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Part I — Lie Algebras

Introduction

The main general theorems on Lie Algebras are covered, roughly the content
of Bourbaki’s Chapter I.

I have added some results on free Lie algebras, which are useful, both
for Lie’s theory itself (Campbell-Hausdorff formula) and for applications to
pro-p-groups.

Lack of time prevented me from including the more precise theory of
semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a
last Chapter, the typical case of sl,,.

This part has been written with the help of F. Raggi and J. Tate. I want
to thank them, and also Sue Golan, who did the typing for both parts.

Jean-Pierre Serre

Harvard, Fall 1964



Chapter I. Lie Algebras: Definition and Examples

Let k be a commutative ring with unit element, and let A be a k-module, then
A is said to be a k-algebra if there is given a k-bilinear map 4 x A — A (i.e,,
a k-homomorphism 4 ®; A — A).

As usual we may define left, right and two-sided ideals and therefore quo-
tients.

Definition 1. A Lie algebra over k is an algebra with the following properties:

1). The map A ®: A — A admits a factorization
AR A— A’A — A

i.e., if we denote the image of (z,y) under this map by [z, y] then the condition
becomes :
[z,2] =0 for all z € k.

2)' [[zv y]: z] + [[yy z]’z] + [[zsz]a y] = 0 (Jacobi’s identit}')

The condition 1) implies [z,y] = -y, z].
Ezamples. (i) Let k be a complete field with respect to an absolute value, let
G be an analytic group over k, and let g be the set of tangent vectors to G at

the origin. There is a natural structure of Lie algebra on g.
(For an algebraic analogue of this, see example (v) below.)

(ii) Let g be any k-module. Define [z,y] = 0 for all z,y € g. Such a g is
called a commutative Lie algebra.

(ii') ¥ in the preceding example we take g ® A ?g and define

[z,yl =z Ay
[z,yAz]=0
[zAy,2z]=0

[zAy,zAt)=0

for all z,y,z,t € g, then g A %g is a Lie algebra.

(iii) Let A be an associative algebra over k and define [z,y] = zy — yz,
z,y € A. Clearly A with this product satisfies the axioms 1) and 2).

Definition 2. Let A be an algebra over k. A derivation D : A - Aisa
k-linear map with the property D(z -y) = Dz -y + z - Dy.

(iv) The set Der(A) of all derivations of an algebra A is a Lie algebra with
the product [D, D'} = DD' — D'D.
We prove it by computation:
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[D,D')(z-y) = DD'(z-y)— D'D(z - y)
=D(D'z-y+z-D'y)—D'(Dz-y+z- Dy)
=DD'z-y+D'z-Dy+Dz-D'y+z-DD'y

—D'Dx-y—-Dz-D'y—D'z-Dy—z-D'Dy
=DD'z-y+z-DD'y-D'Dz-y—z-D'Dy
=[D,D')z-y+z-{D,D')y.

Theorem 3. Let g be a Lie algebra. For anyz € g defincamapadz:g— g
by ad z(y) = [z,y], then:

1) adz is a derivation of g.
2) The map z — adz is ¢ Lie homomorphism of g into Der(g).

Proof.
ad z[y, 2] = [z, [y, ]]
= —[y, [z, 2]) - [z, [=, 4]}
= [[z,y}, 2] + [y, [=, 2]}
= [ad2(y), 2] +[y,ad=(2)] ,

hence, 1) is equivalent to the Jacobi identity. Now

adfz,y](z) = {[=,4],2]
= ~(ly, 2], 7] - [[2,2],4]
[z,[y, Z]] - [y» ["z,z]]
=adrady(z) — adyadz(2)
= [adz,ady)(2) ,

hence 2) is also equivalent to the Jacobi identity.

(v) The Lie algebra of an algebraic matriz group.

Let k be a commutative ring and let A = M,(k) be the algebra of n x n-
matrices over k.

Given a set of polynomials Py (X;;), 1 <¢,j < n, azero of (P,) is a matrix
z = (z;;) such that z;; € k, Pa(zij) = 0 for all a.

Let G(k) denote the set of zeroes of (P,) in A* = GL,(k). If k' is any
associative, commutative k-algebra we have analogously G(k') C M,(k').

Definition 4. The set (P,) defines an algebraic group over k if G(') is a
subgroup of GL,(%') for all associative, commutative k-algebras k'.

The orthogonal group is an example of an algebraic group (equation:
X - X = 1, where X denotes the transpose of X).

Now, let k' be the k-algebra which is free over k with basis {1,£} where
e? =0,ie., k' = kle].
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Theorem 5. Let g be the set of matrices X € My(k) such that
1+¢eX € G(kfe]) .
Then g s a Lie subalgebra of M, (k).

We have to prove that X,Y € g implies A X + uY € g, if \,u € k and
XY -YXeg.
To prove that, note first that

Pi(l14+eX)=0forala <+« Xe€g
and, since £2 = 0, we have
Py(1+€eX) = Pa(1) + dP,(1)eX .
But 1 € G(k), i.e. Py(1) = 0; therefore
Po(1+eX) =dPa(l)eX .

Hence, g is a submodule of M, (k).

We introduce now an auxiliary algebra k" given by k" = k[, €', e€'] where
e? =e? =0and e'e = &€, i.e., k" = k[e] ®x k[e'].

Let X,Y € g, so we have

9 =1+¢X € G(k[e]) C G(k")
g'=1+¢'Y € G(k[¢') C G(x")

99 =(1+eX)1+4€eY)=14+eX +€'Y + ' XY
g'9=1+eX +€Y +ec'YX.
Write Z = [X,Y]; we have

99' =9'9(1+¢£'2) .
Since g¢’,9'g € G(k"), it follows that
1+¢ee'Z € G(K") .

But the subalgebra klee’] of k" may be identified with k[¢]. It then follows
that 1 + eZ € G(k[e]), hence Z € g, q.e.d.

Ezample. The Lie ﬂgebra of the orthogonal group is the set of matrices X
such that (1 +eX)(1 +e(*X))=1,ie, X +X =0.

(vi) Construction of Lie algebras from known ones.
a) Let g be a Lie algebra and let J C g an ideal, then g/J is a Lie algebra.
b) Let (gi)ier be a family of Lie algebras, then [],; 8i is a Lie algebra.

c) Suppose g is a Lie algebra, a C g is an ideal and b is a subalgebra of
8, then g is called a semidirect product of b by a if the natural map g — g/a
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induces an isomorphism b — g/a. If s0, and if z € b, then ad z maps a into
a so that adq = € Der(a), i.e., we have a Lie homomorphism 8 : b — Der(a).

Theorem 6. The structure of g is determined by a, b and 8, and these can
be given arbstrarily.

Proof. Since g is the direct sum of a and b as a k-module and since multipli-
cation is bilinear and anticommutative we have to consider the product [z, y]
in the following three cases:

r,y€a
z,y€b
z€b, y€a.

In the first case [z,y] is given in a, in the second one [z,y] is given in b
and in the last one we have

[z,y] = ad2(y) = 6(z)y .
Conversely, given the Lie algebras a and b and a Lie homomorphism
0:5 — Der(a) ,

we can construct a Lie algebra g which is a semidirect product of b by a in
such a way that 6(z) = adq z, where ad, 2z is the restriction to a of adg z, for
z € b. One has to check that the Jacobi’s identity

J(.’l:,y, z) = [z’[yi z]] + [y, [z,z]] + [7" [z,y]] =0

holds. There are essentially four cases to be considered:

(a) z,y,2€a then J(z,y,2) = 0 because a is a Lie algebra.
(b)z,y€a,z€b - J(z,y,z) =0 < 6(2) is a derivation of a.
(c)z€a,y,2€b - J(z,y,2) =0 <= O([y,z]) = 8(y)b(z) — 6(=)6(y).

(d) z,y,z€ b

J(z,y,z) = 0 because b is a Lie algebra.



Chapter II. Filtered Groups and Lie Algebras

1. Formulae on commutators

Let G be a group and let z,y,z € G. We will use the following notations:

(i) z¥ = y~'zy, hence the map G — G given by z +— z? is an automor-
phism of G, and we have the relation (z¥)* = z?*.

(i) (z,y) = 27}y 22y which is called the commutator of z and y.

Proposition 1.1. We have the identities:
(1) zy = yz?¥ =yz(z,y), =¥ = 2(=z,y), (z,2) =1, (y,7) = (z,9)7".
(2) (z,y2) = (2,2)(=,y)".
(2) (zy,2) = (2,2)"(, 2)-
(3) (=, (v, 2)(¥*, (z, 2)(=*, (z,9)) = 1.

Proof. (1) is trivial.
(2) From (i) and (1) we have
z(z,yz) = z**
= ()"
= [z(z,y))
=z(z,y)" = 2(z,2)(z,)"
and therefore (z,yz) = (z, z)(z,y)*.

(2) zy(zy, 2) = (zy)* = z*y*
= z(z,2)y(y, )
= zy(z,2)"(y,2)
and therefore (zy, z) = (z,2)¥(y, 2).

1

(3) (@, (1, 2)) =y 'z lyz ly ey oy T 2y
-1 1,.-1
=y

7 lyz 7y zzz'lyz .

Put
u=zzxz"} yz

v=zryz lzz

w=yzy " 'zy

then (z7,(y,2)) = w™lu.
Analogously (by cyclic permutation)

¥ (z,2)) =u"v

(% (@) =vw.
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Hence (27, (v, 2))(¥*,(2,2))(2%,(z,y)) =1 qed.

Applications:

Let A, B be subgroups of a group G and let (A, B) denote the subgroup
of G generated by the commutators (a,b) for all a € 4, b € B.

If A, B, C are normal subgroups of G, then (A, B) is also normal and we
have the relation

(4,(B,0)) C(B,(C,4))(C,(4,B))
which follows from 1.1(3).

2. Filtration on a group

Definition 2.1. A filtration on a group G is a map w : G — R U {+o0}
satisfying the following axioms:

(1) w(1) = +oo.

(2) w(z) >0forall z € G.

(3) w(zy™) 2 inf{w(z), w(y)}.

(4) w((z,v)) 2 w(z) + w(y)-

It follows from (3) that w(y™!) = w(y). If XA € R4 we define
Gr={z€G|uw(z)> )1}
Gy ={zeG|w(x)>Ar}.

The condition (3) shows that G, G} are subgroups of G. Moreover, if z € G,
y € G then z¥ =z (mod G}) which follows from the relation

w((z,y)) 2 A +uw(y) > A.

This also proves that G is a normal subgroup of G and since G§ = J,5, G
it follows that G} is also a normal subgroup of G.

The family {G1} (resp. {G}}) is decreasing, i.e., A < u implies Gx» D G,
(resp. G} D G¥).

Definition 2.2. For all a > 0 we define
&,G=Ga/G} and gG=) gr,G.
o

Proposition 2.3.
1) gr, G is an abelian group.

2) If z € G, let T be its image in gr, G; one has (z¥) =17 for ally € G.
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3) The map cap: Ga X Gg — Gaqp defined by z,y — (z,y) induces a
bilinear map Ca,p: §ra G X g1y G — gray5 G-

4) The maps Eq,p can be eztended by linearity to c : grG x grG — grG
and this defines a Lie algebra structure on grG.
Proof. 1) It follows from 2.1(4).

2) It is already proved.

3) Let z,2' € Ga, y,¥' € Gg, then (z,y) € Gatps and we have to prove
that if u,v € G then (zu,y) = (z,y) mod G:ﬂ‘i’ (z,yv) = (z,y) mod GI_H,.
Using 1.1(2') and (3) we have

(zu,y) = (z,)* + (4,9) = (z,y)

(z,pv) = (2,v) + (z,9)* = (z,y)

(z2',y) = (z,9)* +(2',y) = (z,y) + (', )

(=,¥'y) = (z,9) + (z,¥') = (z,y) + (z,¥') -
This proves 3).

4) Let £ € gr, G, 1 € grg G and choose elements z € Ga, z € Gp such

that Z = £, j = n. Then we have (z,y) = €a,5(£, ), Which we also write [£,7).

Now if £ € grG then £ = ) {a Where {4 € gr, G. In order to prove that
[€,€] = 0, it is sufficient to prove that [€4,£s] = 0 and [€,,£5] = —[€4, €a). Let
Zo € Gq such that £, = &, for all . Then we have [€a, o] = (2a,%a) =1 =0,
and

[€as €8] = ar2p) = (pr%a) = —[€8,6a) -

In order to prove the Jacobi identity J(€,7,() = 0, since J is trilinear, it
is enough to consider the case { € gr, G, 1 € grg G and ¢ € gr., G. Now using
the Proposition 1.1(3) we have, for z € G, y € G, z € G such that 7 = ¢,

g=n2=¢(
J(f,q, C) = (zy’(yi z))(y*,(z,z))(z’,(z,y)) =1=0

because z¥ = §, y* =1, 2F = (. qed.

3. Integral filtrations of a group
Proposition 3.1. For any group G the following two objects are in a one-one
correspondence:

1) Filtrations w : G —» R U {+o00} such that w(G) C NU {+00}.

2) Decreasing sequences {Gp}nen of subgroups of G such that
() G1 =G.
(i) (Gn,Gm) C Grgm-
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Proof. (1) = (2) is clear.

(2) = (1). Let z € G, then we define a filtration w : G — R U {400} by
w(z) = subcq, ().

It is clear that w(1) = 400, w(z) > 0 for all z € G, and w(z) = w(z™?).

Now let w(z) = n, w(y) = m, ie, z € Gu,y € G and z € Gay1,
y € Gm41. Suppose n < m, then Gy, C Gy, and therefore zy~! € G, i.e.,

w(zy™) 2 inf{w(z), w(y)} .

In case n = 400 or m = +00, we have obviously this inequality.
Finally the inequality w((z,y)) > w(z) + w(y) follows from (ii). q.e.d.

Ezample. The descending central series of G.

Define G; = G and by induction G +1 = (G, Gp). Then the sequence {Gn}
satisfies the conditions (i)-(ii) of (2) in the Proposition 3.1. Condition (i) is
satisfied by definition, and we will prove (ii) by induction on n in the pair
(G, Gm)-

Let first n = 1, then (G,Gm) C Gm41 by definition. Now suppose n > 1,
then

(G'h Gm) = ((G: Gn—l ), Gm) - (G, (Gn—l ’ Gm))(Gn—l ) (G’ Gm))
C (G,Gn4m=1)(Gn-1,Gm4+1)
C Gn+m : Gn+m = Gn+m .
Conversely, if {H,} is a decreasing sequence of subgroups of G which

verifies (2), then H, D G, for all n. The proof of this is also by induction.
Suppose n = 1, then by definition Hy = G;. Now if n > 1, we have

H'H'l ) (Hlan) ) (G, Gn) = Gn+1 .

4. Filtrations in GL(n)

Let k be a field with an ultrametric absolute value |z| = a”(*). Let 4, be the
ring of v and let m, be the maximal ideal of A,, let k(v) = A,/m,.

Let n be a positive integer and let G be the group of n X n-matrices
with coefficients in A4, such that ¢ = 1 mod m,, ie., if ¢ = (gi;) then
gij = 6,‘,‘ mod my.

If g € G then g = 1+ = where z is a matrix with coefficients in m,,.

Clearly G is a group, because it can be described as

G = Ker{ GL(n, A,) — GL(n, k(v)) } .

Let X € M,(k), X = (zij), then define v(X) = inf{v(z;;)}.
We can define a map w : G = RU{+o0} by w(g) = v(z), where g = 1+ =z.

Theorem 4.1. The map w is a filtration on G.
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Proof. The conditions w(1) = +00 and w(g) > 0 for all ¢ € G are obvious.
Let now G), = {gEGIw(g)ZA}. If a, is defined by

ar={z|z€k v()2 A},
the set G, is the kernel of the canonical homomorphism
GL(n,A,) = GL(n,4,/a,) .

Hence G is a subgroup of G, and this proves condition (3).
To prove condition (4), i.e., (Gx,G,) C Gy, write g € G, h € G, in
the form: ‘
g=1l+4+z, h=1+4y.

One must check that hg = gh (mod Gj4,). But

hg=1+z+y+yz
gh=14z+y+zy

and the coefficients of zy and yz belong to ax4,. Hence hg and gh have the
same image in GL(n, A,/ax+,), and they are congruent modGi4,, q.e.d.

Exercises

1. Determine the Lie algebra grG.
2. Prove that G =1jm G/G, if k is complete.



Chapter III. Universal Algebra of a Lie Algebra

1. Definition

Let k be a commutative ring and let g be a Lie algebra over k.

Definition 1.1. A unsversal algebra of g is a map ¢ : g — Ug, where Ug is
an associative algebra, with a unit satisfying the following properties:
1). € is a Lie algebra homomorphism,

(i-e., € is k-linear and ¢[z,y] = ez - ey — ey - ex).

2). If A is any associative algebra with a unit and a : g — A is any
Lie algebra homomorphism, there is a unique homomorphism of associative
algebras ¢ : Ug — A such that the diagram

g —Ug
al S
A

is commutative [i.e., there is an isomorphism
Homyie(g, LA) = Homa(Ug, A)

where LA is the Lie algebra associated to A, cf. Chap. I, example (iii).]

It is trivial that Ug, if it exists, is unique (up to a unique isomorphism). To
prove its existence, we use the tensor algebra T'g of g, i.e., Tg = Yoo T g,
where T"g = gQ®:-- @ g = @" g for n > 0. For any associative algebra A
with a unit, one has: HomMod(8, A) = Homa(T'g, A).

Now let I be the two-sided ideal of T'g generated by the elements of the
form [r,y] -z @y +y®=z, z,y€ 9.

Take Ug = Tg/I, then we have:

Theorem 1.2. Letc: g — Ug be the composition g — T'g — Tg — Ug.
Then the pair (Ug,€) is a universal algebra of g.

In fact, let « be a Lie homomorphism of g into an associative algebra A.
Since a is k-linear, it extends to a unique homomorphism ¥ : Tg — A. It is
clear that ¥(I) = 0, hence ¢ defines ¢ : Ug — A, and we have checked the
universal property of Ug.

Remark. Let E be a g-module (i.e., a k-module with a bilinear product
8 X E — E such that [z,yle = z(ye) ~ y(z - ) for 2,y € g, e € E). The
map g — End(E, E) which defines the module structure of E is a Lie homo-
morphism. Hence it extends to an algebra homomorphism Ug — End(E, E)
and E becomes a Ug-left-module. It is easy to check that one obtains in this
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way an tsomorphism of the category of g-modules onto the category of Ug-
left-modules.

Exercise (Bergman). Prove that Ug =k <= g = 0. (Hint: use the adjoint
representation.)

2. Functorial properties

1). If g = Lim g, then Ug = LimUg,.
2). If g = g1 X g2, where g, and g2 commute, then Ug = Ug, ® Ug,.
3). Let k' be an extension of k and let g' = g®i k', then Ug' = Ug Qi k'.

Proof of 2). Consider the homomorphisms ¢; : g; — Ugi, i = 1,2, f:
g — Ugi @Ug: given by f(z) = e(z1)® 1+ 1® e(z3) where z = z; + 2
with z; € @1, 22 € g2. The map f is a Lie algebra homomorphism since g,
commutes with g;. Hence f induces an associative algebra homomorphism
Y:Ug—Ug ®Ugs.

On the other hand we have the homomorphisms g; — g — Ug, ¢ = 1,2,
which induce homomorphisms ¢; : Ug; — Ug and since g; commutes with
@2 we have that ¢;(z1)p2(z2) = @2(z2)p1(z1) for all z; € g1, 72 € g2.

Finally take ¢ : Ug; ® Ugs — Ug given by ¢(z1 ® z2) = ¢1(z1)p2(2z2),
then we have Yo = id and p o =id.

The proof of 1) and 3) are similar.

3. Symmetric algebra of a module

Let g be a k-module and define [z,y] = 0 for all z,y € g. In this case, the
universal algebra Ug of g is called the symmetric algebra of the k-module g
and it is denoted by Sg.

We can define Sg as the largest commutative quotient of T'g, i.e.,
Sg = Y02 ,S"g where S"g = (®" 8)/I where I is generated by the ele-
ments of the form a — ga where o is a permutation of {1,n},and a € @" g.

We will consider the case where g is a free k-module with basis (e;)ier-

Let ¢ : g — k[(Xi)ier] be the homomorphism given by e(e;) = X;
where k[(X;)ie1] is the polynomial ring in the indeterminates X;, i € I.
Then (¢, k[(Xi)ies]) has the universal property of 1.1, i.e, ¢ is a k-linear
map such that e(z)e(y) = e(y)e(z) and if f : g — A is a k-linear map with
F(2)f(y) = f(y)f(z) for all z,y € g where A is an associative algebra, then
there exists an associative algebra homomorphism f* : k{(X;)] — A such that
f*oe = f. In fact if P(z;) € k[(X;)] then f*(P) = P(f(e;i)). This shows that
we can identify Sg with the polynomial algebra k[(X;)ier}.

If we assume that I is totally ordered, then Sg has for basis the set of
monomials ¢;, ---€;,, 1 <3 <+ - <ip,n 20,
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4. Filtration of Ug

Let g be a Lie algebra over k, and let Ug be the universal algebra of g. We
define a filtration of Ug as follows: Let U, g be the submodule of Ug generated
by the products &(z1)- - &(zm), m < n, where z; € g. We have

Uoﬂ=k
Uig=kde(g)

and Upg CU g C - - CUng CUns18C -

Now we define grUg = Y22, gr,, U@, where gr, Ug = Un8/Un-18.

The map Upg X Uyg — Up4,8 given by (a,b) ~ ab defines, by passage to
quotient, a bilinear map

gr,Ug xgr,Ug — gr, . Ug.

We then obtain a structure of graded algebra on grUg; with this structure
grUg is called the graded algebra associated to Ug. It is associative and has
a unit.

Proposition 4.1. The algebra grUg is generated by the image of g under
the map induced bye:g— Ug.

Proof. Let a € gr, Ug and let a € U,g be a representative of a, i.e., @ = a.
Now, we havea =3, ., Ape(zM) - - e(z8£)). Thus we have

a= Z Aue(zM)- - e(zs,‘,‘,),) q.ed.

my=n

Theorem 4.2. The algebra grUg s commutative.

Proof. Using 4.1 it is enough to prove that ¢(z), &(y) commute in gr, Ug for
all z,y € g.
Since ¢ is a Lie algebra homomorphism we have

e(z)e(y) — e(w)e(z) = e([=,9]) ,
but &([z,y]) € U1g so &(z)e(y) = e(y)e(z) mod Uy g. Therefore
e(z) e(y) = e(y) e(=) -

It follows from Theorem 4.2 that the canonical map g — grUg extends
to a homomorphism

1:5g - grUg

where Sg is the symmetric algebra of g (cf. ITL3).
Since gr Ug is generated by the image of g, t is surjective.
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Theorem 4.3 (Poincaré-Birkhoff-Witt). If g is a k-free module, then s is an
isomorphism.

In order to prove the theorem we will prove first two lemmas.
Let (z;)ie1 be a basis of g and choose a total order in I.

Lemma 4.4. The family of monomials e(z;,)---€(zi.), 81 < -+ < im,
m < n, generate U™g (as a k-module).

Proof. We proceed by induction with respect to n.

For n = 0 the statement is trivial.

Suppose now n > 0 and take a € Ung. Then its image a € gr*Ug is a
polynomial of degree n in the £(z;), but this implies a is a linear combination
of products e(z;,)- - - €(;, ), 1 £ -+ £ i, plus an element a; € U 1g.

By the hypothesis of induction a; is a linear combination of products
€(zi,) -e(zin )y 1 £ - Lim,m<n. qed.

Lemma 4.5. The following statement is equivalent to 4.3:
The family of monomials e(z;,)---€(zi,), i1 < -+ S in, n 2 0 is a basis
of Ug.

For M = (i),...,ip) with i; <ip <--. < i, write
M =e(zil)".e(zim) ’

and denote the length of M by ¢(M) = m. For each n > 0 the elements z
with ¢(M) = n lie in U, g, and their images Zp in gr, Ug = U,,g/U,—18 are
the images, under the map : : S"g — gr, Ug, of the monomial basis elements
of S™g. Thus, the injectivity of 1 is equivalent to the non-existence of a relation

Z ez =0 (mod Un—y9)
U M)=n

with some cp # 0. By Lemma 4.4 this is the same as the non-existence of a
relation

with some cy on the left not zero. But any non-trivial k-linear dependence
relation among the zp can be put in the latter form. Hence Lemma 4.5 is
true, and we can now proceed to prove Theorem 4.3 in the new form.

To do so we can (and will) assume that I is well-ordered. Let V be the
free k-module with basis {z)} where M runs through the set of all sequences
(t15...,%p) withn > 0 and #; < i3--- < i, as above. If i € T and M =
(i1,-..,tn), we define : < M <= i < i;, in which case we introduce the
notation iM = (i,41,...,ip).

Main lemma. We can make V into a g-module in such a way that
2iZpm = Zim whenever 1 < M.
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We shall first define a k-bilinear map (z,v) — zv of g x V into V, and
will then prove that it makes V a g-module, that is, satisfies

(1) zyv — yzv = [z,y)v , forz,ycg,andveV.

To define zv it suffices to define z;Zpy for all : and M, and to define z;Zp
we may assume by induction that z;Zn has been defined for all j € I when
¢(N) < ¢M) and for j < i when £(N) = {(M). Moreover we assume that this
has been done in such a way that the following holds:

(*) z;Zy is a k-linear combination of Z,’s with ¢(L) < ¢(N) + 1.
We then put

-TiZM={ Zim ,ift <M

2 2;(2:2N) + [:,25]2n if M = jN withi > j.

This makes sense because, in the second case, z;Zy is already defined as a
linear combination of Z1’s with (L) < ¢(N)+1 = €(M), and [r;, z;] is a linear
combination of zi. Moreover the condition (*) holds with j and N replaced
by ¢ and M.

To check (1) it suffices, by linearity, to show

1) zi;ZN — 2;T;ZN = [zi,zj]ZN

for all 4, j and N. Since both sides are skew symmetric and vanish when
i = j, we may assume § > j. If j < N, then z;Zy = Z;n and (1') follows
from the second case of our inductive definition (2) above. There remains the
case N = kL, with i > j > k, when (1') becomes

(ijk) zizjzi 2L — zjTiTe 2L = [zi, zj]ze 2L

By induction on inf(3, j), we know this equation does hold if we permute ijk
cyclically, that is the equations (jki) and (kij) are correct. On the other hand,
by induction on £(N) we can assume zyZ; = yzZL +[z,y]ZL for all z,y € .
Thus the right hand side of (ijk) can be rewritten:

[z.-,z,-]szL = zk[::.-,zj]ZL + [[z;,Zj],z:g]ZL
= z,,z.-:c,-ZL - zkzj:c.-ZL + [[z.-,z,-],z;,]ZL .

If we substitute this on the right side of (ijk) and then add the three equations
(i7k) + (Fk2) + (kij) we get an equation of the form

Z = Z +Jac(:t,',zj,$k)ZL .

Hence, (ijk) is true, and our main lemma is proved.

Since V is a g-module, it is also a Ug-left module, cf. Remark at the end
of HI.1.

In particular we have in V the element Zg where @ is the empty set. For
all M we have z)Zy = Zpy. We will prove this by induction on &(M). If
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£(M) = 0 then it is clear because zpy = 1. If {(M) > 0 we write M = iN,
t < N.Then zp = ziaNy and 2 2Zg = zisNZg = 2, ZN = ZiN = 2ZN.
Finally, suppose we have " cpqyzp = 0, then

0= ZcMzMZ‘ = ZCMZM ,
but this implies cpy = 0 for all M. q.ed.

Corollary 1. If g is a free k-module then ¢ : g — Ug is injective.
In fact, in this case g ¢ gr, Ug.

Corollary 2. Let g = g, @ g2 where g; and g3 are subalgebras of g and are
free k-modules. Then the map Ug, @ Uga — Ug given by uy @ uz — ujug is
a k-linear isomorphism.

Proof. Let (z:i)ier, (yj)jes be a basis of g; and g, respectively, then
{(z:),(z;)} is a basis of g. Take a total order in I U J such that ev-
ery element of I is less than every element of J. Applying 4.5 we have
that the families of monomials {e(z;,)---e(zi,)}, {e(y;,)---€(y;.)} and
{e(zi)) - (i, )e(i) - - €(Yjm)} for iy < -~ < i and j; < -+ < jm are
basis of Ug,, Ug, and Ug respectively. Thus the map Ug; ® Ug; — Ug given
by u; ® uz — uju; is a bijection on the basis of Ug, ® Ug; and Ug. q.e.d.

Notice that in this case we have also induced an isomorphism

gUg @zUg: = grlg
because grUg; = Sg; and grUg = Sg =~ Sg, ® Sg:.

5. Diagonal map

Let g be a Lie algebra over k and suppose g is free as a k-module.

Definition 5.1. The Lie algebra homomorphism A : g — g x g given by
z ~+ (z,z) induces a homomorphism of associative algebras

A:Ug—-UgeUg,
which is called the diagonal map.

Proposition 5.2. The diagonal map A is characterized by the followsing two
conditions:

1) A is an algebra homomorphism.

2)Az=zQ®1+1®«z forallz € g.

Notice that we identify z € g with its image in Ug.



Chapter III. Universal Algebra of a Lie Algebra 17
Definition 5.3. An element o € Ug is called primitive if Aa = a®1+1Qa.
Hence every element z € g is primitive.

Theorem 5.4. Assume k is torsion free (as a Z-module) and g is a free
k-module. Then the set of primitive elements of Ug coincides with g.

Case 1. g abelian. In this case Ug can be identified with the ring of polynomials
k{(X;)] in variables X; corresponding to the basis elements z; of g. The diag-
onal map can be interpreted as a homomorphism A : k[X;] — k[(X}),(X}))]
where X! ~ X; ®1 and X! ~ 1 ® X;, and is then given by Af(X},X!) =
F(X! + X!"), because it sends X; to X} + X' for each i. Thus the primitive
elements f(z) € kf(X;)] are those which satisfy f(X] + X!') = f(X])+ f(X}).
If f is additive in this sense, then so is each homogeneous component f,. If f
is homogeneous of degree n and additive then

2" f(Xi) = f(2Xi) = f(Xi + Xi) = 2f(X),

8o (2" — 2)f = 0. Since k is Z-torsion free, we must have f =0 if n # 1. Thus
the only additive polynomials are the linear homogeneous ones.

Case 2. The general case. The map A: Ug — Ug ® Ug induces a map

gA:grUg—g(Ug®Ug) 2 grU(gdg) ~grUg@erlUg

(see end of III.4). On the other hand, we have grUg ~ Sg, and the corre-
sponding map Sg — Sg ® Sg is the same as the one discussed in the first
case, as one sees by looking at its effect on elements of the form z € gr, Ug
coming from elements z € g.

Let z € Upg, and let Z denote its image in gr, Ug. If z is primitive, then
% is primitive for gr A, hence, if n > 1, we have £ = 0 by case 1. Iterating
this, we conclude z € Uy g, that is, z = A + y, with A € k, y € g. Then

Ar=2+y®1+1Qy
z®14+1®@z2=2+y®1+1+1Q@y.

Thus, if  is primitive, then 2)\ = A, hence A\ =0,and z € g.

Exercises

1. Let PUg denote the set of primitive elements of Ug. Show that PUg is
stable under [, ], that is, if z and y € PUg, so is zy — yz.
2. Suppose pk = 0 for some prime number p, and suppose g is free, with
basis (z,-),-g. Show
a) PUg is stable under the map y — y?.
b) The elements (2 ), ¢ € I, v > 1, form a k-basis for PUg.
c) fzandyarein g, then (z+y)P —2? - y? € g.



Chapter IV. Free Lie Algebras

In this chapter, k denotes a commutative and associative ring, with a unit.
All modules and algebras are taken over k.

1. Free magmas

Definition 1.1. A set M with a map
MxM-—-M

denoted by (z,y) — zy is called a magma.

Let X be a set and define inductively a family of sets X,, (n > 1) as
follows:

X=X

2) Xa = [, 4¢=n Xp X Xq (n 2 2) (= disjoint union).

Put Mx = [[oo, X» and define Mx x Mx — Mx by means of

Xy X Xg = Xp4q C My,

where the arrow is the canonical inclusion resulting from 2).

The magma My is called the free magma on X. An element w of My is

called a non-associative word on X. Its length, #(w), is the unique n such that
w e Xn-

Theorem 1.2. Let N be any magma, and let f : X — N be any map. Then
there ezists a unique magma homomorphism F : Mx — N which eztends f.

Proof. Define F inductively by F(u,v) = F(u) - F(v) if u,v € X, x X,.

Properties of the free magma My:

1) Mx is generated by X.

2)m € Mx — X <= m = u.v, with u,v € M; and u, v are uniquely
determined by m.

2. Free algebra on X

Let Ax be the k-algebra of the free magma Mx. An element a« € Ax is a
finite sum a = Eme My Cm™T, with ¢, € k; the multiplication in Ax extends
the multiplication in Mx.

Definition 2.1. The algebra Ay is called the free algebra on X.

This definition is justified by the following:
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Theorem 2.2. Let B be a k-algebra and let f : X — B be a map. There
ezists @ unique k-algebra homomorphism F : Ax — B which extends f.

Proof. By 1.2, we can extend f to a magma homomorphism f’' : Mx — B,
where B is viewed as a magma under multiplication. This map extends by
linearity to a k-linear map F : Ax — B. One checks easily that F is an
algebra homomorphism. The uniqueness of F' follows from the fact that X
generates Ax.

Remark. Ay is a graded algebra, the homogeneous elements of degree n being
those which are linear combinations of words m € Mx of length n.

3. Free Lie algebra on X

Let I be the two-sided ideal of Ax generated by the elements of the form aa,
a € Ax and J(a,b,c), where a,b,c € Ax (J(a,b,c) = (ab)c + (bc)a + (ca)bd).

Definition 3.1. The quotient algebra Ax/I is called the free Lie algebra
on X.
This algebra will be denoted by Lx(k), or simply Lx.

Functorial properties.
1) ¥ f : X — X' is any map, then there exists a uniquemap F': Lx — Lx/
such that F|x = f.

1) i {Xa,i3} is a direct system and X = Lim X, then
LimLx, = Lx .
2) Let k' be an extension of k, then
Lx(k')y=Lx(k)®: k' .

3) I is a graded ideal of Ax, which implies Lx has a natural structure of
graded algebra.

Proof. Let I'¥ be the set of a € Ax such that every homogeneous component
of a belongs to I. Then I'*# is a two-sided ideal and I# C I.
Now let z € Ax, z = ¥ oo Tn, Zn homogeneous. Then

z-z=z:tf,+ Z(znzm + Tmzn) ,

n<m

but 22 € I, ZpZm + TmTn = (Tn + Zm)? — 22 — 22, € I, 50 that z -z € I*.
For three elements, = )" 2a, ¥y = }_yn, and z = ) 2, we have J(z,y,2) =
Yimnd(Zt,ym,20) € I*. Thus [# = I, qed.
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4) The homogeneous component L} has basis X and the homogeneous
component L} has for basis the family of elements [z,y], z < y, z,y € X,
where we have chosen a total order on X.

Proof. Clearly X generates Lx and [X, X] generate L% ([X,X] = {[z,y],
z <y, z,y € X}). Consider the module E = k(X) and the Lie algebra
E & \*E = g (example ii’ of Chapter I). The canonical map X — g induces
a Lie algebra homomorphism Lx — g, and the composition LY & L} —
Lx — g is an isomorphism q.e.d.

4. Relation with the free associative algebra on X

Definition 4.1. Let E = k(X) be the free k-module with basis X. Then the
free associative algebra on X, denoted by Assy, is the tensor algebra TE of E.

(Elements of Assx may be called “associative but non-commutative” poly-
nomials in the elements of X.)

Theorem 4.2. Let ¢ : Lx — Assy and & : ULx — Assx be the maps
induced by the map X — Assx. Then:
1) The map & is an isomorphism.

2) The map ¢ is an isomorphism of Lx onto the Lie subalgebra of Assx
generated by X.

3) Lx and its homogeneous components L% are free k-modules.
4) If X is finite and Card X = d then L% is free of finite rank £4(n) and
(*) >_mly(m)=d"

m|n

Remark. The formula (*) determines £4(n) by induction on n. In fact,

nly(n) =d" — Z méa(m) .

min
m<n

(More precisely, let 4 be the Mobius function, defined by:

PO ESVIOES | (BT3B
b4

n=1

One has:
nty(n) = Y u(m)d™™ . )

min
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Proof of Theorem 4.2.

1) is clear: the map X — ULx defines a homomorphism ¥ of Assx into
ULx,and Po¥? =1,VPod =1.

Note also that ¢ maps Lx onto the Lie subalgebra of Assx generated
by X, so that (2) is equivalent to saying that ¢ is injective. Note also that
(3) = (2); for, if Lx is free over k, the Birkhoff-Witt theorem shows that
Lx — ULy is injective, and we can identify ULx with Assx.

The rest of the proof is divided into four steps:

First step: Assume k is a field and X is finite.

Choose a homogeneous basis (v;)ier of Lx and a total order of I.
Put d; = deg(v:).
Now the Birkhoff-Witt theorem implies that the family of elements

S with i) < -+ <1,

is a basis of ULx = Assx and we have deg(v¢) = 3 ¢;;d;;.

Let a(n) be the rank of Ass%, then a(n) is equal to the number of families
(ei) such that n = Y e;d;.

This last statement is equivalent to the fact that the formal power series
A(t) = Y a(n)t" may be expressed in the form

1
a0 =]li==
iel
because [[;e; 127 = [Ties(1 +¢% +12% 4. .) and the coefficient of t" in this
product is precisely the number of families (e;) such that Y e;d; = n.
Now, for any positive integer m we have that in the product [];¢, 1_—117-'
the number of factors such that d; = m is the rank €a(m) of Lg, i.e.,

ol 1
A(t) = '”I;Ilm .

On the other hand, since Assx is the free associative algebra on X the
family of monomials z;, --- zi,, zi, € X is a basis of Ass’.
This implies that a(n) = d® and therefore

A=Y drn = —

1-dt

ie.,

I 1 _ 1
Al (1—tm)te(m) 1 —dt

From the equality log 12 = Y o2, 1t® we conclude that

> %ed(m)t"“’ = ,.; %d"t"

m,v
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and hence, for each n, we have %d" =Y mv=n %lg(m), ie.,

d* =) mly(m)
min
which proves (4) in this case.
Second Step: Assume k = Z and X is a finite set.

We will use the following lemma.

Lemma 4.3. If E is o finitely generated Z-module and dim(E @z F;) over
F, = Z/pZ is independent of p, for all primes p, then E is a Z-free module
with rank equal to the dimension of E @z F, over F,.

This lemma is an easy consequence of the structure theorem of abelian

groups.

Now, since L%(Z) ®z Fp = L%(F,) and dim(L%(F,)) = £a(n) which is
independent of p, it follows that L% is Z-free with rank £4(n).

This proves the theorem in this case.

Third Step: Assume k= Z and X is an arbitrary set.
Let {Ya} be the family of finite subsets of X, then X = LimY,,.
a

We first prove (2).
Using the second case, we have that the map

¢a : Ly, — Assy,
is injective for all a.
Now ¢ = Lim ¢, and the inductive limit of a family of injective maps is
a

injective. This proves (2).

In particular (2) implies that Lx and L% are Z-submodules of Assx,
which is free, so Lx and L% are free for all n.

This proves the theorem in the third case.

Fourth Step: General case.
The equality L% (k) = L%(Z) ®z k together with the third case imply
% (k) is k-free, i.e., (3) and therefore (2) holds.
On the other hand rk L% (k) = rk L'%(Z) thus, if X is finite, (4) holds.
q.e.d.

5. P.Hall families

Definition 5.1. Let X be a set. A P. Hall famsly in Mx, the free magma on
X, is a totally ordered subset H of Mx such that:

(1) X CH.
(2) if u,v € H with £(u) < {(v) then u < v.
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(3) Let u € Mx ~ X and let u = vw be the unique decomposition of u
where v,w € Mx. Then u € H if and only if the following two conditions are
satisfied:

(a)veH,we Handv < w,
(b) either w € X or w = w'w"” with w’ € H, w"” € H and v’ < v.

Lemma 3.2. There ezists a P. Hall family for any set X.

Proof. We define by induction H® = HN X,. We take H! = X, and choose a
total order on X. Suppose now H!,..., H"*! have been defined and totally
ordered in such a way that (1), (2), (3) hold for elements of length < n — 1.
The set H" is then defined without ambiguity by condition (3); we choose any
total order on H®, and put u < vif u € H' (i < n—~1) and v € H". This
completes the induction process, and it is clear that H = {JH™ is a P.Hall
family.

Ezample. Let X = {z,y}, with z # y. We can take H!,..., H® as follows:

H! = {z,y}, z<y

H? = {37 y}

H® = {2(z9), y(zv)},  =(zy) < y(2v)

H* = {z(z(zy)), y(z(zy)), y(v(zv))}

H® = {z(z(2(zy))), y(z(z(zy))), y(y(z(2v))), ¥(¥(¥(=¥))),
(zy)(z(=y)), (zy)(y(zv))}

Theorem 5.3. If H is a P. Hall family in My, then the canonical images of
the elements h € H in Lx make up a basis of Lx.

Let h € H and denote by h its image in Lx. Theorem 5.3 is equivalent to:
(1) The family {k}, h € H, generates Lx.
(2) The elements {h}, h € H, are linearly independent.

We prove here only the (easier) part (1). For a proof of (2), the reader may
look in M.Hall, The Theory of Groups, p. 170-171, or E. Witt, Die Unier-
ringe der freien Lieschen Ringe, Math. Zeit., 1956; M. Hall’s proof is based on
a counting argument; Witt’s proof is better (but longer). (See also Bourbaki,
LIE 11, §2, n° 11.)

Proof of (1). Let L'y be the k-module generated by h; since Ly contains X, it
will be enough to show that L'y is a Lie algebra, i.e., that hy, hy € H implies
that [hy, k] is in L'y.

We will carry the proof by a double induction, first on the length of A; +
length of hy (which is the length n of hyh;) and finally for a given n, by
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decreasing induction on Inf(h;, hz); in order that this induction process work,
we will assume that X is finite; the general case will follow by passing to an
inductive limit.

We may suppose h; < h; (otherwise we use the relations (hy,h;] =
~(h2, hy) and [A, k] = 0).

First Case. Let hy € X, then hy € X since h; < h;, so we have hh; € H and
therefore hyh; = [hy, hs], q.e.d.

Second Case. hy € X. Put hy = h3hy, h3, by € H and h; < hy.
We have the following subcases:
8) h; S h1 and then h[(h;h.g) € H, 80

[R1, ha] = [R1, [h3, ha]] = Bi(hshs) .
b) h; < ks < hy. Using the Jacobi identity we get
(El’ ".‘3’ 7‘4" = [7‘3’ [’-'l ) ,—'4]] - [’-'h [7‘19 ,-‘3]] .

Now length of hyhy < length of h;hy, hence we can apply the induction
hypothesis, i.e., [k1, hs] = ¥ caha where h, € H.

From this equality we get £(ha) = £(h1)+£(h4) which implies £(h,) > £(h,),
hence hy > hi. Since we have hy < h;, we obtain Inf(hs,he) > hy =
Inf(h,, hz). o

Applying the induction hypothesis we see that [k3, k) is a linear combi-
nation of h’s with h € H.

Similarly, replacing h; by h, we see that [hq,[R;,As]] is also a linear
combination of h's with h € H. q.e.d.

6. Free groups

(In this section, we take k = Z.)
Let X be a set and let Fx be the free group on X. Let F'§ be the descending
central series of Fx, defined by Fx = Fx and F} = (Fx,Fy~'),forn> 1.
The associated graded group is, as we know, a Lie algebra, given by

o0
gFx=) g"Fx, g"Fx=Fy/Fg.
n=1
In particular, gr! Fx = Fx /(Fx, Fx), that is, gr! Fx is the free abelian group
on X.

Theorem 6.1. The cenonical map X — grl Fx induces an isomorphism of
Lse algebras
¢1 H Lx —_— gl‘Fx .

Corollary 8.2. The groups F}/F3t! are free Z-modules and if X is finite
with Card X = d, then rk(Fg /F3*') = Ly(n).
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Now consider the free associative algebra Assx on X; let Ass’y the com-
ponent of degree n of Assx. The completion K;;s\x of Assx is defined as the
infinite product [].>, Ass%. An element f € Assx can be represented by a
formal series f = Y oo, fn, With fa € Ass’k.

Define a homomorphism 0 : Fx — Ks\s;( by 8(z) = 1 + = where rss;( is
the multiplicative group of the invertible elements of Assx (it is clear that
1 + z is invertible in Assx, 8o it is in the multiplicative group Ks\s;().

For any positive integer n, define wi” C Ass X as

W= {f|f=) fmandfo=fi=-=fo1=0},
n=0
and put 'Fg = 6-'(1 + w"). Then ¢ € Fx is in 'F} if and only if
0(9) =1+ Zmzn '/)ﬂ'
Notice that 'Fy = Fx and 'F} C 'Fy~ L.

Theorem 6.3. 'F = F}.

We now prove Theorems 6.1 and 6.3.
a) It is clear that ¢, : Lx — gr Fx is surjective.
b) ('F%) is a filtration of Fx. In fact, we only have to check

(FR.'F}) C'FR* .

To prove this, take g € 'F¢, h € 'Fy with 8(g) = 1+ G, G € m™,
6(h) =14+ H, H € #w*.
We have gh = hg(g, h) and
0(gh)=1+G+H+GH
O0(hg)=1+G+ H + HG .

Since @ is a homomorphism we get 8(gh) = 8(hg)d((g,h)), i.e.,
(*) 0((¢,h)) =1+ (GH — HG) + higher terms.

Therefore (g, h) € 'Fy tP.
There is a natural map 7 : ‘gr Fx — Assx defined as follows:
let ¢ € 'gr™ Fx, let g € 'F} be a representative of £, and let

g)=1+Gn+Gap1+--, with G, € Assy.
We define 7(§) by:
n(§) =Gn .

It is easy to see that this definition does not depend on the choice of the
representative g. Formula (*) shows that 7 : ‘gr Fx — Assx is a Lie algebra
homomorphism.
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Since 'F} is a filtration we know that F'§ C 'F§, which induces a homo-
morphism ¢ : gr Fx — 'gr Fx.
Now let us look at the composition

LX = grFx Y, 'gr Fx 2, Assyx

where ¢, is surjective and 7 is injective.

This composition is obviously the map ¢ : Lx — Assx given in the
Theorem 4.2 and we know it is injective.

Hence ¢, is injective and therefore is an isomorphism; which proves The-
orem 6.1.

This implies now that ¥ is injective. Let us prove, by induction, that
Fg ='F%.

If n =1 then F} = 'Fx by definition.

Now suppose n > 1, then we have

FyC'FyCc Fy ' ="F3?!
and the injection gr"~! Fx — 'gr*~! Fx is the canonical map
FR7'F% = Fx[FR
which implies F§ = 'Fg. q.ed.

7. The Campbell-Hausdorff formula

In IV.7 and IV 8, the ground ring k is supposed to be a Q-algebra (for instance,
a field of characteristic zero).

Theorem 7.1. Let X be a set; then the free Lie algebra Lx on X coincides
with the set of primitive elements of Assx

(e, Lx = {w € Assy | Aw = w®1+1®w}, where A : Assxy —
Assx ® Assx is the diagonal map).

This follows from Theorem 5.4 of Chapter III, since Assx may be
identified with ULx.

Define now, as in IV.6, the completion Ass x of Assx and the completion
Lx of Lx by:

o0 [= <]
Assx = [[Ass%, Lx=J]L%-
n=0 n=0
Define similarly the completed tensor product Assx & Assx by:
Ass © K;sx = HAssg( ® Ass% .

P:g
The diagonal map A extends to a map A : K;x — K\ssx ® ‘T;sx and it

is clear that Theorem 7.1 remains valid when Assx and Assx ® Assx are
replaced by their completions.
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Theorem 7.2. Let th C Assx be the ideal generated by X. Define maps
exp:m— 141 and log: 14+ — 1

by the usual formulae:

exp(z) = Zx"/n! , log(l4+z)= Z(-l)"'“z"/n .

n=l

Then expolog = id and logoexp = id.

Proof. Let us prove, for instance, that exp(log(l +y)) = 1+yif y € .
If T is an indeterminate, the formula exp(log(1 + T')) = 1 + T is known to
be true in the power series ring Q[[T]]. But, since y belongs to th, there
is a well-defined and continuous homomorphism f : Q[[T]) — Assx which
transforms T into y. Applying f to the equality exp(log(1+ T)) =1+ T, we
get exp(log(l1+y))=1+y, qed.

Corollary 7.3. The map exp defines a bijection of the set of a € W with
Aa=a®1+1Q@a onto the set of E 1+ 1 with AB=8QB.

Proof. Let a € W and 8 = e”. Since A commutes with the exponential map
and a ® 1 commutes with 1 ® a, we obtain

Af = Ae® = 9 — (aB®1+1@a _ a®l,1Qa _ (ﬂ@l)(l ®ﬂ)
=p®8.

Theorem 7.4 (Campbell-Hausdorff). Let X = {z,y}, 7 # y, then e*e? = ¢*
with 2 € Lx.

Proof. Since e,e¥ € 1 + W we have efe? € 1 + 11 and since the exponential
map is a bijection there is one and only one z € 11 such that e* = eZe?.
We have the relation

A(e*) = A(e®e?) = A(e®)A(e?)
=(e*®@e*)(e? ®e?)
=e*®e*.

Applying 7.3 we find that 2 is a primitive element and by 7.1 z € Lyx.
q.ed.

. Now, let X be an arbitrary set and let z(z,y) denote the element of
Liz4 C Lx such that e*e? = (=) for all z, yeX.
We have z(z,y) = } o7, za(z,y) where z4(z,y) € L. :
Explicitly, the values of the first three homogeneous components of z(z,y)
are
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za(z,y)=z+y
za(z,y) = §lz,y]
z3(x,y) = 5z, [z, 9]) + 35y, v, 7]}
and it is clear that z(z,0) = z, 2(0,y) = y, and z(z(w, z),y) = z(w, z(z,y)).

8. Explicit formula

Define a map # : m — Lx (m C Assy) as follows:
(21 Tn) = [21,[22,.. -, [Tn-1,Ta) -] = 8d(21) - - - 2d(Tr—1 )(Z0)

where z; € X.
Now define ¢ : mi — Lx by ¢(zy:--z,) = -,‘;45(::1 ceeZp).

Theorem 8.1. The map ¢ is a retraction of m onto Lx, i.e., d|lp, =idr,.

Proof. We have to prove that #(u) = nu if u € L%.
Let 0 : Assx — End(Lx) be the algebra homomorphism which extends
the Lie algebra homomorphism ad : Lx — End(Lx).

Lemma 8.2. The relation $(uv) = 0(u)P(v) holds for u € Assx and v € m.

Proof of Lemma. Since & and 8 are linear it is enough to consider the case
U =12+ Tq, T; € X and we proceed by induction on n.

If n =1 then it is trivial.

Now suppose n > 1, then

D(zy - Tav) = 0(21)P(22 - Tav) = 8(21)0(z3 - - - 2)P(V)
=0(zy - zq)B(v) .

This concludes the proof of the lemma.

We now prove that #(u) = nu for u € L% by induction on n.

If n = 1 the property is obvious.

Suppose n > 1, then u = Y [v;,w;] and it is enough to prove this when
u=[v,w] withve Ly, wel, p+qg=n,pqg>0.

Using the fact that 8(v) = adv and 6(w) = ad w we get

&([v, w]) = F(vw — wov) = §(v)P(w) — O(w)P(v)
= g6(v)w - pf(w)v
= qlv,w] — plw, ]
= (¢ + p)[v,w] = nu q.ed.

Finally, we are prepared to give the explicit formula for z(z,y) = log(e*e¥)
for z,y € X.

As before let us write 2 = Y o, zo with z, € L%.
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Since e*e¥ = (E,—o e (Z:f’__o %:-) =143, 441 -’;’-}5— we have

P

1q!
m=1 +¢>1 Pe
so we obtain

Z ( 1)m+l zpl yﬂl z’?yqz [P x’m qu
Pitqi2l el pm!gm!

Applying the homomorphism @ to the monomials which appear in this
sum we get

P(zPy® - 2Pmytm) = ad(z)P ad(y)™ - - ad(z)P™ ad(y)™ " (y)
if g > 1, and:
Bary - -zm) = ad(@) ad(y)® - -ad(ePm M), ifgm =0,
Notice that this is zero if gm 2> 2, or if g = 0, pm > 2. Hence, the only

possible non-zero terms are those where ¢, = 1, or py, = 1, gm = 0.
Hence, using the identity z, = ¢(z,), we obtain the ezplicit Campbell-

Hausdorff formula (in Dynkin’s form):

=z Z (2p,g + 2p,q) 5

p+q—u
where
2 = E (=1)™+! ad(z)P ad(y)n --- ad(z)P™(y)
- it +pm=p m pl!ql! *** Pm!
it tgm-1=¢-1
Pitgi 21
Pm21
and
M = ) (=1)™*+! ad(z)P ad(y)" - - - ad(y)I™-1(z)
i P1t-+Ppmor=p—1 m pila! - gy} )
i+t em-1=¢
pi+gi21
Exercises

1. Let X be a finite set, with Card(X) = d. Show that the number of ele-
ments of Mx of length n is equal to:

1:3-5---(2n - 3)
n!
2. Show that L} = [X, L% !] for n > 2.

2n—1dn
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3. Show that the center of Lx is 0 if Card(X) # 1, and that the center of
Lx/Y .5y L% is equal to L.

4. Let X be a denumerable set with Card(X) > 2, and let H the set of all
Hall families in Mx. Show that Card(H) = Card(R).

5. Show that the homomorphism 8 : Fx — X;s;( defined in IV.6 is injective.
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In this chapter k denotes a field, and in V.5, concerning the serious theorems on
solvable Lie algebras, a field of characteristic 0. All Lie algebras and modules
are finite dimensional over k.

1. Complements on g-modules

Let g be a Lie algebras over k. A g-module is a vector space V over k together
with a k-bilinear map g x V — V, denoted by (z,v) — zv, which satisfies the
condition [z,ylv = zyv —yzvforall z € g, y € g, v € V. The corresponding
Lie homomorphism ¢ : g — End(V) is called a linear representation of g, and
V is called the space of the representation.

An arbitrary vector space V can be made into a g module by putting
zv =0 for all v € V, z € g. We then say that g acts trivially on V. When-
ever we view k as a g-module we understand it with trivial action unless the
contrary is stated. ‘

Let V} and V; be g-modules. The tensor product V; ® V2 can be made into
a g-module in a unique way such that the rule

(1) z(v1 ® v2) = (zv1) ® vz + v ® (Tv3)

holds. This can be checked directly, or seen from the diagram

Ug -2 Ug@Ug* 2$EndV; ® EndV; — End(V; @ V3) ,

where A is the diagonal map. The action (1) is sometimes called the diagonal
action of gon V1 @ V5.

Similarly, the space of k-linear maps Hom(V;, V) becomes a g-module if
we put

() (zf)(v1) = z(f(v)) - flzm) forze g, v €WV

More generally, given a finite family of g-modules V; and V, we make the
space of k-multilinear maps from [[; V; to V into a g-module in the corre-
sponding way.

If V is a g-module, an element v € V is g-invariant if zv = 0 for all
z € g. This seemingly weird terminology comes from the corresponding group
situation: zv = 0 is equivalent to v = (1 + ez)v. The set of all g-invariant
elements in V' is a g-submodule of V, the largest submodule on which g acts
trivially.

Ezample 1. A k-linear map f : V; — V; is g-invariant for the action of g on
Hom(V1,V2) described above if and only if f(zv,) = zf(v,), that is, if and
only if f is a homomorphism of g-modules.

Ezample 2. (Invariant bilinear forms). An invariant bilinear form
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B:VixV, =k
is one satisfying the identity
B(zvy,v2) + B(v1,2v2) =0.

(For g = 1 + ez this means B(gv;,gvs) = B(v;,v2).) Let V be a g-module
and ¢: g — End V the corresponding linear representation. Define

B(z,y) = Trv(e(z)e(y)) »

where Try a denotes the trace of a k-linear transformationa : V — V.

Proposition 1.1. B, is a symmetric bilinear form on g x g which s g-
invariant for the adjoint representation of g on g.

The rule Try(aB) = Try(Ba) shows the symmetry of B,. To prove its
invariance we must show that the following expression

Trv (e([z, z1])e(z2) + e(z1)e([z,22]))
= Trv(o(z)e(z1)e(z2) — o(z1)e(z)e(z2) + e(z1)e(z)e(z2) — o(z1)e(z2)e(z))

is zero. To do so we cancel the middle two terms and use again the symmetry
rule above with a = o(z), and 8 = ¢(z;)e(z2)

Definition 1.2. The Killing form is the invariant symmetric bilinear form
B(z,y) = Tr(ad zad y) on g which is obtained by taking ¢ to be the adjoint
representation in the preceding example.

2. Nilpotent Lie algebras

Let g be a finite dimensional Lie algebra over a field k. The descending central
series of ideals of g is defined by C'g = g and C"g = [g,C""1g] for n > 2.
(Here we write [V, W] for the image of V ® W under the map (z ®y) — [z,y]-
We leave the proof of the rule [C"g,C*g] C CT*’°g as an exercise for the
reader.)

Theorem 2.1. The following conditions are equivalent:
(1) There ezists an integer n such that C"g = (0).
(i) There ezists an integer n such that

[z1,[z2,[23,-.-,20] -] = (ad 21 )(ad z2) -+ - (ad Zp-1)2n = 0

for every n-tuple of elements (z;) in g.

(iii) @ is a succession of central eztensions of abelian Lie algebras: that is,
there ezists a chain of ideals g =a; D az D -+ D a, = (0) such that
a;/Qi41 is the center of g/aiy1 for each i, or in other words, such that
[8, ai] C ai41 for alli.
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The proof in the form (i) = (iii) = (ii) = (i) is completely trivial. Notice
that the chain of ideals C,g is the most rapidly descending chain with the
properties described in (iii). If (@;) is as in (iii), then C"g C a, for all n.

Definition 2.2. If the conditions of Theorem 2.1 are satisfied, g is called
nilpotent.

Ezample. Let V be a vector space, and let F = (V;) be a flagin V, that isa
sequence of subspaces (0) =V C V; C -+ C V;, = V such that dimV; = 1.
Let W(F) = {u € EndV | uV; C V;—; forall i > 1}. Thus u(F) is the set
of endomorphisms of V which carry each V; into itself and induce the zero
endomorphism on the quotient space V;/V;_; for each i > 1. Obviously, u(F)
is an associative subalgebra of EndV, and a fortiori it is a Lie subalgebra
under the bracket {z,y] = zy — yz. In terms of a basis (v;) for V which is
adapted to F in the sense that V; = kv + - - - + kv;, the algebra u(F') consists
of those endomorphisms whose matrix is strictly superdiagonal that is, has
zeros on and below the main diagonal. To show that u(F') is nilpotent, define
w(F) = {u € End(V) | uV; C V.~_;,} for all ¢ > k, note that uux C x4,
and uxu C Uk41, hence [u,ur] C uk41, hence g is nilpotent because ux = 0
for large k.

3. Main theorems

The following theorem offers some justification for the terminology “nilpo-
tent”:

Theorem 3.1. g is nilpotent if and only if adz is nilpotent for each z € g.
We will at the same time consider:

Theorem 3.2 (Engel). Let p : g — EndV be a linear representation of g
on the vector space V such that o(z) is nilpotent for each z € g. Then there
ezists @ flag F = (V) in V such that o(g) C u(F).

The converse of Theorem 3.2 is trivial, because a strictly superdiagonal
matrix is nilpotent. The meaning of Theorem 3.2 is that if for each individual
z € g there exists a flag F; = {V;;} such that ¢(z)V;; C V; (i-1), then
there exists one flag F which works for all z simultaneously. Theorem 3.2 is
equivalent to:

Theorem 3.2'. Under the hypotheses of Theorem 3.2, if V # (0), then there
ezists v € V, v # 0, such that p(z)v =0 for allz € g.

Indeed, if Theorem 3.2’ holds, then Theorem 3.2 follows immediately by
induction on dim V. A flag F in V = V/kv lifts to a flag on V with the desired
properties, if p(g)v = 0.
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We shall now prove 3.2' in seven steps:

Step 1: Since both the hypothesis and the conclusion concern only the image
o(g) in EndV, we can replace g by its image and assume g C End V.

Step £2: Then ad z is nilpotent for each z € g. Namely, we can write
(adz)y = L.y — Ryy ,

where L, and R, are the k-linear endomorphisms of End V defined by a + za,
and a — agz, respectively. But L, and R, are nilpotent by hypothesis and
commute. Hence L, — R, is nilpotent. (Show that if a™ = 0, f” = 0 and
af = Pa, then (a — B)™t"~1 =0.)

Step 3: By induction on dim g, we may assume 3.2’ holds for all Lie a.lgébras
b such that dimbh < dim g.

Step 4: Let h C g be a Lie subalgebra,h # g. Let u={z € g I (adz)p C B}
be the normalizer of § in g, that is, the largest subalgebra of g in which § is
an ideal. Our aim is to prove a is strictly larger than . (The reader familiar
with the theory of p-groups will note the analogy.) The Lie algebra § operates
on h and on g/h through nilpotent maps. Since dim§h < dim g, there is a
non-zero vector £ = z + B in g/§ invariant (i.e. killed) by §. For y € h we
have then (adz)y = —(ad y)z € b because (ady)Z = 0. Thus z € u an our
claim is proved.

Step 5: If g # (0), there exists an ideal h in g of codimension 1. Indeed, let
b be a maximal Lie subalgebra of g different from g. Then, by step 4, the
normalizer of § is all of g, that is, § is an ideal in g. The inverse image in g
of a line in g/§ is a subalgebra of g strictly bigger than h, hence is all of g,
and g/ is therefore one dimensional.

We now choose such an ideal §.

Step6:LetW={veV ' hv=0 } Then W is stable by g. This depends only
on the fact that § is an ideal. For z € g, y € §) we have yzv = zyv—[z,ylv =0
ifveW.

Step 7: W # (0) by induction (dimbh < dimg). Takey € g, y & §. Since y is
nilpotent, y kills some non-zero element in W. This element is then killed by
=bh+ky. qed.

We now prove Theorem 3.1. If g is nilpotent then ad z is nilpotent for
each z € g by condition (ii) of Theorem 2.1. Conversely, if ad r is nilpotent
for all z, then, applying Engel’s theorem to the adjoint representation, we see
that there exists a flag (0) C a; C a2 C --- C a, = g of subspaces of g, such
that g, a;] C a;—; for all i, and consequently g is nilpotent by criterion (iii)
of Theorem 2.1.
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3*. The group-theoretic analog of Engel’s theorem

Let V be a finite dimensional vector space over k. An element g € GL(V) is
called unipotent if it satisfies one and hence all of the following three.condi-
tions, whose equivalence we leave as an exercise for the reader:

(i) ¢ =1+ n with n nilpotent.

(ii) In suitable coordinates g is represented by a matrix having 1’s on the
main diagonal and zero below.

(iii) All eigenvalues of g are 1.

Theorem (Kolchin). Let G be a subgroup of GL(V) such that ecach element
g € G is unipotent. Then there ezists a flag F = {V;} in V such that GV; =V,
for alli.

In other words, there is a coordinate system in which all elements g € G are
represented simultaneously by triangular matrices (and hence by triangular
matrices with 1’s on the diagonal since the eigenvalues are all 1 by hypothesis).

The theorem will follow by induction on dim V' if we can show that, under
the given hypothesis, if V # (0) there exists a v € V, v # 0, which is left fixed
by G. The equations (¢ —1)v = 0, for g € G, are linear, and will therefore have
a non-trivial solution v over k if and only if they have one over the algebraic
closure k of k, i.e., in V ®; k. We may therefore suppose that k is algebraically
closed. Furthermore, replacing V by a G-submodule we may suppose that
V is a simple G-module. From the density theorem, or Burnside’s theorem
(Bourbaki, Alg., Ch 8, §4, n° 3) it follows that the elements of G span all of
End; (V) linearly, because Y sec kg is a k-subalgebra of Endy(V).

On the other hand, for each ¢ =1+ n € G we have

Trv(g) = Trv(1) + Try(n) = Trv(1)

because nilpotent endomorphisms have zero eigenvalues hence zero trace.
Thus, Try(g) is independent of g € G, and for every ¢’ € G we have
Tr(ng') = Tr((g — 1)g') = Tr(g¢' — ¢') = Tr(9g') — Tr(¢g') = 0. Since the
¢' span End (V') it follows that Try(na) = 0 for all @ € Ends(V), and con-
sequently n = 0, i.e,, ¢ = 1. This is what we were trying to prove: G acts
trivially on V.

4. Solvable Lie algebras

The derived series (D™g) of ideals in g is defined inductively by D'g = g,
and D*g = [D"~!g,D"~1g] for n > 1.

Theorem 4.1. The following conditions are equivalent:
(i) There ezists an integer n such that D"g = (0).
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(ii) @ is a successive eztension of abelian Lie algebras, that is, there ezists
a sequence of ideals g =a; D az D --- D a, = (0) such that a;/a;s1
is abelian, i.e., [a;,a;] C iy, for alli.

This is trivial.

Definition 4.2. If g satisfies the two equivalent conditions of the preceding
theorem, g is said to be a solvable Lie algebra.

Ezample. Let F = (V;) be a flag in a finite dimensional vector space V. Let
b(F) = {z € EndV | 2V; C V; for all i }. If we adapt the coordinate system
to the flag, then b(F’) consists of the triangular matrices. It is easy to check
that b(F)/a(F) is abelian, and consequently b(F') is solvable.

5. Main theorem

In this section our field k is of characteristic 0. The main theorem on solvable
Lie algebras is:

Theorem 5.1 (Lie). Let g be a solvable Lie algebra over an algebraically
closed field k of characteristic 0. Let o be a linear representation of g with
representation space V. Then there ezists o flag F = (V;) in V such that

o(g) C b(F).
This reduces, by induction on dim V, to:

Theorem 5.1'. Under the hypotheses of Theorem 5.1, if V # (0), there exists
v €V, v #0, such that v is an eigenvector for p(z) for allz € g.

Note that if v is such an eigenvector, it determines a map x : g — k such
that go(z)v = x(z)v for all z € g.

Main Lemma. Let g be a Lie algebra, over a field k of characteristic 0, b
an idealin g, V a g-module, vE€ V, v # 0, x : § — k such that hv = x(h)v
Jor allh € . Then x([z,h]) =0 forz € g, h€bh.

Take z € g. Let V; be the subspace of V' generated by the vectors v, zv,
ety 0. Thus (0) = Vo cViCc---CcV; C Vit+1. Let n be minimal > 0
such that V,, = V,41. Then dimV = n, and zV,, C V,, and V,, = V4 for all
k > 0. Claim: For h € §, hz'v = x(h)z'v (mod V;), for all i > 0. We prove
this by induction on i. For i = 0 this is the definition of x. Fori > 0,

hz'v = hza* v = zha' " lv — [z, hlz* v .
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Writing hz*~'v = x(h)r*~'v 4+ v' with v' € V;_;, and using zV;-; C V;,
and hV; C V;, we are done. It follows that, with respect to the basis v,
zv, ..., z" 1y, the endomorphism of V, produced by an element h € §
is represented by a triangular matrix with diagonal entries x(h). Thus,
Try,(h) = nx(k). Replacing h by [z,h] we conclude nx([z,h]) = 0, because
Try, ([, h]) = Trv,(zh — hz) = 0 (notice that zV, C V,,).

Using the lemma, we prove Theorem 5.1' by induction on dimg. If
dim g = 0 the statement is trivial. Assume dim g > 0. Then, since g is solv-
able, Dg = (g, g] # 8. Let § be a subspace of g of codimension 1, containing
Dg. Then §/Dg is an ideal in g/Dg because the latter is abelian, and conse-
quently § is an ideal in g. By induction thereisv € V,v#0,and x: ) = k
such that hv = x(h)vforallh€ h. Let W = {w e V | hw = x(h)w for all
heh } By construction, W is a non-zero linear subspace of V', and using the
main lemma we can show that W is stable under g. If w € W, z € g, then for
h ey,

hzw = zhw - [z, h)jw = x(h)zw — x([z, h))w ,

and since the last term is zero, it follows that zw € W.

Now let z € g, z ¢ . Since £ maps W into W, and k is algebraically
closed, there is an eigenvector vy € W for z. This vg is an eigenvector for
kz+h=g. qed.

To see that the theorem is false in characteristic # 0, consider the Lie
algebra sz of 2 x 2 matrices with trace 0 in characteristic 2. It is nilpotent of
dimension 3, but in its standard representation on the space of column vectors
of length 2, there is no eigenvector.

We close this section with two corollaries of Lie’s Theorem.

Corollary 5.2. If g is a solvable Lie algebra over an algebraically closed field
of characteristic zero, then there ezists a flag of ideals in g.

We need only apply Lie’s theorem to the adjoint representation.

Corollary 5.3. If g is solvable and k of characteristic zero, then (g, g] is
nilpotent.

Since the statement is linear, we may suppose that k is algebraically closed.
(If k' is an extension field of k, and g' = g ®; k', then it is obvious that g
is solvable (resp. nilpotent) if and only if g' is solvable (resp. nilpotent), that
[8.8) = (@', ¢'], etc.) By the preceding corollary there is a flag (g;) of ideals
ing,sayg@>D g1 Dg2D - Dgn =0. Let z € [g,g]. Then adzg; C g;41
because End(gi/@i+1) = k is commutative. Hence ad z is nilpotent on g, and
all the more so on [g, g]. By Theorem 3.1 we conclude that [g, g] is nilpotent.

Remark. Conversely, if |g, g] is nilpotent, it is clear that g is solvable.
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5*. The group theoretic analog of Lie’s theorem

A group G is called solvable if it can be obtained by a finite sequence of
extensions of abelian groups. One defines a sequence of subgroups G(*) of G
by G = G, and G = (G("-1), G(*»-1) for n > 1. Then the solvability of
G is equivalent to G® = (1) for some n.

Let G be a topological group and ¢ : G — GL(V) a continuous homomor-
phism of G into the group of automorphisms of a finite dimensional vector
space V over C.

Theorem 5.1%. If G is solvable and connected, there exists a flag F in V
which is invariant by o(z) for allz € G.

The representation g is called irreducible if V # (0) and if V and (0) are the
only subspaces of V which are invariant by o(z) for all z € G. Theorem 5.1*
implies obviously

Corollary 5.2*. If G is solvable and connected, and the representation g is
srreducible, then dimV = 1.

Conversely, by induction on dim V, this corollary trivially implies the the-
orem.

Corollary 5.3*. A compact solvable connected topological group is abelian.

By the Peter-Weyl theorem, for any compact group G there exists a
family of irreducible representations g, : G — GL(V,) such that the map
G — [l GL(Va) is injective. If dimV, = 1 for each a, it follows that G is
abelian.

In proving the theorem we will use the following terminology: an element
v € V is an eigenvector for a subgroup H C G if v # 0 and if hv € Cv for
all h € H. An eigenvector v for H defines a character x, : H — C* such
that o(h)v = x,(k)v for all h € H. Of course the function x, is continuous
because p is. The number of distinct characters of H arising from eigenvectors
v € V is finite, and in fact < dim V. Indeed, suppose that v;,...,v, is &
maximal independent set of eigenvectors for H in V, and let x,;,...,X, be
the corresponding characters. Then if v is an eigenvector with character x we
have v = Y aiv; with a; € C, and applying o(h) we find a;x(h) = a;x;(h) for
each i. Hence x = x; for some i, because not all a; are zero.

Main Lemma*. Suppose that G is connected. Let v be an eigenvector for a
normal subgroup H. Then x, (27 hz) = x,(h) for allz € G and h € H.

Notice the analogy with the main lemma of the preceding section. A simple
computation shows that x,(z"'hz) = x,,(k). As remarked above, there are
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only a finite number of characters of H of the form x,, for £ € G. Hence,
the subgroup § = {z € G | Xzv = Xy} is of finite index in G. But S is
closed in G, since it is the set of common zeros of the continuous functions
z — x,(z7'hz) — x,(h) as h ranges over H. The decomposition of G into
cosets of S is an expression of G as the disjoint union of a finite number of
non-empty closed sets. Since G is connected, it follows that S = G which is
what we want.

We now prove the theorem by induction on the smallest number n such
that G(™ = 1. If n = 1 then G = (1) and the theorem is trivial. Suppose
therefore that n > 1, so that G®) # G() = G. By induction, we can assume
the theorem is true for G2, because G(? is connected. Indeed, let C be the
set of commutators in G. As image of G x G under the map zxy — zyz~'y™1,
C is connected. Let C™ denote the set of elements of G which can be expressed
as the product of m elements in C. The set C™ is connected because it is the
continuous image of C x C x --- x C (m times). Since u € C implies u~! € C,
the subgroup G(?) generated by C is the union of the connected sets C™, and
is connected because the C™ have a common point, namely 1.

By induction, there exists an eigenvector vy for G(?) in V. Let

Xo: G® — C*

be the corresponding character. By the main lemma, the set of all v € V such
that g(h)v = x,(h)v for all € G?) is invariant under o(G).

Suppose g irreducible. It follows that o(h)v = x(h)v forallv € V,h € G,
Now let z € G. Let H be the subgroup of G generated by z and G(?). Since
H 5 G®, H is normal in G. Since C is algebraically closed, there exists an
eigenvector vy for the operator g(z). By the above, v; is an eigenvector for
G@, and hence for H. Let x; : H — C* be the corresponding character. By
the main lemma again, the set of all v € V such that o(h)v = x,(h)v for
all A € H is invariant under p(G) and hence is all of V. Hence, in particular
¢(z)v € Cv for each v € V. Since z was arbitrary in G, we conclude that
dimV = 1. Thus Corollary 5.2* and Theorem 5.1* are proved.

Remark. Infact, Lie's theorem and its group theoretic analog imply each other
directly. Granting the group statement, we get the Lie algebra statement in
case k = C, by considering the connected Lie group attached to a given Lie
algebra. The case of an arbitrary algebraically closed k of characteristic zero is
reduced to k = C by the Lefschetz principle: Take a finitely generated subfield
k' of k containing the structure constants for g and for the action gxV — V,
and imbed k' in C. The descent from C to k' is easy.

Conversely, if we grant Lie’s theorem we can get the group statement by
considering the closure of ¢o(G) in GL(V) as a real Lie group and applying
Lie's theorem to its Lie algebra.
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6. Lemmas on endomorphisms

Let k be an algebraically closed field of characteristic zero, and let V be a finite
dimensional vector space over k. An element u € EndV is called semisimple
if its eigenvectors span V or, what is the same, if there exists a system of
coordinates in which it is represented by a diagonal matrix.

Lemma 6.1. For each u € EndV there ezist a semisimple s and a nilpotent
n in EndV such that sn = ns and u = s + n, and s and n are uniquely
determined by these conditions. Moreover, there ezist polynomials S and N
(depending on u) such that S(0) = 0 = N(0) and s = S(u) and n = N(u).

Let det(T — u) = [J(T — Xi)™ be the factorization of the characteristic
polynomial of u into a product of powers of distinet linear factors T — A;.
For each ¢, let V; be the kernel of the endomorphism (u — X;)™ : V — V.
Then V = @ V; (direct sum), dimV; = m;, and uV; C V;. Suppose u = s +n
is a solution to our problem. Since s commutes with n, it commutes with u,
hence with (u — A;)™:. Therefore sV; C V; for each i. Since u — s is nilpotent,
the eigenvalues of s on V; are the same as those of u. But by construction,
u has the unique eigenvalue \; on V;. Since s is semisimple, it follows that the
restriction of s to V; is scalar multiplication by A;. On the other hand, taking
this as definition of s, and putting n = u — s (so that on V;, n; has the same
effect as u — );) we obviously obtain a solution to the problem. Let S(T) be
a polynomial satisfying

S(T)=); (mod (T—X)™), and S(T)=0 (modT).

(note the consistency of these two conditions in case A; = 0 for some ) and
put N(T) = T — S(T). Then S(0) = 0 = N(0) and s = S(u), n = N(u) as
required.

Consequence 6.2. Let u = s+n as in the preceding lemma. Suppose A and
B are subspaces of V such that A C B and uB C A. Then sB C A and
nB C A.

Indeed if P(T) is any polynomial in T without constant term, then
P(u)B C A.

Let now V* = Homi(V, k) be the dual of V, and for p,g > 0 let
Vp,q =K®...®K®£®...®Vt .

v~

p—times g—times

We view V,, 4 as a module for the Lie algebra End V' by means of the diagonal
action discussed in §1. For u € EndV, we let up 4 denote the corresponding
endomorphism of V, . For example,

u12=u®1®1-—1®u"®1—1®1®u',
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where u* € End V* is the “transpose” of u, defined by {u*y,z) = (y,uz), if
we write (y,z) instead of y(z) forye V*,z € V.

An important special case is that in which p = ¢ = 1. There is a canonical
isomorphism V;,; —+ End V which associates with z ® y the endomorphism
z' + z(y,z'). A simple computation shows that under this isomorphism, the
element u;,; € End V;,; corresponds to adu € End(End V).

Lemma 6.3. If u = s + n is the canonical decomposition of u as in
Lemma 6.1, then upq = Spq + npq i3 the canonical decomposition of up,q
for each p,q.

We have [sp,q,7p,q] = [3,72]p,¢ = 0p,¢ = 0, hence s, ; and n,, , commute. If
(z:) is a basis for V consisting of eigenvectors of s, then the dual basis (z}) of
V* consists of eigenvectors of s*, and the basis (zi, ® - ®zi, ®z}, - @z},
of V, q consists of eigenvectors for s, q; hence s, , is semisimple. The endo-
morphism n, 4 is a sum of endomorphisms of the form 1® ---®@n®---®1
orl® ---®@n*®---®1, each of which is nilpotent, and which commute with
each other; hence np 4 is nilpotent. We have up o = 35,4 + np ¢ because the
map u — upq is linear. The lemma now results from the uniqueness of the
canonical decomposition.

Let s be a semisimple element of EndV, and let V = @ V; be the corre-
sponding direct decomposition, with s|y; = A;. Let ¢ : k — k be a Q-linear
map.

Definition 6.4. ¢(s) is the semisimple endomorphism of V such that
#()lv; = ¢()-

Thus, if s is represented by a diagonal matrix, the matrix representing
#(s) is obtained by applying ¢ to the entries of the matrix representing s.
There is a polynomial P(T') (depending on ¢ and s) such that P(0) = 0 and
P(3) = ¢(s). We need only solve the interpolation problem P(;) = ¢(A;), for
each ¢, and P(0) = 0. So far we have only used the fact that ¢ maps k into k
and ¢(0) = 0. The linearity of ¢ is needed to prove:

Lemma 6.5. We have (qS(s))p ¢ = $(3p,q) for each p,q.

The space V, 4 is a direct sum of subspaces, the typical one of which is
Vi®---®V, QVi®- - ®VJ" On that subspace:
8p,q does scalar multiplication by A;, +---+ A, —Aj, — -+ = Aj,,
¢(8,,q) » » » by ¢(’\i1 _'_...4_,\"-'_,\]-1 —"'_’\j.);
and (¢(s))p,q »T ? by ¢(’\il)+' : '+¢(’\5p)"¢(’\jl)—' ) '—¢(/\j,)-

Consequence 6.6. Suppose u = s + n is the canonical decomposition of
u € EndV. Suppose A and B are subspaces of V, , such that A C B and
up,¢B C A. Then for each Q-linear map ¢ : k — k we have ¢(s)p,,B C A.
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By Lemma 6.3 and Consequence 6.2, we have s, ; B C A. The result follows
now because ¢(s)p,q = ¢(sp,¢) is a polynomial in s, , without constant term,
as discussed in the remarks preceding Lemma 6.5.

Lemma 6.7. Let u = s + n as in Lemma 6.1. If Tr(ug(s)) = 0 for all
¢ € Homq(k, k), then u is nilpotent.

With notation as in the proof of 6.1, we have Tr(u¢(s)) = - miri¢(Ai) =0
for all ¢ € Homq(k, k). For those ¢ with ¢(k) C Q we can apply ¢ again,
getting 0 = ) m; (¢(/\.~))2, and consequently ¢();) = 0 for each :. Since this
last holds for every ¢ € Hom(k, Q) it follows that A\; = 0 for each i, that is,
s = 0, and u = n as contended. [Variant, remarked by Bergman: If k = C,
we need only assume Tr(u¢(s)) = 0 for one single ¢, namely the complex
conjugation map.]

The endomorphisms ¢(s) are called replicas of s by Chevalley. We leave
as an exercise the following characterization:

Theorem 6.8. Let s and s' be semisimple elements of EndV. Then s' is a
replica of s (i.e., there exists a ¢ such that s' = ¢(s)) if and only if, for every
P, g, every element of Vp o which is killed by s is also killed by s'.

There is another characterization in terms of algebraic groups which is
even nicer: Let g be the set of replicas of s. Then it can be shown that g is the
Lie algebra of the smallest algebraic subgroup G of GL(V') whose Lie algebra
contains s. Indeed the group G, or more properly, the group G(k) of points of
G with coordinates in k, consists of the automorphisms z of V such that, for
each i, zly, is multiplication by a scalar z; € k*, these scalars being subject
to the relation [] z;¥ = 1 for every vector (..., n;,...) of integers n; such that
Y niXi = 0. [Cf. C. Chevalley, Théorie des Groupes de Lie, Tome II, Groupes
algébrigues, Ch 11, §13-14, Hermann, Paris, 1951. Also Algebraic Lie Algebras,
Annals of Math., Vol. 48, 1947, p. 91-100.]

7. Cartan’s criterion

The following criterion for solvability is useful.

Theorem 7.1. Let k be a field of characteristic zero, V a finite dimensional
vector space over k, and g a Lie subalgebra of End V. Then the following
conditions are equivalent:

(i) g is solvable.
(1) Tr(zy) =0 for every z € g and y € Dg = [g, g].
Note first that the statement is linear, so that we can assume that k is

algebraically closed (see the discussion after Corollary 5.3; by the “Lefschetz
principle”, that is, by choosing a finitely generated subfield k' C k over which
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V and g are defined and imbedding &' in C, we could even reduce to the case
k=C))

(i) = (ii) By Lie’s theorem we can choose a flag (V;) in V stable by g.
Then Try(zy) = Y, Try;yviy, (2y) = 0 because an element y € Dg annihilates
the one-dimensional g-modules V;/Viy;.

(ii) = (i). Let u € Dg. By Engel’s theorem, it suffices to show that u is
nilpotent. Write u = s + n as in Lemma 6.1. Then, by Lemma 6.7, it suffices
to prove Tr(ug(s)) = 0 for all ¢ € Homq(k, k). The problem is that ¢(s) need
not belong to g. Write u = }_ co[Za, ¥al, With co € k, and za,ya € g. Using
the rule Tr([a, b]c) = Tr(b|c, a]), we have

Tr(ug(s)) = ) ca Tr{[za, valé(s)) = Y _ ca Tr(va[é(s), za]) -

Thus it suffices to show [¢(s),z,] € Dg. To do this we use the canonical iso-
morphism EndV ~ V®V* = V; ;, and apply Consequence 6.6 withp=¢ =1
and with A = Dg and B = g. Making the identification End V' = V;; we have
u1,1(2) = uz — zu = [u, 7}, as remarked before Lemma 6.3, hence u;,,8 C Dg.
By 6.6 it follows that ¢(s)1,18 C Dg, that is, [¢(s),z] € Dg for each z € g.
q.e.d.

Exercises

1. The class of nilpotent (resp. solvable) Lie algebras is closed under passage
to quotient, subalgebras and products. What about extensions?

2. A nilpotent Lie algebra of dimension 2 is abelian. A non-abelian Lie al-
gebra of dimension 2 has a basis {X,Y} such that [X,Y] = X.

3. A non-abelian nilpotent Lie algebra of dimension 3 has a basis {X,Y, Z}
such that [X,Y] = Z, [X,Z]=[Y,Z]=0.
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Throughout this chapter, k is a field of characteristic 0, and all algebras and
modules are finite dimensional over k.

1. The radical

Let g be a Lie algebra. If a and b are solvable ideals in @, then a + b is
solvable, because it is an extension of (a + b)/a = b/(a N b) by a. It follows
that there exists a solvable ideal in g which contains all other solvable ideals.
This largest solvable ideal is called the radical of g, and is often denoted by «.

2. Semisimple Lie algebras

Let g be a Lie algebra. One says that g is semisimple if the radical v of g
is zero. An equivalent condition is that g contains no non-zero abelian ideal,
because if v # (0), then the last non-zero derived algebra of t is a non-zero
abelian ideal of g. Another criterion for semisimplicity is the following:

Theorem 2.1. g s semisimple if and only if its Killing form is non-
degenerate.

Let u be the space of all z € g such that tr(adzady) =0forally € g. It
is trivial to check that u is an ideal in g. For z € u we have tr(adzady) =0
for all y € g, hence in particular for y € Du. By Cartan’s criterion, it follows
that ad; u is a solvable Lie subalgebra of End(g). Since adg u is the quotient
of u by the center of g, it follows that u itself is solvable. Thus u =0 if g is
semisimple.

To show the converse, we let a be an abelian ideal in g and will prove that
a C u. Indeed, let 0 = adrady, for r € a, y € g. Then 0g C a and oa = (0),
hence ¢2 =0 and Tro = 0.

Theorem 2.2. Let g be semisimple and let a be an ideal in g. Let al be the
orthogonal space to a with respect to the Killing form of g. Then atl is an
ideal of g, and g = a @ at, direct sum.

A simple computation, using the invariance of the Killing form, shows that
at is an ideal. One can show that aNa< is solvable, using Cartan’s criterion,
in the same way we showed u solvable in the proof of the preceding theorem.
Hence an at = (0), and the theorem follows.

Definition 2.3. A Lie algebra s is called simple if
(i) s is non-abelian.
(ii) s has no ideal other than (0) and s.
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Notice that in the preceding theorem we have [a, at] = 0, because a and
al are ideals in g; hence the decomposition g = a® at gives an isomorphism
of Lie algebras g ~ a x a'. It follows that any ideal in a is an ideal in g, and
consequently a is semisimple. Also g/a ~ a+ is semisimple. By induction on
dim g one sees therefore:

Corollary 1. A semisimple Lie algebra is isomorphic to a product of simple
Lie algebras.

If 8 is a simple Lie algebra, then Ds = s. Hence:
Corollary 2. If g is semisimple, then g = Dg.

In fact, the decomposition of g into a product of simple algebras is unique,
not only unique up to isomorphism: Let g = @ a,, direct sum of simple ideals
Ga, and let ¢ : g — s be a surjective homomorphism of g onto a simple Lie
algebra 8. Let ¢, be the restriction of ¢ to a,. Claim: There is an index S
such that ¢g : ag ~ s is an isomorphism, and ¢, = 0 for a # B. For each a,
the image of ¢oa, is an ideal in 8, because ¢ is surjective and a, an ideal in g.
Hence by the simplicity of 8, ¢, is either surjective or zero. If it is surjective,
then it is an isomorphism, by the simplicity of a,. The set of a’s for which
¢« is an isomorphism is not empty, because ¢ is surjective. On the other hand
that set does not contain two distinct indices @ # 8, because [a,,ag] = 0
would imply [daq, dag] = [s,8] = 0.

Corollary 3. If g = @ ao is an expression for g as a direct sum of simple
ideals a,, then any ideal of g is a sum of some of the a,.

Ezamples of semisimple Lie algebras.

1) sl(V), the algebra of endomorphisms of V of trace zero is simple if
dimV > 2.

2) sp(V), the algebra of endomorphisms of V leaving invariant a non-
degenerate alternating form is simple if dimV = 2n, with n > 1.

3) o(v), the algebra of endomorphisms of V' leaving a non-degenerate sym-
metric form is semisimple for dim V > 3, and even simple except if dimV = 4,
and the discriminant of the symmetric form is a square.

3. Complete reducibility

Let g be a Lie algebra, V a g-module, and ¢: g — End V the corresponding
representation.

Definition. V (or p) is called simple (or irreducsble) if V # (0) and V has
no submodules other than (0) and V.

V (or ) is called semisimple (or completely reducible) if V is the direct
sum of simple submodules, or, what is the same, if every submodule of V has
a supplementary submodule.
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Danger! g may be semisimple as a g-module without being a semisimple
Lie algebra; for example, g = k.

Theorem (H. Weyl). If g is semisimple, all g-modules (of finite dimension)
are semisimple.

Remark. Weyl used the “unitarian trick”. Let k = C, let G be a connected
and simply connected complex Lie group corresponding to g, and let K be
a maximal compact subgroup of G. One proves that any complex group sub-
manifold of G containing K is equal to G. Hence G-submodules of V' are the
same as K-submodules; since K is compact, there exists a K-invariant defi-
nite Hermitian form on V, with which to construct orthogonal supplementary
subspaces. In case G = SL(n), one can take K = SU(n), the special unitary
group; hence the name “unitarian trick”. A purely algebraic proof of Weyl’s
theorem was found only several years later.

We now prove the theorem in a sequence of steps.

Step 1. If g is semisimple, and p : g — EndV is injective, then the form
By(z,y) = Trv(e(z)e(y)) is non-degenerate. Indeed, by Cartan’s criterion,
the ideal of all z € g such that By(z,y) = 0 for all y € g is solvable, hence 0.

Step 2. Let B be a non-degenerate invariant symmetric bilinear form on a
Lie algebra g. Let (e;) and (f;) be bases for g which are dual with respect
to B, that is, such that B(e;, f;) = 6;; (Kronecker delta). Let b = Y e;f; in
Ug. Then b is in the center of Ug, and is independent of the choice of e;, f;.
Indeed, the map g ®: g — Homy(g, g) for which z ® y — (z — B(y,2)z) is
an isomorphism because B is non-degenerate, and is a homomorphism of g-
modules as one readily checks. Moreover, it carries ¥ e; ® f; onto the identity
homomorphism 1. Thus, the element b is the image of 1 under the composition
of the g-homomorphisms

Hom(g,8) ~ g®g" —- g®g — Ug.

Since 1 is killed by g, b is also, and since g generates Ug, it follows that b is in
the center of Ug as contended. This element b is called the Casimir element
corresponding to B.

Step 3. The situation being as in Step 1, let b be the Casimir element cor-
responding to B,. Then b defines an endomorphism of the g-module V,
and we have Try(b) = dimg. Indeed, b commutes with the action of g
on V because it is in the center of Ug. To compute its trace we have
Tr(b) = 3 Tr(e(ei)e(fi)) = 3 B(ei, fi) = dim g.

Step 4. If the g-module V in Step 3 is simple, then g(b) is an automorphism
of V, unless g = 0 (in which case V is one-dimensional). Indeed, by “Schur’s
lemma”, an endomorphism of a simple module is either an automorphism, or
zero, and g(b) is not zero unless g = 0 because Tro(b) = dimg and k is of
characteristic zero.
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Step 5. Let 0 = V — W — k — 0 be an exact sequence of g-modules, with g
acting trivially on k (in fact, there is no other possibility since g = Dg; we are
supposing g semisimple). We shall prove that the sequence splits, that is, that
there exists a line in W stable by g and supplementary to V, i.e., mapping
onto k. This special case of the theorem, the so-called “lifting of invariants”
principle, is the critical case, to which the general case can be reduced by use
of modules of homomorphisms (see below). We break this step 5 into three
substeps.

Step 5a. Reduction to case V is a simple g-module. This is easily accomplished
by induction on dimV. f V; C V, with 0 # V;, and W} # V, then by consid-
ering the sequence 0 — V/V; — W/Vi — k we would obtain a supplementary
line V/Vl to V/V; in W/V;, and then from the sequence 0=-VioV ka0
we would obtain a supplementary line to V; in V which, by construction, would
be a supplementary line to V in W,

Step 5b. Reduction to case g operates faithfully on V. Let a = Ker(g —
EndV). For z € a we have zW C V and zV = (0). Hence Da kills W. But
Da = a, because an ideal in a semisimple g is semisimple. Hence g/a acts on
W, and by construction it acts faithfully on V. Of course, we have not lost the
semisimplicity of g, because a quotient of a semisimple algebra is semisimple.

Step 5c. Assume V simple and ¢ : g — EndV is injective. The associated
bilinear form B, is non-degenerate; let b € Ug be the corresponding Casimir
element. It furnishes a g-endomorphism of W, and bW C V because b kills k.
If g = (0) there is no problem. Otherwise, by step 4, we have bV = V, and it
follows that Ker(b: W — W) is a supplementary line to V in W stable by g.

Step 6. The general case. Let 0 — Ey - E — E; — 0 be an exact se-
quence of g-modules. We must show that it splits. Let W be the subspace of
Hom(E, E,) consisting of the elements whose restriction to E; is a homo-
thety, and let V be the subspace whose restriction to E; is zero. There results
an exact sequence 0 — V — W — k — 0 (unless E; = (0), in which case
there is no problem anyway). Applying step 5, we get an element ¢ € W which
is invariant by g and maps onto 1 in k, that is a g-homomorphism E — E,
whose restriction to E; is 1. q.e.d.

From the point of view of homological algebra, step 5 amounts to proving
Exty;(k,V) = 0, where U = Ug, and this is accomplished in step 5S¢ by
computing the action of the central element b on Ext! in two ways. Since b kills
k, it kills Ext?, and since b is an automorphism of V, it gives an automorphism
of Ext!. Hence Ext! = 0. In general one defines H(g,V) = Exty(k,V).
Step 6 amounts to showing Exty(Ez, E) = H* (g, Homy(Ez, E))= 0.

Corollary 1. Let g be a semisimple ideal of a Lie algebra h. Then there ezists
a unique ideal a in § such that h = g @ a (direct sum).

Applying complete reducibility to § as a g-module we get a k-subspace
a of h supplementary to g and stable by adz for z € g. I claim [g, a] = 0;
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indeed, [g,a] C g because g is an ideal, and [g,a] C a because a is stable
by g. It follows that a consists ezactly of those y € § such that [g,y] = (0),
because, writing y = z + a, with z € g, a € a, we have [g,y] = [g,z], and
[g, z] = (0) implies z = 0 because the center of g is zero. This shows that a
is unique, even as g-submodule, and also that a is an ideal in §, because it is
the annihilator of the h-module g.

Corollary 2. If g is semisimple, then every derivation of g is of the form
adz, withz € g.

Apply the preceding corollary with § = Der(g), the Lie algebra of deriva-
tions of g. It is true that g is an ideal in Der(g), because for ¢ € g
and D € Der(g), we have [D,adz] = ad(Dz). Hence Der(g) = g @ a,
where a consists of the derivations commuting with adg. Let D € a. Then
ad(Dz) = [D,ad z] = 0. Hence Dz = 0, because the center of g is zero. Hence
a=0. qed

4. Levi’s theorem

Let g be a Lie algebra.

Theorem 4.1 (Levi). Let ¢ : g — s be a surjective homomorphism of g onto
a semisimple Lie algebra 8. Then there exists a homomorphism € : 8 — g such
that poe = 1,.

Let a = Ker ¢, and write 8 = g/a. The crucial case of the theorem is
that in which a is abelian, and is a simple g- (or s-) module with non-trivial
action. The first step of the proof is the reduction to the crucial case. Suppose
@, is an ideal in g, and 0 C a; C a. If we can find a supplementary subalgebra
81 = g1/a; to a/a; in g/a;, and a supplementary subalgebra s; to a; in g,
then s; is supplementary to a in g. Hence, by induction on dim a, we may
suppose a is a simple g-module. The radical v of gisin a. If t = 0, then g
is semisimple, and we are done, by Theorem 2.2. If v = a, then a is solvable,
hence a # [a, a]. But [a, a] is an ideal in g, so [a,a] = 0, i.e., ais abelian. If g
acts trivially on a, then a is in the center of g, hence g operates on g through
g/a ~ s, and g is completely reducible as an s-module, so there is an ideal
supplementary to a.

Assume now we are in the crucial case: a abelian, and a simple s-module
with non-trivial action. If we had cohomology at our disposal, and knew that
the extensions of s by a are classified by H(s, a) = Ext};,(k, a), we would be
finished, because we could use a Casimir element to show that the Ext group
is zero. But not having cohomology, we resort to the following argument of
Bourbaki:

Lemma. Let W be a g-module. Suppose an element w € W satisfies the
conditions
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a) the map a +— aw is a bijection a — aw;
b) gw = aw.

Let iy, = {:z: €g | Tw = 0} be the stabilizer of w. Then i, is a Lie subalgebra
of g, and g = a @ i, (direct sum as vector spaces).

The lemma is completely trivial. Qur problem now is to construct a suit-
able w. We let W = End(g), viewed as g-module in the usual way, the
representation 0 : ¢ —+ EndW = EndEndg being defined by o(z)¢ =
adzo ¢~ gpoadz = [adz,d]. We define three subspaces PC QC RC W as
follows:

P={adga|aca}
Q={¢eW|4gCaandga=0}
R= {¢€W|¢9C aand¢|aisahomothety} .

We leave to the reader the task of showing that these are g-submodules of W.
We have an exact sequence of g-modules

0 —-Q -9 R-%k—0

where i is the inclusion, and p the map which associates with each r € R
the scalar by which r multiplies elements of a. If £ € a and ¢ € R, then
o(z)¢ =adzod—¢oadz = —Aadz, where A = p(¢) € k. Thus, o(z)R C P,
for ¢ € a, and the exact sequence

0— Q/P — R/IP-LH k-0

may be viewed as a sequence of s-modules. By the principle of lifting invari-
ants, there exists @ € R/P such that (1) = 1, and such that % is invariant
by 8. Let w be an inverse of image of w in R. We contend that w satisfies the
conditions of the lemma above.

a) Let a € a. Then o(a)w = —ada. If o(a)w = 0, then ady a = 0, that is,
[a,2] = 0 for all z € g. This implies a = 0, because a is simple, and g acts
non-trivially.

b) Let € g. We must show that o(z)w is of the form o(a)w for some
a € a. Since g(a)w = — adg a, this amount to showing o(z)w € P. But that
is just the invariance of w. q.e.d.

Corollary 1. An arbitrary Lie algebra g is the semi-direct product of its
radical v and a semisimple subalgebra.

One applies Theorem 4.1 to g — g/t.

Remark. This corollary has a complement, due to Malcev, which says that,
if 5; and 8, are two subalgebras of g such that v @ s; = g, there exists
an automorphism ¢ of g such that o(s;) = s, [one can even choose o of
the special form e*¥(®), where a € t, and ad(a) is nilpotent]. When ¢ is
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abelian, this amounts to the vanishing of H'(g/«, t); the general case follows
by “dévissage”. See Bourbaki for more details.

If g is a Lie algebra such that g # Dg, and if a is a subspace of g of
codimension 1 containing Dg, then a is an ideal in g, and we have g = a® kz
for any z ¢ a. Since kz is automatically a Lie subalgebra we get:

Corollary 2. A non-zero Lie algebra which is neither simple nor one-
dimensional abelian is a semidirect product of two Lie algebras of smaller
dimensions.

5. Complete reducibility continued

The following theorem gives a criterion for the complete reducibility of a
representation of a Lie algebra.

Theorem 5.1. Suppose k is algebraically closed. Let V be a vector space
and let g be a Lie subalgebra of EndV. Then V is completely reducible as a
g-module if and only if the following two conditions are satisfied.

a) @ is a product ¢ X 8 where ¢ is abelian and 5 semisimple.

b) the elements of ¢ can be put in diagonal form by a sustable choice of
basis for V.

Remarks. 1) If k is not algebraically closed, the same statement holds if we
replace the condition b) by the statement that elements of ¢ are semisimple
(i.e., diagonalizable over the algebraic closure!).

2) The ambiguity in statement b) is only apparent. If each element of ¢ is
individually diagonalizable, then they are all simultaneously diagonalizable,
because ¢ is commutative.

Suppose V is completely reducible as a g-module. Let ¢ be the radical of
g. By Lie’s theorem (Chap. V.5), there exists a line in V stable by v (unless
V = (0), in which case there is nothing to prove), or, what is the same, there
exists a linear form x : © — k such that its eigenspace

Vy={veV|zv=x(zp forallzer}

is non-zero. By the “main lemma” used in the proof of Lie’s theorem (loc. cit.),
Vy is stable under g. By complete reducibility, we conclude that there exist
characters x; of v such that

(%) V=V, &V, ® - ®Vy, (direct sum) .

From this decomposition it is clear first that v acts diagonally, and commutes
with the action of g. Thus, ¥ = ¢ is the center of g. To get s, we can either
quote Levi’s theorem, or argue directly using the adjoint representation.
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Conversely, suppose conditions a) and b) are satisfied. By b) we have
a decomposition of the vector space V of the form (), where the x;’s are
characters (linear forms) on ¢. Since ¢ is in the center of g = ¢ x s, the
eigenspaces V), are stable under g. We are therefore reduced to the case
V = V,. But then ¢ x s-submodules are the same as s-submodules, and we
are done by Weyl’s Theorem.

Corollary 1. Suppose g = ¢x s with ¢ abelian and 8 semisimple. A g-module
W is semisimple if and only if ¢ acts diagonally on W.

Corollary 2. Let g be an arbitrary Lie algebra, and V a g-module. If V is
completely reducible, then so are the tensor modules

V=R VR 'v.

Indeed, the image g of g in EndV is of the form ¢ x 8, with ¢ acting
diagonally on V, and hence on all V,, ,.

Corollary 3. The tensor product of completely reducible g-modules is com-
pletely reducible.

Using these results we can prove:

Theorem 5.2. Let V be a finite dimensional vector space over k. Let
8 C EndV be a Lie algebra of endomorphisms of V. If g is semisimple,
then g is determined by its tensor invariants, that is, there ezist some el-
ements vo € V, 4 (for various (p,q)’s; we should write (pa,qa)) such that
g= {erndVrzv.,=0foralla}.

By a standard linear argument, we can reduce the question to the case
where k is algebraically closed. Let § be the set of all z € End V such that
zv = 0 for every v in some V, ¢ such that gv = 0. Clearly g C § C EndV,
and b is a Lie algebra. Our task is to show § = g.

Step I: If a linear map u : V, 4 — V,, is a g-homomorphism, then it is an
§-homomorphism, because we can identify Homi(V;,q, Vr,s) With Voirp4s, as
End V modules, and for a linear map to be a g-homomorphism is the same as
for it to be killed by the action of g.

Step 2: If a subspace W C V, 4 is stable under g, it is stable under §. Indeed,
since V} 4 is completely reducible as a g-module, there is a g-endomorphism u
of V, 4 projecting V, 4 into W. Since u is also an h-endomorphism, its image
W is stable under §.

Step 3: We have §) = g x ¢, where ¢ is the center of §. For, by Step 2, with
W =g, and p = q = 1, we see that g is an ideal in §. By Corollary 1 of Weyl’s
Theorem (V1.3) we have § = g x ¢, where ¢ is an ideal in § commuting with
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g- By Step 1, it follows that ¢ commutes with b, that is, ¢ is in the center of
h.

Step {: Let W be an irreducible g-submodule of V. Then W is stable under
¢, and by “Schur’s Lemma”, the elements of ¢ act as homotheties on W. We
must show that these homotheties are zero; since V is the direct sum of W’s,
this will show ¢ = 0 and conclude our proof. Since we are in characteristic
zero, we can show that a homothety is zero by showing that its trace is zero.

Lemma 5.3. Let g be a Lie algebra and W a g-module of dimension m. Then
its m-th ezterior power /\ ™W, as a quotient space of @™ W (or as a subspace
in characteristic zero) is stable under g, and an element z € g acts on the
one-dimensional space A\ ™W by the scalar Trw (z).

We leave the proof of this Lemma as an exercise. Granting the lemma, we
argue as follows. We have A™W C @™W C @™V = v ,0. Since our semi-
simple g has no non-trivial one dimensional module (Dg = g), we conclude
that A ™W is killed by g. Hence it is killed by ¢, and hence Trw(z) = 0 for
all z € g. This concludes the proof.

Corollary 5.4. Let g C End(V) be semisimple. Letx € g and let z = n+3 be
the canonical decomposition of z, with n nilpotent, s semisimple and [n,s] =0

(cf. Chap. V). Then:
a) n and s belongs to g.

b) For any ¢ € Homgq(k, k), ¢(s) belongs to g.

This follows from the fact that any element in V} 4 killed by g is killed by
z and hence also by n, s and ¢(s).

Definition 5.5. Let g be a semisimple Lie algebra. An element z € g is
called semisimple (resp. nilpotent) if ad(z) is semisimple (resp. nilpotent).

Theorem 5.6. If g is semisimple, any v € g can be uniquely written z =
n+s, withneg, s € g, n nilpotent, s semisimple and [n,s] =

This follows from Corollary 5.4, applied to the adjoint representation (i.e.,
V =g).

Theorem 5.7. If ¢ : g1 — @2 s a homomorphism of semisimple Lie algebras,
and if r € g, is semisimple (resp. nilpotent), so is ¢(z).

Notice first that g; can be made into a g;-module via ¢. Let V be the
product of the g;-modules g; and g;. Applying Corollary 5.4 to V', we see that
any r € g, can be written z = n + s, where n € g3, s € gy, [n, s] = 0, ad(n)
and ad(é(n)) nilpotent, ad(s) and ad(¢(s)) semisimple. If z is semisimple
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(resp. nilpotent), this implies n = 0 (resp. s = 0), hence ¢(z) is semisimple
(resp. nilpotent).

6. Connection with compact Lie groups over R and C
We begin with:

Theorem 6.1. Let G be a connected compact Lie group over C. Thengis a

complez torus, that is, g is of the form C"/I", where I is a discrete subgroup
of rank 2n in C™.

By the maximum principle, there is no non-constant analytic funct.ioxzx
on G, and hence no non-constant analytic map of G into Endgg ~ C"
where n = dimg and g is the Lie algebra of G. The inner automorphism
z — gzg~! induced by an element ¢ € G induces an automorphism of g
which is denoted by Adg. The map g — Adg € C™ is analytic, hence con-
stant, so Adg = Ad1l = 1 for all ¢ € G. For z near zero in g we have
g(expz)g~! = exp(Ad g(z)), and since the exponential mapping is a home-
omorphism of a neighborhood of zero in g onto a neighborhood of 1 in G,
we conclude that G is locally abelian. Since G is connected, G is abelian.
Hence the universal covering of G is C*, and G ~ C*/I", with I' discrete, as
contended. Since G is compact, I is a lattice of maximal rank 2n.

Theorem 6.2. Let G be a compact Lie group over R with Lie algebra g.

Then g =~ ¢ x 8, where ¢ is abelian, and s semisimple with negative definite
Killing form.

We shall also prove a converse:

Theorem 6.3. If g is a Lie algebra over R such that g ~ ¢ X & with ¢ abelian
and 6 semisimple with a definite Killing form then there ezists a compact Lie

group over R giving g. Moreover, if ¢ = 0, then any connected G giving g is
compact.

Proof of Theorem 6.2. As explained in the proof of Theorem 6.1, G acts on g
by Ad, and, since G is compact, there exists a Euclidean structure (positive
definite quadratic form) on g which is left fixed by G, and hence by g. Hence,
@ is completely reducible as a g-module. It follows that g is the direct sum
of minimal non-zero ideals a; and is therefore isomorphic to the product of
the a;. Each a; is either simple or one-dimensional abelian. Hence g¥CXS
with ¢ abelian and s semisimple. It remains to show that the Killing form
of & is negative definite. Let (z,y) denote the Euclidean inner product on g.
For z € & let u = adgz. For y,z € s we have then (uy,2) + (y,uz) = 0,
because the Euclidean structure on s is invariant. Putting z = uy, we find
(v, u?y) = —(uy, uy). Let (y;) be an orthonormal basis for s. We have:
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Tre(u?) = ) (v, uyi) = - Y Jupil® .
i H

If z # 0, then u = ad(z) # 0 (because the center of s is zero), hence
Tre(u?) < 0. This proves that the Killing form of s is negative definite.

Let us now prove Theorem 6.3. As a compact Lie group over R giving ¢ we
can take a real torus, (R/Z)". To get one giving s, we take Aut s, which is a
closed subgroup of the orthogonal group of linear transformations of s leaving
fixed the Killing form of s. Since that form is definite, the latter group, and
hence Aut s, is compact. The Lie algebra of Aut s is the algebra of derivations
of s, which is isomorphic to s by Corollary 2 of Weyl’s Theorem (VI1.3). This
proves the first part of Theorem 6.3.

Suppose now ¢ = 0 (hence g is semisimple) and let G be a connected Lie
group with Lie algebra g. We have a canonical homomorphism:

Ad:G — Autg .

We have just seen that Autg is a compact Lie group with Lie algebra g;
hence Ad is étale. Let H = Im(Ad) = connected component of Aut g, and
let Z = Ker(Ad). We have G/Z = H, Z is discrete, H is compact, and the
commutator group (H, H) is dense in H (this follows via Lie theory, from the
fact that g = [g, g]). Hence G is compact (cf. Bourbaki, Int., VII, §3, Prop. 5).

Exercises

1. Let g be a Lie algebra, let v be its radical, and let i be the intersection of
the kernels of the irreducible representation of g.
a) Show that { = [g,t] = Dg N . (Hint: use Levi’s theorem to prove
that [g,t] = Dgn.)
b) Show that z € v belongs to i if and only if g(z) is nilpotent for
every representation g of g.
2. Let g be a Lie algebra and let B(z,y) be a non-degenerate invariant
symmetric bilinear form on g.
a) Let z,y € g. Show the equivalence of:
(i) y € Imad(z).
(ii) B(y,z) = 0 for all 2 which commute with z.
b) Assume g semisimple. Let z € g be such that ad(z) is nilpotent.
Show that there exists h € g such that [k, z] = z. Use this to prove that
¢(z) is nilpotent for any representation p of g.
3. Give an example of a Lie algebra g, with a non-zero radical, and a non-
degenerate invariant symmetric bilinear form.
4. Let g be a Lie algebra and let V be an irreducible g-module. Let K be the
ring of g-endomorphisms of V. Show that K is a field. Give an example
where K is not commutative.
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5. Let g be a semisimple Lie algebra, and let K be the ring of g-endo-
morphisms of g (with the adjoint representation). Let & be an algebraic
closure of k. )

a) Assume k = k and g = EB::;' 8;, where s; are simple. Show that
K is isomorphic to the product of h copies of k.

b) No assumption on k (except chark = 0, of course). Show that
[K : k} = h, where h is the number of simple components of g ® k. Show
that K is a product of m commutative fields, where m is the number of
simple components of g.

c) One says that g is absolutely simple if g ® k is simple. Show that
this is equivalent to K = k. Show that, if g is simple, K is a commutative
field and g is absolutely simple for its natural structure of Lie algebra
over K.

d) Conversely, let K be a finite extension of k, and let g be an abso-
lutely simple Lie algebra over K. Show that g is simple as a Lie algebra
over k.

e) Example: g = Lie algebra of the orthogonal group of a quadratic
form in 4 variables, with discriminant d not a square. Show that K is the
quadratic extension k(v/d).

6. Let G be a complex connected Lie group, let K be a real group-
submanifold of G, and let g and ¢ be the corresponding Lie algebras
(g is over C, and & over R).

a) Assume ¢ + it = g. Show that any complex group submanifold of
G containing K is equal to G itself.
b) Show that (a) is satisfied in the following cases:
(i) G =SL(n,C), K = SU(n) = special unitary group
(ii)) G =S0(n,C), K = SO(n) = special real orthogonal group
(i) G = Sp(2n,C), K = SU(2n) N G = quatern. unitary group.

7. Assume k is algebraically closed; let g; ( = 1,2) be Lie algebras over k
and let g = g; x g2.

a) Let V; be an irreducible g;-module. Show that V; ® V; is an irre-
ducible g-module.

b) Show that any irreducible g-module is isomorphic to some V; ® V;
as above.

c) What happens when k is not algebraically closed?

8. Let g be a real Lie algebra whose Killing form is positive definite. Show
that g = 0.
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In this chapter, k denotes an algebraically closed field of characteristic zero.
All Lie algebras and all modules are supposed to be ﬁpite-dimensional over k.

1. Notations

Let n be an integer > 2, and let g = s,: Lie algebra of n xn-matrices z = (z;;)
with Tr(z) = 0. Since the center of g is zero, and k" is an irreducible g-module,
@ is semisimple (cf. Chapter VI - one could also check this by computing the
Killing form of g). In fact, g is even simple (cf. Exer. 1), but we will not have
to use this.

Define now

b = Lie algebra of diagonal matrices H = (A,,...,A,) with Y] Ai = 0.
n, = Lie algebra of strictly superdiagonal matrices (i.e., matrices (a;;)
with z;; = 0 for ¢ > j).
n_ = Lie algebra of strictly infradiagonal matrices.

This gives a direct sum decomposition of g (as a vector space):
g=n_0bodn,.

Note that § is abelian, n; and n_ are nilpotent (cf. V.2). For n = 2, one has:

(> 0 _ {0 =* _f{0 o0
"‘(o -*)’ "+‘(o o)’ ""(* o)'

We also put b = h @ n; b is a solvable subalgebra of g (the canonical “Borel
subalgebra”); its derived algebra [b, b] is n.
Let B* be the dual of h. An element ¥ € h* can be written

X(H)=u1’\l+"'+un/\n; U.'Ek,ifH=(A1,...,/\"),

Since Y A; = 0, the u;’s are only determined up to the addition of a constant.

Let Ry be the subset of §* made of the linear forms A\; — A; (: < j) and
let R = Ry U(—R4). An element a of R (resp. Ry ) is called a root (resp. a
positive root). The positive roots:

ay =X — Az, a2 = A3 — A3, ..., Qnoy = Apo1 — Ap

are called the fundamental roots. Any positive root & = A\; — Aj (¢ < j) can
be written as a sum of fundamental roots:

a=ai+ a1+ -+ ajg .

Let a = A; — Aj (i # j) be a root. Define elements H, and X, of g in the
following way:
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Xo = matrix with (Z, j)-entry equal 1, and all other entries zero.
H, = element of h whose i** coordinate is 1, j** coordinate —1, and others
zero.

Note that a(H,) = 2.

Proposition 1.1. (a) The Xo’s (a € Ry) make a basis of ny; the X_, s
(« € Ry) make a basis of n_.

(b) fHeY, a € R, [H,Xo] = a(H)X,.

(¢) [XayX-a) = Hq.

Assertion (a) is clear. To prove (b), let (A,...,A,) be the diagonal terms
of H; if a is the linear form X; — A}, one finds that H - X, = A; - X, and
Xo+H = )\j- Xo. Hence [H, Xo] = (A — Xj)Xq = a(H)X4. A similar com-
putation proves (c).

Ezample 1.2. For n = 2, there is just one positive root @ = A; — A;. The

elements
1 0 _ {0 1 {0 O
m=(o 5) %=(00) x=(3 )

make a basis of sl;.

2. Weights and primitive elements

Let V be a g-module. If x € h*, we denote by V, the vector space of elements
v € V such that H-v = x(H)-v for all H € b; such a v is called an eigenvector
of § of weight x.

Proposition 2.1. Ifa € R and v € V), then Xy - v € Vyyq.

Indeed
HX,v=[H,X,Jv+ X Hv

=a(H)Xqov+ X(H)X v
=(x +a)(H)Xav ,
hence X, v is of weight x + a.

Proposition 2.2. V is the direct sum of the V) ’s (for x € §*).

It is well known that non-zero eigenvectors of distinct eigenvalues are
linearly independent. Hence, the sum W = 2 xeh Vx is a direct sum. Propo-
sition 2.1 shows that W is stable by the X,’s; since it is also stable by b, it is
stable by g. Hence (complete reducibility!) V is the direct sum of W and an-
other g-submodule V'. Suppose V' # 0. Since b is abelian and k algebraically
closed, there exists in V' at least one non-zero eigenvector v of §. Such a v is
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contained in some V,, and this contradicts the fact that V' N W = 0. Hence
Vi=0,and V=W. qed

Definition 2.3. The x’s such that V, # 0 are called the weights of V. The
dimension of V, is called the multiplicity of x.

Ezample 2.4. The weights of g (for the adjoint representation) are the roots
a € R, which have multiplicity one, and 0, which has multiplicity n — 1.

Proposition 2.5. Let v € V. The following conditions are equivalent:
(1) v is an eigenvector for the Borel algebra b = h dn,.
(2) v is an eigenvector for b, and Xov =0 for alla € R,

This follows from the fact that ny = [b,b] and that the X,’s (« € Ry)
make a basis of ny.

Definition 2.6. A non-zero element v € V which satisfies the equivalent
conditions of Prop. 2.5 is called primitive.

Note that a primitive element has a well-defined weight x € §*.
Proposition 2.7. Any non-zero g-module V contains a primitive element.

This follows from Lie’s theorem (cf. Chap. V) applied to the b-module V.

[Alternate proof: Let S be the set of weights of V. Using the fact that S
is finite, and non-empty (cf. Prop. 2.2), one sees that S contains an element
x such that x + a; € S for any i. The non-zero elements of the corresponding
V, are primitive.

3. Irreducible g-modules

Theorem 3.1. Let V be a g-module, and let v € V be a primitive element of
weight x. Let Vi = (Ug) - v be the g-submodule of V generated by v. Then:
(a) W is irreducible.
(b) The weights of V; are of the form x — z?__','ll mia;, with m; > 0.
(c) Any element of Vy which is of weight x is a multiple of v.

The universal algebra Ug can be written
Ug=Un_oUb, cf. Chap. IIL.

Since v is an eigenvector of b, (Ub) - v = k - v, hence V; = (Ug) - v is equal
to (Un_) - v. Applying Birkhoff-Witt to Un_, we then see that V; is gener-
ated by elements of the form M - v, where M is a monomial in the X_,’s
(a € Ry). Prop .2.1 then shows that the M - v are eigenvectors of h of weight
X = X a>09a@, With go > 0; this implies (b). Assertion (c) follows from the
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fact that the ¢o’s can be all zero only when M is of degree zero (i.e., M = 1),
and in that case M - v = v. To prove (a), suppose V; is decomposed into the
direct sum of two g-modules V' and V"; let v = v’ + v" be the corresponding
decomposition of v. Since (V1)x = Vy @ V', v’ and v" are both of weight x;
(c) then shows that they are multiples of v, and one of them must be zero, say
v""; hence v' = v, and since v generates Vj,one has V' =V;, V" = 0. q.ed.

Theorem 3.2. (1) Let V be an irreducible g-module. Then V contains only
one primitive element (up to multiplication by a non-zero element of k); the
weight of such an element is called the highest weight of V.

(2) Two irreducible g-modules with the same highest weight are isomor-
phic.

If V is irreducible, it contains at least one primitive element v (cf.
Prop. 2.7); let x be the weight of v. Let now v' be another primitive ele-
ment of V, and let x' be its weight. Since V is irreducible, v generates V,
hence Theorem 3.1 shows that

n-1
X=X =Y mai, with m; > 0 for all 5.

=1
The same argument, applied to v', shows that:

n-—-1
X' -x= Zmﬁai ) with m} > 0 for all 1.

=1

These two relations imply m; = m} = 0, i.e., x = x', and part (c) of Theo-
rem 3.1 then shows that v’ is a scalar multiple of v. This proves (1).

Let now V}, V; be two irreducible g modules having primitive elements v;,
v; of the same weight x. The element v = (v;,v;) of V; ® V; is again primitive
of weight x. By Theorem 3.1, the g-submodule W of V; x V, generated by v
is irreducible. The projection map =; : W — V; is non-zero (since 7;(v) = v;),
hence is an isomorphism, W and V; being irreducible. This shows that V; and
V2 are both isomorphic to W. .

Remark. Theorem 3.2 reduces the classification of irreducible g-modules to
the determination of the elements x € h* which are “highest weights”, i.e.,

weights of primitive elements in some g-module. This determination will be
made in VIL4.

4. Determination of the highest weights
Theorem 4.1. Let x be an element of h*, and write x in the form:

X(A1, . A) = wd -t ugd,
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There ezists an irreducible g-module with highest weight x if and only if u;—u;
is a positive integer for alli < j.

(Of course, “positive” means > 0.)

Proof of necessity. Note first that u; — uj = x(Hgy) if a is the positive root
A; — ;. Hence, we have to prove that x(Hq) is a positive integer (for o € Ry)
if x is the weight of a primitive element v.

Proposition 4.2. Let v be a primitive element of weight x, and define
= (X—o)™v/m! for m > 0, where (X_o)™ is the m*® iterate of X_o.
Then, the following formulas hold:

(1) X_ov2 =(m+1)vp,,
(i) Hvg, = (x —ma)(H)vy, fHED
(iii) Xavd = (x(Ha) —m+1)v&_,.

Formula (i) is obvious; formula (ii) means that v§, is of weight x — ma,
which follows from Prop. 2.1. One proves (iii) by induction on m, the case
m = 0 being trivial (it is understood that v®; = 0 - note that this convention
agrees with (i) for m = —1). If m > 1, one writes:

M Xat® = XaX—av®_y = Hav®_; + X—aXavZ_,

=Av5_y,

with A = x(Ha) — (m — 1)a(Ha) + (m — 1)(x(Ha) — m + 2).
Using the fact that a(H,) = 2, one sees that A = m(x(H )—m+1),and
this proves (iii).

Corollary 4.3. There ezists m > 0 such that v2 # 0 and v3,, = 0. One
has x(Hq) = m.

Since the v%’s have weights x — ma, and the number of possible weights
of a given module is finite, one must have v3 = 0 for large m, hence the
existence of m with v3 # 0, v3,; = 0. Applying formula (iii) for m + 1, one
finds:

0= Xavpyy = (x(Ha) — m)vy,

Since v2 # 0, this implies x(Hq) = m.
This finishes the proof of the “necessity” part.

Proof of sufficiency. Let m, ..., ma—1 be the linear forms Ay, Ay + Az, ...,
A1 + -+ An—1. The condition of Theorem 4.1 is equivalent to the following:

n—1
x can be written x = Z m;m; ,
=1
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where the m;’s are positive integers.

Proposition 4.4. If x and x' are the highest weights of the irreducible mod-
ules V and V', x + x' ts the highest weight of an irreducible submodule of
Vvev.

Let v and v’ be primitive elements of V and V'. Then v ® v’ is a primitive
element of V @ V' and its weight is x + x’. The g-submodule W generated by
v @ v’ is irreducible (Theorem 3.1), and its highest weight is x + x’'.

Corollary 4.5. The set of highest weights is closed under addition.

Hence, to prove that x is a highest weight, it is enough to prove that the
7i’s are highest weights. We do this by giving explicitly the corresponding
irreducible g-modules:

Proposition 4.6. Let V be k", viewed in a natural way as a g-module. For
1<i<n-—1, let V; be the exterior i*P-power of V. Then V; is an irreducible
g-module of highest weight =;.

Let ej,...,en be the canonical basis of V, and let v; = e; A--- Ae;. A
simple computation shows that v; is a primitive element of V;, of weight =y;
moreover, by applying to v; a monomial in the X_,’s, one can obtain any
term of the form e, A--- Aem,, m1 < --- < m;; hence V; is irreducible
(Theorem 3.1). This concludes the proof of Theorem 4.1.

Remarks. 1. Analogous results are true for any semisimple Lie algebra. In
fact, all the proofs we have given (except the last one — based on an explicit
construction of irreducible modules) apply to the general case, once the fun-
damental properties of “Cartan subalgebras” and “roots” have been proved.

2. Theorem 4.1 shows that the classes of irreducible g-modules are in
one-to-one correspondence with systems (mj,...,mn—1) of n — 1 positive
integers. For an explicit description of the module which corresponds to
(m,...,ma-1), see for instance H. Weyl, The Classical Groups, Chapter IV.

3. When n = 2, there is just one integer m, and the corresponding irre-
ducible module is the m**-symmetric power of V = k2.

Exercises

1. Suppose g = sl, is the product of two semisimple Lie algebras g, and g;.
Prove that the g-module k™ = V is a tensor product V; ® V,, where V; is
an irreducible g;-module (cf. Chap. VI). If n; = dim V;, one has n = njn,,
dim g; < n? — 1. Show that this implies that one of the n;’s is equal to 1,
hence g; = 0, and g is simple.
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Show that all the results of this Chapter hold when k is an arbitrary field
of characteristic zero (Hint: use the fact that, over an algebraic closure k
of k, all weights take rational values on the H,'s; this is enough to imply
that Prop. 2.2 and 2.7 hold over k; the rest offers no difficulty.)

. Let k = C, field of complex numbers. The group G = SL(n,C) con-

tains the subgroup SU(n) of unitary matrices with det = 1. Show that
G/ SU(n) is homeomorphic to an Euclidean space RY (Hint: identify this
homogeneous space with the space of all positive definite hermitian forms
on C"). Show that SU(n)/SU(n — 1) is homeomorphic to the sphere
S2n-1. Use this fact to prove (by induction on n > 2) that SU(n) and G
are connected and simply connected. Hence, any linear representation of
8 = L(G) corresponds to an analytic representation of G, and conversely.

. Same notations and assumptions as in Exer. 3. Show that the subalgebra

h of g corresponds to a group submanifold of G which is isomorphic to
a product of n — 1 copies of C* = C/Z. Use this to give a direct proof
of the fact that any weight of g is a linear combination (with integral
coefficients) of the =;’s.

. a) Let P (resp. Q) be the subgroup of h* generated by the =;’s (resp. by

the roots). Define an exact sequence:
0— Q-5 P-2Z/nZ —0,

where 1 is the inclusion map, and e(m;)) =i for1 <i<n-1.

b) Let V be an irreducible g-module. Show that all weights of V' are
elements of P, and have the same image by e; let e(V) € Z/nZ be this
image.

c) Assume k£ = C (cf. Exer. 3). Prove that the center C of G =
SL(n, C) is a cyclic group of order n, made of the scalar matrices w with
w" = 1. Let V be an irreducible g-module; show that the image of w € C
by(the corresponding representation of G is a scalar which is equal to
weV),

d) Using (c), prove that the irreducible representations of the projec-
tive group PGL(n, C) = G/C correspond to the irreducible g-modules Vv
with e(V) = 0.

. Let x be any element of h*. Let L, be a one-dimensional b- module of

weight x. Let E, = L, ®usUg be the corresponding “induced g-module”
~ which is inﬁnite-dimensional. Show that E, contains a primitive element
v of weight x. What are the other weights of E,? Show that there is
a largest submodule H of E, which does not contain v. The quotient
Vyx = E,/H is irreducible; show that it is finite dimensional if and only if
x satisfies the conditions of Theorem 4.1. Give an explicit description of
Vy when n = 2.

Let n = 4, and let V be the irreducible g-module with highest weight r;
(cf. Prop. 4.6). Show that dimV = 6, and that there is a non-degenerate
invariant quadratic form on V. Use this to construct an isomorphism of
sl onto the Lie algebra of the orthogonal group in 6 variables.
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Introduction

This part is meant as an introduction to formal groups, analytic groups, and
the correspondence between them and Lie algebras (Lie theory). Analytic
groups are defined over any complete field (real, complex or ultrametric); Lie
theory applies equally well to these cases, provided the characteristic is zero.

I have made an essential use of unpublished manuscripts of N. Bourbaki,
both on analytic manifolds, and on Lie groups.

Part II has been written by R. Rasala. I want to thank him for the good
job he has done; many improvements on the oral exposition are due to him.

Jean-Pierre Serre

Harvard, Fall 1964



Chapter I. Complete Fields
Definition. Let k be a commutative field. An absolute value on k is a function
k — R, denoted by z — |z|, z € k satisfying the conditions:
l.|zg|=0 < z=0.
2. |zyl = |=| iyl
3.]1=1.
4. |z +y| < |zl + vl
Ezamples.
(i) Define

lz|=0 fz=0
lel=1 fz#0 "

The topology on k induced by this absolute value is discrete.
From now on we will assume that the absolute value is non-trivial, i.e.,
there exists z € k with 0 < |z| < 1.

(ii) R, C with the usual absolute values.
(iii) If we replace condition 4) by 4') |z—y| < sup{|z|, |y|}, such an absolute

value is called ultrametric or non-archimedian.

Note. The condition 4') is equivalent to the following:
For any € 2 0, the relation |z — y| < € is an equivalence relation.

Now suppose k is complete for an ultrametric absolute value.

Theorem. Let {z,} be a sequence with z,, € k. Then ) z, converges if and
only if z, — 0.

The proof is immediate.

Theorem (Ostrowski). Let k be a complete field for an absolute value. Then
either k = R or C with the usual absolute value |z|*, 0 < a < 1 or the
absolute value of k is ultrametric.

For the proof, see for instance, Bourbaki, Alg. Comm., Chap. VI, §6.

Let k again be a field with an ultrametric absolute value |z| and let a be
a real number with 0 < a < 1. Define a real number v(z) by the formula
|z} = a*(#). Then v(z) satisfies the conditions:

1. v(z) =400 <= z=0.
2. v(zy) = v(z) + v(y)-
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3.v(1)=0.
4. v(z + y) 2 inf(v(z), v(y))-

The number v(z) is called the valuation of z.

Ezamples.

a. Let k = C((T)) be the field of the power series in one variable T

Leta=3 3. o anT", an € C, ap =0 for —n large enough.

Define v(a) = smallest n such that a, # 0. Then a = T™(ag + 1T + - -
with ap #0, n € Z, i.e., v(a) > n <> a = T"p with y € C[[T]).

Note that the field C((T')) is complete.

b. Let Q be the field of rational numbers and choose a prime number p.
Foranya € Q,a # 0, we writea =L = p"-.'JT where 1/, 8' are integers prime
to p.

The valuation defined by v(a) = n is called the p-adic valuation of a.

The p-adic completion of Q is denoted by Q, and called the field of p-adic
numbers.

Note that a, — 0 in the p-adic sense if and only if a, is divisible by a
power of p, say p*~, where h, — oo.

Definition. Let k be a field and let v be a valuation of k. Then the set
A.,={:t|:c€k, v(z) 20}
is a ring and it is called the ring of the valuation v.

Ezample. Let k = Q; and let v be the p-adic valuation; then A, = Z,, is the
ring, . p-adic integers.

If « > 0 is a real number, then the sets
Io,={:c|:c€A.,, v(::)_>_a}
I, ={z|z €A, v(z)>a)}
are ideals of A,.

In particular, if & = 0 we have
Li=my,={z]|v(z)>0}

which is the maximal ideal of A,. The field k(v) = A,/m, is called the residue
field of v.

Ezamples.

(i) Let k = C((T)), then

A, = C[[T]]
wm, =(T)
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and k, = A,/m, = C.

(ii) Let k = Qp, then
Au = z,

m, = (p) = pZ,
and k, = Fp = Z/pZ.

Theorem. Let z v |z| be an ultrametric absolute value on Q. Then either
jz| =1 forallz #£0

or the absolute value | | is the p-adic value for some p.

Proof. Suppose that there exists a rational number r € Q such that
0<ir|<;

this implies that there exists a prime number p such that [p| # 1, i.e.,
0 < [p| < 1 (notice that if n € Z then |n| < 1).

Let n € Z and assume (n,p) = 1, then there exist A,B € Z with
An + Bp = 1; in the case |n| < 1 we get [An| < 1, but we know that |p} < 1,
i.e., | Bp| < 1 which implies |1| < 1, so we must have |n| = 1.

Now take a = |p} and r = p"’(")%, where n,n' € Z are prime to p. We
have |r| = a*("), qed.

Corollary. If k is a complete field with respect to an ultrametric absolute
value | | and the characteristic of k is zero then

k D Q with the discrete topology

or

kD> Q, for| .
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We first fix some notation:

1. k: field, complete with respect to a non-trivial absolute value.
k[[X1,...,Xn]]: formal power series in n variables X;,...,X,.

2. We use:
a. Greek letters a, 8 for n-tuples as a = (a;,...,as), @; 20, € Z.
b. Latin letters r, s for n-tuples as r = (ry,...,7a), i > 0, € R.
c. Latin letters z, y for n-tuples as z = (z3,...,%n), i € k.
3. We set:
r®=r...rgn
z% =gt .- Zq"
Xe=XM...X3n
la| = Ea.'

a=J]a ,
(ﬂ)_ a—ﬁ

4. We define:
|z| < r (resp. [z]| < ) <= |zi| < ri (resp. |zi] < 1), 1 <1< n.
We define similarly ' <r, ' <r, o' < a,and o < a.

5. We set:
P(r)(z) = {y: ly — =} < r } = Polydisk of radius r about z.
Po(r)(z) = {vy: ly — 2| < r } = Strict polydisk of radius r about z.
P(r) = P(r)(0)
Po(r) = Po(r)(0).
Definition. Let f =Y a,X“ and let r be as above.

1. The series f is said to be convergent in P(r) if
(1) Z laa|r® < oo .

2. The series f is said to be convergent in Py(r) if it is convergent in P(r')
for all ' < r.

Lemma. Let f =) ao,X“ and let r be as above. Then:
1. If f converges in P(r), there is a constant M such that for all a
(2) laalr* <M.

2. If there is a constant M such that (2) holds for all a, f converges in Po(r)
and uniformly in P(r') for r' <r.

Proof.
1. Take M = ¥ |aq|r® which is finite by (1).
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2. Suppose r' < r. Then:

re
3 laalr'® = Y (lealr) oo
o

P

This shows that f converges uniformly in P(r'). In particular, f converges in

Po(r).

Definition. Let f = Y aoX®. The series f is said to be convergent if it is
convergent in Po(r) for some r > 0.

Let f = Y aaX* be convergent in Py(r). For any z € Py(r), the series
3 aqz® converges absolutely (and uniformly in any P(r') for r' < r); its sum
J(z) is a continuous function of z. We have the following lemma:

Lemma. f=0= f=0.

Proof.
n=1:
Suppose f # 0. Then

(X)=X"co+aX+--), c#0, m>0.

The series Y ¢;X* is convergent. The function this series defines is non-zero
at 0 and hence non-zero in a neighborhood U of 0 by continuity. Now X™
is non-zero in U — {0} so that f does not vanish identically on U. In fact if
m > 0, the zero of f at 0 is isolated.

n>1:
We assume the lemma for n — 1 and suppose f = 0. Write

f=Y c(X,...,Xn1)X5 ci € k[[X1,..., Xn1])

Since f is convergent in Py(r), the ¢; are convergent in the (n — 1)-dimensional
polydisk Po(s) where s = (ry,...,rp-1).
By hypothesis, for y = (y1,...,¥n—1) € Po(s), the function g defined by

g(zn) =Y &1, yn-1)zh

is identically zero. Hence, by the case n = 1, all &(y1,...,yn—1) are 0. Since
this is true for all y € Py(s), all ¢; are 0 by induction. Hence, f = 0.
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By the above lemma, we may identify a convergent power series f with
its associated function f.
We shall now study analytic functions.

Definition. Let U C k™ be open and let ¢ : U — k be a function. Then ¢ is
said to be analytic in U if for each £ € U there is a formal power series f and
a radius r > 0 such that:

1. Po(r)(z) cUu.
2. f converges in Py(r) and, for kh € Py(r), ¢(z + k) = f(h).

Remark. If ¢ is analytic in U and z € U, then the power series f of the above
definition is unique and is called the local ezpansion of ¢ at z.

Theorem. Let f =) aoX® be convergent in Po(r) for r > 0. Then f is an
analytic function in Py(r).

Proof. Let € Py(r). Then we may choose r’ such that |z| < r' < r. Set
s = r —r'. Next note that:

(z+h)* = ﬁzsa (‘;) @~ PhP .
Hence:
flz+h)= Xa:aa (g (;) x"'”h") : h € Py(s).

To show that rearrangement of the above sum is permissible, we shall show
that:

*) 2

Indeed, let |h| < s’ < s. Then:

aq (;)x""phﬂl < |a°|<;) lz|*=P|R|? .

We have used the fact that [p| < p when p is a positive integer to estimate
|(;)| Thus:

2

f<a

aq (Z)z““ﬂhﬂl <o, h € Py(s).

oo ()= < Lol (5) 0" = ek

f<a

Hence an upper estimate for the sum (*) is:

Y laal(r' 4 8')* < 00 .
o
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This sum is finite since f converges in Py(r) and r' + &' < r.
What we have shown is the following lemma:

Lemma. Let f =Y aaX* be convergent in Po(r) and define

APf = g;a, (;)x"-ﬂ :

Then:
1. APf is convergent in Py(r).
2. For z € Py(r), the series 3, AP f(z)h? converges in Po(r — |z]).
3. For z € Py(r) and h € Po(r - |z|):

flz+h)=>_ APf(z)n? .
]

Subproof: Indeed, 1 and 2 follow from (*) immediately. 3 also follows from (*)
since (*) implies that:

za: Ga (Z (‘;) za-ﬂhﬁ) =¥ (Z Ga (g) za-ﬂ) hP = ; APf(z)hP .

A<a B \a<h

This completes the proof of the lemma and clearly also the proof of the theo-
rem.

We now generalize the notion of analytic function to vector-valued func-
tions.

Definition. Let U C k™ be open and let ¢ = (¢1,...,65) : U — k™. Then ¢
is said to be analytic if ¢; is analytic for 1 <i < n.

The lemma of the preceding theorem is a special case of the following
theorem:

Theorem. Suppose U LV adv L W are analytic where U C k™,
V C k™, and W C kP are open. Then go f is analytic.

Proof. We must check that go f has a local power series expansion about each
point x € U. Now, the lemma of the preceding theorem shows that the class
of analytic functions defined on open subsets of some k# with values in some
k¥ is invariant under translation of domain or range. Hence, we may assume
that z = 0, f(0) = 0, g(0) = 0. Further, it follows from the definition of vector
valued analytic functions that it suffices to consider the case p = 1.
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Let 3 455008Y” be a local expansion of g at 0 valid in Py(s) where
8 = (81,...,8a). Let f = (f1,...,fn) and let }°_.,8iaX* be a local ex-

pansion of f;. We may choose r = (ry,...,rn) so that:
a _ Si .
D laialr* < 5, 1<i<n.
a>0

Then, for h € Py(r):

8
gof(h)=Y b (...,zai,aha,...)

BA>0 a>0

To complete the proof, we must show that the right hand side defines a power
series in h convergent in Pp(r). Now, the right hand side does define a formal
power series in h since formally there are only finitely many terms which
contribute to coefficients of any h®. Indeed, terms where |8| > |a| make no
contribution (since all a; o = 0). Hence, it remains to check the convergence
of the formal power series we obtain. This follows since:

3 fbl (Z e ol |h|",...)p <Yol(3) <oo.

>0 a>0 B>0

The proof of the theorem is therefore complete.

Remark. 1) The reader may consult Bourbaki, Alg., Chap. IV, §4, for a more
detailed discussion of the step on the existence of a formal power series.

2) There is a general method based on the theorem of Ostrowski which is
useful for proving theorems such as the preceding one. One simply observes
that it suffices to consider two cases:

1. k=RorC.
2. k ultrametric.

Let us illustrate this method by giving an alternate proof of the above
theorem:

Case I: k=R or C.
a. k=C:
It is known that:

¢ is analytic <= ¢ is C! and D¢ is a complez linear map.
Since the composite of C! maps is C!, the composite of derivatives is the

derivative of the composite, and the composite of complex linear maps is
complex linear, the theorem follows in this case.
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b. k=R:

We may locally extend real analytic functions to complex analytic by
power series. Hence the theorem in the real case follows from the complex
case.

Case £: k ultrametric.

We assume as in the original proof of the theorem that we are seeking a
power series expansion of g o'f about z = 0 and that f(0) = 0 and ¢(0) = 0.
We note that without loss of generality, we may replace ¢g(Y') and f(X) by
g(%) and u f( %) respectively where u,v # 0, € k. We shall choose now u and
v so that the theorem is reduced to a trivial case.

Let g = (g1,...,9p) and let g; = 35, b;,sY”? be a local expansion of g;
about 0. Choose s so that each g; converges in P(s). We can find a constant
N s0 that for all j and all B, |bjg]s? < N. We let u be an element of k such
that |u| > ma.x,-(-};(l + N)). Then for all j and all §:

<1.

1 . 1
b’";ml < lbj,ﬂlm;n(sz')"' ' < |bj sls®

1
1+N ~ 1+N
Hence g(%) has coefficients in the ring A, of the valuation v of k and in
particular g(X) converges in Py(1).

By applying the above argument to uf, we may find v € k so that the
local expansions of the coordinate functions u f;( %) of uf( %) have coefficients
in A,.

We are therefore reduced to the case when the local expansions of the

coordinate functions of f and g have coefficients in A,. But then the formal
series of the composite has coefficients in A, and therefore converges in Pg(1).

We now make explicit some facts about differentiation and Taylor series
implicit in our discussion of the theorem that a convergent power series defines
an analytic function.

Definition. Let ¢ : U — V be a function, where U C k™ and V' C k" are
open, and let £ € U. A linear function L : ¥™ — k" is called a derivative of ¢
at z if:

|¢(z + k) — ¢(z) — Lh| =o(|h]), || —0
or, equivalently, if:
L 18 +h)—é(z) - Lh] _

[h]—0 14
h#0

0.

Remarks. 1. If ¢ has a derivative L at z, then L is unique and is denoted by
Dé(z).

2. If D¢(z) is applied to the vector (0,...,1,...,0) which has 1 in the i-th
place and 0 in all other places, the vector obtained in k™ is denoted by D;¢(z)
and is called the i-th partial derivative of ¢ at z.
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To study the differentiability of analytic functions, it suffices first of all
to restrict oneself to analytic functions with values in k£ and then to further
restrict oneself to functions given by convergent power series since differentia-
bility is a local property. We shall let §; denote the vector with 1 in the i-th
place and 0 elsewhere.

Theorem. Let f =) aaX* be a power series convergent in Po(r) for r > 0.
Then f is differentiable at eack = € Po(r) and we have:

A f(z)
Df(z) = :
A= f(z)

Hence, the derivative of an analylic function ezists and is analytic, so that by
induction an analytic function is infinitely differentiable.

Proof. The theorem follows immediately from the explicit calculations of the
lemma of page 70 which show that f(z + h)— f(z) — Df(z)h is a power series
which is convergent in Py(r) and whose terms of degree 0 and 1 vanish.

Remarks. Let D* = DI - -- Dg~.

1. a!A® = D=

2. The expansion f(z + h) = 3,4 AP f(z)h? is just the Taylor series in
characteristic 0.

3. (“1P) AP = A= A8,

We are now in a position to state:

Inverse Function Theorem. Let f : U — k™ be analytic where U is open
in k™ and suppose 0 € U and f(0) = 0. Then, if Df(0) : k® — k™ is @ linear
isomorphism, f is a local analylic isomorphism.

Proof. The theorem is well known for ¥ = R or C so we may assume by
Ostrowski’s Theorem that k¥ has an ultrametric absolute value. Let f =
(f1y.-.,fn). By following f with Df(0)~? if necessary, we may assume that:

filX) =X - Z a; o X = X; — ¢i(X)

a>l

Then, replacing f(X) by uf(X ~) where |u| is sufficiently large, we may also
assume that a; . € A, for all § and a where A, is the ring of the valuation
of k.

To invert f, we seek convergent power series ¥;(T') so that X; = ¥(T)
solves the equations:

() T =X - ¢4X), 1<i<n
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We shall solve the problem in two steps:

1. We shall show that (*) has a unique formal solution ¥; and we shall
describe the relation between the coefficients of ¥; and those of ¢;.

2. We shall use two methods to show that the formal power series solution
we have obtained converges.

Set W; = 3 4, bi sT? and consider the equations:
(*%) %(T) =T; + ¢:(¥(T)) , 1<i<n

We see immediately that b;5; = 1 or 0 according as i = j or i # j. More
generally, for arbitrary 8, we see that b; g is a linear combination with posi-
tive integral coefficients of monomials in the coefficients of ¥ and ¢ of degree
strictly less than . Moreover, the positive integral coefficients in this expres-
sion are independent of the {¢;} and the {¥;}. Hence, by induction, we see
that: .
bi,s = pp(aj,a)
where:

1. pf, is a polynomial with positive integral coefficients independent of the
{¢:}.
2. p}y depends only on the a;q’s for |a| < |A].

The first method we give to prove convergence depends on the fact that
we have assumed k ultrametric. By construction, b; 3 € A4, for all { and 8.
Hence the {¥;} converge in Py(1).

The second method which we give, Cauchy’s method of majorants, works
in the cases k = R or C as well. Suppose that we can find real positive power
series {$;} such that if {;} is the formal solution for the inversion problem
for {$;} then:

1. ;= Y a>18i,aX® and ¥ = Eﬁ>o b; TP converge for 1 <i <n.
2. For all { and a, [a;,4 < @;,q-

We shall then show that:
3. For all i and B, |big| < b; 5.

It will then follow from 1 and 3 that ¥; converges for 1 < ¢ < n. To obtain 3
from 2, we simply note that since the p;', have positive integer coefficients, we
have ) -
15i,8] = [Pp(aj.e)l < P(laj,al) < P(Gj,a) = bis -
It therefore remains to construct functions ¢; with the required properties.
For the case n = 1 and any positive integer m, a positive constant times
the following function ¢™ will satisfy the first part of 1 as well as 2:

= Z(mX)i (m > 0).

i>1
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We may by renormalizing the problem assume the positive constant is 1. Then
we may explicitly compute the inverse function #™ of ¢™. Indeed, we must
solve the equation:

(mX)?

T=X—1—mX )

Its solution is given by:

(14 mT)— /(1 + mT)? —4(m? + m)T
2(m? + m) ’

F™(T) =

#™(T') does indeed converge in a neighborhood of 0. _
To solve the case for general n, we take ¢; = 3°.,(X1+- -+ Xn)’. Then

the explicit solution ¥; for ¢, is:

b=y -1+ (EL)

J#i
Indeed:

4 = nin (E5)
5- @) = LY@ -my o (BR) - e (v (B1))

J#i
=Y @ -1+ (Th) =T
j#i

Since the ¥; converge in a neighborhood of 0 the theorem is proved.

“Tournants dangereux”

1. Suppose k is ultrametric. Then the function ¢ which is 1 on A4, and 0
outside A, is everywhere analytic. This follows from the fact that A, is
both open and closed.

2. If k has characteristic p > 0, then for an analytic function ¢ defined on
k™ and for |a| > (p — 1)n + 1, one has D*¢ = 0. In particular, the radius
of convergence of the derivative of a function may be strictly greater than
that of the function.

3. If ¢ is analyticon U C k", z € U, and Py(r)(z) C U, then the local
expansion of ¢ at ¢ does not necessarily converge on all of Po(r). In
general, this is only true for k = C.
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We denote by k a field complete with respect to a non-trivial absolute value.

1. Charts and atlases
Let X be a topological space.

A chart c on X is a triple ¢ = (U, ¢,n) such that:

1. U C X is open

2.n€Zandn > 0.

3.¢:U — ¢U C k™ is open and ¢ is a homeomorphism.
Notation.

U = O(c) = Open set of c.

¢ = M(c) = Map of c.

n = dimy ¢ = Dimension of c.

Let ¢ = (U,¢,n) and ¢’ = (U',¢',n') be charts on X. Then ¢ and ¢’ are
said to be compatible if, setting V = U N U’, the maps ¢' o ¢~ 4(v) and
pog ! l¢r(v) are analytic.

(V) C k"
¢/
V. gosmt | Toos !
¢\

#(V) C k™

If c and ¢’ are compatible, then V # @ implies n = n'.
A family {c;}ies of charts on X is said to cover X if |J;¢; O(c;) = X.
An atlas A on X is a family of charts on X which covers X and such that
the charts in the family are mutally compatible.
Two atlases A and A’ on X are said to be compatible if equivalently:

1. AU 4’ is an atlas.
2.If c€ A and ¢’ € A, then c and ¢' are compatible.

Remark. Compatibility of atlases is an equivalence relation. Indeed, the re-
flexive and symmetric properties of an equivalence are obvious. To check tran-
sitivity, let 4;, Az, and A3 be atlases and let ¢; € A; and c3 € A;. We must
show that ¢; and c; are compatible. Let V = O(c;) N O(c3). If V = @, then
c; and c; are trivially compatible. Suppose V # 0 and let ¢; = M(c;) and
#3 = M(c3). It suffices, by symmetry, to check that ¢3 o ¢! is analytic on
#1(V). We shall check that this map is analytic at ¢;(z) for each z € V.
Choose c; = (U, ¢,n) € A; such that z € U. Then:
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$0¢71:41(UNV) = ¢(UNV) is analytic at ¢,(z).
#3096 1: (U NV) — ¢3(U N V) is analytic at ¢(z).

Hence ¢30 ¢! = (430 ¢~1) o (g o ¢7!) is analytic at ¢,(z) as desired.

2. Deflnition of analytic manifolds

Let X be a topological space.

An analytic manifold structure on X is an equivalence class of compatible
atlases on X.

An alternate definition may be given as follows. Say that an atlas A on X
is full if whenever c is a chart on X such that ¢ is compatible with all charts
¢’ € A then c € A. Then it is clear that each equivalence class of atlases on X
contains exactly one full atlas. We may therefore define:

An analytic manifold structure on X is the choice of a full atlas on X.

Henceforth, in this chapter, X will denote a topological space with a fixed
analytic manifold structure. A(X) will denote its full atlas. A chart c on X
will mean a chart belonging to A(X).

If X is an analytic manifold, and z € X, dim; X is defined as the dimen-
sion of any chart ¢ on X such that z € O(c); it is called the dimension of X
at z. The function z — dim, X is locally constant on X; if it is constant, and
equal to n, one says that X is everywhere of dimension n.

It is customary to introduce special terminology in the cases which are of
greatest interest:

When k = R, we say that X is a “real analytic” manifold.

When k = C, we say that X is a “complex analytic” manifold.

When k = Q,, p prime in Z, we say that X is a “p-adic analytic” manifold.

3. Topological properties of manifolds

Let z€ k™, n € Z and n > 0, and let r € R, r > 0. Then the ball, B(r)(z),
of radius r about z is the polydisk P(s)(z) where s = (r,...,r).

Let B be a subset of X. Then B is said to be a ball if there is a chart
¢ = (U, ¢,n) such that B C U and 4B is a ball in k*. Then:

1) Every point z € X has a neighborhood B which is a ball. In particular,
X is locally a complete metric space (hence a Baire space).

2) Suppose k locally compact. Then a ball in X is compact. In particular,
if X is Hausdorff, then X is locally compact.

3) Suppose X is regular and k is ultrametric. Then each £ € X has a basis
of neighborhoods which are both open and closed.

The only property which is perhaps not immediately obvious is 3. To prove
3, let B be a ball containing = and let ¢ = (U, ¢,n) be a chart such that B c U
and ¢B is a ball in k. Now ¢B is open in k" so that B is open in X. Hence,
since X is regular, there is a neighborhood V of z such that V C Band V is
closed in X. Then the inverse image under ¢ of balls in ¢V containing ¢z is
a fundamental system of neighborhoods of z which are both open and closed.
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Remark. In Appendix 1 to this chapter, an example due to George Bergman
is given in which the conclusion of 3 fails when X is only Hausdorff.

4. Elementary examples of manifolds

1) X = discrete space (n = 0).

2) X =V, where V is a finite dimensional vector space over k, dimy V = n.
Let A be the collection of charts ¢ = (V,¢,n) on V where ¢ : V — k" is a
linear isomorphism. Then the charts in A are compatible so that A is an atlas.
We give V the manifold structure determined by A.

3) Let X be a manifold and let U be open in X. Let A = A(X). Define:

Au={c€A:0(c)cU}.

Then Ay defines a full atlas on U. The space U together with this atlas is
called an open submanifold of X.
4) Let X be a topological space and let X = | );¢; Ui. Suppose:
a. Each U; is open in X.
b. On each U;, there is given a structure of analytic manifold.
c. For each i and j, the manifold structures on U; N U; induced by the
manifold structures on U; and U; agree.
Then, on X there is a unique manifold structure such that its restriction to
each U; is the given one.
5) The line with a “point doubled”. Let k£ = R. Then we define a manifold
X by identifying two copies of R at all points except 0. We shall interpret this
space as a quotient space.
First consider the plane, R?, as being fibred by lines. Then the quotient
space obtained by collapsing the fibres is R. '
Now suppose we remove the origin from R? and collapse the connected
components of the fibres. Then we get precisely the line with 0 “doubled”.
Note that the manifold in this example is not Hausdorff.

5. Morphisms

Let X and Y be two analytic manifolds. A function f : X — Y is said to be
an analytic function or morphism if:

1. f is continuous.

2. f is “locally given by analytic functions”, that is, there exists atlases A
of X and B of Y such that if c = (U, ¢,m) € A and d = (V,9,n) € B, then,

setting W = U N f~1V, the composite
ow v Ly 2tyy

is analytic.
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Remarks. 1) We describe condition 2 by saying that f is “locally given by
analytic functions” since, in coordinates, composites of the form ¥ o f 0 ¢~
may be written as n-tuples of analytic functions of m variables.

2) Condition 2 is independent of the choice of atlases A and B, as is seen
by an argument similar to the one showing that compatibility of atlases is an
equivalence relation.

The following formal properties of morphisms are easily verified:

1) The composition of morphisms is a morphism.

2) The identity map on a manifold is a morphism.

3) Suppose f: X - Y and g : Y — X are maps such that go f = 1x and
fog=1y. Then f is an isomorphism if and only if f and g are morphisms.

Let us quote without proof a much deeper statement:

Theorem. Assume k is algebraically closed of characteristic zero, and let
f:X =Y be a morphism of analytic manifolds. If f is an homeomorphism,
then f is an analytic ssomorphism.

Remark. The conclusion of the theorem is false for k = R, as the example
f:R — R given by f(z) = 23 shows.

6. Products and sums

1) Products
Let {X;}ier be a finite collection of manifolds and let A; be an atlas for
Xi, for each ¢ € I. Suppose c; € A;, for each ¢ € I, ¢; = (Ui, ¢i,n;). Define

Tlorci by:
I]ei= (HU-',Hd’.-,Zn;) :

i€l i€l el i€l
Set:
x=[[xi, A={[Jei:cca,ier}.
iel i€l
Then X is a topological space and A is an atlas on X. The space X together
with the manifold structure determined by A is called the product of {X;};er-
The usual universal property for products, namely, for all manifolds Y,

Mor(¥, [T %:) = [T Mox(v, X,)
i€l i€l
is easily verified.
2) Sums or disjoint unions.
Let {X;}ier be an arbitrary family of manifolds. Let ;¢ X or [];¢; X

denote the disjoint union of the topological spaces X;. Then, by Example 4
of 3.4, there is an unique manifold structure on X = }°..; X; compatible
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with the manifold structure on each X; and we furnish X with this manifold
structure. X is then called the sum or disjoint union of {X;}ies. The usual
property for sums, namely, for all manifolds Y,

Mor(]] xi, Y) = [] Mor(X:, Y)
i€l i€l
is easily verified.
In Appendix 2 to this chapter, the structure of compact manifolds defined

over locally compact, ultrametric fields k is described in detail using the notion
of disjoint union of manifolds.

7. Germs of analytic functions

Let £ € X and let F, be the set of pairs (U, ¢) where U is an open neighbor-
hood of z and ¢ is an analytic function on U. The set F'; is called the set of
local functions at z. We introduce an equivalence relation on F'; as follows:

We say that two elements (U, ¢) and (V,¢) of F. are equivalent if there
is an open neighborhood W of z such that W C UNV and ¢|w = ¥|w. The
set of equivalence classes of F, is denoted H, and is called either the set of
germs of analytic functions at x or the local ring at z.

We define addition and multiplication in H, as follows. Let f and g be
germs of functions at z. Choose (U,¢) € f and (V,¥) € g. Let W =UNV.
Then f + g is defined to be the class of (W, flw + glw) while f - g is defined
to be the class of (W, (flw)-(9)w)). It is easily seen that these definitions are
independent of the choices made.

There is a canonical map k — F,. which sends a € k to (X,ca) where
Ca is the constant function a on X. This map induces a canonical inclusion
1: k — H, which makes H, a k-algebra.

There is also a canonical map F; — k which sends (U, ¢) € F, to ¢(z).
This map induces a canonical homomorphism 6 : H, — k of H; onto k. For
f € H,, welet f(z) denote 8(f) and we call f(z) the value of f at z. The
kernel m; of 8 is a maximal ideal.

Since 8 0 1 = Idg, there is a canonical decomposition H; = i(k) ® m,. We
shall identify k with (k) and suppress the mention of 1.

We shall now show that H, is a local ring by means of the following
stronger statement:

Lemma. Let (U, ¢,n) be a chart at z. Then ¢ induces, via composition of
functions, an isomorphism ¢ : Hy — H, such that ¢(mg) = m,. Here Hy is
the ring of germs of functions at 0 in k™ and my is its mazimal tdeal. Ho is
isomorphic to the local ring of convergent power series in n variables.

Proof. All statements are clear except perhaps the statement that the ring of
convergent power series in n variables is local. To prove this, we must show
that if f is a convergent power series such that f(0) # 0 then f is invertible.



Chapter III. Analytic Manifolds 81

We may assume that f = 1+ where %(0) = 0. Then, since the map g(z) = %
is analytic near 1, } = g o f is analytic near 0.

Suppose f € H; and f # 0. Then we define ord, f to be the least integer
p such that f ¢ m#+1. The preceding lemma shows that for any chart (U, ¢,n)
ord, f is the least integer u such that ¢(f) has in its power series expansion
a non-vanishing homogeneous term of total degree u.

8. Tangent and cotangent spaces

Let ¢ € X. Define:

T:X = m,/m? = cotangent space of X at z.

T.X = (m;/m?)* = tangent space of X at z.
We give two alternate descriptions of T: X:

1) T. X is canonically isomorphic to the space of derivations v : H. — k.
Let v € T, X. Then v defines a linear form on m, which vanishes on m3.
Extend v to a linear form on H. = k @ m, by setting v =0 on k. Then v is
a derivation on H,. Indeed, v is k-linear. Hence it remains to check that for
f,9 € H.:
v(fg) = (vf)g(z) + f(z)(vg) -

Since both sides of the equation are bilinear, it suffices to check the equation
in three special cases:

1. f,g€k.
2. fekandgemgor fem;and g€ k.
3. f,ge m,.

Cases 1 and 3 follow since both sides of the equation are 0. Case 2 is a conse-
quence of the linearity of v and the fact that v vanishes on k.

Conversely, given a derivation d of H., d vanishes on k and m?. Hence d
comes from a unique linear form in m./m?2, that is, from a unique tangent
vector v. This establishes the desired isomorphism.

2) T, X is canonically isomorphic to the space C, of “tangency classes of
curves at z”.

We first define C, precisely. Let F. be the set of pairs (N,%) where N is
an open neighborhood of 0 in k and ¥ : N — X is such that $(0) = z. We
define an equivalence relation in F' as follows. Let (N, ;) € Fi,, 1 = 1,2.
Choose a chart (U, ¢,n) at z. Then, for i = 1,2, ¢ o 9 is defined in the
neighborhood N; N} (U) of 0. We say that (Ny,1,) is equivalent to (N2, 2)
if D($01)(0) = D(¢o12)(0). We let C denote the set of equivalence classes
of elements of F7.

Notice that the map which sends (N,vy) € F. to D(¢ o 4)(0) induces a
bijection ¢ : C; — L(k,k™) = k™. Hence C, may be given the structure of a
vector space over k.
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It is easily verified that the definition of C, and the definition of the
vector space structure on C, are independent of the choice of (U, ¢,n). In-
deed, suppose (U’,¢’,n) is a second chart at z. Then, for (N,¢) € F.,
D(¢' o ¥)(0) = D(¢' o $~1)(0) o D(¢ o $)(0). It is clear from this formula
that the equivalence defining C, is independent of the choice of the chart.
From this formula, it also follows that ¢' = D(¢' 0 ¢~1)(0) o &, so that the
vector space structure on C; is well defined.

We now define a bilinear pairing C, x T2 X — k by defining first a pairing
F, x F; — k. The latter pairing sends (N,¢) € F, and (V,f) € F: to
D(f o $)(0) € k. This pairing clearly induces a pairing C; x T*X — k,
which is bilinear and establishes C; as the dual of T7 X.

Remarks. (1) Intuitively the pairing w is simply differentiation of a function
in the direction of the tangent to a curve.

(2) The process of defining a linear space structure on C; would fail if we
wished to construct a space of higher derivatives to curves. The reason is that
the higher derivatives of the composite of two functions are not bilinear in the
derivatives of each of the functions.

Ezample. X is a finite dimensional vector space V. Then:

T.V = L(k,V) =V
TV =L(V,k)=V*.

We shall now define the related concepts of differentials of a function and
tangent map to a morphism.

Let f € H.. Then f— f(z) € m.. Theimageof f— f(z) inm,/m2 = T* X
is called the differential of f at = and is denoted by df;. Let v € T; X. Then
v applied to df; is called the derivative of f in the direction v and is denoted
by (v,df;) or v: f;; we may think of df, as a linear form on T, X.

Let f be a function defined in a neighborhood of z. Then f defines an
element of H,; and hence a linear form df, on T: X.

Let Y be a second manifold, let y € Y, and let ¢ : X — Y be a morphism
such that ¢(z) = y. Define T;¢ : T; X — T,Y by the formula:

(T:¢(v), dfy) = (v,d(f 0 §)s) ,

for all v € T; X and all f € H,. Equivalently, we can define T; ¢ by defining
its transpose T; ¢ : T)Y — T3 X. For f € H,, we define T ¢(df,) = d(f 0 4).
The linear map T; ¢ is called the tangent map of ¢.

In the special case when Y = k and ¢ is a function f, then T f = df,.

We conclude this section by examining tangent spaces of products. Let X,
Y, and Z be manifolds and let z € X, y € Y, and z € Z. Then:

T, (X xY)=T.X xT,Y
T: (X xY)=T:X xTY .
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Let ¢ : X x Y — Z be a morphism such that ¢(z,y) = z. Then T; ;¢ defines
T;’f,eﬁ :T:X - T.Z and T,‘f,d) : T,Y — T,Z by the conditions:
Te,yd(v,w) = TX 6(v) + TY ,6(w) .

The maps TX ¢ and TY ¢ are called the partial derivatives of ¢ along X and
Y respectively.

9. Inverse function theorem

Let z € X and let f;, ..., fm be analytic functions on a neighborhood U of z.
Let F(y) = (fi(y),...»fm(v)) for y € U. We say that {fi}1<icm defines a
coordinate system at z if there exists an open neighborhood U’ of z, contained

in U, such that (U’, F|y+,m) is a chart on X.

Theorem 1. The following are equivalent:
1. {f;} defines a coordinate system at z.
2. dfiz form a basis of T3 X.

Theorem 1 is a consequence of the following more general theorem:
Theorem 2. Let X andY be manifolds,z € X endy €Y, andletp: X oY
be a morphism such that ¢(z) = y. Then the following are equivalent:

1. ¢ is a local isomorphism at z.
2. T;¢ is an isomorphism.

2. T} is an isomorphism.

Proof. 1 = 2 and 2 => 2' are obvious.

2 = 1: This is a local question and the result has been proved in the local
case in Chapter 2.

Definition. A morphism ¢ satisfying the equivalent conditions of Theorem 2
at z 1s said to be élale at z. If ¢ is étale at z for all z € X, ¢ is said to be
étale.

10. Immersions, submersions, and subimmersions

Let X and Y be manifolds, r € X and y€ Y,andlet ¢ : X - Y be a
morphism such that ¢(z) = y. Let m = dim; z and n = dim; y.

Definition. Let X and ¥ be manifolds, # € X and § € Y, and let ¢ :
X — Y be a morphism such that ¢(Z) = §. Then (X,Y,z,y,9) looks locally
like (X,Y,%,§,¢) if there exist open neighborhoods U of z, V of y, U of Z,
V of § and isomorphisms g : U — U and h: V — V such that:
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1.¢UCVand ¢U C V.
2. 9(z) =% and h(y) = ¢.

3. The following diagram is commutative:

vtv
ol In

U4 v

Remark. We shall apply this definition mainly when X is a linear space E, Y
is a linear space F, and ¢ is a linear map. In this case, we will take Z = 0 and
7 = 0 without explicit mention.

1) Immersions

Theorem. The following are equivalent:
1. T ¢ is injective.

2. There ezist open neighborhoods U of z, V of y, and W of O (sn k™~ ™)
and an 1somorphism ¢ : V — U x W such that:
a. UCV
b. If 1+ denotes the inclusion U — U x {0} C U x W, then the following
diagrem is commautative:

vv
t\ lll:
UxW

3. (X,Y,z,y,$) looks locally like a linear injection ¢ : E — F where E

and F are m and n dimensional vector spaces respectively.

4. There ezist coordinates {f;} at = and {g;} aty such that f; = gio ¢ for
1<i<mandO0=gjod form+1<j<n.

5. There ezist open neighborhoods U of x end V of y, and a morphism
o0:V = U such that U CV and 00 ¢ =idy.

Proof. The implications2 = 3 => 4 = 5 => 1 are elementary.

We show 1 = 2. Since the question is local, we may assume that the
following conditions are satisfied:

a. Y is an open subset of k™.

b. ¢(z) =0and ImT,¢ = k™ x {0} C k™ x k*~™ = k™,
Let W be {0} x k™™ C k™. Define ¢' : X x W = Y by ¢'(z,w) = ¢(z) + w.

Then by the inverse function theorem, ¢' is a local isomorphism at z. Hence,
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by shrinking X, Y and W, we may assume that ¢’ is an isomorphism. The
inverse ¢ of ¢’ satisfies the conditions of 2.

Definition. A morphism ¢ satisfying the equivalent conditions of the pre-
ceding theorem at z is called an immersion at z. A morphism ¢ which is an
immersion at all z € X is called an immersion.

2) Submersions

Theorem. The following are equivalent:
1. T, ¢ 1s surjective.

2. There ezist open neighborhoods U of z, V of y and W of 0 in k™~ ™)
and an isomorphism ¢ : U = V x W such that

a. U =V.
b. If p denotes the projection V x W — V, then the following diagram is
commutative:
v-tv
vl /»
VxW

3. (X,Y,z,y,8) looks locally like a linear surjection ¢ : E — F where E
and F are m and n dimensional vector spaces respectively.

4. There exist coordinates {fi} at x and {g;} aty such that f; = g;0 ¢ for
1<i<n.

5. There exist open neighborhoods U of x and V of y and & morphism
0:V 5 U such that U CV and poo =idy.

Proof. The proof is similar to the proof of the corresponding theorem on
immersions and is left as an exercise to the reader.

Definition. A morphism ¢ satisfying the equivalent conditions of the pre-
ceding theorem at z is called a submersion at z. A morphism ¢ which is a
submersion at all € X is called a submersion.

3) Remarks. 1. Etale is equivalent to immersion and submersion.

2. The use of the word “immersion” is relatively common (Whitney,
Smale). “Submersion” is a Bourbaki innovation, reproduced in Lang’s book.
Sometimes the phrase “¢ has maximal rank” (meaning T:¢ is injective if
m < n and T. ¢ is surjective if m > n) is used to include both concepts.

3. An embedding is a morphism ¢ such that:
a. ¢ is an immersion.
b. X — ¢(X) is a homeomorphism.
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4) Subimmersions

Definition. ¢ is a subimmersion at z if the following equivalent conditions
are satisfied:

1. ¢ looks locally like a composition X 2+ Z —< ¥ where s is a submer-
sion and t is an immersion.

2. ¢ looks locally like a linear map ¢ : E — F where E and F are vector
spaces of dimension m and n respectively.

A morphism ¢ which is a subimmersion at all z € X is called a subim-
mersion.

Remarks. 1. The set of points z € X where a morphism ¢ : X — Y is an
immersion (resp. a submersion, a subimmersion) is open in X.

2. The composition of two immersions (resp. submersions) is an immersion
(resp. a submersion). The analogous statement for subimmersions is false.

Theorem. Assume chark = 0. Then the following are equivalent:
1. ¢ s a subimmersion at z.

2. rank T+ ¢ is constant for z' € U and U some neighborhood of z.

Proof. 1 = 2: Clear.

2 = 1: Let p = dim; ImT; 4. Then, since the question is local, we may
assume that the following conditions are satisfied:

a. Y =V; xV,is open in kP x k™~P,

b. (z) =0 and Im T, ¢ = kP x {0}.
Let 7 : k? x k"~P — kP be the projection on the first factor. Then 70 ¢ is a
submersion. Hence we may further assume that:

c. X =V, xU; is open in kP x k™~P,

d. ro¢:V) x Uy — V; is the projection on the first factor.
The morphism ¢ then has the following form:

$(z1,22) = (21, ¥(z1,72))

Finally since T;s¢ has locally constant rank we may assume that the rank of
T,/ ¢ is in fact constant on V; x U, (rank = p).

We contend that ¥ must be independent of z; in a neighborhood of zero.
Indeed, Dy¥(z1,72) = O since otherwise ¢ would have rank greater than p at
(z1,2). Our contention is therefore a consequence of the following lemma:

Lemma. Let f : U x V — k be a function such that Dy f is identically 0.
Then, chark = 0 implies that f is locally independent of the V coordinate.

Proof. Write f locally as a power series ) fo(y)z®. Then D2 f = 0 implies
Dy fo = 0 for all a. We must show f, = c, where c, is a constant. We have
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therefore reduced the theorem to the case f = f,. Write f = Ebpy’ . Then
Df = 0 implies B;bg = 0 where = (p1,...,0,) and 1 < i < r. Hence, since
chark = 0, bg = 0 for § # 0. Hence f is constant.

We conclude the proof of the theorem by noting that ¢ may now be written
as Vi xUz — Vi — V) xV; where the first map is pr, and the second is Idy, x.
The first map is a submersion and the second is an immersion.

Corollary 1. Assume chark = 0. The set of points ¢ € X where ¢ is a
subimmersion is dense in X.

Let X' be this set, and put f(z) = rankT;¢. By the previous theorem,
X' is the set of elements of X where f is locally constant. The fact that X' is
dense follows then immediately from the following two properties of f:

a) f takes integral values, and is locally bounded.

b) f is lower semi-continuous.

Corollary 2. Assume chark = 0 and ¢ is injective. The set of points z € X
where ¢ is an immersion is dense in X.

This follows from Cor. 1 and the fact that an injective subimmersion is an
immersion.

11. Construction of manifolds: inverse images

1) A uniqueness principle

Theorem. Let X be a topological space, let A and B be full atlases on X,
and let X4 (resp. Xp) denote the manifold whose underlying space is X that
is determined by A (resp. B). Then the following are equivalent:

1. X4 = Xp, thatis, A= B.
2. For all manifolds Y, Mor(X 4,Y) = Mor(Xp,Y).
3. For all manifolds Y, Mor(Y,X 4) = Mor(Y, X ).

Proof. The theorem is a special case of the theorem which states that an
object which represents a functor is determined up to a unique isomorphism.
Nevertheless, we give the proof in this case.

1 = 2: Trivial.

2 = 1: Setting Y = X4, we see that Idx : Xp — X4 is a morphism.
Similarly, Idx : X4 — Xp is a morphism. A and B are therefore compatible
atlases and hence A = B since A and B are full.

The proof of 1 <=> 3 is equally simple.
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We now state two lemmas which we will use in the application of the
preceding theorem. We let X and Y be manifolds and f : X — Y be a
morphism.

Lemma 1. Suppose f is an immersion. Then:

g € Mor(Z,X) <= a. g is continuous
b. fog € Mor(2,Y)

Lemma 2. Suppose f is a submersion. Then:
1. f is an open map. In particular, f(X) ts open in Y.
2. Suppose that f(X) =Y. Then

g € Mor(Y,Z) <= go f € Mor(X,Z) .

Lemmas 1 and 2 are an immediate consequence of the local description of
immersions and submersions which we have given in II1.10.

2) Inverse image constructions
Let X be a topological space, Y be a manifold, and f : X — Y be a
continuous map. '

Theorem 1. If there ezists a manifold structure on X such that f is an
immersion then this manifold structure is unique.

Proof. By Lemma 1 of n°1, for all Z, Mor(Z, X) is determined by the topolog-
ical structure of X and the manifold structure of Y. Hence, by the Theorem
of n°1, the manifold structure on X is unique.

Let z € X. We say that (X, f) satisfies (Im) at z if the following condition
is satisfied:

(Im): There ezists an open neighborhood U of z in X, a chartc = (V,¢,n)
of Y, and a linear subspace E of k™ such that:

a. f(U)CV and f is a homeomorphism of U onto f(U).

b. ¢(f(U)) = En¢(V).

Theorem 2. The following are equivalent:
1. There ezists a manifold structure on X such that f is an immersion.
2. The pair (X, f) satisfies (Im).

Proof. 1 = 2: Part 3 of the Theorem of II11.10, n° 1.

2 = 1: Choose an open covering {U;};es of X such that, for each i € I,
there exists a chart ¢; = (V;, ¢i,n;) and a linear subspace E; of k™ satisfying:



Chapter III. Analytic Manifolds 89

a. f(U;) CV and f is a homeomorphism of U; onto f(U;).

b. $i(f(Ui)) = Ei N ¢(V3).
Then there exists a manifold structure on U; such that f|y, is an immersion.
Moreover, on U; N Uj, the manifold structures induced from U; and U; agree,
by Theorem 1. Hence, by II1.4, n°.4, there is a manifold structure on X
compatible with the manifold structure on each U;. Clearly, f is an immersion
with respect to this manifold structure.

Suppose that (X, f) satisfies (Im). Then Theorems 1 and 2 together show
that there is a unique manifold structure on X such that f is an immersion.
We call this structure on X the inverse image structure on X relative to f or
simply the induced structure on X. We write X if we wish to make explicit
the dependence of this structure on f.

We now give several applications of the above results.

A) Submanifolds
Suppose X is a subspace of Y (with the induced topology) and let

1: XY

be the inclusion map. If (X,1) satisfies (Im) we say that X is a submanifold
of Y; note that this implies that X is locally closed in Y.

Let £ € X. One says that X is locally a submanifold of Y at z if the
following equivalent conditions are satisfied:

1. (X, 1) satisfies (Im) at z.

2. There is an open neighborhood U of z in Y such that UN X is a
submanifold of U.

3. There exist a coordinate system r;, ..., Z, at z and an integer p < n
such that X is given by ; = --- = z, = 0 in a neighborhood of z.

B) Local homeomorphisms
When f is a local homeomorphism, (X, f) satisfies (Im). In this case, the
morphism f: Xy — Y is étale.

C) Inverse images of points
Let X and Y be manifolds, f : X — Y be a morphism, and b € Y. Set
Xy = f71(b) and let a € X;. We shall study X3 C X in a neighborhood of a.

Theorem. The set X} ts locally a submanifold of X at a if any one of the
following three conditions is satisfied:

1. f is a subimmersion in a neighborhood of a.

2. There ezists a submanifold W of X such that:
1) W C X,.

2) T.W = Ker(T.X =4 13Y).
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3. (Weil) There ezists a manifold Z, a point ¢ € Z, and a morphism
g:2Z — X such that:

1) Forallz€ Z, fog(z)=b.

2) g(c) = a.

3) The sequence T.Z —= Teg T.X TbY is ezact.

Moreover, in each case, To(X)) = Ker(Tu X ELYA T,Y).

Proof. 1. The proof is an immediate consequence of the definition of a subim-
mersion.

2. We shall prove the following stronger statement: There exists an open
neighborhood U of a in X such that UN X = U NW.

The statement is local so we may assume that X is an open ne;ghborhood
of a =0in k™ and that X = W x V. Define F: X -+ W x Y by the formula:
F(w,v) = (w, f(w,v)). Then F is an immersion at 0 so by shrinking X we
may also assume F injective. Then X, C F~Y (W x {§}) =W x {0} = W.

3. We shall prove the following stronger statement: There exist open neigh-
borhoods W of ¢ in Z and U of a in X, a decomposition W = W; x W, and
a morphism ¢ : W; — X such that:

a. ¢ is an isomorphism of W; into a submanifold ¢W; of X.

b. The map ¢ factors as:

wax W, Euw, 2o x .

c. UNX, =g(W).
In particular, this will show that g is a subimmersion at c.

The statement is local so we may assume that Z is an open nexghborhood
of ¢ = 0 in k? and that Z = W, x W3 where T"1(g) is an isomorphism at 0 and
TW2(qg) is zero at 0. Let ¢ = g|w,. Then ¢ is an isomorphism at 0 so we may
assume by shrinking W) that ¢ is an isomorphism of W; onto a submanifold
of X. Then, by 1) and 3), ¢W; satisfies the hypotheses of part 2. Hence there
is an open neighborhood U of a in X such that U N X, = U N ¢(W,).

There is an open neighborhood W of 0 in W; x W; such that g(W) C
UnN X;. Then, g : W — ¢W,; and this map is a submersion at 0. Hence by
shrinking W and W;, we may find a product decomposition W = W; x W,
such that conditions a) and b) are both satisfied. Finally we can shrink U so
that c) is also true. q.e.d.

D) Transversal submanifolds
Let X be a manifold, Y; and Y3 be submanifolds of X, and z € Y1 NY;.

Theorem. The following are equivalent:

1. T X =T:Y1 +I;Y>.
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2. There is a chart c = (U, $,n) at z such that:

U=VixVoaxW
dUnN)=Vix{0}xWwW
HUNY2)={0} x Vo x W .

3. There ezists a coordinate system z,, ..., z, at z and integers p,q > 0
with p+ ¢ < n such that:

Y1 is given by z) = -+- = zp, = 0 in a neighborhood of z,
Ya 15 given by zp41 =+ = 2p4q = 0 in a neighborhood of z.

Proof. 2 <= 3 and 2 = 1: Obvious.
1 = 3: Since Y) and Y, are submanifolds of X, we can (after suitably
shrinking X') find submersions

fI:X—)kP~, fz:X—vk'

such that ¥; = f71(0), i = 1,2. Let (z1,...,2,) and (Zp41,.--,Tp+q) be the
components of f; and f;. Assumption 1 implies that the map

(fi,f2): X = kP x k7

is a submersion at z. This means that (z,,...,2,4,) is a part of a coordinate
system (z;,...,2,) at z. Hence 1 = 3.

If Y; and Y; satisfy the equivalent conditions of the preceding theorem at
z, we say that ¥; and Y; are transversal at z.
Corollary. Suppose Y} and Y; are transversal at x. Then:

1. Y1 and Y2 are transversal in a neighborhood of z.

2. Y1 NY; is locally ¢ submantfold of X at z.

3. T.(inY:) = LY NT.Y;.

E) Transversal morphisms
Consider a pair of morphisms f; : Y; = X, i = 1,2. Define

ixxYVe={(y,p)eYr1xYa: filu) = fa(ye) } .
This is called the fibre product of Y; and Y2 over X. Let p; : Y1 xx Yo = ¥;
be the restriction of pr; to Y; xx Y2, and let f = f; o p; = f2 0 pa.
ixx 241,
inl NS LA

h —X
hH
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Let (y1,¥2) € Y1 xx Y2 and let 2 = f(y1,y2). We say that f, and f; are
transversal at y = (y1,y2) f T2 X =Im Ty, fL + Im T}, fo.

Theorem. Suppose fi and f; are transversal at y. Then:
1. fi and f, are transversal at poinis in a neighborhood of y in Y7 xx Yi.
2. Y] xx Y is locally a submanifold of Y1 x Y3 at y.
3. T,(Y1 xx Y2) = T,,,(V1) X1.(x) T3, (Y2).

Sketch of proof. Set Y =Yy xY,and Z =Y; xx Ys. Let §,: Y - Y x X be
(1, fiopr;),i= 1,2, and let § = §;|z. Then deduce the theorem from:

a. 6; and 6; are isomorphisms of ¥ onto submanifolds of ¥ x X.

b. 6:(Y) and 62(Y’) are transversal at §(y).
The details are left to the reader.

Remark. If one of the maps f; is a submersion, then f, and f; are everywhere
transversal.

F) Mized transversality
If, in the situation of E), fi is an inclusion of a submanifold V; into X, we
also say that f, is transversal over Y; at y if f; and f; are transversal at y.

12. Construction of manifolds: quotients

Let X be a manifold and R C X x X be an equivalence relation. Let X/R be
the set of equivalence classes of elements of X under Randlet p: X — X/Rbe
the projection. Give X/R the usual quotient topology, namely, let U C X/R
be open if and only if p~!(U) C X is open.

Theorem 1. If there exists a manifold structure on X/R such that p is a
submersion then this manifold structure is unique.

Proof. By Lemma 2 of III.11, for all Z, Mor(X/R, Z) is determined by the
manifold structure of X. Hence, by the Theorem of III.11 the manifold stryc-
ture on X/R is unique.

When a manifold structure can be defined on X/R such that p is a sub-
mersion, then we give X/R this uniquely determined structure and say that
X/R is a quotient manifold of X, or simply a manifold; the relation R is called
a regular equivalence relation on X.

Theorem 2 (Godement). The following are equivalent:

1. X/R is a manifold, that is, R is regular.

2. 1) R is a submanifold of X x X.
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2) pr; : R — X is a submersion.

Proof. 1 = 2:
REY X

pril e

The set R is equal to X x x;g X. Since p is a submersion, R is a submanifold
of X x X, cf. II1.11, n° 2, E). Moreover, if (z,y) € R and z = p(z) = p(y),
one has:

T.(R) = To(X) 1y 0x/m Ty(X) -

This formula implies that T;(R) — T} (X) is surjective, hence the restriction
of pr, to R is a submersion.

2 = 1: We shall give a sequence of six lemmas which together yield 2 = 1.

Suppose U is a subset of X. Set Ry = RN (U x U). Also, recall that U is
said to be saturated with respect to R if U = p~p(U).

Lemma 1. Assume X = |J;c; U; where, for i € I, U; is an open saturated
subset of X such that U;/Ry; is a manifold. Then X/R is a manifold.

Proof. By hypothesis, for ¢ € I, U; — U;/Ry; is a submersion. Hence, for
i, j € I, the manifold structures induced on (U; N U;)/R;nu;) by Ui/ Ruy;
and U;/Ry; agree (Theorem 1). Hence there is a unique manifold structure on
X/ R compatible with the given structure on U;/Ry,. Finally, p is a submersion
since p|y; is a submersion for all i.

Lemma 2. The map p is open, that is, U open in X = p~1p(U) open in X.

Proof. We have that p~1p(U) = pr,(U x X N R) which is open if U is open
because pr, is a submersion (III.11, Lemma 2).

Lemma 3. Let U be open in X and suppose that p~'p(U) = X and that
U/Ry is a manifold. Then X/R is a manifold.

Proof. The canonical map a : U/Ry — X/R is bijective. Hence, if we show
that 8 = a~!p : X — U/Ry is a submersion, we will obtain by transporting
the structure of U/Ry to X/R that X/R has a manifold structure such that
P is a submersion. Consider the following commutative diagram:

UxXNR
pr N\ Pra
U X
Blv ™\, 7B

U|Ru
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Then (Blv)o(pr,) = Bo(pr,) is a submersion. Hence, since pr, is a submersion,
B is a morphism and in fact a submersion (III.11, Lemma 2).

Combiniﬁ.g Lemmas 1, 2, and 3, we obtain immediately:

Lemma 4. Assume X = |J;c; Ui vhere, fori € I, U; is an open subset of X
such that U;/Ry, is a manifold. Then X/R is a manifold.

The effect of Lemma 4 is to make the construction of a manifold structure
on X/R such that p is a submersion into a local problem. In Lemmas 5 and
6, we show that the local problem is solvable, that is, for 9 € X, there is a
neighborhood U of zg in X such that U/Ry has a manifold structure such
that U — U/Ry is a submersion.

Lemma 5. Let z9 € X. Then there exists an open neighborhood U of zo, a
manifold W of U, and a morphism r : U — W such that if u € U then r(u)
is the unique point of W equivalent to u mod R.

Proof. Let N be the set of tangent vectors £ € T;,(X) such that (£,0) €

Teo,2.( R). Choose a submanifold W’ of X such that zo € W' and K = T, ;W'

is a complementary subspace to N in Ty, X. Then define £ = (W' x X)NR.
We contend that:

1. ¥ is a submanifold of R.
2. pry : X — X is étale at (2o, z0).

The first assertion follows since £ = ~!(W') where ¥ denotes the sub-
mersion pr; : R — X. Note that we have used the results of IIL.11, E) and
applied the hypothesis that pr, is a submersion together with the fact that R
is an equivalence relation which shows that pr, is also a submersion.

Next, Ker(T(pr,)) at (zo,z0) is N N K = 0. Hence T(pr,) is injec-
tive. On the other hand, let € T,,X and choose { € T;, X such that
(€,n) € Tep,eoR. Write £ = & + & where §; € N and {; € K. Then, it
is also true that (£2,79) € Tz, 2, R since N C Ty, -, R. But (£2,7) then belongs
to TeoW' X Tpo X N Ty 2o R = Tiy,z, X and this element also maps onto 7.
Hence T'(pr,) is surjective.

It follows that there exists a pair of open neighborhoods U; and U; of
zo such that pr, : N (Uy x Uy) — U, is an isomorphism. Let f denote the
inverse. Then f must have the form: f(z) = (r(z),z). Notice that Uz C U;
and that if z € U N W' then r(z) = z. The last statement follows from the
fact that (z,z) and (r(z),z) are two points in X' N (U; x U1) with the same
image in U; and hence are equal.

Finally,set U = {z:z € U; and r(z) e U; NW'} and set W =U NW".
We contend that U, W and r are as required in the statement of the lemma.
We must show that: '



Chapter III. Analytic Manifolds 95

1L.r(U)CW.
2. r(z) is the only element of W equivalent to z, for z € U.

To prove 1, we must show that, for z € U, r(z) € U, that is, that r(z) € U,
which is obvious and that r(r(z)) € Up N W’. The last statement follows since
r(r(z)) = r(z) € U N W'. To prove 2, we simply note that there is exactly
one point in RN (W x U) mapping by pr, onto z, namely, (r(z), z).

This completes the proof of the lemma.

Lemma 6. If (U,W,r) satisfy the conditions described in Lemma 5, then
U/Ry is a manifold.

Proof. The morphism r : U — W has a right inverse (the inclusion of W into
U); hence it is a submersion. In the commutative diagram:

U = W
N o
U/Ry

the map a is a bijection. Transporting the manifold structure of W to U/Ry,
we have the lemma. q.e.d.

Remark. If R is regular, X/R is Hausdorff if and only if R is closed in X x X
(this follows from Lemma 2 above).

Exercises

1. Let G be a finite group of automorphisms of a manifold X, and let X€¢
be the set of fixed points of G. Assume the order of G is prime to the
characteristic of k. Show:

a) If z € XC, there is a system of local coordinates at z with respect
to which G acts linearly.

b) X€ is a submanifold of X, and, if z € XG, T,(XG) is equal to
T:(X)C.

2. Assumek is a perfect field of characteristic p # 0. Let X be a manifold over
k. Show that there exists on the topological space X a unique structure
of manifold (denoted by X?) with the following property:

If Y is any manifold, Mor(X?,Y) is equal to the set of morphisms
f:X — Y such that T,(f) = 0 for all z € X.

A map f: X — kis an XP-morphism if and only if its p-th root is an
X-morphism.

Show the existence of X?~" such that (X?™')? = X, and define induc-
tively X? for ¢ = p", with n € Z. Show that Mor(X?,Y?) = Mor(X,Y).
One has X7 = X if and only if ¢ = 1 or X is discrete (i.e., of dimension 0).
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3. Assume k is locally compact ultrametric; let A, be its valuation ring,
m, = 1A, the maximal ideal of A,, k(v) = A,/m,, and ¢ = Card k(v).
Let B = (A,)N be the unit ball of some dimension N, and put B, =
(Av/x™A,)V, so that B =lim B,. Let X be a non-empty submanifold of
B; assume X is everywhere of dimension d. Let X, be the image of X in
B,, and ¢, = Card(X,). Show:

a) There exist ng > 0 and A > 0 such that:

chn=A-q™ for n > ny.

b) Let a € Z/(qg — 1)Z be the invariant of X defined in Appendix 2
(assuming now that d > 1); one has A = a mod (¢ — 1).

4. Let X be a manifold, X; be submanifolds of X, and z € (| X;. Assume
that the T:(X;) are linearly independent in T;(X) (i.e., the sum of the
T.(X;) is a direct sum). Show that there exists a chart ¢ = (U,4,n) on
X, with z € U, such that ¢(U|x;) is the intersection of ¢(U) with a linear
subvariety of k".

5. Let f; (i =1,2): X; — X be transversal morphisms, and let
p.'ZXl XXXQ—)X,'

be the projection morphisms. Show that, if f; is a submersion (resp. an
immersion, a subimmersion), the same is true for p;.

6. Let f: X — Y be a morphism. Assume f is open and the characteristic
of k is zero. Show that the set of points of X where f is a submersion is
dense in X.

Appendix 1. A non-regular Hausdorff manifold

An example of a Hausdorff manifold over an ultrametric field £ which has a
point which does not have a fundamental system of open and closed neigh-
borhoods. The example is due to George Bergman.

Let k be a complete ultrametric field and let A be its valuation ring.
Suppose there exists £ € A such that z # 0 and A/zA is infinite. Then we
contend that A is analytically isomorphic to A — {0}. To show this, we shall
show that A and A — {0} may both be represented as the disjoint union of the
same cardinal number of copies of A. First note that if x is a positive integer
then the cosets of z# A are isomorphic to A. Then note that A is the disjoint
union of the cosets of 4 while A — {0} is the disjoint union of the following
collection of cosets of z# A where u ranges over the positive integers:

1. The cosets of A excepting z A itself.
2. The cosets of 24 in zA excepting z2 A itself.

4. The cosets of z* A in z#~1 A excepting z* A itself.
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Since A/zA is infinite, it is clear that both sets of cosets which we have
described have the same cardinality.

We may view the above construction as smoothly attaching a point P to
the ball A: A C AU {P} ~ A, and P is the point 0 in the latter copy of A.
This attaching process has three important properties:

1. AU {P} is a Hausdorff analytic manifold.
2. P is in the closure of A.
3. P is not in the closure of any coset of the maximal ideal m of A.

This last property is a consequence of the fact that 0 is “far away” from any
of the cosets we have used to describe A — {0} as a disjoint union of copies
of A.

We are now going to do this attaching process a countable number of
times. Attach in the above manner a point Py to A. Since zA &~ A, attach a
point P, in the above manner to xA. Property 3 says that the point P, is “far
away” from P, so that we again have a Hausdorff manifold. Suppose now that
we have attached points Py, ..., P, to A4, ..., z# A. Then attach a point P,4,
to z#+1A. Now pass to the limit. We give the limit the topology such that
each of the subsets X, Py, ..., P, is open and has its own original topology.

Since the points we have attached are “far away” from each other, it is
clear that the manifold X we obtain in the limit is Hausdorff. However the
point 0 € A does not have a fundamental system of neighborhoods which
are open and closed. Indeed the powers {z#A} are a fundamental system of
neighborhoods of 0. If we had a fundamental system of neighborhoods of 0
which was open and closed we could find one such neighborhood U contained
in A. Then find z# A C U. The closure of z* A contains P, ¢ A. Contradiction.

Remeark. The reader should verify that there exists z € A such that z # 0 and
A/zA is infinite if and only if one of the following two conditions is satisfied:

1. The residue field of k is infinite.
2. The valuation of k takes on a non-discrete set of values.

The only ultrametric fields not satisfying one of these conditions are the finite

extensions of the p-adic fields Q, and the fields F((X)) where F is a finite
field.

Appendix 2. Structure of p-adic manifolds

We shall use the notion of disjoint union to study manifolds in the case when
k is locally compact and ultrameiric. We let n € Z, n > 0, and we assume
that X is everywhere of dimension n. We also assume that X is Hausdorff,
and non-empty.

Lemma 1. Letr € R, r > 0, and let z € k™. Then B(r)(z) is compact and
open. Hence every ball in X is compact and open.
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Proof.
1. Compactness:

Since k is locally compact, there is a positive real number € such that any
ball of radius s < er about z in k™ is contained in a compact neighborhood
of z. Since these balls are closed in k", they are compact. Since the absolute
value on k is non-trivial, we may choose a # 0, € k, such that |a| < €. Then
the transformation f(y) = z+a(y—z) is a topological isomorphism of B(r)(z)
onto B(|a|r)(z). Hence B(r)(z) is compact.

2. Openness:

We contend that if y € B(r)(z) then B(r)(y) = B(r)(z) so that B(r)(x)
is a neighborhood of y. Since z € B(r)(y), it suffices by symmetry to show
B(r)(y) C B(r)(z). Let z € B(r)(y). Then: '

|z — 2| < max(|z —yl,ly-z)) <r.

Thus, 2z € B(r)(z) as desired. Note that we have used here the fact that k is
ultrametric.

Remark. An analogous argument shows that, if B; are balls of radius r;,
i+ = 1,2, and r; < rp, then B, is contained in B; or is disjoint from B,.

Lemma 2. Let U be a closed and open set of a ball B in k™. Then there is
a positive radius r smaller than the radius of B such that U is the disjoint
union of a finite number of balls of radius r.

Proof. Let V = B—U. Then {U,V} is an open covering of the compact metric
space B. Hence there is a radius r less than the radius of B such that, for all
z € B, the ball of radius r about z in B is contained in either U or V. By the
preceding remark, we see that a ball of radius r in B is a ball of radius r in
k™. Hence U is the union of balls of radius r in k™. The union is disjoint by
the preceding remark and therefore finite since U is compact.

Remark. From the lemma, we see that if B is a ball in X and U is an open
and closed set in B, then U is the disjoint union of a finite number of balls
in X.

Theorem 1. The following are equivalent:
1. X is paracompact (Bourbaki, T'G. 1. 69).
2. X is the disjoint union of balls.

Proof. 2 = 1: A disjoint union of compact spaces is paracompact.

1 = 2: We shall first show that X has a locally finite covering by balls.
We know that X has a covering {U,}aer by balls. Choose a locally finite
open refinement {V,,}.em of this covering. Then choose a locally finite closed
refinement {W, },en of this covering. Let ¢ : M — Land ¢ : N — M be
such that V,, C Uy,) and W, C Vi,). Let v € N. Then:
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W, CVy) CUspy -

Since W, is closed and Ugy,) is compact, W, is compact. Then, since Vy,)
is open, we may cover W, by a finite number of balls B, ;, i € I,, such that
B.,i C Vg, for all i. Then the covering {By,i}ven,ie1, consists of balls and
is locally finite since any ball B, ; meets at most finitely many V,, and hence
only finitely many B, ;.

We will now simplify notation and let {U;}ier denote the locally finite
covering of X by balls which we have obtained above. Then each U; is open
and compact and meets only finitely many U;. Let F(I) denote the finite
subsets of I. Then, if J € F(I), define:

Us=(U:inx-JUy.

i€J ieJ

The set (X —J;¢; Uj) is open and compact. Indeed, if J = @, this is obvious,
whileifi € J, then this set is the finite intersection of open and compact sets,
namely, (¢ ;(Ui — U;), where the j’s may be restricted to the finite set of
indices for wh;ch U; NU; # 0. It follows that when U; is non-empty then U;
is an open, compact subset of a ball, hence a finite unions of balls. However,
by definition, the Uy, J € F(I) are disjoint. Thus we have the theorem using
the covering {Us} ser(n)-

Theorem 2. Let g be the number of elements of the residue field of k. Suppose
X is compact, non-empty, and everywhere of the same dimensiond > 1. Then:

1. X is the disjoint union of a finite number of balls.

2. The number of balls in a decomposition of X into a disjoint union of a
finite number of balls is well determined mod (g — 1).

(Hence, such an X is determined, up to an isomorphism, by an element
of Z/(¢ —1)Z.)

Sketch of proof. 1. Follows immediately from Theorem 1 and the compactness
of X.

2. We shall state a sequence of reduction steps and then shall prove the
statement that the theorem is finally reduced to. Each of the reduction steps is
based on the fact that one may divide a ball into ¢* balls, where i is a positive
integer, without disturbing congruences mod (g — 1).

Suppose X is given with two decompositions {U;}ies and {V;};es where
I and J are finite and {U;} and {V;} are made up of disjoint balls. Then we
want to show that Card(I) = Card(J) mod (¢ — 1).

Step 1: Reduce to the case when {U;}ies is a refinement of {V;}jey.

Step 2: Reduce to the case when X = V; and J = {j}. Then we have the
following explicit situation:
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a. X is a ball in k".

b. U;isaballin k® fori € I.

c. There exist analytic isomorphisms ¢;, ¢ € I, of U; into X such that X
is the disjoint union of {¢;U;}.

Step 3: Reduce to the case when each ¢; is given by a convergent power series.

Step 4: Reduce to the case ¢; = L; o ¥); where L; is a linear isomorphism and
i is an isomorphism of a ball onto a ball. We can then assume that v; = L;.

Step 5: We contend that it suffices to prove that there are radii r; such that,
for any radii s; < r;, L;U; is the disjoint union of radius s; and such that the
number of such balls is a power of ¢. For, if this is so, we take r = min(r;).
Then X is decomposed in ¢™ balls of radius r while each L;U; is decomposed
into ¢™ balls of radius r. Then:

1=4q" =Zq""’ = Zl mod (¢ —1).
i€l iel
This is precisely what has to be proved in this special case.
We are therefore reduced to showing that if U is a ball and L is a linear
isomorphism then there is a radius r such that:

1.If 0 < s < r, then LU is the disjoint union of balls of radius s.
2. The number of such balls is a power of ¢.

By translation and multiplication by scalars, we may assume U = A4, and
L € M,(A,), where A, is the valuation ring of k. We let m, denote the
maximal ideal of A, and we note that number of cosets of m’, where u is a
positive integer, is equal to the number of elements in A,/m# which is exactly
g*, where ¢ is the number of elements in 4,/m,.

The existence of a radius r satisfying 1 is guaranteed by Lemma 2. We
contend that this radius also satisfies 2. Indeed let 0 < s < r and let h be
the number of balls of radius s in U. Now, AP is the disjoint union of a finite
number A’ of translates of U, so that hh' is the number of balls of radius s in
A7, Let u be the positive integer such that the ideal m# is precisely the ball
of radius s in A,. Then (m#)" is the ball of radius s in A? about 0. Hence
there are (¢g#)" balls of radius s in A7. However, k' is also a power of ¢. This
follows since A’ = Card(A?/U) and since A2/U is a torsion module over 4,
and hence a direct sum of modules of the form A,/m#i each of which has
cardinality equal to a power of ¢. Thus, finally, h is a power of q. q.e.d.

Remark. For a different proof of Theorem 2 (using integration of differential
forms) see “Topology”, vol. 3 (1965), 409-412.
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Appendix 3. The transfinite p-adic line

A propos of Theorem 1, there exist non-paracompact Hausdorff manifolds over
any locally compact ultrametric field k. We give here an example of such a
manifold which is due to George Bergman.

We shall construct a directed system {X,} of spaces indexed by the ele-
ments of the first uncountable ordinal and our example of a non-paracompact
manifold will be given by X = lim X,,.

The manifolds X, will all be taken to be copies of the valuation ring A of
k. We shall define the maps X; — X, for § < ¥ by induction on 7.

1)y=0.
The condition § < v is vacuous in this case.

2) v = 4' + 1, for some ordinal v'.

Let w be a fixed generator of the maximal ideal m of X. Let X, — X,
be multiplication by .

For arbitrary é < v, let X5 — X be the composite X5 — X, — X,,.

3) v is an initial ordinal.

Let Y, = lims<y Xs. Then Y, is the union of the countable family of open,
compact subspaces X5 (§ < v) and is therefore paracompact. By Theorem 1,
it 1s the disjoint union of balls. The number of such balls must be countable in
number since a disjoint union is locally finite and only finitely many elements
of any locally finite covering can meet any given X;. Since A — {0} is also the
union of a countable number of balls, we may choose an analytic isomorphism
¢+ : Yy — A~ {0}. Then, for § < v, the map Xs; — X, is defined to be the

composite: X5 — Y, 2, A—{0} C A = X,,. The inductive definition of the
maps X5 — X, for § < v is now complete.

The space X so constructed has the following two properties:

(1) Any denumerable family (K,) of compact subsets of X is contained
in a compact set.
(2) X is not compact.

Proof of (1). Since K,, = |J(KnNX,), and X, is open, there exists a v, with
K, C X,,; choosing v such that vy, < v for all n, we have K, C X,, and X,
is compact.

Proof of (2). Follows from X, # X for all 7.

We leave to the reader the verification of the fact that a locally compact
space X with properties (1) and (2) is not paracompact.
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We denote by k a field complete with respect to a non-trivial absolute value.

1. Definition of analytic groups

Let G be a topological group and an analytic manifold over k. Then G is said
to be an analytic group or a Lie group over k if the following conditions are
satisfied:

1. The map (z,y) — zy of G x G into G is a morphism.

2. The map z — z~! of G into G is a morphism.

Remarks. 1) Suppose G is an analytic group. Then:
a. G is Hausdorff.

b. G is metrizable.

c. G is complete for the left or right uniform structures.

Indeed, a) follows since a topological group is Hausdorff if and only if the
intersection of the neighborhoods of the identity equals {e}. See Bourbaki,
TG., 1I1.5. The second condition is satisfied in this case since G is locally
isomorphic to an open subset of k" for some integer n.

Statement b) is a consequence of the fact that G is Hausdorff and that e
has a denumerable fundamental system of neighborhoods. See Bourbaki, TG.,
IX.23.

To show statement c), it suffices to consider only the right uniform struc-
ture. Furthermore, it suffices to show that there is a neighborhood V' of e which
is complete in the induced uniform structure. See Bourbaki, TG., I111.22. We
construct such a neighborhood V of e as follows. Let (U, ¢,n) be a chart at e
such that ¢(e) = 0 and let V; be a neighborhood of e such that V; -V} c U.
Then the law of composition on V; is induced via ¢ from an analytic map
F : ¢Vi x ¢Vi — ¢U. For §j € ¢V1, F(34,0) — F(0,0) = § — 0 = §. Then,
since F is analytic, there is a closed neighborhood V of e in V; such that for
(¥,%) € ¢V x ¢V we have

Lig| < |F(5,3) - F(0,7)| < 2l7l .

We shall show that V is complete by showing that the uniform structure on
V agrees with the uniform structure induced via ¢ from the uniform structure
on ¢V given by the additive structure of k™. Now, a fundamental system of
entourages of the uniform structure of V given by sets of the form Viwy C V xV
where:

1. W is a neighborhood of e in V and ¢W is a ball of radius € about 0.
2. Vw = {(w-z,z):a:eV, weW, w-zEV}.

On the other hand, let’' N; = { (§,Z) € ¢V x¢V : |§—Z| < 6 } where § > 0. The
sets Ns form a fundamental system of entourages for the uniform structure
on ¢V induced from the additive structure of k*. Now, with W as above:
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N,/g C (¢ X ¢)Vw C N, .

Hence the two uniform structures on V agree. Since the uniform structure
induced by the additive structure of k" is complete because V is closed, state-
ment c) is proved. '

Notice. We have shown fhat the left or right uniform structures locally agree
with the uniform structures induced by charts.

2) Concerning the axioms of analytic groups:

a. Axiom 1 implies that for fixed z € G the map y — zy is an isomor-
phism (for the manifold structure of G).

b. Axiom 1 implies Axiom 2.

c. Axiom 2 implies that the map z + z~! is an isomorphism.

Indeed, let ¢ : G x G — G denote the map (z,y) — zy, let ¢, : G - G
denote the map defined by ¢.(y) = é(z,y), and let ¥ : G — G denote the
map z — z~1. Let T'¢ and T2¢ be the first and second partial derivatives of
¢ (see Chap. 3, §8).

Then, statement a) is a consequence of the fact that ¢. is the composite
of the morphism y — (z,y) of G into G x G with ¢ which shows that ¢, is a
morphism and the fact that ¢, has an inverse, namely, ¢.-1. Note that Ty ¢, :
T,G — T,,G may be identified with TZ ¢ : T,G — T,G. In particular, T?¢
is an isomorphism.

Statement b) is shown as follows. Consider the morphism

:GxG—-GxG

defined by 8(z,y) = (z,zy) = (z,4(z,y)). Then 6 is bijective and étale at
each point (z,y) of G x G. Indeed, at (z,y), T0 has the form:

' TId 0
T0=(T1f T,¢).

Thus, T is an isomorphism. It follows that 8 is an isomorphism. Let o = 6~1.
Then, for all z € G, o(z,e) = (z,z7!) = (z,9¥z). Hence ¢ is a morphism.

Statement c) is a consequence of the fact that ¢ = 1 which shows that ¢
has an inverse and is therefore an isomorphism.

2. Elementary examples of analytic groups

1) General linear groups

Let R be an associate algebra with unit which is finite dimensional over k.
The general linear group over R is the group G m(R) of invertible elements of R.
We contend that G, (R) is an analytic group which is open as a subset of R. To
show that G (R) is open in R it suffices to show that there is a neighborhood
of 1 contained in G (R). Now, there exists an open neighborhood U of 0 in
R such that for z € U the series }_ z" converges. It follows that
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V={1-2:2€U}CGu(R)

and V is a neighborhood of 1. To show that Gm,m(R) is an analytic group it
remains to show that multiplication is a morphism. This follows since multi-
plication in R is bilinear.

In the special case where R is the endomorphism ring E(V) of a finite
dimensional vector space V over k, we call Gim(R) the general linear group
of V and denote it by GL(V). When V = k™ we write GL(V) = GL(n,k) =
GLn(k). An element a € GL(n, k) may be represented as an n by n invertible
matrix a = (a;;). Hence GL(n, k) is called the general linear group of n by n
matrices over k.

Suppose now that k is ultrametric and that A is the valuation ring of k.
Then, for a = (a;;) € GL(n, k), the following are equivalent:

1. a defines an automorphism of A®.

2. a. The coefficients a;; of a lie in A.
b. The determinant of « is a unit in A.

Let GL(n, A) denote the set of & € GL(n, k) satisfying the above conditions.
Then, by condition 2, GL(n, A) is an open and closed subset of the set of n by
n matrices with coefficients in A. Hence, in particular, GL(n, A4) is open and
closed in E(k™). By condition 1, GL(n, A) is a group. Hence, we have that
GL(n, A) is an analytic group. We call GL(n, A) the general linear group of n
by n matrices over A.

Suppose further that k is locally compact. Then GL(n, A) is a compact
open subgroup of GL(n, k). In Appendix 1, we shall show:

Theorem. GL(n, A) is a mazimal compact subgroup of GL(n, k) and, if G is
a mazimal compact subgroup of GL(n, k), then G is a conjugate of GL(n, A).

2) Induced analytic groups

Let G be an analytic group, H a topological group, and : : H — G
a continuous homomorphism. Suppose that (H,:) satisfies condition (Im) of
Chap. 3, §11. Then H is a manifold with its induced structure. We contend
that H is an analytic group. Indeed, let ¢¢ and ¢y denote the multiplication
maps in G and H respectively. Then the following diagram is commutative:

Hx H 25

o) L

GxG 2 ¢q

Then ¢go(2x2) is a morphism; hence ¢y is a morphism since 1 is an immersion.
Therefore H is an analytic group.

Remarks. 1) To verify that (H,1) satisfies (Im), it suffices to verify that (H,3)
satisfies (Im) at ey. Indeed, suppose that (H,:) satisfies (Im) at ey and that
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he Handg =1(h).Let ¢ : H — H and ¢ : G — G be defined by ¢(z) = h~'=z
and ¢(y) = gy- Then, ¢(k) = ex, Y(eg) = g, and t = po10 ¢. Since ¢ is
an analytic isomorphism and : satisfies (Im) at ex, ¥ o s satisfies (Im) at ex.
Then, since ¢ is a homeomorphism, s satisfies (Im) at h.

2) We know, in particular, that (H,:) satisfies (Im) when 1 is a local
homeomorphism (Chap. 3, §11, n°2, B). If, moreover, 1 is surjectiveand k = R
or C, we say that H is a covering group of G.

3) Group submanifolds

Suppose G is an analytic group and H is a subgroup of G which is at the
same time a submanifold of G. Then H is an analytic group. This is a special
case of 2) since the inclusion 1 : H — G is a continuous homomorphism which
is an immersion. We say in this case that H is a group submanifold of G.

Remark. Suppose that H is a group submanifold of G. Then H is closed in
G. Indeed, this follows from:

1. A submanifold is locally closed in the manifold in which it lies.

2. A locally closed subgroup of a topological group is closed. See Bourbaki,
TG, IIL7.

3. Group chunks

A topological group chunk is a topological space X together with a distin-
guished element e € X, an open neighborhood U of e in X, and a pair of
maps ¢ : U XU — X and ¢ : U — U such that:

1. For some neighborhood V; of e in U, z € V; implies that
2 = §(z,¢) = $(e,)
2. For some neighborhood V; of e in U, £ € V; implies that
e = $(z,97) = d(¥z,7) -

3. For some neighborhood V3 of e in U, ¢(V3 x V3) C U and, for all z, y,
z in Vs, ¢(z,4(y, 2)) = ¢(é(z,y), 2)-

We say that we have a sirict group chunk if the equations in 1, 2, and 3 hold
whenever both sides are defined. We can always obtain a strict group chunk
from a group chunk by shrinking the open neighborhood U.

We shall often write ¢(z,y) = zy and ¥(z) = z~! if no confusion is
possible.

Let X and Y be group chunks. A local homomorphism f: X —— Y is
a continuous map f : U — Y where U is a neighborhood of ex, such that
f(ex) = ey and f(zy) = f(z)f(y) in a neighborhood of ex.
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Two local homomorphisms f, f' : X —— Y are called equivalent if they
agree in some neighborhood of ex.

The group chunks X and Y are said to be equivalent if there exist local
homomorphisms f : X ~— Y and g : Y ——— X such that f o g is equivalent
to Idy and g o f is equivalent to Idx.

We make analogous definitions in the analytic case by requiring all spaces
to be manifolds and all maps to be morphisms.

Ezample. Let G be a topological group and let X be an open neighborhood
of e with the obvious group chunk structure. X is a group chunk which is
equivalent to a topological group.

One may ask whether every group chunk is equivalent to a topological
group. The answer is yes in the following two cases: a) finite dimensional ana-
lytic group chunks, b) metrizable locally compact group chunks (see R. Jacoby,
Annals of Math., 66, 1957). The answer is no for analytic group chunks mod-
elled on Banach spaces (see W.van Est and Th.Korthagen, Proc. Neder.
Akad., 67, 1964).

4. Prolongation of subgroup chunks

Let G be a topological group and let X be a subset of G containing e. Then
X is said to be a subgroup chunk of G if there exists a neighborhood U of e
in X such that z,y € U implies zy € X and z~! € X.

Suppose X is a subgroup chunk of G. Define a subgroup N of G as follows:

N = { g € G : for some open neighborhood U of ein G, UNX =UnNg~'Xg}.

It is clear that N is a subgroup of G and that there is a neighborhood U of e
in X such that U C N. Let : : N — G be the inclusion. We have:

Theorem. Let F = {UNN : U is a neighborhood of e in X }. Then:

1. F satisfies the azioms for a filter base of nesghborhoods of e in N com-
patible with the group structure in N.

2. Suppose N is given the topology defined in F. Then 1 is continuous and
gives an equivalence of the group chunks N and X.

Proof. 1. We verify axioms (GV}'), (GV}}), (GV{};) of Bourbaki, TG., 111.4.
We may suppose that all neighborhoods U of ¢ in X are contained in N
by the remark preceding the theorem. Then what we must show is:

a. Given U € F, thereexists V € Fsuchthat V-V CU.

b. Given U € F, there exists V € F such that V-! c U.

c. Given U € F and g € N, there exists V € F such that V C gUg™".
Now, statement a) and b) are an immediate consequence of the fact that the
maps (z,y) — zy and z — z~! are continuousin G and hence in X. Statement
c) is a consequence of the definition of N.
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2. It is clear from the definition of the topology in N that 1 is a local
homeomorphism of a neighborhood of e in N onto a neighborhood of e in X.
In particular, : is continuous as a map N — G at e, hence, is continuous
everywhere. See Bourbaki, TG., II1.15.

The theorem shows in particular that every subgroup chunk is equivalent
to a topological group.

Remark. In general, 1 is not a homeomorphism of N onto 1+N. Indeed, in the
case X = {e}, N = G with the discrete topology.

Suppose now that G is an analytic group and that X is an analytic sub-
group chunk of G. Then, since N is locally homeomorphic to X at ey and
since X is a submanifold of G, (N,1) satisfies (Im) at en. Hence, (N, 1) satis-
fies (Im) by §2, n°2, Remark 1. We may therefore give N the unique structure
of analytic group such that : is an analytic group homomorphism and an
immersion. In particular, N and X are locally equivalent as analytic group
chunks.

Let us examine in more detail the case where k¥ = R or C. Then N is
locally connected so that the connected component H of ey in N is an open
and closed group submanifold of N. We call H the analytic group generated
by X.

Suppose :( H) is closed in G. Then, we contend that s is a homeomorphism,
so that H is in fact a group submanifold of G. Indeed, 3(H) is closed in G
and is therefore a Baire space. Further, H is locally compact and connected,
therefore, a denumerable union of compact sets. Qur contention is thus a
consequence of:

Lemma 1. Let A and B be topological groups. Suppose:
1. A is locally compact and a denumerable union of compact sets.
2. B is a Baire space.

3. A mapi: A— B is a continuous bijective homomorphism.

Then, 1 is a homeomorphism.
In turn, Lemma 1 is a consequence of:

Lemma 2. Suppose:

1. A 1s locally compact topological group which is a denumerable union of
compact sets.

2. B is a Baire space.
3. $: AxB — B is a conlinuous transitive operation of the group A on B.

Then, for any b € B, ¢ induces a homeomorphism of A/N, onto B where N,
is the stabilizer of b (Ny = {z € A: ¢(z,b) =b}).
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Proof. See Bourbaki, Intégration, Chap. 7, App. L.

5. Homogeneous spaces and orbits

Let G be an analytic group, H a group submanifold of G, and form the
left coset space G/H. Then G/H is the quotient space of G defined by the
equivalence relation R = {(z,y) e GxG:z 'y H }.

Theorem 1. R is a regular equivalence relation so that G/H has a unique
manifold structure making G — G/H a submersion.

Proof. By Chap. 3, §12, we must verify that:
1. R is a submanifold of G x G.
2. pry : R — G is a submersion.

To show 1), first define p: GxG — G by p(z,y) =z~ 'y. Then R=p~ ' H.
Hence, by Chap. 3, §11, n°2, F, it suffices to show that p is everywhere a
submersion. Let (z,y) € G x G. Let ¢ : G — G x G be defined by ¢(z) =
(z,2z2z). Then ¢(z~'y) = (z,y) and p¢ = Idg. Hence p is a submersion at
(z,y) by Chap. 3, §10, n°2.

To show 2), consider the composition G x H *, R 25 G where ¥(z,h) =
(zh,z) for (z,h) € G x H. Then, pr, ¢ is the projection on G which is a
submersion. Since ¥ is surjective, pr, is a submersion.

Remarks. 1) The natural action of G on G/ H is analytic. Indeed, we have the
following commutative diagram:

GxG — G

Idg xrl l’r .

GxG/H — G/H

The vertical maps are surjective submersions and the top map is analytic.
Hence the bottom map is analytic.

2) Suppose H is a normal subgroup of G. Then G/H is an analytic group.
To show this, use a diagram similar to that in 1) to verify that multiplication
is analytic.

Let G be an analytic group, X an analytic manifold, and ¢ : G x X — X
a morphism. We say that G acts on X via ¢ if:

1. Forall z € X, ¢(e,z) = z.

2. Forall z € X and all g,k € G, ¢(g, ¢(h,z)) = ¢(gh, z).

Suppose that G acts on X via ¢. Then, we shall often use the notation
#(9,z) = gz. Let us introduce for convenience the following morphisms:
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1. Forg € G:

Ly : G — G defined by h + gh .
My : X — X defined by z —» gz .

2. Forz € X: ¢, : G — X defined by g — gz.

Note that L, and M, are analytic isomorphisms and that ¢. = Myo¢ 0L -1.
We obtain from this formula for ¢, the following homogeneity principle:

(HP) Let P be a local property. Then ¢. possesses P if and only if ¢, possesses
P at one point of G.

In particular, ¢, is an immersion (submersion, subimmersion) if and only if it
is such at a single point.

We shall fix 2o € X and let H = {he G: hzg =zo} = stabilizer of zq.
Also, we let ¢9 = ¢,,.
Theorem 2. Suppose ¢¢ is a subimmersion. Then:

1. H is a group submanifold of G.

2. The induced map ¢y : G/H — X is an immersion.
Proof. 1. This is a consequence of the definition of a subimmersion: Chap. 3,
§10, n°4.
_ 2. Let g € G. Then KerT,¢o = Ty(gH). Hence Try¢y is injective. Hence
¢o is an immersion.
Corollary. Lety : Gy — G2 be a homomorphism of analytic groups which is
a subimmersion. Let K = Kervy. Then:

1. K is ¢ normal group submanifold of G.

2. The induced analytic group homomorphism ¢ : G/K — G3 is an im-
mersion.

Theorem 3. Suppose chark = 0. Then ¢ s a subimmersion.

Proof. Let gg € G be such that the rank n of T'¢y at g¢ is maximal. Then
the rank of T'¢ equals n in a neighborhood Uy of go. Let P, be the following
property of a point ¢ in G:

(P,) There exists a neighborhood U of g such that rankT¢g = n in U.

Then P, is a local property and P, is true for g = go. By the homogene-
ity principle P, is valid for all ¢ € G. Thus, ¢ has constant rank and is a
subimmersion since char k = 0: Chap. 3, §10, n°4, Th.

Theorem 4. Suppose that G is locally compact and a denumerable union of
compact sets and that ¢(G) = Gz¢ is locally closed in X. Then:
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1. The induced map ¢o : G/H — Gz¢ is a homeomorphism.

2. Suppose ¢o is @ subimmersion. Then Gzo is a submanifold of X and
@0 is an isomorphism of manifolds.

Proof. Apply Lemma 2 of §4.

Corollary. Suppose chark = 0. Then Gz¢ is a submanifold of X if and only
if Gzo is locally closed in X.

We shall now study the case of principal G bundles. We shall assume that:
1. For all z € X, ¢, is an injective immersion.

2. We are given an analytic map ¢ : X — B where B is an analytic mani-
fold such that, for all z € X, Gz = ¥~1¢(z), and such that ¢ is surjective. We
let R={(y,z) € X x X : y = gz for some g € G }. Then R is an equivalence
relation and 1 induces a bijection 4 : X/R — B which is continuous.

In the system (X, ¢, G, v, B), we shall speak of X as the total space, G as
the fibre, and B as the base. Par abus de notation, we shall sometimes write
X for the entire system (X, ¢, G, 4, B).

Theorem 5. The following conditions on (X, ¢,G, v, B) are equivalent:
1. 9 is a submersion.
2. R is a regular equivalence relation and 3 is an analytic isomorphism.

3. For all b € B, there is a neighborhood Uy of b in B and an analytic map
oy : Uy — ¢~ 1Uy such that ¢ o 0y = Idy,.

4. For all b € B, there is a neighborhood Uy of b in B and an analytic
isomorphism 8 : G x Uy — ¢~ 1U, such that:
a. The following diagram is commutative:

G x Uy 2 10,

pr,l ,l,\b

v, 4 v,

b. For g,h € G and a € Uy, Oy(gh,a) = gby(h, a).

Proof. 1 <= 2: This is an immediate consequence of Godement’s Theorem:
Chap. 3, §12.

1 = 3: This is a consequence of the 5th equivalent form of the definition
of a submersion: Chap. 3, §10, n°2.

3 = 4: Define §, : G x Uy — y~1U, by the formula 8y(g,a) = g - oi(a).
Then 6, is a bijective morphism which satisfies 4a) and 4b). To show that 6
is an isomorphism, we must show that 6 is étale at all (g,a) € G x Uj. Let
z = 60y(g,a) = g-os(a) and let 0 = My 00y = g o 0;. Then since Y oo = Idy,,
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¢ is a submersion at z. In addition, T,0 is injective and T X is the direct sum
of Im T, ¢ and Ker T, 4. But, since ¥ ~'a = Gz and since ¢, is an immersion,
Ker T; ¢ = T;(Gz) = Im T, ¢.. Finally, however,

T, a0 = Tod: x Tucr .

Hence 0, is étale at (g, a).
4 = 1: Trivial.

Definition. Suppose the conditions of the preceding theorem are satisfied by
(X, ¢,G,¢,B). Then X is said to be a principal G-bundle over the base B.

Remark. We have been considering G as acting on X on the left. Thus, we
have defined what is known as a left principal bundle. A similar definition is
made when G acts on the right.

Theorem 6. Let G be an analytic group and H be a group submanifold of
G. Let * : G — G/H be the projection of G onto the left coset space of H
and let ¢ : G x H — G be the multiplication map. Then G 1s @ right pnnczpal
H-bundle over the base G/H.

Proof. This is a special case of Theorem 5.

6. Formal groups: definition and elementary examples

Let R be a commutative ring with unit and consider the formal power series
ring R[[X1,...,X4]] = R[[X]] in n variables. Let Y = (13,...,Ys) be a second
set of n variables.

Definition. A formal group law in n variables is an n-tuple F' = (F;) of
formal power series, F; € R[[X,Y]], such that:

1. F(X,0)= X and F(0,Y)=Y

2. FU,F(V,W)) = F(F(U,V),W).

Let us give some examples:
1) Additive group: F;(X,Y) = X; + V..

2) Multiplicative group (n = 1): F(X,Y) = X +Y + XY. Note that we
obtain this group law by translating the ordinary multiplicative group law
from1to0: (1+X)1+Y)=14+X+Y + XY.

3) Special Case of Witt Groups for a prime p and n = 2:
Fl(Xth’Yl,l,?) = Xl +Yl
1
F(X1,X3,71,Y2) = X2+ Y2 + ;(X{’ +YP - (X1 + 1)) .
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We next give some elementary properties of formal groups:
1) Each F; has the form:

F(X,Y)=Xi+Yi+ ) capX°Y?.
fa|>1
18121

This is an immediate consequence of Axiom 1 of a formal group.

2) There exists a unique ¢(X) = (¢1(X), ..., ¢a(X)) with ¢;(X) € R[[X]],
such that ¢(0) = 0 and:

F(X,$(X)) = 0 = F(¢(X), X) .

The existence of a unique ¢(X) such that ¢(0) = 0 and such that the first
equation is satisfies is a consequence of D2F(0) = Idgs. See Bourbaki, A.,
IV.35. The second equation can likewise be solved uniquely by some %(X)
such that ¥(0) = 0. Then

$(X) = F($(X),0) = F(%(X), F(X, §(X))) = F(F($(X), X), $(X))
= F(0,4(X)) = $(X) .

Remark. Let us indicate how formal groups will be of interest to us. There
are two cases of importance:

1. R = k, where k is a complete field.
2. R = A, where A is the valuation ring of a complete ultrametric field.

In case 1, we shall define a natural functor:

Analytic Groups I, Lie Algebras

We shall want to define a functor S in the opposite direction such that oS =
Id. The problem of constructing S is just the problem of constructing an
analytic group having a given Lie algebra. It will be useful to know that, over
a field of characteristic zero, there is an equivalence of categories:

Lie Algebras «—— Formal Groups

The study of case 2 will be a useful tool when we want to study analytic groups
over a complete ultrametric field k. We shall have a commutative diagram of

functors:
Analytic Groups/k — Formal Groups/k

N
Formal Groups/A

What we will have in this case is that every analytic group is locally just a
formal group/A.
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7. Formal groups: formulae

We shall use the notation O(d® > n) to stand for a formal power series whose
homogeneous parts vanish in degree strictly less than n. We will let F(X,Y’)
denote a formal group law over a ring R except as otherwise stated.

1) F(X,Y)=X+Y + B(X,Y) + O(d® > 3), where B is a bilinear form.
This is an immediate consequence of the basis expression for a formal group
law since the coefficients c4,g vanish unless |a| and |8} > 1.

We shall set [X,Y] = B(X,Y) - B(Y, X).

2) Let ¢(X) be the formal inverse corresponding to F. Then:
$(X)=-X+B(X,X)+0(d >3).

Indeed, write ¢(X) = ¢2(X) + - - -, where ¢;(X) is homogeneous of degree :.
Then:
0= F(X,4(X)) = X + $1(X) + O 2 2) .

Hence, ¢1(X) = —X. Using this result, we find:

0=FX,s(XN=X+(-X+¢2(X)+-- )+ B(X,—-X +--)+---
= ¢2(X) — B(X,X) +O(d* > 3) .

Hence, ¢2(X) = B(X, X).

) XYX1=Y +[X,Y]+O(d® > 3).
Indeed:
XYX'=(X+Y+BX,Y)+--)

+(-X+B(X,X)+--")
+BX+Y 4+, =X +--)
+ “ee
=Y +[X,Y]+0O(d® > 3).
In this case, it will later be convenient to have a notation for the higher
order terms. We set:

XYX'=Y +[X,Y]+) dapX°Y?,

where the range of a and f§ in the sum is: |a| > 1, |8] > 1, |a| + |8] > 3.

4) Y 'XY = X +[X,Y] + O(d® > 3).
The proof is similar to that of formula 3.

5) X-Y XY = [X,Y] + O(d° > 3).
Use formula 4 and apply the same technique of proof as in formula 3.

6) Jacobi: [X,[Y, Z]] +[Y,[Z, X]] + {Z,[X, Y]] = 0.
We shall apply the identity of P. Hall (See L.A., Chap. 2, §1):

(XY, (Y, Z2)(Y%,(Z2,X))(2%,(X,Y))=0.
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We contend that:
(XY, (¥,2)) = [X,[Y,Z]] + O(d° 2 9)
(Y%,(2,X)) = [Y,[2,X]| + O(d" 2 4)
(Z2*,(X,Y)) =[2,[X,Y]) + O(d® > 4) .

Indeed, it suffices by symmetry to check the first of the three formulae. To do
that, we note that:

XY =X+0(d>2) (Formula 4)
(Y,2)=1Y,2)+ O(d°* > 3) (Formula 5)
Hence, applying again formula 5, we find:
(XY’(Y’Z)) = [X,[Y,Z]) + O(d® > 4).

Finally, examining the P. Hall identity up to order 3 and using the formulae
we have just obtain, we arrive at the Jacobi identity.

7) The m-th power map:
Define fo(X) = 0 and fm41(X) = F(X, fm(X)). Note that these conditions
determine f,, for both positive and negative m. Equivalently, f_,, = ¢ 0 fin
where m denotes a positive integer. By induction, we find that:

fm(X)=mX +0(d >2).

More generally, we have:

Theorem (Lazard). There ezist unique power series:

¥1(X) = (B(X), ..., 9™ (X))
¥i(X) = B(X),..., $M(X))

such that:
1.y (X)=X.
2. ¥i(X) is of order > i.
3. For allm € Z, fu(X) = T2, (M)%i(X)).
Proof. The uniqueness statement is obvious from property 3 applied to

m = 1,2,.... To prove existence, we reformulate the theorem. Suppose
F(X,Y) is a system of n formal power series such that:

a. F(X,Y)=X+Y +0(d® > 2).
b. F0,Y) =Y.



Chapter IV. Analytic Groups 115
Define fm (for m € Z) by fo = 0 and frn41(X) = F(X, fm(X)). Write
fm(X) =) aa(m)X*®,

where a, is a map of Z into R x - - - X R (n factors). We contend that, for each
a, dq is 8 “binomial polynomial function of degree < |a|”, that is, that there
exist elements af, € R x --- X R such that:

aa(m) = Y ai, (':‘) for all m € Z.

i<jal

Note that the contention proves the theorem since we may take 3; =
Llalpi GaX

We prove the contention by induction on |a].

la] = 0:
We have a, = 0, since the f,’s have zero constant term.

la| = 1:

Assume the result for |8| < |a|. Now, we wish to show that a,(m) is a
binomial polynomial in m of degree at most |a|. It is well known that to do
this it suffices to show that (Aas)(m) = ag(m + 1) — aq(m) is a binomial
polynomial in m of degree at most |a| — 1. Write:

FX,Y)=X+Y +) cuX'Y’.

Then, by the hypotheses on F, the range of v and § in the sum is: |y} > 1 and
[7] + |6] = 2. Now:

fmi1(X) = X + fm(X) + Y cxs X" (fm(X))* .

K |a] = 1, aa{(m + 1) = as(m) and we are done. If |a| > 1, we find, by
comparison, that as(m + 1) = ag(m) + Sa(m), where Sa(m) is the sum of
the coefficients of X® appearing in each of the terms: 16X Y(fm(X))®. Since
|7] > 1, the only terms which contribute to S4(m) are those for which || < |a|.
Look at (fn(X))? for such §. Then the coefficients of X*~7 in that product
has coordinates which are sums of products of the following form: [],, b;, (m),
where b;, (m) is a coordinate of a coefficient in f,, with total degree ¢,. By
induction, b;, is a binomial polynomial of degree < i, . But it is easy to see that
a product of binomial polynomials is again a binomial polynomial (cf. Exer. 2,
for instance); moreover, the inequality 3" i, = |a|—|v| < |a| shows that [], b;,
has degree < |a]. It then follows that S, = Aa, is a binomial polynomial of
degree < |aj; hence a, is a binomial polynomial of degree < |a|. q.e.d.

Corollary. Let p be a prime number. Then f, = p mod p. In particular, f,
has order > p mod p.
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8. Formal groups over a complete valuation ring

Let k be a complete ultrametric field, let A be the valuation ring of k, and let
m be the maximal ideal of A. Let F(X,Y) be a formal group law over A. Let
G = {(21,...,2n) : 7i € m} = Po(1,...,1). We define a multiplication on
G by the formula: zy = F(z,y). We contend that G is an analytic group. We
must verify:

1. Associative law.
2. Existence of unit element: 0 will be the unit.

3. Existence of an inverse: ¢(z) will be ™!, where ¢ is the unique forma.l
power series such that F(X, #(X)) = 0 = F(¢(X), X).

Each of these statement is a consequence of the corresponding rule for the
formal group F as is shown by the following lemma:

Lemma. Suppose f € A[[Xy,...,X}]] and g; € A[[4,...,Y,]], 1 <i < p,
and suppose gi(0) = 0 for alli. Let h = f(g1,...,9p) € A[[N1,...,Y,]]. Then,

Jor z1,...,24 € m, we have

h(z) = f(g91(z),---,95(z)) .

Proof. See Bourbaki, Alg. Comm., Chap. 3, §4 n°5, Cor. of Prop. 6.

Definition. A group G constructed in the above manner will be called stan-
dard.

Theorem. Any analytic group chunk contains an open subgroup which is
standard.

Proof. Let G be an analytic group chunk. By shrinking G and choosing local
coordinates, we may assume that G is an open neighborhood of 0 in k" and
that the multiplication in G is given by a power series F(X,Y) such that F
converges on the ball of radius < €. Write F(X,Y) =X +Y + ¥ ca s X°Y’.
Here, |a| and |f]| are equal to or greater than 1 and the coefficients cq,p
are vectors in k™. We shall change coordinates by multiplication by u € k.
Specifically, if z,y € G are such that z = zy is defined, set ' = uz, y' = py,
and 2’ = pz. Then:

— L Iﬂ
d=aty'+ ) e |a|+|ﬂ| =it

Hence, the group law F), in the new coordinates has coefficients ;E-f—ﬁg-r_—,. By
choosing i so that u| is sufficiently large, we can insure that the coeflicients
of F, lie in A™ and that |u|e > 1 so that F' converges in the ball of radius 1. In
the coordinate system defined by u, the strict unit ball is a standard subgroup
of G.
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Corollary 1. Any analytic group chunk is equivalent to an analytic group.

Corollary 2. Any analytic group chunk has a basis of neighborhoods of e
consisting of open subgroups.

9. Filtrations on standard groups

The notation and assumptions of §8 will be used throughout this section. In
addition, we let w : k = R U {00} be the valuation of k, that is, for some
a€R,0<a<1, wehave,forall z € k:

lz] = a®® .

For z = (z1,...,Za) € k", we let w(z) = infi(w(z;)). For A > 0, we let:
Gr={z€G:w(x)>)}
Gf={zeG:wz)>1}.

More generally, for an ideal a of A, we let:

Go={z€G:zi€afor1<i<n}
Gi={zeG:zica-mfor1<i<n}

Thus,if ax = {z € A : w(z) > /\}., we have Gy = G,, and G} = G} =

a)-m-

Theorem 1. For all ideals a of A, G4 and Gt are normal subgroups of
G. Moreover, if z,y € G, the relation ¢ = ymod G4 is equivalent to
z;=yimoda for1 <i<n.

Proof. Let G(A/a) be the group of systems T = (2,,...,%Z,) where Z; € m/a,
the multiplication being given by the reduction F of Fmod a. If z € G, the
reduction Z of z mod a is defined and ¢ — % is a surjective homomorphism

#a : G = G(A/a). The kernel of ¢4 is Ga; this proves Theorem 1 for G4. The
assertions about G} follow since G} = Gq.in.

(Alternate proof: use formula 1) of §6 and formulae 2), 3) of §7.)
Corollary. The subsets {Gr} define a filtration of G.

Proof. We must verify the axioms of a filtration (cf. L.A., Chap. 2, §2):
1. w(0) = oo.
2. Forall z € G, w(z) > 0.
3. Forall z,y € G, w(zy™!) 2 inf{w(z), w(y)}.
4. For all z,y € G, w((z,y)) 2 w(z) + w(y).



118 Part II - Lie Groups

Axioms 1 and 2 are obvious from the definition of G. Axiom 3 is equivalent
to the assertion that G is a subgroup of G for all A\. Axiom 4 is equivalent to
the assertion that (Gx,G,) C Gatu. In fact, if z € Ga and y € G, we have

1) [z,y] € Grssp-

2) (z,y) = [z,y] (mod G,\-H;)
Now 1) is clear and 2) follows from Theorem 1 and formula 5) of §7.

Theorem 2. Let a and b be ideals of A such that a C b C a®. The reduction
map ¢y : G — G(A/b) induces an isomorphism of the group Go/Gs onto the
additive group (a/b)".

Proof. Formula 1) of §6 shows that, if z,y € G, F(z,y) = z+y mod a?. The
theorem follows from this and from Theorem 1.

Corollary 1. Let A € w(m), A # oo. Then GA/G} is isomorphic to the
additive group (A/m)™.

Proof. Choose a € m such that w(a) = A and let @ = (a). Then, by Theorem 2,
Ga/G? is isomorphic to (a/am)*. However, the map: a + aa defines an
isomorphism of (4/m) onto (a/am) which proves the corollary.

Corollary 2. Suppose that k is locally compact and that p = char(A/m).
Then:

1. For all A € w(m), ) # 00, GA/GT is a commautative finite p-group.

2. For all A € w(m), A # 0o, G»/GY is a p-group.

3. G is a projective limit of p-groups ( “pro p-group”).

Proof. We note that since k is locally compact:
1) A/m is compact and discrete, hence finite.

2) m is compact so that w takes on a minimum value on some element
aewm.

Then m = (a) so that A is a discrete valuation ring.

Statement 1) is then a consequence of Corollary 1 and 1) above. Statement
2) is a consequence of statement 1) and 2) above. Statement 3) is a consequence
of statement 2).

We shall now use the filtration {Ga} of G to study the r-th power maps
fr (cf. §7). We let k = A/m be the residue field of k and let = chark.

Theorem 3. Suppose r is relatively prime to p. Then, for all A € w(m),
A # 00, f, defines an analytic manifold isomorphism of G onto Gi.



Chapter IV. Analytic Groups 119

Proof. The image of r in k is a unit in k so that r is a unit in A. Hence, f,
is an invertible formal power series in [[A]]. Let § = f!. Then 0 is absolutely
convergent on G and f, 08 .= 6o f, = Id by the lemma quoted in §8. Since
fr and @ preserve G, f, is a bijection on G. Finally, the derivative of f, at
each r € G is congruent mod m to r - Id and hence is invertible. Thus, f, is
étale and hence is an analytic isomorphism on G,.

Theorem 4. Suppose chark = 0 and that p # 0. Let y = w(p). Then, for all
A € w(m), ;El- < A < 00, fp i3 an analytic manifold isomorphism of G onto
Gx+p'

Proof. By Lazard’s Theorem, fp(X) = p(X + ¢(X)) + ¢¥(X), where ord ¢ > 2
and ordy > p. Now, for z € G, and for a with |a| > 1, we have that
w(z®) 2 Alaj. In particular:

1) w(é(z)) > A.

w@W(z)ZpA2 A+ (p—-1)A> A+
It follows that f,(G1) C G4, To show that f, is an analytic isomorphism of

G onto G4 ,, we choose a € G such that w(a) = A and consider the function
F: A" — A" defined by F(X) = - fy(az). Then:

FX) = X + =$(aX) + ;15¢(aX) :

Let r € R, 0 < r < 1, be such that |a, EE'I: < r?=1, Then:

1) The coefficients of degree i > 2 in 1¢(aX) have absolute value less than
or equal to |af'~! < ri-l,

2) The coefficients of degree ¢ > p in f;t/)(aX ) have absolute value less

than or equal to |a]'—P L2 ;_l <l

We shall see in Appendix 2 that these conditions imply that F' and its formal
inverse 6 converge absolutely on A™. In particular, we may actually compose
F and 6 on A™. This shows that F is an analytic isomorphism of A™ onto A".
It is then immediate that f, : GA» — G4, is an analytic isomorphism.

Theorem 5. Let G be an analytic group over k. Then there ezists an open

subgroup U which contains no finite subgroup H such that ord H is prime to
chark.

Proof. Since G contains an open subgroup which is standard, the theorem is
reduced to Theorem 3 and 4.

Remark. In particular, when chark = 0, Theorem 5 asserts that G contains
no “small” finite subgroups.
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We shall give some applications of Theorem 5 in Appendix 3.

Exercises

. Let k be locally compact, and let A be a compact analytic group over k.

a) Let G be a finite group of order prime to the characteristic of k.
Assume G acts analytically on A. Define as usual the 1**-cohomology set
HY(G, A) (resp. the higher cohomology groups HY(G, A) if A is abelian).
Prove that H!(G, A) is finite (Hint: use the manifold structure of the
cocycles). Prove analogous results for H4(G, A), ¢ > 1, when A is abelian.

b) Using a), prove that the finite subgroups of A of given order (prime
to char k) are in finite number, up to conjugation.

. Let i, j be two positive integers.

a) Prove a priori that (':') (':), as a function of m, is equal to a linear
combination of binomials (T), with i,j < k <i + 3.
b) Prove the identity:

(,?) ('Jn) - ,.,,5,,25,.“ (k= Di(E —l;'!)!(i +3-k) (T) '

(Hint: compute in two ways the series (1 + X)™(1 + Y)™, where X and
Y are indeterminates.)

. Notations being those of §7, 7) (Lazard’s theorem) consider the case of an

F(X,Y) with property a (F(X,Y) = X + Y mod deg2), but not prop-
erty b (F(0,Y) = Y). Show that it is still possible to write the f,’s in
the form ¥ ()4, but that it is not true in general that ord(s;) > .

. Show that Lemma 2 of §4 remains true if hypothesis (1) is replaced by:

(1') - Ais a complete Hausdorff topological group (for both uniform struc-
tures), and its topology can be defined by a denumerable family of open
sets. (Hint: imitate the proof of Banach’s closed graph theorem.)

. Let k be a locally compact ultrametric field, and let G be a standard

group of dimension n over k. Let dz be a Haar measure on the additive
group k™. Show that the restrictions of dz to G (which is open in k") is a
left and right Haar measure on G. (Hint: use the fact that G = lim G/G),
and that a Haar measure on G is an inverse limit of Haar measures on

the finite groups G/G,).

. a) Let F(X,Y) = X +Y + XY be the “multiplicative” formal group

law in one variable. Show that the ;’s of Lazard’s theorem are just the
monomials X*.

b) Assume moreover that k is ultrametric, of characteristic zero and
residue characteristic p. Show that the following are equivalent:

1) f(X)=0
2) 1 4+ z is a p-th root of unity in k.
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Using the theorem 4 of §9, show that this implies w(z) > z(p)/(p — 1).
Show that it is in fact an equality if z # 0 (i.e., if 1 + z is a primitive p-th
root of unity).

7. Let F and F' be two group laws over a field k of characteristic p and let
z' = ¢(z) be a formal homomorphism of F into F' (i.e., ¢(F(z,y)) =
F'(¢(z), #(y))). Assume the terms of degree one in ¢ are all zero. Show
that ¢ is a power series in zP. (Hint: use the differential equation

¢/(z) - D, F(z,0) = D:F'(¢(=),0) - ¢'(0)

to show that ¢' = 0.) Interpret this result as a factorization of ¢ through
a “Frobenius map” F — F(®), when k is perfect.

Appendix 1. Maximal compact subgroups of GL(n, k)

We prove here the theorem stated in §2, n°l.
Let k be a locally compact ultrametric field, A be the valuation ring of k,
m be the maximal ideal of A, and G = GL(n, A) for somen > 0, n € Z.

Lemma 1. Let L be an A-submodule of k*. Then, the following are equiva-
lent:

1. L is finitely generated over A and L generates k™ over k.

2. L is free of rank n over A.

Proof. 1 = 2: Since A is a principal ideal domain, L is free; rankq L = n,
since L generates a k™ over A.

2 = 1: Trivial:

An A-submodule L of k" satisfying the equivalent conditions of Lemma 1
is called a lattice in k™.

Lemma 2. Let Ly, ..., L, be lattices in k™ and let L be the A-submodule of
k™ generated by Ly, ..., L. Then L is a lattice in k™.

Proof. We verify 1) of Lemma 1. Clearly L generates k™ over k since each
L; does. Since, moreover, each L; is finitely generated over A, the module L
which they generate over A is finitely generated over A.

Lemma 3. Let L be a lattice in k™ and let K be the subgroup of GL(n, k)
which send L onto L. Then, for some a € GL(n,k), K = aGa™!. In partic-
ular, K|, is compact and open.

Proof. By 2) of Lemma 1, we may choose a € GL(n, k) such that a(A™) = L.
Then, by the definition of GL(n,A) = G, K, = a - G - a™!. We have already
noted that G is compact and open; hence, K is compact and open.
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Lemma 4. Let L and L' be two lattices in k™ and suppose K; C K. Then
there exists A € k* such that L' = \-L, and K1 = Ky..

Proof. 1t is clear that K+ does not change when L' is replaced by A\ - L', with
A € k*. We can then suppose that L' C Land L' ¢ m-L. Let V = L/mL and
V' =(L'+ mL)/mL; V' is a non-zero vector subspace of V (over the residue
field A/m). Moreover, since K; C Ky, the lattice L' is invariant by K,
hence its image V' in V is invariant by K, i.e, by GL(V). Since V' # 0, this
implies V' = V, hence L'+ mL = L and, by a standard argument (Nakayama’s
lemma!) L' = L. q.ed.

Theorem 1. Let H be a compact subgroup of GL(n, k). Then:
1. There ezists a lattice M in k™ such that H sends M onto M.
2. There ezists a € GL(n,k) such that H Ca-G-a™?.

Proof. 1. Choose any lattice L in k™, for example, L = A". Then H; = HNK|
is exactly the subgroup of H which sends L onto L. Since K is open in
GL(n, k), Hy, is open in H. Hence Hy, has finite index in H since H/H is
compact and discrete, therefore, finite. Therefore, the number of translates
oLof L,o € H, is finite. Let M be the A-submodule generated by {¢L},¢n.
It is clear that H sends M onto M and it follows from Lemma 2 that M is a
lattice.

2. This statement follows immediately from 1) and Lemma 3.

Theorem 2. 1. G is a mazimal compact subgroup of GL(n, k).

2. The mazimal compact subgroups of GL(n, k) are precisely the conjugates

of G.

3. Every compact subgroup of GL(n, k) is contained in a mazimal compact
subgroup of GL(n, k).

Proof. 1. Suppose G is contained in a compact subgroup H of GL(n, k). Theo-
rem 1 shows that there exists a lattice M such that H C K. Hence G C Ky,
and, by Lemma 4, G = K. Hence G is maximal.

Assertions 2 and 3 follow from 1 and Theorem 1.

Appendix 2. Some convergence lemmas

Suppose that F(X) = (F;(X)) is a system of n formal power series in n
variables and suppose that each F;(X) has the form:

F(X)=Xi— ) aiX*=X; - ¢:i(X).
laf22
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We have seen in the proof on the Inverse Function Theorem that the system

F is formally invertible and that we may write the formal inverse system
0(X) = (6i(X)) where each 6;(X) has the form:

0i(X)=Xi+ Y X% =X +¢i(X).
18122
Suppose r € R and 0 < r < 1. Consider the conditions:
(A,) For all a, [ai] < rlel-1,
(By) For all 8, [bh| < rlfl-1,

Lemma 1. (A,) = F converges absolutely on A™.
(Br) = 0 converges absolutely on A™.

Proof. It suffices to remark that:

1
Zrhl:(l-—r)" <00 .

v20

Lemma 2. (4,) < (B,).

Proof. 1t suffices by symmetry to show that (4,) = (B,). We show this by
induction on |8}, that is, we assume the statement true for ', |#'| < |8], and
we prove it for 8. Now:

Xi = Fi(6(X)) = 6:i(X) - ¢:(8(X)) -

Comparing the coefficients of X#, we find that bf, is the sum of the coefficients

of X# in ¢;(6(X)). Since k is ultrametric, it suffices to show that each time
X? occurs in ¢;(8(X)) its coefficient satisfies the estimate desired for bjs- Now:

$i(6(X)) = ) ai(8(X))”
lal22

and
O(X)* = 0,(X)* -+ - 0,(X)= .

A typical monomial term in (X )* has the form:

n o«

H H(bﬁm XY,

i=]1 y=1

We are interested in terms where ) +;; = B. Then, we can estimate the
product of all the coeflicients in that product by:

II rl"‘-j'-l — rlﬂ‘—la' R

'.,J.
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Since |ai| < rl@l-1  we obtain the desired final estimate of rlfl-! for the
coefficients of X7 in ¢;(6(X)).

Corollary. (A,) = F is an analytic isomorphism of A, onto A,.

Proof. By Lemma 2, we have both (A,) and (B, ). Then, from Lemma 1, for
z € A", z = (f 0 8)(z) = f(8(<)) = (0 0 f)(=) = 6(f(x))-

Appendix 3. Applications of §9: “Filtrations on standard groups”

Theorem 1. For each n > 0, n € Z, there ezists N > 0, N € Z, such that
any finite subgroup of GL(n,Q) has order < N.

Proof. 1. We prove first the corresponding statement for the p-adic integers
Z,, for any prime p. By Theorem 5 of §9, there exists an open normal subgroup
U of GL(n,Z,) such that U contains no non-trivial finite subgroups. Then,
if H C GL(n,Z,) is a finite group, H C GL(n,Z,)/U and ord H < N where
N =ordGL(n,Z,)/U.

2. We reduce the theorem to the statement we have proved in 1). We use
two different methods:

Method 1: Let H C GL(n,Q) be finite. Let p be a prime and consider
H C GL(n,Q,). Then, H is compact, so some conjugate of H is contained in
GL(n,Z,) by Theorem 1 of Appendix 1. Hence, ord H < N, where N is the
bound of 1).

Method 2: Note that Lemmas 1 and 2 of Appendix 2 are valid for k = Q and
A = Z. We have, in addition, the following statements:

1. Let L be a lattice in Q,. Then the subgroup of GL(», Q) which sends
L onto L is a conjugate of GL(n,Z).

2. If H is a finite subgroup of GL(n, Q), there exists a lattice M which H
sends onto itself.

We prove statement 1) in exactly the way the corresponding statement in
Lemma 3 of Appendix 1 is proved. To prove statement 2), let L be any lattice
and define M to be the lattice generated by the finite set of lattices: {oL}sen.
Then H sends M onto M as desired.

Combining statements 1) and 2), we see that if H is a finite subgroup of
GL(n,Q), then H has a conjugate in GL(n,Z), hence to prove it suffices to
consider finite subgroups of GL(n, Z). Now, GL(n,Z) C GL(n,Z,) so we may
again reduce the theorem to what we have already shown.

We may obtain explicit estimates for the integer N in Theorem 1 by taking
the ged of the estimates at each prime p. Consider:
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1. p odd:
Then 1 > ;l—-l- 80 we may take

U=Gi={y:y=14z, z=(2i), zi;€Em}.

Then, GL(n,Z,)/U = GL(n,F,;) where F, is the field with p elements. We
can compute the order of GL(n,F,) explicitly: it is simply the number of
distinct sets of ordered bases in F;. This number is:

" -1)@E"-p)--(*-p").

2.p=2:
Then 2 > ’—l-f so we may take U = G3. Then GL(n,Z,)/U = GL(n,Z/4Z).

We have an exact sequence:
0 — (2Z/4Z)"" — GL(n,Z/4Z) — GL(n,2/2Z) — 1.
Hence, the number of elements in GL(n,Z/42) is:
27’ (2n 1) (2n - 2)- .- (28 — 2771,

Let us look more closely at the case n = 2:

1. p odd:

The number computed above becomes: (p? — 1)(p* —p) = (p—1)*p(p+1).
Now, for p odd, we have

a. P —1=0 (mod 8), hence (p> —1)(p> —p) =0 (mod 16).

b. (p-1)p(p+1)=0 (mod 3).
Hence, the number computed above is congruent to 0 mod 48. When p = 3,
we have that (p? — 1)(p? — p) = 48.

2.p=2:

The number is 22°(22 — 1)(22 — 2) = 96.
Hence, by the above method, the best estimate we obtain for the order of
finite subgroups of GL(2,Q) is 48. The situation is in fact somewhat better.

We first note that any finite subgroup of GL(2, Q) is contained in the set of
matrices of determinant +1 = Gy. We have an exact sequence:

1 — SL(2,Q) — Gy — Z/2Z — 0.

Hence to obtain an estimate for the order of the finite subgroups of Gy, we

need only multiply the corresponding estimate for SL(2,Q) by 2. We shall
show that

1. Every finite subgroup of SL(2, Q) is a subgroup of a rotation group on
the plane and is therefore cyclic.

Only cyclic group of order 1, 2, 3, 4, 6 occur in SL(2, Z).
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Proof. 1. Let H C SL(2, Q) be finite and let B be any positive definite bilinear
form on Q2. Let B(z,y) = ¥,y B(oz,0y). Then, B is positive definite and
H leaves B invariant. Since the elements of H have determinant 1, H is a
subset of the rotations of R? with respect to the scalar product B.

2. Let o be an element of finite order in SL(n, Q). We pass to C and put
a in Jordan canonical form:
~(r 1
a=(4 1)

Then , an easy calculation shows that a does not have finite order which is a

contradiction.
_(» O
a= (0 u) )

Let N = ord(a). Then pV = vV = 1. Hence y and v are roots of unity. We
also know that u and v lie in a quadratic extension of Q since they satisfy
the characteristic polynomial of a. In fact if either g or v is not in Q, both of
them are not in Q and they are complex conjugates. Hence, we can have only
the following cases:

a p=v=lorpu=v=-1,

b. p is a primitive N**-root of unity, N > 2, and v = ji. Since the N*b-
cyclotomic field is of degree ¢(IN) over Q (¢ being Euler’s function),
we have ¢(N) = 2, hence N = 3, 4, or 6. This proves the second
statement.

Case 1: a has the form:

Casec 2: o has the form:

Let us give explicitly elements of order 4 and order 6 in SL(2, Z). In each case
we shall find the appropriate matrix by considering a quadratic extension
K = Q(z) of Q and representing multiplication by z using the basis {1,z} of
K over Q.

1. An element of order 4:
Take z to be a primitive 4-th root of unity. Then multiplication by z has
order 4 and is represented by the matrix:

.= 0 -1
={1 o /-
2. An element of order 6:
Take z to be a primitive 6-th root of unity. Then multiplication by z has
order 6 and is represented by the matrix:

=1 1)

* %k ok
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Let k be a locally compact ultrametric field, A be the valuation ring of k,
m be the maximal ideal of A, p = chark, and ¢ = Card(A/m). Let w be the
canonical valuation of k, that is, w : k — Z U {00} with w(k*) = Z. Then the
canonical absolute value on k is defined equivalently as follows:

1. For z € A, ||z|| = Card(A/zA)™.

2. For z € k, ||z|| = ¢~ *(2).
3. Multiplication by z alters the Haar measure on k by |jz||.

Suppose r is relatively prime to p. Consider f, : A* — A*. Let

s = Card(Ker f,) = number of roots of unity in k with exponent dividing r .
Theorem 2. Card(A*/A*") = ||r]|7?-s.

We shall obtain Theorem 2 as a consequence of a more general theorem
on analytic groups over k. So let G be a commutative compact analytic group
over k and define:

h,(G) = Card(Coker f,)/ Card(Ker f,) .

We shall see in Theorem 3 that h.(G) is well defined, that is, that both
numbers on the right hand side are finite, and we shall compute h.(G). We
shall let n = dim; G.

Theorem 3. The number h(G) is well defined and equal to ||r||~".

Proof. We shall prove the following three statements which imply the theorem:

1. The theorem is true of G = H, where H is a standard group and
A>0.

2. The theorem is true if G is a finite group.

3. The theorem is true for G if G contains a normal subgroup manifold H
such that the theorem is true for H and G/H.

We shall prove the statements in reverse order:

3. Consider the commutative diagram with exact rows:

1—H—G—G/H—1

L2 l ¢2l ¢al

1— H—G— G/H—1

where ¢; = f, on H, ¢2 = f, on G, and ¢3 = f, on G/H. Then, there exists
an exact sequence (Bourbaki, Alg. Comm., Chap. 1, §1, n°4):

(*)
1 — Ker ¢; — Ker ¢, — Ker ¢3 LA Coker ¢; — Coker ¢2 — Coker ¢z — 1
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Aside from 4, all the maps are defined in the obvious manner. We define § as
follows: let z" € Ker ¢3 and choose z € G such that z maps to z" mod H;
then, z"” € Ker ¢3 implies z" € H; define §(z") = image of z" in Coker ¢,. It
is left to the reader to verify that § is well defined and that (*) is exact.

Since the theorem is assumed true for H and G/H, we have that Ker ¢,,
Ker ¢3, Coker ¢,, and Coker ¢; are finite. Therefore, Ker ¢ and Coker ¢, are
finite since (*) is exact. Abbreviate Card by c. Then, the exactness of (*)
implies in addition that:

1 = o(Ker ¢, )c(Ker ¢2) ! c(Ker ¢3)c(Coker ¢y )~ ¢(Coker ¢ )c(Coker ¢3)~! .
In other words:
h(G)=h.(H)-h(G/H).

Finally to obtain the explicit formula for h.(G), let m = dimg H. Then, we
have also that: n — m = dim G/H. Then:

= = Nl =

Since by hypothesis h.(H) = ||r|| "™ and h.(G/H) = ||r||~(*~™), we obtain
by comparing the above two formulae that k,(G) = ||r]|~™", as desired.

2. We have an exact sequence:
1— Kerf, — G — G — Cokerf, — 1.

Then, since G is finite, Ker f; and Coker f, are finite, n = 0, and:
a. 1 = ¢(Coker f,)c(G) 1 c(G)c(Ker f,)! = h(G).
b. 1 =|r|—".

This proves 2.

1. We need only prove this part for large A € Z. Hence, by Theorem 3 and
4 of §9, we may assume that A lies in the range such that f, : Gx — Gy w(r)
is an isomorphism. Then:

a. c(Ker f,) = 1.
b. o(Coker f;) = (¢*))" = |Ir|~".

This proves 1 and the theorem as well.

Exercise. Using, for example, Haar measure, one may show that if G 2, G,
where ¢ is an analytic étale group endomorphism of G, then

1. Ker ¢ and Coker ¢ are finite.
2. hy = c(Coker ¢)/c(Ker ¢) = || det T || .
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Unless otherwise specified, k£ will denote a field complete with respect to a
non-trivial absolute value.

1. The Lie algebra of an analytic group chunk

Suppose F(X,Y) is a formal group law over k. Then we have seen that:

1. F(X,Y)=X+Y + B(X,Y)+ O(d° > 3), where B(X,Y) is a bilinear
form on k™ (Chap. 4, §7, n°1).

2. Define [X,Y]r = B(X,Y)— B(Y, X). Then [X,Y]F defines on k™ a Lie
algebra structure (Chap. 4, §7, n°6).

We say that [X,Y]F is the Lie algebra associated to the formal group F.

Now suppose that G is an analytic group chunk over k. Let L(G) = g =
T.G. We define a canonical Lie algebra structure on g as follows. Choose a
chart ¢ = (U, ¢,n) of G at e. Then the group law on G is induced via ¢ from
a formal group law F on k™. Let ¢ : g — k™ be the isomorphism which is
determined by ¢. Then, for z,y € g, define:

$[1vy]c = [$z, Jy]F .

We contend that [z,y]. is in fact independent of the choice of ¢. To show this
we prove the following lemma:

Lemma 1. Let G and G’ be analytic group chunks, ¢ and ¢’ charts at ¢ and
e, aend f : G —— G' a local homomorphism. Then T.f : g — @' is a Lie
algebra homomorphism with respect to the structures [, |c and [, ]o.

Proof. The proof is immediately reduced to:

Lemma 2. Let F(X,Y) and F'(X',Y") be two formal group laws and let f
be a formal homomorphism from F and F'. Let fi be the linear part of f.

Then:
AX), AW = A([X,Y]F) .

Proof. From Chap. 4, §7, n°5, we have:

FX)H)YFXY) = [AX), AX)]F + O(d 2 3)
fIXT'YIXY) = f(X.Y)r) +0O(d23)°

Comparing the terms of degree 2, we obtain the lemma.

Definition. In the above setting, we say that g together with its canonical
Lie algebra structure is the Lie algebra of G.
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Remark. Lemma 1 shows that the construction of the Lie algebra of a group
chunk is functorial.

2. Elementary examples and properties

1) The Lie algebra of a general linear group.

Suppose R is an associative algebra with unit which is finite dimensional
over k. We have seen (Chap. 4, §2, n°1) that G,(R) is an analytic group
which is an open subset of R. Hence TG (R) = R. Multiplication in Gm(R)
has the form:

Q+2)(1+y)=14+z+y+zy.

This law of multiplication corresponds to the formal group law:
F,y)=z+y+zy.
Hence, the Lie algebra structure on Ty G,»(R) = R is given by:

[z,9] =zy—yz .

In particular, we obtain the usual Lie algebra structure when R is the endo-
morphism ring E(V') of a finite dimensional vector space V.

2) The Lie algebra of a product

Suppose G; and G, are analytic groups. Then the linear isomorphism of
T.(Gy x G3) with T, G, x T,,G; is a Lie algebra isomorphism. Indeed, let c;
be a chart at e; on G; and let ¢ = ¢; X ¢ be the product of the charts c;.
Then, the product of the Lie algebras [, ], is [, ]..

3) The Lie algebra of a group submanifold

Suppose G and H are analytic groups and that f : H — G is an analytic
group homomorphism which is an immersion. Then L(f) : L(H) — L(G) is
injective. Hence L(H) is identified with a Lie subalgebra of L(G). In particular,
we may apply this remark when H is a group submanifold of G and f is the
inclusion.

Let us consider in more detail the case where chark = 0.

Theorem. Suppose chark = 0 and let H, and H; be group submanifolds of G.
Then Hy N H; is a group submanifold of G and L(Hy N Hy) = L{H,)N L(H;).

Proof. By Theorem 1 of Chap. 4, §5, G/H, is a manifold. Let z be the coset
H, in G/H,. Then H; acts on G/H; and the stabilizer of x is H; N H2. Since
chark = 0, H, N H; is a group submanifold of G (Chap. 4, §5, Thms. 2 and 3).
Finally, L(H, N H;) may be identified with its image in L(G) which is the
kernel of the map: T.H; — T.G/T . H,, that is, with L{H,) N L(H,).

Corollary 1. Suppose L(Hy;) C L(H;). Then, in & neighborhood of e,
H, C H,.



Chapter V. Lie Theory 131

Proof. Indeed, T.(H, N H;) = L{(H,) N L(H;) = L(H,) = T.(H,), and
H; N H; C Hy. Hence, Hy N H; and H; agree in a neighborhood of ¢, that is,
H, C H; in a neighborhood of e.

Corollary 2. Suppose L(H:) = L(H;). Then, in a neighborhood of e,
H, = H,.

Corollary 3. Let G, and G; be analytic groups and let ¢,% : G; — G2 be
analytic group homomorphisms. Then, ¢ and Y agree in a neighborhood of e,
if and only if L($) = L(v).

Proof. The graphs G4 and Gy, of ¢ and ¢ in G; G3 are group submanifolds.
Now using the identification of n°2, we have:

L(G4) = {(z,¥) € L(G1 x G2) : y = L(¢)(2) }
L(Gy) = {(z.¥) € L(G1 x G1) : y = L(¥)(=) }
Hence, by Corollary 2, the following statements are equivalent:
a. ¢ and ¢ agree in a neighborhood of e;.
b. G4 and Gy agree in a neighborhood of (e;, e2).
c. L(¢) = L(¥).

This proves the corollary.

4) The Lie algebra of a kernel

Suppose G and H are analytic groups and ¢ : G — H is an analytic group
homomorphism which is a subimmersion. Let K = Ker ¢. Then, we have seen,
in Chap. 4, §5, Cor. of Thm. 2, that K is a group submanifold of G. Moreover,
we have:

L(K)=KerT.¢ = {z € L(G) : L(¢)(z) =0} .

3. Linear representations

Let G be an analytic group and V be a vector space. Then, a linear represen-
tation of G in V is an analytic group homomorphism ¢ : G — GL(V). The
group G acts on V via o:

g-v=o0(g)v).
We obtain from o an induced representation of L(G) via the induced homo-
morphism & : L(G) — E(V) of Lie algebras.

1) Basic examples
1. The identity representation: GL(V) — GL(V).

2. Let V* denote the dual of V. Define * : GL(V) — GL(V*) to be the
map u — u~1. Then, * is an analytic group isomorphism. Let 1 = Idy and
1* = Idy.. We have in a neighborhood of 1:
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W(1+2a)=1"+%) " =) (1)) =1"-2+0(d > 2).

u=0

In particular:
L(*)(z) = -% .

3. Let V3, ..., V, be vector spaces and set V =V, @ -+ ® V,,. Define:
0:E(WV) x---x E(V,) = E(V),

by
O(uy,...,un)=u1®@---Quy, .

Then, 8 induces an analytic group homomorphism of [];., GL(V;) to GL(V).
In a neighborhood of 1 in G = [, GL(V;), we have:

n
01+21,...,1+2)=1+) 18- ®2;® - ®1+0(d > 2).
i=1
In particular:

Lﬂ(zl,...,z,,)=Zl®...®zi®...®1_

i=1

4. Let V1, ..., V, and W be vector spaces and set V = L(W4,...,V,; W)
and G = ([]i., GL(V;)) x GL(W). Then, V is canonically isomorphic to
V' ®:--®V:®W. We may therefore apply Examples 2 and 3 to obtain
a map 8 : G — GL(V). This map is given explicitly by:

8(uy,. .., un,w)(v) =wovo(u; ®---u,)"t .
Translating our previous result, we find that:
L8(z1,...,2n,2)(y) =20y — Y yo(1® - @z;® - ®1).
i=1

5. Let G = GL(V') and consider the analytic homomorphism

det: G — Gm(k),

where det denotes the determinant map and we have viewed k* as G, (k). In
a neighborhood of 1 in G, we have:

det(1+z) =1+tr(z) +--- +det(z) = 1 + tr(z) + O(d® > 2) ,
where tr denotes the trace map. In particular:

L(det)(z) = tr(z) .
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2) Kernels of representations

We may apply example 4) of §2 whenever a linear representation is a
subimmersion. In particular, let us apply it to 5 of n°1. The determinant map
is a submersion (if V' # 0) so that the hypothesis is satisfied. We define:

SL(V') = special linear group = Ker(det) .

In particular, combining the calculations of §1, n°4, and n°, 5, above, we
obtain:
LSL(V))={z € E(V):tr(z) =0} .

3) Stabilizer subgroups

Assume chark = 0. Then we have seen that if G acts on X and z € X,
the stabilizer G, = {g € G:g-z = z} of z is a group submanifold of G
(Chap. 4, §5, Thms. 2 and 3). We now apply this to representations.

1. Let 0 : G — GL(V) be a linear representation of an analytic group G
in a vector space V and let v € V. Considering the action of G on V induced
by o, we have that G, is a group submanifold of G and:

L(G,) = {z € L(G) : 5(z)(v) =0} .

Indeed, let ¢ : GL(V) — V be the map u +— u(v). Then T.¢ : E(V) - V
is the map y +— y(v). Since T.G, = Ker(T.(¢0)) = Ker(T.¢ o ), the desired
result is proved.

2. With notation as in 1, let f € V* and consider the stabilizer subgroup
Gy with respect to the representation * oo : G — GL(V*). Then:

Gr={g9€G:foalg)=f}
L(Gs)={z € L(G): fod(z)=0} .

To prove the first statement, it suffices, since Gy is a group, to show that
¢~! € Gy if and only if f 0 o(g) = f. But:

x00(g7')(f) ="o(g7")7I(f) = foa(g) -

The result is then a consequence of the definition of G5. To prove the second
statement, it suffices from I to show that L(x o o)(z)(f) = 0 is equivalent to
foa(z) =0. But, by n°s 1, 2, we have:

L(»00)(z)(f) = —6(z)(f) = —f 0 5(z) -

The desired equivalence is clear.

A particular kind of group which may be obtained in the above manner
is the affine group A(V) of a vector space V. We identify V with the group
of translations on V. Then, A(V) is the semi-direct product of V' and GL(V).
The group law is given by:

(v1,91)(v2,92) = (1 + g1v2,0192) -
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We may identify A(V') with the subgroup G of GL(V x k) of transformations
which leave hyperplanes parallel to V' invariant. We do this using a map
o : A(V) — G which is defined as follows:

o(v,9)(w, ) = (av + gw,a) .

The group G is however just the group GL(V x k); with respect to the linear
form f:V x k — k defined by f(w,a) = a.

3. Let 0 : G — GL(V) be a linear representation of an analytic group G
in a vector space V and let 8 € (V®V)*. Let 8: GL(V)? — GL(V Q@ V) be
the analytic homomorphism defined in n°l1, ¥, when V = V; = V,. Consider
the composite representation 7 = 8 o (¢ x o) of G into GL(V ® V). Then,
applying £, we obtain: ,

Gs={9€G:Bla(g) x a(9)) =B}
L(Gp)={z € L(G): (5(z) ®1+1@5(z)) =0} .
The condition defining L(Gp) is equivalent to:
B(a(z)v,w) + B(v,5(z)w) =0, forallv,we V.

There are two applications of the preceding discussion to the case when
G = GL(V), o is the identity representation, and V = k", which are of
particular interest:

A) Orthogonal Group
Take B to be the bilinear form on k" defined by:

n
B(@1s- s TniY1s - s Yn) = ) Tilhi -

i=1

The group Gp is called the orthogonal group of k™. Let us determine G and
L(Gp) explicitly. First note that for u € E(k"™):

B(uz,y) = Bz, 'uy) , for all z,y € k™.
Thus, we find that for z,y € &™:
a. For g € GL(k"), B(gz,9y) = B(z,y) = B(=z,'99y) = B(z,y)
b. For u € E(k™), B(uz,y) + B(z,uy) =0 <= B(z,('u+u)y) =0.
Since B is non-degenerate, we obtain:
Gp={geGL(k"):Ygg =1}
L(Gp)={u€E()"):u+u=0}.

B) Symplectic Group
Take n = 2m and take S to be the bilinear form defined by:

0o
B(T1,-- 1 T2amiY1s-- 1 Y2m) = D (Ti¥mbi — Tmatili) -

i=1
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The group G is called the symplectic group of k™. Let us determine Gg and
L(Gp) explicitly. We identify E(k™ x k™) and E(k"). Thus, we may write a
linear map u : k™ — k" in the form:

(A B
“*“*\c b/

where A, B,C, D € E(k™). Given a matrix u as above, define u' by:

, tD _lB
= (2, 3.

Then, one checks that for z,y € k™:
Buz,y) = B(z,u'y) .

Using this fact and the fact that 8 is non-degenerate, it then is easy to show

that:
Gp={g€GL(k"):g'g=l}
L(Gg)={u€ E(k"):v' +u=0} ‘

The conditions defining L(Gg) can be shown to be equivalent to the three
conditions ‘A+ D =0; ‘B = B; 'C = C.

4. The method of stabilizer subgroups can be applied whenever one com-
bines several representations using the basic representation of n°1. We leave
the formulation of the general statement to the reader and instead present
one additional example of its use. Let A be a finite dimensional algebra over
kand let 3: A® A — A be the multiplication map. Let G = GL(A). Then,
the following statements are equivalent, for g € A:

a. g € Gg.
b. For all z,y € A: gB8(9~ 2,97 "y) = B(z,y).

c. For all z,y € A: g(zy) = (9z)(g9y).

Indeed, a) and b) are equivalent by definition; the equivalence of b) and c)
follows from replacing z by gz and y by gy in b) to obtain c). Hence, Gy is just
the group of automorphisms of the algebra A. We shall now show that L(Gg)
is the space of derivations of A into A. Indeed, the statement that d € L(Gp)
amounts to:

For all -'L‘,!IGAZ dﬂ(x,y)—ﬂ(dz,y)—ﬂ(z,dy) =0.

The formula in the above condition is simply: d(zy) = (dz)y + z(dy), which
proves the contention.

4) Adjoint representation

Let G be an analytic group and consider, for each ¢ € G, the inner au-
tomorphism ¢, : G — G defined by z — gzg~. Let g = L(G) and let
Ad : G — GL(g) be the map g — T.¢,. Clearly Ad is a group homomorphism



136 Part II - Lie Groups

and we shall see in a moment that Ad is analytic. Hence, we can consider
L(Ad) : g — E(g). We shall show that this map is just the map ad : g — E(g)
which may be defined in general for Lie algebras.

Since Ad is a group homomorphism, we need only check that Ad is ana-
lytic at e to show that Ad is analytic everywhere. We shall compute Ad in a
neighborhood of e in local coordinates. By Chap. 4, §7, n°3, we have:

¢,(.‘L‘) =z+ [9»3] + Zda ﬁg z
where |a| > 1, || 2 1, |a| + || 2 3. Hence, Ad(g) = T.¢, is the map:
z—z+[g,2)+ z dapg®z? .
181=1

This shows that Ad is analytic at e. Moreover, since |8] = 1 in the last sum,
ja} > 2 in the last sum. Hence, T, Ad(y) is the map : z + [y,z]. Thus,
L(Ad)(y) = T. Ad(y) = ad(y), as desired.

4. The convergence of the Campbell-Hausdorff formula

Theorem 1. Let chark = 0 and let g be a finite dimensional Lie algebra over
k. Then g is the Lie algebra of an analytic group chunk.

Proof. Let n = dim g. We shall make use of the Campbell-Hausdorff formula
(L.A., Chap. 4, §§7 and 8) to define a formal group law in n variables satisfying:

1. F is convergent
2. g is isomorphic to the Lie algebra k™ under [, ]r.
We divide the proof into several steps:

1) Let z;, ..., =, be a basis of g. Then, there exists unique “structure
constants” 'y}'j = 'y,-"j(a:l, ...,Zn) such that, for all ¢ and j:

[zi,z;] = Z‘y,-"jz;. .
h=1
Define v = ¥(z1,...,%n) = max|y}}|. We observe how 7,!‘1- and v behave under
the change of basis defined by multiplication by A # 0, € k:
'y,!'j(/\zl, ceyAZg) = )«7,I'j(z1, ceesZn)
v(Azy, ..., Az5) = | A\y(z1,. -, 2Zn) -

2) Let R = k{[X, Y]] = k[[X;,...,Xn, 11,...,Ys]] and let E = R™. Corre-
sponding to the basis z;, ..., z, of g, define a Lie algebra structure on E by

the formula: " n
o = (1D vhfiss) -

i=1 j=1
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In particular, let us consider ad(X) and ad(Y') where X = (X;,...,X,) and
Y =M,...,Y,).

We say that P = (P,,...,P,) € E is a homogeneous polynomial of degree
r if each P; is a homogeneous polynomial of degree r. We let ||P|| be the
maximum of the absolute value of coefficients of the P; in this case.

Lemma 1. Suppose P € E is homogeneous of degree r. Then, if Z = X or
Y, ad(Z)(P) is homogeneous of degree (r + 1) and || ad(Z)(P)|| < n24||P||.

Proof. Consider, for example, Z = X. Let ad(X)}(P) = (Q1,-..,Qn) and let
Pj=Y da ,X°Y? and Qs = } b ;X°YP. Then:
Q= Z‘Y&X-'Pj .
Hence, each @; is homogeneous of degree (r + 1) and in particular:
LYED DI LR
i=1 j=1

Thus: |g} 4| < n29||P|.
Let m denote the maximal ideal of R. Then:
Corollary. Let Z =X orY andletr > 0. Then ad(Z)(m"E) C m"H E.

3) Let S = {z,7} be a set with two elements and consider the free Lie
algebra Ls on S and its completion Lg = 12, L% (L.A., Chap. 4, §§ 3 and
7). Let 8 be the canonical Lie algebra homomorphism from Ls to E such that
Z—»Xandg—Y.

Lemma 2. Forr >0, (L) C m"E.
Proof. This follows immediately from the corollary to Lemma 1 of n°2.

In particular, 8 extends uniquely to a Lie algebra homomorphism of Lg
into E.

Now, let Z € L be the unique element such that e*e¥ = e? (L.A., Chap. 4,
§7, Thm. 7.4). We let F = 6(z). It follows easily from the remarks at the end
of §7 of Chap. 4 of L.A. and from arguments similar to those of Lemma 2 that:

1. F is a formal group law in X and Y.
2. B(X,Y) = }[X,Y].
In particular: [X,Y]Fr = }[X,Y] - L[V, X] = [X,Y].

We now prove:

Theorem 2. F is convergent.
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Proof. We shall need two elementary lemmas:

Lemma 3. The following sum is convergent for t sufficiently small:

Z tZPi+2 %

P1,-+sPm

11-e09@m
pitgi21
m>1

Proof. The above formal sum may be written as:
o0
(X )"
m=1 p+g¢21
For t < 1, the term in parenthesis converges to a where:

_ 1
Ta-T

For t sufficiently small, a < 1. Then, the first sum is just a geometric series
with ratio less than 1, hence it converges.

Lemma 4. There erists a constant a, 0 < a < 1, such thet:

jn!| > a™ and In| > a™ (neZ, n>0).

Proof. We consider three cases:
A) k is archimedian.
Take a = 1.

B) k is ultrametric and the restriction of the absolute value to Q is trivial.
Take a = 1.

C) k is ultrametric and the restriction of the absolute value to Q is some
p-adic absolute value.

First note that the second inequality follows from the first since we have:
|(n = 1Y} <1, for all n > 1. Then take a = |p|!/(P=1). We have:

n
>a" NS —.
n!| 2 a (:kv,(n)_p_l

However:

v = L1+l 4 S D4 G4 =20

We now prove Theorem 2 which will at the same time complete the proof
of Theorem 1.
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We note first that since change of coordinates by multiplication by a non-
zero constant does not effect convergence we may assume that the basis z;,
...y Zn of g has been replaced by a basis Az;, ..., Az, of g so that:

1
M"‘IS;; .

We use the old notation z,, ..., z, for the new basis z,, ..., z,. We then
have from Lemma 1:

Lemma 1'. Suppose P € E is homogeneous of degree r. Then, if Z = X or
Y, ad(Z)(P) is homogeneous of degree (r + 1) and ||ad(Z)(P)|| < ||P]l-

Next, we use Dynkin’s formula (L.A., Chap. 4, §8) to write down explicitly

F = 6(z). We find that F(X,Y) =Y, f,(X,Y) where the homogeneous part
fu of F of degree v may be written as:

LYY =2 S (£ F) + (X, Y)).

 a aald
Here:
' (=1)™*! ad(X)* ad(Y)®: - - - ad(X)P~(Y)
fP" = Z m P !q‘! .o .pm!
Prte+pm=p
Nt gmo1=¢-1
pitgi21
Pm21

. o (=1)™+1 ad(X)Pr ad(Y)?" - - -ad(Y)m-1(X)
P z

prtotpmmp-1 T P! gm-y!
Q1+ gm-1=¢
pitgi21
By Lemma 1', each of the numeratorsin the above expression is a homogeneous
polynomial of degree v whose coeflicients have absolute value equal to or less
than 1. Also, using the expression for [, ] we see by induction that the number
of monomials actually appearing in each numerator is equal to or less than
n?*. Hence, we can majorize each numerator by a real polynom of degree v in
X and Y which is the sum of n?¥ monomials each of which has coefficient 1.

Such a real polynomial is estimated at a radius vector (s,...,s) € R2" by:
nzusu = (n2s)p+q .
On the other hand, by Lemma 3, the integers which appear in the denominator
can be estimated by:
lv| > a* = aP*?
Im| > a™ > aP*?

gyt D!
lep'qu'l qu-|'|} > aZm+2 % = gPte
1:q1° gm—1:
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Hence, setting t = (n2s/a?), we see that the components of the formal group
law F can be majorized by twice the formal sum in Lemma 3. Since that sum
converges for ¢ sufficiently small, F' converges for s sufficiently small as was
to be shown.

Remarks. 1) When g is a nilpotent Lie algebra (L.A., Chap. 5, §2) then F is
a polynomial so that the convergence is trivial.

2) To obtain an estimate for the radius of convergence, one might estimate
the constants in the proof, namely:

1. The constant a in Lemma 4.
2. The radius of convergence of the series in Lemma 3.
In fact, it is easy to see that the series in Lemma 3 converges for:
V2-1
i

Hence, F converges on every polydisk of radius (R,..., R) where R satisfies:

t<

This estimate is not particularly good and no good estimate is known when
k=RorC. : o

Suppose that k is ultrametric and that the restriction of the absolute value
to Q is some p-adic absolute value. Suppose that g is a Lie subalgebra of
L(Gm(R)) where R is a finite dimensional associative algebra with unit over k,
that is, g C R and [z,y] = zy — yz € g for all z,y € g. Assume, for simplicity,
that the multiplication on R satisfies [zy| < |z||y]. We may then define the

exponential series:
2

s 142,32
et = +ﬁ+§+”-

Then the exponential defines an isomorphism of an open additive subgroup
M onto itself where M is defined by:

M={z€R:v(z)<‘—)v(Tp)i-}.

We may define a group law on M by setting G(z,y) equal to the unique
z € M such that: e*e? = e*. It is clear from the construction of the Campbell-
Hausdorff formula (L.A., Chap. 4, §7, Thm. 7,4) that this formula agrees with
the Campbell-Hausdorff formula where the latter converges. Lazard has shown
that the Campbell-Hausdorff formula converges in fact on M. In particular,
by restriction, we obtain convergence of the Campbell-Hausdorff formula on
Mng.

3) Since we have shown in Chap. 4, §8, that, when k is ultrametric, every
analytic group chunk corresponds to an analytic group, we have:



Chapter V. Lie Theory 141

Corollary. Suppose k s ultrametric of characteristic zero. Then g is the Lie
algebra of an anelytic group over k.

5. Point distributions

In this section, we shall introduce “distributions whose support is concentrated
at a single point”. We shall use this concept as a technical tool in the next
section where we prove the equivalence of the category of formal groups with
the category of Lie algebras.

In considering “formal” questions, we shall assume that k& is simply a com-
mutative ring with unit or perhaps a Q-algebra, while in considering “con-
vergence” questions we shall assume as usual that k is a field complete with
respect to a non-trivial absolute value.

1) Let X be a manifold and let P € X. Recall that in Chap. 3, §7, we
defined the local ring H, of X at P and we let mp denote its maximal ideal.
We showed there that if n = dimp X then H p is isomorphic to the ring of
convergent power series in n variables. We shall give H p the topology defined
by letting the powers of mp be a basis of the neighborhoods of 0. Note that
k C H p inherits the discrete topology. We now define a point distribution on

H p to be linear form u : H p — k such that the following equivalent conditions
are satisfied:

1. u vanishes on some power of mp.
2. u is continuous on H p with respect to the discrete topology on k.

By extension, we may also consider u as a linear form on the completnon Hp of
Hp. Note that H p is isomorphic to the formal power series ring in n variables
over k.

2) Now let k be a commutative ring with unit and let H = k[[X),..., X,]]
be the formal power series ring in n variables over k. Let m be the ideal
generated by X, ..., X, and, for any positive integer r, let H, = H/m"!,
Also let U, = H} = L(H,, k). Then, as above, we say that a linear form u on
H is a point distribution if the following equivalent conditions are satisfied:

1. For some integer r, u vanishes on m™!, that is, u factors through the
projection H — H,.

2. u is continuous on H.

Let U C H* be the subspace of point distributions.
Consider the projection H — H,. Dualizing, we obtain an injection
U, — H*. Then U may be identified with the union of the images of {U,}.
Let us consider in more detail the k-module structures of H and U. By
definition, H is the product: [], k- X®. We may define, for each a, an element

A* € U by:

Aa(xﬂ)={(1) z‘;g :
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The elements A® of U are clearly linearly independent over k. Moreover, since
each element u € U vanishes on some power of m, we may write u as a finite
linear combination over k of elements of the form A?®. Therefore:

Lemmal. U=@, k- A°.
Also:
Lemma 2. U*=H.

Proof. Since U C H*, we have a map H — H** — U*®. Under this map, X®
is identified with the linear form on U which is 1 on A* and 0 on A%, § # a.
Then:

Ut =L@k -a% k) =[] L(k- 2% k) =[]k - X" =H.

Remark. The distribution £ = A? is called the Dirac distribution.

Now let us consider the structure which the multiplication map
u:HeH - H
induces on U. In the ring H ® H, consider the ideal
m=m@H+H®m.

We let H® H have the topology defined by the powers of m. It then follows
that p is continuous so that u extends to the completion H & H of H® H.
Let U be the space of point distributions of H ® H or equivalently on H & H.
Then the dual u* : H* — (H ® H)* induces by restriction a diagonal map
6 : U — U. The terminology “diagonal” is justified by:

Lemma 3. 1. The canonical map U @ U — U is an isomorphism.
2. (Leibniz’s formula) §(A°) =3 4, 0 AP @ A

Proof Let X;®1 =Y; and 1® X; = Z; for 1 < i < n. Then the canonical
inclusion: H®H — k[[Y3,...,Yn,Z1,...,24]] = H extends to an isomorphism
of H @ H and H. Under this identification, U has a canonical basis A*#
defined by: ; af=b
afivaghy _ J1 fa=aand =
ATAYZY) = 0 otherwise )

The map U ® U — U identifies the basis element A* ® A? of U ® U with the
basis element A™# of U. This proves statement 1.

To prove statement 2, we consider the operation §(A%) on a typical mono-
mial Y227, Then: §(A°)(Y#2Z7) = A*(u(YPZ7)) = A*(XP+7). We see that
this is 1 if # + v = a and 0 otherwise. This proves Leibniz’s formula.



Chapter V. Lie Theory 143

Finally, since H = k @ m, we may generalize the notion of tangent vector
to the algebraic situation we have been studying. Let us say that u € U is a
tangent vector if the following equivalent conditions are satisfied:

1.u: H — k is a derivation.
2. u vanishes on k and m?.
3. u is a primitive element for §, that is, (u) =u®1+1Q u.

The equivalence of 1 and 2 follows just as in Chap. 3, §8, n°1; the equivalence
of 1 and 3 follows from Leibniz formula.

6. The bialgebra associated to a formal group

We shall motivate the study of the “formal” case by first considering briefly
the “convergent” case.

1) Let G be an analytic group. Let H be the local ring of G' at e, m the
maximal ideal of H, H the completion of H with respect to the topology
defined by m, and U the point distribution on H or H. Then, by the formal
theory of §5, n°2, we have defined a diagonal map 6§ : U —» U ® U. We
shall now define a multiplication 8 : U ® U — U using the group law on G.
Indeed, let ¢ : G x G — G denote the group law. Then, we may define a map
oc:H, - H..by: f— fo¢p. Here H, = H and H. . is the local ring at
(e,e) on G x G. We get from o a map 6 : H — I?,,, = H @ H. Dualizing o,
we obtain the desired map 8 : U @ U — U. We shall see in the “formal”
discussion that U is an associative algebra under § with unit equal to the
Dirac distribution.

2) We use the same notation and assumptions as in §5, n°2. In addition,
we let H = k[[Y1,...,Ys,2,,...,2,]] and we let F € H™ be a formal group
law in n variables over k. Recall that we noted in the proof of Lemma 3 of §5,
n°2, that H=H ® H. Weshalllet m=m ® H+ H @ m.

Since F is without constant term, given f € H, we may form the composite
foF € H (Bourbaki, Alg., Chap. 4, §5, n°5). Let 0 : H — H denote the map:
f + foF. Then, o(m") C m" so that ¢ is continuous with respect to the
topologies defined by m and m. Hence o induces amap 8 : U® U — U by
dualizing.

Lemma 1. § makes U into an associative algebra with unit equal to the Dirac
distribution.

Proof. We shall be concerned with the power series ring H = k[[Y, Z]] and with
the power series ring H = k[[Y, Z, W]] where W = (W},...,W,). We shall
let Ag, A‘;, AJ, denote the elements dual to the monomials Y, Z#, W~
respectively. Then, for example, the product A,",A‘;A;’V is dual to Y*ZPW .

We now prove the associative law for . Let A* ® A? ® A7 be a typical
basis element of U @ U @ U. Let f € H. Then:
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8(A,6(A%, A7) f = AFAZAY(f o F(Y,F(2,W)))
8(8(A, A%), A7) f = A AZAY(f o F(F(Y, 2),W)) .

The associativity of § therefore follows from the associativity of F.
We conclude the lemma by showing that the Dirac distribution ¢ is a unit
for the multiplication in U. Let A* € U and f € H. Then:

(e, A%)f = ey AZ(f o F(Y,2)) = AZ(f 0 F(0,2)) = A%(f(2)) .
This shows that 8(e, A*) = A% Hence, ¢ is a left unit, and it is shown in a
similar way that ¢ is a right unit.

Lemma 2. The diagonal map §: U — U @ U is an algebra homomorphism.

Proof. We must show that the following diagram is commutative:
Uel)eUeU) = (UsU)R(UeU)
s@6] loge . |
veU % v 4L veUu

where a(z QY@ z@t)=z2QzQy®t.
Since all the modules appearing in the diagram are free, it suffices to show
that the dualized diagram is commutative:

(HOH)®(HSH) < (HH)& (H & H)
u@nl Taéw
HH & H & HGH
Since all maps are continuous with respect to the appropriate topologies, it

suffices to check commutativity on elements of H ® H of the form f ® g where
f,g € H. But:

(u(f®9)=6(f-9)=(f-g)oF=(foF)-(90F)
=(u@®p)od(foF®goF)=(p@p)oa’c(c®a)f®9)) -
This proves the lemma.
The space U together with the diagonal map § : U — U ® U and the

multiplication map 8 : U ® U — U is called the bialgebra associated to the
formal group F. We use the notations: 8(u,v) = uxv and [u,v], = usv—v*u.

Lemma 3. For all a and B, A® + AP = (“2#)A*+8 1 E, g, where the error
term Eqo g is a linear combination of AY with 0 < |y| < |a + B|.

Proof. We must show that if |y| > |a+ §| then A%+ A? and (*}F) A°+# agree
on X7 and that E, g vanishes on k. But:
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X710 F(Y,2) = (F(Y,Z)) = (Y + Z)" + O(d > h) ,

Y+z= Y (:\’)Y*z".

Atp=y
Since A% * AB(X7) = AGA(X ™ o F(Y, Z)), one finds:

A% x AB(X7) = {("':ﬁ) ify=a+p
0  otherwise

- ("‘ 1‘ ﬂ) ASHB(XT)

This proves the assertion about the action of A® * AP and (*}#)Actf
in X7 if [y] > |a + B|. We also see that both elements give 1 on X° when
a+ B = 0 and 0 otherwise so that E, g always vanishes on k.

Let g be the Lie algebra associated to the formal group F' (§1). Then, the
vector space underlying g is k. We let D; be the i-th standard basis vector of
k™ and define ¢ : g — U by: ¥(D;) = A%. Then, by definition, 4 is a linear
isomorphism of g onto the set of u € U such that u vanishes on k and m2.

Lemma 4. Let z,y € g and let f € H be a linear function. Then
'/’([zvy])f = f(B(:t,y) - B(yv z)) .

Proof. Since, by definition, (z,y] = B(z,y) — B(y,z), we must prove:
'l’([x’y])f = f([zay]) .

Then, since both sides of this equation are trilinear in z, y, f, it suffices to
consider the case when z = D;, y = Dj, and f = Xj. Then, both sides of the
equation reduce to the structure constant 75(D1, ..., Dy), which proves the
lemma.

Theorem 1. v is a Lie algebra homomorphism: ¢([z,y]) = [¢z, ¥yl..

Proof. We know that ¥([z,y]) vanishes on k and m? and it follows from
Lemma 3 that [1z,1y]. vanishes on k and m?2. Hence, to prove the desired
equality, it suffices to show that ¢([z,y]) and [z, ¥y]. agree on a set of coset
representatives of m/m?, for example, the linear functions. Let f € H be a
linear function. Then:

[¢z,¢y].f = (l[’:t ® ’/’y - Yy ® 'ﬁl’)(f o F(Xv Y))
=Yz @Yy —vy®yYz)(f- X+ f-Y+f - BX,Y)+--)
= (Yz @ Yy — Yy ® ¥z)(f - B(X,Y))
= f(B(z,y) — B(y,z)) -

The desired equality follows now from Lemma 4.
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Henceforth, we assume that k is a Q-algebra. Par abus de notation, we
let ¥ : Ug — U denote the map induced by ¢ : g — U (L.A., Chap. 3, §1,
Def. 1.1).

Theorem 2. ¢ : Ug — U is a bialgebra isomorphism.

We have defined filtrations on Ug (L.A., Chap. 3, §4) and on U (§5, n°2).
We verify immediately that v is compatible with these filtrations and that the
filtration on Ug (resp. U) is separated, exhaustive, and makes Ug (resp. U)
discrete. Hence, by Bourbaki, Alg. Comm., Chap. 3, §2, n°8, Cor. 3 of Thm. 1,
it suffices to show that gr(v) is bijective to prove that 3 is bijective.

We know from the Poincaré-Birkhoff-Witt Theorem (L.A., Chap. 3, §4,
Thm. 4.3) that Ug is a free k-module with basis D* = D" --- D3~. Since k is
an algebra over Q, we know that U is a free k-module with basis D* = 7:—!4".
By Lemma 2, ¥(D*) and D* agree in gr(U). Hence gr(v) is bijective so that
¥ is bijective.

We know that v is an algebra homomorphism so that to show it is a bialge-
bra homomorphism it remains to show that the following diagram commutes:

Ug S UgeUg

v] lvew .

v L veU

We know, by L.A., Chap. 3, §5, Prop. 5.2, by §5, n°2, Lemma 3, and by
Lemma 2 above that:

1. A and § are algebra homomorphisms.

2 ForuegCUg, (vQ¥)A(u)=9vu®1l+1Q Yu = 6o y(u).

Since, g generates the algebra Ug (L.A., Chap. 3, §4, Prop. 4.1), oA = oy
on all of Ug, as desired.

Theorem 3. Let T : (FG) — (LA) be the functor from the category of formal
groups over k to the category of finite dimensional Lie algebras over k defined
in §1. Then, T is an equivalence of categories, that is:

1. For F\,F, € (FG), the map: Hom(F,,F;) — Hom(TF,,TF;) is a
bijection.

2. Given g € (LA), there ezists F € (FG) such that TF is isomorphic to
8. (Recall that k is supposed to be a Q-algebra.)

Proof. 1. For i = 1,2, let F; be the formal group law in n; variables over k,
H; be the formal power series ring: k[[Xi,...,Xn;]], Ui be the bialgebra of
point distribution on H;, g; be the Lie algebra associated to F;, and U; be
the universal algebra of g;; use the notations:

a. pi: H; ® Hi — H;
8, :U;U; - U; multiplications maps
0, :Ui@Ui—U;
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b.d,‘:H.‘—#H;@H.‘
6:Ui-U;0U; diagonal maps
$i:Ui—-UidU:
c. ¥i : U; — U;: the isomorphism of Theorem 2.
Then, given a Lie algebra homomorphism ¢ : g; — g2, we want to show there
exists a unique formal group homomorphism 7 : F; — F3, such that T(7) = ¢.

We will show that the map: Hom(Fy, F;) — Hom(TFy,TF3;) can be de-
composed into a series of maps each of which is a bijection.

0) We begin with a preliminary step. Let:

Homa(Ha, H;) = continuous algebra homomorphisms map-
ping my into m; (such a homomorphism
will be called admissible — it is continuous
for the natural topologies of H, and H; ).

S = space of 7 = (11,...,7a,) € H'* such that 7;(0) = 0 for
all 5.
Let 7 € S. Then, given g € H,, we may form the composite g o7, and the map

ér : Hy — H, defined by ¢ — g7 is an admissible algebra homomorphism
(Bourbaki, Alg., Chap. 4, §5, n°5, Prop. 3).

Lemma 5. The map T +— ¢, is a bijection of S onto Homar(H, Hy).

Proof. This map is injective since ¢,(X;) = 7i. To prove that it is surjective,
let ¢ : H, — H; be an admissible algebra homomorphism and let 7 be defined
by 7; = ¢(X;). Then, since ¢ and ¢, are algebra homomorphisms, ¢ and ¢,
agree on k[X,...,X,,]- Since this subring is dense in H;, ¢ = ¢, on H, by
continuity.

1) Let:
Hompa (H,, H;) = admissible bialgebra homomorphisms .
Lemma 6. Let v € S. Then:
7 € Hompg(F1,F2) < ¢, € Hompa(H2, Hy) .

Proof. The statement that ¢, € Hompga (H2, H;) amounts by Lemma 5 to the
commutativity of the following diagram:

H, 2 HeH
¢l l¢-®,
H 2% b @H,
The diagram commutes if and only if for all g € Hy:
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gotoFi(X,Y)=6,0¢.(9) =(¢r ® ¢r)082(9) =go Fo(7X,7Y).

This equation holds for all g € H; if and only if 7 0 I3(X,Y) = Fy(7X,7Y),
that is, if and only if 7 is a formal group homomorphism.

2) Let:

Hompa (U, Uz) = bialgebra homomorphisms
Hompa (U1,U2) = bialgebra homomorphisms .

Lemma 7. Dualization defined an isomorphism

HOmBA(Hz,Hx) ~ HomBA(Ul,Ug) .

Proof. Given ¢ : H; — H,, ¢ an admissible bialgebra homomorphism, and
u € U;, we obtain u o ¢ € U,. This follows since the U; are the continuous
duals of the H;. Hence we have a map: Homga (H2, H;) — Hompa (U1, U2).

Given ¢ : U; — U, and g € H,, we obtain g o ¥ € H;. This follows from
Lemma 2 of §5, n°2. The fact that ¢ is a bialgebra homomorphism shows
(by duality) that g +— g o is a bialgebra homomorphism. Moreover, since
Y(e1) = €2, g € ma = goyp € my. Hence g — go is admissible, and we have
defined a map: Homga (U1, Uz) — Hompa(H,, Hy).

It is easily checked that the two maps we have defined are inverse to one
another.

3) By Theorem 2:

Lemma 8. The maps y; define an isomorphism:

Homga (Ui, Uz) — Hompa(U,1,U2) -

4) From the definition of the universal algebra and the definition of the
diagonal map for the universal algebra, we have:

Lemma 9. Hompa(U1,U2) = Hompa (g1, 82)-

5) It remains to put the bijections of Lemmas 6, 7, 8, 9 together and to
see that they give the functor T. Let 7 € Homrg(F1, F2) and write:

(X) = 3 t(X),

where t;(X) is homogeneous of degree i. Then T(r) = t;. Let t €
Homp (81, 82) be the element corresponding to 7 under the above bijections.
We must show that t = ¢;.

Let u € g;. To see whether ¢(u) = t;(u), it suffices to test by applying
linear functions ¢ € H; to both sides. We have:
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9(t(w)) = t(u)g = u(4+(9)) = glg o r) = u (I gt:) = ulots) ;

g(ta(u)) = u(gt) .

The first line is simply unwinding the isomorphisms of Lemmas 6, 7, 8, 9,
while the second is the identification we have made of g; with a subset of U;
via 9;. Comparing, we obtain the desired equality.

2. We associate to g € (LA) the Campbell-Hausdorff formal group with g
as Lie algebra. The details of this association were essentially carried out in
the first part of the proof of Theorem 1 of §4. The proof there was entirely
“formal” and used only the fact that k is a Q-algebra.

Remark. One could also prove part 2) of Theorem 3 by showing directly that
the dual of the bialgebra Ug is isomorphic (as a k-algebra) to a formal power
series ring k[[X},...,Xn]], with n = dimg; the diagonal structure of this
algebra is given by an F(X,Y) which is the desired formal group law.

7. The convergence of formal homomorphisms

We assume that k is a complete field with respect to a non-trivial absolute
value, and that chark = 0.

Theorem 1. Fori = 1,2, let G; be an analytic group chunk and F; be the
Jormal group law induced in k™ by a chartc; of G; at e;. Let 7 : Fy — F
be a formal group homomorphism. Then, T is convergent, that is, T induces a
local homomorphism of group chunks 7 : Gy —— G3.

Proof. For i = 1,2, F; is convergent since it is obtained by passage to local
coordinates from the convergent multiplication law on Gj;; since the conclusion
of the theorem is local, we may assume that G; is an open neighborhood of 0
in k™ with multiplication defined by F;.

1) Special Case: Gy =k, F; =“+”, and G, =G, Fy = F.
To say that 7 is a formal group homomorphism reduces, in this case, to
the formal equations:

(s +t) = F(r(s),7(t)) and 7(0)=0.

Differentiating formally with respect to ¢t and setting ¢ = 0, we find that
satisfies the following formal differential equation:

7'(s) = D2 F(r(s),0)7'(0) .

Since D; F(7(0),0) = D, F(0,0) = Idgs, the above equation is formally con-
sistent at s = 0. Let ¢(X) = D, F(X,0)7'(0) where 7'(0) is any fixed vector
in k™. Then, the convergence of 7 is a consequence of the following theorem
which we prove in the appendix to this chapter.
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Theorem 2. Suppose ¢ = (¢1,...,0n) i3 a system of n convergent power
series sn n variables. Then, the formal differential equation: '(s) = ¢(7(3)),
7(0) = 0, possesses a unique formal solution. This solution is convergent.

2) General Case: Let F be a convergent formal group law corresponding to
a group chunk G and let X € g = L(G). Then there is a unique Lie algebra
homomorphism Lx : ¥ — g such that Lx(1) = X. By Theorem 3 of §6, there
is a unique formal homomorphism ¢x : k*+ — F such that ¢%(0) = X. By
case 1), ¢x is convergent.

Let gi = L(G;) and let ¢t = L(7) : g1 — g2. Then the construction of ¢x
has the following functorial property:

For X € g1 and Y = t(X): ¢y = 7 0 ¢ x formally.

For convenience, set n = n; and m = n;. Then, choose a basis {X,} of
g1 and let Y, = t(X,,). Define local morphisms:

by the formulae:

$1(tr,... ta) = dx,(t1) - dx,(tn)
d2(t1, .- tn) = dvi(t1) -+~ By, (tn) .

The map L(¢,) : k™ — g is just the isomorphism of k, with g; defined by
sending the p-th standard basis vector of k" onto X,. Hence ¢, is étale at 0
and hence is a local isomorphism in a neighborhood of 0.

Now, formally, 7 0 ¢; = ¢3, hence, formally, 7 = ¢; o ¢;!. But the right
hand side of this equation is convergent by what we have just shown. Hence
T is convergent, as desired.

Corollary 1. Let G, and G, be analytic group chunks such that L(Gy) and
L(G,) are isomorphic. Then:

1. Any isomorphism of L(G1) with L(G7) induces a local isomorphism of
G, with G,.

2. In the ulirametric case, G; and G have open subgroups which are
isomorphic.
Proof. 1. This follows from Theorem 1 and from Theorem 3, §6.
2. This follows from 1) and from the theorem of Chap. 4, §8.
Corollary 2. Let G be an analytic group chunk, g = L(G), and CH(g) =

Campbell-Hausdorff group chunk associated to g (§4). Then, there ezists a
unique local isomorphism exp : CH(g) — G such that L(exp) = id.
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Remark. Suppose G = GL(V) where V is a vector space over k. Then let:

z?
e’ =1 + ittt
We content that exp(z) = e in a neighborhood of 0 in g = E(V). Indeed,
by the construction of the Campbell-Hausdorff formula, eX defines a formal
homomorphxsm from CH(g) to G and we have L(eX) = Id. Hence, we obtain:
exp(X) = eX, by uniqueness.

Now let us study the map exp in the case k = R or C and G is an
analytic group. Since fn(X) = nX in CH(g), we will be able to extend exp to
all of g. Indeed, let z € g. Then, since ¥ = R or C, for some integer n > 0,
12 € Dom(exp). Define:

(*) exp(z) = exp(-rl;a:)" .

We obtain the same definition if we replace n by a multiple mn of n. This
shows that we obtain a unique definition independent of the choice of n, since
any two choices may be compared by means of their product.

For fixed z¢p and some n, the formula (*) is valid in a neighborhood of
zg, which shows that exp is analytic. We know that exp is étale at 0 but in
general exp is not everywhere étale and is not bijective.

Corollary 3. Suppose k = R or C. Let G be an analytic group over k and
let g = L(G). Then:

1. Suppose G is connected and g is abelian. Then, G is abelian.

2. More generally, if g is abelian, then G has an open abelian subgroup.

Proof. Clearly, 1 = 2. To show 1, we note first that, since g is abelian,
CH(g) = g with the additive group structure. We content exp defines a group
homomorp}usm Indeed, given z,y € g, choose an integer n so large that 1 =%,
1y, 1(z + y) lie in the domain where exp is a local homomorphism. Then:

1 1 1 1 1
exp(E2)exp(Ly) = exp(L(z +1)) = exp(Ly)exp(L)
Noting the commutability of exp(1z) and exp(ly), we obtain, by raising to
n-th powers:

exp(z) exp(y) = exp(z +y) .

It follows that exp(g) is an open abelian subgroup of G, hence is equal to G,
since G is connected.

Corollary 4. Suppose k is ultrametric and let A be the corresponding valua-
tion ring. Let G be an analytic group over k of dimension n such thatg = L(G)
is abelian. Then, G has an open abelian subgroup isomorphic to A™.
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Proof. We have that CH(g) is the additive group g and that CH(g) contains
an open subgroup isomorphic to an open subgroup of G, whence the result.

Ezample of Corollary 4. G = groups of points of an abelian variety defined
over Q,.

8. The third theorem of Lie

Throughout this section, k = R or C.

Theorem 1. Let G be a connected, simply connected analytic group over k.
Let G' be any analytic group over k. Let g = L(G) and g' = L(G'). Then, the
map: Homag(G,G') — Hompa(g, @') is bijective.

Proof Let t: g — g be a Lie algebra homomorphism. We must show that
t = L(¢) for a unique analytic group homomorphism ¢ : G — G'. We know
that ¢ extends uniquely to a local homomorphism f : G ~—— G' (§6, Thm. 3;
§7, Thm. 1). Then, the graph I'y C G x G’ of f is an analytic subgroup chunk.
Let (H,i) be the analytic group generated by I'y (Chap. 4, §4). Consider the
diagram:

H X GxG

v \ .l,P"x
G

Then, ¢ is a local isomorphism, and, since H is connected and G is simply con-
nected, ¢ is an isomorphism onto an open subgroup of G. Since G is connected,
o is surjective. Let ¢ = pryoioy~!. Then, ¢ agrees with f in a neighborhood
of e. This shows existence. Uniqueness follows since two homomorphisms ¢,
and ¢, whose derivative at e is equal to ¢t must locally agree with f so that
the set of points on which they agree is open and closed, therefore, equal to

allof G.

Theorem 2. The category of connected, simply connected analytic groups
over k = R or C is equivalent to the category of finite dimensional Lie alge-
bras.

Proof. We have proved in Theorem 1 the required bijection on maps. What
remains to be done is to show:

Theorem 3 (Third Theorem of Lie). For any finite dimensional Lie algebra
g, there ezists a connected and simply connected analytic group G such that

L(G)=g.

Proof. This theorem was first proved by Elie Cartan. We shall sketch Cartan’s
proof after giving a shorter proof based on the powerful Theorem of Ado.
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We remark at the outset that it suffices to find an analytic group G such
that L(G) = g since taking the connected component H of e in G and then
taking the simply covering group of H, we obtain the desired connected, simply
connected analytic group with Lie algebra g.

Proof 1. We quote Ado’s Theorem (Bourbaki, Alg. de Lie, Chap. 1, §7, n°3,
Thm. 3, or Jacobson, Lie Algebras, Chap. 6, §2, p. 202):

Theorem (Ado). Every finite dimensional Lie algebra has a fasthful finite
dimensional representation.

Now, let H be the Campbell-Hausdorff group chunk corresponding to g
and let t : g — E(V) be a faithful representation. Then ¢ induces a local
homomorphism f : H —— GL(V). Since t is faithful, f is an immersion
at e, that is, H corresponds to a subgroup chunk of GL(V'). But then, H is
equivalent to an analytic group (Chap. 4, §4).

Proof 2. 1) The theorem is true in the following cases:
1. g is semisimple.
2. g is abelian.

In case 1, ad : g — E(g) is injective. We may apply the method of
proof 1 without having to invoke Ado’s Theorem. Alternatively, we note that
Im(ad) = Der(g). Hence, g = L(Aut(g)) (§3, n°4, 4).

Case 2 is trivial since we may take G = additive group of g.

2) General case:

We use induction on dim g. If g falls in cases 1 or 2, we are done. Otherwise,
we know that g is a semi-direct product g, X g2, where g, is an ideal of g,
g2 a subalgebra of g, and dim g; < dim g (cf. L.A., Chap. 6, §4).

Let ¢ : g2 — Der(g;) define the semi-direct product structure on g, x g;.
By induction, let G; be a connected, simply connected analytic group such
that g; = L(G;), i = 1,2. We will show that g = L(G) where G is a semi-direct
product of Gy and G,.

The main steps in the proof are:

1. Der(g:1) = L(A;) where A; = Aut(g:) (§3, n°4, 4).
2. A; = Aut(G,), by Theorem 1.
3. A, acts analytically on G;.

Indeed, given a € A; and ¢ € G, we want to find a neighborhood N of
a in A; and U of g in G, such that the action: N x U — G is analytic.
Let Wi C g; be a neighborhood of 0 in g on which the Campbell-Hausdorff
formula converges. Choose neighborhoods N of a in 4; and W; of 0 in W, so
that the action of N C Aut(g;) on W> takes values on W;. Let V = exp(W).
We then have that the action of N C Aut(G,) on V is induced by the action
of N C Aut(g;) on W,. Since the elements of Aut(g;) act linearly on the
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Campbell-Hausdorff formula, the action of N on W; is analytic. Thus, the
action of N on V is analytic.

Now, since G is connected, there exists an integer n > 0 such that g € V",
where V,, denotes the set of products of n elements of V. We may assume that
V is open. Then V,,, which is the union of translates of V, is open. Take
U =V".Let 6: A; x G; — G be the action of A; on Gy; write 8(b, k) = bh.
We must show that @ is analytic on N x U. Let V(™ be the n-fold product
of V and let 4 : V(®) — U be multiplication. Also, let 8 : N x V(™ — G be

defined by:
Q(b,gl, oo ,gn) = (bgl) e (bg") .

Then, the following diagram is commutative:

Nxvm & g
lxpl /0
NxU

Since § is analytic, to prove that 8 is analytic, it suffices to remark that
p: V(™ 5 U is a surjective submersion.

4. Since G; is simply connected and connected, ¢ induces ¢ : G2 — A,.
We define a semi-direct product structure on the set G, x G by:

(0,2)(9,0)(0,h)™" = (¥(h)g,0) .

This group structure is analytic since 3 is analytic and since A; acts on G;
analytically.
It is now a simple verification that L(G; x G2) = g.

Theorem 4. Let G be a connected and simply connected analytic group. Let
8= L(G) and let h C g be an ideal. Then:

1. There is a closed connected analytic subgroup H of G such that
L(H)=§.

2. H is simply connected.

Proof. 1. Let K be an analytic group such that L(K) = g/b. The projection of
g on g/ induces an analytic homomorphism ¢ : G — K since G is connected,
and simply connected. Take H to be the connected component of e in Ker ¢.
Then H has the required properties.

2. We use the fact that since G/H is an analytic group then 72(G/H) = 0.
Then, in the homotopy exact sequence, we have:

oo = m(G/H) — m(H) — m(G)
" il

0 0
Hence, 71 (H) = 0.
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Remark. It seems likely that no “simple” proof of Lie’s Third Theorem exists.
For, if such a proof did exist, unless it made essential use of the local com-
pactness of R and C, it would extend to Banach analytic groups. But in the
Banach space setting, the Third Theorem is false (as remarked by van Est
and others). Indeed, Theorem 4, 1 itself (which is a formal consequence of
Theorem 3) is false:

The example is the following. Take G = GL(H) x GL(H) where H is an
infinite dimensional Banach space. It is known that GL(H) is connected and
simply connected. The center of G contains C* x C* and hence S? x S!. We
let Z = S x S'. Then the Lie algebra z of Z is contained in the center of
the Lie algebra of G and hence any one dimensional subspace h C z is an
ideal in GL(G). To obtain the desired counterexample, take § to be the Lie
algebra corresponding to the subgroup { (s,v) : v =ap} C S! x §?, where a
is irrational. This subgroup is connected and simply connected but not closed
in G.

9, Cartan’s theorems
Suppose k = R or Q,, that is, suppose Q is dense in k, chark = 0.

Theorem 1. Suppose G is an analytic subgroup overk and that HC G is a
topologically closed subgroup chunk. Then, H is analytic.

Corollary. A closed subgroup of an analytic group over R or Q, is an ana-
lytic group.

Theorem 2. For i = 1,2, let G; be an analytic group over k. Then any
continuous homomorphism ¢ : Gy — G is analytic.

Proofs. 1. Theorem 1 = Theorem 2:

Since ¢ is continuous, the graph I'y C G x G3 of ¢ is a closed subgroup.
Hence, by Theorem 1, I'y is analytic. Let p = pr, |r,. Then p is an analytic
homomorphism with trivial kernel. Hence, L(p) is injective and p is an im-
mersion. Topologically, p is an isomorphism. It follows that p is an analytic
isomorphism. Since ¢ = pr, op~!, ¢ is analytic.

2. Theorem 1 when k = Q,;:

Let g = L(G). Then, by taking a sufficiently small open subgroup of G,
we may assume that G is isomorphic to an open subgroup U of g under the
Campbell-Hausdorff formula and that H is a closed subgroup of G (Chap. 4,
§8, Cor. 2 of Thm.; Chap. 5, §7, Cor. of Thm. 1). We identify G with U. We
then have that, for z € H andn € Z n-z = fu(z) € H. Since H is closed,
we have the same statement for n € Z,.

Choose ,,...,z, € H such that z,, ..., z,, are linearly independent over
Q, and maximal with this property. Let V be the vector space generated by
the {z;}. Then, X C V, since otherwise z, ..., Tm would not be a maximal



156 Part II - Lie Groups

linearly independent set in H. To prove the theorem, it suffices to show that
H contains a neighborhood of 0 in V. Consider the map:

f:2Z0 =V

defined by
f(tlr"' 7tm) = (tlzl)"'(tmzm) -

Then, f is analytic, and D f(0) is bijective by construction; hence f is étale
at 0. But Im(f) C H which shows that H contains a neighborhood of 0 in V.

3. Theorem 1 when k = R.

Let g = L(G). We may assume that H is a closed subgroup chunk of
U where U C g is an open subgroup chunk under the Campbell-Hausdorff
formula. We may also assume that H is strict in U, that is:

a. ,y € Hand zy € U = zy € H;
b.ze H=>z 1€ H.

Let V = {:c € g:tx € H, for small t}, that is, V consists of the points =
in g such that an interval about 0 on the ray through z lies in H. Then, we
contend:

Lemma. 1. V is a Lie subalgebra of g.

2. Suppose z, € H, z,, # 0. Let D, be the line in g containing z,,. Suppose
Zp —0and D, > D asn — oco. Then, DC V.

Proof. 2. Fix ¢ so that the ball of radius € about 0 is contained in U. Let m
be a positive integer and let ¢, = £¢/m. Define:

S.-={x:(i—-1)e,,,$|z|§ie,,.}.

In particular, S; is the ball of radius ¢,,. For some constant K, z,, € S} for all
n > K,,. Consider any ¢ such that 1 < ¢ < m. Then, for every n > K,,, there
exists an integral multiple v}, of z, lying in S;. Since D, — D, as n — oo,
a subsequence of yi converges to a point in S; N D. This point also lies in H
since g}, € H by a) above and since H is closed. Hence, we have shown:

(+) For any integer m > 0 and any integer ¢ such that 1 <i < m,
there is an element 2 € HN D such that (i — 1)y < [z] < iem.

Statement (*) shows that H is dense in at least one of the two half intervals
of length ¢ with endpoint 0 in D. By b) above, we see that H is dense in the
symmetric interval of length 2¢ about 0 in D and since H is closed we see that
in fact H N D contains this interval. This shows that D C V.

1. We use 2) to show that V is closed under addition and brackets. Let
z,y €V, z,y # 0. Then, by the Campbell-Hausdorff formula:
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. 1 1
Jm n{(G2)- (F9)} == +v
tim w*{[(Z2): (G)]} = e

(See also Chap. 4, §7, n°5). The first formula shows that the line through z +y
satisfies the conditions of 2) while the second shows that the line through [z, y]
satisfies these conditions.

Since V is a Lie subalgebra of g, V N U is an analytic subgroup chunk of
U under the Campbell-Hausdorff formula. Using the assumptions of strictness
of H, we see that H 5 V NU. The proof will therefore be complete if we show
that H is contained in V in a neighborhood of 0. We suppose the contrary
is true, that is, that there exists a sequence {zn} such that: z, € H -V,
T, — 0 as n — 0o. Choose a complement W of V in g. Then since exp is a
local isomorphism at 0, we may write Tn = WnVs, Wy, € W and v, € V, at
least for n 3> 0. By strictness, w, € H for n 3 0. Hence, we can assume the
original sequence {z,} belonged to W. Let D, be the line through z,. By the

compactness of the projective space P(W), a subsequence of {D,} converges,
say, to D. Then, by 2) of the Lemma, D C V which is absurd.

Remark. Theorem 2 may be expressed by saying that the category of analytic
groups over k = R or Q, is a full subcategory of the category of all locally
compact topological groups. ’

We may then ask: “When is a locally compact topological group a real or
p-adic analytic group?” This question makes sense because Theorem 2 shows
that if the structure of analytic group exists on a locally compact topological
group, then it is unique.

The answers are:

1. Real case (Gleason-Montgomery-Zippin-Yamabe): The group G must
contain no small subgroup (i.e., there is a neighborhood U of e such that any
subgroup of G contained in U is equal to {e}).

2. p-adic case (Lazard): The group G must contain an open subgroup U
with the following properties:
(a) U is a finitely generated pro-p-group.

(b) The commutator subgroup (U,U) is contained in U?* = set of p?
powers.

In both cases, the necessity of the condition is easy (cf. Exer. 4).

Exercises

1. Let k be a field of charp # 0, let F be a formal group law over k, and let
U (resp. g) be the corresponding bialgebra of point distributions (resp.
the corresponding Lie algebra). One has g C U.
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a) If n = dim g, show that g generates a subalgebra of U of rank p”.

b) Show that z € g = z? € g, where z? denotes the p‘®-power of z
in U. Show that ad(z?) = ad(z)?.

c) Let a be an element of k which does not belong to the prime field
F,;. Let § be the Lie algebra with basis {X,Y, Z} and relations [X,Y] =Y
[X,Z) = aZ, [Y,Z] = 0. Show that there is no element y € § such that
ad(y) = ad(X)?. Prove that § cannot be the Lie algebra of a formal group.
Let H, = k[[X]] and H; = k[[Y]).

a) Suppose k is a field. Show that any algebra homomorphism ¢ :
H; — H, is admissible (cf. §6).

b) Suppose k has no nilpotent elements (except 0). Show that any
continuous algebra homomorphism ¢ : H; — H; is admissible.

Let k = R or C, and let s be a semisimple subalgebra of the Lie algebra
of GL(n, k). Show that s corresponds to a group submanifold of GL(n, k).
(Hint: use L.A., Chap. 6, Theorem 5.2.)

Let G be a standard p-adic group (cf. Chap. 4), and let {G,} be its
canonical filtration. Show that, if U = G,, with n > 2, one has:

(U,U) c U*”

. Let G be a real Lie group, with Lie algebra g, let §§ be a subalgebra of g,

and let H be the Lie subgroup of G corresponding to §. Assume that H
is dense in G.

a) Show that Ad(g)h = b for all g € G, and that § is an ideal of g.

b) Let G be the universal covering of G, let Z be the kernel of G- G,
and let H be the Lie subgroup of G corresponding to b; H is closed in G
(88, Theorem 4). Show that H-Z is dense in G, and that G/H is abelian,
hence that g/b is abelian.

¢) Suppose g is semisimple. Show that G = H x R™ for some n. Show
that n = 0 (hence G = H) if the center of H is finite.

d) Let Hy = SL(2,R). Show that 7;(Hg) = Z. Show that the univer-
sal covering H of Hy can be imbedded as a dense Lie subgroup in a Lie
group G of arbitrary dimension > 3.

. Let G be a real Lie group, with Lie algebra g. For any subalgebra § of g,

let H be the corresponding Lie subgroup of G. The closure HofHisa
closed Lie subgroup of G (by Cartan’s theorem); let § be its Lie algebra.

a) Showthat 5 CH, h =5, hNHh, C T)T_ﬂb_g'
b) Show that b is an ideal in §, and that §/§ is abelian (use Exer. 5).

Appendix. Existence theorem for ordinary differential equations

We assume chark = 0.

Theorem. Suppose ¢ = (P1,...,¢n) i3 a system of n convergent power series
in n vartables. Then:
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1. The formal differential equation
7'(3) = ¢(7(r)) and 1(0)=0,
possesses a unique solution 7.

2. T is convergent.

Proof.
Case 1: k=R or C.
1. Write:
T(s) = Z aps”
n21
H(X)=) caX®.

Then, the formal differential equation takes the form:
Z naps""! = an(z a,,.s"')a .
n>1 m21

Then, there exist unique polynomials Qn(ca,am), |al, m < n, with positive
integral coefficients such that:

1
an = ;;Q,.(ca,a,,.) .

This shows the uniqueness of the formal solution, by induction on n.

2. To show convergence, we use Cauchy’s method of majorants. Suppose
|ca] < do Where {dq} consists of non-negative real numbers. Let 7(s) = 3 bnt"
be the formal solution of the differential equation corresponding to $(X) =
Y doX*. Then:

Lemma 1. 7 convergent = T convergent. More precisely, T is ¢ majorant
forT.

Proof. By induction:
Janl = | 2] 1@ (car am)| < ~Qn(lcalslamD) < = Qn(ds bm) = br
n n ] —-— n n oy m -— n n Y
Note that we have used the fact that k = R or C to obtain the equality:
|l| =1
nl n’

To apply Lemma 1, we must construct an appropriate ¢ and compute
the corresponding 7 explicitly. Since ¢ is convergent, we may find constants

M, R > 0 such that:
> icalRlt < M .
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Let dy = 'EIFET Clearly |cq| < dg, and we have that:

J(X)=ZM'(%)°=T1.-(—1¥XT/75'

By the uniqueness statement, 7(s) = (o(s),...,o(s)) where o(s) is the formal
solution of the single differential equation:
M
0'(8) = ——5 .
(1-=hn

We make an explicit computation for o(s) which shows that o(s) is convergent:

o(s) = R(1 - {1 —(n+1)M - %}#‘) :

Indeed:
2y
B .
Differentiating o(s) and using the above formula, one sees that o(s) does
satisfy the desired differential equation.

Case 2: k ultrametric.
Since ¢ is convergent, we may assume, by change of coordinates via a
homothety, that the coeflicients of ¢ lie in the valuation ring A of k.

1. Write:

1—5'%2={1-(n+1)M-

7(8) = E a"%

n>1
$(X) =) caX™.
Then, the formal differential equation takes the form:
s" smyo
Zan'f-l;{i' = an(z am"'n—!) .
n>0 m>1

Then, using the fact the binomial coefficients lie in Z, we see that there exist
unique polynomials Qp(cq,am ), Ja|, m < n, with positive integral coefficients
such that:
an = Qn(ca, am) .
This shows the uniqueness of the formal solution.
2. By induction on n, a, € A since by assumption all ¢, € A. Hence, by

Lemma 4 of §4, for some real constant a, 0 < a < 1, 7(s) is majorized by:

r'l

a—n .

Since this is a geometric series, it converges for small r, so that 7 i1s convergent.
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Problem

(Harvard Exam., Jan. 1965 — Time: 3 hours)

In what follows k denotes a field, and g a 3-dimensional Lie algebra over
k, with basis {z,y,2} and relations:

[z.4] =2, [z,2]=y,2]=0.
The universal algebra Ug of g is denoted by U.

I
1. Determine the center of g. Prove that g is nilpotent.

2. Let A be the center of U. Show that z € A. If k is of characteristic p # 0,
show that A also contains z? and y?, and that z, zP, yP are algebraically
independent.

3. Give an example of an analytic group (over some complete field k) having
a Lie algebra isomorphic to g.

11
In this section V is a vector space over k, and ¢ : g — End(V) is a Lie
algebra homomorphism (so that V is a g-module).

4. For any X € k, let V), be the set of v € V such that g(z)v = Av. Show that
V) is a g-submodule of V.

5. Assume k algebraically closed, and V irreducible(*) of finite dimension.
Show that there exists A € k such that g(z) = ), scalar multiplication by A.
Assume moreover that char(k) = 0; show that A = 0 and classify all irreducible
g-modules of finite dimension.

6. We now take for V the vector space k[T] of polynomials in one indeterminate
T. Show that there exists a structure of g-module on V such that, if P € k[T}:

e(z)- P=dP(T)/dT , oy)-P=T-P(T), e(z)-P=P.
Prove that V is irreducible if char(k) = 0.

(*) A g-module V is said to be irreducible if V # 0 and if the only g-submodules
of V are 0 and V.
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III
In this section, k is algebraically closed of char. p # 0.

7. Let V be the g-module defined in question 6. Show that the g-submodules
of V are of the form Vp = P(T?) -V, with P € k[T). Show that V/Vp is
irreducible if and only if deg(P) = 1.

8. Let W be an irreducible g-module, and let ow : g — End(W) be the corre-
sponding homomorphism. Show that W is isomorphic to one of the modules
V/Vp defined above if and only if the following two conditions are satisfied:
ow(z) = 1, and pw(z) is nilpotent.

9. Let again W be an irreducible g-module of finite dimension, and assume
dim(W) > 1. Show that dim(W) = p, that pw(z) is equal to a scalar A # 0,
that gw(z) has only one eigenvalue u, and that pw(y) has only one eigenvalue
v. Show that, for any (), u,v) with A # 0, there exists a corresponding W,
and that it is unique, up to isomorphism.

10. Prove that the center A of U is the polynomial algebra generated by z, z?,
yP. If k' is an extension of k, and ¢ : A — k' any homomorphism such that
¢(z) # 0, show that U ®4 k' is a central simple algebra over k' of rank p?.
Prove that this remains true even if k is not algebraically closed.

11. Prove that every irreducible g-module is finite-dimensional.
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Erratum to

J. Serre: Lie Algebras and Lie Groups, ISBN 978-3-540-55008-2
copyright 1992

p.23, line 16. Replace H? = {z,y} by H? = {xy}.
p.120, exercise 2 b). In the denominator of the formula, (i + j — k) should
be (i+j—-k)!.
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