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Part I - Lie Algebras

Introduction

The main general theorems on Lie Algebras are covered, roughly the content
of Bourbaki's Chapter I.

I have added some results on free Lie algebras, which are useful, both
for Lie's theory itself (Campbell-Hausdorff formula) and for applications to
pro-Jrgroups.

Lack of time prevented me from including the more precise theory of
semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a
last Chapter, the typical case of al,..

This part has been written with the help of F.Raggi and J. Tate. I want
to thank them, and also Sue Golan, who did the typing for both parts.

Jean-Pierre Serre

Harvard, Fall 1964



Chapter I. Lie Algebras: Definition and Examples

Let Ie be a commutative ring with unit element, and let A be a k-module, then
A is said to be a Ie-algebra if there is given a k-bilinear map A x A A (i.e.,
a k-homomorphism A 0" A -+ A).

As usual we may define left, right and two-sided ideals and therefore quo­
tients.

Definition 1. A Lie algebra over Ie is an algebra with the following properties:

1). The map A 0i A -+ A admits a factorization

A ®i A -+ A2A -+ A

i.e., if we denote the image of (x, y) under this map by [x,y) then the condition
becomes

[x,x) = 0

2). (lx, II], z] +ny, z), x) + ([z, xl, til = 0 (Jacobi's identity)

The condition 1) implies [x,1/]= -[1/,x).

for all x e k.

Ezample,. (i) Let Ie be a complete field with respect to an absolute value, let
G be an analytic group over k, and let 1J be the set of tangent vectors to G at
the origin. There is a natural structure of Lie algebra on 9.

(For an algebraic analogue of this, see example (v) below.)

(ii) Let·8 be any Ie-module. Define [x,y) = 0 for all x,y E g. Such a 9 is
called a commutative Lie algebra.

(ii') H in the preceding example we take 9 ED 1\ 29 and define

[x,y)=xAy
[x,yAz]=O
[x A1/,z] = 0

[x A 11, z A t] =0

for all .x, II, z, t E 8, then 9 ED A29 is a Lie algebra.

(iii) Let A be an associative algebra over k and define [x,y] = xy - yx,
X,1I E A. Clearly A with this product satisfies the axioms 1) and 2).

Definition 2. Let A be an algebra over k. A derivation D : A -+ A is a
k-linear map with the property D(x · y) =Dx · II + x ·Dy.

(iv) The set Der(A) of all derivations of an algebra A is a Lie algebra with
the product [D, D'] =DD' - D'D.

We prove it by computation:



Chapter I. Lie Algebras: Definition and Examples 3

[D, D'J(% ·11) = DU(z · y) - D'D(z ·11)
=D(D'z · y+%. D'f/) - D'(Dz · fI + z· Dy)
=DD':z· y + D':z· Df/ + D%· D'fI+ % • DD'y
- D'D% · y- Dx ·D'y - D'x ·Dy- x ·D'Dy

=DD'%· Y+%. DD'y- D'Dz· y- %. D'Dy

= [D,D']%· Y+ x· [D,D']y .

Theorem 3. Let. be II Lie algebra. For anti z E • define II map ad x : 9 -+ 9
btl ad :z(y) = [x,1/], then:

1) adz u a derivation of g.

2) The map x adx il a Lie homomorPhism of 9 into Der(g).

Proof·
ad x[y,z] = [z, (tI, z))

=-[y, [z, xl] - [z, [z, 1/]]
= Hz, til, z] + [y, lx, z))
=[adz(y),z]+ [y,adz(z») ,

hence, 1) is equivalent to the Jacobi identity. Now

ad[:z,y](z) = [[:z,y],z]

=-[[y,z), xl - [[z,xl, 1/1
=[z, [1/, z)) - [y, [%, z))
= adzady(z) - adyadz(z)

= [adz,ady](z) ,

hence 2) is also equivalent to the Jacobi identity.

(v) The Lie algebra of an algebraic matrix group.
Let I: be a commutative ring and let A = Mn(le) be the algebra of n x n­

matrices over 1:.
Given a set of polynomials Po(Xij), 1 i,j n, a zero of (Po) is a matrix

x = (Xij) such that Xij E k, Po(Xij) = 0 for all Q.

Let G(I:) denote the set of zeroes of (Po) in A* = GLn(k). If 1:' is any
associative, commutative k-algebra we have analogously G(k') C Mn(k').

Definition 4. The set (Pa) defines an algebraic group over Ie if G(I:') is a
subgroup of GLn(k') for all associative, commutative Ie-algebras Ie'.

The orthogonal group is an example of an algebraic group (equation:
'X · X = 1, where 'X denotes the transpose of X).

Now, let Ie' be the k-algebra which is free over I: with basis {I, e} where
e2 =0, i.e., k' = k[e].
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Theorem s. Let 9 be the let of matricel X E Mn(k) luch that

1+ eX E G(k[e) .

Then" it a Lie ,ubalgebra of Mn(k).

We have to prove that X, Y E " implies AX + pY e 9, if A, p. E k and
XY-YXEg.

To prove that, note first that

Pa(l+eX)=OforallQ <=> XEg

and, since e2 =0, we have

Pa(l + eX) =Pa(l) + dPa(l)eX .

But 1 E G(k), Le. Pa(l) = 0; therefore

Pa(l + eX) = dPo(l)eX .

Hence, 8 is a submodule of Mn(k).
We introduce now an auxiliary algebra k" given by k" = k(e, e', ee'] where

e2 = e12 =0 and e'e =ee', Le., k" = k[e] ®i k[e').
Let X, Y E 9, 80 we have

g = 1+ eX E G(k[e) C G(k")
g' =1+ e'Y E G(k[e') C G(k")

gg' = (1 +eX)(l +e'Y) =1+eX +e'Y +ee'XY
g'g == 1+eX +e'Y +ee'YX.
Write Z = [X, Y); we have

gg' = g'g(l + ee'Z) .

Since gg', g'g E G(k"), it follows that

1+ee'Z E G(k") .

But the subalgebra k[ee'] of k" may be identified with k(e). It then follows
that 1+eZ E G(k[eJ), hence Z E 9, q.e.d.

Ezample. The Lie algebra of the orthogonal' group is the set of matrices X
such that (1 +eX)(1 + e('X» = 1, i.e., X + 'X =o.

(vi) COfUtruction of Lie algebra" from known one".
a) Let " be a Lie algebra and let J c 9 an ideal, then slJ is a Lie algebra.

b) Let (JJi)iEI be a family of Lie algebras, then lliEI JJi is a Lie algebra.

c) Suppose 9 is a Lie algebra, C1 C S is an ideal and It is a subalgebra of
8, then 8 is called a lemidirect product of & by G if the natural map 8 -+ 8/C1
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induces an isomorphism & .-::... 9/0. If so, and if x E It, then ad x maps 0 into
"SO that ad. Z E Der(a), i.e., we have a Lie homomorphism 8 : &-+ Der«(I).

Theorem 6. The ,tructure of 1J U determined by (I, & antllJ, and the,e can
be given arbitrarily.

Proof. Since 8 is the direct sum of CI and &as a k-module and since multipli­
cation is bilinear and anticommutative we have to consider the product [x, til
in the following three cases:

z,yEa

x, y E &
x E IJ, tI Ea.

In the first case (x, til is given in a, in the second one [x,y] is given in &
and in the last one we have

[x,,,) = adx(y) =8(x)y .

Conversely, given the Lie algebras a and b and a Lie homomorphism

8 : b -+ Der(a) ,

we can construct a Lie algebra 9 which is a semidirect product of b by a in
such a way that 8(x) =ad. x, where ad. x is the restriction to a of ad, x, for
x E b. One has to check that the Jacobi's identity

J(x,tI, z) = [x, [tI, z)) + (y, [z, xll + [z, (x, yll = 0

holds. There are essentially four cases to be considered:

(a) z,y,z E a - then J(z,y,z) =0 because a is a Lie algebra.

(b) Z,tI E a, z E b - J(z,y,z) =0 8(z) is a derivation of Q.

(c) xEG,y,zEb - J(z,y,z) =0 8([y,z)=8(y)8(z)-8(z)8(y).

(d) z,y,z E II - J(x,y,z) =0 because &is a Lie algebra.



Chapter II. Filtered Groups and Lie Algebras

1. Formulae on commutators

Let G be a group and let %, JI, z e G. We will use the following notations:

(i) %' = 11-1%", hence the map G .... G given by z .-. z' is an automor­
phism of G, and we have the relation (x,)Z =x,Z.

(ii) (x,y) =x-1,,-lzt/ which is called the commutator of % and JI.

Proposition 1.1. We hAve the itlentitie..:

(1) %'11 = 'liZ'= yx(x,y), %' = z(z,y), (%,%) =1, ('11,%) = (X,y)-l.

(2) (x, 'liz) = (x, z)(x, tI)z.

(2') (xII,Z) =(z,z)'(y,z).

(3) (x', (1/, z»(Jlz, (z, z»(x·, (%, 'II» = 1.

Proof. (1) is trivial.

(2) From (i) and (1) we have

X(%,lIZ) = x'·
=(x')·
= [x(z, tI»)Z
=XZ(x,y)Z = x(x,z)(x,y)Z

and therefore (x,yz) = (x,z)(x,tI)z.

(2') xy(xy,z) = (xy)" = XZyz

=x(x,z)y(y,z)
=xy(x,z)'(y,z)

and therefore (zy,z) = (x,z)'(y,z).

(3) (x', (y, z» = y-l x-1yz-ly-l zyy-l xyt/-lZ-lt/z
= 1/-1x-1yz-ly-l .

Put
u = zxz-1yz

V= xyx-1zx

W = yzy-1xy

then (x',(y,z» =w-1u.
Analogously (by cyclic permutation)

(yZ,(z,x» =u-1v

(ZZ, (x, y» = v-1w .
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Hence =1 q.e.d.

Applications:
Let A, B be subgroups of a group G and let (A,B) denote the subgroup

of G generated by the commutators (a, b) for all a E A, b E B.
If A, B, C are normal subgroups of G, then (A, B) is also normal and we

have the relation

(A,(B,C» C (B, (C,A»(C, (A, B»

which follows from 1.1(3).

2. Filtration on a group

Deflnition 2.1. A filtration on a group G is a map w : G -+ R U {+oo}
satisfying the following axioms:

(1) w(l)= +00.
(2) w(z) > 0 for all z e G.

(3) W(xy-l) inf{w(x),w(y)}.

(4) w«z,y» 2:: w(%) +we,,).
It follows from (3) that w(y-l) =w(y). If ,\ E R+ we define

G" ={z E G Iw(x) ,\ }

Gt ={% E G Iw(x) > ·

The condition (3) shows that G", Gt are subgroups ofG. Moreover, if x E G>.,
Y E G then x' == x (mod Gt) which follows from the relation

w«x,y» ,\+w(y) > ,\ .

This also proves that G" is a normal subgroup ofG and sinceGt = Up.>>. Gp.
it follows that Gt is also a normal subgroup of G.

The family {G,,} (resp. {Gt}) is decreasing, i.e., ,\ < IJ implies G>. :J Gp.
(reap. Gt :> Gt).

Deflnition 2.2. For all Q 0 we define

gra G =GaIGt, and grG =L graG ·
o

Proposition 2.3.
1) gro G it an abelian group.

2) II z E Go let f be it, image in gro G; one (x') = i for all y E G.
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3) The mA, Co.1J : Go x GIJ -+ GO+IJ defined b, %,11 .... (%,,,) induce, A
bilineAr mA, co.1J : groG x grlJG -+ grOl+1JG.

4) The mA,' Co.1J CAn be estended b,lineArit, to c : grG x grG -+ grG
And 'hu define, a Lie algebra ,tructure on grG.

Proof. 1) It follows from 2.1(4).

2) It is already proved.

3) Let x,x' EGo, y,y' E GIJ, then (z,y) E GO+IJ and we have to prove
that if u,v E G: then (zu,y) =.(x,y) mod G:+Il, (z,yv).= (z,y) mod G:+Il.

Using 1.1(2') and (3) we have

(zu,y) = (x,y)- +(u,y) = (x,y)

=M + (z,y)v =(z,y)

(xx', y) = (x, y)Sl = (x, tI) + (x', y)

(x,Y'y) = (x,y) + (x,y')' = (Z,II) + (x,Y') .

This proves 3).

4) Let eE groG,,, E grllG and choose elements x E Go, x E GIJ such
that %= e, fj =.". Then we have (x,y) =ca,ll(e,,,),which we also write le,,,].

Now ifeE grG then e= Eo eo where eo E gro G. In order to prove that
le, el =0, it is sufficient to prove that [eo, eo] =0 and [eo, ell]= -rep,eo]. Let
Xa E Go such that %0 =eo for all Q. Then we have leo,eo) = (xa , xo ) = I = 0,
and

]

[ea,e,,) = (xa,z,,) = (zll,za) = -[e",ea) ·
In order to prove the Jacobi identity J(e, TI, () = 0, since J is trilinear, it

is enough to consider the case eE groG, ,., E grfJ G and ( E gr G. Now using
the Proposition 1.1(3) we have, for x E Go, II E G", z E G-y such that f = e,
Y=",z=(.

J(e,'1,()= (x',(y,z»(yZ,(z,x»(zz,(x,y» =1= 0

because x. = e, yZ = '7, z% =(. q.e.d.

3. Integral filtrations of a group

Proposition 3.1. For Gny group G the following two objec'b are in a one-one
corre,pondence:

1) Filtration, w : G -+ R U {+oo} that w(G) C N U {+oo}.

2) Decrea,ing ,equence, {Gn}neN of ,ubgroup$ of G ,uch 'hilt
(i) G] = G.
(ii) (Gn,Gm) C Gn+m.
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Proof. (1) => (2) is clear.
(2) => (1). Let z E G, then we define a filtration w: G -+ RU {+oo} by

w(z) = suPzEG" {n}.
It is clear that w(l) =+00, w(z) > 0 for all z E G, and w(z) = w(z-I).
Now let w(z) = n, w(y) = m, i.e., z E Gra , JI E Grra and z ;. Gra+l ,

y ¢ Gm+l • Suppose n m, then Gm C Gra and therefore zy-I E Gra , i.e.,

W(zy-I) inf{w(z),w(y)} .

In case n = +00 or m = +00, we have obviously this inequality.
Finally the inequality w«z,,» w(z) + w(y) from (ii). q.e.d.

Ezample. The delcending central lerie, 01G.
DefineG1 = G and by inductionGn+I = (G, Gn). Then the sequence {Gra }

satisfies the conditions (i)-(ii) of (2) in the Proposition 3.1. Condition (i) is
satisfied by definition, and we will prove (ii) by induction on n in the pair
(Gn,Gm).

Let first n = 1, then (G,Gm) C Gm+l by definition. Now suppose n > 1,
then

(Gra,Gm)=«G,Gn-I),Gm) C (G,(Gn-I,Gm»(Gra-t,(G, Gm»
C (G,Gn+m-l)(Gn-I,Gm+l)

C Gn+m ·Gn+m=Gn+m ·

Conversely, if {Hn } is a decreasing sequence of subgroups of G which
verifies (2), then Bn :::> Gn for all n. The proof of this is also by induction.
Suppose n = 1, then by definition HI = Gl • Now if n 1, we have

4. Filtrations in GL(n)

Let k be a field with an ultrametric absolute value Ixl = aV(z). Let Av be the
ring of v and let m v be the maximal ideal of A v , let k(v)=Av/mv •

Let n be a positive integer and let G be the group of n x n-matrices
with coefficients in Av such that 9 == 1mod mv , i.e., if 9 = (gij) then
gij == 6ij mod mv •

H 9 E G then 9 = 1 + x where x is a matrix with coefficients in mv •

Clearly G is a group, because it can be described as

G =Ker{ GL(n,Av ) -+ GL(n,k(v»} .

Let X E Mn(k), X = (Xij), then define veX) =inf{v(zij)}.
We can define a map w : G -+ RU{+oo} by w(g)= v(z), where 9 = l+z.

Theorem 4.1. The map w il a filtration on G.
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Proof. The conditions w(l) = +00 and w(g) > 0 for all 9 E G are obvious.
Let now GA = {g E G Iw(g) If GA is defined by

GA = {x Ix E k, vex) ,

the set GA is the kernel of the canonical homomorphism

GL(n,Al1 ) -. GL(n, Av/ClA} .

Hence GA is a subgroup of G, and this proves condition (3).
To prove condition (4), i.e., (GA,Gp) C G>.+p, write 9 E G>., h E Gil. in

the form: '
9=I+x, h=l+y.

One must check that hg == gh (mod GA+p). But

hg = 1 + x + y + yx

gh =1+ x + y + X1/

and the coefficients of xtl and yx belong to CI>.+p. Hence hg and gh have the
same image in GL(n,Av/aA+p.), and they are congruent modG>.+p, q.e.d.

Exercises

1. Determine the Lie algebra grG.

2. Prove that G =lj!!lG/G>. if k is complete.



Chapter III. Universal Algebra of a Lie Algebra

1. Definition

Let Ie be a commutative ring and let 9 be a Lie algebra over k.

Definition 1.1. A univer",11 algebra of 9 is a map e : 9 -+ Ug, where UfJ is
an associative algebra, with a unit satisfying the following properties:

1). e is a Lie algebra homomorphism,

(i.e., e is Ie-linear and e(z,fI)=ez' EfI- Efl' ez).

2). H A is any associative algebra with a unit and Q : 9 -+ A is any
Lie algebra homomorphism, there is a unique homomorphism of associative
algebras tp : UfJ -+ A such that the diagram

9 Ug

01 ./"
A

is commutative [Le., there is an isomorphism

HomLie(g,LA) HomA..(Ug,A)

where LA is the Lie algebra associated to A, cE. Chap. I, example (iii).]

It is trivial that Ug, if it exists, is unique (up to a unique isomorphism). To
prove its existence, we use the ten.9or algebra Tg of g, Le., Tg = E:'o TRg,
where TRg = 9 ... 9 = @R 9 for n O. For any associative algebra A
with a unit, one has: HomMod(g,A) = HomA••(Tg, A).

Now let I be the two-sided ideal of Tg generated by the elements of the
form [Z,fI) - x + y x, x,y E g.

Take Ug = Tg/I, then we have:

Theorem 1.2. Let e : 9 -+ U9 be the compo"ition 9 -+ Tl 9 -+ Tg -+ UfJ.
Then the pair (Ug,e) u a univer"al algebra of g.

In fact, let Q be a Lie homomorphism of 9 into an associative algebra A.
Since Q is k-linear, it extends to a unique homomorphism '" : Tg -+ A. It is
clear that "'(1) = 0, hence '" defines tp : U9 -+ A, and we have checked the
universal property of Ug.

Remark. Let E be a g-module (i.e., a k-module with a bilinear product
9 x E -+ E such that [x,y]e = x(ye) - y(x . e) for x,y E g, e E E). The
map 9 -+ End(E,E) which defines the module structure of E is a Lie homo­
morphism. Hence it extends to an algebra homomorphism U9 -+ End(E,E)
and E becomes aUg-left-module. It is easy to check that one obtains in this
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wayan i,omorphUm of the category of g-modules onto the category of Ug­
left-module,.

Exercise (Bergman). Prove that Ug = k <==> 9 =o. (Hint: use the adjoint
representation.)

2. Functorial properties

1). If I = then Us =
2). If 1= 81 X 82, where SI and 82 commute, then Us = US1 ® US2 •

3). Let Ie' be an extension of Ie and let 9' = '0' Ie', then UI' = U10, Ie'.

Proof of 2). Consider the homomorphisms ei : Si -+ USi, i = 1,2, f :
9 -+ USI 0 U92 given by f(x) = e(%I) ® 1 + 1 @ e(x2) where x = XI + X2
with Xl E 81, X2 E 12. The map / is a Lie algebra homomorphism since 91
commutes with 92. Hence f induces an associative algebra homomorphism
t/J :U, -+ U'I @ U'2.

On the other hand we have the homomorphisms Bi --. B -+ U9, i = 1,2,
which induce homomorphisms V'1 : UBi -+ U9 and since Bl commutes with
82 we have that V'1(XI)CP2(X2) =CP2(X2)CPl(Xl) for all Xl E 91, x2 E 92·

Finally take cP : UgI ® US2 --+ UB given by cp(Xl ® X2) = CPl(Xl)CP2(X2),
then we have t/J 0 cp = id and cP 0 t/J = ide

The proof of 1) and 3) are similar.

3. Symmetric algebra of a module

Let 8 be a Ie-module and define (x,Yl = 0 for all X,Y e g. In this case, the
universal algebra UI of I is called the Iymmetric algebra of the k-module 9
and it is denoted by 59.

We can define 59 as the largest commutative quotient of Tg, i.e.,
59 = E:O=o srag where srag = (®ra 9)/1 where I is generated by the ele­
ments of the form a - ua where u is a permutation of [1, n), and a E ®" 9.

We will consider the case where S is a free k-module with basis (ei)iEI.
Let e : , -+ k[(Xi)iEI] be the homomorphism given by e(ei) = Xi

where k[(Xi)iEI) is the polynomial ring in the indeterminates Xi, i E I.
Then (e, k[(Xi)iEI]) has the universal property of 1.1, i.e., e is a k-linear
map such that e(x)e(y) = e(y)e(x) and if / : B -+ A is a k-linear map with
f(%)f(1I) = /(y)/(%) for all X,1I E S where A is an associative algebra, then
there exists an associative algebra homomorphism f* : k(Xi)] --+ A such that'* oe = f. In fact if P(Xi) E k[(Xi)] then f*(P) = P(/(ei». This shows that
we can identify 5, with the polynomial algebra k[(Xi)iEI].

If we assume that I is totally ordered, then S9 has for basis the set of
monomials ei1 ••• ei", i l i2 · · · ira, n o.
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4. Filtration of U 9

Let 9 be a Lie algebra over k, and let U9 be the universal algebra of g. We
define a filtration ofU9 as follows: Let Urag be the submodule ofU9 generated
by the products e(xl)·· ·e(xm ), m R, where Xi E I. We have

Uog=k

U11 = kED e(9)

and Uo8 C U11 c··· C Ura9 C Ura+11 c···.
Now we define grUg = E:O=o grra Ug, where grraUs =UraS/Un - 1g.
The map UpS xU,S -+ U,,+,9 given by (a, b) ..... ab defines, by passage to

quotient, a bilinear map

gr" Ug X gr, Ug --+ gr,,+,Ug .

We then obtain a structure of graded algebra on grUg; with this structure
grU9 is called the graded algebra associated to UJJ. It is associative and has
a unit.

Proposition 4.1. The algebra grU9 i. generated by the image of I under
the map induced bye:9 -+ Ug.

Proof. Let Q E grra Ug and let a E Un9 be a representative of 0, i.e., a = Q.

Now, we have a =Em <n ... Thus we have,.-

a = L .x"e(z1"» ···e(z!:! )
m,.=ra

Theorem 4.2. The algebra grU9 i. commutative.

q.e.d.

Proof. Using 4.1 it is enough to prove that e(x), e(y) commute in gr2 Ug for
all x,y e g.

Since e is a Lie algebra homomorphism we have

e(x)e(y) - e(y)e(x) = e([x,y) ,

but e([x,lI) E U1JJ so e(x)e(y) == e(y)e(x)mod U1g. Therefore

e(x) e(y) = e(y) e(x) .

It follows from Theorem 4.2 that the canonical map 9 --+ U9 extends
to a homomorphism

I : 59 --+ grUg

where 59 is the symmetric algebra of 9 (cf. 111.3).
Since grU9 is generated by the image of 9, I i. $urjectitle.
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Theorem 4.3 (Poine&re-Birkhofr-Witt). l/g it a k-free module, then I U an
uomorphUm.

In order to prove the theorem we will prove first two lemmas.
Let (Xi)iEI be a basis of g and choose a total order in I.

Lemma 4.4. The family 0/ monomiau £(Xii) • • · £(Xi,.), i l
m n, generate Ung (a' a It-module).

Proof. We proceed by induction with respect to n.
For n =0 the statement is trivial.
Suppose now n > 0 and take a E un9. Then its image a E grn U9 is &

polynomial of degree n in the e(xi), but this implies a is& linear combination
of products e(xi1 )· • • e(xi,.), i l • .. in plus an element al E un-I,.

By the hypothesis of induction al is & linear combination of products
e(xi1 )· • • e(xi",), i l · · · im , m < n. q.e.d.

Lemma 4.5. The following ,tatement u equivalent to 4.3:
The family 0/ monomiall e(zi1 )··· e:(Xi,.), i l ... in, n 0 i, a ba,iI

ofUg.

For M = (i1 , ••• ,im ) with i 1 :5 i 2 :5 ... :5 i m , write

XM = e:(Zit)· · · e(zim ) ,

and denote the length of M by l(M) = m. For each n 0 the elements xM
with l(M) = n lie in UnS, and their images XM in grn U9 =Vn g/Un - 19 are
the images, under the map I : sn9 -+ grn U9, of the monomial basis elements
of sn9. Thus, the injectivity of I is equivalent to the non-existence of a relation

L: CM%M == 0 (mod Un-IS)
t(M)=n

with some CM =F o. By Lemma 4.4 this is the same as the non-existence of a
relation

L: CMXM = L: CMXM,

t(M)=n t(M)<n

with some CM on the left not zero. But any non-trivial k-linear dependence
relation among the Z M can be put in the latter form. Hence Lemma 4.5 is
true, and we can now proceed to prove Theorem 4.3 in the new form.

To do so we can (and will) assume that I is well-ordered. Let V be the
free k-module with basis {ZM} where M runs through the set of all sequences
(il, ,in ) with n 0 and i l i2 ••• in as above. If i E I and M =
(i1, ,in ), we define i $ M <=> i 5 iI, in which case we introduce the
notation iM = (i, i1 , ••• ,in).

Main lemma. We can make V into a s-module In ,uck a way that
ZiZM = ZiM whenever i M.



Chapter III. Universal Algebra of a Lie Algebra 15

We shall first define a Ie-bilinear map (z,v) 1-+ zv of 9 x V into V, and
will then prove that it makes Vag-module, that is, satisfies

(1) xyv - yxv = [x, Ylv , for x, Y E 9, and v E v:
To define xv it suffices to define XiZU for all i and M, and to define XiZM
we may assume by induction that x j ZN has been defined for all j E I when
leN) < l(M) and for j < i when leN) = l(M). Moreover we assume that this
has been done in such a way that the following holds:

(.) XjZN is a k-linear combination of ZL'S with l(L) leN) +1.

We then put

(2) {
ZiM , if i M

XiZM = Xj(XiZN) + [Xi,Xj]ZN ,if M = jN with·i > j.

This makes sense because, in the second case, XiZN is already defined as a
linear combination of ZL'S with l(L) l(N)+l = l(M), 81id [Xi, Xj] is a linear
combination of Xt. Moreover the condition (*) holds with j and N replaced
by i and M.

To check (1) it suffices, by linearity, to show

(1')

for all i, j and H.· Since both sides are skew symmetric and vanish when
i = j, we may assume i > j. If j N, then XjZN = ZjN and (I') follows
from the second case of our inductive definition (2) above. There remains the
case H = kL, with i > j > Ie, when (1') becomes

(ijk)

By induction on inf(i,j), we know this equation does hold if we permute ijk
cyclically, that is the equations (jki) and (leij) are correct. On the other hand,
by induction on leN) we can assume XyZL = yXZL + [z,Y1ZL for all z,y E 9.
Thus the right hand side of (ij Ie) can be rewritten:

[Zi,Zj]XtZL = Xt[Xi,Xj]ZL + [[Xi,Xj),Xt]ZL

= XtXiXjZL - XtXjXiZL + [[Xi,Xj),Xt]ZL •

Hwe substitute this on the right side of (ij k) and then add the three equations
(ijk) + (jlei) + (lei;) we get an equation of the form

L =L + Jac(Xi,Xj,ZI:)ZL •

Hence, (ijk) is true, and our main lemma is proved.
Since V is a B-module, it is also aUg-left ·module, cf. Remark at the end

of 111.1.
In particular we have in V the element Z. where 0 is the empty set. For

all M we have xuZ. = ZM. We will prove this by induction on t(M). If
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t(M) = 0 then it is clear because %1tI = 1. If t(M) > 0 we write M = iN,
i S N. Then ZM =Zi%N and %MZ, =Si%NZ. =ZiZN =ZiN =Ziti.

Finally, suppose we ,have ECM%M =0, then

0= LCMZM,

but this implies eM =0 for all M. q.e.d.

Corollary 1. If 9 u a free Ie-module then £ : 9 -+ U9 it injective.

In fact, in this case 9 gr1 V8·

Corollary 2. Let 9 = 91 ED 92 where 91 and 92 are ,u6alge6ral 'of 9 Gnd are
free k-module,. Then the map U1J1 ® U92 ..... U1J given 61/ 1.11 ® 1.12 ...... tl1U2 U
a k-linear uomorphum.

Proof. Let (Zi)iEl, (Yj)jEJ be a basis of 91 and 82 respectively, then
{(Zi),(Zj)} is a basis of 1J. Take a total order in I U J such that ev­
ery element of I is less than every element of J. Applying 4.5 we have
that the families of monomials {e(xit)···e(xin)}, {e(Yjt)···e(Yj",)} and
{e(zit)···e(zin)e(Yjt)·· ·e(Yjm)} for i1 ••• in and;l ... im are
basis ofU91, U82 and U9 respectively. Thus the map U81 ®U'2 -+ U, given
by 1.11 ® U2 t-+ U1U2 is a bijection on the basis of U91 0 U82 and U9. q.e.d.

Notice that in this case we have also induced an isomorphism

grU91 ®grU92 --::... gr [T11

because grU'i = SSi and grU, =58 5S! ® 5'2.

5. Diagonal map

Let , be a Lie algebra over k and suppose , is free as a k-module.

Definition 5.1. The Lie algebra homomorphism L1 : 9 -+ 9 x 11 given by
x ...... (x, x) induces a homomorphism of associative algebras

L1:U9-+ U8®U9,

which is called the diagonal map.

Proposition 5.2. The diagonal map L1 i., characterized by the following two
condition.,:

1) L1 U an algebra homomorphi.,m.

2) L1x = x ® 1+1® x for all x E 9.

Notice that we identify x E 9 with its image in U9.
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Definition 5.3. An element Q E U" is called primitive if .do = 0 01+10Q.

Hence every element x E , is primitive.

Theorem 5.4. A"ume Ie u tor,ion free (AI a Z-module) and , u a free
Ie-module. Then the ,et 01 primitive elemenu 01Us coincide, with ,,-

Ca,e 1.• abelian. In this caseU9 can be identified with the ring of polynomials
k[(Xi)] in variables Xi corresponding to the basis elements %i of ,,_ The diag­
onal map can be interpreted as a homomorphism L1 : Ie(Xa) -+ k[(X;),(X;')]
where X; "J Xi 01 and "J 1 Xi, and is then given by =
/(Xl +Xl'), because it sends Xi to Xl + Xl' for each i. Thus the primitive
elements/(%) e 1c(Xi») are those which satisfy /(Xl +Xl') = !(XS)+ !(XS').
If I is additive in this sense, then 80 is each homogeneous component In. If /
is homogeneous of degree n and additive then

80 (2ft
- 2)/ =o. Since Ie is Z-torsion free, we must have f = 0 if n ;: 1. Thus

the only additive polynomials are the linear homogeneous ones.

Cue ,. The genera' ca,e. The map L1 : U9 -+ U, 0 U9 induces a map

grL1: grU, -+ gr(Ug Ug) grU(g ED g) grUS 0 grUg

(see end of 111.4). On the other hand, we have grUg 5S, and the corre­
sponding map 5. -+ S9 0 S9 is the same as the one discussed in the first
case, as one sees by looking at its effect on elements of the form i E grl U9
coming from elements z e g.

Let %e Un8, and let % denote its image in grn Ug. H z.is primitive, then
i is primitive for hence, if n > 1, we have i = 0 by case 1. Iterating
this, we conclude %eU1g, that is, x = +y, with e Ie, fJ E 9. Then

Thus, if z is primitive, then = A, hence = 0, and x e iJ.

Exercises

1. Let PUg denote the set of primitive elements of US. Show that PUg is
stable under [ , ], that is, if x and 'IJ e PU8, so is :r:JI - JJX.

2. Suppose pic = 0 for some prime number p, and suppose 9 is free, with
basis (Zi)iEI. Show

a) PU9 is stable under the map II ...... J/'.
b) The elements (:r:r"), i E I, II 1, form a k-basis for PUg-
c) H % and II are in S, then (z + II)' -:r:" - y' E g.



Chapter IV. Free Lie Algebras

In this chapter, k denotes a commutative and associative ring, with a unit.
All modules and algebras are taken over k.

1. Free magmas

Deftnition 1.1. A set M with a map

MxM-+M

denoted by (z, 11) ...... Xli is called a magma.

Let X be a set and define inductively a family of sets X n (n 1) as
follows:

1) Xl = X

2) X,. = IIp+,=nXp x X, (n 2) (= disjoint union).

Put Mx = II::1 X,. and define Mx x Mx -+ Mx by means of

X, x X, -+ X p+9 C Mx ,

where the arrow is the canonical inclusion resulting from 2).
The magma Mx is called the free magma on X. An element w ofMx is

called a non-associative word on X. Its length, l(w), is the unique n such that
we X,..

Theorem 1.2. Let N be any magma, and let / : X -+ N be any map. Then
there ezuu a unique magma homomorphUm F: Mx -+ N which eztentl, f.

Proof. Define F inductively by F(u, v) =F(u) · F(v) if u, v E XI' X X,.

Propertiel of the free magma Mx:
1) MX is generated by X.
2) m E Mx - X <=> m = u.v, with u, v E Mj and u, v are uniquely

determined by m.

2. Free algebra on X

Let Ax be the k-algebra of the free magma Mx. An element Q E Ax is a
finite sum Q =EmEMx cmm, with Cm E k; the multiplication in Ax extends
the multiplication in Mx.

Definition 2.1. The algebra Ax is called the free algebra on X.

This definition is justified by the following:
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Theorem 2.2. Let B be a Ie-algebra and let I : X -+ B be a map. There
eN" a unique Ie-algebra homomorphism F: Ax -+ B which eztend'i.

Proof. By 1.2, we can extend I to a magma homomorphism I' :Mx --+ B,
where B is viewed as a magma under multiplication. This map extends by
linearity to a k-linear map F : Ax -+ B. One checks easily that F is an
algebra homomorphism. The uniqueness of F follows from the fact that X
generates Ax.

Remark. Ax is a graded algebra, the homogeneous elements of degree n being
those which are linear combinations of words m E Mx of length n.

3. Free Lie algebra on X

Let 1 be the two-sided ideal of Ax generated by the elements of the form aa,
a E Ax and J(a, b,e), where a, b,e E Ax (J(a, b,c) = (ab)e + (be)a + (oo)b).

Definition 3.1. The quotient algebra Ax/1 is called the free Lie algebra
onX.

This algebra will be denoted by Lx(k), or simply Lx.

Functorial propertiel.
1) If I: X --+ X' is anymap, then there exists a unique map F : Lx ..... LXI

such that Fix =I.
1') If is a direct system and X·= then

=Lx.

2) Let Ie' be an extension of Ie, then

3) 1 is a graded ideal of Ax, which implies Lx has a natural structure of
graded algebra.

Proof. Let [# be the set of a E Ax such that every homogeneous component
of a belongs to 1. Then 1* is a two-sided ideal and 1* C I.

Now let % E Ax, % = E:O=1 X n , X n homogeneous. Then

%. % = + L (%n%m +%m%n) ,

n<m

but E 1, %ftZm +%mZft = (zn + Zm)2 - - E 1, 80 that x • x E 1*.
For three elements, Z=fZ'H Y =EYra, and z = EZra we have l(z,y, z) =
E"m,,, J(z" 11m, z,,) e 1 . Thus 1* =1, q.e.d.
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4) The homogeneous component Lk has basis X and the homogeneous
component has for basis the family of elements [%,1/], z < y, %,y e X,
where we have chosen a total order on X.

Proof. Clearly X generates Lx and [X,X] generate L3c ([X,X] = {lx,y],
% < II, %,11 eX}). Consider the module E = k(X) and the Lie algebra
E 6) 1\ 2E =9 (example ii' of Chapter I). The canonical map X ..... 9 induces
a Lie algebra homomorphism Lx -+ 9, and the composition. E9 Li- -+
Lx -+ 9 is an isomorphism q.e.d.

4. Relation with the free associative algebra on X

Definition 4.1. Let E = k(X) be the free k-module with basis X. Then the
free associative algebra on X, denoted by Assx, is the tensor algebra TE ofE.

(Elements of Assx may be called "associative but non-commutative" poly­
nomials in the elements of X.)

Theorem 4.2. Let t/J : Lx -+ Assx and : ULx -+ Assx be'the m4p'
induced by the map X -+ Assx. Then:

1) The map !I i, an i,omorphiMn.

2) The map, u an i,omorphiMn 01 Lx onto the Lie lubalgebra of Assx
generated by X.

3) Lx and it, homogeneou, component, Lx are free k-module,.

4) If X u finite 4nd CardX = d then LX u free of finite rank id(n) antl

Remark. The formula (*) determines ld(n) by induction on n. In fact,

nl,,(n)= era - L mld(m) ·
min
m<n

(More precisely, let JJ be the Mobiw function, defined by:

00

L p(n)n-· = 1/(8) = IICl - p-.) ·
n=l p

One has:
nld(n)=L p(m)dR

/
m

• )

min
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Proof of Theorem 4.!.
1) is clear: the map X -+ ULx. defines a homomorphism W of Assx into

ULx, and 0 tP =1, t[I 0 = 1.
Note also that tP maps Lx onto the Lie subalgebra of Assx generated

by X, so that (2) is equivalent to saying that is injective. Note also that
(3) (2); for, if Lx is free over k, the Birkhoff-Witt theorem shows that
Lx -+ ULx is injective, and we can identify ULx with Assx.

The rest of the proof is divided into four steps:

Fir,t ..te,: A.s..ume Ie u a field and X u finite.
Choose a homogeneous basis (ii)iEI of Lx and a total order of I.
Put di = deg(ii).
Now the Birkhoff-Witt theorem implies that the family of elements

with i l < ·· · < i.

is a basis of ULx = Assx and we have deg(it,) =E eij dij.
Let a(n) be the rank of Assx,' then a(n) is equal to the number of families

(ei) such that n = Eeidi.
This last statement is equivalent to the fact that the formal power series

A(t) = Ea(n)t" may be expressed in the form

A(t)=II-
1
-1- tdi

iEI

because lliEI I_I,A i = lliEI(l +ttli +t2di + ...) and the coefficient oft"in this
product is precisely the number of families (ei) such that E ejdi = n.

Now, for any positive integer m we have that in the product niEll_1,f1 i
the number of factors such that di =m is the rank ld(m) of Lx, i.e.,

00 1
A(t)= II ·m=l (1 - tm)l4(m)

On the other hand, since Assx is the free associative algebra on X the
family of monomials Xit ••• Xin , Xi" E X is a basis of Assx.

This implies that a(n) = d" and therefore

i.e.,
00 1 1

II (1 - tm)t,,(m) = 1 - dt ·
m=1

From the equality log I:' = we conclude that

1 00 1L ;;icf(m)tmlf = L ;;d"tft

m,II ,,=1
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and hence, for each n, we have = Em.,=n i.e.,

which proves (4) in this case.

Second Step: A.,ume Ie =Z and X u a finite let.

We will use the following lemma.

Lemma 4.3. 1/ E U A finitely generated Z ..module And dim(E ®z F,) over
F, = Z/pZ u independent of p, for all prime. P, then E i, a Z..free module
with rani e9ual to the dimeRlioR of E 0z F, over Fl'.

This lemma is an easy consequence of the structure theorem of abelian
groups.

Now, since Lx(Z) F, = Lx(F,) and dim(Lx(F,» = lfl(n)which is
independent of p, it follows that Lx is Z-free with rank ltl(n).

This proves the theorem in this case.

Third Step: A,lume Ie =Z And X U An arbitrtJ'1Ilet.
Let {Yo} be the family of finite subsets of X, then X = Lil\lYa .

Q

We Drst prove (2).
Using the second case, we have that the map

q,o :Ly. -+ Assy.

is injective for all Q.

Now t/J =LiW tPOl and the inductive limit of a family of injective maps is
a

injective. This proves (2).
In particular (2) implies that Lx and Lx are Z-submodules of Assx,

which is free, so Lx and Lx are free for all n.
This proves the theorem in the third case.

Fourth Step: General ClUe.
The equality = Lx(Z)0z Ie together with the third case imply

Lx(le) is Ie-free, i.e., (3) and therefore (2) holds.
On the other hand rkLx(k) = rkLx(Z) thus, if X is finite, (4) holds.

q.e.d.

5. P. Hall families

Definition 5.1. Let X be a set. A P. Hall family .in Mx, the free magma on
X, is a totally ordered subset H ofMx such that:

(1) X C H.

(2) If U, t1 E H with leu) < lev) then u < v.
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(3) Let u E Mx - X and let u = vw be the unique decomposition of u
where tI,1O E Mx. Then u E H if and only if the following two conditions are
satisfied:

(a) 11 E H, 10 E H and 11 < 10,

(b) either w E X or 10 =w'w" with 10' E H, 10" e H and w' v.

Lemma 5.2. There ezuu a P. Hall family for any ,et X.

Proof. We define by induction Hft =H nX".We take HI = X, and choose a
total order on X. Suppose now HI, ... ,Hra-I have been defined and totally
ordered in such a way that (1), (2), (3) hold for elements of length n - 1.
The set Bra is then defined without ambiguity by condition (3); we choose any
total order on Hra, and put u < v if u E Hi (i n - 1) and v E Hft. This
completes the induction process, and it is clear that H = UHra is a P. Hall
family.

Ezample. Let X = {:t,y}, with x 1: y. We can take Hl, ... ,H5 as follows:

H t = {x,y}, X < 11

H2 = {x,y}

H3 = {x(xy), y(xy)}, x(xy) < y(xy)

H 4 = {x(x(xy», 1I(x(xy»), y(y(xy»}

H 5 = {x(x(z(zy»), y(x(z(zy»), y(y(z(xy»), y(y(y(zy»),
(xy)(x(xy», (xy)(y(zy»}

Theorem 5.3. If H u a P. Hall family in Mx, then the canonical image, of
the elemenu h E H in Lx make up a ba,i, ofLx.

Let h E H and denote by h its image in Lx. Theorem 5.3 is equivalent to:

(1) The family {h}, h E H, generates Lx.

(2) The elements {li}, h E H, are linearly independent.

We prove here only the (ea,ier) part (1). For a proof of (2), the reader may
look in M.Hall, The Theory of Group" p. 170-171, or E. Witt, Die Unter­
ringe der freien Lie,chen Ringe, Math. Zeit., 1956; M. Hall's proof is based on
a counting argument; Witt's proof is better (but longer). (See also Bourbaki,
LIE II, §2, nO 11.)

Proof 01 (1). Let L'x be the k-module generated by h; since L'x contains X, it
will be enough to show that L'x is a Lie algebra, i.e., that ht ,h2 E H implies
that [hI,h2] is in L'x.

We will carry the proof by a double induction, first on the length of hI +
length of h2 (which is the length n of h1h2 ) and finally for a given n, by
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decreasing induction on lnf(h1 , h2 ); in order that this induction process work,
we will assume that X is finite; the general case will follow by passing to an
inductive limit.

We may suppose hi < h2 (otherwise we use the relations (hi, h2 ) =
-[h2' hi] and [ii,Ii] = 0).

Fir" C.,e. Let h2 e X, then hi E X since hi < h2 , so we have h1h2 E H and
therefore h1h2 = (iiI, h2], q.e.d.

Second ClUe. h2 X. Put h2 = hah., ha,h. E H and ha < h•.
We have the following subcases:
a) ha hi and then hl(hah.) E H, so

[hI, 1&2] =[hI, (ha,h.]]= hl (hah4 ) •

b) hi <;: ha < h•. Using the Jacobi identity we get

[hi'[ha, h.)] = fha, [hI t 1&.]] - [h., [hI', ha)] ·

Now length of h1h. < length of h1h2 , hence we can apply the induction
hypothesis, i.e., [h1,;&.) = Lealia where hOI E H.

From this equality we get l(ha ) = l(hl)+t(h.)which implies t(hOl ) > f(hl ),

hence hOI > hi. Since we have hI < ha, we obtain Inf(!&a, hOI) > hI =
lnf(h1 , h2 ). '

Applying the induction hypothesis we see that (ha, hal is a linear combi­
nation of b's with h E H.

Similarly, replacing ha by h., we see that (h.,[h1,ha]) is also a linear
combination of h's with h e H. q.e.d.

6. Free groups

(In this section, we take k =Z.)
Let X be a set and let Fx be the free group on X. Let Fl be the descending

central series of Fx, defined by F} =Fx and Fx=(Fx,F;-l), for n > 1.
The graded group is, as we know, a Lie algebra, given by

00

grFx=EgrAFx ,
• =1

grft Fx = Fx/FX+1
•

In particular, grl Fx =Fx/(Fx,Fx), that is; grl Fx is the free abelian group
onX.

Theorem 6.1. The cAnonical map X -+ gr1 Fx induce' aft uomorplWm of
Lie algebra,

Corollary 8.2. The group' / FR+l are free Z-module, and if X II finite
witA CardX =d, thea rk(Fx/Fx+ ) =lien).
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Now consider the free associative algebra Assx on X; let Assx the com­
ponent of degree n of Assx. The completion A;x of Assx is defined as the
infinite product n:o=o Assx·An element I E A";x can be represented by a
formal series I = E:O=o In, with In E Assx·--... ---.

Define a homomorphism 8 : Fx ...... Assx by 8(x) = 1 + x where AssX is
the multiplicative group of the invertible elements of A;x (it is clear that--- ---.1+ % is invertible in Assx, so it is in the multiplicative group Assx ).

For any positive integer n, define tiln c A";x as

ex>

mn = {/ I/ =L 1m and 10 = 11 = · · · =/n-l =o} ,
n=O

and put 'Fx = 8-1(1 + mn). Then 9 E Fx is in 'Fx if and only if
8(g) =1+Em>n "pn.

Notice that'F! = Fx and 'FxC 'FX-1 •

Theorem 6.3. 'Fx= Fx.
We now prove Theorems 6.1 and 6.3.
a) It is clear that tPl :Lx --+ gr Fx is surjective.
b) ('Fx)u a filtration of Fx. In fact, we only have to check

('F;, 'Fk) C 'F;+P .

To prove this, take g E'F;, h E 'Fk with 8(g) = 1 +G, G E mm,
8(h) = 1+H, HEm'.

We have gh= hg(g,h) and

6(gh) = 1 + G+H +GH
8(hg) = 1+G + H + HG .

Since 6 is a homomorphism we get 6(gh) = 8(hg)9«g,h», i.e.,

8«g, h» = 1+ (GH - HG) + higher terms.

Therefore (9, h) E 'F;+p.
There is a natural map '1 : 'grFx -+ Assx defined as follows:

let eE'grR Fx, let 9E 'Fxbe a representative of e, and let

8(g)=I+Gn +Gn+1 +··· ,
We define '1(e) by:

G, E

It is easy to see that this definition does not depend on the choice of the
representative g. Formula (*) shows that TJ: 'grFX -+ Assx is a Lie algebra
homomorphum.
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Since is a filtration we know that C 'Fx,which induces a homo­
morphism'" : grFx ...... 'grFx.

Now let us look at the composition

Lx ..!!... grFx 'grFX --!... Assx

where fl is surjective and " is injective.
This composition is obviously the map q, : Lx -t Assx given in the

Theorem 4.2 and we know it is injective.
Hence fl is injective and therefore is an isomorphism; which proves The­

orem 6.1.
This implies now that 1/J is injective. Let us prove, by induction, that

Fx= 'Fx·
H n = 1 then F} = 'Fx by definition.
Now suppose n > 1, then we have

Fxc 'FxC FX-1 = 'FX-1

and the injection grn - 1 Fx -+ 'grn-l Fx is the canonical map

FX- 1
/ Fx-+ FX-1/'Fx,

which implies Fx= q.e.d.

7. The Campbell-Hausdorff formula

In IV.7 and IV.8, the ground ring k is supposed to be a Q-algebra (for instance,
a field of characteristic zero).

Theorem 7.1. Let X be (J "et; then the free Lie algebra Lx on X coincide"
with the "et of primitive element" ofAssx
(i.e., Lx = {w E Assx I Llw = w ® 1 + 1 ® w}, where L1 : Assx --.
Assx ® AS8X u the diagonal map).

This follows from Theorem 5.4 of Chapter III, since Assx may be
identified with ULx.

Define now, as in IV.6, the completion X;x of Assx and the completion
Lx of Lx by:

00

A;$x = II Assx,
n=O

00

Lx = II Lx·
n=O

Define similarly the completed ten"or product A;$x A;x by:

A;$ @A;$x = II ® ·
p"

The diagonal map L1 extends to a map L1 : A;$x -+ A;$x ®A;x and it
is clear that Theorem 7.1 remains valid when Assx and Assx 0 Assx are
replaced by their completions.
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Theorem 1.2. Let mc A;x be the ideal generated 611 X. Define map'

exp:m-+l+m

by the wualjormulae:

and log:l+m-+m

exp(z) =L%"/n! ,
00

log(l + %) =L(-1)"+lz " In ·
n=1

Then exp 0 log =id and log 0 exp = ide

Proof. Let us prove, for instance, that exp(log(l + tI» = 1 + y if II E m.
H T is an indeterminate, the formula exp(log(l + T» = 1 + T is known to
be true in the power series ring Q[[T]]. But, since fI belongs to 1ft, there
is a well-defined and continuous homomorphism f : Q[[T)) -+ A;x which
transforms T into fl. Applying f to the equality exp(log(l + T» =1+ T, we
get exp(log(1 + fI» = 1+ fI, q.e.d.

Corollary 1.3. The. map exp define, G bijection of the ,et of Q E til with
L1Q = Q® 1+10Q onto the ,et of {J E 1+mwith L1/J = /J 0/J.

Proof. Let Q e mand fJ = eO. Since L1 commutes with the exponential map
and a 0 1 commutes with 1 0 0, we obtain

LiP =ileo = = = = (fJ (1)(1 0 fJ)
=(l0/J.

Theorem 1.4 (Campbell-Hausdorff). Let X = {%,y}, %:f: y, then =e%
with % E Lx.

Proof. Since e' E 1+mwe have E 1+mand since the exponential
map is a bijection there is one and only one % E msuch that e% =

We have the relation

L1(e%) = L1(eZ e') = L1(eZ )L1(e')
= 0 0 e')
= e% 0 eZ

•

Applying 7.3 we find that z is a primitive element and by fi z E Lx.
q.e.d.

Now, let X be an arbitrary set and let z(z,y) denote the element of
L{z,,} C Lx such that = for all x,y E X.

We have z(x,fI)=E:O=l %n(%,II) where Zn(X,fI) E Lx.
Explicitly, the values of the first three homogeneous components of z(%, tI)

are
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%1(X,y) =z + y

%2(X, y) = ![Z,1I]
Z3(X,y) = 112[Z,[Z,y]]+ 112(y, [y,z]]

and it is clear that z(x,O) = Z, z(O,y) = 'II, and z(z(w,z),y) = z(w,z(z,y».

8. Explicit formula

Define a map : m --+ Lx (m C Assx) as follows:

· · · z,,) = [Xl, [X2, . .. ,(Xn-l' :r,,) · · .] =ad(Z)·· · ad(Xn-l

where Xi E X.
Now define tP :m -+ Lx by tP(Xl .•• xn ) = .•• x,,).

Theorem 8.1. The map i$ a retraction ofm onto Lx, i.e., tPILx = idLx.

Proof. We have to prove that 9(u) = nu if u E Lx.
Let 8 : Assx -+ End(Lx) be the algebra homomorphism which extends

the Lie algebra homomorphism ad: Lx -+ End(Lx).

Lemma 8.2. The relation =8(u)4i(v) hold" for U E Assx and tJ E m.

Proof of Lemma. Since and 8 are linear it is enough to consider the case
u = Xl · · ·X"' Xi E X and we proceed by induction on n.

If n = 1 then it is trivial.
Now suppose n > 1, then

= 6(Xl)4»(X2 ···xnv) = 8(x)6(X2
=6(x) · · ·x,,)4i(v) .

This concludes the proof of the lemma.

We now prove that =nu for u E Lx by induction on n.
If n = 1 the property is obvious.
Suppose n > 1, then u = E[Vi, Wi] and it is enough to prove this when

u = [v,w] with v E w eLk, P+ q = n, P, q > o.
Using the fact that 8(v) =adv and 6(w) = ad w we get

4i([v,w]) = 9(vw - wv) =8(v)9(w) - 6(w)4i(v)

=q6(v)w -- p8(w)v
=q[v,w]- p[w,v]
= (q + p)[v,w]= nu q.e.d.

Finally, we are prepared to give the explicit formula for z(x, y) = log(e%e1l )

for x,y E X.
As before let us write z = Zn with Zn E Lx.
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( )

m
00 -1 m+l Z, 9

Z =log(eZe') =L: L: !1J! '
m=l p q

so we obtain

( -1 )m+1 Z'l Jl91 X'2 yl2 · · ·Z,,,. JI''''
m Pl!Ql!··· Pm!qm!

if qm = o.

Applying the homomorphism to the monomials which appear in this
sum we get .

4i(z'1J191 - ··zPm y9m ) = ad(X)'l ad(y)91 ... ad(z)P'" ad(y)lm-1(y)

if qm 1, and:

_. -xPm ) = ad(x)Pl ad(y)91 .. -ad(x),,,.-l(x) ,

Notice that this is zero if qm 2, or if qm = 0, Pm 2. Hence, the only
possible non-zero terms are those where qm =1, or Pm = 1, qm = o.

Hence, using the identity Zn = tI>(zn), we obtain the ezplicit Campbell­
formula (in Dynkin's form):

1 "(' ")Zn =;:; L-, Zpt9 + zp,9 '
p+9=n

where

= L:
Pl+"'+Pm=P

91+"'+9m-l=Q-l
p,+,'>1

and

(_I)m+l ad(z)Pl ad(y)91 - _. ad(z)Pm(y)
m Pl!ql! - · -Pm!

zIt = "1',1 L-,
pl+"'+'m-l=p-l
91+"'+9",-1=9

(_I)m+l ad(X)'1 ad(y)91 .. -OO(y)lm-l(X)
m Pl!Ql!··· Qm-l!

Exercises

1. Let X be a finite set, with Card(X) = d. Show that the number of ele­
ments ofMx of length n is equal to:

2n - 1dn 1 · 3· 5··· (2n - 3)
n!

2. Show that Lx = [X,Lx-1j for n 2.
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3. Show that the center of Lx is 0 if Card(X) :/: 1, and that the center of
Lx/E,,>pLlc is equal to

4. Let X be a denumerable set with Card(X) 2, and let H the set of all
Hall families in Mx. Show that Card(H) = Card(R).---..

5. Show that the homomorphism 9 : Fx -+ Assx defined in IV.6 is injective.
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In this chapter k denotes a field, and in V.5, concerning the serious theorems on
solvable Lie algebras, a field of characteristic o. All Lie algebras and modules
are finite dimensional over k.

1. Complements on g-modules

Let 9 be a Lie algebras over k. A g-module is a vector space V over Ie together
with a Ie-bilinear map 9 x V -+ V, denoted by (x,v)...-. xv, which satisfies the
condition [x,y]v= xyv - yxv for all x E g, Y E 8, v E V. The corresponding
Lie homomorphism g : 9 -+ End(V) is called a linear repre&entation of 8, and
V is called the 'pace of the repre,entation.

An arbitrary vector space V can be made into a 9 module by putting
xv = 0 for all v E V, x E 9. We then say that 8 act& trivially on V. When­
ever we view Ie as a g-module we understand it with trivial action unless the
contrary is stated.

Let VI and V2 be g-modules. The tensor product VI @V2 can be made into
a g-module in a unique way such that the rule

(1)

holds. This can be checked directly, or seen from the diagram

where is the diagonal map. The action (1) is sometimes called the diagonal
action of 9 on VI 0 V2 •

Similarly, the space of k-linear maps Homk(ltl,V2 ) becomes a lJ-module if
we put

(2) for x E g, VI E Vi.

More generally, given a finite family of g-modules Vi and V, we make the
space of k-multilinear maps from ni Vi to V into a g-module in the corre­
sponding way.

If V is a s-module, an element v E V is g-invariant if xv = 0 for all
x E g. This seemingly weird terminology comes from the corresponding group
situation: xv = 0 is equivalent to v = (1 +ex )v. The set of all ,-invariant
elements in V is a g-submodule of V, the largest submodule on which 9 acts
trivially.

Ezample 1. A k-linear map f : VI -+ V2 is g-invariant for the action of lJ on
Hom,(Vt ,V2 ) described above if and only if !(ZVt) = xl(vI), that is, if and
only if f is a homomorphi8m of g-module&.

Ezample I. (Invariant bilinear forms). An invariant bilinear form
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is one satisfying the identity

B(XVl' V2) + B(Vl, XV2) =0 .

(For 9 = 1 + EX this means B(gvl, gV2) = B(VI, 112).) Let V be a g-module
and e: 8 -+ EndV the corresponding linear representation. Define

B,(x,y)=Trv(g(x)e(y» ,

where Trva denotes the trace of a k-linear transformation a : V --+ v.

Proposition 1.1. B. u a 11Immetric bilinear form on 9 x S which u 9­
invariant for the adjoint reprelentation of 9 on g.

The rule Trv(ap) = Trv(,8a) shows the symmetry of B,r To prove its
invariance we must show that the following expression

Trv (e([x, ZI)U(Z2) + 0(Xl)e([X,X2]»

=TrV(I1(X)I1(Xl)e(Z2) - l1(zl)e(Z)g(X2) + e(Zl)e(X)g(Z2) - g(Xl)g(Z2)g(X»

is zero. To do so we cancel the middle two terms and use again the symmetry
rule above with a = g(z), and,8 = U(Zl)e(Z2).

Definition 1.2. The Killing form is the invariant symmetric bilinear form
B(x, 11) =Tr(ad x ad 11) on 9 which is obtained by taking £I to be the adjoint
representation in the preceding example.

2. Nilpotent Lie algebras

Let .IJ be a finite dimensional Lie algebra over a field k. The delcending central
,ene, of ideals of , is defined by Cl9 = 9 and Cng = [g,Cn- lg) for n 2.
(Here we write lV,W] for the image of V ®W under the map (x® y) t-+ [x,y].
We leave the proof of the rule (Crg, e·g] c Cr+.g as an exercise for the
reader.)

Theorem 2.1. The following condition" are equivalent:

(i) There ezi"t" an integer n "uch that eng = (0).
(ii) There ezu'U an integer n "uch that

[Xt,[X2,[X3,... ,Xn )···]) =(adxl)(adx2)···(adxn-l)xn = 0

for every n-tuple of elemenu (Xi) in g.

(iii) JJ it a "ucce,,,ion of central ezten"iofl," of abelian Lie algebra': that i"
there ezuu a chain of ideal" 9 = ClI ::> Cl2 ::> · · · :> Cln = (0) "uch that
Gi/ai+l u the center of g/ai+l for each i, or in other word", such that
[9, ail c ai+1 for all i.
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The proof in the form (i) => (iii) (ii) ::} (i) is completely trivial. Notice
that the chain of ideals Gng is the most rapidly descending chain with the
properties described in (iii). If (ai) is as in (iii), then Cftg C an for all n.

Definition 2.2. If the conditions of Theorem 2.1 are satisfied, 9 is called
nilpotent.

Ezample. Let V be a vector space, and let F = (It'i) -be a flag in V, that is a
sequence of subspaces (0) = Vo C VI c··· C Vn = V such that dim It'i = i.
Let u(F) = {u E EndV I uVi C Vi-I for all i I}. Thus u(F) is the set
of endomorphisms of V which carry each Vi into itself and induce the zero
endomorphism on the quotient space Vi/Vi-l for each i 1. Obviously, u(F)
is an associative subalgebra of EndV, and II fortiori it is a Lie subalgebra
under the bracket [x,y] = xy - yx. In terms of a basis (Vi) for V which is
adapted to F in the sense that Vi = kVl +... + kVi, the algebra u(F) consists
of those endomorphisms whose matrix is that is, has
zeros on and below the main diagonal. To show that u(F) is nilpotent, define
ui(F) = {u E End(V) IuVi C lti-i } for all i k, note that UUi C Ui+l,

and UA:U C Uk+l, hence [u, Uk] C Uk+l, hence 9 is nilpotent because Ui = 0
for large k.

3. Main theorems

The following theorem offers some justification for the terminology "nilpo­
tent":

Theorem 3.1. 9 is nilpotent if and only if adx nilpotent for each x E 1J.

We will at the same time consider:

Theorem 3.2 (Engel). Let U : 9 -+ EndV be II linear repre&entation of 9
on the vector V that u(x) nilpotent for each x E g. Then there

a flag F = (Vi) in V that U(9) c u(F).

The converse of Theorem 3.2 is trivial, because a strictly superdiagonal
matrix is nilpotent. The meaning of Theorem 3.2 is that if for each individual
x E 9 there exists a flag Fx = {V:t,.} such that U(X)Vs,i C Vs,(i-I), then
there exists one flag F which works for all x simultaneously. Theorem 3.2 is
equivalent to:

Theorem 3.2'. Under the hypothe8e8 of Theorem 9.!, ifV :F (0), then there
V E V, v -:F 0, &uch that u(x)v = 0 for all x Eg. -

Indeed, if Theorem 3.2' holds, then Theorem 3.2 follows immediately by
induction on dimV. A flag F in V = V/kv lifts to a flag on V with the desired
properties, if U(g)v = o.
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We shall now prove 3.2' in seven steps:

Step 1: Since both the hypothesis and the conclusion concern only the image
g(g) in EndV, we can replace 9 by its image and assume 9 C End V.

Step !: Then adz is nilpotent for each x E 9. Namely, we can write

(adx)y = £z'll- Rz'll ,

where Lz and Rz are the k-linear endomorphisms of EndV defined by it t-+ Xit,

and 0 t-+ ox, respectively. But Lz and Rz are nilpotent by hypothesis and
commute. Hence L z - RJ: is nilpotent. (Show that if am = 0, {In = 0 and
o{J ={Jo, then (a - p)m+n-l =0.)

Step 3: By induction on dimg, we may assume 3.2' holds for all Lie algebras
I) such that dim IJ < dim9.

Step,4: Let fJ C 9 be a Lie subalgebra, I) =F g. Let u = {x E 9 I (adx)1J C fJ}
be the normalizer of IJ in g, that is, the largest subalgebra of 9 in which fJ is
an ideal. Our aim is to prove 0 is larger than fJ. (The reader familiar
with the theory of p-groups will note the analogy.) The Lie algebra IJ operates
on fJ and on g/I) through nilpotent maps. Since dim fJ < dim 9, there is a
non-zero vector x = x + I) in g/I) invariant (i.e. killed) by I). For 'II E fJ we
have then (ad z)y = -(ad y)x E I) because (adY)x = o. Thus x E u an our
claim is proved.

Step 5: If 9 :f: (0), there exists an ideal f) in 9 of codimension 1. Indeed, let
fJ be a maximal Lie subalgebra of 9 different from g. Then, by step 4, the
normalizer of fJ is all of g, that is, f) is an ideal in g. The inverse image in 9
of a line in g/I) is a subalgebra of 9 strictly bigger than I), hence is all of 9,
and ,/1) is therefore one dimensional.

We now choose such an ideal I).

Step 6: Let W = {v E V I I)v =o}. ThenW is stable by g. This depends only
on the fact that IJ is an ideal. For x E g, Y E f) we have yxv = zyv - [x, ylv =0
if v E W.

Step 7: W =F (0) by induction (dimf) < dim g). Take 'II E 9, y ¢ I). Since 'II is
nilpotent, JI kills some non-zero element in W. This" element is then killed by
9 = IJ + /ty. q.e.d.

We now prove Theorem 3.1. If lJ is nilpotent then adz is nilpotent for
each x E 8 by condition (ii) of Theorem 2.1. Conversely, if adz is nilpotent
for all z, then, applying Engel's theorem to the adjoint representation, we see
that there exists a flag (0) C &11 C 02 C··· C On = 9 of subspaces of 9, such
that [g, ad C Gi-l for all i, and consequently 9 is nilpotent by criterion (iii)
of Theorem 2.1.
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3*. The group-theoretic analog of Engel'. theorem

Let V be a finite dimensional vector space over k. An element 9 E GL(V) is
called unipotent if it satisfies one and hence all of the following three;condi-
tions, whose equivalence we leave as an exercise' for the reader: .

(i) 9 = 1+n with n nilpotent.
(ii) In suitable coordinates 9 is represented by a matrix having l's on the

main diagonal and zero below.

(iii) All eigenvalues of 9 are 1.

Theorem (Kolchin). Let G be a &ubgroup of GL(V) ,uch that eAch element
9 E G u unipotent. Then there ezisu a flag F = {Vi} in V ,ueh that GVi =Vi
for all i.

In other words, there is a coordinate system in which all elements 9 E G are
represented simultaneously by triangular matrices (and hence by triangular
matrices with l's on the diagonal since the eigenvalues are alII by hypothesis).

The theorem will follow by induction on dimV if we can show that, under
the given hypothesis, if V =F (0) there exists a v E V, v #: 0, which is left fixed
by G. The equations (g-l)v =0, for 9 E G, are linear, and will therefore have
a non-trivial solution v over k if and only if they have one over the algebraic
closure kof k, i.e., in V ®i k. We may therefore suppose that k is algebraically
closed. Furthermore, replacing V by a G..submodule we may suppose that
V is a &imple G-module. From the density theorem, or Burnside's theorem
(Bourbaki, Alg., Ch 8, §4, nO 3) it follows that the elements of G span all of
Endi(V) linearly, because L,Ea kg is a k..subalgebra of End.(V).

On the other hand, for each 9 = 1+nEG we have.

Trv(g) =Trv(l) + Trv(n) =Trv(l)

because nilpotent endomorphisms have zero eigenvalues hence zero trace.
Thus, Trv(g) u independent of 9 E G, and for every g' E G we have
Tr(ng') = Tr(g - l)g') = Tr(gg' - g') = Tr(gg') - Tr(g') = O. Since the
g' span Endi(V) it follows that Trv(nQ) =0 for all Q E Endi(V), and con­
sequently n = 0, i.e., 9 = 1. This is what we were trying to prove: G acts
trivially on V.

4. Solvable Lie algebras

The derived &erie& (DR9) of ideals in 9 is defined inductively by Dl9 = 9,
and DRS = [D"-l g,Dn-lg] for n > 1.

Theorem 4.1. The following condition& are equivalent:

(i) There an integer n that Dng = (0).
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(ii) JJ U G ,ucce,.tive eztewlon oj abelian Lie algebrA', that i" there ezuu
G,equence of ideal, 9 = al :::> "2 J ... :::> an = (Q) ,uch that ai/ai+l
U abelian, i.e., [ai, ai) C Oi+l, for all i.

This is trivial.

Definition 4.2. H JJ satisfies the two equivalent conditions of the preceding
theorem, JJ is said to be a ,olvable Lie algebra.

Example. Let F = (Vi) be a flag in a finite dimensional vector space V. Let
&(F) = { z E EndV IxVi C lti for all i }. If we adapt the coordinate system
to the flag, then &(F) consists of the triangular matrices. It is easy to check
that &(F)/a(F) is abelian, and consequently b(F) is solvable.

5. Main theorem

In this section our field Ie is of characteristic o. The main theorem on solvable
Lie algebras is:

Theorem S.1 (Lie). Let 9 be II ,olvable Lie algebra over an algebraically
clo.ted field Ie of chamcteri,tic o. Let u be a linear repre,entation of g. with
re,relentation 'pace V. Then there exist, a flag F = (Vi) in V 'Bch
'(9) C IJ(F).

This reduces, by induction on dimV, to:

Theorem 5.1'. Under the "'1IPothe'f& of Theorem 5.1, if V =F (0), there exi,ts
v E V, v :F 0, ,uck that v i, an eigenvector for u(x) jor all x E 9.

Note that if v is such an eigenvector, it determines a map X : 9 -+ k such
that g(i)v = X(z)v for all % E 9.

Main Lemma. Let" be a Lie algebra, over a field Ie of characteristic 0, fJ
an ideal in " V a ,-module, v E V, v 0, X : fJ -. Ie $uch that hv = x(h)v
for all h E I). Then X([x, h])=0 for x E 0, h E fJ.

Take z E g. Let lti be the subspace of V generated by the vectors v, xv,
.•. , %i-Iv. Thus (0) = l'O c Vi c··· C C 'Vi+l. Let n be minimal> 0
such that V" =V"+l. Then dim V =n, and xV" C Vn , and V" = V,,+i for all
k o. Claim: For h E I), hziv == X(h)xiv (mod \ti), for all i o. We prove
this by induction on i. For i =0 this is th,e definition of x. For i > 0,

hxiv= hxXi-1v= xhxi-1v- [x,h]Xi-1v .
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Writing hzi-1v = X(h)zi-l v + v' with v' E and using XVi-l C \Ii,
and fJVi c Vi, we are done. It follows that, with respect to the basis v,
xv, ... , x"-l v , the endomorphism of Vn produced by an element h E lJ
is represented by a triangular matrix with diagonal entries x(h). Thus,
Trv,,(h) = nx(h). Replacing h by [z,h] we conclude nx([x,h])= 0, because
Trv,,([x,h) = Trv,,(zh - hz) = 0 (notice that xVn C Vn ).

Using the lemma, we prove Theorem 5.1' by induction on dimg. If
dimg = 0 the statement is trivial. Assume dims> o. Then, since 9 is solv­
able, Dg = (g,g]":; g. Let fJ be a subspace of 9 of codimension 1, containing
Dg. Then IJIDg is an ideal in slDg because the latter is abelian, and conse­
quently fJ is an ideal in 9. By induction there is v E V, v 1= 0, and X : f) -+ k
such that hv = X(h)v for all h E I). Let W ={W E V I hw = X(h)w for all
h E IJ }. By construction, W is a non-zero linear subspace ofV, and using the
main lemma we can show that W is stable under g. If w E W, x E g, then for
h E I),

hxw=xhw - [x, h]w= X(h)xw - X([x,h])w ,

and since the last term is zero, it follows that xw E W.
Now let x E g, z ¢ I). Since x maps W into W, and k is algebraically

closed, there is an eigenvector Vo E W for x. This Vo is an eigenvector for
k,x +" = 9. q.e.d.

To see that the theorem is false in characteristic 1= 0, consider the Lie
algebra .12 of 2 x 2 matrices with trace 0 in characteristic 2. It is nilpotent of
dimension 3, but in its standard representation on the space of column vectors
of length 2, there is no eigenvector.

We close this section with two corollaries of Lie's Theorem.

Corollary 5.2. If JJ i, a ,olvable Lie algebra over an algebraically clo,ed field
of ch.aracterUtic zero, then there ezi,t, a flag of ideaL, in 9.

We need only apply Lie's theorem to the adjoint representation.

Corollary 5.3. If 9 U ,olvable and k of characteri,tic zero, then (g, gl i,
nilpotent.

Since the statement is linear, we may suppose that k is algebraically closed.
(If k' is an extension field of k, and g' = lJ ®k k', then it is obvious that 9
is solvable (resp. nilpotent) if and only if S' is solvable (resp. nilpotent), that
[9, 9]' = [9', g'], etc.) By the preceding corollary there is a flag (gi) of ideals
in 9, say 9 ::> 91 :::> 92 :::> ••• :::> gn = O. Let x E (g, g]. Then ad z 9i C gi+l
because End(li/gi+l) k is commutative. Hence adz is nilpotent on I, and
all the more so on (1,9]. By Theorem 3.1 we conclude that [9,9] is nilpotent.

Remark. Conversely, if [9, 9] is nilpotent, it is clear that 9 is solvable.
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s·. The group theoretic analog of Lie's theorem

A group G is called ,oltJable if it can be obtained by a finite sequence of
extensions of abelian groups. One defines a sequence of subgroups G(n) of G
by G(I) =G, and G(ra) = (G(n-I),G(n-l» for n > 1. Then the solvability of
G is equivalent to G(ra) = (1) for some R.

Let G be a topological group and e: G --. GL(V) a continuous homomor­
phism of G into the group of automorphisms of a finite dimensional vector
space V over C.

Theorem S.I*. If G is and connected, there ezuu a flag F in V
which u invariant 611 g(x) for all x E G.

The representation e is called irreducible ifV =/: (0) and if V and (0) are the
only subspaces of V which are invariant by u(x) for all x E G. Theorem 5.1·
implies obviously

Corollary 5.2*. If G is and connected, and the repre,entation e u
irreducible, then dimV = 1.

Conversely, by induction on dimV, this corollary trivially implies the the­
orem.

Corollary 5.3*. A compact connected topological group i, abelian.

By the Peter-Weyl theorem, for any compact group G there exists a
family of irreducible representations eo : G -+ GL(Vo ) such that the map
G -+ nOt GL(Va ) is injective. If dim Vo = 1 for each a, it follows that G is
abelian.

In proving the theorem we will use the following terminology: an element
v E V is an eigenvector for a subgroup H C G if v =1= 0 and if hv E Cv {or
all h E H. An eigenvector v for H defines a character Xv : H -+ C· such
that e(h)v = Xv(h)v for all h E H. Of course the function Xv is continuous
because II is. The number of distinct characters of H arising from eigenvectors
v E V is finite, and in fact dim V. Indeed, suppose that VI, ••• , Vr is a
maximal independent set of eigenvectors for H in V, and let Xl' ... ' Xr be
the corresponding characters. Then if v is an eigenvector with character X we
have v = E aiVi with ai E C, and applying g(h) we find aix(h)=aiXi(h) for
each i. Hence X = Xi for some i, because not all a. are zero.

Main Lemma·. that G u connected. Let v be an eigenvector for a
normal lubgroup H. Then X,,(z-Ihx) = x,,(h) for all x E G and h E H.

Notice the analogy with the main lemma of the preceding section. A simple
computation shows that X,,(z-lhz) = Xz.,(h). As remarked above, there are
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only a finite number of characters of H of the form Xzv for x E G. Hence,
the subgroup S = {x E G I Xzv = Xv} is of finite index in G. But S is
closed in G, since it is the set of common zeros of the continuous functions
x ...... X.,(x-1hx) - Xv(h) as h ranges over H. The decomposition of G into
c08ets of S is an expression of G as the disjoint union of a finite number of
non-empty closed sets. Since G is connected, it follows that S = G which is
what we want.

We now prove the theorem by induction on the smallest number n such
that G(n) = 1. H n = 1 then G = (1) and the theorem is trivial. Suppose
therefore that n > 1, 80 that G(2) :/= G(l) =G. By induction, we can assume
the theorem is true for G(2), because G(2) is connected. Indeed, let C be the
set of commutators in G. As image ofGxG under the map x xy t-+ xyx-1y-l,
C is connected. Let em denote the set of elements ofG which can be expressed
as the product of m elements in C. The set em is connected because it is the
continuous image ofexex··· x C (m times). Since u E C implies 1£-1 E C,
the subgroup G(2) generated by C is the union of the connected sets em, and
is connected because the em have a common point, namely 1.

By induction, there exists an eigenvector Vo for G(2) in V. Let

Xo : G(2) --. C* .

be the corresponding character. By the main lemma, the set of all v E V such
that g(h)v= Xo(h)v for all h E G(2) is invariant under g(G).

Suppose g irreducible. It follows that e(h)v =X(h)v for all v E V, h E G(2).

Now let x E G. Let H be the subgroup of G generated by x and G(2). Since
H ::> G(2), H is normal in G. Since C is algebraically closed, there exists an
eigenvector VI for the operator g(x). By the above, VI is an eigenvector for
G(2), and hence for H. Let Xl : H --+ C· be the corresponding character. By
the main lemma again, the set of all v E V such that U(h)v = Xl(h)v for
all h E H is invariant under u(G) and hence is all of V. Hence, in particular
g(x)v E Cv for each v E V. Since x was arbitrary in G, we conclude that
dimV =1. Thus Corollary 5.2* and Theorem 5.1* are proved.

Remark. In fact, Lie's theorem and its group theoretic analog imply each other
directly. Granting the group statement, we get the Lie algebra statement in
case k = C, by considering the connected Lie group attached to a given Lie
algebra. The case of an arbitrary algebraically closed k of characteristic zero is
reduced to k =C by the Lefschetz principle: Take a finitely generated subfield
k' of k containing the structure constants for 9 and for the action 9 x V --. V,
and imbed Ie' in C. The descent from C to k' is easy.

Conversely, if we grant Lie's theorem we can get the group statement by
considering the closure of g(G) in GL(V) as a real Lie group and applying
Lie's theorem to its Lie algebra.
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6. Lemmas on endomorphisms

Let k be an algebraically closed field of characteristic zero, and let V be a finite
dimensional vector space over k. An element u E EndV is called &emuimple
if its eigenvectors span V or, what is the same, if there exists a system of
coordinates in which it is represented by a diagonal matrix.

Lemma 6.1. For each u E EndV there a &emuimple s and a nilpotent
n in EndV &uch that sn = ns and u = s + n, and sAnd n are uniquel,
determined by the&e conditionl. Moreover, there ezut polynomial.! Sand N
(depending on u) luch that 5(0) =0 =N(O) and s =S(u) And n =N(u).

Let det(T - u) = n(T - be the factorization of the characteristic
polynomial of u into a product of powers of linear factors T - Ai.
For each i, let be the kernel of the endomorphism (u - Ai)m, : V -+ v.
Then V =e (direct sum), dim Vi =mi, and uVi C Vi. Suppose u = s+ n
is a solution to our problem. Since s commutes with n, it commutes with u,
hence with (u - Ai )m i • Therefore sVi C Vi for each i. Since u - s is nilpotent,
the eigenvalues of s on Vi are the same as those of u. But by construction,
u has the unique eigenvalue Ai on Vi. Since s is semisimple, it follows that the
restriction of s to Vi is scalar multiplication by Ai. On the other hand, taking
this as definition of s, and putting n = u - s (so that on ni has the same
effect as u - Ai) we obviously obtain a solution to the problem. Let SeT) be
a polynomial satisfying

SeT) =='\j (mod (T - Ai)m i
), and SeT) == 0 (mod T) .

(note the consistency of these two conditions in case = 0 for some i) and
put N(T) = T - SeT). Then 5(0) = 0 = N(O) and s =S(u), n = N(u) as
required.

Consequence 6.2. Let u = s +n as in the preceding lemma. SUPPole A And
B are &ub"pacel of V luch that A C Band uB C A. Then sB C A and
nBCA.

Indeed if peT) is any polynomial in T without constant term, then
P(u)B C A.

Let now V· =HOIDk(V, k) be the dual of V, and for p, q 0 let

Vp q = V ® · · · ® V V· ® · · · ® V· .
, 'Y -I

p-t.imes q-times

We view Vp,q as a module for the Lie algebra End V by means of the diagonal
action discussed in §1. For u E EndV, we let Up,q denote the corresponding
endomorphism of Vp,q. For example,

U12 = u ® 1® 1 - 1®u· ® 1 - 1 ® 1®u· ,
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where u· E EndV* is the "transpose" of u, defined by (u*y,%) = (y, uz), if
we write (y,x) instead of y(%) for y E V·, % E V.

An important special case is that in which p =q = 1. There is a canonical
isomorphism Vi,1 EndV which associates with x ® 11 the endomorphism
%' t-+ %(y, x'). A simple computation shows that under this isomorphism, the
element Ul,1 E Endvt,l corresponds to adu E End(EndV).

Lemma 6.3.' If u = 8 + n u the canonical decompo,ition of u a" in
Lemma 6.1, then u". = 8,,9 + n p ,9 U the canonical decompo,ition of u",
for each p, q.

We have [s',9' n',f] = [8, n]',f =O',f =0, hence 8,,9 and n"f commute. H
(Xi) is a basis for V consisting of eigenvectors of 8, then the dual basis (xi) of
V· consists of eigenvectors of s·, and the basis (Xi1 @ •• ·®Xip ®Xil ® .. .®xi.)
of Vp,f consists of eigenvectors for Sp,f; hence sp,9 is semisimple. The endo­
morphism np ,9 is a sum of endomorphisms of the form 1 ® · · · ® n 0 · · · 0 1
or 1 ® · · · ® n* ® · · · ® 1, each of which is nilpotent, and which commute with
each other; hence n',f is nilpotent. We have U p ,9 = 8p ,9 +n"f because the
map U t-+ up,f is linear. The lemma now results from the uniqueness of the
canonical decomposition.

Let 8 be a semisimple element of EndV, and let V = EB Vi be the corre­
sponding direct decomposition, with SIVi = Let tP : Ie -+ Ie be a Q-linear
map.

Deflnition 6.4. 4>(8) is the semisimple endomorphism of V such that
t/J(S)IVi =

Thus, if s is represented by a diagonal matrix, the matrix representing
;(s) is obtained by applying ; to the entries of the matrix representing s.
There is a polynomial P(T) (depending on tP and s) such that P(O) = 0 and
P(8) = 4>(s). We need only solve the interpolation problem = for
each i, and P(O) = O. So far we have only used the fact that 4> maps k into k
and 4>(0) = o. The linearity of 4> is needed to prove:

Lemma 6.5. We have (4)(8))p,q = 4>(8p,9) for each p,q.

The space Vp,q is a direct sum of subspaces, the typical one of which is
Vil ® · · . ® Vip ® ® · · · ® Vi:· On that subspace:

Sp,q does scalar multiplication by + + - - ... -
t/>(sp,q)"" " by + +Aip - - ••• -

and (4)(s))1''9'''' " by

Consequence 6.6. u = s + n is the canonical decomposition of
1.1 E EndV. Suppose A and Bare subspaces of such that A C Band
up,fB C A. Then for each Q-linear map 4> : k --+ k we have cP(s)p,fBC A.
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By Lemma 6.3 and Consequence 6.2, we have 8",B C A. The result follows
now because ;(8)",9 = 4>(81',') is a polynomial in 8"" without constant term,
88 discussed in the remarks preceding Lemma 6.5.

Lemma 6.1. Let u = 8 + n a& in Lemma 6.1. II Tr(u4>(8» = 0 for all
4> E HomQ(k,k), then u i, nilpotent.

With notation 88 in the proofof6.1, we have Tr(u;(s») = E miAi</>(Ai) =0
for all q, E Homq(k, k). For those with 4>{k) C Q we can apply 4> again,
getting 0 = Emi(4)(Ai))2, and consequently 4>(Ai) = 0 for each i. Since this
last holds for every q, E Hom(k, Q) it follows that = 0 for each i, that is,
8 = 0, and u = n as contended. [Variant, remarked by Bergman: If k == C,
we need only assume Tr(U</>{8» = 0 for one single ;, namely the complex
conjugation map.]

The endomorphisms 4>(s) are called replica, of s by Chevalley. We leave
as an exercise the following characterization:

Theorem 6.8. Let sand s' be &emi,imple element, of EndV. Then s' i, Q,

replica 0/ s (i.e., there exists a </> such that s' = </>(s» if and only if, for every
p, q, every element of VI',' which iJ killed by s i$ al$o killed by s'.

There is another characterization in terms of algebraic groups which is
even nicer: Let 9 be the set of replicas of s. Then it can be shown that B is the
Lie algebra of the smallest algebraic subgroup G of GL(V) whose Lie algebra
contains s. Indeed the group G, or more properly, the group G(k) of points of
G with coordinates in k, consists of the automorphisms x of V such that, for
each i, xlVi is multiplication by a scalar Xi E k*, these scalars being subject
to the relation 11 xii = 1 for every vector (... ,ni, ...) of integers ni such that
E = o. [Cf. C. ChevalIey, Theone de' Groupe, de Lie, Tome II, Groupel
algebriquel, Ch II, §13-14, Hermann, Paris,. 1951. Also Algebraic Lie Algebral,
Annals of Math., Vol. 48, 1947, p. 91-100.]

1. Cartan'8 criterion

The following criterion for solvability is useful.

Theorem T.1. Let Ie be a field of characteri"tic zero, V a finite dimen,.,ional
vector 'pace over Ie, and 8 a Lie $ubalgebra of EndV. Then the following
contlitioJU are equivalent:

(i) 8 U ,olva61e.

(ii) Tr(zt/) =0 for ever, x E 9 and y E Dg = [0,

Note first that the statement is linear, so that we can assume that k is
algebraically closed (see the discussion after Corollary 5.3; by the "Lefschetz
principle" , that is, by choosing a finitely generated subfield k' C k over which
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V and 9 are defined and imbedding k' in C, we could even reduce to the case
k=C.)

(i) =* (ii) By Lie's theorem we can choose a ftag (Vi) in V stable by .­
Then Trv(Z'l/) =Ei TrVi /l'i+l (X'l/) =0 because an element JI e Dg annihilates
the one-dimensionalg-modules l'i/Vi+l.

(ii) => (i). Let u E Dg. By Engel's theorem, it suffices to show that u is
nilpotent. Write u = s + n as in Lemma 6.1. Then, by Lemma 6.7, it suffices
to prove Tr(ut;{s» = 0 for all tP E Homq(k, k). The problem is that t;(s) need
not belong to g. Write u =E co[za, Jla], with Co e Ie, and %0' 'I/o E g. Using
the rule Tr([a, b]c)=Tr(b[c,aJ), we have

Tr(ut;(s» =LcoTr([zo,Ya]t;{s» =
Thus it suffices to show [t/>(s),xQ ] E Dg. To do this we use the canonical iso­
morphism EndV V V· = VI ,I, and apply Consequence 6.6 with p = q =1
and with A =Dg and B = 9. Making the identification EndV =VI,1 we have
UI,l(i) = uz - xu = [u, xl, as remarked before Lemma 6.3, hence UI,19 C D9.
By 6.6 it follows that t;(s)I,IB c DB, that is, E Dg for each % E 9.
q.e.d.

Exercises

1. The class of nilpotent (resp. solvable) Lie algebras is closed under passage
to quotient, subalgebras and products. What about extensions?

2. A nilpotent Lie algebra of dimension 2 is abelian. A non-abelian Lie al­
gebra of dimension 2 has a basis {X, Y} such that [X,Yl = X .

3. A non-abelian nilpotent Lie algebra of dimension 3 has a basis {X, Y, Z}
such that [X,Y] =Z, [X,Z] = [Y,Zj =o.
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Throughout this chapter, k is a field of characteristic 0, and all algebras and
modules are finite dimensional over k.

1. The radical

Let lJ be a Lie algebra. If a and & are solvable ideals in g, then a + & is
solvable, because it is an extension of (a + b)/a 1»/(0 n b) by a. It follows
that there exists a solvable ideal in 9 which contains all other solvable ideals.
This largest solvable ideal is called the radical of 9, and is often denoted by

2. Semisimple Lie algebras

Let 9 be a Lie algebra. One says that 1J is if the radical of 9
is zero. An equivalent condition is that 9 contain5 no non-zero abelian
because if ::i (0), then the last non-zero derived algebra of is a non-zero
abelian ideal of g. Another criterion for semisimplicity is the following:

Theorem 2.1. 9 i, ,emilimple if and only if it, Killing form il non­
degenerate.

Let u be the space of all x E 9 such that tr(ad x ad y) = 0 for all y E g. It
is trivial to check that u is an ideal in g. For x E u we have tr(ad x ad'll) = 0
{or all y E 9, hence in particular for y E Du. By Cartan's criterion, it follows
that ad. u is a solvable Lie subalgebra of End(g). Since ad. u is the quotient
of u by the center of g, it follows that u itself is solvable. Thus u = 0 if 11 is
semisimple.

To show the converse, we let 0 be an abelian ideal in 9 and will prove that
a C u. Indeed, let (I = ad x ad y, for x E 0, Y E g. Then (19 C a and ua = (0),
hence (12 =0 and Tru =o.

Theorem 2.2. Let 9 be lemi.,imple and let (I be an ideal in 9. Let (I.L be the
orthogonal 'pace to a with reJpect to the Killing form of 9. Then (Ii i, an
ideal of 9, and 9 = a ED oJ., direct "urn.

A simple computation, using the invariance of the Killing form, shows that
oJ. is an ideal. One can show that an oJ. is solvable, using Cartan's criterion,
in the same way we showed u solvable in the proof of the preceding theorem.
Hence a n oJ. = (0), and the theorem follows.

Definition 2.3. A Lie algebra 8 is called if

(i) • is non-abelian.

(ii) • has no ideal other than (0) and s.



Chapter VI. Semisimple Lie Algebras 45

Notice that in the preceding theorem we have [a, aJ..) = 0, because G and
ai are ideals in 9; hence the decomposition 9 = 0 ED oJ.. gives an isomorphism
of Lie algebras 9 0 X oJ.. It follows that any ideal in 0 is an ideal in 9, and
consequently 0 is semisimple. Also 9/a aJ. is semisimple. By induction on
dim9 one sees therefore:

Corollary 1. A ,emi,imple Lie algebra i, i$omorphic to a product of ,imple
Lie algebra,.

If • is a simple Lie algebra, then na =a. Hence:

Corollary 2. If 9 u ,emi,imple, then 9 =Dg.

In fact, the decomposition of 9 into a product of simple algebras is unique,
not only unique up to isomorphism: Let 9 = EB Go, direct sum of simple ideals
CIa, and let 4> : 9 --+ a be a surjective homomorphism of 9 onto a simple Lie
algebra a. Let cPa be the restriction of tP to Ga. Claim: There is an index {J
such that 4>fJ : Gil a is an isomorphism, and tPa =0 for a :/= {J. For each a,
the image of 4>aClOl is an ideal in _, because cP is surjective and CIa an ideal in 9.
Hence by the simplicity of a, <POI is either surjective or zero. If it is surjective,
then it is an isomorphism, by the simplicity of 0 0 • The set of a's for which
<POI is an isomorphism is not empty, because <P is surjective. On the other hand
that set does not contain two distinct indices Q #= {J, because [aa, Clfl) = 0
would imply (<PClOl' cPClfl) = [a, _j = O.

Corollary 3. If 9 = E9 Ga i, an ezpre.ssion for 9 as a direct sum of simple
idea'" CIa, then any ideal of 9 a sum 0/ 0/ the CIa.

Ezample$ of $emi.simple Lie algebra$.
1) al(V), the algebra of endomorphisms of V of trace zero is simple if

dimV 2.
2) .p(V), the algebra of endomorphisms of V leaving invariant a non­

degenerate alternating form is simple if dimV =2n, with n 1.
3) o(v), the algebra of endomorphisms ofV leaving a non-degenerate sym­

metric form is semisimple for dimV 3, and even simple except if dimV =4,
and the discriminant of the symmetric- form is a square.

3. Complete reducibility

Let 8 be a Lie algebra, Vag-module, and g : 9 -+ EndV the corresponding
representation.

Definition. V (or g) is called ,imple (or irreducible) if V #= (0) and V has
no submodules other than (0) and V.

V (or g) is called $emi,imple (or completely reducible) if V is the direct
sum of simple submodules, or, what is the same, if every submodule of V has
a supplementary submodule.
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Danger! 9 may be semisimple as a g-module without being a semisimple
Lie algebra; for example, 8 = Ie.

Theorem (B. Weyl). If 8 u ,emuimple, Allg-module, (oj finite tlimeruion)
Are ,emuimple.

RemArk. Weyl used the "unitarian trick". Let Ie = C, let G be a connected
and simply connected complex Lie group corresponding to S, and let K be
a maximal compact subgroup of G. One proves that any complex group sub­
manifold of G containing K is equal to G. Hence G-submodules of V are the
same 88 K -submodules; since K is compact, there exists a K -invariant defi­
nite Hermitian form on V, with which to construct orthogonal supplementary
subspaces. In case G = SL(n), one can take K = SU(n), the special unitary
group; hence the name "unitarian trick". A purely algebraic proof of Weyl's
theorem was found only several years later.

We now prove the theorem in a sequence of steps.

Step 1. H " is semisimple, and e : 9 -+ EndV is injective, then the form
B,(z,y) = Trv(g(z)U(Y» is non-degenerate. Indeed, by Cartan's criterion,
the ideal of all z E 1J such that B,(x, !I) = 0 for all y E 1J is solvable, hence o.
Step B. Let B be a non-degenerate invariant symmetric bilinear form on a
Lie algebra J. Let (ei) and (/j) be bases for 9 which are dual with respect
to B, that is, such that B(ei,fj) = Oij (I{roneckerdelta). Let b = Eei/j in
Ug. Then b is in the center of Ug, and is independent of the choice of ei, Ij.
Indeed, the map lJ ®I: lJ -+ Homk(g, g) for which x ® 11 ...... (z ...... B(y, z)z) is
an isomorphism because B is non-degenerate, and is a homomorphism of 9­
modules as one readily checks. Moreover, it carriesE ei0/j onto the identity
homomorphism 1. Thus, the element bis the image of 1 under the composition
of the J-homomorphisms

BHom(g, g) 9 ® g* --+ 9 ® 9 ---. Us .

Since 1 is killed by 9, b is also, and since II generates Ug, it follows that b is in
the center of U9 as contended. This element b is called the Ca"imir element
corresponding to B.

Step 9. The situation being as in Step 1, let b be the Casimir element cor­
responding to B,. Then b defines an endomorphism of the g-module V,
and we have Trv(b) = dimg. Indeed, b commutes with the action of 9
on V because it is in the center of Ug. To compute its trace we have
Tr(b) = ETr(u(ei)U(!i» = EB(ei,/i) =dimg.

Step 4. H the 9-module V in Step 3 is simple, then g(b) is an automorphism
of V, unle" 9 = 0 (in which case V is one-dimensional). Indeed, by "Schur's
lemma" , an endomorphism of a simple module is either an automorphism, or
zero, and g(b) is not zero unless it = 0 because Tr g(b) = dim 9 and Ie is of
characteristic zero.
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Step 5. Let 0 -+ V -+ W -+ k ..... 0 be an exact sequence of g-modules, with ..
acting trivially on Ie (in fact, there is no other possibility since 11 =Dg; we are
supposing 9 semisimple). We shall prove that the sequence splits, that is, that
there exists a line in W stable by 9 and supplementary to V, i.e., mapping
onto Ie. This special case of the theorem, the so-called "lifting of invariants"
principle, is the critical case, to which the general case can be reduced by use
of modules of homomorphisms (see below). We break this step 5 into three
substeps.

Step 5a. Reduction to case V is a simple g-module. This is easily accomplished
by induction on dimV. If VI C V, with 0 1= VI, and VI :f: V, then by consid­
ering the sequence 0 -+ VIVI -+ W /l'I -+ k we would obtain a supplementary
lineVIVI to VIV1 in W lVI, and then from the sequence 0 -+ VI -+ V -+ k -+ 0
we would obtain a supplementary line to Vi inVwhich, by construction, would
be a supplementary line to V in W.

Step 56. Reduction to case 9 operates faithfully on V. Let f1 = Ker(g -+

EndV). For x E Q we have xW C V and xV = (0). Hence Do kills W. But
Da = 0, because an ideal in a semisimple 9 is semisimple. Hence sfa acts on
W, and by construction it acts faithfully on V. Of course, we have not lost the
semisimplicity of 9, because a quotient of a semisimple algebra is semisimple.

Step 5c. Assume V simple and e : 9 -+ End V is injective. The associated
bilinear form BII is non-degenerate; let bE U9 be the corresponding Casimir
element. It furnishes a g-endomorphism ofW, and bW C V because 6 kills k.
H 9 = (0) there is no problem. Otherwise, by step 4, we have bV = V, and it
follows that Ker(b: W -+ W) is a supplementary line to V in W stable by 9.

Step 6. The general case. Let 0 --+ E1 -+ E -+ E2 --+ 0 be an exact se­
quence of s-modules. We must show that it splits. Let W be the subspace of
Homi(E, E1 ) consisting of the elements whose restriction to E1 is a homo­
thety, and let V be the subspace whose restriction to EI is zero. There results
an exact sequence 0 -+ V --+ W -+ k -+ 0 (unless E1 = (0), in which case
there is no problem anyway). Applying step 5, we get an element 4> E W which
is invariant by 9 and maps onto 1 in k, that is a g-homomorphism E -+ EI

whose restriction to E1 is 1. q.e.d.

From the point of view of homological algebra, step 5 amounts to proving
Exth(le,V) = 0, where U = Ug, and this is accomplished in step 5c by
computing the action of the central element bon Ext I in two ways. Since 6 kills
Ie, it kills Ext l , and since 6 is an automorphism ofV, it gives an automorphism
of Ext!. Hence Ext l = O. In general, one defines Hr(9, V) = Ext&(k, V).
Step 6 amounts to showing Exth(E2 , E I ) =HI (g,Homi(E2 , E I »= o.

Corollary 1. Let .. 6e a $emuimple ideal oj a Lie algebra fJ. Then there ezut$
& unique ideal 0 in fJ ,ucll, that fJ = 9 a (direct ,um).

Applying complete reducibility to f) as a ,-module we get a k-subspace
a of fJ supplementary to 9 and stable by ad x for x E g. I claim [9, oj = 0;
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indeed, [9, oj C 9 because 9 is an ideal, and [g, 0] C 0 because G is stable
by 9. It follows that C1 consists ezactlll of those y E IJ such that [9, yl = (0),
because, writing 11 = x + 0, with x E 9, 0 E 0, we have [9, til = [g, xl, and
(9, x] = (0) implies x = 0 because the center of S is zero. This shows that 0

is unique, even as g-submodule, and also that 0 is an ideal in I), because it is
the annihilator of the f)-module g.

Corollary 2. 1/ 9 U &emi3imple, then every derivation 0/ 9 u of the form
adx, with x E g.

Apply the preceding corollary with f) = Der(s), the Lie algebra of deriva­
tions of 9. It is true that 9 is an ideal in Der(g), because for x e ,
and D E Der(9), we have [D,adx] = ad(Dx). Hence Der(g) = 9 ED 0,

where 0 consists of the derivations commuting with ad 9. Let D E (l. Then
ad(Dx) = [D,adx] = o. Hence Dx = 0, because the center of 9 is zero. Hence
a = o. q.e.d.

4. Levi's theorem

Let 9 be a Lie algebra.

Theorem 4.1 (Levi). Let <p : .9 -+ .G be a lurjective homomorphum 0/9 onto
a &emilimple Lie algebra.. Then there ezists a homomorphism e : • -+ " such
that 4> 0 e =1•.

Let 0 = Ker 4>, and write .. = 91Cl. The crucial ca3e of the theorem is
that in which 0 is abelian, and is a simple g- (or 8-) module with non-trivial
action. The first step of tIle proof is the reduction to the crucial case. Suppose
01 is an ideal in 9, and 0 C al C o. If we can find a supplementary subalgebra
81 = 91/01 to Cl/41 in sIal, and a supplementary subalgebra 82 to III in 91,
then 82 is supplementary to a in g. Hence, by induction on dim 4, we may
suppose 4 is a simple g-module. The radical t of 9 is in 4. If = 0, then 9
is semisimple, and we are done, by Theorem 2.2. If = a, then a is solvable,
hence a =F [a, a]. But [a, a] is an ideal in 9, so [a, Cl] = 0, i.e., a is abelian. If 9
acts trivially on a, then a is in the center of g, hence 9 operates on lJ through
81Q -, and 9 is completely reducible as an .-module, so there is an ideal
supplementary to Q.

Assume now we are in the crucial cale: a abelian, and a simple a-module
with non-trivial action. If we had cohomology at our disposal, and knew tl1at
the extensions of. by a are classified by H2(S, a) = a), we would be
finished, because we could use a Casimir element to show that the Ext group
is zero. But not having cohomology, we resort to the following argument of
Bourbaki:

Lemma. Let W be a g-module. Suppose an element w E W satisfie& the
condition&



Chapter VI. Semisimple Lie Algebras 49

a) the map a t-+ aw is a bijection 0 OW;

b) gw = Clw.

Let lUI = {x E B Ixw = o} be the stabilizer of w. Then l10 U II Lie subalgebra
oj 9, and 9 = CI ED l10 (direct sum as vector spaces).

p ={ad, a Ia EO}
Q={4> E W I4>g C Cl and </>0 = 0 }

R ={4> E W I tjJg C Q and tP I Q is a homothety} ·

We leave to the reader the task of showing that these are g-submodules ofW.
We have an exact sequence of ll-modules

The lemma is completely trivial. Our problem now is to construct a suit­
able w. We let W = End(g), viewed as g-module in the usual way, the
representation u : 9 --+ EndW = End End 9 being defined by u(z )q, =
adx 0 q, - q, 0 adz = [adx,<f>].We define three subspaces P C Q eRe W as
follows:

where i is the inclusion, and e the map which associates with each r E R
the scalar by which r multiplies elements of Q. If x E 0 and </> E R, then
O'(x)4> = adz 0 q, - <po adz = -A adx, where A= U(4)) E k. Thus, u(x)R c P,
for x E 0, and the exact sequence

o --+ QIP --+ RIP --t. k --+ 0

may be viewed as a sequence of a-modules. By the principle of lifting invari­
ants, there exists 10 E RIP such that e(w) = 1, and such that tV is invariant
by a. Let w be an inverse of image of to in R. We contend that w satisfies the
conditions of the lemma above.

a) Let a E G. Then u(a)w = - ada. If u(a)w =0, then ad.. a =0, that is,
[a, xl = 0 for all z E g. This implies a = 0, because Q is simple, and 9 acts
non-trivially.

b) Let x E g. We must show that O'(x)w is of the form O'(a)w for some
a E 0. Since 0'(a)w = - ad. a, this amount to showing u(x)w E P. But that
is just the invariance of w. q.e.d.

Corollary 1. An arbitrary Lie algebra 9 IS the semi-direct product of its
radical and a &emisimple subalgebra"

One applies Theorem 4.1 to 9 --.

Remark. This corollary has a complement, due to Malcev, which says that,
if al and a2 are two subalgebras of 9 such that EB ai = 9, there exists
an automorphism q of 9 such that (1(81) = 82 (one can even choose u of
the special form ead(G), where a E and ad(a) is nilpotent]. When is
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abelian, this amounts to the vanishing of the general case follows
by "devissage".. See Bourbaki for more details.

H 9 is a Lie algebra such that B ;: D" and if G is a subspace of 9 of
codimension 1 containing Dg, then G is an ideal in 9, and we have II =GEB kz
for any x ¢ G. Since lex is automatically a Lie subalgebra we get:

Corollary 2. A non-zero Lie algebra which u neither ,imple nor one­
tlimeruiona' abelian u a ,emitlirect product of two Lie algebra' oj 'mailer
dimeruiofU.

s. Complete reducibility continued

The following theorem gives a criterion for the complete reducibility of a
representation of a Lie algebra.

Theorem 5.1. Suppo,e k u algebraically clo&ed. Let V be a vector 'pace
and let 9 be a Lie ,ubalgebra of EndV. Then V iI completely reducible tI' a
,-module if and only if the following two condition, aTe ,ati,fied.

a) II u a product ex. where c iI abelian and. ,emuimple.

b) the element, of c can be put in diagonal form by a ,uitable choice oj
ba,i, for v.

Rernaru. 1) If k is not algebraically closed, the same statement holds if we
replace the condition b) by the statement that elements of c are ,emuimple
(i.e., diagonalizable over the algebraic closure!).

2) The ambiguity in statement b) is only apparent. If each element of c is
individually diagonalizable, then they are all simultaneously diagonalizable,
because c is commutative.

Suppose V is completely reducible as a g-module. Let be the radical of
g. By Lie's theorem (Chap. V.5), there exists a line in V stable by (unless
V = (0), in which case there is nothing to prove), or, what is the same, there
exists a linear form X : c --t Ie such that its eigenspace

Vx ={v E V Ixv = X(x)v for all x E }

is non-zero. By the "main lemma" used in the proof of Lie's theorem (loc. cit.),
Vx is stable under g. By complete reducibility, we conclude that there exist
characters Xi of such that

(direct sum) .

From this decomposition it is clear first that acts diagonally, and commutes
with the action of g. Thus, = c is the center of g. To get 8, we can either
quote Levi's theorem, or argue directly using the adjoint representation.
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Conversely, suppose conditions a) and b) are satisfied. By b) we have
a decomposition of the vector space V of the form (*), where the Xi'S are
characters (linear forms) on c. Since c is in the center of 8 = , x _, the
eigenspaces VXi are stable under 8. We are therefore reduced to the case
V = Vx. But then c x a-submodules are the same as a-submodules, and we
are done by Weyl's Theorem.

Corollary 1. Su,po,e 8 = cx a with c abelian and a ,emuimple. A g-module
W u ,emuimple il And only if c acu tliagonaUy on W.

Corollary 2. Let 9 be an arbitrary Lie and Vag-module. 1/ V U
completel, reducible, then '0 are the tenlor module,

Indeed, the image i of 9 in EndV is of the form c x a, with c acting
diagonally on V, and hence on all V",9.

Corollary 3. The tenlOT product of completely reducible g-module, i, com­
pletely reducible.

Using these results we can prove:

Theorem 5.2. Let V be a finite dimen,ional vector 'pace over k. Let
• C EndV be a Lie algebra 0/ endomorphunu 0/ V. 1/ 8 i, , emuimpIe,
then • ;" determined by its ten,or invariant., that i" there ezi,t ,ome el-
erne,,'" Vcr E Vp'r (for various (p,q)'s; we should write (Pcr,qo» ,uch that
9 ={% E EndV %Vo = 0 for all Q }.

By a standard linear argument, we can reduce the question to the case
where Ie is algebraically closed. Let f) be the set of all z E EndV such that
%V =0 for every v in some Vp,f such that lJV =o. Clearly 8 C fJ C EndV,
and I) is a Lie algebra. Our task is to show fJ =g.

Step 1: H a linear map u : V",f -+ Vr•• is a g-homomorphism, then it is an
f)-homomorphism, because we can identify Homi(V",f' Vr,.) with V9+r,p+., as
EndV modules, and for a linear map to be a g-homomorphism is the same as
for it to be killed by the action of lJ.

Step !: H a subspace W C Vp,f is stable under 9, it is stable under I). Indeed,
since Vp,f is completely reducible as a 8-module, there is a g-endomorphism u
of projecting into W. Since u is also an I)-endomorphism, its .image
W is stable under I).

Step 3: We have fJ =9 x c, where c is the center of I). For, by Step 2, with
W =g, and p = q =1, we see that. is an ideal in I). By Corollary 1 of Weyl's
Theorem (VI.3) we have IJ =8 x c, where c is an ideal in fJ commuting with
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9. By Step 1, it follows that c commutes with I), that is, c is in the center of
I).

Step 4: Let W be an irreducible s-submodule of V. Then W is stable under
C, and by "Schur's Lemma", the elements of C act as homotheties on W. We
must show that these homotheties are zero; since V is the direct sum ofW's,
this will show c = 0 and conclude our proof. Since we are in characteristic
zero, we can show that a homothety is zero by showing that its trace is zero.

Lemma 5.3. Let 9 be a Lie algebra and Wag-module of dimen,.,ion m. Then
it, m-th ezterior power 1\ mw, A' A quotient 'pace offi!;mW (or A" a "ub,pace
in chartJcterUtic zero) u ,table under g, and an element % E 8 act" on the
one-dimen,.,ional "pace 1\mw by the "calar Trw(x).

We leave the proof of this Lemma as an exercise. Granting the lemma, we
argue as follows. We have 1\ mw c ®mw c ®mv = Vm,o. Since our semi­
simple 8 has no non-trivial one dimensional module (DS = 9), we conclude
that 1\ mW is killed by 8. Hence it is killed by c, and hence Trw(x) =0 for
all x E 9. This concludes the proof.

Corollary 5.4. Let 9 C End(V) be semisimple. Let x E 9 and let x = n+s be
the canonical decomposition of x, with n nilpotent, s semisimple and [n, s] =0
(cf. Chap. V). Then:

a) nand s belongs to 9.

b) For any t/J E HomQ(k, k), 4>(s) belongs to 9.

This follows from the fact that any element in V"f killed by 9 is killed by
x and hence also by n, s and 4>(s).

Definition 5.5. Let 9 be a semisimple Lie algebra. An element x E 9 is
called semisimple (resp. nilpotent) if ad(x) is semisimple (resp. nilpotent).

Theorem 5.6. If 9 is semisimple, any x E 9 can be uniquely written x =
n + s, with n E 9, s E g, n nilpotent, s semisimple and [n, s] =o.

This follows from Corollary 5.4, applied to the adjoint representation (i.e.,
V=9)·

Theorem 5.7. If 4> : 91 --+ 92 is a homomorphism of semisimple Lie algebras,
and if x E 91 io5 o5emisimple (resp. nilpotent), 050 is 4>(x).

Notice first that 92 can be made into a 91-module via </>. Let V be the
product of the iI-modules 91 and 92. Applying Corollary 5.4 to V, we see that
any x E 91 can be written x =n + s, where n E 91, S E 91, [n,s] = 0, aden)
and ad( 4>(n» nilpotent, ad(s) and &d(4>(s» semisimple. If x is semisimple
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(resp. nilpotent), this implies n = 0 (resp. s = 0), hence is semisimple
(resp. nilpotent).

6. Connection with compact Lie groups over Rand C

We begin with:

Theorem 6.1. Let G be A connected compActLie group over C. Then 11 u a
complez torw, thAtu, , u of the form en/r, where r u & ducrete ,ubgrou,
of rank 2n in en.

By the maximum principle, there is no non-constant analytic function
on G, and hence no non-constant analytic map of G into Endc 9 cnl

where n = dim, and 9 is the Lie algebra of G. The inner automorphism
x t-+ 9x9-1 induced by an element 9 E G induces an automorphism of ,
which is denoted by Adg. The map 9 t-+ Adg E Cn2 is analytic, hence con­
stant, so Adg = Ad 1 = 1 for all 9 E G. For x near zero in 1J we have
g(expx)g-l = exp(Adg(x», and since the exponential mapping is a home­
omorphism of a neighborhood of zero in 9 onto a neighborhood of 1 in G,
we conclude that G is locally abelian. Since G is connected, G is abelian.
Hence the universal covering of G is en, and G en/r, with r discrete, as
contended. Since G is compact, r is a lattice of maximal rank 2n.

Theorem 6.2. Let G be a compact Lie group over R with Lie algebra g.
Then B ( x a, where ( i., abelian, and. Jemisimple with negative definite
Killing form.

We shall also prove a converse:

Theorem 6.3. If 9 is a Lie algebra over R such that 9 ex. with c abelian
and. ,emisimple with II definite Killing form then there ezuts a compact Lie
group over R giving ,. Moreover, if ( = 0, then any connected G giving 9 u
compact.

Proof of Theorem 6.2. As explained in the proof of Theorem 6.1, G acts on 9
by Ad, and, since G is compact, there exists a. Euclidean structure (positive
definite quadratic form) on 9 which is left fixed by G, and hence by g. Hence,
, is completely reducible as a g-module. It follows that 9 is the direct sum
of minimal non-zero ideals Qj and is therefore isomorphic to the product of
the Oi. Each eli is either simple or one-dimensional abelian. Hence 9 c x .­
with ( abelian and a semisimple. It remains to show that the Killing form
of a is negative definite. Let (x, y) denote the Euclidean inner product on 9.
For x E • let u = ad.x. For y,z E • we have then (uy,z) + (y,uz) = 0,
beca.use the Euclidean structure on • is invariant. Putting z = uti, we find
(y,u2 y) = -(uy,uy). Let (Yi) be an orthonormal basis for s. We have:
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If z ;: 0, then u = ad(x) :f:. 0 (because the center of • is zero), hence
Tr.(u2) < o. This proves that the Killing form of. is negative definite.

Let us now prove Theorem 6.3. As a compact Lie group over R giving , we
can take a real torus, (R/Z)R. To get one giving ., we take Aut., which is a
closed subgroup of the orthogonal group of linear transformations of • leaving
fixed the Killing form of •. Since that form is definite, the latter group, and
hence Aut a, is compact. The Lie algebra of Aut. is the algebra of derivations
of a, which is isomorphic to. by Corollary 2 of Weyl's Theorem (VI.3). This
proves the first part of Theorem 6.3.

Suppose now c = 0 (hence 9 is semisimple) and let G be a connected Lie
group with Lie algebra 9. We have a canonical homomorphism:

Ad : G --+ Aut 9 .

We have just seen that Aut 9 is a compact Lie group with Lie algebra 8;
hence Ad is etale. Let H = Im(Ad) = connected component of Aut 8, and
let Z = Ker(Ad). We have G/Z = H, Z is discrete, H is compact, and the
commutator group (H, H) is dense in H (this follows via Lie theory, from the
fact that 9 = [8,8]). Hence G is compact (d. Bourbaki, Int., VII, §3, Prop. 5).

Exercises

1. Let g be a Lie algebra, let be its radical, and let i be the intersection of
the kernels of the irreducible representation of g.

a) Show that i = =Dg (Hint: use Levi's theorem to prove
that =Dg n

b) Show that x e belongs to i if and only if e(x) is nilpotent for
every representation U of 9.

2. Let 9 be a Lie algebra and let B(x,y) be a non-degenerate invariant
symmetric bilinear form on g.

a) Let X,II e ,. Show the equivalence of:
(i) II e Imad(z).
(ii) B(II,Z) =0 for all z which commute with x.

b) Assume 9 semisimple. Let z E 9 be such that ad(x) is nilpotent.
Show that there exists h E 9 such that (h, xl = x. Use this to prove that
e(x) is nilpotent for any representation Uof g.

3. Give an example of a Lie algebra 9, with a non-zero radical, and a non­
degenerate invariant symmetric bilinear form.

4. Let 1J be a Lie algebra and let V be an irreducible 8-module. Let K be the
ring of g-endomorphislDS of V. Show that K is a field. Give an example
where K is not commutative.
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5. Let 8 be 8 semisimple Lie algebra, and let K be the ring of g-endo­
morphisms of 8 (with the adjoint representation). Let k be an algebraic
closure of Ie.

a) Assume k = k and 9 = -i, where -i are simple. Show that
K is isomorphic to the product of h copies of k.

b) No assumption on k (except chark = 0, of course). Show that
[K : k] = h, where h is the number of simple components of 8 k. Show
that K is 8 product of m commutative fields, where m is the number of
simple components of 9.

c) One says that 9 is ab$olutely $imple if .8 0 k is simple. Show that
this is equivalent to K = k. Show that, if 9 is simple, K is a commutative
field and 9 is absolutely simple for its natural structure of Lie algebra
over K.

d) Conversely, let K be a finite extension of k, and let 9 be an abso­
lutely simple Lie algebra over K. Show that 9 is simple as a Lie algebra
over k.

e) Example: 9 = Lie algebra of the orthogonal group of a quadratic
form in 4 variables, with discriminant d not a square. Show that K is the
quadratic extension k(v'd).

6. Let G be a complex connected Lie group, let K be a real group­
submanifold of G, and let 9 and t be the corresponding Lie algebras
(9 is over C, and t over R).

a) Assume t + it =9. Show that any complex group submanifold of
G containing K is equal to G itself.

b) Show that (a) is satisfied in the following cases:
(i) G =SL(n, C), K =SU(n) = special unitary group
(ii) G = SO(n, C), K =SO(n) =special real orthogonal group
(iii) G =Sp(2n, C), K =SU(2n) n G =quatern. unitary group.

7. Assume k is algebraically closed; let gi (i = 1,2) be Lie algebras over k
and let 9 = 91 X 92-

a) Let Vi be an irreducible lJi-module. Show that VI ® V2 is an irre­
ducible g-module.

b) Show that any irreducible g-module is isomorphic to some Vl ®V2
as above.

c) What happens when k is not algebraically closed?

8. Let 9 be a real Lie algebra whose I(illing form is positive definite. Show
that 9 = o.
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In this chapter, Ie denotes an algebraically closed field of characteristic zero.
All Lie algebras and all modules are supposed to be finite-dimensional over Ic.

1. NotatioDs

Let n be an integer 2, and let 9 = aln : Lie algebra of n x n-matrices x = (Xij)
with Tr(x) =o. Since the center of 9 is zero, and k n is an irreducible g-module,
9 is ,emuimple (d. Chapter VI - one could also check this by computing the
Killing form of 9). In fact, 9 is even simple (cf. Exer. 1), but we will not have
to use this.

Define now

fJ = Lie algebra of diagonal matrices H = ('\1' ... ' '\n) with E'\i = O.
R+ =Lie algebra of strictly superdiagonal matrices (i.e., matrices (aij)

with Xij =0 for i j).
R_ =Lie algebra of strictly infradiagonal matrices.

This gives a direct sum decomposition of 9 (as a vector space):

Note that" is abelian, n+ and n- are nilpotent (cf. V.2). For n = 2, one has:

We also put &= " EBn+; & is a solvable subalgebra of 9 (the canonical "Borel
subalgebra"); its derived algebra [b, b] is n+.

Let "* be the dual of I). An element X E 1)* can be written

Since E Ai =0, the Ui'S are only determined up to the addition of a constant.
Let be the subset of I). made of the. linear forms '\i - Aj (i < j) and

let R = R+ U (-R+). An element Q of R (resp. R+) is called a root (resp. a
po,itive root). The positive roots:

are called the fundamental roots. Any positive root a = Ai - Aj (i < j) can
be written as a sum of fundamental roots:

Q = Qi +Qi+l +···+ 0j-l ·

Let Q = Ai -'\j (i j) be a root. Define elements Ha and Xa of 9 in the
following way:
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Xer = matrix with equal 1, and all other entries zero.
Her = element of IJ whose i th coordinate is 1, jth coordinate -1, and others

zero.

Note that a(Her ) = 2.

Proposition 1.1. (a) The X Ol ', (0 E 14) make a ba,u of n+; the X-er "
(a E 14) make a ba,u ofn_.

(b) If H E f}, Q E R, [H,Xer ]=Ot(H)XOl •

(c) [Xa ,X-a] = Her.

Assertion (a) is clear. To prove (b), let (AI, ... , An) be the diagonal terms
of H; if 0 is the linear form Ai - Aj, one finds that H · Xer = Ai · Xcr and
Xer • H =Aj · Xer • Hence [H,Xer ] = (Ai - Aj)Xa =Q(H)Xa • A similar com­
putation proves (c).

Ezample 1.1. For n = 2, there is just one positive root a = Al - A2. The
elements

make a basis of .12.

2. Weights and primitive elements

Let V be a g-module. H X e lJ*, we denote by Vx the vector space of elements
1J E V such that H·v =X(H)·v for all H E I); such a 1J is called an eigenvector
of IJ of weigh t X.

Proposition 2.1. If Q E R and v E VX1 then X o · v E Vx+o .

Indeed
HXov = [H,Xo]v + XoHv

=Q(H)Xov + X(H)Xov

=(X + a)(H)Xov ,

hence Xav is of weight X+ Q.

Proposition 2.2. V i$ the direct $um of the Vx's (for X E 1)*).

It is well known that non-zero eigenvectors of distinct eigenvalues are
linearly independent. Hence, the sum W = ExE". Vx is a direct sum. Propo­
sition 2.1 shows that W is stable by the Xo's; since it is also stable by I), it is
stable by 9. Hence (complete reducibility!) V is the direct sum of W and an­
other g-submodule V'. Suppose V' =F O. Since I) is abelian and k algebraically
closed, there exists in V' at least one non-zero eigenvector v of I). Such a v is
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contained in some Vx, and this contradicts the fact that V' nw = o. Hence
V' =0, and V =W. q.e.d.

Definition 2.3. The X's such that Vx :F 0 are called the weight" of V. The
dimension of Vx is called the multiplicity of x.

Ezample 1.4- The weights of 9 (for the adjoint representation) are the roots
o E R, which have multiplicity one, and 0, which has multiplicity n - 1.

Proposition 2.5. Let v E V. The following conditiofU are equivalent:
(1) v is an eigenvector for the Borel Algebra It = I) E9n+.
(2) v is An eigenvector for I), And Xav =0 for All Q e 14.

This follows from the fact that n+ = [II, &] and that the Xa's (0 E R+)
make a basis of n+.

Deftnition 2.6. A non-zero element v E V which satisfies the equivalent
conditions of Prop. 2.5 is called primitive.

Note that a primitive element has a well-defined weight X E 1)*.

Proposition 2.7. A ny non-zero g-module V contain.s II primitive element.

This follows from Lie's theorem (cf. Chap. V) applied to the b-module V.

[Alternate proof: Let S be the set of weights of V. Using the fact that S
is finite, and non-empty (cf. Prop. 2.2), one sees that S contains an element
X such that X+OJ ¢ S for any i. The non-zero elements of the corresponding
Vx are primitive.]

3. Irreducible g-modules

Theorem 3.1. Let V be II g-module, and let v E V be II primitive element of
weight X- Let VI = (U9) · v be the 9-$ubmodule of V generated by v. Then:

(a) VI i$ irreducible.
(b) The weight.s of VI are of the form X- E?::-ll miQi, with mj o.
(c) Any element .of VI which i$ of weight X i3 II multiple of v.

The universal algebra U9 can be written

, cf. Chap. III.

Since v is an eigenvector of b, (U&) · 11 = k · v, hence Vi = (UI) · 11 is equal
to (Un_)· v. Applying Birkhoff'-Witt to Un_, we then see that VI is gener­
ated by elements of the form M · 11, where M is a monomial in the X-a's
(Q E R+). Prop .2.1 then shows that the M · v are eigenvectors of I) of weight
X - Ea>oqao , with qa 0; this implies (b). Assertion (c) follows from the
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fact that the qa '8 can be all zero only when M is of degree zero (i.e., M =1),
and in that case M· v = v. To prove (a), suppose Vi is decomposed into the
direct sum of two g-modules V' and V"; let v = v' + v" be the corresponding
decomposition of v. Since (lt1)x = (D Vi and v" are both of weight x;
(c) then shows that they are multiples of v, and one of them must be zero, say
v"; hence v' =11, and since v generates has V' = V" =o. q.e.d.

Theorem 3.2. (1) Let V be an irreducible g-module. Theft V contaifU onl"
one primitive element (up to multiplication b,l tJ non·zero element of k); the
weight 01 4ft element u called the highelt weight of V.

(2) Two irreducible g-module, with the lame higke,t weight are uomor­
phic.

If V is irreducible, it contains at least one primitive element v (d.
Prop. 2.7); let X be the weight of v. Let now v' be another primitive ele­
ment of V, and let X' be its weight. Since V is irreducible, v generates V,
hence Theorem 3.1 shows that

n-l

X- X' = E mjQj ,

i=1

The same argument, applied to v', shows that:

with mi 0 for all i.

with 0 for all i.

These two relations imply mi = = 0, i.e., X = X', and part (c) of Theo­
rem 3.1 then shows that v' is a scalar multiple of v. This proves (1).

Let now Vi, 1'2 be two irreducible 9 modules having primitive elements VI,
V2 of the same weight x. The element v = (VI, V2) of VI EB is again primitive
of weight x. By Theorem 3.1, the g-submodule W of l'i x V2 generated by v
is irreducible. The projection map 1I"i : W -+ Vi is non-zero (since 1ri(V) =Vi),
hence is an isomorphism, W and being irreducible. This shows that Vi and
V2 are both isomorphic to W.

Remark. Theorem 3.2 reduces the classification of irreducible g-modules to
the determination of the elements X E 1)* which are "highest weights", i.e.,
weights of primitive elements in some g-module. This determination will be
made in VII.4.

4. Determination of the highest weights

Theorem 4.1. Let X be an element of 1)*, and write X in the form:
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There ezuu an irreducible g-module with highe,t weight X if and only if 1.&i-Uj

it fI integer for all i < j.

(Of course, "positive" means 0.)

Proof of nece" it,l. Note first that Ui - Uj = X(Ho ) if Q is the positive root
Hence, we have to prove that X(HOl ) is a positive integer (for Q e

if X is the weight of a primitive element v.

Proposition 4.2. Let v be a primitive element of weight X, and definev: = (X_o)mv/m! for m 0, where (X_o)m it the mth iterate of X-o.
Then, the following formula, hold:

(i) X-ov: = (m + l)v::a+l

(ii) Hv::a =(X - ma)(H)v::a if H E f)

(iii) Xov: = (X(Ho) - m + 1)v::,_ I •

Fonnula (i) is obvious; formula (ii) means that v:;' is of weight X - ma,
which follows from Prop. 2.1. One proves (iii) by induction on m, the case
m =0 being trivial (it is understood that = 0 - note that this convention
agrees with (i) for m = -1). If m 1, one writes:

m · Xov:;' = = +X-oXO V:'-1
= A· ,

with = X(Ho ) - (m - 1)a(Ho ) + (m - 1)(X(Ho ) - m + 2).
Using the fact that a(Ho ) = 2, one sees that = m(x(Ho ) - m + 1), and

this proves (iii).

Corollary 4.3. There exi,t, m 0 such that v::a 1= 0 and v::'+1 = O. One
ha, X(Ho ) = m.

Since the v:a's have weights X - rna, and the number of possible weights
of a given module is finite, one must have v::' = 0 for large m, hence the
existence of m with v::a :f.: 0, v:a+l = O. Applying formula (iii) for m + 1, one
finds:

o= X O v::a+l = (X(Ho ) - m)v::a ·

Since v::' =F 0, this implies X(H0) = m.
This finishes the proof of the "necessity" part.

Proof of ,ufficiency. Let '7rl, •.• , '7rn -l be the linear forms AI, '\1 + A2' .. -,
+ ···+ '\n-l- The condition of Theorem 4.1 is equivalent to the following:

n-l

X can be written X = I: mi'7ri ,

i=l
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where the mi's are positive integers.

Proposition 4.4. If X and X' are the highe,t weight. of the irreducible mod­
ule, V and V', X+ X'i, the highe,t weight of an irreducible ,ubmodule of
V®V'.

Let v and Vi be primitive elements of V and v'. Then v 0 Vi is a primitive
element of V ®V' and its weight is X+x'. The g-submodule W generated by
v ® Vi is irreducible (Theorem 3.1), and its highest weight is X+ X'.

Corollary 4.5. The let of highelt weight" u clo,ed under addition.

Hence, to prove that X is a highest weight, it is enough to prove that the
1r'i'S are highest weights. We do this by giving explicitly the corresponding
irreducible g-modules:

Proposition 4.6. Let V be kn , viewed in a natural way a" a g-module. For
1 i n - 1, let Vi be the exterior i th -power ofV. Then Vi is an irreducible
g-module of highelt weight 1r'i.

Let el, ... ,en be the canonical basis of V, and let Vi = el A··· A ei. A
simple computation shows that Vi is a primitive element of Vi, of weight 1f'i;

moreover, by applying to Vi a monomial in the X-a's, one can obtain any
term of the form emt " • • • A emi , ml < ... < mi; hence l'i is irreducible
(Theorem 3.1). This concludes the proof of Theorem 4.1.

Remark,. 1. Analogous results are true for any semisimple Lie algebra. In
fact, all the proofs we have given (except the last one - based on an explicit
construction of irreducible modules) apply to the general case, once the fun­
damental properties of "Cartan subalgebras" and "roots" have been proved.

2. Theorem 4.1 shows that the classes of irreducible g-modules are in
one-to-one correspondence with systems (ml, ... ,m n -l) of n - 1 positive
integers. For an explicit description of the module which corresponds to
(fil, ... ,mn-l), see for instance H. Weyl, The ClaJJical Group" Chapter IV.

3. When n = 2, there is just one integer m, and the corresponding irre­
ducible module is the mth-symmetric power of V = k2 •

Exercises

1. Suppose 9 = aln is the product of two semisimple Lie algebras 91 and g2.
Prove that the g-module kn = V is a tensor product VI ® V2 , where Vi is
an irreducible gi-module (cf. Chap. VI). If ni = dim Vi, one has n = nl n2,
dimgi -1. Show that this implies that one of the ni's is equal to 1,
hence gi = 0, and 9 is simple.
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2. Show that all the results of this Chapter hold when Ie is an arbitrary field
of characteristic zero (Hint: use the fact that, over an algebraic closure I
of Ie, all weights take rational values on the Ho '8; this is enough to imply
that Prop. 2.2 and 2.7 hold over Ie; the rest offers no difficulty.)

3. Let k = C, field of complex numbers. The group G = SL(n, C) con­
tains the subgroup SU(n) of unitary matrices with det = 1. Show that
G/ SU(n) is homeomorphic to an Euclidean space RN (Hint: identify this
homogeneous space with the space of all positive definite hermitian forms
on Crt). Show that SU(n)/SU(n - 1) is homeomorphic to the sphere
52ft - I • Use this fact to prove (by induction on n 2) that SU(n) and G
are connected and simply connected. Hence, any linear representation of
if =L(G) corresponds to an analytic representation ofG, and

4. Same notations and assumptions as in Exer. 3. S1}.ow that the subalgebra
fJ of 8 corresponds to a group submanifold of G which is isomorphic to
a product of n - 1 copies of C* = C/Z. Use this to give a direct proof
of the fact that any weight of 9 is a linear combination (with integral
coefficients) of the 1I"i'S.

5. a) Let P (resp. Q) be the subgroup of 1)* generated by the 7ri'S (resp. by
the roots). Define an exact sequence:

o---+ Q --!... P Z/nZ --+ 0 ,

where i is the inclusion map, and e(7ri) = i for 1 i $ n - 1.
b) Let V be an irreducible g-module. Show that all weights of V are

elements of P, and have the same image bye; let e(V) E Z/nZ be this
image.

c) Assume k = C (cf. Exer. 3). Prove that the center C of G =
SL(n, C) is a cyclic group of order n, made of the scalar matrices w with
w" =1. Let V be an irreducible g-module; show that the image ofwEe
by the corresponding representation of G is a scalar which is equal to
we(V).

d) Using (c), prove that the irreducible representations of the projec­
tive group PGL(n, C) =GIC correspond to the irreducible g-modules V
with e(V) =O.

6. Let X be any element of 1)*. Let Lx. be a one-dimensional b-module of
weight x. Let Ex = Lx ®UIJU9 be the corresponding "induced s-module"
- which is infinite-dimensional. Show that Ex contains a primitive element
v of weight x. What are the other weights of Ex? Show that there is
a largest submodule H of Ex which does not contain v. The quotient
Vx = Ex/His irreducible; show that it is finite dimensional if and only if
X satisfies the conditions of Theorem 4.1. Give an explicit description of
Vx when n = 2.

7. Let n =4, and let V be the irreducible g-module with highest weight 7r2

(d. Prop. 4.6). Show that dimV =6, and that there is a non-degenerate
invariant quadratic form on V. Use this to construct an isomorphism of
.14 onto the Lie algebra of the orthogonal group in 6 variables.
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Introduction

This part is meant as an introduction to formal groups, analytic groups, and
the correspondence between them and Lie algebras (Lie theory). Analytic
groups are defined over any complete field (real, complex or ultrametric); Lie
theory applies equally well to these cases, provided the characteristic is zero.
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both on analytic manifolds, and on Lie groups.

Part II has been written by R. Rasala. I want to thank him for the good
job he has done; many improvements on the oral exposition are due to him.

Jean-Pierre Serre

Harvard, Fall 1964



Chapter I. CODlplete Fields

Definition. Let k be a commutative field. An ab"olute value on k is a function
Ie -+ 8.+ denoted by % t-+ lxi, % E Ie satisfying the conditions:

1. 1%1 = 0 % = o.
2. 1%111 = 1%1 lui·
3.111 =1.

4. Ix + 111 :5 Ixl + 1111·

Ezample,.
(i) Define

{
Ixl =Oil x = 0
IxI=1 if x :f: 0 ·

The topology on Ie induced by this absolute value is discrete.
From now on we will assume that the absolute value is non-trivial, i.e.,

there exists x E Ie with 0 < Ixl < 1.

(ii) R, C with the usual absolute values.

(iii) Hwe replace condition 4) by 4') Ix-YI sup{lxl, IYI}, such an absolute
value is called ultrametric or non-archimedian.

Note. The condition 4') is equivalent to the following:
For any e 0, the relation Ix - yl e is an equivalence relation.

Now suppose Ie is complete for an ultrametric absolute value.

Theorem. Let {xn } be a "equence with X n E k. Then EXn converge" if and
only ij X n -+ o.

The proof is immediate.

Theorem (Ostrowski). Let k be a complete field for an ab"olute value. Then
either k = R or C with the u.9ual ab.9olute value Ixlo , 0 < Q 1 or the
o.b"olute vo.lue oj k u ultrametric.

For the proof, see for instance, Bourbaki, Alg. Comm., Chap. VI, §6.

Let Ie again be a field with an ultrametric absolute value Ixl and let a be
a real number with 0 < a < 1. Define a real number v(x) by the formula
Ixl = aV(z). Then v(x) satisfies the conditions:

1. v(x) = +00 x = O.

2. v(xy)=v(x)+v(y).
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3. v(1) = O.

4. v(x + y) inf(v(x),v(y».

The number v(x) is called the valuation of x.

&. Let k=C«T» be the field of the power series in one variable T.
Let a =En>-oo anTR, aR e C, an =0 for -n large enough.
Define v(a) = smallest n such that an :f: o. Then a = Tn(ao +alT+ ...

with ao i: 0, nEZ, i.e., v(a) n <==> a =TRep with cp E C[[T)].
Note that the field C«T» is complete.
b. Let Q be the field of rational numbers and choose a prime number p.

For any a E Q, a =F 0, we write a = ; =p";;'where r', s' are integers prime
top.

The valuation defined by v(a) = n is called the p-adic valuation of a.
The p-adic completion of Q is denoted by Qp and called the field of p-adic

numbers.
Note that a" -+ 0 in the p-adic sense if and only if an is divisible by a

power of p, say ph,., where h" -+ 00.

Definition. Let k be a field and let v be a valuation of k. Then the set

Au = {x Ix e k, v(x) O}

is a ring and it is called the ring of the valuation v.

Ezample. Let k = Qr and let v be the p-adic valuation; then Au = Zp is the
'- p-adic integerb.

If Q 0 is a real number, then the sets

10 = {x Ix e Au, v(x) Q}
= {x Ix E Au, v(x) > Q }

are ideals of Au.
In particular, if Q =0 we have

=mu = {x Iv(x) > 0 }

which is the maximal ideal of Au. The field k(v) = Au/mu is called the residue
field of v.

(i) Let k =C«T», then

Au =CUT]]
mu = (T)
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and Ie" =A"/m,, =C.

(ii) Let k = Q", then
A.,=Zp
m., = (p) =pZ,

and Ie" =F" = Z/pZ.

Theorem. Let % ..... 1%1 be an ultrametrie ab.9olute value on Q. Then either

Ixl = 1

or the a6,olute value I I u the p-adie value for ,orne p.

for all % :/= 0

Proof. Suppose that there exists a rational number r E Q such that

o< Irl < 1 ;

this implies that there exists a prime number p such that Ipl :/= 1, i.e.,
o< Ipl < 1 (notice that if nE Z then Inl 1).

Let n E Z and assume (n,p) = 1, then there exist A,B E Z with
An+Bp= 1; in the case Inl < 1 we get IAnl < 1, but we know that Ipl < 1,
i.e., IBpi < 1 which implies III < 1, 80 we must have Inl =1.

Now take a = Ipl and r = p.,,(r) :', where n, n' e Z are prime to p. We
have Irl =a",(r), q.e.d.

Corollary. If Ie it a complete field with re.9pect to an ultrametric ablolute
VAlue II And the chafUcterUtic of Ie il zero then

Ie :> Q with the di.9crete topology

or
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We first fix some notation:

1. k: field, complete with respect to a non-trivial absolute value.
k[[Xl , ... ,Xn ]]: formal power series in n variables Xl, ... ,Xn •

2. We use:
a. Greek letters 0, P for n-tuples as 0 =(01, .•• ,an), 0i 0, E Z.
b. Latin letters r, 8 for n-tuples as r = (rl' ... , r n ), ri > 0, E R.
c. Latin letters x, 11 for n-tuples as %= (Xl, •.• t %n), Xi E k.

3. We set:
r O = rfl ... r:-
XO = Zfl •. ·z:·
XO =Xfl ... X:-
101 =Eai
O l-TIo·'.- ..
( a) _ a!

-

4. We define:
1%1 r (resp. Ixl < r) <==* IXil ri (resp. IXil < ri), 1 i n.
We define similarly r' r, r' < r, a' a, and 0' < Q.

5. We set:
P(r)(z) = { y : III - xl r } =Polydisk of radius r about x.
Po(r)(x) = {ti : Itl - xl < r } = Strict polydisk of radius r about x.
per) =P(r)(O)
Po(r) = Po(r)(O).

Definition. Let / =E oaxa and let r be as above.

1. The series / is said to be convergent in per) if

(1)

2. The series / is said to be convergent in Po(r) if it is convergent in per')
for all r' < r.

Lemma. Let f =E aaXOt and let r be aJ above. Then:

1. 1/ / converge, in per), there u a con"tant M luch that for all 0

(2)

2. If there i" a con"tant M "uch that (!) hold" for all a, f converge" in Po (r)
and uniformly in per') for r' < r.

Proof·
1. Take M =E laolro which is finite by (1).
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2. Suppose r' < r. Then:

This shows that f converges uniformly in per'). In particular, I· converges in
Po(r).

Definition. Let f =E aoXo. The series / is said to be convergent if it is
convergent in Po(r) for some r > O.

Let f = EaoXo be convergent in Po(r). For any x E Po(r), the series
Eaoxo converges absolutely (and uniformly in any per') for r' < r); its sum
f(x) is a continuous function of x. We have the following lemma:

Lemma. i = 0 => / = o.

Proof.
n= 1:

Suppose f :F o. Then
f(X) = Xn(co + c1X + ... ) , Co 1: 0, m o.

The series E CiXi is convergent. The function this series defines is non-zero
at 0 and hence non-zero in a neighborhood U of 0 by continuity. Now x m

is non-zero in U - to} 80 that j does not vanish identically on U. In fact if
m > 0, the zero of f at 0 is isolated.

n> 1:
We assume the lemma for n - 1 and suppose i = o. Write

f = L Ci(X1 , ••• ,

Since f is convergent in Po(r), the Ci are convergent in the (n-I)-dimensional
polydisk poes) where s = (rl, · .. , rn -l).

By hypothesis, for y = (YI, ... , Yn-l) E Po(s), the function 9 defined by

g(Xn ) =L Ci(YI,. · · ,Yn-l
i

is identically zero. Hence, by the case n = 1, all Ci(Yl, ... ,Yn-I) are o. Since
this is true for all " E Po(s), all Ci are 0 by induction. Hence, f =o.
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By the above lemma, we may identify a convergent power series f with
its associated function j.

We shall now study analytic functions.

Definition. Let U C len be open and let tP :U --+ Ie be a function. Then tP is
said to be analytic in U if for each x E U there is a formal power series / and
a radius r > 0 such that:

1. Po(r)(x) c U.

2. / converges in Po(r) and, for h E Po(r), tj>(x+ h) = f(h).

Remark. H t/> is analytic in U and x E U, then the power series f of the above
definition is unique and is called the local ezpan"ion of t/> at x.

Theorem. Let / = E aoXo be convergent in Po(r) for r > o. Then / iJ an
analytic function in Po(r).

Proof. Let x E Po(r). Then we may choose r' such that Ixl r' < r. Set
s = r - r'. Next note that:

Hence:

f{x + h) = 2: ao (2: (;)Xa-PhP) ,
o 1J'5.0l

To show that rearrangement of the above sum is permissible, we shall show
that:

2: 2: \aa(a)Xa-PhP\< 00 I

Ol 1l-5:0l P
Indeed, let Ihl s' < s. Then:

h E Po(s).

We have used the fact that Ipl p when p is a positive integer to estimate
1(#)1. Thus: '

2: \aa(a)XOl-PhlJl L laa{a)r,o-lJs,1J = laol(r' +S')OI
1J-5:0l P 1l-5:0l (J

Hence an upper estimate for the sum (*) is:

L laol(r' + S')OI < 00 •

01
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This sum is finite since f converges in Po(r) and r' +.' < r.

What we have shown is the following lemma:

Lemma. Le' /.= E GQXOI be convergen' in Po(r) 4nti define

LlIIf =L 001 (a)XOI-1I ·
(l

Then:

1. Ll" f U contlergen' in Po(r).

2. For % E Po(r), the ,erie.. Ell LlfJf(z)h" converge.. in Po(r -Izl).

3.. For Z E Po(r) 4Rtl h E Po(r - Ixl):

f(z+h)= LLlllf(z)hll .
fJ

Subproo/: Indeed, 1 and 2 follow from (*) immediately. 3 also follows from (*)
since (*) implies that:

LaOl (L (Q)ZO-PhP) = L (Lao(Q)ZO-p) hfJ = LLlllf(z)hll .
01 fJ!:a P fl a!:fJ P "

This completes the proof of the lemma and clearly also the proof of the theo­
rem.

We now generalize the notion of analytic function to vector-valued func­
tions.

Definition. Let U C lem be open and let t/> =(tPl, ... ,t/Jn) : U --+ len. Then t/>
is said to be analytic if t/>i is analytic for 1 i n.

The lemma of the preceding theorem is a special case of the following
theorem:

Theorem. Suppo,e U L V and V Ware analytic where U C 1cm ,

V C kn , and W C kP are opeR. Then go f i.. analytic.

Proof. We must check that go f has a local power series expansion about each
point x E U. Now, the lemma of the preceding theorem shows that the class
of analytic functions defined on open subsets of some ieI' with values in some
k" is invariant under translation of domain or range. Hence, we may assume
that z =0, f(O) =0, g(O) =o. Further, it follows from the definition of vector
valued analytic functions that it suffices to consider the case p = 1.
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Let E,,>o b"Y" be a local expansion of g at 0 valid in Po(s) where
S = (St, ... ,Sn). Let I = (/t, ... ,/n) and let Eo>oGi,aXo be a local ex­
pansion of Ij. We may choose r = (rl, ... , rm ) so that:

Then, for h E Po(r):

"I I a SiLJ ai,a r <"2'
a>O

1 i n.

To complete the proof, we must show that the right hand side defines a power
series in h convergent in Po(r). Now, the right hand side does define a formal
power series in h since formally there are only finitely many terms which
contribute to coefficients of any ha . Indeed, terms where IPI > 101 make no
contribution (since all Gi,O = 0). Hence, it remains to check the convergence
of the formal power series we obtain. This follows since:

The proof of the theorem is therefore

RemtJrk. 1) The reader may consult Bourbaki, Alg., Chap. IV, §4, for a more
detailed discussion of the step on the existence of a formal power series.

2) There is a general method based on the theorem of Ostrowski which is
useful for proving theorems such as the preceding one. One simply observes
that it suffices to consider two cases:

1. k=Ror C.

2. k ultrametric.

Let us illustrate this method by giving an alternate proof of the above
theorem:

Oale 1: k=R or C.
a. k=C:

It is known that:

t/J is analytic <===> t/J is Cl and Dt/J is a complez linear map.

Since the composite of Ct maps is C1 , the composite of derivatives is the
derivative of the composite, and the composite of complex linear maps is
complex linear, the theorem follows in this case.
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b.k=R:
We may locally extend real analytic functions to complex analytic by

power series. Hence the theorem in the real case follows from the complex
case.

Ca,e I: Ie ultrametric.
We assume as in the original proof of the theorem that we are seeking a

power series expansion of 9 0'/ about z =0 and that 1(0) = 0 and g(O) =o.
We note that without loss of generality, we may replace g(Y) and f(X) by
g(X) and pf( respectively where p, 1/ :/: 0, E k. We shall choose now p and
1/ that the theorem is reduced to a trivial case.

Let 9 = (91, ... ,gp) and let gj = EII>o bj"yllbe a local expansion of gj
about o. Choose 8 so that each gj converges in P(s). We can find a constant
N so that for all j and all {J, Ibj,plsll $ N. We let JJ be an element of k such
that fpl > (1 +N». Then for all j and all (J:

lb. A_I_I < lb· Rlmin(s .)lfJl_1_ < lb· fJlsfJ _ 1 - < 1 .
J,IIplill J,t' j J 1+N - J, 1+N

Hence g(*) has coefficients in the ring Av of the valuation v of k and in
particular g{f) converges in Po{l).

By applyIng the above argument to IJf, we may find 1/ E k so that the
local expansions of the coordinate functions P.fi( of p,f( have coefficients
in Av •

We are therefore reduced to the case when the local expansions of the
coordinate functions of f and 9 have coefficients in Av • But then the formal
series of the composite has coefficients in Av and therefore converges in Po(I).

We now make explicit some facts about differentiation and Taylor series
implicit in our discussion of the theorem that a convergent power series defines
an analytic function.

Definition. Let 4> : U -+ V be a function, where U C km and V c len are
open, and let x E U. A linear function L : km -+ kn is called a derivative of </>

at x if:
I</>(x + h) - 4>(x) - Lhl = o(lhl) ,

or, equivalently, if:

Ihl--+ 0

lim 14>(% + h) - 4>(:£) - Lhl =0 .
Ihl-+O Ihl

Remark,. 1. If 4> has a derivative L at x, then L is unique and is denoted by
D4>(x).

2. H D4>(z) is applied to the vector (0, ... , 1, ... ,0) which has 1 in the i-th
place and 0 in all other places, the vector obtained in kn is denoted by Di4>(X)
and is called the i-th partial derivative of </> at x.
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To study the differentiability of analytic functions, it suffices first of all
to restrict oneseH to analytic functions with values in Ie and then to further
restrict oneself to functions given by convergent power series since differentia­
bility is a local property. We shall let 6i denote the vector with 1 in the i-th
place and 0 elsewhere.

Theorem. Let f = E aOlXOl be G power 3erie, convergent in Po(r) for r > o.
Then f u differentiable at each x E Po{r) and we have:

{

}
Df(x) = :

J1ln f(,;)

Hence, the derivative of an analytic Junction exist, and u analytic, 30 that b1l
induction an analytic junction i, infinitely differentiable.

Proof. The theorem follows immediately from the explicit calculations of the
lemma of page 70 which show that f(x +h) - /(x) - D/(x)h is a power series
which is convergent in Po(r) and whose terms of degree 0 and 1 vanish.

Remark,. Let DOl = · · · .

1. a!J1Ol = DOl.

2. The expansion j(x + h) = Ep i1Pj(x)h lJ is just the Taylor series in
characteristic o.

3. (Olt lJ)L1Ol+1J = L10lL11J.

We are now in a position to state:

Inverse Function Theorem. Let f : U ..... kn be analytic where U i, open
in kn and ,uppo,e 0 E U and 1(0) = o. Then, ifD /(0) : kn -+ kn U a linear
i,omorphism, / i, a local analytic i,omorphism.

Proof. The theorem is well known for k = R or C so we may assume by
Ostrowski's Theorem that k has an ultrametric absolute value. Let / =
(/1,. · · ,/n). By following / with D1(0)-1 if necessary, we may assume that:

fi(X) =Xi - ai,aXOl = Xi - tj>i(X)
01>1

Then, replacing f(X) by 1'/(*') where 11'1 is sufficiently large, we may also
assume that ai,Ol E Au for all i and Q where Au is the ring of the valuation
of k.

To invert !, we seek convergent power series W'i(T) so that Xi = W"i(T)
solves the equations:
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We shall80lve the problem in two steps:

1. We shall show that (*) has a unique formal solution Wi and we shall
describe the relation between the coefficients of and those of tPi.

2. We shall use two methods to show that the formal power series solution
we have obtained converges.

Set !Pi =E6>o hi,6TII and consider the equations:

l:5i:5n

We see immediately that bi,6j = 1 or 0 according as i = j or i :F j. More
generally, for arbitrary {J, we see that bi,1I is a linear combination with POlJi­
tive integral coefficients of monomials in the coefficients of Ii and </J of degree
,trictl, Ie" than p. Moreover, the positive integral coefficients in this expres­
sion are independent of the and the Hence, by induction, we see
that:

where:

1. is a with positive integral coefficients independent of the
{tPi}.

2. depends only on the OJ,a '8 for 101 < IPI.
The first method we give to prove convergence depends on the fact that

we have assumed Ie ultrametric. By construction, bi,1I E Au for all i and (J.
Hence the {Wi} converge in Po(l).

The second method which we give, Cauchy's method of majorants, works
in the cases It =R or C as well. Suppose that we can find real positive power
series {(i,i} such that if is the formal solution for the inversion problem
for {j,i} then:

1. =Ea>1 ai,aXa and !Pi = EII>o bi,IITII conv.erge for 1 i n.

2. For all i and 0, lai,al :5. ai,a.
We shall then show that:

3. For all i and (J, Ihi,1I1 :5 bi,lI.

It will then follow from 1 and 3 that Wi converges for 1 :5 i :5 n. To obtain 3
from 2, we simply note that since the have positive integer coefficients, we
have

= =5 P(laj,ol) =5 P(aj,a) = bi,1I ·

It therefore remains to construct functions q,i with the required properties.
For the case n = 1 and any positive integer m, a positive constant times

the following function j,m will satisfy the first part of 1 as well as 2:

=L(mX)i
i>l

(m > 0).
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We may by renormalizing the problem assume the positive constant is 1. Then
we may explicitly compute the inverse function .pm of ij,rn. Indeed, we must
solve the equation:

T=X _ (mX)2 .
I-mX

Its solution is given by:

lPm(T) = (1 +mT) - J(l +mT)2 - 4(m2+m)T i
2(m2 +m)

iJm(T) does indeed converge in a neighborhood of o.
To solve the case for general n, we take iiJi =Ej >l(Xl + ... +XnY. Then

the explicit solution for iiJi is:

- 1 "" - (ETj)Wi = - L.J(Ti - Tj) +!lin -n- ·
n .J..

J.,-I

Indeed:

Since the converge in a neighborhood of 0 the theorem is proved.

"Tournants dangereux"

1. Suppose k is ultrametric. Then the function tP which is 1 on Av and 0
outside Au is everywhere analytic. This follows from the fact that Au is
both open and closed.

2. If k has characteristic p > 0, then for an analytic function tP defined on
kn and for 101 (p -l)n + 1, one has Dot/> = o. In particular, the radius
of convergence of the derivative of a function may be strictly greater than
that of the function.

3. H is analytic on U C kn , x E U, and Po(r)(x) C U, then the local
expansion of tP at x does not necessarily converge on all of Po(r). In
general, this is only true for k =C.
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We denote by Ie a field complete with respect to a non-trivial absolute value.

1. Charts and atlases

Let X be a topological space.
A chart c on X is a triple c = (U,;, n) such that:

1. U C X is open

2. n E Z and n o.
3. t/> : U t/>U c len is open and tP is a homeomorphism.

Notation.
U = O(c) =Open set of c.
t/J =M(c) =Map of c.
n = dim, c =.Dimension of c.

Let c = (U,t/J,n) and c' = (U',;',n') be charts on X. Then c and c' are
said to be compatible if, setting V = U nu', the maps cP' 0 q,-llc;(v) and
cP 0 are analytic.

V !Tc;0C;,-1
4l "v

cP'(V) C k n '

H c and c' are compatible, then V 0 implies n = n'.
A family {Ci}iEI of charts on X is said to cover X if UiEI O(Ci) =x.
An aUa, A on X is a family of charts on X which covers X aIld such that

the charts in the family are mutally compatible.
Two atlases A and A' on X are said to be compatible if equivalently:

1. A U A' is an atlas.

2. H c E A and c' E A', then c and c' are compatible.

Remark. Compatibility of atlases is an equivalence relation. Indeed, the re­
flexive and symmetric properties of an equivalence are obvious. To check tran­
sitivity, let AI, A2 , and A3 be atlases and let CI E Al and C3 E A3 • We must
show that Cl and C3 are compatible. Let V = O(Cl) n O(C3). If V = 0, then
Ct and Ca are trivially compatible. Suppose V 0 and let cPl = M(Cl) and
tP3 = M(ca). It suffices, by symmetry, to check that 4>3 0 tP-1 is analytic on
tPl(V). We shall check that this map is analytic at cPl(X) for each x E V.
Choose C2 = (U, 4>, n) E A2 such that x E U. Then:
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<p 0 q,11:q,I(Un V) -+ </>(u n V) is analytic at <Pl(Z).
<P3 0 q,-I:t!J(Un V) -+ </>3(U n V) is analytic at 4>(z).

Hence <P3 0 t!J11= (</>3 0 0 (</> 0 </>11) is analytic at </>1 (:r;) as desired.

2. Definition of analytic manifolds

Let X be a topological space.
An anallltic manifold structure on X is an equivalence class of compatible

atlases on X.
An alternate definition may be given as follows. Say that an atlas A on X

is full if whenever c is a chart on X such that c is compatible with all charts
c' E A then c E A. Then it is clear that each equivalence class of atlases on X
contains exactly one full atlas. We may therefore define:

An analytic manifold structure on X is the choice of a full atlas on X.
Henceforth, in this chapter, X will denote a topological space with a fixed

analytic manifold structure. A(X) will denote its full atlas. A chart c on X
will mean a chart belonging to A(X).

If X is an analytic manifold, and x EX, dimz X is defined as the dimen­
sion of any chart c on X such that x E O(c); it is called the dimen,ion of X
at x. The function x t-+ dim% X is locally constant on X; if it is constant, and
equal to R, one says is everywhere of dimension n.

It is customary to introduce special terminology in the cases which are of
greatest interest:

When Ie =R, we say that X is a "real analytic" manifold.
When Ie =C, we say that X is a "complex analytic" manifold.
When Ie =Qp, p prime in Z, we say that X is a "p-adic analytic" manifold.

3. Topological properties of manifolds

Let x E Ie", n E Z and n 0, and let r E R, r > o. Then the ball, B(r)(x),
of radius r about x is the polydisk P(s)(x) where s = (r, ... , r).

Let B be a subset of X. Then B is said to be a ball if there is a chart
c = (U, 4>, n) such that B C U and iPB is a ball in k". Then:

1) Every point x E X has a neighborhood B which is a ball. In particular,
X is locally a complete metric space (hence a Baire space).

2) Suppose k locally compact. Then a ball in X is compact. In particular,
if X is Hausdorff, then X is locally compact.

3) Suppose X is regular and k is ultrametric. Then each x E X has a basis
of neighborhoods which are both open and closed.

The only property which is perhaps not immediately obvious is 3. To prove
3, let B be a ball containing x and let c = (U, </>, n) be a chart such that B C U
and q,B is a. ball in k". Now q,B is open in k" so that B is open in X. Hence,
since X is regular, there is a neighborhood V of x such that V C B and V is
closed in X. Then the inverse image under 4> of balls in </>V containing </>x is
a fundamental system of neighborhoods of x which are both open and closed.
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Remark. In Appendix 1 to this chapter, an example due to George Bergman
is given in which the conclusion of 3 fails when X is only Hausdorff.

4. Elementary examples of manifolds

1) X =discrete space (n =0).
2) X =V, where V is a finite dimensional vector space over le, dim, V = R.

Let A be the collection of charts c = n) on V where : V -+ len is a
linear isomorphism. Then the charts in A are compatible 80 that A is an atlas.
We give V the manifold structure determined by A.

3) Let X be a manifold and let U be open in X. Let A =A(X).

Au = { c e A : D(c) C U} .

Then Au defines a full atlas on U. The space U together with this atlas is
called an open submanifold of X.

4) Let X be a topological space and let X = UiEI Ui. Suppose:
a. Each Ui is open in X.
b. On each Ui, there is given a structure of analytic manifold.
c. For each i and j, the manifold structures on Ui nUj induced by the

manifold structures on Ui and Uj agree.
Then, on X there is a unique manifold structure such that its restriction to
each Ui is the given one.

5) The line with a "point doubled". Let k =R. Then we defme a manifold
X by identifying two copies of R at all points except o. We shall interpret this
space as a quotient space.

First consider the plane, R 2 , as being fibred by lines. Then the quotient
space obtained by collapsing the fibres is R. .

Now suppose we remove the origin from R2 and collapse the connected
components of the fibres. Then we get precisely the line with 0 "doubled".

Note that the manifold in this example is not Hausdorff.

5. MorphisDlS

Let X and Y be two analytic manifolds. A function f : X -+ Y is said to be
an analytic /unction or morphum if:

1. / is continuous.

2. / is "locally given by analytic functions" , that is, there exists atlases A
of X and B of Y such that if c = (U, 4>, m) e A and d= (V, t/J, n) E B, then,
setting W = un /-1V, the composite

"w C V ..L V ..!!.. t/JV
is analytic.
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Remarh. 1) We describe condition 2 by saying that / is "locally given by
analytic functions" since, in coordinates, composites of the form t/J 0 f 0

may be written as n-tuples of analytic functions of m variables.
2) Condition 2 is independent of the choice of atlases A and B, as is seen

by an argument similar to the one showing that compatibility of atlases is an
equivalence relation.

The following formal properties of morphisms are easily verified:
1) The composition of morphisms is a morphism.
2) The identity map on a manifold is a morphism.
3) Suppose f : X -+ Y and 9 : Y -+ X are maps such that 9 0 f = Ix and

fog =1y. Then f is an isomorphism if and only if f and 9 are morphisms.

Let us quote without proof a much deeper statement:

Theorem. A,.,ume k is algebraically clo,ed of characteri,tic zero, and let
f : X --+ Y be a morphism of analytic manifold,. If f i, an homeomorphi,m,
then f u an analytic uomorph,i,m.

Remarlc. The conclusion of the theorem is false for k = R, as the example
f: R -+ R given by f(x) = %3 shows.

6. Products and sums

1) Product..
Let {Xi}iEI be a finite collection of manifolds and let Ai be an atlas for

Xi, for each i e I. Suppose Ci E Ai, for each i E I, Ci = (Ui, nil. Define
niEfci by:

Set:
A = { II Ci : Ci E Ai, i e I} ·

iEI
Then X is a topological space and A is an atlas on X. The space X together
with the manifold structure determined by A is called the product of {Xi}iEI.
The usual universal property for products, namely, for all manifolds Y,

Mor(Y,IIXi) = IIMor(Y,Xi)
iEI iEf

is easily verified.

2) Sum" or dujoint union,.
Let {Xi}iEr be an arbitrary family of manifolds. Let LiEf Xi or lIiEI Xi

denote the disjoint union of the topological spaces Xi. Then, by Example 4
of 3.4, there is an unique manifold structure on X = LiEf Xi compatible
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with the manifold structure on each Xi and we furnish X with this manifold
structure. X is then called the ,um or dujoint union of {Xi}iEI. The usual
property for SUlDS, namely, for all manifolds Y,

Mor(II Xi,Yi) = 11MOr{Xi,Y)
iEI iel

is easily verified.
In Appendix 2 to this chapter, the structure of compact manifolds defined

over locally compact, ultrametric fields k is described in detail using the notion
of disjoint union of manifolds.

7. Germs of analytic functions

Let x E X and let Ez be the set of pairs (U, t/» where U is an open neighbor­
hood of x and tP is an analytic function on U. The set Ez is called the set of
localfunctiom at x. We introduce an equivalence relation on Ez as follows:

We say that two elements (U,4» and (V,tP) of Ez are equivalent if there
is an open neighborhood W of x such that W C un V and 4>lw = t/Jlw.The
set of equivalence classes ofE% is denoted H % and is called either the set of
germ, of analytic function, at x or the local ring at x.

We define addition and multiplication in Hz as follows. Let f and 9 be
germs of functions at x. Choose (U,4» E f and (V, t/J) E g. Let W = Un v.
Then f + 9 is defined to be the class of (IV, flw+ glw)while 1 · 9 is defined
to be the class of (W,.(/lw)· (glw». It is easily seen that these definitions are
independent of the choices made.

There is a canonical map k -+ E% which sends Q E k to (X,ca ) where
Co is the constant function Q on X. This map induces a canonical inclusion
I : k -+ H z which makes H z a k-algebra.

There is also a canonical map E% --+ k which sends (U, q,) E E% to 4>(x).
This map induces a canonical homomorphism 6 : H % -+ k of Hz onto k. For
f E H%, we let f( x) denote 6(f) and we call f( x) the value of f at x. The
kernel m% of (} is a maximal ideal.

Since IJ 0 I =Idi, there is a canonical decomposition H%= z(k) E9 m%. We
shall identify k with I(k) and suppress the mention of I.

We shall now show that H % is a local ring by means of the following
stronger statement:

Lemma. Let (U, 4>, n) be a chart at x. Then 4> induce" via compo,ition of
function" an uomorphi,m : H 0 --+ H % such that 4>(mo) =mz • Here H 0 U
the ring of germ, of function, at 0 in k n and mo i, it, maximal ideal. Hoi,
isomorphic to the local ring of convergent power series in n variable,.

Proof. All statements are clear except perhaps the statement that the ring of
convergent power series in n variables is local. To prove this, we must show
that if f is a convergent power series such that 1(0) ¥- 0 then f is invertible.



Chapter III. Analytic Manifolds 81

We may assume that / = 1+"p where "p(O) =o. Then, since the map g(x) =
is analytic near 1, '1 =go/ is analytic near o.

Suppose 1 e H z and / o. Then we define ordz / to be the least integer
IJ such that / ¢ The preceding lemma shows that for any chart (U, q" n)
ordz 1 is the least integer IJ such that 4)(/) has in its power series expansion
a non-vanishing homogeneous term of total degree IJ.

8. Tangent and cotangent spaces

Let x EX. Define:

T:X = = cotangent space of X at x.

TzX = = tangent space of X at x.

We give two alternate descriptions of TzX:

1) TzX is canonically isomorphic to the space of derivations v : Hz -+. k.
Let v E TzX. Then v defines a linear form on mz which vanishes on

Extend v to a linear form on H z = k ED mz by setting v = 0 on k. Then v is
a derivation on Hz. Indeed, v is k-linear. Hence it remains to check that for
/,9 E Hz:

v(fg) = (vf)g(x) + f(x)(vg) ·

Since both sides of the equation are bilinear, it suffices to check the equation
in three special cases:

1. 1,9 E k.

2. 1 E Ie and gEm, or f E mz and 9 E k.

3. 1,9 E mz •

Cases 1 and 3 follow since both sides of the equation are O. Case 2 is a conse­
quence of the linearity of v and the fact that v vanishes on k.

Conversely, given a derivation d of Hz, d vanishes on k and mi. Hence d
comes from a unique linear form in that is, from a unique tangent
vector v. This establishes the desired isomorphism.

2) TzX is canonically isomorphic to the space Qz of "tangency classes of
curves at x".

We first define Qz precisely. Let be the set of pairs (N, t/J) where N is
an open neighborhood of 0 in k and 1/J : N -+ X is such that t/J(O) = x. We
define an equivalence relation in as follows. Let (Nj,tPi) E i = 1,2.
Choose a chart (U, q" n) at x. Then, for i = 1, 2, q, 0 tP is defined in the
neighborhood Njnt/Jil(U)of o. We say that (NI ,1/JI) is equivalent to (N2, tP2)
if D(q,O"pl)(O) = D(q,O"p2)(O). We let Qz denote the set of equivalence classes
of elements of

Notice that the map which sends (N,t/J) E to D(q, 0 1/J)(O) induces a
bijection if> : Q% -+ L(k, k ft ) = k ft• Hence Qz may be given the structure of a
vector space over Ie.
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It is easily verified that the definition of Qz and the definition of the
vector space structure on Qz are independent of the choice of (U, 4>, n). In­
deed, suppose (U', tIJ',n) is a second chart at z. Then, for (N, t/J) E
D(tIJ' 0 "')(0) = D(tIJ' 0 tIJ-1)(0) 0 D(<; 0 "')(0). It is clear from this formula
that the equivalence defining Qz is independent of the choice of the chart.
From this formula, it also follows that = D(tIJ' 0 <;-1)(0) 0 iJ, 80 that the
vector space structure on Qz is well defined.

We now define a bilinear pairingQ z xT;X Ie by defining first a pairing
x Ez -+ Ie. The latter pairing sends (N,,,,) e and (V,/) e Ez to

D(I 0 "')(0) E k. This pairing clearly induces a pairing Qz x T;X k,
which is bilinear and establishes Qs as the dual ofT;X .

Bemarh. (1) Intuitively the pairing w is simply differentiation of a function
in the direction of the tangent to a curve.

(2) The process of defining a linear space structure on Qs would fail if we
wished to construct a space of higher derivatives to curves. The reason is that
the higher derivatives of the composite of two functions are not bilinear in the
derivatives of each of the functions.

Example. X is a finite dimensional vector space V. Then:

TsV = L(k,V) =V
T;V =L(V,k)=V· .

We shall now define the related concepts of differentials of a function and
tangent map to a morphism.

Let I e Hz. Then 1- f(x) Ems. The image of1-I(x) in =T;X
is called the differential of I at x and is denoted by dfs. Let v E TsX. Then
v applied to dis is called the derivative of I in the direction v and is denoted
by (v, dIs) or v· Is; we may think of dis as a linear form on TsX.

Let I be a function defined in a neighborhood of x. Then I defines an
element of H% and hence a linear form dlz on T%X.

Let Y be a second manifold, let y E Y, and let tP : X -.. Y be a morphism
such that tP(x) = y. Define T%c/J : TsX -+ T,Y by the formula:

(T%tP(v), dl,) = (v, d(1 0 tP)s) ,

for all v E TzX and all I E Hs. Equivalently, we can define T%4> by defining
its transpose T;4> : T;Y -+ T;X. For I e Hz, we define T:4>(df,)=d(f04»%.
The linear map T%tP is called the tangent map of tP.

In the special case when Y = k and tP is a function I, then Tsl = dl%.

We conclude this section by examining tangent spaces of products. Let X,
Y, and Z be manifolds and let x E X, Y E Y, and z E Z. Then:

Tz,,(X x Y) =T%X X T,Y
T;,,(X x Y) =T;X x T;Y .
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Let tP : X X Y --+ Z be a morphism such that tP(x,y) =z. Then TJ:"tP defines
Tf.,tP : TzX --+ T.Z and TJ"tP :T,Y -+ TzZ by the conditions:

Tz"tP(v,w) =T:',q,(v) +T;',q,(w) .

The maps TX tP and TY 4> are called the partial derivatives of tP along X and
Y respectively.

9. Inverse function theorem

Let % e X and let II, , 1m be analytic functions on a neighborhood U of x.
Let F(I/) = (/1(1/), , Im(Y» for !I e U. We say that defines a
coordinate system at x if there eXists an open neighborhood U' of x, contained
in U, such that (U',Flu"m)is a chart on X.

Theorem 1. The following are equivalent:

1. {Ii} definel a coordinate 11IItem at z.

2. d/iz form a balil ofT;x.

Theorem 1 is a consequence of the following more general theorem:

Theorem 2. Let X and Y be manifoldl, x E X and y E Y, and let 4> : X -+ Y
be a morphism luch that q,(x) = y. Then the followifl:9 are equil1alent:

1. tP is a local uomorphism at x.

2. TztP is an ilomorphum.

2'. T;t/J u an ilomorphism.

Proof. 1 => 2 and 2 => 2' are obvious.
2 => 1: This is a local question and the result has been proved in the local

case in Chapter 2.

Definition. A morphism 4> satisfying the equivalent conditions of Theorem 2
at x is said to be itale at x. If 4> is etale at x for all x EX, tP is said to be
itaIe.

10. Immersions, submersions, alld subimmersions

Let X and Y be manifolds, z E X and y E Y, and let tP : X -. Y be a
morphism such that t!J(x) = y. Let m = dimk z and n =dimk fl.

Definition. Let X and Y be manifolds, f E X and g e Y, and let 4> :
X -+ yo be a morphism such that 4>(i) = fi. Then (X, Y, x, y, t/J) lookl locally
like (X,Y,x,y,(i» if there exist open neighborhoods U of z, V of,y, (J of i,
V of jj and isomorphisms 9 : U --+ (j and h : V -+ V such that:
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1. t/>U c V and <60 C v.
2. g(x) = i and h(y)= y.
3. The following diagram is commutative:

Remark. We shall apply this definition mainly when X is a linear space E, Y
is a linear space F, and t{J is a linear map. In this case, we will take x = 0 and
y=0 without explicit mention.

1) Immersions

Theorem. The following are equivalent:

1. T;r;tP i, injective.

2. There ezi,t open neighborhood, U 0/ x, V 0/ y, and W % (in k,,-m)
and an i,omorphum 1/J : V -+ U x W such that:

a. tPU c V
b. If I denotes the inclusion U --+ U x {OJ C U x W, then the following

diagram i, commutative:

u...!-.v
I'\. !tJ1 ·
UxW

3. (X,Y,x,Y,4» looh locally like a linear injection (fJ : E -+ F where E
and Fare m and n dimen,ional vector spaces respectively.

4. There exist coordinates {Ii} at x and {gj} at y such that Ii = 9i 0 tP for
1 iSm and 0 = 9j 0 4> for m + 1 j S n.

5. There ezi,t open neighborhoods U of x and V of y, and a morphi,m
a : V -+ U such that tPU c V and u 0 4> = idu.

Proof The implications '2 => 3 => 4 ::} 5 => 1 are elementary.
We show 1 => 2. Since. the question is local, we may assume that the

following conditions are satisfied:
a. Y is an open subset of kn •

b. t/J(x)=0 and ImT;r;tP= km x {OJ C km x kn - m = kn .
Let W be to} x k,,-m C kn. Define 4>' : X x lV -+ Y by t/J'(x,w) = 4>(x)+w.
Then by the inverse function theorem, </>' is a local isomorphism at x. Hence,
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by shrinking X, Y and W, we may assume that is an isomorphism. The
inverse t/J of satisfies the conditions of 2.

Definition. A morphism t/J satisfying the equivalent conditions of the pre­
ceding theorem at z is called an immer.sion at z. A morphism t/J which is an
immersion at all z E X is called an immer.sion.

2) Submersions

Theorem. The following are equivalent:

1. Tzt/J i.s .surjective.

2. There ezi.st open neighborhood.s U of x, V of y and W of 0 in km - n )

and an i.somorphism tP :U --+ V x W .such that
a. </>U =V.
b. If p denote.s the projection V x W -. V, then the following diagram i.s

commutative:

3. (X, Y, x, y, 4» look.s locally like a linear surjection : E -+ F where E
and Fare m and n dimensional vector .spaces respectively.

4. There exist coordinates {Ii} at x and {gj} at y .such that Ii = gi 0 t/J for
1 i n.

5. There exi.st open neighborhoods U of x and V of 'Y and a morphum
q : V -+ U .such that </JU c V and tP 0 u = idv.

Proof. The proof is similar to the proof of the corresponding theorem on
immersions and is left as an exercise to the reader.

Definition. A morphism cP satisfying the equivalent conditions of the pre­
ceding theorem at x is called a .submersion at x. A morphism t/J which is a
submersion at all x E X is called a submersion.

3) Remarks. 1. Etale is equivalent to immersion and submersion.

2. The use of the word "immersion" is relatively common (Whitney,
Smale). "Submersion" is a Bourbaki innovation, reproduced in Lang's book.
Sometimes the phrase "4> has maximal rank" (meaning Tzt/J is injective if
m n and Tz 4> is surjective if m n) is used to include both concepts.

3. An embedding is a morphism cP such that:
&. t/J is an immersion.
b. X -+ 4>(X) is a homeomorphism.
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4) Subimmersions

Deftnition. tP is a .ubimmer,ion at z if the following equivalent conditions
are satisfied:

1. looks locally like a composition X Z -!.... Y where s is a submer­
sion and I is an immersion.

2. t/J looks locally like a linear map : E -+ F where E and F are vector
spaces of dimension m and n respectively.

A morphism tP which is a subimmersion at all z E X is called a ,ubim­
mer,ion.

Remara. 1. The set of points x E X where a morphism tP : X -+ Y is an
immersion (reap. a submersion, a subimmersion) is open in X.

2. The composition of two immersions (resp. submersions) is an immersion
(resp. a submersion). The analogous statement for subimmersions is false.

Theorem. A"ume char Ie = o. Then the following are equivalent:

1. q, it a ,ubimmer,ion at x.

2. rankTz'tP it COn.9tant for x' E U and U ,ome neighborhood of x.

Proof. 1 => 2: Clear.
2 => 1: Let p = dim, 1mTz 4>. Then, since the question is local, we may

assume that the following conditions are satisfied:
a. Y =VI X V2 is open in kP x kn - p •

b. tP(x) =0 and ImTztP = /cp x {OJ.
Let 1r : k' x kn-, --+ k' be the projection on the first factor. Then 1(' 0 4> is a
submersion. Hence we may further assume that:

c. X =VI X U2 is open in k' x km - p •

d. ".0 t/J : VI X U2 --+ VI is the projection on the first factor.
The morphism t/J then has the following form:

4>(X1 , X2) = (Xl, t/J(Xl, X2»

Finally since Tz'q, has locally constant rank we may assume that the rank of
TZ1tP is in fact constant on l'1 x U2 (rank = pl.

We contend that t/J must be independent of X2 in a neighborhood of zero.
Indeed, D2t!J(XI,X2) =0 since otherwise t/J would have rank greater than pat
(%1, X2). Our contention is therefore a consequence of the following lemma:

Lemma. Let / : U x V --+ k be a function Juch that D2 / i.s identically o.
Then, char k = 0 implie, that / i.s locally independent of the V coordinate.

Proof. Write / locally as a power series Efo(Y)xo . Then D 2f = 0 implies
D2 / 0l =0 for all Q. We must show fa = Co where Co is a constant. We have
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therefore reduced the theorem to the case f = fo. Write f =Ebllyll.Then
D/ = 0 implies Pibll = 0 where P= (Pt, ... , (Jr) and 1 i r. Hence, since
char Ie = 0, bll = 0 for P1: o. Hence f is constant.

We conclude the proofof the theorem by noting that may now be written
as VI xU2 -+ VI -+ VI XV2 where the first map is prt and the second is Idvl x1/J.
The first map is a submersion and the second is an immersion.

Corollary 1. A-9-9ume chark = o. The of poinu % E X where t/> it G

,ubimmer,ion u tleme in X.

Let X' be this set, and put f(z) = rankTs<p. By the previous theorem,
X' is the set of elements of X where f is locally constant. The fact that X' is
dense follows then immediately from the following two properties of f:

a) f takes integral values, and is locally bounded.
b) f is lower semi-continuous.

Corollary 2. A"ume char Ie =0 and 4J iJ injective. The ,et oj poin"" % e X
where t/J u an immer,ion iJ den,e in X.

This follows from Cor. 1 and the fact that injective subimmersion is an
immersion.

11. Construction of manifolds: inverse images

1) A uniqueness principle

Theorem. Let X be a topological let A and B be full on X,
and let XA (reJp. XB) denote the manifold whose underlying 'pace u X that
u determined by A (re.9p. B). Then the following are equivalent:

1. XA = XB, that i." A =B.

2. For all manifold, Y, Mor(XA' Y) =Mor(XB,Y).

3. For all manifold., Y, Mor(Y,XA ) =Mor(Y,XB).

Proof. The theorem is a special case of the theorem which states that an
object which represents a functor is determined up to a unique isomorphism.
Nevertheless, we give the proof in this case.

I => 2: Trivial.
2 1: Setting Y = XA, we see that Idx : XB -+ XA is a morphism.

Similarly,Idx : XA -+ XB is a morphism. A and B are therefore compatible
atlases and hence A = B since A and B are full.

The proof of 1 <==} 3 is equally simple.



88 Part II - Lie Groups

We now state two lemmas which we will use in the application of the
preceding theorem. We let X and Y be manifolds and / : X -+ Y be a
morphism.

Lemma 1. SUPPo$e I i., an immer3ion. Then:

9 e Mor(Z,X) <=? a. 9 u continuoUl

b. fog E Mor(Z,Y)

Lemma 2. Suppo&e fUll &ubmer,ion. Then:

1. f u an open map. In particular, /(X) i3 open in Y.

2. Suppo$e that f(X) =Y. Then

9 E Mor(Y,Z) <=? 9 0 f E Mor(X, Z) .

Lemmas 1 and 2 are an immediate consequence of the local description of
immersions and submersions which we have given in 111.10.

2) Inverse image constructions
Let X be a topological space, Y be a manifold, and / : X -+ Y be a

continuous map. .

Theorem 1. If there ezi"t, a manifold structure on X such that f II an
immer"ion then thu manifold structure i.s unique.

Proof. By Lemma 1 ofnol, for all Z, Mor(Z,X) is determined by the topolog­
ical structure of X and the manifold structure of Y. Hence, by the Theorem
of n0 1, the manifold structure on X is unique.

Let x e X. We say that (X, f) satisfies (1m) at x if the following condition
is satisfied:

(1m): There ezis" an open neighborhood U of x in X, a chart c = n)
oj Y, and a linear sub.,pace E of kn $uch that:

&. f(U) c V and / is a homeomorphism oj U onto f(U).
b. tJ>(f(U) =En 4>(V).

Theorem 2. The following are equivalent:

1. There ezi&t" a manifold structure on X .such that f an immer.sion.

2. The pair (X, f) satisfies (1m).

Proof. 1 =} 2: Part 3 of the Theorem of 111.10, nO 1.
2 => 1: Choose an open covering {Ui}iEI of X such that, for each i E I,

there exists & chart Ci = (Vi, 4>i, nil and a linear subspace Ei of kRi satisfying:
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&. f(Ui) C V and f is a homeomorphism of Ui onto f(Ui).
b. = Ei n t/>i(Vi).

Then there exists a manifold structure on Ui such that flui is an immersion.
Moreover, on Ui nUj, the manifold structures induced from Ui and Uj agree,
by Theorem 1. Hence, by 111.4, nO. 4, there is a manifold structure on X
compatible with the manifold structure on each Ui. Clearly, f is an immersion
with respect to this manifold structure.

Suppose that (X, f) satisfies (1m). Then Theorems 1 and 2 together show
that there is a unique manifold structure on X such that f is an immersion.
We call this structure on X the inver&e image &tructure on X relative to f or
simply the induced ,tructure on X. We write XI if we wish to make explicit
the dependence of this structure on f.

We now give several applications of the above results.

A) Submanifold,
Suppose X is a subspace of Y (with the induced topology) and let

I:X-+Y

be the inclusion map. If (X, z) satisfies (1m) we say that X is a ,ubmanifold
of Y; note that this implies that X is locally closed in Y.

Let x EX. One says that X is locally a submanifold of Y at x if the
following equivalent conditions are satisfied:

1. (X, I) satisfies (1m) at x.

2. There is an open neighborhood U of x in Y such that U n X is a
submanifold of U.

3. There exist a coordinate system Xl, ••• , X n at x and an integer p :5 n
such that X is given by Xl = ... = xp = 0 in a neighborhood of x.

B) Local homeomorphiMn&
When f is a local homeomorphism, (X, f) satisfies (1m). In this case, the

morphism f : X I -+ Y is etale.

C) Inver,e image, of point,
Let X and Y be manifolds, / : X --+ Y be a morphism, and bEY. Set

X" = f-l(b) and let a E X". We shall study X" c X in a neighborhood of Q.

Theorem. The ,et X" i, locally a of X at Q if anyone of the
following three condition3 i,

1. fUll ,ubimmer,ion in a neighborhood of Q.

2. There ezuu a ,ubmanifold W of X ,uch that:
1) WCX•.

2) T.W =Ker(T.X T"y).
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3. (Weil) There esUtt a manifold Z, a point c e Z, and a morphum
9 : Z --+ X ,ucA tAat:

1) For all %e Z, f 0 g(%) = b.
2) g(c) =a.
3) The ,equence TcZ !!!. T.X T.Y u eztlct.

Moreover, in each ca"e, T.(X.) = Ker(T.X T.Y).

Proof. 1. The proof is an immediate consequence of the definition of a subim­
mersion.

2. We shall prove the following stronger statement: There exists an open
neighborhood U of a in X such that U nX. =U nw.

The statement is local so we may assume that X is an open neighborhood
of a =0 in km and that X = W x V. Define F: X --+ W x Y by the formula:
F(w,v) = (w,j(w,v». Then F is an immersion at 0 so by shrinking X we
may also assume F injective. Then X. C F-l(W x {b})=W x to} = W.

3. We shall prove the following stronger statement: There exist open neigh­
borhoods W of c in Z and U of a in X, a decomposition W = WI X W2 , and
a morphism t/J : WI -+ eX such that:

a. tP is an isomorphism of WI into a submanifold tPWI of X.
b. The map 9 factors as:

c. U nx. =g(W).
In particular, this will show that 9 is a subimmersion at c.

The statement is local so we may assume that Z is an open neighborhood
of c =0 in k' and that Z =WI X W3 where TWI (g) is an isomorphism at 0 and
TWa(g) is zero at o. Let t/> = glwl • Then q, is an isomorphism at 0 so we may
assume by shrinking WI that t/J is an isomorphism of WI onto a submanifold
of X. Then, by 1) and 3), tPW1 satisfies the hypotheses of part 2. Hence there
is an open neighborhood U of a in X such that U nX. =U n tP(W1 ).

There is an open neighborhood W of 0 in WI x W3 such that g(W) C
U n X •. Then, 9 : W -+ </>WI and this map is a submersion at o. Hence by
shrinking W and WI, we may find a product decomposition W =WI X W2

such that conditions a) and b) are both satisfied. Finally we can shrink U so
that c) is also true. q.e.d.

D) Tramver'tll,ubmanifold,
Let X be a manifold, Yi and Y2 be submanifolds of X, and x E Yi n Y2 •

Theorem. The following tire equivalent:

1. TzX = TsY1 +TzY2.
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2. There u a chart c =(U, t/J,n) at z luch that:

t/JU = Vi X V2 X W
t/J(U nY1 ) =VI x to} X W
q.(U nY2) = to} x V2 X W .

3. There ezutl a coordinate It/Item Xl, ••• , X n at X and integerl p, q 0
with p + q n .such that:

Yl i.t given b1l Xl =··· = xp = 0 in a neighborhood of x,

1'2 u given 611 %1'+1 =... =xp+f =0 in a neighborhood of x.

Proof. 2 <=> 3 and 2 => 1: Obvious.
1 => 3: Since Y1 and Y2 are submanifolds of X, we can (after suitably

shrinking X) find submersions

/1 :X -+ lep.,

such that Yi = li1(0), i = 1,2. Let (Xl, ... , xp ) and (Xp+l' . .. , xp+,) be the
components of II and 12. Assumption 1 implies that the map

(/1,/2) : X -+ kP X kf

is a submersion at x. This means that (XI, ... , x p+,) is a part of a coordinate
system (XI, ... ,XA) at x. Hence 1 => 3.

H Yi and 1'2 satisfy the equivalent conditions of the preceding theorem at
x, we say that Yi and Y2 are trafUver,al at x.

Corollary. Suppole Yl and Y2 are tran,ver$al at x. Then:

1. Yi and Y2 are tran,verlal in a neighborhood of z.

2. YI nY2 is locally a 8ubmanifold ofX at x.

3. TJ:(Yi n Y2) =TJ:YI n TJ:Y2.

E) Tran.9ver,a' morphism,
Consider a pair of morphisms Ii : }Ii --+ X, i =1,2. Define

Y1 Xx 12 = {(YI,Y2) E Yi x Y2 : 11(Yl) = f2(Y2)} ·

This is called the fibre product of YI and Y2 over X. Let Pi : Y1 x X Y2 -+ Yi
be the restriction of prl to Yl Xx Y2 , and let / = /1 0 PI = 12 0 P2.

Yi Xx Y2 .!!. Y2
Pil '\,/ l/2
Yi --+X

/1
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Let (1/1,!l2) E Yl X X Y2 and let :e = I(Yl, Y2). We say that II and 12 are
trG1UlIer'GI· at tI = (J/I, tl2) if TzX =1mT'l /1 + 1mT'2 /2.

Theorem. Suppo,e /1 and 12 are tranlller,al Gt y. Then:

1. II Gnd 12 are tran'l1er,al Gt point, in a neighborhood of y in Yi x X YI •

2. Yi Xx 1'2 u locally a ,ubmanifold of Yi X 1'2 at y.

3. T,(Y1 Xx Y2) = T'l(YI ) XT.(X) T'2(Y2).

Sketch of proof. Set Y =YI X Y2 and Z = YI Xx Y2 • Let 6i : Y -+ Y x X be
(1,/i opri)' i = 1,2, and let 6 =6ilz. Then deduce the theorem from:

a. 61 and 62 are isomorphisms of Y onto submanifolds of Y x X.
b. 61(Y) and 62(Y) are transversal at 6(y).
c. 6(Z) = 61(Y) n62(Y).

The details are left to the reader.

Remark. If one of the maps Ii is a submersion, then /1 and /2 are everywhere
transversal.

F) Mixed tran,ver,ality
If, in the situation of E), /1 is an inclusion of a submanifold YI into X, we

also say that /2 is tran,ver,al over Y1 at y if /1 and /2 are transversal at y.

12. Construction of manifolds: quotients

Let X be a manifold and ReX x X be an equivalence relation. Let XIR be
the set of equivalence classes of elements of X under R let p : X -+ X IR be
the projection. Give XIR the usual quotient topology, namely, let fj c XIR
be open if and only if p-I(U) C X is open.

Theorem 1. If there exists a manifold structure on XIR such that p i, a
,ubmer,ion then thi, manifold structure unique.

Proof. By Lemma 2 of 111.11, for all Z, Mor(X/R,Z) is determined by the
manifold structure of X. Hence, by the Theorem of 111.11 the manifold strllc­
ture on X IRis unique.

When a manifold structure can be defined on X /R such that p is a sub­
mersion, then we give XIR this uniquely determined structure and say that
XIR is a quotient manifold of X, or simply a manifold; the relation R is called
a regular equivalence relation on X.

Theorem 2 (Godement). The following are equivalent:

1. XIR u a manifold, that i." R i., regular.

2. 1) R i, a ,ubmanifold of X x x.
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2) pr2 : R --+ X u a ,ubmer,ion.

Proof. 1 2:
X

PIt! !,
X --+ X/R,

The set R is equal to X Xx/R X. Since p is a submersion, R is a submanifold
of X x X, cf. 111.11, nO 2, E). Moreover, if (x,y) E R and z = p(x) = P(J1),
one has:

Tz(R) =Ts(X) XT.(X/R) T,(X) ·

This formula implies that Tz(R) --+ T,(X) is surjective, hence the restriction
of pr2 to R is a submersion.

2 :} 1: We shall give a sequence of six lemmas which together yield 2 1.

Suppose U is a subset of X. Set Ru = R n (U x U). Also, recall that U is
said to be saturated with respect to R if U =p-lp(U).

Lemma 1. A"ume X = UiEI Ui where, for i E I, Ui U an open ,aturated
,ub,et of X ,ue}" that Ui/Ru, i, a manifold. Then XIR i, tJ manifold.

Proof. By hypothesis, for i E I, Ui -t UilRUi is a submersion. Hence, for
i, j E I, the manifold structures induced on (Ui n Uj)/R(UinUj) by Ui/Ru,
and Uj IRUj agree (Theorem 1). Hence there is a unique manifold structure on
X IR compatible with the given structure on UilRu,. Finally, p is a submersion
since plUi is a submersion for all i.

Lemma 2. The map p i, open, that i" U open in X => p-lp(U) open in X.

Proof. We have that p-lp(U) = pr2(U x X n R) which is open if U is open
because pr2 is a submersion (111.11, Lemma 2).

Lem'ma 3. Let U be open in X and ,uppose that p-lp(U) = X and that
UIRu i, a manifold. Then XIR i, a manifold.

Proof. The canonical map a : UIRu --+ XIR is bijective. Hence, if we show
that {J = Q -1P : X --+ UIRu is a submersion, we will obtain by transporting
the structure of U/Ru to XIR that XIR has a manifold structure such that
p is a submersion. Consider the following commutative diagram:

UxXnR

pIt ./ '\. p r 2

U X

"Iu '\. ./"
UIRu
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Then (Plu)o(prl) =po(pr2) is a submersion. Hence, since pr2 is a submersion,
P is a morphism and in fact a submersion (111.11, 2).

Combining Lemmas 1, 2, and 3, we obtain immediately:

Lemma 4. A"ume X = UiEI Ui where, for i E 1, Ui U an open ,ub,et ofX
.uch that Ui/Ru, u a manifold. Then X / R i" a manifold.

The effect of Lemma 4 is to make the construction of a manifold structure
on X/R such that p is a submersion into a local problem. In Lemmas 5 and
6, we show that the local problem is solvable, that is, for Xo eX, there is a
neighborhood U of %0 in X such that U/Ru has a manifold structure such
that U -+ U/Ru is a submersion.

Lemma 5. Let Xo e X. Then there ezut" an open neighborhood U of Xo, a
manifold W ofU, and tJ morphum r : U -+'W ,uch that if u e U then r(u)
u the unique point of W equivalent to u mod R.

Proof. Let N be the set of tangent vectors eE Tzo(X) such that (e,O) E
Tzo,zo(R). Choose a submanifoldW' of X such that Xo e W' and K = TzoW'
is a complementary subspace to N in TzoX. Then define E = (W' x X) n R.

We contend that:

1. E is a submanifold of R.

2. pr2 : E ..... X is etale at (xo,xo).

The first assertion follows since E = yp-l(lV' ) where t/J denotes the sub­
mersion prl : R -+ X. Note that we have used the results of 111.11, E) and
applied the hypothesis that pr2 is a submersion together with the fact that R
is an equivalence relation which shows that prl is also a submersion.

Next, Ker(T(pr2» at (xo,xo) is N n K = o. Hence T(pr2) is injec­
tive. On the other hand, let '1 E TzoX and choose eE T%oX such that
<e,'1) E T%o %oR. Write e= el + e2 where el e N and e2 e K. Then, it
is also true that (e2, ,,) E T%o,zoR since N C Tzo,zoR. But (e2, '1) then belongs
to W' X TJ:oX n = TzO,%oE and this element also maps onto TI.
Hence T(pr2) is surjective.

It follows that there exists a pair of open neighborhoods U1 and U2 of
%0 such that pr2 : En (U1 x U1 ) --. U2 is an isomorphism. Let f denote the
inverse. Then f must have the form: f(x) = (r(x),x). Notice that U2 c U1
and that if x e U2 nW' then r(x) = x. The last statement follows from the
fact that (x,x) and (r(x),x) are two points in En (UI x U1 ) with the same
image in U2 and hence are equal.

Finally, set U = {x : z e U2 and r(z) e U2 nW' } and set W =UnW'.
We contend that U, W and r are as required in the statement of the lemma.
We must show that: '



Chapter III. Analytic Manifolds 95

1. r(U) C W.

2. r(%) is the only element of W equivalent to %, for z E U.

To prove 1, we must show that, for % e U, r(%) e U, that is, that r(z) E U2

which is obvious and that r(r(%» E U2 nW'. The last statement follows since
r(r(z» = r(z) E U2 nW'. To prove 2, we simply note that there is exactly
one point in R n (W x U) mapping by pr2 onto z, namely, (r(z),z).

This completes the proof of the lemma.

Lemma 6. If (U, W, r) &ati,fy the condition,., de,cribed in Lemma 5, then
U/Ru U II manifold.

Proof. The morphism r : U -+ W has a right inverse (the inclusion of W into
U); hence it is a submersion. In the commutative diagram:

U ...!:... W

'\, /01
UIRu

the map Q is a bijection. Transporting the manifold structure ofW to UIRu,
we have the lemma. q.e.d.

Remark. If R is regular, XIR is Hausdorff if and only if R is closed in X x X
(this follows from Lemma 2 above).

Exercises

1. Let G be a finite group of automorphisms of a manifold X, and let XG
be the set of fixed points of G. Assume the order of G is prime to the
characteristic of k. Show:

a) If x E XG, there is a system of local coordinates at x with respect
to which G acts linearly.

b) XG is a submanifold of X, and, if x E XG, T:e(XG) is equal to
Tz(X)G.

2. Assume k is a perfect field of characteristic p :F O. Let X be a manifold over
k. Show that there exists on the topological space X a unique structure
of manifold (denoted by X') with the following property:

If Y is any manifold, Mor(XP, 1') is equal to the set of morphisms
f : X -+ Y such that Tz(f) = 0 for all x E X.

A map f : X -. k is an XP-morphism if and only if its p-th root is an
X -morphism.

Show the existence of X p-
t
such that (Xp-

1
)P =X, and define induc­

tively XI for q = p", with n E Z. Show that Mor(X',Yf) =Mor(X,Y).
One has Xf =X if and only if q =1 or X is discrete (i.e., of dimension 0).
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3. Assume Ie is locally compact ultrametric; let A" be its valuation ring,
m. = 'fA" the maximal ideal of A." k(v) A.,/m., and q = Cardk(v).
Let B = (A.,)N be the unit ball of some dimension N, and put Bn =
(A., / 1rn A., )N, 80 that B = lim Bn • Let X be a non-empty submanifold of
B; assume X is everywhere of dimension d. Let X n be the image of X in
Bn , and en =Card(Xn ). Show:

a) There exist no 0 and A > 0 such that:

Cn = A. qnd for n no.

b) Let a E Z/(q - I)Z be the invariant of X defined in Appendix 2
(assuming now that d 1); one has A == a mod (q -1).

4. Let X be a manifold, Xi be submanifolds of X, and z e nXi. Assume
that the Tz(Xi) are linearly independent in Tz(X) (i.e., the sum of the
Tz(Xi) is a direct sum). Show that there exists a chart C = (U,q"n) on
X, with x e U, such that cP(UIXi) is the intersection of cP(U) with a linear
subvariety of kn •

5. Let Ii (i =1,2): Xi -+ X be transversal morphisms, and let

be the projection morphisms. Show that, if /1 is a submersion (resp. an
immersion, a subimmersion), the same is true for 1'2.

6. Let I : X -+ Y be a morphism. Assume f is open and the characteristic
of k is zero. Show that the set of points of X where f is a submersion is
dense in X.

Appendix 1. A non-regular Hausdorff Dlanifold

An example of a Hausdorff manifold over an ultrametric field k which has a
point which does not have a fundamental system of open and closed neigh­
borhoods. The example is due to George Bergman.

Let k be a complete ultrametric field and let A be its valuation ring.
Suppose there exists x E A such that x 0 and A/xA is infinite. Then we
contend that A is analytically isomorphic to A - to}. To show this, we shall
show that A and A - to} may both be represented as the disjoint union of the
same cardinal number of copies of A. First note that if JJ is a positive integer
then the cosets of xII-A are isomorphic to A. Then note that A is the disjoint
union of the cosets of xA while A - to} is the disjoint union of the following
collection of cosets of x"A where I' ranges over the positive integers:

1. The cosets of zA excepting xA itself.

2. The cosets of x2A in xA excepting x2A itself.

1'. The cosets of xl'A in xll--1A excepting x"A itself.
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Since A/xA is infinite, it is clear that both sets of cosets which we have
described have the same cardinality.

We may view the above construction as smoothly attaching a point P to
the ball A: A C AU {P} A, and P is the point 0 in the latter copy of A.
This attaching process has three important properties:

1. AU {P} is a Hausdorff analytic manifold.

2. P is in the closure of A.

3. P is not in the closure of any coset of the maximal ideal m of A.

This last property is a consequence of the fact that 0 is "far away" from any
of the cosets we have used to describe A - {OJ as a disjoint union of copies
of A.

We are now going to do this attaching process a countable number of
times. Attach in the above manner a point Po to A. Since xA A, attach a
point PI in the above manner to xA. Property 3 says that the point PI is "far
away" from Po so that we again have a Hausdorff manifold. Suppose now that
we have attached points Po, ... , PI' to A, ... , x"A. Then attach a point P,,+l
to x,,+1A. Now pass to the limit. We give the limit the topology such that
each of the subsets X, Po, ... , PI' is open and has its own original topology.

Since the points we have attached are "far away" from each other, it is
clear that the manifold X we obtain in the limit is Hausdorff. However the
point 0 e A does not have a fundamental system of neighborhoods which
are open and closed. Indeed the powers {x"A} are a fundamental system of
neighborhoods of o. If we had a fundamental system of neighborhoods of 0
which was open and closed we could find one such neighborhood U contained
in A. Then find x"A cU. The closure of xl'A contains P" ;. A. Contradiction.

Remark. The reader should verify that there exists x e A such that x#:O and
A/xA is infinite if and only if one of the following two conditions satisfied:

1. The residue field of k is infinite.

2. The valuation of k takes on a non-discrete set of values.

The only ultrametric fields not satisfying one of these conditions are the finite
extensions of the p-adic fields Q, and the fields F«X)) where F is a finite
field.

Appendix 2. Structure of p-adic manifolds

We shall use the notion of disjoint union to study manifolds in the case when
k is locally compact and ultrametric. We let nEZ, n 0, and we assume
that X is everywhere of dimension n. We also assume that X is Hausdorff,
and non-empty.

Lemma 1. Let r e R, r > 0, and let x E kn • Then B(r)(x) j.9 compact and
open. Hence every ball in X i, compact and open.
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Proof.
1. Compactness:

Since Ie is locally compact, there is a positive real number e such that any
ball of radius s < er about z in len is contained in a compact neighborhood
of z. Since these balls are closed in len, they are compact. Since the absolute
value on Ie is non-trivial, we may choose Q :/: 0, E k, such that lal < E. Then
the transformation /('1/) =x+o('I/-z) is a topological isomorphism ofB(r)(z)
onto B(lolr)(x). Hence B(r)(x) is compact.

2. Openness:
We contend that if II E B(r)(x) then B(r)(II) = B(r)(x) so that B(r)(z)

is a neighborhood of '1/. Since x E B(r)(y), it suffices by symmetry to show
B(r)(fI) C B(r)(x). Let Z E B(r)(y). Then:

Iz - xl max(lz - yl, Iy - xl) r ·
Thus, z e B(r)(x) as desired. Note that we have used here the fact that Ie is
ultrametric.

Remark. An analogous argument shows that, if Bi are balls of radius ri,
i = 1,2, and rl :s r2, then B1 is contained in B2 or is disjoint from B2•

Lemma 2. Let U be A closed And open set of a ball B in k n . Then there is
a po,itive rAtliUl r ,mAiler than the radius of B such that U is the disjoint
union 0/ a finite number of balu oj radiUl r.

Proof. Let V = B - U. Then {U, V} is an open covering of the compact metric
space B. Hence there is a radius r less than the radius of B such that, for all
z e B, the ball of radius r about z in B is contained in either U or V. By the
preceding remark, we see that a ball of radius r in B is a ball of radius r in
Ie". Hence U is the union of balls of radius r in kn • The union is disjoint by
the preceding remark and therefore finite since U is compact.

Remark. From the lemma, we see that if B is a ball in X and U is an open
and closed set in B, then U is the disjoint union of a finite number of balls
inX.

Theorem 1. The following are equivalent:

1. X u paracompact (Bourbaki, TG. I. 69).

2. X u the tli,joint union 0/ balLs.

Proof. 2 1: A disjoint union of compact spaces is paracompact.
1 => 2: We shall first show that X has a locally finite covering by balls.

We know that X has a covering {U L by balls. Choose a locally finite
open refinement {V"},,eM of this covering. Then choose a locally finite closed
refinement {W" }"EN of this covering. Let 4J : M -+ L and t/J : N -+ be
such that V" c U.<,,) and W" C V.<II). Let II E N. Then:
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WI' C V"<II) C U••<,,) .
Since W., is closed and U••(,,) is compact, W" is compact. Then, since
is open, we may cover W" by a finite number of balls B",., i e 1", such that
B",i C V.<.,) for all i. Then the covering {B",i}"EN,iEI. consists of balls and
is locally finite since any ball B",imeets at most finitely many VI' and hence
only finitely many B"',i'.

We will now simplify notation and let {Ui}iEI denote the locally finite
covering of X by balls which we have obtained above. Then each Ui is open
and compact and meets only finitely many Uj. Let F(I) denote the finite
subsets of 1. Then, if J e F(I), define:

UJ =nUi n(X - UUj).
iEJ jfJ

The set (X - UjeJ Uj) is open and compact. Indeed, if J =0, this is obvious,
while if i e J, then this set is the finite intersection of open and compact sets,
namely, njfJ(Ui - Uj), where the j's may be restricted to the finite set of
indices for which Uj n Ui =F 0. It follows that when Uj is non-empty then Uj
is an open, compact subset of a ball, hence a finite unions of balls. However,
by definition, the UJ, J E F(1) are disjoint. Thus we have the theorem using
the covering {UJ } JEF(I).

Theorem 2. Let q be the number of elemenu oj the re.sitlue field ojk. Suppo,e
X itS compact, non-empty, and everywhere of the ,ame dimension d 1. Then:

1. X u the di,joint union of a finite number of baill.

2. The number of halll in II decompo,ition ofX into fJ tlitSjoint union of fJ
finite number oj balll i, well determined mod (q - 1).

(Hence, such an X is determined, up to an isomorphism, by an element
of Z/(q - l)Z.)

Sketch 01 proot 1. Follows immediately from Theorem 1 and the compactness
ofX.

2. We shall state a sequence of reduction steps and then shall prove the
statement that the theorem is finally reduced to. Each of the reduction steps is
based on the fact that one may divide a ball into qi balls, where i is a positive
integer, without disturbing congruences mod (q - 1).

Suppose X is given with two decompositions {Ui}iEI and {l'j}jEJ where
1 and J are finite and {U.} and {l'j} are made up of disjoint balls. Then we
want to show that Card(I) == Card(J) mod (q - 1).

Step 1: Reduce to the case when {Ui}iEI is a refinement of {l'j}jEJ.

Step !: Reduce to the case when X = l'j and J = {j}. Then we have the
following explicit situation:
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&. X is a ball in IeR •

b. U. is a ball in len for i E I.
c. There exist analytic isomorphisms t/>i' i E I, of Ui into X such that X

is the disjoint union of {tPiUi}.

Step S: Reduce to the case when each;i is given by a convergent power series.

Step 4: Reduce to the case tPi =Li O"pi where Li is a linear isomorphism and
t/Ji is an isomorphism of a ball onto a ball. We can then assume that "pi = Li.

Step 5: We contend that it suffices to prove that there are radii ri such that,
for any radii Si ri, LiUi is the disjoint union of radius 8i and such that the
number of such balls is a power of q. For, if this is so, we take r = miner;).
Then X is decomposed in qm balls of radius r while each LiUi is decomposed
into qm i balls of radius r. Then:

1 == qm =L qm i == L 1 mod (q - 1) .
iel iEl

This is precisely what has to be proved in this special case.
We are therefore reduced to showing that if U is a ball and L is a linear

isomorphism then there is a radius r such that:

1. If 0 < S r, then LU is the disjoint union of balls of radius s.

2. The number of such balls is a power of q.

By translation and multiplication by scalars, we may assume U = A., and
L E MR(A.,), where A., is the valuation ring of k. We let m" denote the
maximal ideal of A" and we note that number of cosets of m:, where JJ is a
positive integer, is equal to the number of elements in A,,/me which is exactly
qP, where q is the number of elements in A,,/m.,.

The existence of a radius r satisfying 1 is guaranteed by Lemma 2. We
contend that this radius also satisfies 2. Indeed let 0 < 8 r and let h be
the number of balls of radius s in U. Now, A: is the disjoint union of a finite
number hi of translates of U, so that hh' is the number of balls of radius s in
A:. Let IJ be the positive integer such that the ideal m= is precisely the ball
of radius 8 in A". Then is the ball of radius s in A: about o. Hence
there are (qP)R balls of radius s in A:. However, h' is also a power of q. This
follows since hi = Card(A:/U) and since A:/U is a torsion module over A.,
and hence & direct sum of modules of the form A.,/me i each of which has
cardinality equal to a power of q. Thus, finally, h is a power of q. q.e.d.

Remark. For a different proof of Theorem 2 (using integration of differential
forms) see "Topology", vol. 3 (1965)-, 409-412.
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Appendix 3. The transfinite p-adic line

A propos of Theorem 1, there exist non-paracompact Hausdorffmanifolds over
any locally compact ultrametric field k. We give here an example of such a
manifold which is due to George Bergman.

We shall construct a directed system {X.,} of spaces indexed by the ele­
ments of the first uncountable ordinal and our example of a non-paracompact
manifold will be given by X = X.,.

The manifolds X., will all be taken to be copies of the valuation ring A of
k. We shall define the maps X6 -+ X., for 6 < 1 by induction on "'I.

1) "y = o.
The condition 6 < , is vacuous in this case.

2) 1 = l' + 1, for some ordinal,'.
Let 1r be a fixed generator of the maximal ideal m of X. Let X-,I -+ X-,

be multiplication by 1r.

For arbitrary 6 < "'I, let X6 -+ X be the composite X6 -+ X-,I -+ X-,.

3) 1 is an initial ordinal.
Let Y., = lim6<"Y X6. Then Y-, is the union of the countable family of open,

compact subspaces X6 (6 < 1) and is therefore paracompact. By Theorem 1,
it is the disjoint union of balls. The number of such balls must be countable in
number since a disjoint union is locally finite and only finitely many elements
of any locally finite covering can meet any given X6. Since A - {O} is also the
union of a countable number of balls, we may choose an analytic isomorphism

: Y"Y -+ A - to}. Then, for 6 < 1, the map X6 -+ X-, is defined to be the

composite: X6 ---+ Y., A - {O} C A = X.,. The inductive definition of the
maps X 6 -+ X -, for 6 < 1 is now complete.

The space X so constructed has the following two properties:
(1) Any denumerable family (Kn ) of compact subsets of X is contained

in a compact set.
(2) X is not compact.

Proof of(l). Since K n =U(Kn nX.,), and X., is open, there exists a 'Yn with
K n C X..,,,; choosing'Y such that 'Yn 1 for all n, we have Kn C X-" and X-,
is compact.

Proof of (I). Follows from X-, =F X for all "'I.

We leave to the reader the verification of the fact that a locally compact
space X with properties (1) and (2) is not paracompact.
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We denote by k a field complete with respect to a non-trivial absolute value.

1. Definition of analytic groups

Let G be a topological group and an analytic manifold over Ie. Then G is said
to be an analytic group or a Lie group over Ie if the following conditions are
satisfied:

1. The map (x,'II) t-+ X'll of G x G into G is a morphism.

2. The map % t-+ %-1 of G into G is a morphism.

Remora. 1) Suppose G is an analytic group. Then:
&. G is Hausdorff.
b. G is metrizable.
c. G is complete for the left or right uniform structures.
Indeed, a) follows since a topological group is Hausdorff if and only if the

intersection of the neighborhoods of the identity equals tel. See Bourbaki,
TG., 111.5. The second condition is satisfied in this case since G is locally
isomorphic to an open subset of kR for some integer n.

Statement b) is a consequence of the fact that G is Hausdorff' and that e
has & denumerable fundamental system of neighborhoods. See Bourbaki, TG.,
IX.23.

To show statement c), it suffices to consider only the right uniform struc­
ture. Furthermore, it suffices to show that there is a neighborhoodV of e which
is complete in the induced uniform structure. See Bourbaki, TG., 111.22. We
construct such a neighborhood V of e as follows. Let (U, tfJ,n) be a chart at e
such that 4>(e) = 0 and let ltl be a neighborhood of e such that VI · VI CU.
Then the law of composition on Vi is induced via tP from an analytic map
F : x 4>VI -+ 4>U. For jj E </>VI , F(y,O) - F(O, 0) = Y - 0 = y. Then,
since F is analytic, there is a closed neighborhood V of e in 1t1 such that for
(y,x) E t/JV x t/JV we have

!Iyl IF(y, f) - F(O,x)1 21jl ·
We shall show that V is complete by showing that the uniform structure on
V agrees with the uniform structure induced via t/J from the uniform structure
on </>V given by the additive structure of kR

• Now, a fundamental system of
entourages of the uniform structure ofV given by sets of the form Vw C V x V
where:

1. W is a neighborhood of e in V and t/JW is a ball of radius e about 0.

2. Vw = {(w · x, z) : z E V, w E W, w· x E V }.

On theotherhand,lefN6 = {(y,f) E </>Vx<pV: Iy-il 6} where 6 > o. The
sets N6 form a fundamental system of entourages for the uniform structure
on </>V induced from the additive structure of kR

• Now, with W as above:
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Hence the two uniform structures on V agree. Since the uniform structure
induced by the additive structure of k" is complete because V is closed, state­
ment c) is proved.

Notice. We have shown that the left or right uniform structures locally agree
with the uniform structures induced by charts.

2) Concerning the axioms of analytic groups:
a. Axiom 1 implies that for fixed x E G the map y 1--0+ XJl is an isomor­

phism (for the manifold structure of G).
b. Axiom 1 implies Axiom 2.
c. Axiom 2 implies that the map x t-+ x-I is an isomorphism.
Indeed, let tP : G x G -+ G denote the map (x,y) t-+ xy, let tPz : G -+ G

denote the map defined by tPz(Y) = 4>(x, JI), and let t/J : G -+ G denote the
map x ...... x-I. Let TIt; and T2q, be the first and second partial derivatives of
tP (see Chap. 3, §8).

Then, statement a) is a consequence of the fact that t;% is the composite
of the morphism JI ..... (x, II) ofG into G x G with tP which shows that tP% is a
morphism and the fact that q,z has an inverse, namely, tPz-1. Note that T,tPz :
T,G --+ may be identified with nt,tP :T,G -+ T%,G. In particular, T2 tP
is an isomorphism.

Statement b) is shown as follows. the morphism

8:GxG-+GxG

defined by 9(x,y) = (x,xy) = (x,4>(x,y». Then 8 is bijective and etale at
each point (x, tI) of G X G. Indeed, at (x, tI), T8 has the form:

(
TIdG 0)

TO = Tlq, 'J"lq, ·

Thus, T8 is an isomorphism. It follows that 6 is an isomorphism. Let u =8-1 •

Then, for all x E G, O'(x,e) = (x, x-I) = (x, tPx). Hence t/J is a morphism.
Statement c) is a consequence of the fact that t/J2 = 1 which shows that t/J

has an inverse and is therefore an isomorphism.

2. Elementary examples of analytic groups

1) General linear groups
Let R be an associate algebra with unit which is finite dimensional over k.

The generalliftelJrgroupoverR is the groupGm(R) of invertible elements ofR.
We contend that Gm(R) is an analytic group which is open as a subset ofR. To
show that Gm(R) is open in R it suffices to show that there is a neighborhood
of 1 contained in G",(R). Now, there exists an open neighborhood U of 0 in
R such that for % e U the series E x" converges. It follows that
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v = { 1 - z : % e U } c Gm(R)

and V is a neighborhood of 1. To show that Gm(R) is an analytic group it
remains to show that multiplication is a morphism. This follows since multi­
plication in R is bilinear.

In the special case where R is the endomorphism ring E(V) of a finite
dimensional vector space V over Ie, we call Gm(R) the general linear group
of V and denote it by GL(V). When V = len we write GL(V) = GL(n,k) =
GLn(k). An element Q E GL(n,k) may be represented as an n by n invertible
matrix Q = (Qij). Hence GL(n,Ie) is called the general linear group of n by n
matrices over k.

Suppose now that k is ultrametric and that A is the valuation ring of k.
Then, for Q = (Qij) E GL(n, k), the following are equivalent:

1. Q defines an automorphism of An.

2. a. The coefficients Qij of Q lie in A.
b. The determinant of Q is a unit in A.

Let GL(n, A) denote the set of Q E GL(n, k) satisfying the above conditions.
Then, by condition 2, GL(n, A) is an open and closed subset of the set of n by
n matrices with coefficients in A. Hence, in particular, GL(n, A) is open and
closed in E(kn ). By condition 1, GL(n,A) is a group. Hence, we have that
GL(n, A) is an analytic group. We call GL(n,A) the general linear group of n
by n matrices over A.

Suppose further that k is locally compact. Then GL(n, A) is a compact
open subgroup of GL(n, k). In Appendix 1, we shall show:

Theorem. GL(n, A) u a maximal compact 3ubgroup ofGL(n,k) and, ilG itS
a maximal compact "ubgroup of GL(n, k), then G i3 a conjugate ofGL(n, A).

2) Induced analytic groups
Let G be an analytic group, H a topological group, and I : H --+ G

a continuous homomorphism. Suppose that (H, I) satisfies condition (1m) of
Chap. 3, §11. Then H is a manifold with its induced structure. We contend
that H is an analytic group. Indeed, let cPa and cPH denote the multiplication
maps in G and H respectively. Then the following diagram is commutative:

HxHl!!..H

.x·l 1.
GxG.!!!..G

Then 4>Go(ax I) is a morphism; hence 4>H is a morphism since ais an immersion.
Therefore H is an analytic group.

Remarlc". 1) To verify that (H,I) satisfies (1m), it suffices to verify that (H,a)
satisfies (1m) at eH. Indeed, suppose that (H, I) satisfies (1m) at eH and that
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h E H andg = I(h). Let </> : H -+ H and t/J :G --+ G be defined by = h- I %
and t/J(1I) = gy. Then, = eH, 't/J(ea) = g, and I = '" 0 I 0 t/J. Since '" is
an analytic isomorphism and 1 satisfies (1m) at eH, '" 0 I satisfies (1m) at eH.
Then, since t/J is a homeomorphism, 1 satisfies (1m) at h.

2) We know, in particular, that (H, I) satisfies (1m) when I is a local
homeomorphism (Chap. 3, §11, n02, B). If, moreover, I is surjective and Ie =R
or C, we say that H is a covering group of G.

3) Group submanifolds
Suppose G is an analytic group and H is a subgroup ofG which is at the

same time a submanifold of G. Then H is an analytic group. This is a special
case of 2) since the inclusion a : H -+ G is a continuous homomorphism which
is an immersion. We say in this case that H is a group ,ubmGftijoltl of G.

Remark. Suppose that H is a group submanifold of G. Then H is closed in
G. Indeed, this follows from:

1. A submanifold is locally closed in the manifold in which it lies.

2. A locally closed subgroup of a topological group is closed. See Bourbaki,
TG., 111.7.

3. Group chunks

A topological group chunk is a topological space X together with a distin­
guished element e EX, an open neighborhood U of e in X, and a pair of
maps </> : U x U -+ X and t/J :U -+ U such that:

1. For some neighborhood VI of e in U, x E VI implies that

x = cf>(x,e)= 4>(e, x) .

2. For some neighborhood V2 of e in U, x E V2 implies that

e= 4>(x, tlJx)= f/>(t/Jx,x) .

3. For some neighborhood Va of e in U, 4>(Va x Va) C U and, for all x, y,
z in va, f/>(x,4>(y,z» = 4>(f/>(x,y),z).

We say that we have a strict group chunk if the equations in 1, 2, and 3 hold
whenever both sides are defined. We can always obtain a strict group chunk
from a group chWlk by shrinking the open neighborhood U.

We shall often write 4>(x,y) = xy and 1/J(x) = %-1 if no confusion is
possible.

Let X and Y be group chunks. A local homomorphUm f : X ----+ Y is
a continuous map f : U -+ Y where U is a neighborhood of ex, such that
f(ex) = ey and f(xy) = f(x)f(y) in a neighborhood of ex.
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Two local homomorphisms I, I' : X ---+ Y are called equivalent if they
agree in some neighborhood of ex.

The group chunks X and Y are said to be equitlGlent if there exist local
homomorphisms / : X ---+ Y and 9 : Y ---+ X such that fog is equivalent
to Idy and g 0 I is equivalent to Idx.

We make analogous definitions in the analytic case by requiring all spaces
to be manifolds and all maps to be morphisms.

Ezample. Let G be a topological group and let X be an open neighborhood
of e with the obvious group chunk structure. X is a group chunk which is
equivalent to a topological group.

/

One may ask whether every· group chunk is equivalent to a topological
group. The answer is re, in the following two cases: a) dimensional ana­
lytic group chunks, b) metrizable locally compact group chunks (see R. Jacoby,
Annab of Math., 66, 1957). The answer is no for analytic group chunks mod­
elled on Banach spaces (see W. van Est and Th. Korthagen, Proc. Neder.
A1:atl., 61, 1964).

4. Prolongation of subgroup chunks

Let G be a topological group and let X be a subset of G containing e. Then
X is said to be a ,ubgroup chunk of G if there exists a neighborhood U of e
in X such that x,y E U implies xy E X and x-I E X.

Suppose X is a subgroup chunk of G. Define a subgroup N ofG as follows:

N = {g E G : for some open neighborhood U of e inG, unx =Ung-1Xg } .

It is clear that N is a subgroup of G and that there is a neighborhood U of e
in X such that U C N. Let I : N -+ G be the inclusion. We have:

Theorem. Let F ={u nN : U u a neighborhood of e in X }. Then:

1. F ,atufte, 'he aziofn$ for a filter ba,e 01 neighborhood, of e in N com­
patible with the group ,tructure in N.

2. Suppo,e N u given the topology defined in F. Then I i, continuow and
gitle, an equivalence of the group chunu N and X.

Proof. 1. We verify axioms (Gl)'), (Gl)t), (Gl)tI) of Bourbaki, TG., 111.4.
We may suppose that all neighborhoods U of e in X are contained in N

by the remark preceding the theorem. Then what we must show is:
&. Given U E F, there exists V E F such that V ·V CU.
b. Given U E F, there exists V E F such that V-I C U.
c. Given U E F and g E N, there exists V E F such that V C gUg-l.

Now, statement a) and b) are an immediate consequence of the fact that the
maps (z, y) t-+ %y and x t-+ %-1 are continuous in G and hence in X. Statement
c) is a consequence of the definition of N.
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2. It is clear from the definition of the topology in N that I is a local
homeomorphism of a neighborhood of e in N onto a neighborhood of e in X.
In particular, I is continuous as a map N --+ G at e, hence, is continuous
everywhere. See Bourbaki, TG., 111.15.

The theorem shows in particular that every .ubgrou, c1&uu u equiVAlent
to A topological group.

Remark. In general, I is not a homeomorphism of N onto IN. Indeed, in the
case X ={e}, N =G with the discrete topology.

Suppose now that G is an analytic group and that X is an analytic sub­
group chunk of G. Then, since N is locally homeomorphic to X at eN and
since X is a submanifold of G, (N, I) satisfies (1m) at eN. Bence, (N, I) satis­
fies (1m) by §2, n0 2, Remark 1. We may therefore give N the unique structure
of analytic group such that I is an analytic group homomorphism and an
immersion. In particular, N and X are locally equivalent as analytic group
chunks.

Let us examine in more detail the case where Ie = R or C. Then N is
locally connected so that -the connected component H of eN in N is an open
and closed group submanifold of N. We call H the analytic group generated
by x.

Suppose I(H) is closed in G. Then, we contend that I is a homeomorphism,
80 that H is in fact a group submanifold of G. Indeed, I(H) is closed in G
and is therefore a Baire space. Further, H is locally compact and connected,
therefore, a denumerable union of compact sets. Our contention is thus a
consequence of:

Lemma 1. Let A and B be topological Suppo,e:

1. A u locally compact and a denumerable union oj compact ,eu.

2. B u a Baire &pace.

3. A map I : A -+ B i, a continuow bijective homomorphUm.

Then, I i. a homeomorphum.

In turn, Lemma 1 is a consequence of:

Lemma 2. Suppo&e:

1. A u locally compact topological group which u a denumerable union of
compact ,eu.

2. B iI a Baire 'pace.

3. t/J : A x B --+ B u a continuou, tran"itive operation 0/ the group A on B.

Then, Jor any b E B, induce, II homeomorphUm ofA/H, onto B where N.
u the ,t.bilizer of b (Nil ={x E A : t/J(z,b) = b }).
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Proof. See Bourbaki, Integration, Chap. 7, App. I.

s. Homogeneous spaces and orbits

Let G be an analytic group, H a group submanifold of G, and form the
left coset space G/H. Then G/H is the quotient space of G defined by the
equivalence relation R = { (x,y) E G x G : z-I y E H}.

Theorem 1. R u a regular equivalence relation 10 that GIH hal Q, unique
manifold .9tructure making G GIH a .9ubmer,ion.

Proof. By Chap. 3, §12, we must verify that:

1. R is a submanifold of G x G.

2. pr2 : R -+ G is a submersion.

To show 1), first define p: GxG -+ G by p(x,y) = z-I y . Then R = p-IH.
Hence, by Chap. 3, §11, n02, F, it suffices to show that p is everywhere a
submersion. Let (z,y) e G x G. Let t/J : G -+ G x G be defined by t/J(z) =
(z,zz). Then t/J(z-ly) = (z,y) and pt/J = IdG. Hence p is a submersion at
(z, II) by Chap. 3, §10, n02.

To show 2), consider the composition G xH ..t.. R G where t/J(x, h)=
(zh,z) for (z, h) E G x H. Then, pr2 t/J is the projection on G which is a
submersion. Since "p is surjective, pr2 is a submersion.

Remark... 1) The natural action ofG on GIH is analytic. Indeed, we have the
following commutative diagram:

GxG --+ G

IdG )(",1 1", ·
G x GIH --+ GIH

The vertical maps are surjective submersions and the top map is analytic.
Hence the bottom map is analytic.

2) Suppose H is a normal subgroup of G. Then GIH is an analytic group.
To show this, use a diagram similar to that in 1) to verify that multiplication
is analytic.

Let G be an analytic group, X an analytic manifold, and q, :G x X -+ X
a morphism. We say that G acu on X via q, if:

1. For all x E X, q,(e, x) =x.

2. For all x E X and all g,h e G, q,(g,q,(h,z» =
Suppose that G acts on X via Then, we shall often use the notation
q,(g,z) =gz. Let us introduce for convenience the following morphisms:
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1. For 9 E G:

Lg : G -+ G defined by h gh .

M g : X -+ X defined by % gx .

2. For % E X: G -+ X defined by g ...... g%.

Note that L, and M, are analytic isomorphisms and that = M g 0 0 L,-1 .
We obtain from this formula for t/J% the following homogeneity principle:

(HP) Let P be a local property. Then possesses P if and only if possesses
P at one point of G.

In particular, is an immersion (submersion, subimmersion) if and only if it
is such at a single point.

We shall fix Xo E X and let H ={h E G : h%o =%0 } = stabilizer of %0.

Also, we let =
Theorem 2. 4>0 II Then:

1. H u a group lubmanifold ofG.

2. The induced map 4Jo : G/ H -+ X an

Proof. 1. This is a consequence of the definition of a subimmersion: Chap. 3,
§10, n04.

2. Let 9 E G. Then = Tg(gH). Hence Tftgj,o is injective. Hence
j,o is an immersion.

Corollary. Let tP :G1 -+ G2 be a of analytic which
a Let K = Ker tP. Then:

1. K iI a normal group of G.

2. The induced analytic group t/J : G/K -+ G2 an im­
merlion.

Theorem 3. chark = o. Then 4>0 a

Proof. Let go E G be such that the rank n of at go is maximal. Then
the rank of T</> equals n in a neighborhood Uo of go. Let Pg be the following
property of a point 9 in G:

(P,) There exists a neighborhood U of 9 such that rankT4>o = n in U.

Then P, is a local property and Pg is true for g = 90. By the homogene­
ity principle P, is valid for all 9 E G. Thus, </> has constant rank and is a
subimmersion since chark = 0: Chap. 3, §10, n04, Th.

Theorem 4. SUPPole that G u locally compact lind a denumerable union of
compact let.. and that </>(G) = G%o il locally clo"ed in X. Then:
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1. The induced map tj,o :GIH -+ G%o U G homeomorphum.

2. Suppo,e fJo U G ,ubimmer,ion. Then G%o u G .u6maniJold oj X and
ij,o u an uomorpAum 0/ maniJoliU.

Proof. Apply Lemma 2 of §4.

Corollary. $uppo,e char Ie =o. Then G%o U a ,ubmaniJold oj X iJ and oal,
ifG%o U 'oca", clo,efl in X .

We shall now study the case of principal G bundles. We shall assume that:

1. For all % EX, fJz is an injective immersion.

2. We are given an analytic map t/J : X -+ B where B is an analytic mani­
fold such that, for all z eX, Gx = "p-l"p(Z), and such that "p is surjective. We
let R = {(y,x) E X x X : y =gz for some 9 e G}. Then R is an equivalence
relation and t/J induces a bijection 1iJ : XIR -+ B which is continuous.

In the system (X, 4>, G,,,p, B), we shall speak of X as the total,pace, G as
the fibre, and B as the ba,e. Par abus de notation, we shall sometimes write
X for the entire system (X, 4>,G, t/J,B).

Theorem S. The following condition, on (X, 4>,G, t/J,B) are equivalent:

1. t/J u a ,ubmer,ion.

2. R u a regular equivalence relation and 1fi u an analytic uomorplWm.

3. For all bE B, there u a neighborhood U" of b in B and an analytic mapa, :U. -+ t/J-IU, ,uch that 1/J 0 CT6 =Idu•.

4. For all b e B, there U II neighborhood U, oj b in B and an analytic
uomorphum 8, : G x U, -+ t/J-IU. ,uch that:
II. The following diagram i" commutative:

G x U6 "p-lU6

pr21 1. ·
u" u"

b. For g,h E G and a E U6, 8.(gh,a)=g8.(h,a).

Proof. 1 <===> 2: This is an immediate consequence of Godement's Theorem:
Chap. 3, §12.

1 3: This is a consequence of the 5th equivalent form of the definition
of a submersion: Chap. 3, §10, n0 2.

3 4: Define 8, : G x U, -+ 1/J-IU. by the formula 86(g, a) = 9 · 0'6(a).
Then 86 is a bijective morphism which satisfies 4a) and 4b). To show that 6.
is an isomorphism, we must show that 86 is etale at all (g,a) E G X U•. Let
x = 8,(g,a) =9 ·O'.(a) and let CT =M g 0 CT" = goCT6. Then since t/J 00' = Idu.,
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t/J is a submersion at z. In addition, TaO' is injective and T.:X is the direct sum
of 1m and KerTz"'. But, since t/J-1a =Gz and since q,z is an immersion,
KerT.:t/J = Tz(Gz) =ImTe4>z. Finally, however,

T,,4S, = x TaO' .

Hence 6, is etale at (g, a).
4 => 1: Trivial.

Detlnition. Suppose the conditions of the preceding theorem are satisfied by
(X, t/J,B). Then X is said to be a principal G-6untlle over the base B.

Remark. We have been considering G as acting on X on the left. Thus, we
have defined what is known as a left principal bundle. A similar definition is
made when G acts on the right.

Theorem 6. Let G be an analytic group and H be a group ,ubmanifold of
G. Let 11" : G G/H be the projection of G onto the left co,et of H
and let t/J : G x H -+ G be the multiplication map. Then G U 1.& right principal
H -bundle over the bale G/H.

Proof. This is a special case of Theorem 5.

6. Formal groups: definition and elementary examples

Let R be a commutative ring with unit and consider the formal power series
ring R[[X1 , • •• , X"J) = R[[X)] in n variables. Let Y =(}'i, ... ,Y,,) be a second
set of n variables.

Deftnition. A formal group law in n variables is an n-tuple F = (Fi) of
formal power series, F i E R[[X,Y)), such that:

1. F(X, 0) =X and F(O, Y) = Y.

2. F(U,F(V, W» = F(F(U, V), W).

Let us give some examples:

1) Additive group: Fi(X,Y) = Xi +
2) Multiplicative group (n = 1): F(X, Y) = X +Y + XY. Note that we

obtain this group law by translating the ordinary multiplicative group law
from 1 to 0: (1 +X)(1 + Y) = 1 + X + Y + XV.

3) Special Case of Witt Groups for a prime p and n =2:

F1(X1,X2 , Y1 , Y2) =Xl +YI

1
F2(X1 ,X2,Y1 ,Y2 ) = X2 +Y2 + -(Xf +Y[ - (Xl +YI)P) ·

p
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We next give some elementary properties of formal groups:

1) Each F1 has the form:

Fi(X,Y) = Xi +Yi + L Ca,/lXaylJ ·

This is an immediate consequence of Axiom 1 of a formal group.

2) There exists aunique4>(X) = ... ,,pn(X» with ,pi(X) E R[[X]],
such that q,(0) = 0 and:

F(X,,p(X» = 0 = .

The existence of a unique q,(X) such that ,p(0) = 0 and such that the first
equation is satisfies is a consequence of D2F(O) = IdR". See Bourbaki, A.,
IV.3S. The second equation can likewise be solved uniquely by some t/J(X)
such that tjJ(O) =o. Then

1/J(X) = F(1/J(X),O) = =
=F(O, ,p(X» = iP(X) .

Remark. Let us indicate how formal groups will be of interest to us. There
are two cases of importance:

1. R = Ie, where Ie is a complete field.

2. R = A, where A is the valuation ring of a complete ultrametric field.

In case 1, we shall define a natural functor:

Analytic Groups Lie

We shall want to define a functor S in the opposite direction such that ToS =
Id. The problem of constructing S is just the problem of constructing an
analytic group having a given Lie algebra. It will be useful to know that, over
a field of characteristic zero, there is an equivalence of categories:

Lie Algebras +---+ Formal Groups

The study of case 2 will be a useful tool when we want to study analytic groups
over a complete ultrametric field k. We shall have a commutative diagram of
functors:

Analytic Groups/ Ie --+ Formal Groups/ Ie,/
Formal Groups/A

What we will have in this case is that every analytic group is locally just a
formal group/A.
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'1. Formal groups: formulae

We shall use the notation O(til n) to stand for a formal power series whose
homogeneous parts vanish in degree strictly less than n. We will let F(X, Y)
denote a formal group law over a ring R except as otherwise stated.

1) F(X, Y) =X + Y +B(X,Y) + O(tJO 3), where B is a bilinear form.
This is an immediate consequence of the basis expression for a formal group
law since the coefficients Co ,11 vanish unless lal and IPI 1.

We shall set (X, Y] =B(X,Y) - B(Y,X).

2) Let tjJ(X) be the formal inverse corresponding to F. Then:

tP(X) = -X + B(X,X) + O(tfJ 3) .

Indeed, write tj>(X) = tP2(X) + ··., where 4>i(X) is homogeneous of degree i.
Then:

o=F(X,tjJ(X» =X + tPI(X) +O(tfJ 2) .

Hence, tPI(X) = -X. Using this result, we find:

0= F(X,tjJ(X» = X + (-X + tP2(X) + ...)+B(X,-X + ...)+...
=tjJ2(X) - B(X,X) +O(tfJ 3) .

Hence, tP2(X) =B(X,X).

3) XYX- I = Y + [X, Y] + O(lJO 3).
Indeed:

XYX- 1 =(X+Y+B(X,Y)+···)
+(-X+B(X,X)+···)
+B(X +Y + ... ,-X + ...)
+ ...

=Y + [X,Y] +O(Jl 3) .

In this case, it will later be convenient to have a notation for the higher
order terms. We set:

XYX-I = Y + [X, Y] +L dOl,l1xoyl1,

where the range of a and P in the sum is: lal 1, IPI 1, lal + IPI 3.

4) y-IXY = X + [X, Y) +O(tJO 3).
The proof is similar to tha.t of formula 3.

5) X-Iy-IXY = [X, Y] +O(tJO 3).
Use formula 4 and apply the same technique of proof as in formula 3.

6) Jacobi: [X, lY, Z]]+ IY, [Z,Xl) + [Z, [X, YJ] =O.
We shall apply the identity of P. Hall (See L.A., Chap. 2, §1):

(XY,(Y, Z»(yZ, (Z,X»(Zx, (X, Y» = o.



114 Part II - Lie Groups

We contend that:

(XY , (Y, Z» = [X, [Y, Z]]+O(tfJ 4)

(yZ,(Z,X» = [Y,[Z,X))+O(tfJ 4)

(Zx, (X, Y» = (Z, [X, Y]]+O(tfJ 4) .

Indeed, it suffices by symmetry to check the first of the three formulae. To do
that, we note that:

x y
=X+O(cf

(Y, Z) = IY, Z] +O( 3)

Hence, applying again formula 5, we find:

(XY , (Y, Z» = [X, [Y, Z]] + O(tfJ 4) .

(Formula 4)
(Formula 5)

Finally, examining the P. Hall identity up to order 3 and using the formulae
we have just obtain, we arrive at the Jacobi identity.

7) The m-th power map:
Define lo(X) = 0 and Im+I(X) = F(X,/m(X». Note that these conditions
determine 1m for both positive and negative m. Equivalently, I-m = tP 0 1m
where m denotes a positive integer. By induction, we find that:

Im(X) = mX+O(rfJ 2) .

More generally, we have:

Theorem (Lazard). There unique power

that:

1. "pI(X) =X.

2. tPi(X) il of order i.

3. For all m E Z, Im(X) =E:l (7)tPi(X».

Proof. The uniqueness statement is obvious from property 3 applied to
m = 1,2,.... To prove existence, we reformulate the theorem. Suppose
F(X, Y) is a system of n formal power series such that:

8. F(X, Y) =X +Y + O(tJO 2).

b. F(O, Y) =Y.
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Define 1m (for m E Z) by 10 = 0 and fm+l(X) =F(X,f".(X». Write

fm(X) =EGo(m)XO
,

o

where Go is a map of Z into R x··· x R (n factors). We contend that, for each
0, Go is a "binomial polynomial function of degree 101", that is, that there
exist elements E R x·· · x R such that:

4a {m) =E
iSlol

Note that the contention proves the theorem since we may take "pi =
·

We prove the contention by induction on lal.
lal =0:

We have Go =0, since the Im'8 have zero constant term.

lal = 1:
Assume the result for IPI < lal. Now, we wish to show that aa(m) is a

binomial polynomial in m of degree at most IQI. It is well known that to do
this it suffices to show that (L1ao)(m) = ao(m + 1) - ao(m) is a binomial
polynomial in m of degree at most 101- 1. Write:

Then, by the hypotheses on F, the range of 1 and 6 in the sum is: 111 1 and
111 + 161 2. Now:

Im+l(X) = X + fm(X) + ·

If lal = 1, ao(m + 1) = aa(m) and we are done. If lal > 1, we find, by
comparison, that ao(m + 1) = ao(m) + Sa(m), where 5o(m) is the sum of
the coefficients of XO appearing in each of the terms: C-y6X-'(!m(X»6. Since
I'll 1, the only terms which contribute to So{m) are those for which 161 < lal.
Look at (/m(X»6 for such 6. Then the coefficients of xo--, in that product
has coordinates which are sums of products of the following form: nil bi , (m),
where bi,(m) is a coordinate of a coefficient in 1m with total degree ill. By
induction, bi., is a binomial polynomial of degree ill.,But it is easy to see that
a product of binomial polynomials is again a binomial polynomial (cf. Exer. 2,
for instance); moreover, the inequalityE ill= lal-I1'1 < lal shows that nil bill
has degree < IQI. It then follows that So = L1aa is a binomial polynomial of
degree < 101; hence ao is a binomial polynomial of degree 101. q.e.d.

Corollary. Let p be a prime number. Then f, == tIJ, mod p. In particular, f.,h., order p mod p.
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8. Formal groups over a complete valuation ring

Let Ie be a complete ultrametric field, let A be the valuation ring of k, and let
m be the maximal ideal of A. Let F(X, Y) be a formal group law over A. Let
G = {(Xl, ••• ' :En) : Xi Em} = Po(I, ... ,1). We define a multiplication on
G by the formula: Z'IJ = F(x, 'II). We contend that G is an analytic group. We
must verily:

1. Associative law.

2. Existence of unit element: 0 will be the unit.

3. Existence of an inverse: 4>(x) will be x-I, where 4J is the unique formal
power series such that F(X, iP(X» = 0 =F(4>(X), X).

Each of these statement is a consequence of the corresponding rule for the
formal group F as is shown by the following lemma:

Lemma. Suppo$e 1 E A[[Xl,... ,X,]] and 9i E A[[Yl,... ,Y,]], 1 i p,
and ,uppo.ge 9i(O) = 0 for all i. Let h =1(9}, ... ,9,) E A([Y},. · · ,Y,]]. Then,
for x}, ... ,x, E m, we have

hex) = 1(91(x), ... ,gp(x» .

Proof. See Bourbaki, Aig. Comm., Chap. 3, §4 n05, Cor. of Prop. 6.

Definition. A group G constructed in the above manner will be called ..tan­
danl.

Theorem. Any analytic group chunk contain.. an open ,ubgroup which i..
..tandanl.

Proof. Let G be an analytic group chunk. By shrinking G and choosing local
coordinates, we may assume that G is an open neighborhood of 0 in kn and
that the multiplication in G is given by a power series F(X, Y) such that F
converges on the ball of radius < €. Write F(X, Y) =X +Y +
Here, lal and IPI are equal to or greater than 1 and the coefficients ca,f1
are vectors in kn . We shall change coordinates by multiplication by J' E k.
Specifically, if x,y E G are such that z = xy is defined, set x' = JJX, y' = IlY,
and z' = JJZ. Then:

Z' = x' +Y'+" CQ,fJ x,Oly,tI.
L.J

Hence, the group law Fp in the new coordinates has coefficients pIQi:I:'-l .By
choosing IJ so that Ipl is sufficiently large, we can insure that the coefficients
of F" lie in An and that IJ'I€ 1 so that F converges in the ball of radius 1. In
the coordinate system defined by !J, the strict unit ball is a standard subgroup
ofG.
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Corollary 1. Any analytic group chunk u equivalent to An AnAlytic grou,_

Corollary 2. Any analytic group chunk ha, a bA,i. of neighborhood. of e
con.uting of open ,ubgroups.

9. Filtrations on standard groups

The notation and assumptions of §8 will be used throughout this section. In
addition, we let w : Ie -+ R U {oo} be the valuation of Ie, that is, for some
a E R, 0 < a < 1, we have, for all x E k:

Ixl = aW(z) _

For x = (Xl, ... ,Xn ) E k", we let w(x) = infi(w(xi». For'\ 0, we let:

G>. ={X E G :w(x) A}

Gt = {x E G : w(x) > ,\} ·

More generally, for an ideal G of A, we let:

G. = {x E G : Xi E CI for 1 i n }

Gt = {x E G : Xi E CI· m for 1 i n }

Thus, if CI>. = {x E A : w(x) ,\}, we have G>. = G." and Gt = Gt" =
G.".m. .

Theorem 1. For all ideals CI of A, G. and Gi are normal subgroups of
G. Moreover, if x, y E G, the relation x == y mod G. is equivalent to
Xi == Yi mod G for 1 :5 i n.

Proof. Let G(AIQ) be the group of systems x = (Xl, ... ,xn ) where Xi E m/CI,
the multiplication being given by the reduction F of F mod G. If x E G, the
reduction x of x mod Q is defined and x ...... X is a surjective homomorphism
</>. :G -+ G(A/a). The kernel of </>0 is Go; this proves Theorem 1 for G•. The
assertions about G! follow since Gt = Go.m •

(Alternate proof: use formula 1) of §6 and formulae 2), 3) of §7.)

Corollary. The subsets {G>.} define a filtration of G.

Proof. We must verify the axioms of a filtration (cf. L.A., Chap. 2, §2):

1. w(O) = 00.

2. For all x E G, w(x) > o.
3. For all x,y E G, w(xy-l) inf{w(x),w(y)}.

4. For all x,y E G, w«x,y») w(x) + w(y).
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Axioms 1 and 2 are obvious from the definition ofG. Axiom 3 is equivalent
to the assertion that G is a subgroup of G for all A. Axiom 4 is equivalent to
the assertion that (G>t,G,,) C In fact, if x E G>t and JI e Gp., we have

1) [%,11] E G>t+".

2) (x,lI) == [X,II] (mod Gt+I').

Now 1) is clear and 2) follows from Theorem 1 and formula 5) of §7.

Theorem 2. Let, a antlb be of A luch that CI C b C G2 • The reduction
map tP. :G --+ G(AlfJ) inducel an ilomorphilm of the group G.IG" onto the
additive group (alb)"

Proof. Formula 1) of §6 shows that, if z, y EGa, F(z, y) == z +y mod ,,2. The
theorem follows from this and from Theorem 1.

Corollary 1. Let ,\ E w(m), ,\ :F 00. Then G>..IGt u iJomorphic to the
additive group (AIm)".

Proof. Choose a E m such that w(a) = ,\ and let CI =(0). Then, by Theorem 2,
G.IGt is isomorphic to (a/am)". However, the map: Q Qa defines an
isomorphism of (Aim) onto (G/am) which proves the corollary.

Corollary 2. SUPPole that Ie il locally compact and that p = char(A/m).
Then:

1. For all'\ E w(m), '\:F 00, G>../Gt i., a commutative finite p-group.

2. For all ,\ E w(m), ,\ :F 00, i., a p-group.

3. G u a projective limit of p-groupJ ( "pro p-group ").

Proof. We note that since Ie is locally compact:

1) Aim is compact and discrete, hence finite.

2) m is compact so that w takes on a minimum value on some element
oEm.

Then m = (0) so that A is a discrete valuation ring.
Statement 1) is then a consequence of Corollary 1 and 1) above. Statement

2) is a consequence of statement 1) and 2) above. Statement 3) is a consequence
of statement 2).

We shall now use the filtration of G to study the r-th power maps
fr (cf. §7). We let k =A/m be the residue field of k and let =chark.

Theorem 3. Suppo,e r iJ relatively prime to p. Then, for all ,\ E w(m),
,\ :/: 00, fr define, an analytic'manifold iJomorphum of onto G>...
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Proof. The image of r in k is a unit in k 80 that r is a unit in A. Hence, Ir
is an invertible formal power series in [[All. Let IJ =1;1. Then IJ is absolutely
convergent on G and Jr 0 (}.= 80 Jr = Id by the lemma quoted in §8. Since
Jr and IJ preserve G>., Ir is a bijection on Gl. Finally, the derivative of Ir at
each % eGis congruent mod m to r ·Id and hence is invertible. Thus, Ir is
etale and hence is an analytic isomorphism on Gl.

Theorem 4. Su,po,e char Ie =0 and that p :/: O. Let IJ = w(p). Then, for all
E w(m), < A< 00, I" u an analytic manifold uomorphUm ofG1 onto

G>.+"..

Proof. By Lazard's Theorem, J,,(X) = p(X + </>(X» + ,,(X), where ord </> 2
and ordt/J p. Now, for % E G>. and for Q with lal 1, we have that
w(xQ

) In particular:

1) w(<p(x» > A.

2) w(tjJ(x» p,,\ A+ (p -1)"\ > A+ JI.

It follows that I,,(G>.) C G>.+p.. To show that I, is an analytic isomorphism of
G,\ onto G>.+",we choose a E G such that w(a) = Aand consider the function
F: An --. An defined by F(X) = Then:

F(X) = X + + ..!...p(aX) .
a ap

Let r E R, 0 < r < 1, be such that lal, y- < rJ'-I. Then:

1) The coefficients of degree i 2 in have absolute value less than
.. II

or equal to lall - 1 r·- 1 •
2) The coefficients of degree i p in have absolute value less

than or equal to r i - 1 •

We shall see in Appendix 2 that these conditions imply that F and its formal
inverse 8 converge absolutely on An. In particular, we may actually compose
F and 8 on An. This shows that F is an analytic isomorphism of An onto An.
It is then immediate that II' : G>. -+ G>.+p. is an analytic isomorphism.

Theorem s. Let G be an analytic group over k. Then there ezuu an open
.9ubgroup U which contain, no finite .9ubgroup H .9uch that ordH u prime to
chark.

Proof Since G contains an open subgroup which is standard, the theorem is
reduced to Theorem 3 and 4.

Remarlc. In particular, when char k = 0, Theorem 5 asserts that G contains
no "small" finite subgroups.
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We shall give some applications of Theorem 5 in Appendix 3.

Exercises

1. Let k be locally compact, and let A be a compact analytic group over k.
a) Let G be a finite group of order prime to the characteristic of k.

Assume G acts analytically on A. Define as usual the 1st-cohomology set
Hl(G,A) (reap. the higher cohomology groups H'(G,A) if A is abelian).
Prove that Hl(G,A) is finite (Hint: use the manifold structure of the
eocycles). Prove analogous results for H9(G, A), q 1, when A is abelian.

b) Using a), prove that the finite subgroups ofA of given order (prime
to char Ie) are in finite number, up to conjugation.

2. Let i, j be two positive integers.
a) Prove II priori that (7) ("1), as a function of m, is equal to a linear

combination of binomials (':), with i,j k i + j.
b) Prove the identity:

(7) (7) = (k - i)!(k - :l)l(i + j - k) (;) ·

(Hint: compute in two ways the series (1 + x)m(1 + y)m, where X and
Y are indeterminates.)

3. Notations being those of §7, 7) (Lazard's theorem) consider the case of an
F(X, Y) with property a (F(X, Y) == X + Y mod deg2), but not prop­
erty b (F(O, Y) = Y). Show that it is still possible to write the 1m's in
the form E (7) tPi, but that it is not true in general that ord(tPi) i.

4. Show that Lemma 2 of §4 remains true if hypothesis (1) is replaced by:
(1') - A is a complete Hausdorff topological group (for both uniform struc­
tures), and its topology can be defined by a denumerable family of open
sets. (Hint: imitate the proof of Banach's closed graph theorem.)

5. Let k be a locally compact ultrametric field, and let G be a standard
group of dimension n over Ie. Let dx be a Haar measure on the additive
group kR

• Show that the restrictions of dx to G (which is open in kR
) is a

left and right Haar measure on G. (Hint: use the fact that G = lim
and that a Haar measure on G is an inverse limit of Haar measures on
the finite groups

6. a) Let F(X, Y) = X + Y +XY be the "multiplicative" formal group
law in one variable. Show that the tPi'S of Lazard's theorem are just the
monomials Xi.

b) Assume moreover that Ie is ultrametric, of characteristic zero and
residue characteristic p. Show that the following are equivalent:

1) f,,(X) =0

2) 1+ x is a p-th root of unity in k.
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Using the theorem 4 of §9, show that this implies w(x) x(p)/(p - 1).
Show that it is in fact an equality if z 0 (i.e., if 1+z is a primitive p-th
root of unity).

7. Let F and F' be two group laws over a field k of characteristic p and let
%' = tP(%) be a formal homomorphism of F into F' (i.e., tP(F(x,y») =
F'(tP(z),tP(y»). Assume the terms of degree one in tP are all zero. Show
that q, is a power series in zp. (Hint: use the differential equation

to show that tP' =0.) Interpret this result as a factorization of tP through
a "Frobenius map" F -+ F(p), when Ie is perfect.

Appendix 1. Maximal compact subgroups of GL(n, Ie)

We prove here the theorem stated in §2, n01.
Let Ie be a locally compact ultrametric field, A be the valuation ring of k,

m be the maximal ideal of A, and G =GL(n, A) for some n > 0, n E Z.

Lemma 1. Let L be an A·"ubmodule of kn • Then, the follotDing are equiva­
lent:

1. L u finitely generated over A and L kn over k.

2. L ufree 0/ rank n over A.

Proof. 1 => 2: Since A is a principal ideal domain, L is free; rankA L = n,
since L generates a Ie" over A.

2 => 1: Trivial:

An A-submodule L of k n satisfying the equivalent conditions of Lemma 1
is called a lattice in kn •

Lemma 2. Let L 1, ••• , L r be in kn and let L be the of
kn generated by L 1, ••• , L r • Then L i" a lattice in len.

Proof. We verify 1) of Lemma 1. Clearly L generates len over k since each
Li does. Since, moreover, each Li is finitely generated over A, the module L
which they generate over A is finitely generated over A.

Lemma 3. Let L be a lattice in len and let KL be the "ubgroup ojGL(n,k)
which "end L onto L. Then, for "orne Q E GL(n, k), KL =aGo-I. In partic­
ular, KL u compact and open.

Proof. By 2) of Lemma 1, we may choose Q E GL(n, k) such that o(An) = L.
Then, by the definition of GL(n,A) = G, KL = o· G· 0-1 . We have already
noted that G is compact and open; hence, K L is compact and open.
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Lemma 4. Let Land L' be two lattice, in k" and ,uppo,e KL C KL'. Then
there ezuu E k* .uch that L' = ,\ · L, and KL =KL'.

Proof. It is clear that KLI does not change when L' is replaced by ,\ · L', with
,\ E k*. We can then suppose that L' eLand L' ¢. m· L. Let·V = L /mL and
V' = (L' +mL)/mL; V' is a non-zero vector subspace of V (over the residue
field AIm). Moreover, since KL C KL', the lattice L' is invariant by KL,
hence its image V' in V is invariant by KL, i.e, by GL(V). Since V' :/: 0, this
implies V' =V, hence L'+mL = L and, by a standard argument (Nakayama's
lemma!) L'= L. q.e.d.

Theorem 1. Let H be a compact ,ubgroup ofGL(n,k). Then:

1. There ezi,t, a lattice M in kn ,uch that H ,end, M onto M.

2. There exut, a E GL(n, k) ,uch that H C Q. G· a-I.

Proof. 1. Choose any lattice L in kn, for example, L = An. Then HL = HnKL
is exactly the subgroup of H which sends L onto L. Since KL is open in
GL(n, k), HL is open in H. Hence HL has finite index in H since HIHL is
compact and discrete, therefore, finite. Therefore, the number of translates
uL of L, u E H, is finite. Let M be the A-submodule generated by {UL}D'EH.
It is clear that H sends M onto M and it follows from Lemma 2 "that M is a
lattice.

2. This statement follows immediately from 1) and Lemma 3.

Theorem 2. 1. G i, a maximal compact 3ubgroup ofGL(n, k).

2. The maximal compact subgroups ofGL(n, k) are preci,ely the conjugate,
olG.

3. Every compact ,ubgroup ofGL(n, Ie) i, contained in a mazimal compact
subgroup of GL(n, k).

Proof. 1. Suppose G is contained in a compact subgroup H of GL(n, Ie). Theo­
rem 1 shows that there exists a lattice M such that H C KM. Hence G C KM,

and, by Lemma 4, G = KM. Hence G is maximal.
Assertions 2 and 3 follow from 1 and Theorem 1.

Appendix 2. Some convergence lemmas

Suppose that F(X) = (Fj(X» is a system of n formal power series in n
variables and suppose that each Fi(X) has the form:

Fi(X) =Xi - L =Xi - t/>i(X) ·
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We have seen in the proof on the Inverse Function Theorem that the system
F is formally invertible and that we may write the formal inverse system
SeX) = (Sj(X» where each 6j(X) has the form:

8i(X) = Xi + I: = Xi + tPi(X) ·

Suppose r e R and 0 < r < 1. Consider the conditions:

(Ar ) For all a, rlol-l.

(Br ) For all P, r llll - l
.

Lemma 1. (Ar ) => F converge, absolutely on A".
(Br ) =* 8 converges absolutely on A".

Proof. It suffices to remark that:

'" rl"Yl = 1 < 00 •
LJ (1 - r)"

Proof. It suffices by symmetry to show that (A r ) => (Br ). We show this by
induction on IPI, that is, we assume the statement true for pi, IP'I < IPI, and
we prove it for (l. Now:

Comparing the coefficients of X II, we find that is the sum of the coefficients
of XII in Since k is ultrametric, it suffices to show tllat each time
XfJ occurs in tPi(8(X» its coefficient satisfies the estimate desired for Now:

= I:

and
8(X)O =81(X)Ol ... 8,,(X)On .

A typical monomial term in 8(X)O has the form:

n 0i

II II(b;',i X 7i,i) ·
i=l ;=1

We are interested in terms where E 'Yi,; = {l. Then, we C&l1 estimate the
product of all the coefficients in that product by:

II r'''Yi,i 1-1 = rlfJl-lol .
i,;
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Since rial-I, we obtain the desired final estimate of r llll- I for the
coefficients of X" in 4>i(6(X».

Corollary. (Ar ) => F u an analytic i,omorphum ofAn onto An.

Proof. By Lemma 2, we have both (Ar ) and (Br ). Then, from Lemma 1, for
x E An, Z = (I 0 8)(x) =1(8(x» = (80 /)(x) = 8(/(x».

Appendix 3. Applications of §9: "Filtrations on standard groups"

Theorem 1. For each n > 0, nEZ, there ezu!5 N > 0, NEZ, ,uch that
any finite lubgroup of GL(n, Q) ha, order N.

Proof. 1. We prove first the corresponding statement for the p-adic integers
Z" for any prime p. By Theorem 5 of §9, there exists an open normal subgroup
U of GL(n, Z,) such that U contains no non-trivial finite subgroups. Then,
if H C GL(n,Zp) is a finite group, H C GL(n,Zp)/U and ordH N where
N =ordGL(n,Z,)/U.

2. We reduce the theorem to the statement we have proved in 1). We use
two different methods:

Method 1: Let H C GL(n, Q) be finite. Let p be a prime and consider
H C GL(n,Qp). Then, H is compact, so some conjugate of H is contained in
GL(n, Z,) by Theorem 1 of Appendix 1. Hence, ordH N, where N is the
bound of 1).

Method !: Note that Lemmas 1 and 2 of Appendix 2 are valid for k = Q and
A = Z. We have, in addition, the following statements:

1. Let L be a lattice in Qn. Then the subgroup of GL(n, Q) which sends
L onto L is a conjugate of GL(n, Z).

2. If H is a finite subgroup of GL(n, Q), there exists a lattice M which H
sends onto itself.

We prove statement 1) in exactly the way the corresponding statement in
Lemma 3 of Appendix 1 is proved. To prove statement 2), let L be any lattice
and define M to be the lattice generated by the finite set of lattices: {O'L }O'ER.
Then H sends M onto M as desired.

Combining statements 1) and 2), we see that if H is a finite subgroup of
GL(n, Q), then H has a conjugate in GL(n, Z), hence to prove it suffices to
consider finite subgroups of GL(n, Z). Now, GL(n, Z) C GL(n, Z,) so we may
again reduce the theorem to what we have already shown.

We may obtain explicit estimates for the integer N in Theorem 1 by taking
the gcd of the estimates at each prime p. Consider:
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1. p odd:
Then 1 > 1':1 80 we may take

...
u =G1 = {y : y = 1 + x, x =(Xij), Xi; em} .

Then, GL(n,Zp)/U = GL(n,Fp ) where Fp is the field with p elements. We
can compute the order of GL(n, F,) explicitly: it is simply the number of
distinct sets of ordered bases in F;. This number is:

2.p=2:
Then 2 > 1':1 sowemaytakeU = G2 • ThenGL(n,Zp)/U =GL(n,Z/4Z).

We have an exact sequence:

o--+ (2Z/4Z)Q2 ---t GL(n, Z/4Z) --+ GL(n, Z/2Z) ---. 1 .

Hence, the number of elements in GL(n, Z/4Z) is:

2n2(2n - 1 )(2R _ 2) ... (2R _ 2R - 1 ) •

Let us look more closely at the case n = 2:

1. p odd:
The number computed above becomes: (p2 -1)(p2 - p) = (p-l)2P(p+ 1).

Now, for p odd,we have
a. p2 - 1 == 0 (mod 8), hence (p2 - 1)(p2 - p) == 0 (mod 16).
b. (p - l)P(p + 1) == 0 (mod 3).

Hence, the number computed above is congruent to 0 mod 48. When p = 3,
we have that (p2 - 1)(p2 - p) =48.

2. p= 2:
The number is 222 (22 - 1)(22 - 2) =96.

Hence, by the above method, the best estimate we obtain for the order of
finite subgroups of GL(2, Q) is 48. The situation is in fact somewhat better.
We first note that any finite subgroup of GL(2, Q) is contained in the set of
matrices of determinant ±1 = Go. We have an exact sequence:

1 --+ 8L(2, Q) --+ Go ----+ Z/2Z --+ 0 .

Hence to obtain an estimate for the order of the finite subgroups of Go, we
need only multiply the corresponding estimate for SL(2, Q) by 2. We shall
show that

1. Every finite subgroup of 8L(2, Q) is a subgroup of a rotation group on
the plane and is therefore cyclic.

Only cyclic group of order 1, 2, 3, 4, 6 occur in SL(2, Z).
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Proof. 1. Let H c SL(2, Q) be finite and let B be any positive definite bilinear
form on Q2. Let B(z,y) = EcreH B(UX,CTy). Then, B is positive definite and
H leaves B invariant. Since the elements of H have determinant 1, H is a
subset of the rotations of R 2 with respect to the scalar product B.

2. Let iT be an element of finite order in SL(n, Q). We pass to C and put
Q in Jordan canonical form:

C••e 1: Q has the form:

Then , an easy calculation shows that Q does not have finite order which is a
contradiction.

C••e !: Q has the form:

Let N = ordeal. Then pH = J,lN = 1. Hence JJ and J,I are roots of unity. We
also know that JJ and J,I lie in a quadratic extension of Q since they satisfy
the characteristic polynomial of Q. In fact if either Iior II is not in Q, both of
them are not in Q and they are complex conjugates. Hence, we can have only
the following cases:

a. IJ = II =1 or JJ = J,I = -1.
b. IJ is a primitive Nt.h_root of unity, N > 2, and II = ji,. Since the Nth ..

cyclotomic field is of degree t;(N) over Q (t; being Euler's function),
we have t;(N) = 2, hence N = 3, 4, or 6. This proves the second
statement.

Let us give explicitly elements of order 4 and order 6 in SL(2, Z). In each case
we shall find the appropriate matrix by considering a quadratic extension
K =Q(z) of Q and representing multiplication by x using the basis {I, z} of
K overQ.

1. An element of order 4:
Take % to be a primitive 4-th root of unity. Then multiplication by x has

order 4 and is represented by the matrix:

(
0 -1)

x = 1 0 ·

2. An element of order 6:
Take z to be a primitive 6-th root of unity. Then multiplication by z has

order 6 and is represented by the matrix:

(0 -1)
z = 1 1 ·

* * •
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Let Ie be a locally compact ultrametric field, A be the valuation ring of Ie,
m be the maximal ideal of A, p =chark, and q = Card(A/m). Let w be the
canonical valuation of Ie, that is, w : k -+ Z U {(X)} with w(k*)=Z. Then the
canonical absolute value on k is defined equivalently 88 follows:

1. For x E A, IIxll =Card(A/xA)-I.

2. For % E k, IIxll = q-w(%).

3. Multiplication by x alters the Haar measure on Ie by IIxli.
Suppose r is relatively prime to p. Consider /r : A* -+ A*. Let

8 = Card(Ker fr) = number of roots of unity in k with exponent dividing r .

Theorem 2. Card(A*IA*r)= IIrll-1 · s.

We shall obtain Theorem 2 as a consequence of a more general theorem
on analytic groups over k. So let G be a commutative compact analytic group
over Ie and define:

hr(G) = Card(Coker fr)/ Card(Ker fr) ·

We shall see in Theorem 3 that hr (G) is well defined, that is, that both
numbers on the right hand side are finite, and we shall compute hr (G). We
shall let n = dimk G.

Theorem 3. The number hr (G) i" well defined and equal to IIrU-n .

Proof. We shall prove the following three statements which imply the theorem:

1. The theorem is true of G = where H is a standard group and
::> o.
2. The theorem is true if G is a finite group.

3. The theorem is true for G ifG contains a normal subgroup manifold H
such that the theorem is true for Hand G/H .

We shall prove the statements in reverse order:

3. Consider the commutative diagram with exact· rows:

1 ---+ H ---+ G --+ G/H ---+ 1

1 ';21
1 -+ H --+ G ---. G/H ----+ 1

where tPl = fr on H, tP2 = fr on G, and tP3 = fr on GIB. Then, there exists
an exact sequence (Bourbaki, Alg. Comm., Chap. 1, §1, n04):
(*)

1 --+ Ker 4>1 -+ Ker tP2 -+ Ker 4>a !. Coker 4>1 --+ Coker 4>2 --+ Coker cPa --+ 1
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Aside from 6, all the maps are defined in the obvious manner. We define 6 as
follows: let x" E Ker t/J3 and choose % e G such that x maps to z" mod H;
then, z" e implies %r E H; define 6(%") = image of %r in Coker 4>1. It
is left to the reader to verify that 6 is well defined and that (*) is exact.

Since the theorem is assumed true for H and G/H, we have that Ker tPl ,
Kerq,3' Coker 4>1 , and CokertP3 are finite. Therefore, Kert/>2 and CokertP2 are
finite since (*) is exact. Abbreviate Card by c. Then, the exactness of (.)
implies in addition that:

1 = c(Ker tPl )c(Ker tP2)-1 c(Ker tP3)c(Coker tPl )-1c(Coker Coker tP3)-1 .

In other words:
hr(G) =hr(H)· hr(G/H) .

Finally to obtain the explicit formula for hr (G), let m = dim, H. Then, we
have also that: n - m = dim,G/H. Then:

Urll-n= IIrU-mllrU-(n-m) .

Since by hypothesis hr(H) = IIrll-m and hr(G/H) = IIrll-(n-m), we obtain
by comparing the above two formulae that hr(G) = Urn-n , as desired.

2. We have an exact sequence:

1 --+ Ker fr ---+ G ---t G --+ Coker fr ---+ 1 .

Then, since G is finite, Ker /r and Coker /r are finite, n = 0, and:

&. 1 =c(Coker fr)c(G)-l c(G)c(Ker /r)-l = hr(G).

b. 1 =Urll-a .

This proves 2.

1. We need only prove this part for large'\ E Z. Hence, by Theorem 3 and
4 of §9, we may assume that ,\ lies in the range such that fr : G" -+ G"+w(r)

is an isomorphism. Then:

&. c(Ker fr) = 1.

b. c(Coker fr) = (qw(r»n = Ifrll-n.
This proves 1 and the theorem as well.

Exercise. Using, for example, Haar measure, one may show that if G .-!..-. G,
where q, is an analytic etale group endomorphism of G, then

1. Kert/> and Cokert/> are finite.

2. h. =c(Coker4»/c(Ker</» = IIdetTet/>lI-l.
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Unless otherwise specified, Ie will denote a field complete with respect to a
non-trivial absolute value.

1. The Lie algebra of an analytic group chunk

Suppose F(X, Y) is a formal group law over k. Then we have seen that:

1. F(X, Y) =X +Y +B(X,Y) +O(tJO 3), where B(X,Y) is a bilinear
form on kn (Chap. 4, §7, nOll.

2. Define [X,Y]F =B(X,Y) - B(Y,X). Then lX,Y]F defines on len a Lie
algebra structure (Chap. 4, §7, n06).

We say that [X, Y]F is the Lie algebra associated to the formal group F.

Now suppose that G is an analytic group chunk over Ic. Let L(G) = 9 =
TeG. We define a canonical Lie algebra structure on • as follows. Choose a
chart c = (U, tjJ,n) of G at e. Then the group law on G is induced via t/J from
a formal group law F on leA. Let Ii> : lJ -+ leA be the isomorphism which is
determined by t/J. Then, for x,y E 9, define:

We contend that [x,Y]e is in fact independent of the choice of c. To show this
we prove the following lemma:

Lemma 1. Let G and G' be analytic group c and c' charu at e and
e', and f : G ---+ G' a local homomorphism. Then Tel: • --+ 9' iI a Lie
algebra homomorphi8m with re.9pect to the [ , ]e anti [ , leI.

Proof. The proof is immediately reduced to:

Lemma 2. Let F(X, Y) and F'(X', Y') be two formal group laws and let I
be a formal homomorphism from F and F'. Let 11 be the linear part 0/ I.
Then:

Proof. From Chap. 4, §7, n05, we have:

f(X)-1 f(y)-1f(X)f(Y) = lfl(X),fl(Y)]FI+O(tJO 3)
!(X-1y-lXY) = !l([X,Y]F)

Comparing the terms of degree 2, we obtain the lemma.

Definition. In the above setting, we say that lJ together with its canonical
Lie algebra structure is the Lie algebra of G.
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Lemma 1 shows that the construction of the Lie algebra of a group
chunk is functorial.

2. Elementary examples and properties

1) The Lie algebra of a general linear group.
Suppose R is an associative algebra with unit which is finite dinlensional

over. Ic. We have seen (Chap. 4, §2, n01) that Gm(R) is an analytic group
which is an open subset of R. Hence T1Gm(R) =R. Multiplication in Gm(R)
has the form:

(1 + x)(1 + y) = 1+ x + II + xy .

This law of multiplication corresponds to the formal group law:

F(x,y) = x + y + X1/ •

Hence, the Lie algebra structure on TIGm(R) =R is given by:

(x,y]=xy-yx.

In particular, we obtain the usual Lie algebra structure when R is the endo­
morphism ring E(V) of a finite dimensional vector space V.

2) The Lie algebra of a product
Suppose G1 and G2 are analytic groups. Then the linear isomorphism of

Te(Gl X G2 ) with TelGt X Te2G2 is a Lie algebra isomorphism. Indeed, let Ci

be a chart at ei on Gi and let C = CI X C2 be the product of the charts Ci.

Then, the product of the Lie algebras [ , lCi is [ , lc.

3) The Lie algebra of a group submanifold
Suppose G and H are analytic groups and that f :H -+ G is an analytic

group homomorphism which is an immersion. Then L(f) : L(H) --. L(G) is
injective. Hence L(H) is identified with a Lie subalgebraofL(G). In particular,
we may apply this remark when H is a group submanifold of G and f is the
inclusion.

Let us consider in more detail the case where char k = o.

Theorem. Suppole chark = 0 and let HI and H2 be group o/G.
Theft, Ht nH2 u a group ofG and L(HI nH2 ) = L(HI )nL(H2 ).

Proof. By Theorem 1 of Chap. 4, §5, GIHI is a manifold. Let x be the coset
HI in GIHt • Then H2 acts on G/H1 and the stabilizer of x is HI nH2 • Since
chark =0, Ht nH2 is a group submanifold ofG (Chap. 4, §5, Thms. 2 and 3).
Finally, L(Hl n H2 ) may be identified with its image in L(G) which is the
kernel of the map: TeH2 -+ TeG/TeHl , that is, with L(Hl ) n L(H2).

Corollary 1. Suppole L(H1 ) C L(H2 ). Then, in tJ, neighborhood of e,
HI C H2 •
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Proof. Indeed, Te(HI n H2 ) = L(HI ) n L(H2 ) = L(HI ) = Te(HI ), and
HI nH'l C HI. Hence, HI nH 2 and HI agree in a neighborhood of e, that is,
HI C H'l in a neighborhood of e.

Corollary 2. SUPpole L(H1 ) = L(H2). Then, in fI neighborhood 0/ e,
HI =H2 •

Corollary 3. Let G1 and G2 be analytic group' and let tP : G1 -+ G'l be
analytic group homomorphu1TU. Then, and tP agree in a neighborhood of el
if and only if L(t1J) =L(.,p).

Proof. The graphs G. and Gt/J of tP and tP in G1 G2 are group submanifolds.
Now using the identification of n02, we have:

L(G.) = {(%,y) E L(G1 x G2 ): tI =L(tj)(z)}

L(G.,) = {(x,y) E £(G1 x G2 ): y = L(t/J)(%)} ·

Hence, by Corollary 2, the following statements are equivalent:

a. t/J and 1/J agree in a neighborhood of el.

b. G. and Gt/J agree in a neighborhood of (el,e2).

c. L(tIJ)= L(t/J).

This proves the corollary.

4) The Lie algebra of a kernel
Suppose G and H are analytic groups and t/> : G -+ H is an analytic group

homomorphism which is a subimmersion. Let K = Then, we have seen,
in Chap. 4, §5, Cor. of Thm. 2, that K is a group submanifold of G. Moreover,
we have:

L(K)=KerTe<p = { % E L(G) : L(t/J)(x)=o} .

3. Linear representations

Let G be an analytic group and V be a vector space. Then, a linear reprelen­
tation of Gin V is an analytic group homomorphism q : G -+ GL(V). The
group G acts on V via q:

9 · v =q(g)(v) .

We obtain from (1 an induced representation of L(G) via the induced homo­
morphism a : L(G) --+ E(V) of Lie algebras.

1) Basic examples
1. The identity representation: GL(V) --+ GL(V).

I. Let V* denote the dual of V. Define * : GL(V) -+ GL(V*) to be the
map u t-+ &u-1 • Then, * is an analytic group isomorphism. Let 1 = Idv and
1* =Idv-. We have in a neighborhood of 1:
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00

.(1 + x) = (1* + 'X)-I = L(-l)P('x)P = 1* -'x + O(tfJ 2) .
,,=0

In particular:

3. Let VI, ... , Vn be vector spaces and set V =Vi 0··· 0 Vn. Define:

B: E(Vi) x·· · x E(Vn ) -+ E(V) ,

by
B(Ul,. • • ,Un) = UI • • • 0 Un •

Then, 8 induces an analytic group homomorphism of n:'::1 GL(l'i) to GL(V).
In a neighborhood of 1 in G =n:'::1 GL(l'i), we have:

n

8(1 +Xl, ••• , 1+ X n ) =1+L 1 0 · · · 0 Xi ® . · · ® 1 + O(cf 2) .
i=l

In particular:

n

L8(Xl' ... 'Xn )= Ll® ... ®Xi®···®l.
i=l

4. Let Vi, ... , Vn and W be vector spaces and set V = L(Vi, ... ,Vn;W)
and G = (n::l GL(Vi» x GL(W). Then, V is canonically isomorphic to
VI* ® ... 0 V: 0 W. We may therefore apply Examples 2 and 3 to obtain
a map (J : G -+ GL(V). This map is given explicitly by:

B(Ul, ••. ,Un,w)(v) = W 0 V 0 (Ul 0 · · ·® un)-l •

Translating our previous result, we find that:

n

L8(Xl, ... ,Xn ,z)(y)=zoy-Lyo(l® ... ®Zi®···®l).
i=l

5. Let G = GL(V) and consider the analytic homomorphism

det: G -+ Gm(k) ,

where det denotes the determinant map and we have viewed k* as Gm(k). In
a neighborhood of 1 in G, we have:

det(l + x) = 1+ tr(z) + ... + det(x) = 1+ tr(x) +O(tf 2) ,

where tr denotes the trace map. In particular:

L(det)(x) = tr(z) .
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2) Kernels of representations
We may apply example 4) of §2 whenever a linear representation is a

subimmersion. In particular, let us apply it to 5 of nOI. The determinant map
is a submersion (if V =1= 0) so that the hypothesis is satisfied. We define:

SL(V) = special linear group =Ker(det) .

In particular, combining the calculations of §1, n04, and nO, 5, above, we
obtain:

L(SL(V» = {x e E(V) : tr(x) = o} .

3) Stabilizer subgroups
Assume char k = o. Then we have seen that if G acts on X and x EX,

the stabilizer G% = {g E G : 9 · x = x } of x is a group submanifold of G
(Chap. 4, §5, ThIns. 2 and 3). We now apply this to representations.

1. Let tr : G -+ GL(V) be a linear representation of an analytic group G
in a vector space V and let v E V. Considering the action of G on V induced
by (T, we have that Gv is a group submanifold of G and:

L(Gv ) ={x E L(G) : o'(x)(v) =O} .

Indeed, let q, : GL(V) --+ V be the map u t-+ u(v). Then TetP : E(V) -+ V
is the map y t-+ y(v). Since TeGv = = 0 0-), the desired
result is proved.

I. With notation as in 1, let / E V* and consider the stabilizer subgroup
G/ with respect to the representation * 0 a : G -+ GL(V*). Then:

G/ = {g E G : / 0 O"(g) = / }
L(G/) = { x E L(G) : / 0 0'(x) = o} .

To prove the first statement, it suffices, since G/ is a group, to show that
g-1 E G/ if and only if 10 O"(g) = I. But:

* 0 O"(g-1 )(f) = to"(g-1 )-1 (f) = 1 0 C7(g) .

The result is then a consequence of the definition ofG/. To prove the second
statement, it suffices from 1 to show that L(* 0 tr)(x)(/) =0 is equivalent to
loo-(x) = o. But, by nOs 1, 2, we have:

L(* oO")(x)(/) = _to'(x)(f) = -10 o'(x) .

The desired equivalence is clear.
A particular kind of group which may be obtained in the above manner

is the affine group A(V) of a vector space V. We identify V with the group
of translations on V. Then, A(V) is the semi-direct product of V and GL(V).
The group law is given by:
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We may identify A(V) with the subgroup G 'of GL(V X Ie) of transformations
which leave hyperplanes parallel to V invariant. We do this using a map
tI : A(V) --+ G which is defined as follows:

a(v,g)(w,a) = (av + gw,a) .

The group G is however just the group GL(V X 1t)1 with respect to the linear
form J :V x Ie -+ k defined by f(W,Ol) =Ol.

s. Let 17 : G -+ GL(V) be a linear representation of an analytic group G
in a vector space V and let PE (V 0 V)·. Let 8 : GL(V)2 --+ GL(V 0 V) be
the analytic homomorphism defined in nOl, 3, when V = \t1 = V2. Consider
the composite representation T = (J 0 (17 X (1) of G into GL(V 0 V). Then,
applying !, we obtain:

Gil= {g E G : P((1(g) x (7(g» =p }
L(GIl)= {z E L(G): (J(i7(z) 01 + 106(%» =o} .

The condition defining L(Gfl) is equivalent to:

P(u(z)v,w) + P(v,u(z)w) = 0 , for all v,w e V.

There are two applications of the preceding discussion to the case when
G = GL(V), (7 is the identity representation, and V = Ie", which are of
particular interest:

A) Orthogonal Group
Take fJ to be the bilinear form on k" defined by:

"
,8(ZI, ... ,X";!ll,·.·,tI,,)=LXiYi.

i=1

The group Gfl is called the orthogonal group of Ie". Let us determine GfJ and
L(GfJ) explicitly. First note that for u E E(k"):

P(ux, II) =P(x, 'uy) , for all x, tI e left.

Thus, we find that for x,y E Ie":

&. For 9 E GL(k"), fJ(gx,gy)= P(x,Y) {=:} P(z, 'ggy) = P(z, y)

b. For u E E(Ie"), P(ux,y)+ ,8(x,uy)=0 {=:} P(z,(Cu +u)y) = O.

Since Pis non-degenerate, we obtain:

GfJ ={g E GL(kR
) : 'gg = 1 }

L(GIf) = {U E E(k") : 'u + u =O} .
B) Symplectic Group

Take n = 2m and take (J to be the bilinear form defined by,
()()

(J(ZI, ... ,Z2m;Yl,···,Y2m) = L(ZiYm+i -Zm+iYi).
i=1
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The group Gfl is called the symplectic group of k2m• Let us determine Gfl and
L(Gfl) explicitly. We identify E(k'" x km ) and E(kfl). Thus, we may write a
linear map u : k" -+ k" in the form:

where A,B,C,D E E(km ). Given a matrix u as above, define u' by:

, (fD
u = -'0

Then, one checks that for x, y E kn :

fB )
fA ·

fJ(ux,y) = (J(x,u'y) ·

Using this fact and the fact that P is non-degenerate, it then is easy to show
that:

Gfl = {g E GL(kn
) : g'g = 1 }

L(Gp) = {U E E(kR
) : u' + U =o}

The conditions defining L(G{J) can be shown to be equivalent to the three
conditions fA+D = 0; fB = B; 'C = c.

4. The method of stabilizer subgroups can be applied whenever one com­
bines several representations using the basic representation of nOl. We leave
the formulation of the general statement to the reader and instead present
one additional example of its use. Let A be a finite dimensional algebra over
k and let fJ : A ® A --+ A be the multiplication map. Let G = GL(A). Then,
the following statements are equivalent, £9r 9 E A:

a. 9 E Gp.

b. For all x,y E A: gfJ(g-lx,g-ly) = P(x,y).

c. For all X,!I E A: g(xy) = (gx)(gy).

Indeed, a) and b) are equivalent by definition; the equivalence of b) and c)
follows from replacing x by gx and y by gy in b) to obtain c). Hence, Gp is just
the group of automorphisms of the algebra A. We shall now show that L(G,)
is the space of derivations of A into A. Indeed, the statement that d E L(Gfl)
amounts to:

For all x,y E A: dp(x,y) - P(dx,y) - P(x,dy)=0 .

The formula in the above condition is simply: d(xy) = (dx)y + x(dy), which
proves the contention.

4) Adjoint representation
Let G be an analytic group and consider, for each g E G, the inner au­

tomorphism 4J, : G -+ G defined by x ...... gxg- I.• Let 8 = L(G) and let
Ad : G -+ GL(g) be the map 9 ...... TetP,. Clearly Ad is a group homomorphism
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and we shall see in a moment that Ad is analytic. Hence, we can consider
L(Ad) : • --+ E(S). We shall show that this map is just the map ad : 9 --+ E(g)
which may be defined in general for Lie algebras.

Since Ad is a group homomorphism, we need only check that Ad is ana­
lytic at e to show that Ad is analytic everywhere. We shall compute Ad in a
neighborhood of e in local coordinates. By Chap. 4, §7, n03, we have:

tP,(x) = x+ [g,x]+ Ldo,JlgOz' ,

where 101 1, IPI 1, lal + IPI 3. Hence, Ad(g)= is the map:

Z ...... Z +(g,z] + L: do,,,g(/lz" ·
IPI=1

This shows that Ad is analytic at e. Moreover, since 1111 =1 in the last sum,
10 1 2 in the last sum. Hence, T. Ad(y) is the map : z ..... [y,z]. Thus,
L(Ad)(y)=T. Ad(y) =ad(y), as desired.

4. The convergence of the Campbell-Hausdorff formula

Theorem 1. Let char Ie = 0 and let 9 be a finite dimeruional Lie algebra over
k. Then" u the Lie algebra of an analytic group chunl;.

Proof. Let n =dim 9. We shall make use of the Campbell-Hausdorff formula
(L.A., Chap. 4, §§7 and 8) to define a formal group law in n variables satisfying:

1. F is convergent

2. , is isomorphic to the Lie algebra kn under [ , ]F.

We divide the proof into several steps:

1) Let Xl, ... , X n be a basis of 9. Then, there exists unique "structure
constants" "'Yt = ••. ,xn ) such that, for all i and j:

n

[Zi,Zj] =L: -ybzIa •
h=1

Define "'Y = "'Y(Xl, ••· ,x,,) = max l"'Yt I. We observe how and "'Y behave under
the change of basis defined by multiplication by =I: 0, E k:

· · =Ait(Xl' . •• ,xn )

· · = IAli(Xl, ... ,x,,) ·

2) Let R = Ie[(X, Y]] = k[[X1 , • •• ,Xn , Y l , ••• ,Yn ]] and let E = R". Corre­
sponding to the basis Xl, ... , X n of 9, define a Lie algebra structure on E by
the formula:

" n

[(Ii), (gj») = (L:L -ybfigj) ·
i=l j=1
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In particular, let us consider ad(X) and ad(Y) where X =(Xt , ••. ,XA ) and
Y =(Yj, ... ,YA ).

We say that P = (Pt , ..• ,PA ) e E is a homogeneous polynomial of degree
r if each Pi is a homogeneous polynomial of degree T. We let IIPII be the
maximum of the absolute value of coefficients of the Pi in this case.

Lemma 1. Suppo,e PEE u homogeneou, of degree r. Then, ifZ = X or
Y, ad(Z)(P) u homogeneou, of degree (r + 1) Gndll ad(Z)(P)1I :5 n2'1I1P II·

Proof. Consider, for example, Z = X. Let ad(X)(P) = (Ql' ... ,QA) and let
Pj = and QIa = Then:

QIa =L ·

Hence, each Qh is homogeneous of degree (r + 1) and in particular:

n n

b:,p =L L •
i=1 j=1

Let m denote the maximal ideal of R. Then:

Corollary. Let Z = X or Y and let r o. Then ad(Z)(mr E) C m r +1E.

3) Let S = {x,y} be a set with two elements and consider the free Lie
algebra Ls on S and its completion Ls = Ls(L.A., Chap. 4, §§ 3 and
7). Let 8 be the canonical Lie algebra homomorphism from Ls to E such that

Lemma 2. For r > 0, 6(L8) c mr E.

Proof. This follows immediately from the corollary to Lemma 1 of n0 2.

In particular, 6 extends uniquely to a Lie algebra homomorphism of 1,s
into E.

Now, let z E £s be the unique element such that = eJ (L.A., Chap. 4,
§7, Thm. 7.4). We let F = 6(%). It follows easily from the remarks at the end
of §7 of Chap. 4 of L.A. and from arguments similar to those of Lemma 2 that:

1. F is a formal group law in X and Y.

2. B(X,Y) = ilX,Y).
In particular: lX,Y)F = ilX ,Y] - ilY,X]= [X, Y).

We now prove:

Theorem 2. F u convergent.



138 Part II - Lie Groups

Proof. We shall need two elementary lemmas:

Lemma 3. The lurn il convergent for t lufficientlll Imall:

2: tEp/+E9i.
PI.···.Pm
'ltp··.9m

Proof. The above formal sum may be written as:

For t < 1, the term in parenthesis converges to a where:

1
a = (1 _ t)2 - 1 ·

For t sufficiently small, Q < 1. Then, the first sum is just a geometric series
with ratio less than 1, hence it converges.

Lemma 4. There ezi"t, a conltant a, 0 < a $; 1, luch that:

and (n E Z, n > 0).

Proof. We consider three cases:

A) Ie is archimedian.
Take a = 1.

B) Ie is ultrametric and the restriction of the absolute value to Q is trivial.
Take a = 1.

e) Ie is ultrametric and the restriction of the absolute value to Q is some
p-adic absolute value.

First note that the second inequality follows from the first since we have:
I(n - 1)!1 1, for all n 1. Then take a = IpP/(p-l). We have:

nIn!1 an v,(n!) $ --1 ·
p-

However:
n n n n n

v,(n!) = [-] + [-] + ... - + - + ... = - .
P p2 P p2 p-l

We now prove Theorem 2 which will at the same time complete the proof
of Theorem 1.
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We note first that since change of coordinates by multiplication by a non­
zero constant does not effect convergence we may assume that the basis %1,

• • • , %n of • has been replaced by a basis '\Xl, ... , ,\%n of 8 80 that:

We use the old notation Xl, ••• , X" for the new basis %1, ••• , %". We then
have from Lemma 1:

Lemma 1'. PEE i" 01 degree r. Then, ifZ = X or
Y, ad(Z)(P) u homogeneous of degree (r + 1) and II ad(Z)(P)1I IIPII.

Next, we use Dynkin's formula (L.A., Chap. 4, §8) to write down explicitly
F = 6(z). We find that F(X, Y) =E" j,,(X,Y) where the homogeneous part
I" of F of degree II may be written as:

f,,(X,Y) = L U;.,(X,Y) + t:.,(X,Y» ·
P+9="

Here:

1;,9 = L
Pl+···+Pm=P

:11 +···9m-l=9-1

=
J',9 L..J

Pl+···+Pm-l=p-l
91+···9m-l='

(_l)m+l ad(X)Pl ad(Y)91 ... ad(X)Pm(y)
m Pllql!·· Pm!

(-1 )m+l ad(X)Pl ad(Y)91 · · · ad(y)'m-l (X)
m Pl!ql!··· qm-l!

By Lemma I' , each of the numerators in the above expression is a homogeneous
polynomial of degree v whose coefficients have absolute value equal to or less
than 1. Also, using the expression for [ , ] we see by induction that the number
of monomials actually appearing in each numerator is equal to or less than
n2". Hence, we can majorize each numerator by a real polynom of degree II in
X and Y which is the sum of n211 monomials each of which has coefficient 1.
Such a real polynomial is estimated at a radius vector (s, ... ,s) e R2n by:

n2"s" = (n2s)P+' .

On the other hand, by Lemma 3, the integers which appear in the denominator
can be estimated by:

Ivl a" = aP+9

Iml am aP+9

IPI !qI ! · · ·Pm!I } > aEPi+E 9i = aP+9 .
Ipl!Ql!···qm-1 11 -
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Hence, setting t = (n2s/a3 ), we see that the components of the formal group
law F can be majorized by twice the formal sum in Lemma 3. Since that sum
converges for t sufficiently small, F converges for s sufficiently small as was
to be shown.

Remara. 1) When 8 is a nilpotent Lie algebra (L.A., Chap. 5, §2) then F is
a polynomial so that the convergence is trivial.

2) To obtain an estimate for the radius of convergence, one might estimate
the constants in the proof, namely:

1. The constant a in Lemma 4.

2. The radius of convergence of the series in Lemma 3.

In fact, it is easy to see that the series in Lemma 3 converges for:

v'2 -1
t< v'2 ·

Hence, F converges on every polydisk of radius (R, ... ,R) where R satisfies:

R a3 v'2 -1
< n2 v'2 ·

This estimate is not' particularly good and no good estimate is known when
k=Ror C.

Suppose that Ie is ultrametric and that the restriction of the absolute value
to Q is some p-adic absolute value. Suppose that 8 is a Lie subalgebra of
L(Grn(R» where R is a finite dimensional associative algebra with unit over k,
that is, 9 C R and [x,yl = xy - YX.E 9 for all x, y E 8. Assume, for simplicity,
that the multiplication on R satisfies Ixyl 'xl'y'. We may then define the
exponential series:

X x2
e% = 1+ - + - + ...

I! 2!
Then the exponential defines an isomorphism of an open additive subgroup
M onto itself where M is defined by:

M ={x E R : v(x) < v(p)1 } •
p-

We may define a group law on M by setting G(x,y) equal to the unique
z E M such that: e%e' = e%. It is clear from the construction of the Campbell­
Hausdorff' formula (L.A., Chap. 4, §7, Thm. 7,4) that this formula agrees with
the Campbell-Hausdorffformula where the latter converges. Lazard has shown
that the Campbell-Hausdorff formula converges in fact on M. In particular,
by restriction, we obtain convergence of the Campbell-Hausdorff formula on
Mn".

3) Since we have shown in Chap. 4, §8, that, when Ie is ultrametric, every
analytic group chunk corresponds to an analytic group, we have:



Chapter V. Lie Theory 141

Corollary. Suppo,e k u ultrametric of chtlnJctemtic zero. Then, u the Lie
algebra of an antilytic group over k.

5. Point distributions

In this section, we shall introduce "distributions whose support is concentrated
at a single point". We shall use this concept as a technical tool in the next
section where we prove the equivalence of the category of formal groups with
the category of Lie algebras.

In considering "formal" questions, we shall assume that k is simply a com­
mutative ring with unit or perhaps a Q-algebra, while in considering "con­
vergence" questions we shall assume as usual that Ie is a field complete with
respect to a non-trivial absolute value.

1) Let X be a manifold and let P E X. Recall that in Chap. 3, §7, we
defined the local ring H p of X at P and we let mp denote its maximal ideal.
We showed there that if n = dimp X then H p is isomorphic to the ring of
convergent power series in n variables. We shall give Hp the topology defined
by.letting the powers of mp be a basis of the neighborhoods of o. Note that
k C H p inherits the discrete topology. We now define a point tli"tribution on
H p to be linear form u : H p --+ Ie such that the following equivalent conditions
are satisfied:

1. u vanishes on some power of mp.

2. u is continuous on H p with respect to the discrete topology on k.
By extension, may also consider u as a linear form on the completion k p of
H p. Note that H p is isomorphic to the formal power series ring in n variables
over k.

2) Now let Ie be a commutative ring with unit and let H = k([XI , • .• ,Xn ]]

be the formal power series ring in n variables over Ie. Let m be the ideal
generated by Xl, ... , Xn and, for any positive integer r, let Hr =H/mr+1 •

Also let Ur =H: =L(Hr , k). Then, as above, we say that a linear form u on
H is a point tli,tribution if the following equivalent conditions are satisfied:

1. For some integer r, u vanishes on m r +l , that is, u factors through the
projection H --. Hr.

2. u is continuous on H.
Let U c H* be the subspace of point distributions.

Consider the projection H --+ Hr. Dualizing, we obtain an injection
Ur -+ H*. Then U may be identified with the union of the images of {Ur }.

Let us consider in more detail the k-module structures of H and U. By
definition, H is the product: no k· XO. We may define, for each 0, an element

E U by:
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The elements dO of U are clearly linearly independent over Ic. Moreover, since
each element u E U vanishes on some power of m, we may write u as a finite
linear combination over k of elements of the form L10. Therefore:

Lemma 1. U =EBo k· 11°.

Also:

Lemma 2. U* = H.

Proof. Since U C H*, we have a map H -+ H*· --+ U·. Under this map, XO
is identified with the linear form on U which is 1 on L10 and 0 on L1fJ, fJ /:F Q.

Then:

Remark. The distribution e = 11° is called the Dirac distribution.

Now let us consider the structure which the multiplication map

induces on U. In the ring H H, consider the ideal

We let H 0 H have the topology defined by the powers of m. It then follows
that I' is continuous so that JJ extends to the completion H @H of H ® H.
Let II be the space of point distributions of H ®H or equivalently on H ®H.
Then the dual p.* : H* --+ (H ®H)* induces by restriction a diagonal map
6 : U -+ II. The terminology "diagonal" is justified by:

Lemma 3. 1. The canoniC4l map U ®U -+ II i, an uomorpwm.
2. (Leibniz'.9 formula) c5(L10) =E fJ+"r=oL1fJ ®L1"r.

Proof. Let Xi ® 1 = }Ii and 1 ® Xi = Zi for 1 i n. Then the canonical
inclusion: H®H --+ k[[Y1, ••• , Yn , Zl, ... , Znll =H extends to an isomorphism
of H ®H and H. Under this identification, II has a canonical basis L1o,fJ
defined by:

L10,fJ(yGZ 6) ={I if Q = a and (J = b .
o otherwise

The map U ® U -+ Il identifies the basis element L10 0 of U ® U with the
basis element 11o ,fJ of Il.. This proves statement 1.

To prove statement 2, we consider the operation 6(L1°) on a typical mono­
mial yfJZ"r. Then: Z-r) = L10(/J(yfJZ"r» = LlO(XfJ+"r).We see that
this is 1 jf {J+ '1 = Q and 0 otherwise. This proves Leibniz's formula.
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Finally, since H = k EB m, we may generalize the notion of tangent vector
to the algebraic situation we have been studying. Let us say that u E U is a
tangent vectDr if the following equivalent conditions are satisfied:

1. u : H -+ Ie is a derivation.

2. u vanishes on k and m2 •

3. u is a primitive element for 6, that is, 6(u) = u ® I + 1® u.

The equivalence of I and 2 follows just as in Chap. 3, §8, nOI; the equivalence
of 1 and 3 follows from Leibniz formula.

6. The bialgebra associated to a formal group

We shall motivate the study of the "formal" case by first considering briefly
the "convergent" case.

1) Let G be an analytic group. Let H be the local ring of G at e, m the
maximal ideal of H, H the completion of H with respect to the topology
defined by m, and U the point distribution on H or H. Then, by the formal
theory of §5, n02, we have defined a diagonal map 6 : U -+ U ® U. We
shall now define a multiplication 8 : U ® u -+ U using the group law on G.
Indeed, let t/J : G x G -+ G denote the group law. Then, we may define a map
u : He -+ He,e by: / ...... f 0 t/J. Here He = H and He,e is the local ring at
(e,e) on G x G. We get from q a map it: H -+ He,e = if0 H. Dualizing 0',

we obtain the desired map 8 : U ® u -+ U. We shall see in the "formal"
discussion that U is an associative algebra under 8 with unit equal to the
Dirac distribution.

2) We use the same notation and assumptions as in §5, n02. In addition,
we let H = k[[Yi, ... ,Yn,Zl, ... ,Znll and we let F E Hn be a formal group
law in n variables over k. Recall that we noted in the proof of Lemma 3 of §5,
n02, that H =H 0 H. We shall let m = m 0 H + H ®m.

Since F is without constant term, given / E H, wemay form the composite
/0 F E H (Bourbaki, AIg., Chap. 4, §5, n05). Let q : H -+ H denote the map:
/ ...... f 0 F. Then, q(mr ) C m r so that q is continuous with respect to the
topologies defined by m and m. Hence u induces a map 8 : U ® u -+ U by
dualizing.

Lemma 1. 8 make, U into an a"ociative algebra with unit equal to the Dirac
tlutribution.

Proof. We shall be concerned with the power series ring H = k[[Y,Z]] and with
the power series ring H = k[[Y,Z, W)) where W = (WI, ... ,Wn ). We shall
let L1lv denote the elements dual to the monomials yo, ZIJ, W"Y
respectively. Then, for example, the product is dual to yoZIIW"Y.

We now prove the associative law for 8. Let Llo ® 1111 ® Ll"Y be a typical
basis element of U ® U ® U. Let / E H. Then:
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8(LlIJ,L1-r»1 = 0 F(Y, F(Z,W»)

8(8(LlO , 4 JJ), L1-r)1 = 0 F(F(Y, Z), W» .

The associativity of 8 therefore follows from the associativity of F.
We conclude the lemma by showing that the Dirac distribution e is a unit

for the multiplication in U. Let L10 e U and f e H. Then:

6(e, L1°)f= eyL1z(1 0 F(Y, Z» = L1z(1 0 F(O, Z» =Llz(/(Z» .

This shows that 8(e, L10) = L10. Hence, e is a left unit, and it is shown in a
similar way that e is a right unit.

Lemma 2. The diagonal map 6 : U ..... U U u an algebra homomorph,Um,.

Proof. We must show that the following diagram is commutative:

(U0U)0(U@U) (U0U)0(U0U)

.
U®U u U®U

where o(z ® II ® z ® t) = % ® Z @ II ® t.
Since all the modules appearing in the diagram are free, it suffices to show

that the dualized diagram is commutative:

(H ®H) (H ®H) (H H) (H H)

ii H0H

Since all maps are continuous with respect to the appropriate topologies, it
suffices to check commutativity on elements of H 0 H of the form f 0 9 where
1,9 e H. But:

{,(p(f ® g» = u(1 ·g) = (f · g) 0 F =(/ 0 F) · (g 0 F)
= (I-' ®1-') 0 0'(I 0 F ® 9 0 F) = (1£ ®1£) 0 0/ 0 (u 0 u)(/ g» ·

This proves the lemma.

The space U together with the diagonal map 6 : U --+ U ® U and the
multiplication map 8 : U ® u -+ U is called the bialgebra associated to the
formal group F. We use the notations: B(u, v) = u *v and [1£, v]. = 1£ *V - V *u.

Lemma 3. For all 0 and {J, L10 * L1fJ = (0;1I)L10+11 + Eo ,lI, where the error
term Eotll U A linear combination of L1-r with. 0 < 111 < 10+PI·

Proof. We must show that if 111 10+PI then L10*L111 and (0:1I)L10+11 agree
on X-r and that Ea ,1I vanishes on k. But:



and
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x-r 0 F(Y, Z) = (F(Y, Z»-r = (Y + Z)-r + O(tfJ > 11'1) ,

(Y+Zp = L (i)y.\Zp.
Since Llo *L1t1(X-r) = 0 F(Y, Z», one finds:

L10 * L1J1(X-r) = {(":II) if -y = + {J
o otherwlse

= (Q: {J).1o+II(X'Y) .
This proves the assertion about the action of L1Q * Ll' and (O;tI)L1o+JI

in X-' if > 10 + PI. We also see that both elements give 1 on Xo when
Q + fJ = 0 and 0 otherwise so that Eo,fJ always vanishes on k.

Let 9 be the Lie algebra associated to the formal group F (§1). Then, the
vector space underlying 8 is kn • We let Di be the i-th standard basis vector of
len and define 1/J : tJ -+ U by: 1/J(Di) = Ll6•. Then, by definition, 1/J is a linear
isomorphism of tJ onto the set of u E U such that u vanishes on Ie and m2 •

Lemma 4. Let x, y E tJ and let f E H be a linear function. Then

.p([x,y])f = f(B(x,y) - B(y,z» ·

Proof. Since, by definition, [x,y]= B(z,y) - B(y,z), we must prove:

f/J([z, yl)f = f([x, yl) ·

Then, since both sides of this equation are trilinear in x, y, f, it suffices to
consider the case when x = Di, Y = Dj, and f = X". Then, both sides of the
equation reduce to the structure constant . •. ,DR)' which proves the
lemma.

Theorem 1. tP u a Lie algebra homomorphism: tP([x,yl) = [tPx , tPY].·

Proof. We know that 1/1([x,y]) vanishes on k and m2 and it follows from
Lemma 3 that [tPx,tPy]. vanishes on Ie and m2 • Hence, to prove the desired
equality, it suffices to show that f/J([x,yl) and [tPx,f/Jy]. agree on a set of coset
representatives of m/m2, for example, the linear functions. Let f E H be a
linear function. Then:

[t/Jx,1/Jy].f = (t/lx® tPy - tPY ® 1/Jx)(f 0 F(X, Y»
=(1/Jx tPy - tPY ® tPx)(f ·X + f· Y + f· B(X,Y) + ...)
=(1/Jx ® tPY - tPy ® 1/Jx)(f •B(X, Y»
= f(B(x,y) - B(y,x» .

The desired equality follows now from Lemma 4.
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Henceforth, we a"ume that k u a Q-alge6ra. Par abus de notation, we
let t/J : U9 -+ U denote the map induced by t/J : 9 --+ U (L.A., Chap. 3, §1,
Def. 1.1).

Theorem 2. t/J :U9 -+ U is a bialge6ra uomorphum.

We have defined filtrations on U9 (L.A., Chap. 3, §4) and on U (§5, n02).
We verify immediately that "p is compatible with these filtrations and that the
filtration on USJ (resp. U) is separated, exhaustive, and makes UII (resp. U)
discrete. Hence, by Bourbaki, Alg. Comm., Chap. 3, §2, nOB, Cor. 3 of Thm. 1,
it suffices to show that gr(t/J) is bijective to prove that t/J is bijective.

We know from -,he Poincare-Birkhoff-Witt Theorem (L.A., Chap. 3, §4,
Thm. 4.3) that U9 is a free k-module with basis DOl = ••·D:". Since k is
an algebra over Q, we know that U is a free k-module with basis DOl =
By Lemma 2, t/J(DOl) and lJOl agree in gr(U). Hence gr(t/J) is bijective so that
tP is bijective:

We know that 1/J is an algebra homomorphism so that to show it is a bialge­
bra homomorphism it remains to show that the following diagram commutes:

Ug Ugfi!JUg

.,! ·
U U®U

We know, by L.A., Chap. 3, §5) Prop. 5.2, by §5, n02, Lemma 3, and by
Lemma 2 above that:

1. L1 and fJ are algebra homomorphisms.

2. For U E 9 C U9, (tP ® tP )Ll(u) = .,pu fi!J 1+ 1 69 t/Ju = fJ 0 .,p(u).
Since, SJ generates the algebra Us (L.A., Chap. 3, §4, Prop. 4.1), .,poll= fJo.,p
on all of U9, as desired.

Theorem 3. Let T : (FG) --+ (LA) be the junctor from the category of formal
groups over k to the category of finite dimensional Lie algebras over k defined
in §1. Then, T u an equivalence of categories, that u:

1. For F1 ,F2 E (FG), the map: Hom(F1 ,F2 ) --+ Hom(TF1 ,TF2 ) u a
bijection.

2. Given 9 E (LA), there exiJts F E (FG) ,uch that TF i" isomorphic to
9. (Recall that k is "upposed to be a Q-algebra.)

Proof. 1. For i = 1,2, let Fi be the formal group law in ni variables over k,
Hi be the formal power series ring: k[[X1 , ••• ,Xni)), Ui be the bialgebra of
point distribution on Hi, Si be the Lie' algebra associated to Fi, and Ili be
the universal algebra of lJi; use the notations:

a. JJi : Hi ®Hi Hi
8i : Ui ® Ui Ui multiplications maps
Hi : Ili ® IIi -+ IIi
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b. iTi : Hi -+ Hi ®Hi
6i : Ui -+ Ui @ Ui diagonal maps
6· : rr. -+ u· 10. U·_,!I!.I _1'01_1

c. tPi : IIi --t Ui: the isomorphism of Theorem 2.

Then, given a Lie algebra homomorphism> t : 91 -+ 92, we want to show there
exists a unique formal group' homomorphism T : F1 -+ F2' such that T(T) = t.

We will show that the map: Hom(F1 ,F2) -+ Hom(TF1 ,TF2 ) can be de­
composed into a series of maps each of which is a bijection.

0) We begin with a preliminary step. Let:

HomAL(H2 ,HI) = continuous algebra homomorphisms map­
ping m2 into ml (such a homomorphism
will be called admu,ible - it is continuous
for the natural topologies of H2 and HI).

S =space of T = (Tl, ••• , Tn2 ) E Hf2 such that ri(O) = 0 for
all i.

Let rES. Then, given 9 E H2 , we may form the composite gor, and the map
t/J,. : H2 ..... HI defined by 9 ...... gT is an admissible algebra homomorphism
(Bourbaki, Alg., Chap. 4, §5, n05, Prop. 3).

Lemma 5. The map T 1-+ t/Jr a bijection of S onto HomAL(H2 ,HI ).

Proof. This map is injective since 4>r(Xi) =Ti. To prove that it is surjective,
let t/J : H 2 -+ HI be an admissible algebra homomorphism and let T be defined
by Ti = t/J(Xi). Then, since f/J and are algebra homomorphisms, 4> and tPr
agree on k[XI , ... ,Xn2 ]. Since this subring is dense in H2 , t/J = 4>,. on H2 by
continuity.

1) Let:

HomSA(H2 ,HI ) = admissible bialgebra homomorphisms.

Lemma 6. Let T E S. Then:

r E HomFG(FI ,F2 ) 4>r E HomBA(H2 ,H1 ) •

Proof. The statement that 4>r E HomsA(H2 , HI) amounts by Lemma 5 to the
commutativity of the following diagram:

H2
.1
HI .!!... hI HI

The diagram commutes if and only if for all 9 E H2 :
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9 0 'T 0 Fl(X,Y) =61 0 = 0 tIJ,-) 0 62 (g) =go F2(TX,TY) .

This equation holds for all 9 E H2 if and only if'T 0 F1(X, Y) = F2 (TX,TY),
that is, if and only if T is a formal group homomorphism.

2) Let:

HomBA(U1 , U2) = bialgebra homomorphisms

HomSA(Ill, Il2) =bialgebra homomorphisms ·

Lemma 7. Dualization defined an i&omorphi"m

Proof. Given : H2 --. HI, 4> an admissible bialgebra homomorphism, and
u E UI , we obtain u 0 tP E U2• This follows since the Ui are the continuous
duals of the Hi. Hence we have a map: HomBA(H2 ,HI ) .... HomBA(UI ,U2 ).

Given t/J : UI --. U2 and 9 E H2 , we obtain go 1/J E HI. This follows from
Lemma 2 of §5, n0 2. The fact that 1/J is a bialgebra homomorphism shows
(by duality) that 9 9 0 1/J is a bialgebra homomorphism. Moreover, since
"p(e1) = e2, 9 E m2 ::} 9 0 t/J E mI. Hence 9 ..-. 9 0 t/J is admissible, and we have
defined a map: HomBA(U1 ,U2 ) -+ HOffiBA(H1 ,H1 ).

It is easily checked that the two maps we have defined are inverse to one
another.

3) By Theorem 2:

Lemma 8. The maps tPi define an isomorphum:

4) From the definition of the universal algebra and the definition of the
diagonal map for the universal algebra, we have:

5) It remains to put the bijections of Lemmas 6, 7, 8, 9 together and to
see that they give the functor T. Let r E HomFG(F1 ,F2 ) and write:

reX) = L ti(X) ,
i

where ti(X) is homogeneous of degree i. Then T(r) = t l . Let t E
HOffiLA(91 , 92) be the element corresponding to T under the above bijections.
We must show that t = tt.

Let 'U E 91- To see whether t(u) = t}(u), it suffices to test by applying
linear functions 9 E H2 to both sides. We have:



Chapter V. Lie Theory 149

g(t(u» = t(u)g =U(;r(g» = g(g 0 'T) =u(I:gti ) =U(gtl) ;
i

g(t1(u» =U(gtl) .

The first line is simply unwinding the isomorphisms of Lemmas 6, 7, 8, 9,
while the second is the identification we have made of 9i with a subset of Ui
via 1/Ji. Comparing, we obtain the desired equality.

2. We associate to 9 E (LA) the Campbell-Hausdorff formal group with 9
as Lie algebra. The details of this association were essentially carried out in
the first part of the proof of Theorem 1 of §4. The proof there was entirely
"formal" and used only the fact that k is a Q-algebra.

Remark. One could also prove part 2) of Theorem 3 by showing directly that
the dual of the bialgebra U9 is isomorphic (as a k-algebra) to a formal power
series ring k([Xt , ... ,Xn ]], with n = dims; the diagonal structure of this
algebra is given by an F(X, Y) which is the desired formal group law.

7. The convergence of formal homomorphisms

We assume that Ie is a complete field with respect to a non-trivial absolute
value, and that char k = o.

Theorem 1. For i = 1,2, let Gi be an analytic group chunk and Fi be the
formal group law induced in kni by a chart c, of G, at ei. Let T : F1 -+ F2
be a formal group homomorphi&m. Then, T iJ convergent, that iJ, T induce, a
local homomorph"m of group chunh f : G1 ---+ G2 •

Proof. For i = 1,2, Fi is convergent since it is obtained by passage to local
coordinates from the convergent multiplication law on Gi; since the conclusion
of the theorem is local, we may assume that Gi is an open neighborhood of 0
in kni with multiplication defined by Fi.

1) Special Ca3e: G1 = k, F1 = "+", and G2 =G, F2 = F.
To say that T is a formal group homomorphism reduces, in this case, to

the formal equations:

T(s+t)=F(T(s),r(t)) and r(O)=O.

Differentiating formally with respect to t and setting t = 0, we find that T

satisfies the following formal differential equation:

r'(s) = D2F(T(S),O)T'(0) .

Since D2F(r(O), 0) = D2F(O,0) = Idkft, the above equation is formally con­
sistent at s = 0. Let t/>(X) = D2F(X,O)r'(O) where T'(O) is any fixed vector
in kn • Then, the convergence of r is a consequence of the following theorem
which we prove in the appendix to this chapter.
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Theorem 2. Suppo,e tP = (tPI, ... , tPn) u a ",tem of n convergent power
'erie' in n variable,. Then, the formal differential equation: r'(s) = tP(r(s»,
reO) = 0, po"e"e, a unique formal ,olution. Tku 'olution i, convergent.

!) General Ga,e: Let F be a convergent formal group law corresponding to
a group chunk G and let X E 9 = L(G). Then there is a unique Lie algebra
homomorphism Lx : Ie -+ 9 such that Lx(l)=X. By Theorem 3 of §6, there
is a unique formal homomorphism cPx : k+ --+ F such that cPx(O) =X. By
case 1), tPX is convergent.

Let SJi = L(Gi) and let t = L(r) : 81 --+ 92. Then the construction of tPx
has the following functorial property:

For X E 81 and Y = t(X): cPy = r 0 cPx formally.

For convenience, set n = nl and m = n2. Then, choose a basis {X,,} of
91 and let Y" = t(X,.). Define local morphisms:

.1 G----+ 1
kn
---+G2 '.2

by the formulae:

cPl (tl, ,tn ) = 4>x1 (t 1 )· • • 4>x" (t n )

cP2(tl, ,tn ) = cPYl (tl)··· </>y"(tn ) •

The map L(cPl) : len --+ 81 is just the isomorphism of len with 91 defined by
sending the p-th standard basis vector of len onto X". Hence 4>1 is etale at 0
and hence is a local isomorphism in a neighborhood of o.

Now, formally, r 0 </>1 = 4>2, hence, formally, T = tP2 0 t/J11 • But the right
hand side of this equation is convergent by what we have just shown. Hence
T is convergent, as desired.

Corollary 1. Let G1 and G2 be analytic group ,uch that L(GI ) and
L(G2 ) are uomorphic. Then:

1. Any i,omorphilm of L(G1 ) with L(G2 ) induce' a local i,omorphum of
GI with G2 •

2. In the ultrametric G1 and G2 have open which are
ilomorphic.

Proof. 1. This follows from Theorem 1 and from Theorem 3, §6.

2. This follows from 1) and from the theorem of Chap. 4, §8.

Corollary 2. Let G be an analytic group chunk, 9 = L(G), and CH(9) =
Camp6ell·HaUltlorff group chunk to 9 (§4). Then, there a
unique local uomorphi,m exp : CH(g) -+ G ,uch that L(exp) = ide
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Remark. Suppose G =GL(V) where V is a vector space over k. Then let:

X x2

eZ =1+ -+ -+ ...I! 2!

We content that exp(x) = eX in a neighborhood of 0 in 9 = E(V). Indeed,
by the construction of the Campbell-Hausdorff formula, eX defines a formal
homomorphism from CH(g) to G and we have L(eX ) = Id. Hence, we obtain:
exp(X) = eX, by uniqueness.

Now let us study the map exp in the case It = R or C and G is an
analytic group. Since fn(X) = nX in CH(S), we will be able to extend exp to
all of 8. Indeed, let z E 9. Then, since It =R or C, for some integer n > 0,

E Dom(exp). Define:

1
exp(x) =exp(_X)R .

n

We obtain the same definition if we replace n by a multiple mn of n. This
shows that we obtain a unique definition independent of the choice of R, since
any two choices may be compared by means of their product.

For fixed Xo and some n, the formula (*) is valid in a neighborhood of
xo, which shows that exp is analytic. We know that exp is etale at 0 but in
general exp is not everywhere etale and is not bijective.

Corollary 3. Suppole k =R or C. Let G be an analytic group over Ie and
let 9 = L(G). Then:

1. SUPPole G i$ connected and 9 i$ abelian. Then, G u abelian.

2. More generally, if 9 i.5 abelian, then G ha$ an open abelian $ubgroup.

Proof. Clearly, 1 =* 2. To show 1, we note first that, since 1J is abelian,
CH(g) = 9 with the additive group structure. We content exp defines a group
homomorphism. Indeed, given x,y E 9, choose an integer n 80 large that
*y, *(x + y) lie in the domain where exp is a local homomorphism. Then:

1 1 1 1 1
exp( -x)exp( -y) =exp( -(x + y» =exp( -y)exp( -x) .

n n n n n

Noting the commutability of exp(*x) and exp(*y), we obtain, by raising to
n-th powers:

exp(x)exp(y) =exp(x +y) .

It follows that exp(g) is an open abelian subgroup of G, hence is equal to G,
since G is connected.

Corollary 4. SUPPo3e k i" ultrametric and let A be the corre$ponding valua­
tion ring. LetG be an analytic group over Ie of dimefUion n ,uch t1&,.t, = L(G)
U abelian. Then, G hQ,$ an open abelian subgroup i$omorp1&ic to An.
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Proof. We have that CH(g) is the additive group 9 and that CH(g) contains
an open subgroup isomorphic to an open subgroup of G, whence the result.

Ezample of Corollary 4. G = groups of points of an abelian variety defined
over Q,.

8. The third theorem of Lie

Throughout this section, k = R or C.

Theorem 1. Let G be A connected, connected AnAlytic group over k.
Let G' be Gny anAlytic group over k. Let 9 = L(G) AndS' = L(G'). Then, the
ma,: HomAG(G,G') -+ HomLA(g,g') bijective.

Proof. Let t : 9 -+ g' be a Lie algebra homomorphism. \Ve must show that
t = L( for a unique analytic group homomorphism </J : G --+ G'. We know
that t extends uniquely to a local homomorphism f :G ----+ G' (§6, Thm. 3;
§7, Thm. 1). Then, the graph r/ c G x G' of f is an analytic subgroup chunk.
Let (H, i) be the analytic group generated by r/ (Chap. 4, §4). Consider the
diagram:

Then, t/J is a local isomorphism, and, since H is connected and G is simply con­
nected, t/J is an isomorphism onto an open subgroup ofG. Since G is connected,
t/J is surjective. Let </J = pr2oi 0 t/J-l. Then, </J agrees with f in a neighborhood
of e. This shows existence. Uniqueness follows since two homomorphisms cPl
and tP2 whose derivative at e is equal to t must locally agree with f so that
the set of points on which they agree is open and closed, therefore, equal to
all of G.

Theorem 2. The category of connected, connected analytic groupJ
over k = R or C iJ equivalent to the category of finite dimen,ional Lie alge­
brA'.

Proof. We have proved in Theorem 1 the required bijection on maps. What
remains to be done is to show:

Theorem 3 (Third Theorem of Lie). For any finite Lie algebra
9, there ezuu a connected and connected analytic group G 8UCh, that
L(G) =9.

Proof. This theorem was first proved by Elie Cartan. We shall sketch Cartan's
proof after giving a shorter proof based on the powerful Theorem of Ado.
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We remark at the outset that it suffices to find an analytic group G 8uch
that L(G) = 9 since taking the connected component H of e in G and then
taking the simply coveringgroup ofH, we obtain the desired connected, simply
connected analytic group with Lie algebra g.

Proof 1. We quote Ado's Theorem (Bourbaki, Alg. tie Lie, Chap. 1, §7, n03,
Thm. 3, or Jacobson, Lie Algebra&, Chap. 6, §2, p. 202):

Theorem (Ado). Every finite tlimen.sional Lie algebra All" a faithful finite
tlime"",ional repre,entation.

Now, let H be the Campbell-Hausdorff group chunk corresponding to 9
and let t : 9 E(V) be a faithful representation. Then t induces a local
homomorphism / : H ---+ GL(V). Since t is faithful, / is an immersion
at e, that is, H corresponds to a subgroup chunk of GL(V). But then, H is
equivalent to an analytic group (Chap. 4, §4).

Proof I. 1) The theorem is true in the following cases:

1. 9 is semisimple.

2. 9 is abelian.
In case 1, ad : 9 E(g) is injective. We may apply the method of
proof 1 without having to invoke Ado's Theorem. Alternatively, we note that
!mead) = Der(9). Hence, 9 = L(Aut(g» (§3, n04, 4).

Case 2 is trivial since we may take G =additive group of 9.

2) General case:
We use induction on dim g. If 9 falls in cases 1or 2, we are done. Otherwise,

we know that 9 is a semi-direct product 91 X92, where 91 is an ideal of 9,
92 a subalgebra of 9, and dimgj < dimg (cf. L.A., Chap. 6, §4).

Let q, : 82 Der(91) define the semi-direct product structure on 91 X92.
By induction, let Gi be a connected, simply connected analytic group such
that 9i = L(Gi), i =1,2. We will show that 9 = L(G)whereG is a semi-direct
product of G I and G2.

The main steps in the proof are:

1. Der(9l) = L(AI ) where Al = Aut(D1) (§3, n04, 4).
2. Al = Aut(GI ), by Theorem 1.
3. Al acts analytically on G1 •

Indeed, given a E Al and 9 e G, we want to find a neighborhood N of
a in Al and U of 9 in G1 such that the action: N x U -+ G is analytic.
Let WI C 91 be a neighborhood of 0 in 9 on which the Campbell-Hausdorff
formula converges. Choose neighborhoods N of a in Al and W2 of 0 in WI so
that the action of N c Aut(Sl) on W2 takes values on WI. Let V =exp(W2 ).

We then have that the action of N C Aut(G1 ) on V is induced by the action
of N c Aut(91) on W2 • Since the elements of Aut(91) act linearly on the
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Campbell-Hausdorff formula, the action of N on W2 is analytic. Thus, the
action of N on V is analytic.

Now, since G I is connected, there exists an integer n > 0 such that 9 e vn,

where Vn denotes the set of products of n elements of V. We may assume that
V is open. Then Vn, which is the union of translates of V, is open. Take
U =VR. Let 8: Al x GI -+ G1 be the action of Al on Gl;write 8(6, h) =bh.
We must show that (J is analytic on N x U. Let v(ra) be the n-fold product
of V and let p : v(n) --. U be multiplication. Also, let 8 : N x v(n) -+ G be
defined by:

H(b,91,···,9n) = (6g1)···(b9n).

Then, the following diagram is commutative:

N x v(n) L G

1)(1&! / ,

NxU

Since I is analytic, to prove that 8 is analytic, it suffices to remark that
p : v(n) -+ U is a surjective submersion.

4. Since G2 is simply connected and connected, tP induces t/J : G2 -+ AI.
We define a semi-direct product structure on the set G1 x G2 by:

(0, h)(g,0)(0, h)-l = (t/J(h)g,0) .

This group structure is analytic since t/J is analytic and since Al acts on G1
analytically.

It is now a simple verification that L(G! xG2 ) =9.

Theorem 4. Let G be a connected and connected analytic group. Let
9 = L(G) and let I) C 9 be an ideal. Then:

1. There u a connected analt/tic lubgroup H of G luch that
L(H) = I).

2. H U limpl" connected.

Proof. 1. Let K be an analytic group such that L(K)=9/fJ. The projection of
9 on 9/1) induces an analytic homomorphism 4> : G -+ K since G is connected,
and simply connected. Take H to be the connected component of e in Ker ,.
Then H has the required properties.

2. We use the fact that since G/H is an analytic group then 1r2 (G/H) =0.
Then, in the homotopy exact sequence, 'we have:

Hence, ""I (H) =o.

..

°
II

o
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It seems likely that no "simple" proof of Lie'. Third Theorem exists.
For, if such a proof did exist, unless it made essential use of the local com­
pactness of R and C, it would extend to Banach analytic groups. But in the
Banach space setting, the Third Theorem is laue (as remarked by van Est
and others). Indeed, Theorem 4, 1 itself (which is a formal consequence of
Theorem 3) is false:

The example is the following. Take G =GL(H) x GL(H) where H is an
infinite dimensional Banach space. It is known that GL(H) is connected and
simply connected. The center of G contains C· x C· and hence 51 x 8 1• We
let Z = 51 X 51. Then the Lie algebra ! of Z is contained in the center of
the Lie algebra of G and hence anyone dimensional subspace fJ C ! is an
ideal in GL(G). To obtain the desired counterexample, take " to be the Lie
algebra corresponding to the subgroup { (p, II) : II =op } C 51 X 51, where 0

is irrational. This subgroup is connected and simply connected but not closed
in G.

9. Cartao's theorems

Suppose Ie =R or Q" that is, suppose Q is dense in Ie, char k = o.

Theorem 1. Suppo,e G i, an analytic lubgroup over Ie And that H c GUll
topologically clo,ed ,ubgroup chunk. Then, H u analytic.

Corollary. A clo,ed ,ubgroup 01 an analytic group over R or Qp U An ana­
lytic group.

Theorem 2. For i = 1,2, let Gi, be an analytic group over k. Then an"
continuow homomorphUm 4J : Gl -+ G2 U analytic.

Proofs. 1. Theorem 1 => Theorem 2:
Since 4J is continuous, the graph r. c Gl x G2 of 4J is a closed subgroup.

Hence, by Theorem 1, r. is analytic. Let p = prl Ir•. Then p is an analytic
homomorphism with trivial kernel. Hence, L(p) is injective and p is an im­
mersion. Topologically, p is an isomorphism. It follows that p is an analytic
isomorphism. Since t/J = pr2 op-l, 4J is analytic.

2. Theorem 1 when Ie =Q,:
Let 9 = L(G). Then, by taking a sufficiently small open subgroup of G,

we may assume that G is isomorphic to an open subgroup U of lJ under the
Campbell-Hausdorff formula and that H is a closed subgroup of G (Chap. 4,
§8, Cor. 2 of Thm.; Chap. 5, §7, Cor. of Thm. 1). We identify G with U. We
then have that, for % e H and n e Z n· % = /n(%) E H. Since H is closed,
we have the same statement for n E Z,.

Choose %1, ••• ,%m E H such that %1, ••• , %m are linearly independent over
Qp and maximal with this property. Let V be the vector space generated by
the {Zi}. Then, X c V, since otherwise Xl, ••• , Xm would not be a maximal
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linearly independent set in H. To prove the theorem, it suffices to show that
H contains a neighborhood of 0 in V. Consider the map:

f :Z,: --+ V

defined by
/(tl, ... , tm ) =(tlXl)··· (t",x",) .

Then, f is analytic, and D /(0) is bijective by construction; hence f is etale
at o. But Im(/) c H which shows that H contains a neighborhood of 0 in V.

3. Theorem 1 when k =R.
Let 9 = L(G). We may assume that H is a closed subgroup chunk 'of

U where U C 1J is an open subgroup chunk under the Campbell-Hausdorff
formula. We may also assume that H is strict in U, that is:

&. x,y e H and xy e U => %y e H;
b. % E H => x-I E H.

Let V = {x E 9 : tx e H, for small t }, that is, V consists of the points x
in 1J such that an interval about 0 on the ray through x lies in H. Then, we
contend:

Lemma. 1. V i$ a Lie $ubalgebra of g.

2. SUPPo$e %n e H, :En #= O. Let Dn be the line in 9 containing X n • Suppo$e
%n -+ 0 and D" -+ D a& n -+ 00. Then, D C V.

Proof. 2. Fix e so that the ball of radius e about 0 is contained in U. Let m
be a positive integer and let em =elm. Define:

Si = { % : (i - l)em Ixl iem } •

In particular, 51 is the ball of radius em. For some constant Km , %n e 51 for all
n Km • Consider any i such that 1 < i m. Then, for every n K m , there
exists an integral multiple of X n lying in Si. Since Dn --. D, as n -+ 00,

a subsequence of converges to a point in Si nD. This point also lies in H
since E H by a) above and since H is closed. Hence, we have shown:

For any integer m > 0 and any integer i such that 1 < i fi,

there is an element x E H nD such that (i -1)Em Ixl iEm •

Statement (*) shows that H is dense in at least one of the two half intervals
of length e with endpoint 0 in D. By b) above, we see that H is dense in the
symmetric interval of length 2e about 0 in D and since H is closed we see that
in fact H nD contains this interval. This shows that D C V.

1. We use 2) to show that V is closed under addition and brackets. Let
%,fI E V, %,'11 =I O. Then, by the
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n{ · }= x+ y

n
2
{[(;x), (;y)]} = [x,y]

(See also Chap. 4, §7, n05). The first formula shows that the line through z+y
satisfies the conditions of 2) while the second shows that the line through [z, til
satisfies these conditions.

Since V is a Lie subalgebra of 9, V nU is an analytic subgroup chunk of
U under the Campbell-Hausdorff formula. Using the 88sumptions of strictness
of H, we see that H ::> V nU. The proof will therefore be complete if we show
that H is contained in V in a neighborhood of o. We suppose the contrary
is true, that is, that there exists a sequence {z,,} such that: z" E H - V,
x" ..... 0 as n --. 00. Choose a complement W of V in 8. Then since exp is a
local isomorphism at 0, we may write x" =W"V", w" E W and v" E V, at
least for n :> o. By strictness, W n E H for n ::> o. Hence, we can assume the
original sequence {xn } belonged to W. Let Dn be the line through Xn • By the
compactness of the projective space P(W), a subsequence of {Dn } converges,
say, to D. Then, by 2) of the Lemma, D C V which is absurd.

Remark. Theorem 2 may be expressed by saying that the category of analytic
groups over k = R or Qp is a full subcategory of the category of all locally
compact topological groups.

We may then ask: "When is a locally compact topological group a real or
p-adic analytic group?" This question makes sense because Theorem 2 shows
that if the structure of analytic group exists on a locally compact topological
group, then it is unique.

The answers are:

1. Real case (Gleason-Montgomery-Zippin-Yamabe): The group G must
contain no small subgroup (i.e., there is a neighborhood U of e such that any
subgroup of G contained in U is equal to {e}).

2. p-adic case (Lazard): The group G must contain an open subgroup U
with the following properties:

(a) U is a finitely generated pro-p-group.

(b) The commutator subgroup (U, U) is contained in UP2 = set of p2
powers.

In both cases, the nece&sity of the condition is easy (cf. Exer. 4).

Exercises

1. Let k be a field of charp =F 0, let F be a formal group law over k, and let
U (resp. 9) be the corresponding bialgebra of point distributions (resp.
the corresponding Lie algebra). One has 9 C U.
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a) H n =dim8, show that 8 generates a 8ubalgebra of U of rank pn.
b) Show that xes => xl' E 8, where xl' denotes the pt.h_power of %

in U. Show that ad(xl')= ad(x)l'.
c) Let a be an element of Ie which does not belong to the prhne field

F p. Let f) be the Lie algebra with basis {X, Y, Z} and relations [X, Y] = Y,
[X, Z] = aZ, [Y, Z] = o. Show that there is no element y E f) such that
ad(y) = ad(X)P. Prove that fJ cannot be the Lie algebra of a formal group.

2. Let HI = k((X)) and H2 =k[[Y)).
a) Suppose Ie is a field. Show that any algebra homomorphism t/> :

H2 -+ HI is admissible (cf. §6).
b) Suppose Ie has no nilpotent elements (except 0). Show that any

continuous algebra homomorphism t/J: H2 -+ HI is admissible.
3. Let Ie = R or C, and let s be a semisimple subalgebra of the Lie algebra

of GL(n, Ie). Show that s corresponds to a group submanifold of GL(n, Ie).
(Hint: use L.A., Chap. 6, Theorem 5.2.)

4. Let G be a standard p-adic group (cf. Chap. 4), and let {Gn } be its
canonical filtration. Show that, if U =Gn with n 2, one has:

(U,U) C Upft
•

5. Let G be a real Lie group, with Lie algebra tJ, let f) be a subalgebra of S,
and let H be the Lie subgroup of G corresponding to f). Assume that H
is dense in G.

a) Show that Ad(g)f)= I) for all 9 E G, and that IJ is an ideal of 9.
b) Let Gbe the universal covering of G, let Z be the kernel ofG-+ G,

and let iI be the Lie subgroup ofGcorresponding to I); iI is closed in G
(§8, Theorem 4). Show that iI ·Z is dense in 0, and that 0/iI is abelian,
hence that ,/1) is abelian.

c) Suppose, is semisimple. Show that G= iI x Rn for some n. Show
that n =0 (hence G =H) if the center of H is finite.

d) Let Ho = SL(2, R). Show that 1rl (Ho) =Z. Show that the univer­
sal covering H of Ho can be imbedded as a dense Lie subgroup in a Lie
group G of arbitrary dimension 2: 3.

6. Let G be a real Lie group, with Lie algebra tJ. For any subalgebra fJ of i,
let H be the corresponding Lie subgroup ofG. The closure H of H is a
closed Lie subgroup of G (by theorem); let ij be its Lie algebra.

a) Show that fJ C ij, i) = i), f}1 n f}2 c ihn f}2
b) Show that fJ is an ideal in ii, and that i)/I) is abelian (use Exer. 5).

Appendix. Existence theorem for ordinary differential equations

We assume chark = O.

Theorem. Suppo,e 4> = (4)1, ... ,t/Jn)u a ,ystem ofn convergent power series
in n vanable,. Then:
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1. The formal differential equation

T'(S) = cP(T(r»

possesses II unique solution T.

2. r u convergent.

Proof·

Case 1: Ie =R or C.
1. Write:

and T(O) =0 ,

r(s) = L apsP
;

Then, the formal differential equation takes the form:

Then, there exist unique polynomials Qn(co,am ), 101, m < n, with positive
integral coefficients such that:

1
an = -Qn(Ca,am ) •

n

This shows the uniqueness of the formal solution, by induction on n.
2. To show convergence, we use Cauchy's method of majorants. Suppose

Ical dOl where {do} consists of non-negative real numbers. Let r(s) =E b"tn
be the formal solution of the differential equation corresponding to =
EdOlXOl. Then: '

Lemma 1. f convergent => T convergent. More precuely, r is a majorant
for T.

Proof. By induction:

Note that we have used the fact that k = R or C to obtain the equality:

To apply Lemma 1, we must construct an appropriate ii> and compute
the corresponding if explicitly. Since q, is convergent, we may find constants
M, R > 0 such that:
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Let do = Clearly Icol dOl, and we have that:

- (X)Q M
4J(X) =LM. R = ni(I-Xi/R) ·

By the uniqueness· statement, f(8) = (0'(8), . .. ,0'(8» where 0'(8) is the formal
solution of the single differential equation:

00'(8) = (1 _;)n ·
We make an explicit computation for u(s) which shows that u(s) is convergent:

oo(8) =R(1 - { 1 - (n + I)M . niT) .

Indeed:

1 - = {1 _ (n + I)M . niT .

Differentiating 0'(s) and using the above formula, one sees that 0'(8) does
satisfy the desired differential equation.

Case !: k ultrametric.
Since t/> is convergent, we may assume, by change of coordinates via a

homothety, that the coefficients of cP lie in the valuation ring A of k.

1. Write:

Then, the formal differential equation takes the form:

Then, using the fact the binomial coefficients lie in Z, we see that there exist
unique polynomials Qn(Co,am ), lal, m < n, with positive integral coefficients
such that:

an = Q n ( COl' am) ·

This shows the uniqueness of the formal solution.
2. By induction on n, an E A since by assumption all COl E A. Hence, by

Lemma 4 of §4, for some real constant a, 0 < a 1, T(S) is majorized by:

Since this is a geometric series, it converges for small r, so that T is convergent.
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Problem

(Harvard Exam., Jan. 1965 - Time: 3 hours)

In what follows It: denotes a field, and , a 3-dimensional Lie algebra over
Ie, with basis {x,y,z} and relations:

[z,y]=Z, [3:,z]= [",z]=0 .

The universal algebra U9 of 9 is denoted by U.

I

1. Determine the center of 9. Prove that JJ is nilpotent.
2. Let A be the center of U. Show that Z E A. If Ie is of characteristic p 0,
show that A also contains xP and yP, and that z, xP , JlP are algebraically
independent.

3. Give an example of an analytic group (over some complete field Ie) having
a Lie algebra isomorphic to 9.

II
In this section V is a vector space over k, and U : 9 -+ End(V) is a Lie

algebra homomorphism (so that V is a g-module).

4. For any A E k, let be the set of v E V such that U(z)v = Av. Show that
is a g-submodule of V.

5. Assume k algebraically closed, and V irreducible(·) of finite dimension.
Show that there exists AE k such that U(z) = A, scalar multiplication by A.
Assume moreover that char(k) = 0; show that ,\ = 0 and classify all irreducible
g-modules of finite dimension.

6. We now take for V the vector space k[T]of polynomials in one indeterminate
T. Show that there exists a structure of g-module on V such that, if P E k[T):

U(x)·P=dP(T)/dT, U(y)·P=T·P(T) , U(z)·P=P.

Prove that V is irreducible if char(k) =O.

(.) A g-module V is said to be irreducible if V "1= 0 and if the only g-submodules
of V are 0 and V.
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III
In this section, k is algebraically closed of char. p :F O.

7. Let V be the g-module defined in question 6. Show that the g-submodules
of V are of the form Vp = P(TP) · V, with P E k[T). Show that V/Vp is
irreducible if and only if deg(P) =1.
8. Let W be an irreducible g-module, and let ew : 9 -+ End(W) be the corre­
sponding homomorphism. Show that W is isomorphic to one of the modules
V/Vp defined above if and only if the following two conditions are satisfied:
gw(z)=1, and gw(x) is nilpotent.
9. Let again W be an irreducible g-module of finite dimension, and assume
dim(W) > 1. Show that dim(W) =p, that l'w(z) is equal to a scalar .,\ 0,
that ewex) has only one eigenvalue 1', and that ew(y) has only one eigenvalue
II. Show that, for any ("\,p,v) with .,\ #= 0, there exists a corresponding W,
and that it is unique, up to isomorphism.
10. Prove that the center A ofU is the polynomial algebra generated by %, xP ,

'liP. If k' is an extension of ,k, and 'P : A -+ k' any homomorphism such that
ep(z) :F 0, show that. U ®A k" is a central simple algebra over k' of rank p2.
Prove that this remains true even if k is not algebraically closed.

11. Prove that every irreducible g-module is finite-dimensional.



nmn

absolute value (of a field) : 64

adjoint representation (of a Lie group) 135

Ado's theorem: 153

algebraic matrix group : 3

analytic function : 69, 70, 78

analytic group : 102

analytic manifold : 77

atlas : 76

ball: 77

Bergman's transfinite p-adic line 101

bialgebra : 144

Campbell-Hausdorff formula : 26

canonical decomposition (of an endomorphism) 41

Cartan's criterion: 42

Cartan's theorems (on closed subgroups of Lie groups) 155

Cauchy's method of majorants : 159

chart : 76

commutative (Lie algebra) 2

commutator : 6

compatible (atlases, charts) : 76

complex analytic (manifold) : 77

convergent (series) : 67

cotangent space : 81

derivation 2

derivative 72

derived series (of a Lie algebra) : 35

descending central series (of a group) : 9

descending central series (of a Lie algebra) 32

diagonal map : 16

differential (of a function) 82

Dynkin's formula 29



166 Index

embedding (of manifolds) 85

Engel's theorem: 33

etale (morphism) : 83

fibre product : 91

filtration (on a group) 7

flag : 33

formal group law : III

free (algebra) : 18

free (associative algebra) 20

free (Lie algebra) : 19

free (magma) : 18

fundamental root : 56

germ (of an analytic function) 80

Godement's theorem 92

group chunk : 105

highest weight : 59

homogeneous space (of a Lie group) : 108

H.Weyl's semisimplicity theorem: 46

immersion (of manifolds) 85

induced (analytic group) 104

invariant element (of a module over a Lie algebra) 32

inverse function theorem : 73, '83

inverse image manifold structure : 89

Jacobi's identity: 2

Killing form : 32

Kolchin's theorem: 35

Lazard's theorem: 114

Leibniz formula : 142

Levi's theorem: 48

Lie algebra : 2

Lie algebra of a formal group : 129

Lie algebra of a group chunk : 129

Lie group : 102

Lie theorem (on solvable Lie algebras)

Lie's third theorem : 152

36



linear representation (of a Lie algebra) : 31

local expansion (of an analytic function) : 69

local homomorphism (of group chunks) : 105

magma : 18

module (over a Lie algebra) : 31

morphism (of analytic manifolds) 78

nilpotent element (of a semisimple Lie algebra) 52

nilpotent (Lie algebra) 33

non-archimedian (absolute value) 64

normalizer (of a Lie subalgebra) 34

Ostrowski's theorem: 64

p-adic analytic manifold 77

p-adic valuation (of Q) 65

P.Hall family : 22

Poincare-Birkhoff-Witt theorem : 14

point distribution (on a manifold) : 141

positive root : 56

primitive element (of a module) : 58

primitive element (of a universal algebra) 17

principal bundle : 111

product (of manifolds) 79

quotient manifold : 92

radical (of a Lie algebra) : 44

real analytic (manifold) : 77

regular equivalence relation (on a manifold) 92

ring (of a valuation) : 65

root : 56

semidirect product (of Lie algebras) : 4

semisimple element (of a Lie algebra) 52

semisimple endomorphism (of a vector space) : 40

semisimple (Lie algebra) : 44

semisimple (module) : 45

simple (Lie algebra) : 44

simple (module) : 45

solvable (group) : 38

Index 167



168 Index

solvable (Lie algebra) : 36

standard (analytic group) : 116

strictly superdiagonal (matrix) 33

subimmersion (of manifolds) : 86

submanifold : 89

submersion (of manifolds) : 85

sum (of a family of manifolds) : 79

symmetric algebra (of a module) : 12

tangent space : 81

transversal (morphisms) : 91

transversal (submanifolds) : 91

trivial action (of a Lie algebra) 31

ultrametric (absolute value) : 64

unipotent automorphism (of a vector space) 35

unitarian trick : 46

universal algebra (of a Lie algebra) 11

valuation 65

weight : 57



Leetore Notes in Mathematics 
For information about Vols. 1-1312 
please contact your bookseller or Springer-Verlag 

Vol. 1313: F. Colonius. Optimal Periodic Control. VI, I 77 paaes. 
1988. 

Vol. 1314: A. Futaki. Kähler-Einstein Metries and lntearal 
lnvariants. IV, 140 pages. 1988. 

Vol. 131.5: R.A. McCoy, I. Ntantu, Topolo&ical Propenies of 
Spaces ofContinuous, Functions.IV. 124 paaes. 1988. 

Vol. 1316: H. Korezlioalu, A.S. Ustunel (Eds.), Stocbastic 
Analysis and Related Tnpics. Proceedinas. 1986. V, 371 paaes. 
1988. 

Vol. 1317: J. Lindenstrauss, V.D. Milman (Eds.), Geometrie 
Aspects of Functional Analysis. Seminar, 1986-87. VII, 289 
pages. 1988. 

Vol. 1318: Y. Felix (Ed.), Algebraic Topology- Rational 
Homotopy. Proceedings, 1986. VIII. 24.5 pages. 1988. 

Vol. 1319: M. Vuorinen, Conformal Geometry and Quasireaular 
Mappings. XIX, 209 paaes. 1988. 

Vol. 1320: H. Jürgensen, 0. Lallement, H.J. Weinen (Eds.), 
Semigroups, Tbeory and Applications. Proceedings, 1986. X, 
416 pages. 1988. 

Vol. 1321: J. Azo!ma, P.A. Meyer, M. Yor (Eds.), SCminaire de 
Probabilitcs XXII. Proceedings. IV, 600 paaes. 1988. 

Vol. 1322: M. MCtivier, S. Watanabe (Eds.),Stocbastic Analysis. 
Proceedings, 1987. VII, 197 pages. 1988. 

Vol. 1323: D.R. Anderson, H.J. Munkbolm, Bnundedly 
Controlled Topology. XII, 309 pages. 1988. 

Vol. 1324: F. Cardoso, D.G. de Figueiredo, R. 16rio, 0. Lopes 
(Eds.), Panial Differential Equations. Proceedings, 1986. VIII, 
433 pages. 1988. 

Vol. 132.5: A. Truman,I.M. Davies (Eds.), Stocbastic Mecbanics 
and Stochastic Processes. Proceedings, 1986. V, 220 pages. 
1988. 

Vol. 1326: P.S. Landweber (Ed.), Elliptic Curves and Modular 
Forms in Algebraic Topology. Proceedings, 1986. V, 224 pages. 
1988. 

Vol. 1327: W. Bruns, U. V euer, Determinantal Rings. VII, 236 
pages. 1988. 

Vol. 1328: J.L. Bueso, P. Jara, B. Torrecillas (Eds.), Ring 
Theory. Proceedings, 1986.1X, 331 pages. 1988. 

Vol. 1329: M. Alfaro, J.S. Debesa, F.J. Marcellan, J.L. Rubio 
de Francia, J. Vinuesa (Eds.): Onhogonal Polynomials and lheir 
Applications. Proceedings, 1986. XV, 334 pages. 1988. 

Vol. 1330: A. Ambroseui, F. Gori, R. Lucchelli (llds.), 
Mathemalical Economics. Montecatini Terme 1986. Seminar. 
VII, 137 pages. 1988. 

Vol. 1331: R. Bam6n, R. Labarca,J. Palis Jr. (Eds.), Dynamical 
Systems, Valparaiso 1986. Proceedings. VI, 2.50 paaes. 1988. 

Vol. 1332: E. Odell, H. Rosenthai (Eds.), Functional Analysis. 
Proceedings. 1986-87. V, 202 pages. 1988. 

Vol. 1333: A.S. Kechris, D.A. Manin, J.R. Steel (Eds.), Cabal 
Seminar 81-8.5. Proceedings, 1981-8.5. V, 224 pases. 1988. 

Vol. 1334: Yu.G. Borisovich, Yu.E. Gliklikh (Eds.), Global 
Analysis-Studiesand Applications 111. V, 331 pases. 1988. 

Vol. 133.5: F. Guillen. V. NavarroAznar, P. Pascuai-Oainza, F. 
Puena, Hyperresolutions cubiques et descente cobomolo1ique. 
XII, 192 pages. 1988. 

Vol. 1336: B. Helffer, Semi-Ciassical Analysis for tbe 
Scbrödinaer Operator and Applicalions. V, 107 paJe5. 1988. 

Vol. 1337: E. Sernesi (Ed.), Tbenry of Moduli. Seminar, 198.5. 
VIII, 232 pa1es. 1988. 

Vol. 1338: A.B. Mingarelli, S.O. Halvorsen. Non-Oscillllion 
Domaina of Differential Equations wilh Two Parameters. XI, 
I 09 paaes. 1988. 

Vol. 1339: T. Sunada (Ed.), Oeometry and Analysis of 
Manifolds. Proceedinp, 1987. IX, 277 pages. 1988. 

Vol. 1340: S. Hilclebrandt, D.S. Kinderlebrer, M. Mirancla(Eds.), 
Calculus of Variations and Partial Differential Equalions. 
Proceedinp, 1986. IX, 30 I paaes. 1988. 

Vol. 1341: M. Dause, Elliplic Boundary Value Problems on 
Corner Domains. VIII, 2.59 pages. 1988. 

Vol. 1342: J.C. Alexander (Ed.), Dynamical Systems. 
Proceedinas. 1986-87. VIII, 726 paaes. 1988. 

Vol. 1343: H. Ulricb, Fixed Point Tbeory of Parametrized 
Equivarianl Maps. VII, 147 pages. 1988. 

Vol. 1344: J. KUI, J. Lukes, J. Netuka, J. Vesely' (Eds.), Poten­
tial Tbenry - Surveys and Problems. Proceedinp, 1987. VIII, 
211 paaes. 1988. 

Vol. 134.5: X. Oomez-Mont, J. Seade, A. Verjovski (Eds.), 
Holomorphic Dynamics. Proceedinas, 1986. VII. 321 paaes. 
1988. 

Vol. 1346: 0. Ya. Viro (Ed.), Topoloay and Oeometry- Rohlin 
Seminar. XI, .581 pages. 1988. 

Vol. 1347: C. Preslon,llerates ofPiecewise MOIIOione Mappinss 
on an lnterval. V, 166 pages. 1988. 

Vol. 1348: F. Borceux (Ed.), Cuesorical Al&ebra and its Ap­
plicarions. Proceedings, 1987. VIII, 37.5 pages. 1988. 

Vol. 1349: E. Novak, Delemlinislic and Stochaslic Error Bounds 
in Numerical Analysis. V, 113 pages. 1988. 

Vol. 1350: U. Koseborke (Ed.), Differential Topology 
Proceedings, 1987, VI, 269 paaes. 1988. 

Vol. 13.51: I. Laine, S. Rickman, T. Sorvali (Eds.), Complex 
Analysis, Joensuu 1987. Proceedinas. XV, 378 paJes. 1988. 

Vol. 13.52: L.L. Avramov, K.B. Tchakerian (Eds.), Alaebra­
Some Current Trends. Proceedinp. 1986.1X, 240 Seiten. 1988. 

Vol. 1353: R.S. Palais, Ch.-1. Tens, Crilical Point Tbenry and 
Submanifold Oeometry. X, 272 pages. 1988. 

Vol. 13.54: A. 06mez, F. Ouerra, M.A. JimCnez, G. L6pez (Eds.), 
Approximation and Optimization. Proceedinas, 1987. VI, 280 
pages. 1988. 

Vol. 13.55: J. Bokowski, B. Sturmfels, Computalional Synlhetic 
Geometry. V, 168 pages. 1989. 

Vol. 13.56: H. Volkmer, Multiparameter Eigenvalue Problems 
and Expansion Theorems. VI, 1.57 pases. 1988. 

Vol. 13.57: S. Hildebrandt, R. Leis (Eds.), Partial Differential 
Equations and Calculus of Variations. VI, 423 pages. 1988. 



Vol. 13S8: D. Mumford, The Red Book of Varielies and 
Schemes. V, 309 paps. 1988. 

Vol. 13S9: P. Eymard, J.-P. Pier (Eds.) Humonic Analysis. 
Proceedings. 1987. Vlll. 287 pases. 1988. 

Vol. 1360: G. Andenon, C. Greenprd (Eds.), VOlte>< Melhods. 
Proceedinss. 1987. V, 141 pases. 1988. 

Vol. 1361: T. Iom Dieck (Ed.), Alsebraic Topology and 
Transformalion Groups. Proc:eedins•- 1987. VI, 298 paaes. 1988. 

Vol. 1362: P. Diaconis, D. Elwonhy, H. Föllmer, E. Nelson, 
G.C. Papanicolaou, S.R.S. Varadhan. ecole d' de 

de Saini-Fiour 1985-37 Edi1or: P.L. 
Hennequin. V, 4S9 pases. 1988. 

Vol. 1363: P.G. Casazza, T.J. Shun, Tsirr:Json"s Space. VIII. 
204 paps. 1988. 

Vol. 1364: R.R. Pbelps, Convex Funclions, Monorooe Operalors 
and Differr:nliabilil)'. IX. IIS pages. 1989. 

Vol. 136S: M. Giaquinla (Ed.), Topics in Calculus of Varial­
ions. Seminar, 1987. X. 196 pases. 1989. 

Vol. 1366: N. Levin. Gnssmannians and Gauss Maps in PL­
Topology. V. 203 paps. 1989. 

Vol. 1367: M. Knebuscb, Weakly Scmial8ebnic Spaces. XX. 
376 pages. 1989. 

Vol. 1368: R. Hübl, Tnces of Differential Formsand Hoch­
schild HCHDOI08)'. 111, III pages. 1989. 

Vol. 1369: B. Jiang, Ch.-K. Peng, Z. Hou (Eds.), Differr:nlial 
Geometty and Topolo8)'. Proceedings, 198&-87. VI, 366 pages. 
1989. 

Vol. 1370: G. Carlsson, R.L. Coben, H.R. Miller, D.C. Ravenel 
(Eds.), Algebraic Topol08)'. Proceedings. 1986.1X, 4S6 pages. 
1989. 

Vol. 1371: S. Glaz, Commura1ive Coberenl Rings. Xl,l47 paaes. 
1989. 

Vol. 1372: I. Azmoa, P.A. Meyer, M. 
Probabilitä XXIII. Proceedinss. IV, 583 pages. 1989. 

Vol. I 373: G. Benkan, J.M. Osborn (Eds.), Lie Algebrao. 
Madison 1987. Proceedings. V, 145 pages. 1989. 

Vol. 1374: R.C. Kirb)', The Topoloay of 4-MIIIifolds. VI, 108 
pagea. 1989. 

Vol. J37S: K. Kawakuba (Ed.), Transformalion Groupa. 
Proceedings, 1987. VIII, 394 pqes, 1989. 

Vol. 1376: I. Lindensrnuss. V.D. Mitman (Eds.), Geometrie 
Aspectsoffunctional Analysis. Scminar(GAFA) 1987-88. VII, 
288 pages. 1989. 

Vol. 1377: J.F. Pierce, Sinsutariry Theory, Rod Theory, 11111 
Symmerry-Breakin8 Loads. IV, 177 pages. 1989. 

V ol. 1378: R.S. Rumely, Capaciry Theory on Alpbraic Curves. 
111, 437 pagea. 1989. 

Vol. 1379: H. Heyer (Ed.), Probability Measurr:s on Groupa IX. 
Proceedings, 1988. VIII. 437 pqe•. 1989. 

Vol. I 310: H.P. Schlic:kewei, E. Winoins (Eds.), Number Theol)', 
Ulm 1987. Proceedings. V, 266 pages. 1989. 

Vol. 1381: 1.-0. S1römber&, A. Torchinsky, Weighled Hanly 
5pues. V, 193 paaea. 1989. 

Vol. 1382: H. Reirer, Melaplectic Oroupa ud SesaJ Alpbru. 
XI, 128 pases. 1989. 

Vol. 1383: D. V.-Chudnovlky, G.V. Ch"*-sky, H. Cobn, M.B. 
Nlllhason IEd5.), Number Theory, New York 198S-88. Semi­
nar. V,256pa .... 1989. 

Vol. 13114: I. Gan:ia-Cuerva (Ed.), Hannoaic Analy•i• and 
Panial Differential EqUIIIioas. Proceedinp, 1987. VII, 213 
pase .. J989. 

Vol. 1385: A.M. Anile, Y. Choquei-Brubal (Eds.), Relalivillic 
Fluid Dynamies. Seminar, 1987. V, 308 pages. 1989. 

Vol. 1386: A. Bellen, C.W. Gear, E. Russo (Eds.), Numerical 
Merhods forOrdinary Differr:n1ial Equalions. Proceedings, 1987. 
VII, 136 pages. 1989. 

Vol. 1387: M. Petkovi'c,lrentive Melhods for Simullaneous 
lnclusion ofPolynomial äros. X. 263 P•8es. 1989. 

Vol. 1388: J. Shinoda, T.A. Slaman, T. Tugue (Eds.), 
Mathemalical Logic and Applicalions. Proceedings. 1987. V, 
223 pages. 1989. 

Vol. 1000: Secund Edition. H. Hopf. Differential Geornelr)' in 
lhe Lars•- VII, 184 paaes. 1989. 

Vol. 1389: E. Ballico, C. Cilibeno (Eds.), Algebraic Curves and 
Prvjective Geometry. Proc:eedings, 1988. V, 288 pages. 1989. 

Vol. 1390: G. Da Prlllo, L. Tubara (Eds.), Stocbasric Partial 
Differential Equations and Applielllionsll. Pruceedings, 1988. 
VI, 258 pages. 1989. 

Vol. 1391: S. Cambolnis, A. Wcron (Eds.). Probolbility Theory 
on Vector SpacesiV. Proceedings, 1987. VIII, 424-pages. 1989. 

Vol. 1392: R. Silhol, Real Algcbnic Surfaces. X, 215 pages. 
1989. 

Vol. 1393: N. Bouleau, D. Feycl, F. Hirsch, G. Mokobodzki 
(Eds.). de du Polenliel Paris, No. 9. 
Proceedings. VI, 265 pages. 1989. 

Vol. 1394: T.L. Gill. W.W. Zachary (Eds.), Nonlinear 
Semigroups, Panial Differential Equalions and Allraclors. 
Proceedings, 1987.1X, 233 pages. 1989. 

Vol. 1395: K. Alladi (Ed.), Number Theory, Madras 1987. 
Proceedin8•- VII. 234 pages. 1989. 

Vol. 1396: L. Accardi, W. von Waldenfels (Eds.), Quantum 
Probability and Applications IV. Proceedings. 1987. VI, 3SS 
pages. 1989. 

VoJ. 1397: P.R. Tumer(Ed.), Numerical Analysis and Panilei 
Processins. Seminar, 1987. VI, 264 pases. 1989. 

Vol. 1398: A.C. Kim, B.H. Neumann (Eds.), Groupa- Korea 
1988. Proceedings. V, 189 pases. 1989. 

Vol. 1399: W.-P. Banh, H. Lage (Eds.). Aritbmelic ofComplex 
Manifolds. Proceedinp, 1988. V, 171 pasea. 1989. 

Vol. 1400: U. Jannsen. Mixed Motivesand Algebraic K-TheOI)'. 
XIII, 246 pases. 1990. 

Vol. 1401: J. Steprans, S. Wa1son (Eds.), Set Theory and ils 
Applications. Proceedings, 1987. V, 227 pagea. 1989. 

Vol. 1402: C. Carasso, P. Cbarrier, B. Hanouzet, 1.-L. loly 
(Eds.), Nonlinear Hyperbolic Problems. ProceedinJ•- 1988. V, 
249 page•. 1989. 

Vol. 1403: B. Simeone (Ed.), Combinatorial Optimization. Se­
minar. 1986. V,314 pages. 1989. 

Vol. 1404: M.-P. Malliavin (Ed.), d'AIFbre Paul 
Dubreil et Marie-Paul Malliavin. Proceedinss. 1987-198B.IV, 
410 pages. 1989. 

Vol. 1405: S. Dolecki (Ed.), Optimization. Proceedinp, 1988. 
V, 223 pages. 1989. Vol. 1406: L. lacoboen (Ed.), Analytic 
Theory ofContinued Fractionslll. Proceedin8S. 1988. VI, 142 
pages. 1989. 

Vol. 1407: W. Poltlers, ProofTheory. VI, 213 pages. 1989. 

Vol. 1408: W. Uk:k, Trusf0t1n11ion Groupa ud Alpbraic K­
Theory. XII. 443 pap•. 1989. 

Vol. 1409: E. Hairr:r, Ch. Lubicb, M. Roche. The Numerieil 
Solution of Differentiai-Aisebnic Sy•tem• by Runge-Kolla 
Methods. VIJ,I39pages. 1989. 

Vol. 1410: F.l. Ca-0. Gii-Medruo. A.M. Naveira (Ed..), 

Differential Geometry. Proceedinl'- 19118. V. 308 pageo. 19119. 



Vol. 1411: B. Jian& (Ed.), Topoloaial I"IXed Poim Theory and 
Applications. Proc:eeclinas. 1988. VI, 203 paaes. 1989. 

Vol. 1412: V. V. Kalashnikov, V.M. Zolotarev (Eds.), Stabiliry 
Problems for Srochastic Models. Proceedinp, 1987. X, 380 
paacs. 1989. 

Vol. 1413: S. Wrighr, UniqucncssofrbclnjcctivciU Factor.IIJ, 
108 paacs. 1989. 

Vol. 1414: E. Ramin:z dc Arellano (Ed.), Alacbraic Gcomerry 
md Complcx Analysis. Proceedinp. 1987. VI, 180paacs. 1989. 

Vol. 1415: M. Lanpin, M. Waldschmidt (Eds.), Cinquantc 
Ans dc PolynOmes. Fifty Y CaJS of Polynomials. Proccedinas. 
1988. IX, 235 paacs.l990. 

Vol. 1416: C. Albert (Ed.). Symplccriquc er 
Mkanique. Proceedin8s. I 988. V. 289 paacs. 1990. 

Vol. 1417: A.J. Sommesc, A. Biancofiore, E.L. Livorni (Eds.), 
A18cbraic Gcomctry. Proceedinss. 1988. v. 320 pases. 1990. 

Vol. 1418: M. Mimura (Ed. ), Homotopy Thcory and Related 
Topics. Proceedinp, 1988. V, 241 pases. 1990. 

Vol. 1419: P.S. Bullen, P. Y. Lee, J.L. Mawhin, P. Muldowncy, 
W.F. Pfeffer (Eds.), Ncw lntcaraJs. Proceedinp, 1988. V, 202 
paaes. 1990. 

Vol. 1420: M. Galbiati, A. Tosnoli (Eds.). Real Analyric 
Geometry. Proceedinas. 1988. IV. 366 paaes. 1990. 

Vol. 1421: H.A. Biaponi, A NonlinearTheory ofGcneralized 
Functions, XII, 214 paaes. 1990. 

Vol. 1422: V. Villani (Ed.), Complex Geometry and Analysis. 
Proceedinp. 1988. V. 109 pases. 1990. 

Vol. 1423: S.O. Kochman, Srable Homotopy Groups of Spheres: 
A Computcr-Assisted Approach. VIII. 330 paacs. 1990. 

Vol. 1424: F.E. Burstall, J.H. Rawnslcy, Twisror Thcory for 
Riemannian Symmetrie Spaccs. 111, 112 pases. 1990. 

Vol. 1425: R.A. Piccinini (Ed.), Groups of Self-Equivalcnces 
and Related Topics. Proceedinp, 1988. V, 214 paacs. 1990. 

Vol. 1426: J. Adma, P.A. Meyer, M. Yor(Eds.), dc 
l'rollöilir& XXIV, 1988JB9. V. 490 paaes. 1990. 

Vol. 1427: A. Ancona, D. Geman, N. lkeda. &ole dc 
l'rollöilir& dc Saint Flour XVIII, 1988. Ed.: P.L. Hennequin. 
VII, 330 pases. 1990. 

Vol. 1418: K. Enlmann, Blocks ofTame RepRsentation Type 
and Related AJaebras. XV. 3 I 2 paacs. 1990. 

Vol. 1429: S. Homcr, A. Nerocle, R.A. Platck, G.E. Sacks, A. 
Scedrov, Lßsic and Computer Science. Seminar. 1988. Editor: 
P. Odifreddi. V, 162 paaa. 1990. 

Vol. 1430: W. Bruns, A. Simis (Eds.), Commutative Alpbra. 
Proceedinp. 1988. V. 160 pases. 1990. 

Vol. 1431: J.G. Heywood, K. Masuda, R. Raulmann, V.A. 
Solonnikov (Eds.), The Navier-Siolw Equations- Theory and 
Numerical Medtods. Proceedin8•· 1988. VII. 238 paaes. 1990. 

Vol. 1432: K. Amhos-Spies, G.H. Müller, G.E. Sacks (Eds.), 
Rccursion Thcory Weet. Proceedin8s. 1989. VI, 393 paaes. 
1990. 

Vol. 1433: S. J..ans, W. Cherry, Topic• in Nevanlinna Thcory. 
II. 174 pases.l990. 

Vol. 1434: K. Napoata, E. Fouvry (Eds.). Analytic Number 
Thcory. Proceedinp. 1988. VI, 218 paaa. 1990. 

Vol. 1435: SI. Ruscbeweyh, E.B. Salf, LC. Saliaas, R.S. Varp 
!Eds.), Compurational Methods and Funclion Theory. 
Proceedinl•· 1989. VI, 211 paaes. 1990. 

Vol. 1436: S. Xamb6-Descamps (Ed.), Enumerative Geornetry. 
Procecclinp, 1987. V, 303 paaes. 1990. 

Vol. 1437: H. 1...-riclze IEd.), K-tllewy and Homolaiical Al­
acbra- Seminar, 1987-811. V,313 paaes. 1990. 

Vol. 1438: P.G. (Ed.) Les Ondclertcs en 1989. Semi­
nar. IV, 212 paacs. 1990. 

Vol. 1439: E. Bujalance, J.J. Erayo, J.M. Gamboa, G. 
Grurnadzti. Automorpllism Groups of Compact Bordered Klein 
Surfaces: A Combinatorial Approach. XIII, 201 paaes. 1990. 

Vol. 1440: P. Latiolais (Ed.), Topoloay and Combiaatorial 
Groups Theory. Seminar, 1985-1988. VI, 207 paaes. 1990. 

Vol. 1441: M. Coomaerr, T. Oclzant, A. Papadopoulos. 
et lh6orie des 8f0Upes. X. 165 pases. 1990. 

Vol. 1442: L. Acc:anli, M. von Waldenfels (Eds.), Quantum 
Probability and Applications V. Proceedinp, I 988. VI, 413 
paaes. 1990. 

Vol. 1443: K.H. Oovermann, R. Scllulu, Equivariant Suracry 
Theorics and Their Pcriodiciry Properties. VI, 227 paacs. 1990. 

Vol. 1444: H. Korezlioslu, A.S. Ustuael (Eds.), Srochutic 
Analysis and ftelatcd Topics VI. Proceedinss. 1988. V, 268 
paacs. 1990. 

Vol. 1445: F. Scllulz, Reaulariry Theory for Quasilinear Elliptic 
Systems and - Monac AmpCie Equations iD Two DiiiiCIISions. 
XV, 123 pases. 1990. 

Vol. 1446: Medtods of Nonconvex Analysis. Seminar, 1989. 
Editor: A. Cellina. V. 206 paacs. 1990. 

Vol. 1447: J.-0. Labcsse, J. Scllwermer (Eds), CollomoJoo of 
Aritbmetic Groups and Automorpllic Forms. Proceeclinp, 1989. 
V,3S8 paacs. 1990. 

Vol. 1448: S.K. Jaia, S.R. L6pez-Pcrmouth (Eds.), Non­
Commurative Rins Theory. Proceedinp, 1989. V, 166 paaes. 
1990. 

Vol. 1449: W. Odyniec, G. Lewiclti. Minimal Projectiono in 
Banach Spaccs. VIII, 168 paacs. 1990. 

Vol. 1450: H. Fujita, T. ltebe, S.T. Kuroda (Eds.), Functionai­
Analytic Merhods for Parrial Differential Equations. 
Proceeclings, 1989. VII, 252 paaes. 1990. 

Vo1.14SI:L.Aiv....z-Gau-,E.Art.lello,C.DeConeini,N.J. 
Hitchin, Global Geometry and Mathematical Pllysics. 
Monteeatiai Terme 1988. Seminar. Editors: M. "'-a•i81ia. F. 
Gllcranlelli. IX, 197 pqes. 1990. 

Vol. 1452: E. Hlawka, R.F. Ticby (Eda.), Number-n-tic: 
Analysis. Seminar, 1988-19. V, 220 pqes. 1990. 

Vol. 1453: Yu.G. Borisovicll, Yu.E. Gliklikh (Eds.), Global 
Analysis - Studies and Applic:aliono IV. V. 320 P"ICI· 1990. 

Vol. 1454: F. Baldassari, 5. Boscll, B. DworJr. (Eda.), p-adic 
Analysis. Proceecliass. 1989. V ,382 paaes. 1990. 

Vol. 1455: J.-P. F ... se. R. Rouuuie (Eda.), Bifurcations of 
Planar Vector Fields. Proceedin11, 1989. VI, 396 paps. 1990. 

Vol. 1456: L.G. Kov6cs (Ecl.), Groupa - Canberra 1989. 
Proceedinp. XII, 198 pqes. 1990. 

Vol. 1451: 0. Allel-. L. Yu. Kolotilina (Eda.), Preconditioned 
Conju8atcGradieat Metllods. Proeeedinp,l989. V, 196pases. 
1990. 

Vol. 1458: R. Scllaaf. Global Solution Bnncltea of Two Point 
Boundary Value Problems. XIX, 141 pqes. 1990. 

Vol. 1459: D. Tiba, Optimal Corunll of Non-b Dillributed 
PamnetcrSystcms. Vll, 159paaes. 1990. 

Voi.I460:G. Toscani, V. Bolli,S.Rionera(Eds.)..............,al 
Aopects of Fluid Plasma Dynamic:o. Proceeclinp, 1918. V. 2:U 
paaa.l991. 

Vol. 1461: R. Gorcnfto. S. Abellntepal Equllions. 
VII, 215 pqes. 1991. 

Vol. 1462: D. Mond. J. MonuJdi (Eda.), Sinplarity Tllewy and 
ita Applications. W-iek 1989, Pul I. Vlll,405 pqes. 1991. 

Vol. 1463: R. Roberls,l. Stcwart(Eda.), Si11JularityThewy ancl 
it1 Applications. 1989, Pulli. VIIJ,322 JIIIICS· 1991. 



Vol. 1464: D. l. Burkholder. E. Pardoux. A. Sznitman, Ecole 
d'Ete de Probabilitt's de Saint- Flour XIX-1989. Editor: P. l. 
Hennequin. VI. 256 pages. 1991. 

Vol. 1465: G. David. Wavelets and Singular Integrals on Curves 
and Surfaces. X. 107 pages. 1991. 

Vol. 1466: W. Banaszczyk. Additive Subgroups ofTopological 
Vector Spaces. VII. 178 pages. 1991. 

Vol. 1467: W. M. Schmidt, Diophantine Approximationsand 
Diophanline Equations. VIII, 217 pages. 1991. 

Vol. 1468: J. Noguchi, T. Ohsawa (Eds.). Prospects in Complex 
Geometry. Proceedings, 1989. VII. 421 pages. 1991. 

Vol. 1469: J. Lindenstrauss, V. D. Mitman (Eds.), Geometrie 
AspectsofFunctional Analysis. Seminar 1989-90. XI, 191 pases. 
1991. 

Vol. 1470: E. Odell, H. Rosenthai (Eds.), Functional Analysis. 
Proceedings, 1987-89. VII. 199 pases. 1991. 

Vol. 1471: A. A. Panchishkin, Non-Archimedean L-Functions 
of Siegel and Hilber! Modular Forms. VII, 157 pages. 1991. 

Vol. 1472: T. T. Nielsen, Bose Algebras: The Complex and Real 
Wave Representations. V, 132 pages. 1991. 

Vol. 1473: Y. Hino, S. Murakami, T. Naito, Functional Diffe­
rential Equations with Infinite Delay. X. 317 pages. 1991. 

Vol. 1474: S. Jackowski, B. Oliver, K. Pawalowski (Eds.), 
Algebraic Topology, Poznaß 1989. Proceedings. VIII, 397 pages. 
1991. 

Vol. 1475: S. Busenberg, M. Martelli (Eds.), Delay Differential 
Equations and Dynamical Systems. Proceedings, 1990. VIII, 249 
pages. 1991. 

Vol. 1476: M. Bekkali, Topics in Set Theory. VII, 120 pages. 
1991. 

Vol. 1477: R. Jajte, Strong Limit Theorems in Noncommutative 
L,-Spaces. X, 113 pages. 1991. 

Vol. 1478: M.-P. Malliavin (Ed.), Topics in Invariant Theory. 
Seminar 1989-1990. VI, 272 pages. 1991. 

Vol. 1479: S. Bloch, I. Dolgachev, W. Fuhon (Eds.), Algebraic 
Geometry. Proceedings, 1989. VII, 300 pages. 1991. 

Vol. 1480: F. Dumorlier, R. Roussarie, J. Sotomayor, H. 
Zoladek, Bifurcations of Planar Vector Fields: Nilpotent Sin­
gularities and Abelian Integrals. VIII, 226 pages. 1991. 

Vol. 1481: D. Ferus, U. Pinkall, U. Simon, B. Wegner (Eds.), 
Global Differential Geometry and Global Analysis. Proceed­
ings, 1991. VIII, 283 pages. 1991. 

Vol. 1482: J. Chabrowski, The Dirichlet Problem with L2-

Boundary Data for Elliptic Linear Equations. VI, 173 pages. 
1991. 

Vol. 1483: E. Reithmeier, Periodic Solutions of Nonlinear 
Dynamical Systems. VI, 171 pages. 1991. 

Vol. 1484: H. Delfs, Homology of Locally Semialgebraic 
Spaces. IX, 136 pages. 1991. 

Vol. 1485: J. Aztma, P. A. Meyer, M. Yor (Eds.), Seminaire de 
Probabilites XXV. VIII. 440 pages. 1991. 

Vol. 1486: l. Arnold, H. Crauel, J.-P. Eckmann (Eds.), 
Lyapunov Exponents. Proceedings. 1990. VIII, 365 pages. 1991. 

Vol. 1487: E. Freitag. Singular Modular Forms and Theta 
Relations. VI, 172 pages. 1991. 

Vol. 1488: A. Carboni. M. C. Pedicchio, G. Rosolini (Eds.), 
Category Theory. Proceedings, 1990. VII, 494 pages. 1991. 

Vol. 1489: A. Mielke, Hamihonian and Lagrangion Flows on 
Center Manifolds. X, 140 pages. 1991. 

Vol. 1490: K. Metsch. Linear Spaces with Few Lines. XIII, 196 
pages. 1991. 

Vol. 1491: E. Lluis-Puebla, J.-l. Loday. H. Gillet. C. Soule, 
V. Snailh, Higher Algebraic K-Theory: an overview. IX. 164 
pages. 1992. 
Vol. 1492: K. R. Wicks, Fraetats and Hyperspaces. VIII, 168 
pages. 1991. 

Vol. 1493: E. Benöt (Ed.), Dynamic Bifurcations. Proceedings, 
Luminy 1990. VII, 219 pages. 1991. 

Vol. 1494: M.-T. Cheng, X.-W. Zhou, D.-G. Deng (Eds.), 
Harmonie Analysis. Proceedings, 1988. IX, 226 pages. 1991. 

Vol. 1495: J. M. Bony. G. Grubb,l. Hörmander, H. Komatsu, 
J. Sjöstrand, Microlocal Analysis and Applications. Montecatini 
Terme, 1989. Editors: L. Canabriga, l. Rodino. VII, 349 pages. 
1991. 

Vol. 1496: C. Foias, 8. Francis, J. W. Helton, H. Kwakemaak, 
J. B. Pearson, H,.,-Control Theory. Como, 1990. Editors: E. 
Mosca,l. Pandolfi. VII. 336 pages. 1991. 

Vol. 1497: G. T. Herman, A. K. Louis, F. Nanerer (Eds.), 
Mathematical Methods in Tomography. Proceedings 1990. X, 
268 pages. 1991. 

Vol. 1498: R. Lang, Spectral Theory of Random Schrödinger 
Operators. X. 125 pages. 1991. 

Vol. 1499: K. Taira, Boundary Value Problems and Markov 
Processes. IX. 132 pages. 1991. 

Vol. 1500: J. P. Serre, Lie Algebras and Lie Groups. VII, 168 
pages. 1992. 



LLie Algebras and Lie Groups

p.23, line 16. Replace H2 = {x, y} by H2 = {xy}.
p.120, exercise 2 b). In the denominator of the formula, (i + j− k) should
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