REPRESENTATIONS OF ALTERNATIVE ALGEBRAS

BY
R. D. SCHAFER()

In this paper we apply to alternative algebras a definition of representa-
tion given by S. Eilenberg for nonassociative algebras satisfying multilinear
identities. The corresponding alternative module generalizes the notion of a
two-sided A-module as used in the study of associative algebras.

Our chief object is to use the representation theory to obtain the gen-
eralization to alternative algebras of the theorem of A. Malcev on the strict
conjugacy of semisimple components in Wedderburn decompositions. Since
every alternative algebra gives rise to a (special) Jordan algebra, and every
representation yields (Jordan) representations of this algebra, we can use
recent results of N. Jacobson on representations of Jordan algebras. Doing
this restricts our principal theorems to algebras of characteristic 0.

Following certain preliminaries concerning derivations and associators,
we prove the complete reducibility of representations of semisimple alterna-
tive algebras. We next prove the first Whitehead lemma for alternative
algebras, generalizing G. Hochschild’s result for associative algebras. This is
sufficient to prove the Malcev theorem in case the square of the radical is {0}.
For all other types of algebras for which this theorem is known (Lie, associa-
tive, and Jordan), an inductive argument then suffices to complete the proof
for an arbitrary radical. In the case of alternative algebras, however, with-
out a stronger form of the Whitehead lemma a certain associativity condition
would invalidate the inductive argument. Using the complete reducibility,
we prove that this stronger form holds, and employ it in the proof of the Mal-
cev theorem.

In the concluding section we prove a generalization of a theorem due to
Hochschild which, although independent of the representation theory, is re-
lated to our other results: an alternative algebra (of characteristic 0) is semi-
simple if and only if its derivation algebra is semisimple or {0}.

We are indebted to Professor Jacobson for allowing us to see his paper,
General representation theory of Jordan algebras, in manuscript form, and also
for giving us valuable advice in connection with the proof of Theorem 2.

1. Representations and semidirect sums. A (nonassociative) algebra
U over a field F is called alternative in case

(1) x(yy) = (zy)y,  (yy)x = y(y%)
for all x, y in %. Clearly every associative algebra is alternative. Linearization
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of the identities (1) yields the fact that the associator

2) (%, 9, 2) = (xy)z — z(y2)

“alternates”: it changes sign under an odd permutation of the letters x, v, z,
but remains unchanged under an even permutation. The most economical
statement of this fact is

(3) (x’ ¥, z) = — (3’» x, Z) = (z» X, y)

for all x, y, 2 in . If the characteristic of F is not two, then the identities (3)
define an alternative algebra.

Let B be a vector space over F. Following Eilenberg [3, §2](2), we define
a representation of A as a pair of linear mappings x—S,, x—7T, of ¥ into the
algebra of all linear transformations on %, satisfying

(4) [Tz,Sz]=S;u—S;¢gz= Tzz—Tsz= [va Tl]

for all x, z in %, where [X, Y] denotes the commutator XY — YX. We write
(S, T) for the representation. The representation space 8 in which (S, T)
acts is made into an alternative module by defining

vx = 0S5, x = 9T,
forvin B, x in A. Assumption (4) becomes
(5) (x» v, Z) = - (‘U, X, Z) = (Z, X, ‘D) = - (Zy v, x)

for all x, zin ¥, v in B, where the associator is defined as in (2) except that
one argument is in B. The identities (5) are equivalent to the assumption
that every associator with one argument in 8 and two in ¥ “alternates.” It
cannot be reduced to the equality of three terms (as in (3)) because the argu-
ments do not enter symmetrically. The concept of an alternative module is a
generalization of that of a two-sided ¥-module(3) for associative algebras 9.
It should be noted that, even if a particular alternative algebra ¥ is associa-
tive, an alternative module for % need not be a two-sided ¥-module; in the
latter case all of the associators (5) would vanish(%).

Every alternative algebra ¥ over F has a representation; namely, the
regular representation (R, L) where R, and L, are the right and left multiplica-
tions defined respectively by y—yx and y—xy for all y in 2. In this case U
itself is the alternative module. We have the identities

[Lz: Rz] = Rzz - Rsz = Lzz - Lsz

(6)
= [Rz, Lz] =R.R,— R.. =L.L;— L,..

(3) Numbers in brackets refer to the references cited at the end of the paper.

() See [5, Definition 2.1].

(4) For example, let A be a quaternion subalgebra of a Cayley algebra €. Then € is gen-

erated by % and an element 2 such that (x, y, z) #0 for some x, y in . Hence € is an alternative

module for ¥, but not a two-sided A-module.
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More generally, if % is any subalgebra of an alternative algebra 8 over F
and if B is an ideal of B, then the regular representation of B induces a repre-
sentation of ¥ acting in B.

For any represéntation (S, T") of A with corresponding alternative module
B, we define an algebra B=A+DB, called the semidirect sum of A and B, as
follows. Let 8B be the direct sum of the vector spaces % and 8 over F, and
define multiplication in 8 by

(x4+v)z+7) =22+ (v2+ xv') = 23+ (5. + V'T.)

for x, zin ¥, v, v’ in V. Then it is readily verified that, since L is an alternative
module, B is an alternative algebra. Moreover, 8 is an ideal of B, V2= {0 },
and the representation (S, T) of A in B is induced by the regular representa-
tion of B. "

Let (S, T) be a representation of ¥ acting in 8. A subspace T of B is
called snvariant in case WS, =W and WT, =W for every x in A; that is,
wx and xw are in W for every w in W and x in A. We call (S, T) an drreducible
representation of U in case the only subspaces of 8 which are invariant are {0}
and RB. Equivalently, the invariant subspaces of 8 are those ideals of the
semidirect sum B8 =A+2B which are contained in B, and a representation of
U is irreducible if and only if B does not contain properly any nonzero ideal
of B.

Let % be any alternative algebra over F. A new algebra A+ may be defined
by introducing a new multiplication

x-z3 = x3 + 2%

in . Then A+ is a special Jordan algebra (that is, is isomorphic to a Jordan
algebra of matrices) (®). For, if A does not have a unity element, it is necessary
only to adjoin one to ¥ to obtain A =Y;, an alternative algebra with unity
element. For x in A =¥, consider the one-to-one linear mapping x— R, where
R, is the right multiplication for %;. From (6) we have

Rz-z = Rzz+zz = Rsz + Rz-R:cv

or x—R; is an isomorphism between A+ and the special Jordan algebra of all
the R..

Let (S, T) be a representation of the alternative algebra 9. Then x—S,
and x—T, are special Jordan representations [7, §2] of %+ acting in B, since
(4) (together with the equalities which follow by interchange of x and 2)
implies S,..=S:04::=5:5.+S.S: and T,..=T1syee =TT, +T.T,. Also x—S;
where

(7) St=s.%T,
is a (general) Jordan representation St of A*. We may check this by direct

() See [1, 851
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substitution of (7) and (4) in the defining identities for a Jordan representa-
tion, or more readily by the following observation: if ¥ is the semidirect
sum B =A+PB, then B is alternative so that B+ is a (special) Jordan algebra.
Now the elements of L form a (Jordan) ideal of B+. Therefore the (Jordan)
regular representation of B+ induces a (Jordan) representation of the sub-
algebra A+ acting in B. This Jordan representation of A+ is exactly the map-
ping St. The representation space 8B, equipped with the new composition

+
v-x = x-0 =195, = vx + v,

is a Jordan module which we shall denote by B+, and 8+ is the (Jordan)
semidirect sum $+=U+4+B+.

The radical N of an alternative algebra ¥ is its maximal nilpotent ideal,
and ¥ is called semisimple in case M= {0}. A. A. Albert has shown [1, p. 328]
that, if % is a (right) alternative algebra over F of characteristic 0, then the
radical of the Jordan algebra A+ is exactly :t*. Hence, if % is semisimple, then
so is A*.

2. Some lemmas on derivations and associators. A derivation of a non-
associative algebra U over F is a linear transformation D on ¥ satisfying

(8) (xy)D = x(yD) + («D)y

for all x, y in . If A is a subalgebra of a nonassociative algebra B, then a
linear mapping D of ¥ into B satisfying (8) is called a derivation of A into B
[S, p. 688]. In [10, §3] we determined the derivations of semisimple alterna-
tive algebras of characteristic 0(¢). We shall require some of the same formulas

here.

It is readily verified that (6) implies
9 [R., R.] = Rz — 2[Ls, R.],
(10) [Lzy Lz] = - L[z.z] - Z[L:n -Rz]r
(11) [Luv [Lz: L,” = Liy,12,211-2(z.9.2)
and

[Rm [sz Rz]] = R[u.[z,zn-—2(z.u.z)-
Also, if the characteristic of F is not two, then

Dx.z = [Rzy Rz] + [Lzy Rz] + [Lzy Lz]

(12)
= R[z,z] - L[z.t] - 3[ny Rz]

is a derivation of ¥ for all x, z in %, and hence

{8) We take this opportunity to remark that, whereas in [10] we proved that these deriva-
tions have the form (17), it is easy to see that they have the more special form (13). We have
shown this for the Cayley components [10, Theorem 6)]. For the associative components the
conclusion follows from (25) and (12). See also Theorem 5
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(13) D=Y D,.,

is a derivation of .
If A is any nonassociative algebra over F, then the subset @ of A con-
sisting of all g in ¥ satisfying

(14) (%, 9,8 =(x82y =@y =0,

for all x, ¥ in U, is easily seen to be a subalgebra of . R. H. Bruck and E.
Kleinfeld [2] have recently called this subalgebra the nucleus of %, and we
shall adopt their terminology. For an alternative algebra ¥, (14) becomes

(2, 9,8 =0

for all x, y in 9.

In any nonassociative algebra ¥, we call the subspace B which is spanned
by the associators (x, ¥, 2) in A the associator subspace of A. For any deriva-
tion D we have

(15) (%, 3, 2)D = («D, v, 2) + (%, yD, ) + (=, ¥, zD).

It follows that the associator subspace P of U is characteristic; that is, PD =P
for any D. Also the nucleus ® of any nonassociative algebra is characteristic,
as may be seen by replacing x, ¥, zin (15) in turn by g in @.

For any g in ©,

(16) D=R,—-L,

is a derivation of ¥, as may be verified by the same simple computation
which establishes this fact for associative algebras. In the case of alternative
algebras we have the converse.

LeMMA 1. If U is an alternative algebra of characteristic not three, and if (16)
is a derivation of U, then g is in the nucleus ® of A.

For (8) implies (x, v, g)+(g, %, ¥) —(x, g ¥) =3(x, ¥, g) =0 for all x, y
in 9.
We shall call any derivation of an alternative algebra % which is a sum

(17) D=R,—L,+ >.D,..., gin®,

an inner dertvation of A(").
In any nonassociative algebra the identity

(18) (ab’ ¢ d) - (‘19 be, d) + (a: b, Cd) = a(b’ ¢, d) + (av b, C)d

(") That neither (16) nor (13) may be suppressed in our definition is seen from the fol-
lowing examples. If ¥ is an associative, but not commutative, algebra for which ¥3= {O}, then
every derivation (13) is 0, while some derivation (16) is not. If % is a Cayley algebra, then
every derivation (16) is 0, while every derivation of ¥ is of the form (13).
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6 R. D. SCHAFER [January

holds [13, (1.2)]. Therefore, in an alternative algebra %, we have (x, yz, f)
= —(yz, x, )+ (¢, y3, x) — (x, t, ¥2) =2(y, 3, xt) — ¥(2, %, t) _(y: 2, x)t_t(yr 2, x)
—(, ¥, 2)x—x(, ¥, 2) —(x, ¢, ¥)z by (18). Interchanging x and ¢, and sub-
tracting, we have 2(x, vz, ) =2(y, 2, [, t]) —2y(z, x, £)+2(8, x, y)z or, if the
characteristic of F is not two(8),

(19) (2, v2,8) = (3, 2, [% t]) — y(z, , 0 + (¢ x, y)z

Interchange y and 2 in (19) and subtract to obtain

(20) (x, [y, 2], ) = 2(3, 5, [, t]) — [3 Gz 2, 0]+ [(4, %, 9), 2].

LeMMA 2. Let A be an alternative algebra of characteristic not two, with
nucleus & and associator subspace B. Then

(21) [, g] is in ®
forall x in U, g in ©, and
(22) (£, el =0

forall pin B, gin ©.

To obtain (21) we put t=g in (19). It is sufficient to prove (22) for any
associator p=(¢, x, ¥). In view of (21), this follows by putting z=g in (20).

LEMMA 3. Let A be an alternative algebra of characteristic not two. Then g in
the nucleus ® of A implies

(23) Oy ye) =y ey =y e =280y ¥
forally,y', v in .

Clearly (¥, 3", y8) = (&', 3", ¥)g, and (¢', ¥, g) = (g3, ¥", ") =g (3, %', ¥"").
But [y, g] in ® by (21) implies (¢, 3", y8) = (%', ", g3).

The structure of semisimple alternative algebras is well known. Any
such algebra is the direct sum of simple ideals which are either associative or
are Cayley-Dickson algebras over their centers [9, §1](%). For brevity we
shall refer to any simple alternative algebra which is not associative as a
Cayley algebra even though its center is not F.

An alternative algebra & is called separable in case it is semisimple for
all scalar extensions; equivalently, & is a semisimple algebra in which each
simple component has a separable center. It follows that if the characteristic

(® It has subsequently come to our attention that an identity equivalent to (19) is
proved in {2, (2.9)]. Since the proof there makes no assumption on the characteristic, formula
(20) and Lemmas 2 and 3 are valid for arbitrary F. Also our formula (21) is implied by [2,
Lemma 3.2 (i) ].

(%) The center of a nonassociative algebra is the set of all elements ¢ in the nucleus for
which [, ¢] =0 for every x. The center is a characteristic subalgebra, and in the case of a simple
alternative algebra is a field.
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1952] REPRESENTATIONS OF ALTERNATIVE ALGEBRAS 7

of F is 0, any semisimple algebra over F is separable.

LEMMA 4. Let © be a separable alternative algebra of characteristic not two.
Then & is the direct sum

(24) S=0+9

of the nucleus & and associator subspace P of &. If & 4s of characteristic 0, then
© 1s the direct sum

(25) e=3+¢

of the center 3 of © and the commutator subspace &' =[S, &) spanned by all
commutators [x, y] in &.

Because © is separable, we may take the base field F to be algebraically
closed, so that the center of each simple component is F. A direct sum argu-
ment reduces the proof to the case where & is simple. If & is associative,
then (24) is trivial since =& and P= {O}; also in this case (25) is well
known. If & is a Cayley algebra, then @ = 8 =¢F where ¢ is the unity element
of &, and it is readily verified that =&’ is the subspace consisting of ele-
ments of trace 0.

LEMMA 5. Let B be an alternative algebra of characteristic not two, and let
€ be a Cayley subalgebra of B. If the center of € is separable, then € 1s mapped
into {0} by every inner derivation of B of the form (16).

We first remark that € is generated by its associator subspace Bo=CMNP.
For, since € is separable, it is sufficient to verify this in case F is alge-
braically closed, in which case dim €=8=1-4+dim P, by (24). If B, does
not generate €, then P, is itself a subalgebra. But then (24) implies that P,
is an ideal of €, a contradiction, since € is simple. Hence P, generates €,
and it follows from (22) that (16) maps € into { 0}. For we have not only
[, g] =0, butalso [p1ps, g] =p1[p2, g]+ [£1, g]p2=0, since (16) is a derivation.

LEMMA 6. The radical N of any alternative algebra N of characteristic 0 is
characteristic.

An element zin ¥ is in N if and only if the trace of L., is zero for every x
in % [1, §8]. For z in M and any derivation D of ¥, we have

trace L,.p) = trace L ssyp—(zpy: = trace [L.., D] — trace L.py: = 0,
or 2D is in N.

LEMMA 7. Let D be an inner derivation (17). Then, for all g in @NN, x; in
A, and z; in N, the derivation D is nilpotent.

For we have shown [9, p. 608] that
(26) §R=§Rl>§)}2>...>§ﬁr={o}’
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8 R. D. SCHAFER [January

where each 97 is an ideal of A. Let y be arbitrary in %. Then yD7 is in N’ for
j=1,2, .. -. Hence yD"=0, D"=0.:

The analogue of Lemma 7 for Jordan algebras is proved in [7] for algebras
of characteristic 0 as a corollary to a theorem on representations of Jordan
algebras [7, Theorem 8.1]. Although we do not require the analogous theorem
on representations of alternative algebras for the proof of Lemma 7, we prove
the theorem below and remark that Lemma 7, for algebras of characteristic
0, is a corollary to part (c).

Let (S, T) be a representation of an alternative algebra A. For any sub-
space I of A, we denote by S(M) and T (M) respectively the sets of all S, and
T, for x in M. We write U(IM) =S(IM) + T (M) for the set of all S,+ T, with
x, ¥y in M. The respective enveloping associative algebras are denoted by

S@@O)*, T(W)*, UD)*.

THEOREM 1. Let N be an alternative algebra of characteristic 0, and (S, T)
be a representation of N. If N is the radical of N, then

(@) S(N) s contained in the radical of S(A)*,

(b) T(N) s contained in the radical of T(N)*,

(c) UMN) s contained in the radical of U(A)*.

Statements (a) and (b) are immediate corollaries of [7, Theorem 8.1].
For A+ is a Jordan algebra of characteristic 0, and 9Nt is its radical. Since S
and T are Jordan representations of A+, we have (a) and (b). However, a
separate proof must be given for (c).

The fact that U(N)* is nilpotent may be verified by only a slight modifica-
tion of the proof of [9, Lemma 1]. Formulas for S and T analogous to (9)
and (10) imply

(27) [TaS:] = = T2n/2 = [T2 T.]/2 = Stz,0/2 = [S4 S.)/2.
Using the analogue of (11), we have

[Tw [Tzr S,]] = Ttzwn + [T S(z.zl]-
Similarly,

|.S!h [Tz' St]] = S(z’u.Z) - [Ty, S[z.z]]~
It follows that the Lie enveloping algebras of U(M) and U(A) are & =S(N)
+T@®+[TH), SM)] and L=SA)+TQ)+[TQA), SA)]. Let Q=S(N)
+TR) +[T(N), SQA)]. Since N is an ideal of A, these identities, together
with the Jacobi identity, imply that [Q, 2] <Q, [f, Q]< . Hence Q is an
ideal in € and & an ideal in Q; that is, ® is subinvariant(!?) in 2. Since
f*=UM)*, it follows from [7, Theorem 7.2] that the radical of U(A)* con-
tains R, and therefore also contains U(N) as desired.

It is clear that S() and T'() are Lie triple systems [7, §1]. However, in

(%) See [7, §7].
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1952] REPRESENTATIONS OF ALTERNATIVE ALGEBRAS 9

general UA) =S@®)+T () is not, as may be seen by consideration of the
regular representation of a Cayley algebra.

3. Complete reducibility. Let (S, T) be a representation of an alternative
algebra ¥ acting in 8. We shall call (S, T) completely reducible in case, for
every invariant subspace T of B, there is a complementary invariant sub-
space W’ such that PB is the direct sum B=W+W’'. This is equivalent to the
condition that U®)=SA)+4+T(A) be a completely reducible set of linear
transformations.

The proof we give of the complete reducibility of any representation of
a semisimple alternative algebra of characteristic 0 is based on the theory of
completely reducible Lie algebras of linear transformations [6]. A Lie algebra
of linear transformations (of characteristic 0) is completely reducible if and
only if =2 @€ where the derived algebra &' = [&, 2] is semisimple, and the
center € consists of elements with simple elementary divisors [6, Theorem 1].
N. Jacobson has kindly allowed us to include here the following lemma.

ILEMMA 8 (JACOBSON). Let  be a Lie algebra of linear transformations of
characteristic 0 such that  =M+N where IM and N are ideals of { and are
completely reducible. Then R is completely reducible.

Let € be the center of &, €; that of M, €, that of N. We prove first that
€;=€. We know that, if C; is in @;, then C; has simple elementary divisors.
This is equivalent to the statement that the minimum polynomial u(\) of
C: has distinct roots. Thus (u’(\), u(\)) =1, and u'(C)) is nonsingular. Let N
be in N. Since [, N]<E,, C{ =[Ci, N] commutes with Ci. Hence [u(Cy), N]
=u/(C1)C{ =0 and, since u/(C;) is nonsingular, C{ =0. Thus [G;, N]= {0}
and [, 8] ={0}. Similarly [G;, 2]={0}. Next consider ¥’ =M'+ [M, N]
+ M. Since [M, N]=[M, N]+[C1, N] = [, R] <D, we have ¥ =M+ N'.
Now &/ >~N'/(MM'MN’) is semisimple and I’ is semisimple. Hence ¥’ is
semisimple. Next L=M+N=(D'+N)+(E+E;) =¥+ (& +E;) and ¥
MN(€1+6:) ={0}. It follows that €, 4+C,=C. If i is in G, C: in G, then
Ci+C; has simple elementary divisors(!'). Thus every element of € has
simple elementary divisors, and this completes the proof.

THEOREM 2. Let U be a semisimple alternative algebra of characteristic 0.
Then any representation (S, T) of N is completely reducible.

We need to show that U) =S®)+T(N) is a completely reducible set of
linear transformations. We do this by showing that the enveloping Lie
algebra € of U() is a completely reducible Lie algebra.

If 85 and 27 are the Lie enveloping algebras s=S)+ [S®), NUIE

(1) A short proof of this well known fact may be given as follows. The algebras F [¢]
and F[C;] are semisimple. The algebra F[C;, C:] is a homomorphic image of F[Ci]XF|[C:],
and the latter is semisimple. Hence F[C\, C:] is semisimple, and all of its elements have simple
elementary divisors.
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Lr=TA)+[TQ), TA)] of S@A) and T(¥) respectively, then (27), with the
Jacobi identity, implies that @ =8s+%r where s and 2r are ideals of L.
Since S and T are (Jordan) representations of the semisimple Jordan algebra
%A+, we know that 25 and 27 are completely reducible [7, Corollary 8.1]. The
theorem follows from Lemma 8 by setting M =Ls, N =27.

REMARK. Jacobson has observed that the universal associative algebra of
the representations of an alternative algebra is finite-dimensional [7, §§3, 6].
This simply means that the dimensionalities of the enveloping algebras of
the representations have a fixed upper bound. One can see this by observing
that, if uy, us, - - -, 2, is a basis of A. then any element of the enveloping
associative algebra €= U(U)* is a linear combination of elements Sj.S2 - - -
SpTart - - - T», €=0, 1. This follows easily from S.S,4S.S:=3S::1z0,
T, T4 T.T:=T:ot22, S:T:—T.S;=3S:,—S:S.. Thus dim <22, This has the
usual consequence that there are only a finite number of inequivalent ir-
reducible representations.

4. The first Whitehead lemma. We begin by proving a theorem for
alternative algebras which is a generalization of the first Whitehead lemma
for associative algebras [S, Theorem 2.2]. Our theorem is a corollary to the
analogous theorem for Jordan algebras [7, Theorem 9.1].

THEOREM 3. Let U be a semisimple alternative algebra of characteristic 0
with representation (S, T') acting in B. Let v be a 1-cocycle of U, that is, a linear
mapping of A into B such that v(xy) =xv(y) +v(x)y=v(y) T.+v(x)S, holds for
all x, y in A. Then, if B is the semidirect sum B=U+DB, there exist elements
xi, x4 in U, 2, 2! in B, such that

(28) g = 2l =)
in B is 1n the nucleus ® of B, and
(29) v(9) = [y &l + 2 9Dziec = ¥D

for every y in U, where D is the inner derivation (17) of B.

For proof, we observe that %+ is a semisimple Jordan algebra and that S+
defined by (7) is a Jordan representation of A+ acting in B+. Moreover,
v(x-y) =v(xy)+v(yx) =x-v(y)+»(x) -y, so that v is a mapping satisfying the
requirements of the first Whitehead lemma for Jordan algebras. Hence there
exist elements @; in A and v; in LV such that

v(y) = Z y[R.:n R:s] = E y[Rai + Ly, Ro; + Lva]
= Z y{Dai-vi + [La.'v R”i]}

1
= ? Z y{R(Gi»Vil - L[d.'.v,'] + ZDa;.v;}

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1952] REPRESENTATIONS OF ALTERNATIVE ALGEBRAS 11

by (12). That is, (29) holds for g in (28) where x! =(1/3)a;, x:=(2/3)a;,
2! =z;=v;. Now the linear transformation D on § defined by vD =0 for v in
B and yD =v(y) for ¥ in A is a derivation of B. Also D has the form (17) ex-
cept that it has not yet been proved that g is in @. However, D— >_D,, .,
=R,—L,is a derivation of 8 since D and > D,,,, are. It follows from Lemma
1 that gisin @.

To see that Theorem 3 includes the first Whitehead lemma for associative
algebras, we observe that, if ¥ is associative and if L is a two-sided ¥-module,
then the semidirect sum B=U+B is associative, and D, .; in (29) becomes
Riz; 20— Liz;,z because the last term of (12) vanishes. Thus »(y) = [y, g’]
where g’ =g+ X [%i, 2:]= 2 [as, v:] isin [¥, B]<DB.

In the proof of the Malcev theorem in the next section, we shall require
a stronger form of the first Whitehead lemma for alternative algebras.

THEOREM 4. Let the hypotheses be as in Theorem 3. Then we may take g=0
in (29) so that
(30) v(y) = Z YD z;.2;
for x;1n U, z; in B.

Since (S, T) is completely reducible by Theorem 2, it may be expressed in
a natural way as a sum of irreducible representations acting in invariant sub-
spaces of 8. Also » may be expressed as the sum of corresponding mappings
into these subspaces. Therefore we may assume that the given representation

(S, T) is irreducible.
It is sufficient to show either that

31) [y el=0
for every v in ¥, or that
(32) 2 (% y,3) = 0

for every y in U (where x/, 2! are as in Theorem 3). The sufficiency of (31)
is obvious. On the other hand, (32) implies that >, (3x/, v, 2!) = >_(a:, ¥, v:)
=2 ¥[Lay Ry;] =050 (y) = D> ¥{Da;iv;+ [Lai» Ro;]} = 2-¥Da; s in the de-
sired form.

LetA=&,® - - - &S, for simple &;, and let ¢; be the unity element of &;.
Consider the Peirce decomposition of ¥ relative to the pairwise orthogonal
idempotents e;, j=1, - - -, . We have 8 the direct sum

t
B=> Ba
i k=0
where v is in 8B if and only if

(33) v is in B, evix = 8;iVir, Vire; = Ok Uik,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 R. D. SCHAFER [January

(Kronecker delta). The properties of a Peirce decomposition [12, §2; 13, §4]
readily imply that

(34) (e, %,2) =0
forxin ¥, zin B, and
(35) (%5, %i,8) =0 if 157

for x;in &;, x; in &;, zin B. Using (33) and (34), it is easily verified that, since
B2={0 }, each of the subspaces B is an ideal of 8. The irreducibility of the
representation (S, T') is equivalent to the assumption that there are no non-
zero ideals of B properly contained in 8. Hence all but one of the B are
zero, and

B = By

for some fixed pair of subscripts 7, & (0=1, k<¢).

In case 1=0 or k=0, we have (x, y, z) =0 trivially for x, y in ¥, z in .
For example, if =0, then z=uvy implies (x, ¥, 2)={(xy) > e;}vo
—x{(y > e;)va} =0 by (34) and the fact that epu=0 for j=1, - -, ¢
Therefore, in case 1=0 or k=0, (32) is satisfied, and we may take B =8 for
some fixed pair 2, & (1 =1, k1)

We shall now show that, in case either &; or &; is associative, the intersec-
tion =B of B and the nucleus & of B isan ideal of B. For elements g=gu
in =B=B;,and b=y+vin B (yin A, v in V), we have bg and gb in B and
shall show that (b’, b”’, bg) =(b’, b"’, gb) =0. Write y= > ¥;, y; in &;. Since
B2={0}, (23) and (35) imply (b, ", bg)=(¥, b”, gb)=(¥', ¥, &)
=0, ¥ ga= 200, 3", y)ga= 207, ¥/, yi)ga= 2l ¥i', vieiga
=(y!, v, ¥)ga=0 in case ©; is associative, while similarly (&', b", bg)
=(b', b, gb)y=gu(y', ¥, ¥)=gu(¥i, ¥i', y&) =0 in case &; is associative.
Hence, in either case, bg and gb are in @ =BNE, and @, is an ideal of B.
By the irreducibility of the representation, either =% or ®o={0}. In the
first case (32) holds; in the second, g=0 implies (31).

There remains the case where neither &; nor &; is associative; that is,
each is a Cayley subalgebra of 8. Compute [y, g] = [y, ga] =2 [¥5, g = yigan
—gayr. We have

[yir 8] + [ye gae] if i %k,
(36) [)” ] = { ep .

[y gis] if 1 ==%.
But [y:, g]=[y g]=0 by Lemma 5. Then (36) gives (31), completing the
proof.

Asin [5, Theorems 3.1, 3.2] it is readily seen that Theorem 4 is equivalent
to

THEOREM 5. If U is a semisimple subalgebra of an alternative algebra B of
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characteristic 0, then any dertvation of A into B can be extended to an inner deriva-

tion (13) of B.

5. The Malcev theorem. We have shown in [9] that the Wedderburn
principal theorem for associative algebras generalizes to alternative algebras
over an arbitrary field F. That is, if % is an alternative algebra with radical
N, and if A/N is separable, then A may be expressed as the direct sum

37) A=+ N,

where & is a separable subalgebra of 2 isomorphic to /9.

The subalgebra & in the Wedderburn decomposition (37) need not be
unique but if A=S,+N is another such decomposition, then Malcev has
shown that, in case ¥ is associative, &; can be mapped onto & by an inner
automorphism of % of a special type [8 ,Theorem 2]. We shall generalize his
result to the case of alternative algebras, but only for those of characteristic
0. For, following the proofs of Harish-Chandra [4] and Jacobson [7] for Lie
and Jordan algebras, we base the proof of this theorem on the Whitehead
first lemma. The automorphism in question has the form (38) below(12).

If A is a nonassociative algebra of characteristic 0, and if D is a nilpotent
derivation of ¥, then

D* D3

(38) | GmexpD=T+DF 1t

is an automorphism of Y. Two subalgebras of A are called strictly conjugate
[7, §9] if one is mapped onto the other by an automorphism of the form
GGy - - - Gk, Gi=exp D;, D; a nilpotent derivation.

THEOREM 6. Let U be an alternative algebra of characteristic 0 with Wedder-
burn decomposition A=S+N, and let M be a semisimple subalgebra of U.
Then M s sirictly conjugate to a subalgebra of © under an automorphism G
=exp D of A where D is a derivation of A and D 1is in the radical R of the en-
veloping associative algebra of the right and left multiplications of U.

The proof is essentially the same as those for Lie and Jordan algebras [4,
Theorem 2; 7, Theorem 9.3]. We prove by induction on % that there is an
automorphism G’ =exp D’ of % mapping M into S+N* for D’ in R. The
case k=1 is given by D’=0. By (26) the case k =r establishes the theorem.
We assume that G=exp D, D in &, maps I onto Py < S+ N*, and shall show
that there exists D in R such that G=exp D maps M into S+ N*+1. The

(*?) Note that, in case ¥ is associative and of characteristic 0, the automorphism G
=exp(R,—L.) for zin N reduces to Malcev’s inner automorphism a—a —ax—x'a-+x'ax gen-
erated by an element x in i (where x’, the quasi-inverse of x, is the unique solution of xx’=x"x
=x+x'). For we may take x=—z—22/21—2%/3!— - - - in N and *'=—x—x2—x— . - -
=z—22/21428/30— . . .|
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Campbell-Hausdorff formula
expDexpD =exp(D+ D+ (1/2)[D, D]+ ---)

implies that G’ =GG =exp D’ for D’ in R as required.

Every x in I may be written uniquely in the form x =¢(x)+»(x) where
o(x) is in & and »(x) is in N*. The mappings x—a(x) and x—w(x) are linear.
Also xy =0 (xy) +v(xy) =0 (x)o (y) +o(x)v(y) +v(x)o(y) +v(x)»(y) so that

(39) a(xzy) = a(x)a(y)
and
(40) v(xy) = a(2)v(y) + v(x)a(y) + v(2)(y).

Since ¢ is a homomorphism of I, into & by (39) and the N7 are ideals of U,
the mappings x—R, (), ¥—L, induce a representation (S, T') of M acting
in NE/ N+, Write d, 6(x), 7(y) for the residue classes modulo N +1 of a, o(x),
v(y) respectively. Then (S, T) is defined by

zx = 25, = zo(x), 22 = 3T, = d(x)2
for z in M*/N*+1) x in Py,
Since (N*/Nx+1)2= {0}, it follows from (40) that the mapping y—¥%(y) is
a 1-cocycle of M. By Theorem 4 there exist elements x;in My, 2; in NE/NF+L
such that 5(y) = Y _yD,, s, so that

(41) v(9) = 22 0(9)Daczon (mod RN*+1)

for x; in My, 3; in N*. The mapping D= — Y _D,u,.s; is a nilpotent derivation
of % by Lemma 7; hence G=exp D is an automorphism. Actually D is in
R by Theorem 1 (c¢). For y in My, we have yG=0(y)G+v(y)G=0(y)+0o(y)D
4+ .-+ 4»(y)+ - - -, where the terms denoted by - - - belong to kt+L
Hence yG=0(y)+0o(y)D+»(y) =a(y) (mod N**+1) by (41), or PUG =S+ Nk+!
as desired.

CoroLLARY 1 (THE MALCEV THEOREM). If A has Wedderburn decomposi-
tions U=S+N=S,+N, then S, is sirictly conjugate to S under an auto-
morphism G=exp D, D in R.

COROLLARY 2. Any semisimple subalgebra of A can be imbedded in the semi-
simple component of some Wedderburn decomposition of U.

We needed the strong form of the first Whitehead lemma because, if we
had taken 3(y)=[y, g]l+ D> yD.;2;, we would have »(y)=[o(y), g]
+ >°6(9)D,p .o, (mod NEFY) for a representative g of g, where g is in the
nucleus of . But there is no guarantee that g may be chosen in the nucleus
of %. If we cannot do this, R,— L, is not a derivation. On the other hand,
Y D,p.z is always a derivation of .

For example, consider the alternative algebra % with basis e, 2, 2, z; and
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multiplication table
e 21 29 23

e e 21 22 0
21 0 0 23

Zg 0 —z; 0 0
23 23 0 0 0

The radical of A is N = (21, 22, 23) and A=eF+N is a Wedderburn decomposi-
tion of A. The nucleus of A is N2=2;F. Now Y =A/N? is associative. Hence
% in R=N/N? is in the nucleus of I, but there is no g in % such that g is in
the nucleus of .

It is to circumvent this difficulty with the passage from the nucleus of 9
to the nucleus of ¥ that we have established Theorem 4. This would be un-
necessary in case N2= {0}, for then (29) suffices for the proof.

6. A theorem on derivation algebras. The set D of all derivations of a
nonassociative algebra % is a Lie algebra called the derivation algebra of ¥,
multiplication in © being given by [Di, D;]=D.D;— D,D;. Hochschild has
shown that any associative algebra % of characteristic 0 is semisimple if and
only if its derivation algebra ® is semisimple or {0} [S, Theorem 4.5]. We
generalize this theorem to alternative algebras %. Corresponding theorems for
Lie and Jordan algebras are known [5, Theorem 4.4; 11].

LEMMA 9. Let U be an alternative algebra of characteristic 0 with radical N.
Then the identity,

(42) Dz,z = R[z,z] - L[z,:] - 3[Lzy Rz] =0
for all x in N and all z in N, implies that N is contained in the nucleus of A.

In any alternative algebra % we have the identity [12, p. 126]

(43) [y, [% 211 + [= [z y]] + [5 [y, x]] = 6(=, », 2).
Now (42) implies, for all x, y in ¥ and z in N, the first equality in
(44) [y! [x' z]] = 3(x, y,2) = [xr [Z, y”

The second equality follows by interchange of x and y. It follows from (43)
that, for all x, y in ¥, z in N,

(45) [21 [yv x]] =0.

Let A =S +MN be a Wedderburn decomposition of %, and write x =s;+2,
y=s3+2 for s; in &, z; in N. Then [y, [x, 2]]=[s2, [s1, 2]1+ [52, [21, 2]] by
(45). However, [ss, [21, 2]] = [2, [s2, 21]] =0 by (44) and (45). Hence 3(x, ¥, 2)
= [y, [x, 2]]=[s2, [s1, 2]]. Now Lemma 4 implies that s;=c;+ 2_ [t;, t!] for
¢: in the center 8 of @. Then [sy, 2] = [cy, 2]+ D [[4, ¢/ ], 2] = [e1, 2] by (45),
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while [[t, #/ ], [c1, 2]] = [c1, [z, [tz 84 ]]] =0 by (44) and (45). Hence 3(x, v, 2)
= [sq, [s51, 2]] = [ca, [c1, 2]]=3(c1, €2, 2).

Let Q be the algebraic closure of the base field. Since U is of character-
istic 0, the radical of g is Ng. Thus, it is sufficient to prove that (¢, ca, 2)
=0 in case the base field is algebraically closed. But then any ¢ in B is a
linear combination of pairwise orthogonal idempotents e;, and (x, ¥, 2)
= (¢c1, €3, 2) 1s a linear combination of associators (e;, e;, 2) which are all zero
[12, §2]. Hence (x, y, 2) =0 for all x, y in X, z in N.

THEOREM 7. Let U be an alternative algebra of characteristic 0, and D be ts
derivation algebra. Then U is semisimple if and only if D is semisimple or {0}.

If % is semisimple, then D is the direct sum of the derivation algebras of
the simple components of Y. The associative components contribute a sum-
mand which is either semisimple or {0}. Moreover, the derivation algebra of
each Cayley component is simple, being an exceptional simple Lie algebra of
type G over the center of the Cayley component. Hence D is either semisimple
or {0}.

Conversely, suppose that D is either semisimple or {0} Let $q be the
subspace of © spanned by all inner derivations of U of the form (12), x in ¥,
z in M. It follows from the Jacobi identity that

[Dz,zv D] = Dx.zb + D.zD.z

for any derivation D of U. Since N is characteristic by Lemma 6, Ty is an
ideal of ©. Moreover, since R is nilpotent, Tx is solvable. Then, © being
semisimple or {0}, we have o= {0}, or (42) holds for all x in % and z in N.
By Lemma 9, the nucleus & of A contains N. Therefore R,— L, is a derivation
of A for every z in N. Let T now be the set of all R,— L, with zin N. As
before, g is a solvable ideal of ®, and therefore is {0}. Hence

(46) R,—L,=0 for all zin N.
But M=<® and (46) together express the fact that N is contained in the

center € of U.
Let =& +N be a Wedderburn decomposition of A. Then € is the direct

sum
E=3+N

where 3 is the center of & and, by Lemma 4, % is the direct sum
A=+ ¢

where &' is the commutator subspace of &. For z in # <€, we have z[a;, a,]
= [2a;, a;] =0 for a; in ¥, since za, is in N. Hence

(47) NS’ = {0}, €& <3 =<¢&.
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Similarly,
(48) e = {0}, ©SC=@.

Let Dg be any derivation of the associative commutative algebra €. The
linear transformation D on U defined by

s'D = 0, c¢D = ¢Dg

for s’ in &', ¢ in G, is a derivation of %, as may be checked, using (47) and
(48), by the same computation as that given in the proof of the corresponding
theorem for Jordan algebras [11, p. 294]. The remainder of the proof is
identical with the Jordan proof: since € is characteristic, any derivation D
of % induces a derivation Dg on €. Thus D—Dg is a homomorphism of D
onto the derivation algebra ©(€) of €. Therefore D(C) is semisimple or {0 ;
But then € is semisimple by Hochschild’s theorem, and its radical %t is {0}.
That is, A is semisimple.
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