
3
Tor and Ext

3.1 Tor for Abelian Groups

The first question many people ask about Tor*(A, B) is "Why the name
'Tor'?" The results of this section should answer that question. Historically,
the first Tor groups to arise were the groups Tori(Z//?, B) associated to
abelian groups. The following simple calculation describes these groups.

Calculation 3.1.1 Tor^(Z/p, B) = B/pB, Torf (l/p, B) = pB = [b e B :
pB = 0} and Tor^(l/p, B) = 0forn> 2. To see this, use the resolution

to see that Tor*(Z/p, B) is the homology of the complex 0 -> B -^> B -> 0.

Proposition 3.1.2 For all abelian groups A and B:

(a) Torf (A, B) is a torsion abelian group,

(b)

Proof A is the direct limit of its finitely generated subgroups Aa, so by 2.6.17
Torn(A, B) is the direct limit of the Tor^(Aa, B). As the direct limit of torsion
groups is a torsion group, we may assume that A is finitely generated, that is,
A = Tm 0 Z/p\ 0 Z//?2 0 • • • 0 Z//?r for appropriate integers m, p\,..., pr.
As Zm is projective, Torn(Zm, —) vanishes for n ^ O , and so we have

Torn(A, B) 2* Torn(Z/pu B) 0 • • • 0 Torn(Z/pr, B).

The proposition holds in this case by calculation 3.1.1 above. O
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3.1 Tor for Abelian Groups 67

Proposition 3.1.3 Torf (Q/Z, B) is the torsion subgroup of B for every
abelian group B.

Proof As Q/Z is the direct limit of its finite subgroups, each of which is
isomorphic to 1/p for some integer /?, and Tor commutes with direct limits,

T o r ^ Q / Z , B ) 9* l i m T o r f ( Z / / ? , B ) ̂  \ \ m ( p B ) = Up{b e B : p b = 0],

which is the torsion subgroup of B. O

Proposition 3.1.4 If A is a torsionfree abelian group, then Tor^(A, B) = 0
for n ^ 0 and all abelian groups B.

Proof A is the direct limit of its finitely generated subgroups, each of which is
isomorphic to Zm for some m. Therefore, Torn(A, B) ^ limTorn(Zm, B) = 0.

Remark (Balancing Tor) If R is any commutative ring, then Torf (A, B) =
Torf (B, A). In particular, this is true for R = Z, that is, for abelian groups.
This is because for fixed B, both are universal 5-functors over F(A) = A <g>
B = B®A. Therefore Torf (A, Q/Z) is the torsion subgroup of A. From this
we obtain the following.

Corollary 3.1.5 For every abelian group A,

Torf (A, -) = 0oAis torsionfree & Torf ( - , A) = 0.

Calculation 3.1.6 All this fails if we replace Z by another ring. For example,
if we take R = T/m and A = Z/d with d\m, then we can use the periodic free
resolution

to see that for all Z/m-modules B we have

I B/dB ifn = 0

{beB:db = 0}/(m/d)B ifn is odd, n > 0
{be B: (m/d)b = 0}/dB ifn is even, n > 0.
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68 Tor and Ext

Example 3.1.7 Suppose that r e R is a left nonzerodivisor on R, that is,

rR = {s e R : rs = 0} is zero. For every /^-module B, set rB = {b e B :rb =
0}. We can repeat the above calculation with R/rR in place of Z/p to see that
Tor0(R/rR, B) = B/rB, Torf (R/rR, B) = rB and Tor*(R/rR, B) = 0 for
all B when n > 2.

Exercise 3.1.1 If r/? ^ 0, all we have is the non-projective resolution

0 -> rR-+ R ^ R-+ R/rR -> 0.

Show that there is a short exact sequence

and that Tor*(R/rR, B) ^ Tor*_2(r/?, B) for n > 3.

Exercise 3.1.2 Suppose that R is a commutative domain with field of frac-
tions F. Show that Torf (F/R, B) is the torsion submodule {b e B : (3r /
0) rZ? = 0} of 5 for every ^-module 5 .

Exercise 3.1.3 Show that Torf ( # / / , /? / / ) ^ ^ for every right ideal / and
left ideal J of R. In particular, Tori (/?//, /?//) ^ / / / 2 for every 2-sided ideal
/ . Hint: Apply the Snake Lemma to

i I I

3.2 Tor and Flatness

In the last chapter, we saw that if A is a right /^-module and B is a left R-
module, then Torf (A, B) may be computed either as the left derived functors
of A®# evaluated at B or as the left derived functors of <8>RB evaluated at A.
It follows that if either A or B is projective, then Torn(A, B) = 0 for n

Definition 3.2.1 A left ^-module B is flat if the functor ®RB is exact. Sim-
ilarly, a right /^-module A is flat if the functor A<8>R is exact. The above
remarks show that projective modules are flat. The example R = Z, B = Q
shows that flat modules need not be projective.
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3.2 Tor and Flatness 69

Theorem 3.2.2 If S is a central multiplicatively closed set in a ring R, then
S~lR is aflat R-module.

Proof Form the filtered category / whose objects are the elements of S and
whose morphisms are Horn/(51, S2) = {s e S : s\s = S2}. Then colim F(s) =

S~lR for the functor F: I -> R-mod defined by F(s) = R, F(s\ - % s2) be-
ing multiplication by s. (Exercise: Show that the maps F(s) —• S~lR sending
1 to l/s induce an isomorphism colim F(s) = S~lR.) Since S~lR is the fil-
tered colimit of the free /^-modules F(s), it is flat by 2.6.17. O

Exercise 3.2.1 Show that the following are equivalent for every left R-
module B.

1. Bis flat.
2. Tor*(A, B) = 0 for all n ^ 0 and all A.
3. Torf(A,£)=Oforal lA.

Exercise 3.2.2 Show that i f 0 ^ A ^ # - > C - > 0 i s exact and both B and
C are flat, then A is also flat.

Exercise 3.2.3 We saw in the last section that if R = 1L (or more generally,
if R is a principal ideal domain), a module B is flat iff B is torsionfree. Here
is an example of a torsionfree ideal / that is not a flat /^-module. Let k be a
field and set R = k[x, y], I = (JC, >>)/?. Show that k = R/I has the projective
resolution

Then compute that Torf (/, k) = Torf (ifc, jfc) ^ k, showing that / is not flat.

Definition 3.2.3 The Pontrjagin dual B* of a left ^-module B is the right
^-module HomAb(#> Q/2) ; an element r of R acts via (fr)(b) = f(rb).

Proposition 3.2.4 The following are equivalent for every left R-module B :

1. B is aflat R-module.
2. B* is an injective right R-module.
3. I ®R B = IB = {x\b\ H h xnbn e B : xt e /, bt e B} C B for every

right ideal I of R.
4. Torf (R/I, B) = Ofor every right ideal I of R.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.004
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:42:46, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.004
https://www.cambridge.org/core


70 Tor and Ext

Proof The equivalence of (3) and (4) follows from the exact sequence

0 -* Tori(/?//, B)-> I ®B-> B-^ B/IB -* 0.

Now for every inclusion A ' c A of right modules, the adjoint functors 0 # and
Hom(—, B) give a commutative diagram

Hom(A,£*) —> Hom(A', B*)

1= =1
(A 0 B)* = Hom(A 0 5, Q/Z) — • Hom(A' 0 5, Q/Z) = (A' 0 5)*.

Using the lemma below and Baer's criterion 2.3.1, we see that

B* is injective <& (A 0 5)* -> (A' 0 B)* is surjective for all A 'cA.

^ A / 0 # - + A 0 # i s injective for all Af c A <£• B is flat.

5* is injective <& (R 0 £)* -> (/ 0 5)* is surjective for all / c R

O I ® B ^ R® B is injective for all /

Lemma 3.2.5 A map f.B^Cis injective iff the dual map /*: C* ->• 5* w

Proof If A is the kernel of / , then A* is the cokernel of /*, because
Hom(—, Q/Z) is contravariant exact. But we saw in exercise 2.3.3 that A = 0
iffA* = 0. •

Exercise 3.2.4 Show that a sequence A - • 5 —• C is exact iff its dual C* - •
5* —• A* is exact.

An /^-module M is called finitely presented if it can be presented us-
ing finitely many generators (e\,..., en) and relations (J2aijej — 0> 7 —
1, . . . , m). That is, there is an m x « matrix a and an exact sequence Rm —•
Rn -> M -> 0. If M is finitely generated, the following exercise shows that the
property of being finitely presented is independent of the choice of generators.

Exercise 3.2.5 Suppose that cp\ F -» M is any surjection, where F is finitely
generated and M is finitely presented. Use the Snake Lemma to show that
ker(<p) is finitely generated.

Still letting A* denote the Pontrjagin dual 3.2.3 of A, there is a natural
map o\ A* ®R M —• Hom#(M, A)* defined by a(f 0 ra): h i-> f(h(m)) for
/ e A*, m G M and h e Hom(M, A). (Exercise: If M = 0 ° ^ / ? , show that a
is not an isomorphism.)
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3.2 Tor and Flatness 71

Lemma 3.2.6 The map a is an isomorphism for every finitely presented M
and all A.

Proof A simple calculation shows that a is an isomorphism if M = R. By
additivity, a is an isomorphism if M = Rm or Rn. Now consider the diagram

A*0 7T —> A*0/?" —> A*®M —> 0

Hom(/?m,A)* —> Hom(Rn,A)* —> Hom(M, A)* — • 0.

The rows are exact because 0 is right exact, Horn is left exact, and Pontrjagin
dual is exact by 2.3.3. The 5-lemma shows that a is an isomorphism. <>

T h e o r e m 3.2.7 Every finitely presented flat R-module M is projective.

Proof In order to show that M is project ive, w e shall show that H o m / ? ( M , —)
is exact. To this end, suppose that we are given a surjection B -> C. Then
C* ->• B* is an injection, so if M is flat, the top arrow of the square

(C*) 0/? M —> (B*) <S>R M

Hom(M, C)* —> Hom(M, B)*

is an injection. Hence the bottom arrow is an injection. As we have seen, this
implies that Hom(M, B) —> Hom(M, C) is a surjection, as required. <>

Flat Resolut ion L e m m a 3.2.8 The groups Tor*(A, B) may be computed us-
ing resolutions by flat modules. That is, if F —> A is a resolution of A with the
Fn being flat modules, then Tor*(A, B) = H*(F 0 B). Similarly, if F' - > B is
a resolution of B by flat modules, then Tor* (A, B) = //*(A 0 Ff).

Proof We use induction and dimension shifting (exercise 2.4.3) to prove that
Torn(A, B) = Hn(F 0 B) for all n\ the second part follows by arguing over
Rop. The assertion is true for n = 0 because 0Z? is right exact. Let K be such
that 0 ^ # - + f b - ^ A ^ 0 i s exact; if E = ( > F2 -> F\ - • 0), then
E ->• K is a resolution of K by flat modules. For n = lwe simply compute

Tori (A, B) = ker(# 0 B -+ Fo 0 B)

= k e r

im(F2 0
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72 Tor and Ext

For n > 2 we use induction to see that

Torn(A, B) ^ Torn_i(£, B) ^ Hn-\(E ® B) = Hn(F 0 B).

Proposition 3.2.9 (Flat base change for Tor) Suppose R -> T is a ring map
such that T is flat as an R-module. Then for all R-modules A, all T-modules
C and all n

Proof Choose an /^-module projective resolution P - • A. Then Torf (A, C)
is the homology of P 0 # C. Since T is Z?-flat, and each Pn 0 # T is a pro-
jective T-module, P 0 7 1 — • A 0 7 1 i s a r-module projective resolution. Thus
Tor£(A ®fl 7\ C) is the homology of the complex (P ®RT)®TC = P ®RC
as well. <>

Corollary 3.2.10 If R is commutative and T is aflat R-algebra, then for all
R-modules A and B, and for all n

T ®R Tor*(A, B) ^ Tor^(A ®R T, T ®R B).

Proof Setting C = T ®R B, it is enough to show that Torf (A, T 0 B) =
T 0 Torf (A, B). As T®R is an exact functor, T 0 Torf (A, B) is the homol-
ogy of T 0/? (P 0/? B) = P 0T? (T 0/? B), the complex whose homology is
Torf (A, T 0 B). O

Now we shall suppose that R is a commutative ring, so that the Torf (A, B)
are actually R-modules in order to show how Tor* localizes.

Lemma 3.2.11 If /x: A —> A is multiplication by a central element r e R, so
are the induced maps /z*: Tor^(A, B) —> Tor^(A, B) for all n and B.

Proof Pick a projective resolution P —• A. Multiplication by r is an R-
module chain map \x\ P —> P over /x (this uses the fact that r is central), and
/x 0 Z? is multiplication by r on P 0 B. The induced map /z* on the subquo-
tient To^(A, B) of Pn 0 5 is therefore also multiplication by r. <C>

Corollary 3.2.12 If A is an R/r-module, then for every R-module B the R-
modules Torf (A, B) are actually R/r-modules, that is, annihilated by the
ideal rR.
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3.3 Ext for Nice Rings 73

Corollary 3.2.13 (Localization for Tor) If R is commutative and A and B are
R-modules, then the following are equivalent for each n:

7. Tor*(A,£) = 0.

2. For every prime ideal p of R Torn
p(Ap, Bp) = 0.

JO

3. For every maximal ideal m of R Torn
m(Am, Bm) = 0.

Proof For any R-module M, M = 0 O Mp = 0 for every prime p O Mm = 0
for every maximal ideal m. In the case M = Tor^(A, B) we have

Mp = Rp®RM = Tor*p(Ap, Bp). O

3.3 Ext for Nice Rings

We first turn to a calculation of Ext | groups to get a calculational feel for what
these derived functors do to abelian groups.

Lemma 3.3.1 Ex t | (A, B) = Ofor n>2 and all abelian groups A, B.

Proof Embed B in an injective abelian group 7°; the quotient 71 is divisible,
hence injective. Therefore, Ext*(A, B) is the cohomology of

0 -> Hom(A, 7°) - • Hom(A, 71) -+ 0. O

Calculation 3.3.2 (A = I/p) Ext°_(Z/p, B) = pB, Extl
z(Z/p, B) = B/pB

and Extj(Z/p, B) = 0 for n > 2. To see this, use the resolution

0 - • I - A I -+ Tip -> 0 and the fact that Hom(Z, B) ^ B

to see that Ext*(I/p, B) is the cohomology of 0 <- B J-— B <-0.
Since 1 is projective, Ext1 (Z, B) = 0. Hence we can calculate Ext*(A, B)

for every finitely generated abelian group A = Zm 0 I/p\ 0 • • • 0 I/pn by
taking a finite direct sum of Ext*(I/p, B) groups. For infinitely generated
groups, the calculation is much more complicated than it was for Tor.

Example 3.3.3 (B = 1) Let A be a torsion group, and write A* for its Pon-
trjagin dual Hom(A, Q/2) as in 3.2.3. Using the injective resolution 0 - •
Z -> Q - • Q/Z -> 0 to compute Ext*(A, Z), we see that ExtS(A, Z) = 0 and
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74 Tor and Ext

Ext^CA, Z) = A*. To get a feel for this, note that because Ẑ oo is the union
(colimit) of its subgroups Z/pn, the group

Ext^ZpOC, Z) = (Zpoo)*

is the torsionfree group of /7-adic integers, Zp = lim(Z//?n). We will calculate

Ext̂ CZpoo, B) more generally in section 3.5, using lim1.

Exercise 3.3.1 Show that Ext^(Z[|], Z) = Zp/Z = 1poo. This shows that

Ext!(—, Z) does not vanish on flat abelian groups.

Exercise 3.3.2 When R = Z/m and B = Z/p with p\m, show that

A Z/m ^ Z/m A Z/m

is an infinite periodic injective resolution of B. Then compute the groups
Ext| , (A, Z/p) in terms of A* = Hom(A, Z/m). In particular, show that if

/?2|m, then Exr | / m(Z/p, 1/p) ^ Z//? for all n.

Proposition 3.3.4 For all n and all rings R

L Ext^(0aAa, B) ^ Y\a Ext^(Aa, B).
2. ExtJ(A, n ^ Bfj) ^ ^ ExtJ(A, ^ ) .

Proof If Pa —> Aa are projective resolutions, so is 0 P a —>- 0A a . If 5^ —•
/^ are injective resolutions, so is f] B^ -> f] /^ . Since Hom(0Pa, B) =
n Hom(Pa, 5) and Hom(A, f[ ^ ) = U Hom(A, 7^), the result follows from
the fact that for any family Cy of cochain complexes,

Y\*(Cy). O

Examples 3.3.5

1. If p2\m and A is a Z//?-vector space of countably infinite dimension,

then Ext | / m (A,Z/p) ^ Fl/^i Z / P i s a Z/p-vector space of dimen-

sion 2K°.
2. If B is the product Z/2 x Z/3 x Z/4 x Z/5 x • • • then 5 is not a torsion

group, and

oo

Ext1 (A, B) = Y\
p=2

vanishes if and only if A is divisible.
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3.3 Ext for Nice Rings 75

Lemma 3,3.6 Suppose that R is a commutative ring, so that HornR(A, B)
and the Ext^(A, B) are actually R-modules. If \i\ A —> A and v. B -> B are
multiplication by r e R, so are the induced endomorphisms /x* and v* of
Extn

R(A,B)foralln.

Proof Pick a projective resolution P -> A. Multiplication by r is an R-
module chain map /x: P —• P over /x (as r is central); the map Hom(/x, B)
on Hom(P, B) is multiplication by r, because it sends / e Hom(Pn, B) to
//x, which takes p e Pnto f(rp) = rf(p). Hence the map /x* on the subquo-
tient Extn(A, B) of Hom(Pn, B) is also multiplication by r. The argument for
v* is similar, using an injective resolution B —> I. <>

Corollary 3.3.7 If R is commutative and A is actually an R/r-module, then
for every R-module B the R-modules Ext^(A, B) are actually R/r-modules.

We would like to conclude, as we did for Tor, that Ext commutes with local-
ization in some sense. Indeed, there is a natural map 4> from S~l Horn/?(A, B)
to Hom5-i^(5~1A, S~lB), but it need not be an isomorphism. A sufficient
condition is that A be finitely presented, that is, some Rm —> Rn -* A -> 0
is exact.

Lemma 3.3.8 If A is a finitely presented R-module, then for every central
multiplicative set S in R, O is an isomorphism:

l , B) ̂  U l

Proof O is trivially an isomorphism when A = R\ as Horn is additive, <J> is
also an isomorphism when A = Rm. The result now follows from the 5-lemma
and the following diagram:

0 —• S-lHomR(A,B) —• S

•1 4 -I
0 —• Hom(S~lA,S~lB) —>

Definition 3.3.9 A ring /? is (right) noetherian if every (right) ideal is finitely
generated, that is, if every module R/I is finitely presented. It is well known
that if R is noetherian, then every finitely generated (right) /^-module is
finitely presented. (See [BAII,§3.2].) It follows that every finitely generated
module A has a resolution F -» A in which each Fn is a finitely generated
free R-module.
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76 Tor and Ext

Proposition 3.3.10 Let A be a finitely generated module over a commutative
noetherian ring R. Then for every multiplicative set S, all modules B, and
alln

<t>: S~l Ext^(A, B) =- Extn
s_lR(S~lA, S~lB).

Proof Choose a resolution F —> A by finitely generated free R-modules.
Then 5 - 1 F -> S~lA is a resolution by finitely generated free S~^-modules.
Because S~l is an exact functor from /^-modules to 5""^-modules,

t^(A, B) = S~l(H* HomR(F, B)) =- H*(S~l HomR(F, B))

^ H* Hom5-iR(S~lF, S~lB) = Ext* , ,^^" 1 A, S

Corollary 3.3.11 (Localization for Ext) If R is commutative noetherian and
A is a finitely generated R-module, then the following are equivalent for all
modules B and all n:

1. Ext^(A, B) = 0.
2. For every prime ideal p of R, Ext^ (Ap, Bp) = 0.

3. For every maximal ideal m of R, Ext# (Am, Bm) = 0.

3.4 Ext and Extensions

An extension £ of A by B is an exact sequence 0-+B-^X-+A^0. Two
extensions £ and £' are equivalent if there is a commutative diagram

§: 0 —> B —> X —> A —> 0

An extension is split if it is equivalent to 0 -> 5 —^ A 0 5 - • A -> 0.

Exercise 3.4.1 Show that if p is prime, there are exactly p equivalence
classes of extensions of 7L/p by Z//? in Ab: the split extension and the ex-
tensions

0 -» 1/p -£» Z//?2 - U Z//7 -> 0 (i = 1, 2, • . . , / > - 1).
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3.4 Ext and Extensions 11

Lemma 3.4.1 If Ext1 (A, B) = 0, then every extension of A by B is split.

Proof Given an extension £, applying Ext*(A, —) yields the exact sequence

Hom(A, X) -> Hom(A, A) -^> Ext1 (A, B)

so the identity map idA lifts to a map a: A ->• X when Ext1 (A, B) = 0. As a
is a section of X -* A, evidently X = A © 5 and § is split. O

Porism 3.4.2 Taking the construction of this lemma to heart, we see that
the class 0(§) = 9 (idA) in Ext1 (A, B) is an obstruction to § being split: £
is split iff idA lifts to Hom(A, X) iff the class ®(£) e Ext1 (A, B) vanishes.
Equivalent extensions have the same obstruction by naturality of the map 9, so
the obstruction 0(£) only depends on the equivalence class of §.

Theorem 3.4.3 Given two R-modules A and B, the mapping 0 : £ I-* 9(idA)
establishes a 1-1 correspondence

f equivalence classes of] i-i i4 ^-V Ext1 (A, 5)
I extensions of A by B \

in which the split extension corresponds to the element 0 e Ext1 (A, B).

Proof Fix an exact sequence 0 -> M —> P —> A -> 0 with P projective.
Applying Hom(—, B) yields an exact sequence

Hom(/>, B) -+ Hom(M, B) -^> Ext1 (A, B) -+ 0.

Given x e Ext1 (A, B), choose ft e Hom(M, B) with d(P) = x. Let X be the
pushout of j and j3, i.e., the cokernel of M —> P © 5 (w H- (j^(m), —P(m))).
There is a diagram

0 —> M -U P — > A — ^ 0

4 4- II
£: 0 —> B -U X —> A — • 0,

where the map X —> A is induced by the maps # —• A and P —> A. (Exer-
cise: Show that the bottom sequence § is exact.) By naturality of the connect-
ing map 9, we see that 0(£) = JC, that is, that 0 is a surjection.
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78 Tor and Ext

In fact, this construction gives a set map *I> from Ext1 (A, B) to the set of
equivalence classes of extensions. For if ft e Hom(M, B) is another lift of x,
then there is an / e Hom(P, B) so that ft = fi + fj. If X' is the pushout of j
and ft, then the maps /: B ->• X and o +if:P -> X induce an isomorphism
X' = X and an equivalence between £' and £. (Check this!)

Conversely, given an extension £ of A by B, the lifting property of P gives
a map r: P -> X and hence a commutative diagram

0 —> M -U P —> A —^ 0

(*)
M —>

U
B - U

P

i
X§: 0 —> B —> X —> A — • 0.

Now X is the pushout of j and y. {Exercise: Check this!) Hence
$, showing that 0 is injective. O

Definition 3.4.4 (Baer sum) Let £: 0 -> B -> X -> A -> 0 and §r: 0 -^ 5 ^
X; -> A ->• 0 be two extensions of A by B. Let X" be the pullback {(JC, jcr) G
X x X / :Jc=Jc / inA}.

X" —> X7

X —^ A

X" contains three copies o f f i : 5 x 0 , 0 x 5 , and the skew diagonal {(—b, b) :
b e B}. The copies B x 0 and 0 x 5 are identified in the quotient Y of X" by
the skew diagonal. Since X"/0 x B = X and X/B = A, it is immediate that
the sequence

is also an extension of A by B. The class of (p is called the Baer sum of the
extensions £ and §\ since this construction was introduced by R. Baer in 1934.

Corollary 3.4.5 The set of (equiv. classes of) extensions is an abelian group
under Baer sum, with zero being the class of the split extension. The map 0 is
an isomorphism of abelian groups.

Proof We will show that 0(<p) = 0(£) + ©(£') in Ext1 (A, B). This will
prove that Baer sum is well defined up to equivalence, and the corollary will
then follow. We shall adopt the notation used in (*) in the proof of the above

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.004
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 18 Oct 2021 at 01:42:46, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.004
https://www.cambridge.org/core


3.4 Ext and Extensions 79

theorem. Let r": P ->• X" be the map induced by r: P -> X and z'\ P -> X\
and let r: P -> 7 be the induced map. The restriction of r to M is induced by
the map y + y'\ M -> B, so

0 —> M —> P —> A —> 0

Y+Y'I *l 1

(p: 0 —> B —> Y —> A —> 0

commutes. Hence, 0(<p) = 3(y + }/)> where 9 is the map from Hom(M, B)
to Ext^A, B). But 3(y + y;) = d(y) + aCyO = O(§) + 0(§'). O

Vista 3.4.6 (Yoneda Ext groups) We can define Ext1 (A, B) in any abelian
category A, even if it has no projectives and no injectives, to be the set of
equivalence classes of extensions under Baer sum (if indeed this is a set).
The Freyd-Mitchell Embedding Theorem 1.6.1 shows that Ext1 (A, B) is an
abelian group—but one could also prove this fact directly. Similarly, we can
recapture the groups Extn(A, B) without mentioning projectives or injectives.
This approach is due to Yoneda. An element of the Yoneda Ext"(A, B) is an
equivalence class of exact sequences of the form

£: 0 - • B -> Xn -> > X\ -+ A -> 0.

The equivalence relation is generated by the relation that §' ~ f" if there is a
diagram

^ : 0 —> B —> X'n —> ••• —> X[ —> A —> 0

f\ 0 —> B —> Xl —> . . . —> X'{ —> A —> 0.

To "add" § and £' when n > 2, let Z'/ be the pullback of X\ and X\ over A, let
X'n be the pushout of Xn and X^ under 5 , and let Yn be the quotient of X% by
the skew diagonal copy of B. Then § + £r is the class of the extension

o -> ^ -> yn -> x^_i e x'n_x -+ — > x2 e x'2 -> xr/ -^ A -• o.

Now suppose that ^l has enough projectives. If P ->• A is a projective res-
olution, the Comparison Theorem 2.2.6 yields a map from P to £, hence a
diagram
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80 Tor and Ext

0 —> M —> Pn-\ — • . . . —> Po —> A —^0

By dimension shifting, there is an exact sequence

Hom(Pn_i, B) -> Hom(M, B) -^> Extn(A, B) -> 0.

The association ®(§) = d(fi) gives the 1-1 correspondence between the
Yoneda Ext" and the derived functor Ext". For more details we refer the reader
to [BX, §7.5] or [MacH, pp. 82-87].

3.5 Derived Functors of the Inverse Limit

Let / be a small category and A an abelian category. We saw in Chapter 2 that
the functor category A1 has enough injectives, at least when A is complete and
has enough injectives. (For example, A could be Ab, /?-mod, or Sheaves(X).)
Therefore we can define the right derived functors Rn lim,-e/ from A1 to A.

We are most interested in the case in which A is Ab and / is the poset
> 2 - • 1 —• 0 of whole numbers in reverse order. We shall call the objects

of Ab7 (countable) towers of abelian groups; they have the form

{A/}: > A2-+ A\ -» Ao.

In this section we shall give the alternative construction lim1 of Rx\\m for

countable towers due to Eilenberg and prove that Rn lim = 0 for n ^ 0, 1. This

construction generalizes from Ab to other abelian categories that satisfy the
following axiom, introduced by Grothendieck in [Tohoku]:

(A#4*) A is complete, and the product of any set of surjections is a surjection.

Explanation If / is a discrete set, A1 is the product category UiEiA of in-
dexed families of objects {A/} in A. For {A/} in A1, lim;e/ A/ is the product
f| A/. Axiom (AJ94*) states that the left exact functor [~[ from A1 to A is exact
for all discrete / . Axiom (AB4*) fails ( f lS i ^s no* e x a c 0 f°r some impor-
tant abelian categories, such as Sheaves(X). On the other hand, axiom (AB4*)
is satisfied by many abelian categories in which objects have underlying sets,
such as Ab, mod-/?, and Ch(mod-/?).
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3.5 Derived Functors of the Inverse Limit 81

Definition 3.5.1 Given a tower {A;} in Ab, define the map

i=0 i=0

by the element-theoretic formula

A(- • •, 0,-, • • •, ao) = (• • • ,at — ai+i, • • •, a\ — <22,ao — a\),

where at+\ denotes the image of <2;+i e Aj+i in A/. The kernel of A is lim A/

(check this!). We define lim1 A/ to be the cokernel of A, so that lim1 is a

functor from Ab7 to Ab. We also set lim0 A,- = lim A; and lim" A/ = 0 for

n#0, 1.

Lemma 3.5.2 The functors {\imn} form a cohomological 8-functor.

Proof If 0 -> {A/} —• {5/} -> {C/} - • 0 is a short exact sequence of towers,
apply the Snake Lemma to

o —• i\Ai —+ Y\Bt —• Y\Q —• o

to get the requisite natural long exact sequence. <>

L e m m a 3.5.3 If all the maps A,-+i - > A/ «r^ onto, then l im 1 A/ = 0. More-

over lim A/ ^ 0 (unless every A/ = 0), because each of the natural projections

lim Ai —>• Ay are onto.

Proof Given elements b[ e At (i = 0, 1, • • •), and any ao e Ao, inductively
choose 0/+i € A/+i to be a lift of at — £; G A/. The map A sends (• • •, a\, ao)
to (• • •, b\, bo), so A is onto and coker(A) = 0 . If all the b{ = 0 , then
(--,a\,ao) e lim A/. O

Corollary 3.5.4 Inn1 A/ ^ (Rx Urn)(A/) «nJ /?n Hm = Ofor n ^ 0, 1.

In order to show that the limn forms a universal 8 -functor, we only need

to see that lim1 vanishes on enough injectives. In Chapter 2 we constructed
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82 Tor and Ext

enough injectives by taking products of towers

k*E: . . . = £ = £ - > 0 ^ 0 ^ 0

with E injective. All the maps in k*E (and hence in the product towers) are
onto, so lim1 vanishes on these injective towers. O

Remark If we replace Ab by A = mod-/?, Ch(mod-/?) or any abelian cat-
egory A satisfying Grothendieck's axiom (A54*), the above proof goes
through to show that lim1 = Rl(\im) and Rn(\im) = 0 for n / 0, 1 as func-
tors on the category of towers in A. However, the proof breaks down for other
abelian categories.

Example 3.5.5 Set Ao = 1 and let A/ = pl1 be the subgroup generated by
pl. Applying lim to the short exact sequence of towers

with p prime yields the uncountable group

Here Zp = lim Z/pl2 is the group of p-adic integers.

Exercise 3.5.1 Let {A/} be a tower in which the maps A/+i -> A/ are in-
clusions. We may regard A = Ao as a topological group in which the sets
a + Ai(a e A,i >0) are the open sets. Show that lim A; = Pi A/ is zero iff A

is Hausdorff. Then show that lim1 A/ = 0 iff A is complete in the sense that

every Cauchy sequence has a limit, not necessarily unique. Hint: Show that A
is complete iff A = lim(A/A/).

Definition 3.5.6 A tower {A/} of abelian groups satisfies the Mittag-Leffler
condition if for each k there exists a j >k such that the image of A/ -> A*
equals the image of A7 -> A^ for all / > j . (The images of the A/ in A& satisfy
the descending chain condition.) For example, the Mittag-Leffler condition is
satisfied if all the maps A/+i -> A/ in the tower {A/} are onto. We say that {A/}
satisfies the trivial Mittag-Leffler condition if for each k there exists a j > k
such that the map A7 -> A& is zero.
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3.5 Derived Functors of the Inverse Limit 83

Proposition 3.5.7 If {At} satisfies the Mittag-Leffler condition, then

Proof If {A/} satisfies the trivial Mittag-Leffler condition, and b[ e A; are
given, set ak = bk + ^ + i H + bj-\, where hi denotes the image of b[ in
Ak. (Note that hi = 0 for / > j.) Then A maps (• • •, a\,ao) to (• • •, b\, bo).
Thus A is onto and lim1 A/ = 0 when {A/} satisfies the trivial Mittag-Leffler

condition. In the general case, let Bk c Ak be the image of A/ —>• Ak for large

i. The maps Bk+\ -> ^ are all onto, so lim1 Bk = 0. The tower {Ak/Bk} sat-

isfies the trivial Mittag-Leffler condition, so lim1 Ak/Bk = 0. From the short

exact sequence

of towers, we see that lim1 A/ = 0 as claimed. O

Exercise 3.5.2 Show that lim1 A/ = 0 if {A/} is a tower of finite abelian

groups, or a tower of finite-dimensional vector spaces over a field.

The following formula presages the Universal Coefficient theorems of the
next section, as well as the spectral sequences of Chapter 5.

Theorem 3.5.8 Let > C\ —• Co be a tower of chain complexes of abelian
groups satisfying the Mittag-Leffler condition, and set C = lim C[. Then there

is an exact sequence for each q:

0 - • Urn xHq+\(Ci) - • Hq(C) - • Inn Hq(Q) -* 0.

Proof Let B[ c Z; c Q be the subcomplexes of boundaries and cycles in the
complex Ci, so that Zi/Bi is the chain complex H*(Ci) with zero differentials.

Applying the left exact functor lim to 0 -> {Z/} - • {Cf} —> {C/[— 1]} shows

that in fact lim Z/ is the subcomplex Z of cycles in C. (The [—1] refers to the

surpressed subscript on the chain complexes.) Let B denote the subcomplex
d(C)[l] = (C/Z)[l] of boundaries in C, so that Z/B is the chain complex
H*(C) with zero differentials. From the exact sequence of towers
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84 Tor and Ext

we see that lim1 Bt = (lim 1^I-[—1])[+1] = 0 and that

0 -> B[-l] -> lim Bt[-l] -> lim lZt -> 0

is exact. From the exact sequence of towers

0^{Bi}^{Zi}^H*(Ci)^0

we see that lim1 Z,- = lim1 H*(Q) and that

0 -> lim £,- - • Z - • lim #*(C;) -> 0

is exact. Hence C has the filtration by subcomplexes

0 c B c lim £; c Z c C

whose filtration quotients are B, lim1 //*(Q)[1], lim H*(Ct), and C/Z respec-

tively. The theorem follows, since Z/B = H*(C). O

Variant If • • • -> C\ -> Co is a tower of cochain complexes satisfying the
Mittag-Leffler condition, the sequences become

0 - • lim xHq~\Ci) -> //^(C) - • lim / /^(Q) -^ 0.

Application 3.5.9 Let H*(X) denote the integral cohomology of a topolog-
ical CW complex X. If {Xi} is an increasing sequence of subcomplexes with
X = UXt, there is an exact sequence

(*) 0 - • lim lHq-\Xi) -> Hq(X) -> lim Hq{X{) -+ 0

for each q. This use of lim1 to perform calculations in algebraic topology was

discovered by Milnor in 1960 [Milnor] and thrust lim1 into the limelight.

To derive this formula, let C; denote the chain complex Hom(5(X/), Z)
used to compute H*(X(). Since the inclusion S(Xi) c S(X/+i) splits (because
each Sn(Xi+\)/Sn(Xi) is a free abelian group), the maps C,-+i -> Q are onto,
and the tower satisfies the Mittag-Leffler condition. Since X has the weak
topology, S(X) is the union of the 5(X/), and therefore H*(X) is the coho-
mology of the cochain complex

Hom(U5(X/), Z) = limHom(5(X/), Z) = lim Q.
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3.5 Derived Functors of the Inverse Limit 85

A historical remark: Milnor proved that the sequence (*) is also valid if
H* is replaced by any generalized cohomology theory, such as topological
K— theory.

Application 3.5.10 Let A be an /^-module that is the union of submodules
• • • c Ai c A/+i c • • •. Then for every /^-module B and every q the sequence

0 -> lim x Exiq
R

X(Ai, B) -> Ext^(A, B) -* lim ExtJ(A/, £) -> 0

is exact. For Tpoo = UZ//?1, this gives a short exact sequence for every B:

0 -> lim * Hom(Z///, B) -> Ext^Z^oo, B)-> Bp^ 0,

where the group Z?p = \\m(B/plB) is the /7-adic completion of B. This gener-

alizes the calculation Ext^(lpoo, I) ^ Ip of 3.3.3. To see this, let E be a fixed

injective resolution of B, and consider the tower of cochain complexes

Hom(A;+i, E) -+ Hom(A/, E) -+ > Hom(A0, E).

Each Hom(—, En) is contravariant exact, so each map in the tower is a surjec-
tion. The cohomology of Hom(A/, E) is Ext*(A/, B), and Ext*(A, B) is the
cohomology of

Hom(UA/, E) = limHom(A/, E).

Exercise 3.5.3 Show that Ext^(Z[^], Z) = 1p/Z using Z[£] = U/?~'Z; cf.

exercise 3.3.1. Then show that Ext^(Q, 5) = {\\p Bp)/B for torsionfree B.

Application 3.5.11 Let C = C** be a double chain complex, viewed as a
lattice in the plane, and let TnC be the quotient double complex obtained by
brutally truncating C at the vertical line p = —n:

(TnC)pq=\nM if
f
P-~n.

^ I 0 it p < —n

Then Tot(C) is the inverse limit of the tower of surjections

• Tot(7/+iC) -> Tot(7}C) -^ • Tot(7bC).

Therefore there is a short exact sequence for each q:

0 -> lim lHq+i(Tot(TiC)) -+ Hq(Tot(C)) -> lim ^(Tot(7)C)) -^ 0.
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86 Tor and Ext

This is especially useful when C is a second quadrant double complex, be-
cause the truncated complexes have only a finite number of nonzero rows.

Exercise 3.5.4 Let C be a second quadrant double complex with exact rows,
and let Bh

pq be the image of dh\ Cpq -> Cp-i,q. Show that Hp+q Tot(T-pC) =
Hq{Bh

p^ dv). Then let b = dh(a) be an element of Bh
pq representing a cycle

£ in Hp+q Tot(T-pC) and show that the image of £ in Hp+qTot(T-p-\C)
is represented by dv(a) e Bh

+X v This provides an effective method for
calculating #*Tot(C).

Vista 3.5.12 Let / be any poset and A any abelian category satisfying
(AB4*). The following construction of the right derived functors of lim is
taken from [Roos] and generalizes the construction of lim1 in this section.

Given A: / —> A, we define Ck to be the product over the set of all chains
ik < " • < *o m / of the objects A/o. Letting prik • • -̂  denote the projection of
Ck onto the (/&<•••< i\)st factor and /o denote the map A(l —> A,o associ-
ated to i\ < IQ, we define d°: Ck-i - • Ck to be the map whose (*£<•••< io)th

factor is fo(pnk • • -/i)- For 1 < p < k, we define dp: Ck-\ -+ Ck to be the
map whose (4 < • • • < I'O)^ factor is the projection onto the ( /*<• • •< ip <
••- < h)th factor. This data defines a cochain complex C*A whose differential
Ck-\ -+ Ck is the alternating sum J2k

p=o(~l)pdp, and we define lim"G/ A to
be Hn(C*A). (The data actually forms a cosimplicial object of .4; see Chap-
ter 8.)

It is easy to see that lim|)e/ A is the limit lim/e/ A. An exact sequence 0 ->
A-^B-^C^OinA1 gives rise to a short exact sequence 0 - • C*A ->•
C*B - • C*C ->• 0 in A whence an exact sequence

0 ->

Therefore the functors {lim"e/} form a cohomological <5-functor. It turns out
that they are universal when A has enough injectives, so in fact Rn lim/e/ =

Remark Let #d denote the dth infinite cardinal number, Ko being the cardinal-
ity of {1, 2, •••}. If / is a directed poset of cardinality Kj, or a filtered cate-
gory with #d morphisms, Mitchell proved in [Mitch] that Rn lim vanishes for

n > d + 2.

Exercise 3.5.5 (Pullback) Let -> <- denote the poset {JC, v, z}, x < z and y <
z, so that lim A; is the pullback of Ax and Ay over Az. Show that lim 1 A/

lim A
iel

- • l im
iel

B —> lim C —>
1 6 /

lim A
iel

—> lim 5
I G /

-> lim
iel

lC - • l i m 2 A
iel
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3.6 Universal Coefficient Theorems 87

is the cokernel of the difference map Ax x Ay ->• Az and that lim n = 0 for

/i/0, 1. ~**~

3.6 Universal Coefficient Theorems

There is a very useful formula for using the homology of a chain complex P to
compute the homology of the complex P 0 Af. Here is the most useful general
formulation we can give:

Theorem 3.6.1 (Kunneth formula) Let P be a chain complex of flat right R-
modules such that each submodule d(Pn) ofPn-\ is also flat. Then for every n
and every left R-module M, there is an exact sequence

0 -> Hn{P) ®R M -> Hn(P ®R M) -> Torf (#n_i(P), M) -> 0.

Proof The long exact Tor sequence associated to 0 -> Zn -> Pn -> d(Pn) ->
0 shows that each Zn is also flat (exercise 3.2.2). Since Torf (d(Pn), M) = 0,

O ^ Z n 0 M ^ P n 0 M - > d(Pn) 0 M -^ 0

is exact for every n. These assemble to give a short exact sequence of chain
complexes O ^ Z 0 M - ^ P 0 M - > d(P) 0 M -> 0. Since the differentials
in the Z and d(P) complexes are zero, the homology sequence is

Hn+\(dP®M) -X Hn(Z®M) -+ Hn(P®M) -+ Hn(dP®M) -X Hn-X{Z ® M)

d(Pn+l)®M Zn®M d(Pn)®M Zn-i®M.

Using the definition of 3, it is immediate that 9 = i 0 M, where i is the
inclusion of d(Pn+\) in Zn. On the other hand,

0 -* d(Pn+i) -U Zn -> Hn(P) -> 0

is a flat resolution of Hn(P), so Tor*(/4(P), Af) is the homology of

0 -+ d(Pn+i) 0 M -^-> Zn 0 M -> 0.

Universal Coefficient Theorem for Homology 3.6.2 L<?£ P be a chain com-
plex of free abelian groups. Then for every n and every abelian group M the
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88 Tor and Ext

Kunneth formula 3.6.1 splits noncanonically, yielding a direct sum decom-
position

Hn(P 0 M) ^ Hn{P) 0 M 0 Toif (#„_!(/>), M).

Proof We shall use the well-known fact that every subgroup of a free abelian
group is free abelian [KapIAB, section 15]. Since d{Pn) is a subgroup of
Pn+i, it is free abelian. Hence the surjection Pn - • d(Pn) splits, giving a
noncanonical decomposition

Applying 0M, we see that Zn 0 M is a direct summand of Pn 0 M; a fortiori,
Zn 0 M is a direct summand of the intermediate group

ker(Jn 0 1: Pw 0 M -> Pn-\ 0 M).

Modding out Zn 0 M and ker(dn 0 1) by the common image of dn+\ 0
1, we see that Hn{P) 0 M is a direct summand of //«(P 0 Af). Since P
and J (P) are flat, the Kunneth formula tells us that the other summand is

M). O

Theorem 3.6.3 (Kunneth formula for complexes) Let P and Q be right and
left R-module complexes, respectively. Recall from 2.7.1 that the tensor prod-
uct complex P 0/? Q is the complex whose degree n part is ®p+q=n Pp 0 Qq

and whose differential is given by d(a 0 b) = (da) 0 b + (—\)pa 0 (db) for
a e Pp, be Qq. If Pn and d(Pn) are flat for each n, then there is an exact
sequence

° ^ 0 HP(n®Hq(Q)^Hn(P®RQ)-± ($)ToT?(Hp(P),Hq(Q))-+0
p+q=n p+q=

for each n. If R = Z and P is a complex of free abelian groups, this sequence
is noncanonically split.

Proof Modify the proof given in 3.6.1 for Q = M. <>

Application 3.6.4 (Universal Coefficient Theorem in topology) Let S(X) de-
note the singular chain complex of a topological space X; each Sn(X) is a free
abelian group. If M is any abelian group, the homology of X with "coeffi-
cients" in M is

M).
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3.6 Universal Coefficient Theorems 89

Writing //*(X) for H*(X; Z), the formula in this case becomes

Hn{X\ M) ^ Hn(X) ®M ® Torf (//n_i(X), M).

This formula is often called the Universal Coefficient Theorem in topology.
If Y is another topological space, the Eilenberg-Zilber theorem 8.5.1 (see

[MacH, VIII.8]) states that H*(X x Y) is the homology of the tensor product
complex S(X) ® S(Y). Therefore the Kunneth formula yields the "Kunneth
formula for cohomology:"

Hn(X x Y) S \ 0 Hp(X) ® Hn-p(Y) | ® j ©Torf (Hp.x{X), Hn-p{Y)) \ .
[P=O J IP=I J

We now turn to the analogue of the Kunneth formula for Horn in place
of (8).

Universal Coefficient Theorem for Cohomology 3.6.5 Let P be a chain
complex of projective R-modules such that each d{Pn) is also protective. Then
for every n and every R-module M, there is a (noncanonically) split exact
sequence

0 -> Exlx
R(Hn-\(P), M) -> //"(Hom/KP, M)) - • YiomR(Hn(P), M) -> 0.

Proof Since d(Pn) is projective, there is a (noncanonical) isomorphism Pn =
Zn®d(Pn) for each n. Therefore each sequence

0 - • Wom(d(Pn), M) -+ Hom(Pn, M) - • HomCZ,,, M) -^ 0

is exact. We may now copy the proof of the Kunneth formula 3.6.1 for (8),
using Hom(—, M) instead of (g)M, to see that the sequence is indeed exact.
We may copy the proof of the Universal Coefficient Theorem 3.6.2 for (8) in
the same way to see that the sequence is split. •

Application 3.6.6 (Universal Coefficient theorem in topology) The cohomol-
ogy of a topological space X with "coefficients" in M is defined to be

//*(X; M) = //*(Hom(S(X), M)).

In this case, the Universal Coefficient theorem becomes

Hn(X\ M) = Hom(Hn(X), M) ®Ex\^(Hn-i(X), M).
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90 Tor and Ext

Example 3.6.7 If X is path-connected, then H0(X) = I and HX{X\ Z) ^
Hom(H\(X), Z), which is a torsionfree abelian group.

Exercise 3.6.1 Let P be a chain complex and Q a cochain complex of R-
modules. As in 2.7.4, form the Horn double cochain complex Hom(P, Q) =
{HomR(Pp, Q*)}, and then write /J*Hom(/>, Q) for the cohomology of
Tot(Hom(P, Q)). Show that if each Pn and d(Pn) is projective, there is an
exact sequence

f ] ExtJj(^(P), HHQ)) -+ Hn Hom(P, Q) -> \ \ HomR(Hp(P), H«(Q)) -+ 0.
p+q
n-\

Exercise 3.6.2 A ring R is called right hereditary if every submodule of
every (right) free module is a projective module. (See 4.2.10 and exercise
4.2.6 below.) Any principal ideal domain (for example, R = T) is hereditary,
as is any commutative Dedekind domain. Show that the universal coefficient
theorems of this section remain valid if Z is replaced by an arbitrary right
hereditary ring R.
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