above argument presages the use of spectral sequences in get-
ting more explicit information about Ext^(A, B). An important case in which
we have equality is the case S = R/xR when x is a nonzerodivisor, so
pdR(R/xR) = l.

First Change of Rings Theorem 4.3.3 Let x be a central nonzerodivisor in
a ring R. If A ^ 0 is a R/x-module with pdR/x(A) finite, then

= \+pdR/x(A).

Proof As xA = 0, A cannot be a projective /^-module, so pdR(A) > 1. On
the other hand, if A is a projective R/x-modu\t, then evidently pdR(A) =
pdR(R/x) = 1. If pdR/x(A) > 1, find an exact sequence

with P a projective /?/x-module, so that pdR/x(A) = pdR/x(M) + 1. By in-
duction, pdR(M) = 1 + pdR/x(M) = pdR/x(A) > 1. Either pdR(A) equals
pdR(M) + 1 or 1 = pdR(P) = swp{pdR(M), pdR(A)}. We shall conclude the
proof by eliminating the possibility that pdR{A) = 1 = pdR/x(A).

Map a free /^-module F onto A with kernel A'. If pdR(A) = 1, then ^ is
a projective /^-module. Tensoring with R/xR yields the sequence of R/x-
modules:

0 -> Torf (A, R/x) -> K/xK -> F/xF -+ A -+ 0.

If pdR/x(A) < 2, then Torf (A, /?/*) is a projective R/x -module. But

Torf (A, R/x) = {a e A : xa = 0} = A, so pdR/x(A) = 0. O

Example 4.3.4 The conclusion of this theorem fails if pdR/x(A) = oo but
pdR(A) < oo. For example, pdj/4(Z/2) = oo but pdj(Z/2) = 1.

Exercise 4.3.1 Let /? be the power series ring &[[JCI, • • •, xn]] over a field
&. R is a noetherian local ring with residue field k. Show that gl.dim(R) =
pdR(k) = n.
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4.3 Change of Rings Theorems 101

Second Change of Rings Theorem 4.3.5 Let x be a central nonzerodivisor
in a ring R. If A is an R-module and x is a nonzerodivisor on A (i.e., a ^ 0 =>>
xa ^ 0), then

pdR(A) > pdR/x(A/xA).

Proof If pdR(A) = oo, there is nothing to prove, so we assume pdR(A) =
n < oo and proceed by induction on n. If A is a projective /^-module, then
A/xA is a projective /?/jc-module, so the result is true if pdR(A) = 0. If
pdR(A) ^ 0, map a free /^-module F onto A with kernel K. As pdR(K) =
« — 1, pdR/x(K/xK) < n — 1 by induction. Tensoring with /?/x yields the
sequence

0 -> Torf (A, /?/*) -> # / .*£ -* F / x F -> A/;cA - • 0.

As JC is a nonzerodivisor on A, Tori (A, ^ A ) = (^ € A : jca = 0} = 0. Hence
either A/xA is projective or pdR/x(A/xA) = 1 + pdR/x(K/xK) < 1 + (n —

Exercise 4.3.2 Use the first Change of Rings Theorem 4.3.3 to find another
proof when pdR/x(A/xA) is finite.

Now let R[x] be a polynomial ring in one variable over R. If A is an R-
module, write A[x] for the /?[;t]-module R[x] 0/? A.

Corollary 4.3.6 pdR[x](A[x]) = pdR(A) for every R-module A.

Proof Writing T = R[x], we note that x is a nonzerodivisor on A[JC] =
T <8>R A. Hence /?J7(A[x]) > pdR(A) by the second Change of Rings theo-
rem 4.3.5. On the other hand, if P -+ A is an /^-module projective resolution,
then T <S)R P —• T ®R A is a T-module projective resolution (T is flat over
R), so pdR(A) > pdT(T (8) A). <C>

Theorem 4.3.7 If R[x\, • • •, xn] denotes a polynomial ring in n variables,
then gl. dim(/?[xi, • • •, xn]) =n-\- gl. dim(R).

Proof It suffices to treat the case T = R[x]. If gl. dim(R) = oo, then by the
above corollary gl. dim(7) = oo, so we may assume gl. dim(R) = n < oo. By
the first Change of Rings theorem 4.3.3, gl. dim(T) > 1 + gl. dim(R). Given
a r-module M, write U(M) for the underlying /^-module and consider the
sequence of T -modules

(*) 0 - • T ®R U(M) -^T ®R U(M) -^> M -> 0,
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102 Homological Dimension

where /JL is multiplication and f$ is defined by the bilinear map fi(t (g>m) =

t[x 0 m — 1 0 (xm)] (t eT,m e M). We claim that (*) is exact, which yields

the inequality pdT(M) < 1 + pdT(T ®R U(M)) = 1 + pdR(U(M)) <l+n.
The supremum over all M gives the final inequality gl. dim(T) < 1 -+- n.

To finish the proof, we must establish the claim that (*) is exact. We first
observe that, since T is a free /^-module on basis {1, JC, JC2, • • •}, we can write
every nonzero element / of T 0 U(M) as a polynomial with coefficients
mt e M:

f = x
k 0 mk H \- x2 ® m2 + x ® m\ + I <g> mo (m* ^ 0).

Since the leading term of /?(/) is JC^+1 0 m&, we see that /3 is injective. Clearly
lift = 0. Finally, we prove by induction on k (the degree of / ) that if / e
ker(/z), then / e im(fi). Since /x(l 0 m) = m, the case £ = 0 is trivial (if
//,(/) = 0, then / = 0). If k / 0, then /*(/) = /x(g) for the polynomial g =
/ — fi(xk~l 0 m^) of lower degree. By induction, if / e ker(/x), then g =
P(h) for some h, and hence / = fi(h + xk~l 0 m^). <>

Corollary 4.3.8 (Hilbert 's theorem on syzygies) If k is afield, then the poly-
nomial ring k[x\, • • •, xn] has global dimension n. Thus the (n — l ) s t syzygy
of every module is a projective module. O

We now turn to the third Change of Rings theorem. For simplicity we deal
with commutative local rings, that is, commutative rings with a unique maxi-
mal ideal. Here is the fundamental tool used to study local rings.

Nakayama's L e m m a 4.3.9 Let R be a commutative local ring with unique
maximal ideal m and let B be a nonzero finitely generated R -module. Then

1. B^mB.
2. If A c B is a submodule such that B = A + mB, then A = B.

Proof If we consider B/A then (2) is a special case of (1). Let m be the
smallest integer such that B is generated b\, • • •, bm; as B ^ 0, we have m ^ 0.
If B = mB, then there are r; e m such that bm = ^2 ri^i- This yields

(1 - rm)bm = r\b\ H h rm-\bm-\.

Since 1 — rm ^m, it is a unit of R. Multiplying by its inverse writes bm as
a linear combination of [b\, • • •, bm-\}, so this set also generates B. This
contradicts the choice of m. O
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4.3 Change of Rings Theorems 103

Remark If /? is any ring, the set

J = {r e R : (is e R) 1 - rs is a unit of R)

is a 2-sided ideal of R, called the Jacobson radical of R (see [BAII, 4.2]). The
above proof actually proves the following:

General Version of Nakayama's Lemma 4.3.10 Let B be a nonzero finitely
generated module over R and J the Jacobson radical of R. Then B ^ JB.

Proposition 4.3.11 A finitely generated projective module P over a commu-
tative local ring R is a free module.

Proof Choose u\,-- ,un e P whose images form a basis of the ^-vector
space P/xnP. By Nakayama's lemma the M'S generate P, so the map e\Rn -^
P sending (n, • • •, rn) to J2riui *s o n t o - As ? *s projective, € is split, that
is, Rn^ P 0 ker(e). As jfcn = Rn/mRn ^ P /mP, we have ker(e) c mRn.
But then considering P as a submodule of Rn we have Rn = P + mRn, so
Nakayama's lemma yields Rn = P. O

Third Change of Rings Theorem 4.3.12 Let R be a commutative noethe-
rian local ring with unique maximal ideal m, and let A be a finitely generated
R-module. If x em is a nonzerodivisor on both A and R, then

pdR(A) = pdR/x(A/xA).

Proof We know > holds by the second Change of Rings theorem 4.3.5, and
we shall prove equality by induction on n = pdR/x(A/xA). If n = 0, then
A/xA is projective, hence a free R/x-module because R/x is local.

Lemma 4.3.13 IfA/xA is a free R/x-module, A is a free R-module.

Proof Pick elements u\9 • • •, un mapping onto a basis of A/xA; we claim
they form a basis of A. Since (MI, • • •, un)R + xA = A, Nakayama's lemma
states that (MI, • • •, un)R = A, that is, the M'S span A. To show the M'S are lin-
early independent, suppose ]jn r/M/ = 0 for r,- e R. In A/x A, the images of the
M'S are linearly independent, so r; e xR for all /. As x is a nonzerodivisor on
/? and A, we can divide to get n/x e /? such that ]T(r;/x)M; = 0. Continuing
this process, we get a sequence of elements r/, r//x, r//jc2, • • • which generates
a strictly ascending chain of ideals of R, unless r; = 0. As R is noetherian, all
the ri must vanish. <0>
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104 Homological Dimension

Resuming the proof of the theorem, we establish the inductive step n / 0 .
Map a free /^-module F onto A with kernel K. As Torf(A, R/x) = {a e A :
xa = 0} = 0, tensoring with R/x yields the exact sequence

0 -> K/xK -> F/xF -> A/xA -> 0.

As F / x F is free, pdR/x{K/xK) — n — 1 when n / 0. As /? is noetherian,
K is finitely generated, so by induction, pdR(K) = n — 1. This implies that

= n, finishing the proof of the third Change of Rings theorem. O

Remark The third Change of Rings theorem holds in the generality that R is
right noetherian, and x e R is a central element lying in the Jacobson radical of
R. To prove this, reread the above proof, using the generalized version 4.3.10
of Nakayama's lemma.

Corollary 4.3.14 Let R be a commutative noetherian local ring, and let A be
a finitely generated R-module with pdR(A) < oo. If x em is a nonzerodivisor
on both A and R, then

pdR(A/xA) = l+pdR(A).

Proof Combine the first and third Change of Rings theorems. O

Exercise 4.3.3 (Injective Change of Rings Theorems) Let x be a central
nonzerodivisor in a ring R and let A be an /^-module. Prove the following.

First Theorem. If A ^ 0 is an R/xR-modulc with idR/XR(A) finite, then

idR(A) = l + idR/xR(A).

Second Theorem. If x is a nonzerodivisor on both R and A, then either A is
injective (in which case A/x A = 0) or else

idR(A)>l + idR/xR(A/xA).

Third Theorem. Suppose that R is a commutative noetherian local ring, A is
finitely generated, and that x e m is a nonzerodivisor on both R and A.
Then

idR(A) = idR(A/xA) = 1 + idR/xR(A/xA).

4.4 Local Rings

In this section a local ring R will mean a commutative noetherian local ring
R with a unique maximal ideal m. The residue field of R will be denoted
k = R/m.
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4.4 Local Rings 105

Definitions 4.4.1 The Krull dimension of a ring R, dim(R), is the length d
of the longest chain po C pi C • • • C pd of prime ideals in R; dim(R) < oo for
every local ring R. The embedding dimension of a local ring R is the finite
number

emb. dim(R) — dim£(m/m2).

For any local ring we have d\m(R) < emb. d\m(R); R is called a regular local
ring if we have equality, that is, if dim(R) = dimfc(m/m2). Regular local rings
have been long studied in algebraic geometry because the local coordinate
rings of smooth algebraic varieties are regular local rings.

Examples 4.4.2 A regular local ring of dimension 0 must be a field. Every
1-dimensional regular local ring is a discrete valuation ring. The power series
ring k[[x\, • • •, xn]] over a field k is regular local of dimension n, as is the local
ring k[x\,• • •, xn]m, m = Ui, • • •, xn).

Let R be the local ring of a complex algebraic variety X at a point P. The
embedding dimension of R is the smallest integer n such that some analytic
neighborhood of P in X embeds in Cn. If the variety X is smooth as a mani-
fold, R is a regular local ring and dim(R) = dim(X).

More Definitions 4.4.3 If A is a finitely generated /^-module, a regular se-
quence on A, or A-sequence, is a sequence (x\, • • •, xn) of elements in m such
that x\ is a nonzerodivisor on A (i.e., if a / 0, then x\a ^ 0) and such that
each X[ (i > 1) is a nonzerodivisor on A/(x\, • • •, JC;_I)A. The grade of A,
G(A), is the length of the longest regular sequence on A. For any local ring
R we have G(R) < dim(R).

R is called Cohen-Macaulay if G(R) = dim(R). We will see below that
regular local rings are Cohen-Macaulay; in fact, any x\, • • •, Xd e m mapping
to a basis of m/tn2 will be an /^-sequence; by Nakayama's lemma they will
also generate m as an ideal. For more details, see [KapCR].

Examples 4.4.4 Every 0-dimensional local ring R is Cohen-Macaulay (since
G(R) = 0), but cannot be a regular local ring unless R is a field. The 1-
dimensional local ring k[[x, e]]/(xe = e2 = 0) is not Cohen-Macaulay; every
element of m = (x, e)R kills e e R. Unless the maximal ideal consists entirely
of zerodivisors, a 1-dimensional local ring R is always Cohen-Macaulay; R
is regular only when it is a discrete valuation ring. For example, the local
ring k[[x]] is a discrete valuation ring, and the subring k[[x2, x3]] is Cohen-
Macaulay of dimension 1 but is not a regular local ring.
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106 Homological Dimension

Exercise 4.4.1 If R is a regular local ring and JCI, • • •, Xd e m map to a basis
of m/m2, show that each quotient ring R/(x\, • • •, xt)R is regular local of
dimension d — i.

Proposition 4.4.5 A regular local ring is an integral domain.

Proof We use induction on dim(R). Pick x e m — m2; by the above exercise,
R/xR is regular local of dimension dim(R) — 1. Inductively, R/xR is a do-
main, so xR is a prime ideal. If there is a prime ideal Q properly contained in
xR, then Q C xnR for all n (inductively, if q = rjtn e 2 , then r e QcxR,so
q e xn+lR). In this case Q c r V f l = 0, whence 2 = 0 and R is a domain.
If R were not a domain, this would imply that xR is a minimal prime ideal
of /? for all x e m — m2. Hence m would be contained in the union of m2 and
the finitely many minimal prime ideals Pi, • • •, Pt of R. This would imply that
tn Q Pi for some /. But then dim(R) = 0, a contradiction. O

Corollary 4.4.6 If R is a regular local ring, then G(R) = dim(R), and any
JCI, • • •, Xd £ tn mapping to a basis of m/m2 is an R—sequence.

Proof As G(/?) < dim(/?), and JCI e /? is a nonzerodivisor on 7?, it suffices
to prove that X2, • • •, Xd form a regular sequence on R/x\R. This follows by
induction on d. O

Exercise 4.4.2 Let R be a regular local ring and / an ideal such that R/I
is also regular local. Prove that / = (jq, • • •, X()R, where (JCI, •••,*,•) form a
regular sequence in R.

Standard Facts 4.4.7 Part of the standard theory of associated prime ideals
in commutative noetherian rings implies that if every element of m is a zerodi-
visor on a finitely generated /^-module A, then m equals {r e R : ra = 0} for
some nonzero a e A and therefore aR = R/m = k. Hence if G(A) = 0, then
HornR(k, A) ^ 0 .

If G(A) ^ 0 and G(R) ^ 0, then some element of m — tn2 must also be
a nonzerodivisor on both R and A. Again, this follows from the standard
theory of associated prime ideals. Another standard fact is that if JC e m is a
nonzerodivisor on R, then the Krull dimension of R/xR is dim(R) — 1.

Theorem 4.4.8 If R is a local ring and A ^ 0 is a finitely generated R-
module, then every maximal A-sequence has the same length, G(A). More-
over, G(A) is characterized as the smallest n such that Ext^(&, A) ^ 0.
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4.4 Local Rings 107

Proof We saw above that if G(A) = 0, then HomR(k, A) ^ 0. Conversely, if
Horn R(k, A) / 0, then some nonzero a e A has aR = k, that is, ax = 0 for all
JC e m. In this case G(A) = 0 is clear. We now proceed by induction on the
length n of a maximal regular A-sequence ;ti, • • •, xn on A. If n > 1, x = x\ is
a nonzerodivisor on A, so the sequence 0 —>• A —> A —> A/JCA —• 0 is exact,
and X2, • • •, xn is a maximal regular sequence on A/JCA. This yields the exact
sequence

Ext1""1^, A) - ^ Ext1'"1^, A) -> Ext1'"1^, A/JCA) -> Ext1'(A;, A) - ^ Ext'(fc, A).

Now ;t& = 0, so Extl(k, A) is an R/xR-module. Hence the maps "JC" in this
sequence are zero. By induction, this proves that Ext* (k, A) = 0 for 0 <i < n
and that Ext"(A:, A) / 0. This finishes the inductive step, proving the theorem.

•

Remark The injective dimension id(A) is the largest integer n such that
Ext^(&, A) 7̂  0. This follows from the next result, which we cite without proof
from [KapCR, section 4.5] because the proof involves more ring theory than
we want to use.

Theorem 4.4.9 If R is a local ring and A is a finitely generated R-module,
then

id(A) <do Extn
R(k, A) = 0 for all n > d.

Corollary 4.4.10 If R is a Gorenstein local ring (i.e., idR(R) < oo), then R
is also Cohen-Macaulay. In this case G(R) = idR(R) = dim(R) and

Extq
R(k, R)^0&q= dim(R).

Proof The last two theorems imply that G(R) < id(R). Now suppose that
G(R) = 0 but that id(R) / 0. For each s e R and « > 0 w e have an exact
sequence

Extn
R(R, R) -+ Extn

R(sR, R) -> Extn
R+l(R/sR, R).

For n = id(R) > 0, the outside terms vanish, so Extn
R(sR, R) = 0 as well.

Choosing s e R so that sR = k contradicts the previous theorem so if G(R) =
0 then id(R) = 0. If G(R) = d > 0, choose a nonzerodivisor x e m and
set S = R/xR. By the third Injective Change of Rings theorem (exercise
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108 Homological Dimension

4.3.3), ids(S) = idR(R) — 1, so S is also a Gorenstein ring. Inductively,
S is Cohen-Macaulay, and G(S) = ids(S) = dim(S) = dim(R) - 1. Hence
idR(R) = dim(R). If JC2, • • •, Xd are elements of m mapping onto a maximal
^-sequence in mS, then x\9 X2, • • •, Xd forms a maximal /^-sequence, that is,
G(R) = 1 + G(S) = dim(R). O

Proposition 4.4.11 If R is a local ring with residue field k, then for every
finitely generated R-module A and every integer d

pd(A) <d& Tor£+1(A, k) = 0.

In particular, pd(A) is the largest d such that Tor^ (A, k) ^ 0.

Proof As fd{A) < pd(A), the => direction is clear. We prove the converse by
induction on d. Nakayama's lemma 4.3.9 states that the finitely generated R-
module A can be generated by m = dimfc(A/mA) elements. Let {u\, • • •, um]
be a minimal set of generators for A, and let K be the kernel of the surjection
e\Rm -+ A defined by e(n, • • •, rm) = £V/M|. The inductive step is clear,
since if d ^ 0, then

Tor^+i(A, k) = Tord(K, k) and pd(A) < 1 + pd(K).

If d = 0, then the assumption that Tori (A, k) = 0 gives exactness of

0 —> K®k —> Rm®k —> A®k — ^ 0

€<g>ifc
0 —> K/mK —> km > A/mA —> 0.

By construction, the map € ® k is an isomorphism. Hence K/mK = 0, so
the finitely generated /^-module K must be zero by Nakayama's lemma. This
forces Rm = A, so pd(A) = 0 as asserted. <>

Corollary 4.4.12 IfR is a local ring, then gl. dim(R) = pdR(R/m).

Proof pd(R/m) < gl. dim(R) = sup{pd(R/I)} < fd(R/m) < pd(R/m). O

Corollary 4.4.13 If R is local and x e m is a nonzerodivisor on R, then
either gl. dim(R/xR) = oo or gl. dim(R) = l+gl. dim(R/xR).

Proof Set 5 = R/xR and suppose that gl. dim(S) = d is finite. By the First
Change of Rings Theorem, the residue field k = R/xn = S/mS has

O
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4.4 Local Rings 109

Grade 0 Lemma 4.4.14 If R is local and G(R) = 0 (i.e., every element of
the maximal ideal m is a zerodivisor on R), then for any finitely generated
R-module A,

either pd(A) = 0 or pd(A) = oo.

Proof If 0 < pd(A) < oo for some A then an appropriate syzygy M of A is
finitely generated and has pd(M) = 1. Nakayama's lemma states that M can
be generated by m = dim^(M/mM) elements. If MI, • • •, um generate M, there
is a projective resolution 0 —• P —> Rm —> M —> 0 with e ( n , . . . , rm) =
J^nur, visibly Rm/mRm ^km^ M/mM. But then P c m/?m, so s/> = 0,
where s e R is any element such that m = {r e 7?: ,?r = 0}. On the other hand,
P is projective, hence a free /^-module (4.3.11), so sP = 0 implies that s = 0,
a contradiction. O

Theorem 4.4.15 (Auslander-Buchsbaum Equality) Let R be a local ring,
and A a finitely generated R-module. If pd(A) < oo, then G(R) = G(A) +
pd(A).

Proof If G(R) = 0 and pd(A) < oo, then A is projective (hence free) by
the Grade 0 lemma 4.4.14. In this case G(R) = G(A), and pd(A) = 0. If
G(R) / 0, we shall perform a double induction on G(R) and on G(A).

Suppose first that G(R)^0 and G(A) = 0. Choose xemzmdO^aeA
so that x is a nonzerodivisor on R and ma = 0. Resolve A:

and choose u e Rm with e(u) = a. Now mw c K so JCM e K and m(xw) c xK,
yetxu gxK asu g K and JC is a nonzerodivisor on Rm. Hence G(K/xK) — 0.
Since ^ is a submodule of a free module, x is a nonzerodivisor on K. By the
third Change of Rings theorem, and the fact that A is not free (as G(R) ^

pdR/xR(K/xK) = pdR(K) = pdR(A) - 1.

Since G(R/xR) = G(R) — 1, induction gives us the required identity:

G(R) = 1 + G(R/xR) = 1 + G(K/xK) + pdR/xR(K/xK) = pdR(A).

Finally, we consider the case G(R) / 0, G(A) ^ 0. We can pick x e m,
which is a nonzerodivisor on both R and A (see the Standard Facts 4.4.7
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110 Homological Dimension

cited above). Since we may begin a maximal A-sequence with x, G(A/xA) =
G(A) — 1. Induction and the corollary 4.3.14 to the third Change of Rings
theorem now give us the required identity:

G(R) = G(A/xA) + pdR(A/xA)

= (G(A) - I) + (\ + pdR(A))

O

Main Theorem 4.4.16 A local ring R is regular iff gl. dim(R) < oo. In this
case

G(R) = dim(jR) = emb. dim(R) = gl. dim(R) = pdR(k).

Proof First, suppose R is regular. If dim(/?) = 0, R is a field, and the result
is clear. If d = dim(R) > 0, choose an /^-sequence JCI, • • •, xj generating m
and set S = R/x\R. Then JC2, • • •, Xd is an 5-sequence generating the maximal
ideal of S, so S is regular of dimension d — 1. By induction on d, we have

gl. dim(R) = 1+ gl. dim(S) = 1 + (d - 1) = d.

If gl. dim(R) = 0, R must be semisimple and local (a field). If gl. dim(R) /
0,oo then m contains a nonzerodivisor x by the Grade 0 lemma 4.4.14;
we may even find an x = x\ not in m2 (see the Standard Facts 4.4.7 cited
above). To prove that R is regular, we will prove that S = R/xR is regu-
lar; as dimCS) = dim(/?) — 1, this will prove that the maximal ideal mS of
S is generated by an 5-sequence j2, • • •, yd- Lift the y; e mS to elements
xi e m (/ = 2, • • •, d). By definition x\, • • •, Xd is an /^-sequence generating
m, so this will prove that R is regular.

By the third Change of Rings theorem 4.3.12 with A = m,

pds(m/xm) = pdR(m) = pdR(k) - 1 = gl. dim(R) - 1.

Now the image of m/jcm in S = R/xR is m/xR = mS, so we get exact se-
quences

0-^ xR/xm-+ m/jtm-> mS-> 0 and 0 -> mS -> S -+ k -> 0.

Moreover, jc/?/;cm = Torf (R/xR, k) = {a e k : xa = 0} = k, and the image
of x in x/?/jcm is nonzero. We claim that m/xm = mS ® A: as 5-modules. This
will imply that

gZ. dim(5) = pds(k) < /7^(m/jcm) = gl. dim(R) - 1.
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4.5 Koszul Complexes 111

By induction on global dimension, this will prove that S is regular.
To see the claim, set r = emb. &\m(R) and find elements *2, • • •, Jcr in

m such that the image of {x\, • • •, xr} in m/m2 forms a basis. Set / =
(x2, • • •, xr)R + xm and observe that I/xm c m/jcm maps onto mS. As the
kernel xR/xm of m/ im -> mS is isomorphic to k and contains x g / , it fol-
lows that (jc/?/xm) Pi {I/xm) — 0. Hence I/xm = mS and £ 0 mS = m/xm,
as claimed. O

Corollary 4.4.17 A regular ring is both Gorenstein and Cohen-Macaulay.

Corollary 4.4.18 If R is a regular local ring and p is any prime ideal of R,
then the localization Rp is also a regular local ring.

Proof We shall show that if S is any multiplicative set in R, then the local-
ization S~lR has finite global dimension. As Rp = S~lR for S = R — p, this
will suffice. Considering an S~^-module A as an /^-module, there is a pro-
jective resolution P -> A of length at most gl. dim(R). Since S~XR is a flat
/^-module and S~lA = A, S~lP ->• A is aprojective S^/^-module resolution
of length at most gl. dim(R). <>

Remark The only non-homological proof of this result, due to Nagata, is very
long and hard. This ability of homological algebra to give easy proofs of re-
sults outside the scope of homological algebra justifies its importance. Here is
another result, quoted without proof from [KapCR], which uses homological
algebra (projective resolutions) in the proof but not in the statement.

Theorem 4.4.19 Every regular local ring is a Unique Factorization Domain.

4.5 Koszul Complexes

An efficient way to perform calculations is to use Koszul complexes. If x e R
is central, we let K(x) denote the chain complex

concentrated in degrees 1 and 0. It is convenient to identify the generator of the
degree 1 part of K(x) as the element ex, so that d(ex) = x. If x — (JCI, • • •, xn)
is a finite sequence of central elements in R, we define the Koszul complex
K(x) to be the total tensor product complex (see 2.7.1):

K(xi) ®R K(x2) (8)/? • • • 0/? K(xn).
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112 Homological Dimension

Notation 4.5.1 If A is an /^-module, we define

Hq(x, A) = Hq(K(x) ®R A);

Hq(x, A) = Hq(Hom(K(x), A)).

The degree p part of K(x) is a free /^-module generated by the symbols

In particular, Kp(x) is isomorphic to the pth exterior product ApRn of Rn

and has rank ( p , so K(x) is often called the exterior algebra complex. The
derivative Kp(x) —> Kp-\(x) sends e[x A • • • A eip to ^l(—\)k^xtketx A • • • A
e(k A • • - A eip. As an example, ^ (x , v) is the complex

0 —> R (X'~y\ R2 ^ R —> 0.

basis: [ex A ey] {ey,ex} {1}

DG-Algebras 4.5.2 A graded R-algebra K* is a family {Kp, p > 0} of /?-
modules, equipped with a bilinear product Kp ®R Kq -> Kp+q and an ele-
ment 1 e Ko making Ko and (&KP into associative /^-algebras with unit. K*
is graded-commutative if for every a € AT̂ , b e Kq we have <z-& = {—\)pqb-a.
A differential graded algebra, or DG-algebra, is a graded /^-algebra #*
equipped with a map d: ^ -> ^ p _ i , satisfying ^/2 = 0 and satisfying the
Leibnitz rule:

d(a • b) = d{a) • b + (-l)pa • </(£) for a e KL p .

Exercise 4.5.1

1. Let /sTbea DG-algebra. Show that the homology H*{K) = [Hp{K)}
forms a graded /^-algebra, and that H*{K) is graded-commutative when-
ever K* is.

2. Show that the Koszul complex K(x) = A*(Rn) is a graded-commutative
DG-algebra. If R is commutative, use this to obtain an external product
Hp(x, A) (8)/? Hq(x, B) -> Hp+q{x, A®RB). Conclude that if A is a
commutative /^-algebra then the Koszul homology //*(JC, A) is a graded-
commutative /^-algebra.

3. If JCI, • • • G / and A = R/I, show that //*(JC, A) is the exterior algebra
A*(An).
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4.5 Koszul Complexes 113

Exercise 4.5.2 Show that {Hq(x, —)} is a homological 5-functor, and that
{Hq(x, —)} is a cohomological 5-functor with

H°(x, A) = Hom(R/xR, A) = {aeA: x(a = 0 for all /}.

Then show that there are isomorphisms Hp(x, A) = Hn~p(x, A) for all p.

Lemma 4.5.3 (Kunneth formula for Koszul complexes) ifC — C^isa chain
complex of R-modules and x e R, there are exact sequences

0 -> H0(x, Hq(C)) -> Hq(K(x) ®R C) -> Hx(x, Hq-X{C)) -> 0.

Proof Considering R as a complex concentrated in degree zero, there is a
short exact sequence of complexes 0 -> /? -> ^T(x) -> R[— 1] -> 0. Tensoring
with C yields a short exact sequence of complexes whose homology long exact
sequence is

Hq+l(C[-l]) ^ Hq(C) - • Hq(K(x) 0 C) - • / ^ ( C [ - l ] ) ^ > //^(C).

Identifying //^+i(C[—1]) with Hq(C), the map 3 is multiplication by x (check
this!), whence the result. <0>

Exercise 4.5.3 If x is a nonzerodivisor on R, that is, # I ( ^ ( A ; ) ) = 0, use the
Kunneth formula for complexes 3.6.3 to give another proof of this result.

Exercise 4.5.4 Show that if one of the X[ is a unit of R, then the complex
K{x) is split exact. Deduce that in this case //*(JC, A) = H*(x, A) = 0 for all
modules A.

Corollary 4.5.4 (Acyclicity) If x is a regular sequence on an R-module
A, then Hq(x, A) = Ofor q ^ 0 and H${x, A) = A/xA, where xA = (x\, • • •,
xn)A.

Proof Since x is a nonzerodivisor on A, the result is true for n = 1. Induc-
tively, letting JC = jcn, j = (JCI, • • •, xn-\), and C = ^(y) (8) A, Hq(C) = 0 for
# / 0 and K(x) 0 / /o(Q is the complex

0 -> A/yA ^ > A/yA -> 0.

The result follows from 4.5.3, since x is a nonzerodivisor on A/yA. O
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114 Homological Dimension

Corollary 4.5.5 (Koszul resolution) If x is a regular sequence in R, then
K{x) is a free resolution of R/Iy I = (x\, • • •, xn)R. That is, the following
sequence is exact:

0 -> An(Rn) -> > A2(Rn) -> Rn -^> R-+ R/I -> 0.

In this case we have

Extp
R(R/I,A) =

Exercise 4.5.5 If x is a regular sequence in R, show that the external and
internal products for Tor (2.7.8 and exercise 2.7.5(4)) agree with the external
and internal products for //*(*, A) constructed in this section.

Exercise 4.5.6 Let R be a regular local ring with residue field k. Show that

Tor*(fc, k) ^ Ext£(fc, k) ^ Apkn ^ kO, where n = dim(R).

Conclude that idR(k) = dim(R) and that as rings Torf (jfc, k) = A*(kn).

Application 4.5.6 (Scheja-Storch) Here is a computational proof of Hilbert's
Syzygy Theorem 4.3.8. Let F be a field, and set R = F[x\, • • •, xn], S =
R[y\i • • •» yn\- Let t be the sequence (t\, • • •, tn) of elements t[ = yt — X{ of
S. Since S = R[t\, • • •, tn], t is a regular sequence, and //o(f, S) = R, so the
augmented Koszul complex of K (t) is exact:

0 -> AnSn -+ An~lSn -+ > A2Sn -+ Sn -U S -+ R -> 0.

Since each A .̂S'" is a free /^-module, this is in fact a split exact sequence
of /^-modules. Hence applying <g)#A yields an exact sequence for every R-
module A. That is, each K(i) 0/? A is an S-module resolution of A. Set Rf =
F\yu '' •»yn]> a subring of S. Since f/ = 0 on A, we may identify the R-
module structure on A with the /^-module structure on A. But S <8)R A =
R' 0 F A is a free /^-module because F is a field. Therefore each ApSn (8>/? A
is a free /^'-module, and K(t) ®R A is a canonical, natural resolution of A by
free /^'-modules. Since K(f) <8>R A has length n, this proves that

pdR(A) = pdR'{A) <n

for every /^-module A. On the other hand, since Torf (F, F) = F, we see that
= n. Hence the ring R = F[x\, • • •, xn] has global dimension n.
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4.6 Local Cohomology 115

4.6 Local Cohomology

Definition 4.6.1 If / is a finitely generated ideal in a commutative ring R and
A is an /^-module, we define

H?(A) = {aeA: {3i)Va = 0} = lim H o m ^ / / ' , A).

Since each Hom(/?//', —) is left exact and lim is exact, we see that H® is an

additive left exact functor from /?-mod to itself. We set

Since the direct limit is exact, we also have

Exercise 4.6.1 Show that if J c / are finitely generated ideals such that V c
J for some i, then HJ(A) = Hq(A) for all /^-modules A and all q.

Exercise 4.6.2 (Mayer-Vietoris sequence) Let / and J be ideals in a noethe-
rian ring R. Show that there is a long exact sequence for every /^-module A:

. . . _ £ * H^j(A) -» // /(A) 0 //«(A) - • / / /n 7(A) -> tf/+j(A) -^> • • •.

Hint: Apply Ext*(—, A) to the family of sequences

0 -+ R/Il H J{ -+ R/Il 0 R/J1 -> R/(V + 71') -> 0.

Then pass to the limit, observing that (/ + J)2i c (/' + / ' ) c (/ + /)* and
that, by the Artin-Rees lemma ([BA II, 7.13]), for every / there is an TV > / so
that iN njN <^(i n jy c v n j \

Generalization 4.6.2 (Cohomology with supports; See [GLC]) Let Z be a
closed subspace of a topological space X. If F is a sheaf on X, let H^(X, F)
be the kernel of H°(X, F) -> H°(X - Z, F), that is, all global sections of
F with support in Z. H^ is a left exact functor on Sheaves(X), and we write
H^(X, F) for its right derived functors.

If / is any ideal of R, then Hf(A) is defined to be H%(X, A), where X =
Spec(/?) is the topological space of prime ideals of R, Z = {p :/ c p}, and A
is the sheaf on Spec(/?) associated to A. If / is a finitely generated ideal, this
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116 Homological Dimension

agrees with our earlier definition. For more details see [GLC], including the
construction of the long exact sequence

0 -> H%(X, F) -> H°(X, F) -> H°(X -Z,F)-> HX
Z(X, F) -> • • •.

A standard result in algebraic geometry states that Hn(Spec(R), A) = 0 for
n ^ 0, so for the punctured spectrum U = Sptc(R) — Z the sequence

0 -> H?(A) -> A -> H°(U, A) -> HJ(A) -> 0

is exact, and for n / O w e can calculate the cohomology of A on U via

Exercise 4.6.3 Let A be the full subcategory of /?-mod consisting of the
modules with Hf(A) = A.

1. Show that A is an abelian category, that H®: R-mod ->• A is right ad-
joint to the inclusion i\ A ° ^ /?-mod, and that t is an exact functor.

2. Conclude that H® preserves injectives (2.3.10), and that A has enough
injectives.

3. Conclude that each H"(A) belongs to the subcategory A of /?-mod.

Theorem 4.6.3 Let R be a commutative noetherian local ring with maximal
ideal m. Then the grade G(A) of any finitely generated R-module A is the
smallest integer n such that H^(A) ^ 0.

Proof For each / we have the exact sequence

E x t ^ - W 4 - 1 , A) -• Extn(R/m\ A) - • Extn(R/mi+l, A) - • Ext"(m7m/+1, A).

We saw in 4.4.8 that Extn(R/m, A) is zero if n < G(A) and nonzero if n =
G{A)\ as m7tn'+ 1 is a finite direct sum of copies of R/m, the same is true
for Ext"(m7m /+1, A). By induction on i, this proves that Ext"(/?/m /+1, A) is
zero if n < G(A) and that it contains the nonzero module Extn(R/m\ A) if
n = G(A). Now take the direct limit as / -> oo. •

Application 4.6.4 Let R be a 2-dimensional local domain. Since G(R) ^ 0,
H^(R) — 0. From the exact sequence

0 -> m1" -^ R -> /e/m1" -^ 0
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4.6 Local Cohomology 117

we obtain the exact sequence

0 -> R -* Hom^m1", R) -* Extl
R(R/m\ R) -> 0.

As R is a domain, there is a natural inclusion of Hom/?(m', R) in the field F
of fractions of R as the submodule

m~( = {x e F -.xm* c R).

Set C = Urn"'. {Exercise: Show that C is a subring of F.) Evidently

H^(R) = limExt1(/?/m/, /?) £

If /? is Cohen-Macaulay, that is, G(fl) = 2, then #™(/?) = 0 , so R = C
and HomflOn1', R) = R for all i. Otherwise # / C and G(#) = 1. When
the integral closure of R is finitely generated as an R-module, C is actu-
ally a Cohen-Macaulay ring—the smallest Cohen-Macaulay ring containing
7?[EGA,IV.5.10.17].

Here is an alternative construction of local cohomology due to Serre [EGA,
III.l.l]. If x e R there is a natural map from K(xi+l) to K(xl):

xi+l

0 —> R > R —> 0

4 II
0 —> R ^ U R —> 0.

By tensoring these maps together, and writing xl for (x\, • • •, xl
n), this gives

a map from #( JC / + 1 ) to ^(JC1'), hence a tower {HqiKix')} of /^-modules. Ap-
plying Hom/?(—, A) and taking cohomology yields a map from Hq(xl, A) to

Definition 4.6.5 //^(A) = lim /^(JC*, A).

For our next result, recall from 3.5.6 that a tower {A/} satisfies the trivial
Mittag-Leffler condition if for every / there is a j > i so that Aj - • A, is zero.

Exercise 4.6.4 If {A/} ->• {#;} -^ {C/} is an exact sequence of towers of R-
modules and both {A/} and {C/} satisfy the trivial Mittag-Leffler condition,
then {#;} also satisfies the trivial Mittag-Leffler condition (3.5.6).

Proposition 4.6.6 Let R be a commutative noetherian ring and A a finitely
generated R-module. Then the tower {Hq(x

l, A)} satisfies the trivial Mittag-
Leffler condition for every q ^ 0.
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118 Homological Dimension

Proof We proceed by induction on the length n of JC. If n = 1, one sees im-
mediately that H\(x\ A) is the submodule At — {aeA: xla = 0}. The sub-
modules At of A form an ascending chain, which must be stationary since
R is noetherian and A is finitely generated. This means that there is an inte-
ger k such that Ak = Ak+\ = • • • , that is, xkA[ = 0 for all i. Since the map
A/+7- -^ A/ is multiplication by x-7, it is zero whenever j > fc. Thus the lemma
holds if n — 1.

Inductively, set y = (JCI, . . . , xn-\) and write x for xn. Since /ST(JC?) 0
^f(y') = K(xl), the Kiinneth formula for Koszul complexes 4.5.3 (and its
proof) yields the following exact sequences of towers:

{Hq(y\ A)} - • {Hq(x\ A)} -> {//^(y1", A)};

'", A)} -> [Hx(x\ A)} -> {//i(x\ A//A)} - • 0.

If g > 2, the outside towers satisfy the trivial Mittag-Leffler condition by in-
duction, so [Hq(x

l, A)} does too. If q = 1 and we set A/;- = {a e A/yl A :
xJa = 0} = H\(x-i, A/y1 A), it is enough to show that the diagonal tower {A//}
satisfies the trivial Mittag-Leffler condition. For fixed /, we saw above that
there is a k such that every map A// —> A/J+* is zero. Hence the map A// —>•
A/,/+^ ^ Ai+kj+k is zero, as desired. O

Corollary 4.6.7 Let R be commutative noetherian, and let E be an injective
R-module. Then H%(E) = Ofor all q^O.

Proof Because E is injective, Hom/?(—, E) is exact. Therefore

Hq(x\ E) - Hq HomR(K(x\ R),E)^ Hom/Kfl^*1', R), E).

Because the tower [Hq(x
l, R)} satisfies the trivial Mittag-Leffler condition,

//•?(£) ^ limHomRiHqix1, R),E) = 0. O

Theorem 4.6.8 If R is commutative noetherian, x = (x\, • • •, xn) is any se-
quence of elements of R, and I = (JCI, • • •, xn)R, then for every R-module A

Proof Both HJ and H% are universal 8-functors, and

//7°(A) = limHomC^/x^, A) = lim H°(x\ A) = H°(A). O
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4.6 Local Cohomology 119

Corollary 4.6.9 If R is a noetherian local ring, then H^(A) ^ 0 only when
G(A) <q< dim(R). In particular, if R is a Cohen-Macauley local ring, then

Proof Set d = dim(R). By standard commutative ring theory ([KapCR,
Thm.153]), there is a sequence x = (x\, • • •, xj) of elements of m such
that nv7 c / c m for some j9 where / = (jq, • • •, Xd)R. But then H^(A) =
H*!(A) = H%(A), and this vanishes for q > d because the Koszul complexes
K(x{) have length d. Now use (4.6.3). <C>

Exercise 4.6.5 If / is a finitely generated ideal of R and R —• S is a ring
map, show that ///(A) = HjS(A) for every S-module A. This result is rather
surprising, because there isn't any nice relationship between the groups
Ext^iR/P, A) and Ext*s(S/I\ A). Consequently, if ann#(A) denotes {r e
R:rA = 0}, then ///(A) = 0 for q > dim(R/axmR(A)).

Application 4.6.10 (Hartshorne) Let R = C[JCI,X2, y\, 3̂ 2], P = (x\,X2)R,
Q = (yu y2)R, and / = P n Q. As P, 2, and m = P + Q = (xux2, yu yi)R
are generated by regular sequences, the outside terms in the Mayer-Vietoris
sequence (exercise 4.6.2)

H3
P(R) 0 H3

Q(R) -> Hf(R) -> H^(R) -> ^ ( / ? ) 0 H4
Q(R)

vanish, yielding Hf(R) = H^(R) ^ 0. This implies that the union of two
planes in C4 that meet in a point cannot be described as the solutions of only
two equations f\ = fi = 0. Indeed, if this were the case, then we would have
/'" ^ (/1, f2)R c / for some 1, so that Hf(R) would equal H3(R), which is
zero.
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