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In this paper we apply to alternative algebras a definition of representa-

tion given by S. Eilenberg for nonassociative algebras satisfying multilinear

identities. The corresponding alternative module generalizes the notion of a

two-sided Sl-module as used in the study of associative algebras.

Our chief object is to use the representation theory to obtain the gen-

eralization to alternative algebras of the theorem of A. Malcev on the strict

conjugacy of semisimple components in Wedderburn decompositions. Since

every alternative algebra gives rise to a (special) Jordan algebra, and every

representation yields (Jordan) representations of this algebra, we can use

recent results of N. Jacobson on representations of Jordan algebras. Doing

this restricts our principal theorems to algebras of characteristic 0.

Following certain preliminaries concerning derivations and associators,

we prove the complete reducibility of representations of semisimple alterna-

tive algebras. We next prove the first Whitehead lemma for alternative

algebras, generalizing G. Hochschild's result for associative algebras. This is

sufficient to prove the Malcev theorem in case the square of the radical is {0 {.

For all other types of algebras for which this theorem is known (Lie, associa-

tive, and Jordan), an inductive argument then suffices to complete the proof

for an arbitrary radical. In the case of alternative algebras, however, with-

out a stronger form of the Whitehead lemma a certain associativity condition

would invalidate the inductive argument. Using the complete reducibility,

we prove that this stronger form holds, and employ it in the proof of the Mal-

cev theorem.

In the concluding section we prove a generalization of a theorem due to

Hochschild which, although independent of the representation theory, is re-

lated to our other results: an alternative algebra (of characteristic 0) is semi-

simple if and only if its derivation algebra is semisimple or {0}.

We are indebted to Professor Jacobson for allowing us to see his paper,

General representation theory of Jordan algebras, in manuscript form, and also

for giving us valuable advice in connection with the proof of Theorem 2.

1. Representations and semidirect sums. A (nonassociative) algebra

SI over a field F is called alternative in case

(1) x{yy) = (xy)y,        {yy)x = y{yx)

for all x, y in SI. Clearly every associative algebra is alternative. Linearization
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2 R. D. SCHAFER [January

of the identities (1) yields the fact that the associator

(2) (x, y, z) = (xy)z - x(yz)

"alternates" : it changes sign under an odd permutation of the letters x, y, z,

but remains unchanged under an even permutation. The most economical

statement of this fact is

(3) (x, y, z) = - (y, x, z) = (z, x, y)

for all x, y, z in 31. If the characteristic of F is not two, then the identities (3)

define an alternative algebra.

Let 23 be a vector space over F. Following Eilenberg [3, §2](2), we define

a representation of 31 as a pair of linear mappings x—>SX, x—+Tx of 31 into the

algebra of all linear transformations on 23, satisfying

\^) [-Í u *JzJ   = wjí O :cOz  =   ■*■ zx      '   J- z-l z   ~    l/J i,   L z\

for all x, z in 31, where [X, Y] denotes the commutator XY— YX. We write

(S, T) for the representation. The representation space 23 in which (5, T)

acts is made into an alternative module by defining

vx = vSx,        xv — vTx

for v in 23, x in 31. Assumption (4) becomes

(5) (x, v, z) = — (v, x, z) = (z, x, v) = — (z, v, x)

for all x, z in SI, v in 23, where the associator is defined as in (2) except that

one argument is in 23. The identities (5) are equivalent to the assumption

that every associator with one argument in 23 and two in 31 "alternates." It

cannot be reduced to the equality of three terms (as in (3)) because the argu-

ments do not enter symmetrically. The concept of an alternative module is a

generalization of that of a two-sided 3I-module(3) for associative algebras 31.

It should be noted that, even if a particular alternative algebra 31 is associa-

tive, an alternative module for 31 need not be a two-sided 3I-moduIe; in the

latter case all of the associators (5) would vanish (4).

Every alternative algebra 31 over F has a representation; namely, the

regular representation (R, L) where Rx and Lx are the right and left multiplica-

tions defined respectively by y-^yx and y—*xy for all y in 31. In this case 31

itself is the alternative module. We have the identities

[Lx, Rz\ — Rxz — RxRz = Lzx — LxLz
(o) r i

-    [-tVj;, i^z]   =   JV¿JVx -K-zx  =  L'zL'x i->xz-

(2) Numbers in brackets refer to the references cited at the end of the paper.

(3) See [5, Definition 2.1].

(4) For example, let 21 be a quaternion subalgebra of a Cayley algebra (L Then E is gen-

erated by Si and an element z such that (x, y, z) ^0 for some x, y in St. Hence S is an alternative

module for ÎT, but not a two-sided Si-module.
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1952] REPRESENTATIONS OF ALTERNATIVE ALGEBRAS 3

More generally, if 31 is any subalgebra of an alternative algebra 23 over F

and if 23 is an ¡deal of 23, then the regular representation of 23 induces a repre-

sentation of 31 acting in 23.

For any representation (S, T) of 31 with corresponding alternative module

23, we define an algebra 23=31+23, called the semidirect sum of 31 and 23, as

follows. Let 23 be the direct sum of the vector spaces 31 and 23 over F, and

define multiplication in 23 by

(x + v)(z + v') = xz + (vz + xv') = xz + (vSz + v'Tx)

for x, z in 21, v, v' in 23. Then it is readily verified that, since 23 is an alternative

module, 23 is an alternative algebra. Moreover, 23 is an ideal of 23, 232 = {O j,

and the representation (S, T) of 31 in 23 is induced by the regular representa-

tion of 23.

Let (5, 7") be a representation of 31 acting in 23. A subspace 2B of 23 is

called invariant in case 235x^213 and 2BJ'a;^2B for every x in 31; that is,

ivx and xw are in 2B for every w in 2B and x in 31. We call (S, T) an irreducible

representation of SI in case the only subspaces of 23 which are invariant are {0}

and 23. Equivalently, the invariant subspaces of 23 are those ideals of the

semidirect sum 23=31 + 23 which are contained in 23, and a representation of

31 is irreducible if and only if 23 does not contain properly any nonzero ideal

of 23.
Let 31 be any alternative algebra over F. A new algebra 31+ may be defined

by introducing a new multiplication

x-z = xz + zx

in 31. Then 31+ is a special Jordan algebra (that is, is isomorphic to a Jordan

algebra of matrices) (6). For, if 31 does not have a unity element, it is necessary

only to adjoin one to 31 to obtain SI^SIi, an alternative algebra with unity

element. For x in 3t^3Ii, consider the one-to-one linear mapping x—>Rx where

Rx is the right multiplication for SIi. From (6) we have

Rxz = Rxz+zt = RxRz + R?RX,

or x—>RX is an isomorphism between 31+ and the special Jordan algebra of all

the Rx.

Let (S, T) be a representation of the alternative algebra 31. Then x—>SX

and x—*Tx are special Jordan representations [7, §2] of 31+ acting in 23, since

(4)  (together with the equalities which follow by interchange of x and z)

implies Oj.j = Oxz-f-za; = <Ja;Oz-r"wjOj ano l x.z = l Xz+zX = l xl z~r~* zJ- x* Also x  m^

where

(7) S+x = Sx + Tx

is a (general) Jordan representation S+ of 3I+. We may check this by direct

(6) See [1, §5],
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substitution of (7) and (4) in the defining identities for a Jordan representa-

tion, or more readily by the following observation: if 23 is the semidirect

sum 23 =21 + 23, then 23 is alternative so that 23+ is a (special) Jordan algebra.

Now the elements of 23 form a (Jordan) ideal of 23+. Therefore the (Jordan)

regular representation of 23+ induces a (Jordan) representation of the sub-

algebra 3I+ acting in 23. This Jordan representation of 3I+ is exactly the map-

ping S+. The representation space 23, equipped with the new composition

v-x = x-v = vS x = vx + xv,

is a Jordan module which we shall denote by 23+, and 23+ is the (Jordan)

semidirect sum 23+=SI++23+.

The radical 9Î of an alternative algebra 21 is its maximal nilpotent ideal,

and 31 is called semisimple in case 3Î = {0}. A. A. Albert has shown [l, p. 328 ]

that, if SI is a (right) alternative algebra over F of characteristic 0, then the

radical of the Jordan algebra 3I+ is exactly 9t+. Hence, if 31 is semisimple, then

so is 3I+.

2. Some lemmas on derivations and associators. A derivation of a non-

associative algebra 3Í over F is a linear transformation D on 81 satisfying

(8) (xy)D - x(yD) + (xD)y

for all x, y in 31. If 31 is a subalgebra of a nonassociative algebra 23, then a

linear mapping D of 31 into 23 satisfying (8) is called a derivation of 21 into 23

[5, p. 688]. In [10, §3] we determined the derivations of semisimple alterna-

tive algebras of characteristic 0(6). We shall require some of the same formulas

here.

It is readily verified that (6) implies

(9) [Rx, Rz] = R[x,z) - 2[LX, Rz],

(10) [Lx,Lz] - -£[.,,] - 2[Lx,Rz],

(H) [Ly,   [Lx, Lz\¡   =   Lly,[x,z)}-2(x,y,z),

and

[Ry,    [Rx,   Rz\\   =   R[y,[x,z}]-2(x,y,z)-

Also, if the characteristic of F is not two, then

Dx.z = [Rx, Rz] + [Lx, Rz] + [Lx, Lz]

= R[x,z] — L[x,z] — 3[LX, Rz\

is a derivation of 3Ï for all x, z in 3IV and hence

(6) We take this opportunity to remark that, whereas in [lO] we proved that these deriva-

tions have the form (17), it is easy to see that they have the more special form (13). We have

shown this for the Cayley components [10, Theorem 6]. For the associative components the

conclusion follows from (25) and (12). See also Theorem 5
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1952] REPRESENTATIONS OF ALTERNATIVE ALGEBRAS 5

(13) Ö- Eß.,,

is a derivation of SI.

If SI is any nonassociative algebra over F, then the subset ® of 31 con-

sisting of all g in 31 satisfying

(14) (*, y, g) = (at, g, y) = (g, x, y) = 0,

for all x, y in 31, is easily seen to be a subalgebra of 31. R. H. Brück and E.

Kleinfeld [2] have recently called this subalgebra the nucleus of 3Í, and we

shall adopt their terminology. For an alternative algebra 21, (14) becomes

(*■ y, g) = o

for all x, y in 21.

In any nonassociative algebra 2Í, we call the subspace *$ which is spanned

by the associators (x, y, z) in 21 the associator subspace of 21. For any deriva-

tion D we have

(15) (x, y, z)D = (xD, y, z) + (x, yD, z) + (*, y, zD).

It follows that the associator subspace $ of 21 is characteristic; that is, tyD ^ty

for any D. Also the nucleus ® of any nonassociative algebra is characteristic,

as may be seen by replacing x, y, z in (15) in turn by g in ®.

For any g in ©,

(16) D=R„-Lg

is a derivation of 21, as may be verified by the same simple computation

which establishes this fact for associative algebras. In the case of alternative

algebras we have the converse.

Lemma 1. If SI is an alternative algebra of characteristic not three, and if (16)

is a derivation of 31, then g is in the nucleus ® of 31.

For (8) implies (x, y, g) + (g, x, y)-(x, g, y)~3(x, y, g)=0 for all x, y

in Sí.
We shall call any derivation of an alternative algebra 31 which is a sum

(17) D - R, - L„ + £ D,{,,v gin®,

an inner derivation of SI(7).

In any nonassociative algebra the identity

(18) (ab, c, d) — (a, be, d) + (a, b, cd) = a(b, c, d) + (a, b, c)d

C) That neither (16) nor (13) may be suppressed in our definition is seen from the fol-

lowing examples. If 31 is an associative, but not commutative, algebra for which 2l3= ¡0|, then

every derivation (13) is 0, while some derivation (16) is not. If ?I is a Cayley algebra, then

every derivation (16) is 0, while every derivation of ?I is of the form (13).
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6 R. D. SCHAFER [January

holds [13, (1.2)]. Therefore, in an alternative algebra 31, we have (x, yz, t)

= - (yz, x, t) + (t, yz, x) - (x, t, yz) =2(y, z, xt) -y(z, x, t) - (y, z, x)t-t(y, z, x)

— (t, y, z)x — x(t, y, z) — (x, t, y)z by (18). Interchanging x and /, and sub-

tracting, we have 2(x, yz, t) =2(y, z, [x, t])—2y(z, x, t) + 2(t, x, y)z or, if the

characteristic of F is not two(8),

(19) (x, yz, t) = (y, z, [x, t]) - y(z, x, l) + (/, x, y)z.

Interchange y and z in (19) and subtract to obtain

(20) (x, [y, z], t) = 2(y, z, [x, /]) -  [y, (z, X, t)] + [(/, x, y), z].

Lemma 2. Let 31 be an alternative algebra of characteristic not two, with

nucleus ® and associator subspace ty. Then

(21) [x, g] is in ®

for all x in 31, g in ®, and

(22) [p, g] = 0

for all p in $, g in ®.

To obtain (21) we put t=g in (19). It is sufficient to prove (22) for any

associator p = (t, x, y). In view of (21), this follows by putting z = g in (20).

Lemma 3. Let 21 be an alternative algebra of characteristic not two. Then g in

the nucleus ® of 31 implies

(23) (/, y", yg) = (/, y", gy) = (/, y", y)g = g(y', y", y)

for all y, y', y" in 31.

Clearly (/, y", yg) = (y', y", y)g, and (y', y", gy) = (gy, y', y") =g(y, y', y").

But [y, g] in ® by (21) implies (/, y", yg) = (y', y", gy).

The structure of semisimple alternative algebras is well known. Any

such algebra is the direct sum of simple ideals which are either associative or

are Cayley-Dickson algebras over their centers [9, §l](9). For brevity we

shall refer to any simple alternative algebra which is not associative as a

Cayley algebra even though its center is not F.

An alternative algebra © is called separable in case it is semisimple for

all scalar extensions; equivalently, © is a semisimple algebra in which each

simple component has a separable center. It follows that if the characteristic

(8) It has subsequently come to our attention that an identity equivalent to (19) is

proved in [2, (2.9)]. Since the proof there makes no assumption on the characteristic, formula

(20) and Lemmas 2 and 3 are valid for arbitrary F. Also our formula (21) is implied by [2,

Lemma 3.2 (i)].

(9) The center of a nonassociative algebra is the set of all elements c in the nucleus for

which [x, c]=0 for every x. The center is a characteristic subalgebra, and in the case of a simple

alternative algebra is a field.
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1952] REPRESENTATIONS OF ALTERNATIVE ALGEBRAS 7

of F is 0, any semisimple algebra over F is separable.

Lemma 4. Let © be a separable alternative algebra of characteristic not two.

Then © is the direct sum

(24) © = ® + $

of the nucleus ® and associator subspace 'Ço/©. If © « o/ characteristic 0, /Äew

© »i íAe direct sum

(25) © = 3 + ©'

o/ the center 3 o/ © aw¿ ¿Ae commutator subspace ©' = [©, ©] spanned by all

commutators [x, y] in @.

Because © is separable, we may take the base field F to be algebraically

closed, so that the center of each simple component is F. A direct sum argu-

ment reduces the proof to the case where © is simple. If © is associative,

then (24) is trivial since © = © and ty = {0} ; also in this case (25) is well

known. If © is a Cayley algebra, then © =$ =eF where e is the unity element

of ©, and it is readily verified that '$ = ©' is the subspace consisting of ele-

ments of trace 0.

Lemma 5. Let 23 be an alternative algebra of characteristic not two, and let

S be a Cayley subalgebra of 23. If the center of S is separable, then S is mapped

into {o} by every inner derivation o/23 of the form (16).

We first remark that S is generated by its associator subspace ^30 = £n^3.

For, since 6 is separable, it is sufficient to verify this in case F is alge-

braically closed, in which case dim 6 = 8 = l+dim ^30 by (24). If "¡ßo does

not generate S, then tyo is itself a subalgebra. But then (24) implies that ^So

is an ideal of S, a contradiction, since ß is simple. Hence $o generates S,

and it follows from (22) that (16) maps Ë into {o}. For we have not only

[p,g]=0, but also [pip2,g]=pi[p2,g]+ [pi,g]pi = 0, since (16) is a derivation.

Lemma 6. The radical yt of any alternative algebra SI of characteristic 0 is

characteristic.

An element z in SI is in 9Î if and only if the trace of Lxz is zero for every x

in SI [l, §8]. For z in 9Í and any derivation D of SI, we have

tia.ce LxizD) = tr&ce L(xz)d-(xd->z = trace [Lxz, D] — trace L(xd)z = 0,

or zD is in 9Í.

Lemma 7. Let D be an inner derivation (17). Then, for all g in ©ASÍ, *< in

31, and Zi in 9Î, the derivation D is nilpotent.

For we have shown [9, p. 608] that

(26) 3Í = W >W> ■ ■ ■ >5TC'= {0},
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where each 9?' is an ideal of SI. Let y be arbitrary in 31. Then yD' is in 9?' for

j = \, 2, ■ ■ ■ . Hence yDr = 0,Dr = 0.

The analogue of Lemma 7 for Jordan algebras is proved in [7 ] for algebras

of characteristic 0 as a corollary to a theorem on representations of Jordan

algebras [7, Theorem 8.1 ]. Although we do not require the analogous theorem

on representations of alternative algebras for the proof of Lemma 7, we prove

the theorem below and remark that Lemma 7, for algebras of characteristic

0, is a corollary to part (c).

Let (S, T) be a representation of an alternative algebra 31. For any sub-

space 90c of SI, we denote by 5(9J?) and T(Wl) respectively the sets of all Sx and

Tx for x in 9J?. We write ¿7(9J?) = 5(9)?)+ 7X9J?) for the set of all Sx+Ty with

x, y in 9J?. The respective enveloping associative algebras are denoted by

5(93?)*, T($fl)*, ¿7(9)?)*.

Theorem 1. Let SI be an alternative algebra of characteristic 0, and (5, T)

be a representation o/3I. If 9? is the radical of 31, then

(a) 5(9?) is contained in the radical of 5(31)*,

(b) 7X9?) is contained in the radical of 7X31)*,

(c) ¿7(9?) is contained in the radical of t/(2l) *.

Statements (a) and (b) are immediate corollaries of [7, Theorem 8.1].

For 31+ is a Jordan algebra of characteristic 0, and 9?+ is its radical. Since 5

and T are Jordan representations of 3I+, we have (a) and (b). However, a

separate proof must be given for (c).

The fact that ¿7(9?)* is nilpotent may be verified by only a slight modifica-

tion of the proof of [9, Lemma l]. Formulas for 5 and T analogous to (9)

and (10) imply

(27)        [Tx, Sz] = - Tlx,z]/2 - [Tx, Tz]/2 = S[x,z]/2 - [Sx, S,]/2.

Using the analogue of (11), we have

[Ty,     [Tx,Sz\\     —     T(x,y,z)    +     [Ty,   S[X,z)\.

Similarly,

Ivi/i   l* ïi "J«J J   ==  ^íx,y,z) [-I y, ¿> [x,z]\.

It follows that the Lie enveloping algebras of ¿7(9?) and ¿7(31) are Ä=5(9?)

+ 7X9c) + [r(9c), 5(9?)] and ?= 5(31) + 7X31) + [7X31), 5(31)]. Let O =5(9?)
+ 7X9?)+[7X9Î), 5(31)]. Since 9? is an ideal of 31, these identities, together

with the Jacobi identity, imply that [£>, ?]gO, [$, O] ^ ft. Hence O is an

ideal in 8 and $ an ideal in Q; that is, Ä is subinvariant(10) in 2. Since

®* = i/(9?)*, it follows from [7, Theorem 7.2] that the radical of Í7(SI)* con-

tains ,f, and therefore also contains ¿7(9?) as desired.

It is clear that 5(31) and 7X31) are Lie triple systems [7, §l]. However, in

(10) See [7, §7].
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1952] REPRESENTATIONS OF ALTERNATIVE ALGEBRAS 9

general ¿7(31) =5(31) + 7X31) is not, as may be seen by consideration of the

regular representation of a Cayley algebra.

3. Complete reducibility. Let (5, 7") be a representation of an alternative

algebra 31 acting in 23. We shall call (5, T) completely reducible in case, for

every invariant subspace 20 of 23, there is a complementary invariant sub-

space SB' such that 23 is the direct sum 23 = 233 + 23'. This is equivalent to the

condition that ¿7(31) = 5(31) + 7X31) be a completely reducible set of linear

transformations.

The proof we give of the complete reducibility of any representation of

a semisimple alternative algebra of characteristic 0 is based on the theory of

completely reducible Lie algebras of linear transformations [6]. A Lie algebra

of linear transformations (of characteristic 0) is completely reducible if and

only if 8=8'©S where the derived algebra 8' = [8, 8] is semisimple, and the

center S consists of elements with simple elementary divisors [6, Theorem 1 ].

N. Jacobson has kindly allowed us to include here the following lemma.

Lemma 8 (Jacobson). Let 8 be a Lie algebra of linear transformations of

characteristic 0 such that 8 = 90?+ 9? where 90? and 9? are ideals of 8 and are

completely reducible. Then 8 is completely reducible.

Let S be the center of 8, Si that of 90?, 62 that of 9?. We prove first that

S,-^S. We know that, if C\ is in 61, then C\ has simple elementary divisors.

This is equivalent to the statement that the minimum polynomial /¿(\) of

C\ has distinct roots. Thus (p'(X), p(\)) =1, and /¿'(G) is nonsingular. Let AT

be in 9?. Since [Si, 9?] g Si, C{ » [G, N] commutes with &. Hence [m(G), N]

= fi'(Ci)C{ =0 and, since tt'(G) is nonsingular, C{ =0. Thus [Si, 9?] = {o}

and [Si, 8]={0}. Similarly [S2, 8] = {o}. Next consider 8' = 90?'+[90?, 9?]

+9?'. Since [90?, 9?] = [90?', 9?] + [S,, 9?] = [90?', 9?] ̂ 90?', we have 8' = 90?'+9?'.
Now 8'/90?'^9?7(90?'n9?') is semisimple and 90?' is semisimple. Hence 8' is

semisimple. Next 8=90?+9? = (90?' + 9?') + (Si + S2) =8' + (Si + S2) and 8'
n(Si + S2) = {0}. It follows that Si + S2 = S. If G is in Si, G in S2, then
G + G has simple elementary divisors(u). Thus every element of S has

simple elementary divisors, and this completes the proof.

Theorem 2. Let % be a semisimple alternative algebra of characteristic 0.

Then any representation (S, T) of 31 is completely reducible.

We need to show that ¿7(31) =5(3I) + 7,(SI) is a completely reducible set of

linear transformations. We do this by showing that the enveloping Lie

algebra 8 of ¿7(31) is a completely reducible Lie algebra.

If 8S and 8r are the Lie enveloping algebras 8s =5(31)+[5(31), 5(31)],

(") A short proof of this well known fact may be given as follows. The algebras F[Ci ]

and F[Cí] are semisimple. The algebra F[&, C2] is a homomorphic image of F[Ci]XF[C2],

and the latter is semisimple. Hence F[C¡, d] is semisimple, and all of its elements have simple

elementary divisors.
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8r = 7XSÍ) + [7XSI), 7XSI)] of 5(31) and 7X31) respectively, then (27), with the
Jacobi identity, implies that 8=8s+8r where 8s and 8r are ideals of 8.

Since 5 and T are (Jordan) representations of the semisimple Jordan algebra

3Ï+, we know that 8s and 8r are completely reducible [7, Corollary 8.1 ]. The

theorem follows from Lemma 8 by setting 90?=8s, 9?=8r-

Remark. Jacobson has observed that the universal associative algebra of

the representations of an alternative algebra is finite-dimensional [7, §§3, 6].

This simply means that the dimensionalities of the enveloping algebras of

the representations have a fixed upper bound. One can see this by observing

that, if Ui, uz, ■ ■ ■ , u„ is a basis of 3Í. then any element of the enveloping

associative algebra S= ¿7(31)* is a linear combination of elements S^S^2 • ■ ■

S^T^+i ■ • • Tf£, e,=0, 1. This follows easily from SxSz+SzSx = SXz+zx,

TxTz-\-TzTx = TXz+zx, SxTz—TzSx = Sxz — SxSz. Thus dim ©;=22n. This has the

usual consequence that there are only a finite number of inequivalent ir-

reducible representations.

4. The first Whitehead lemma. We begin by proving a theorem for

alternative algebras which is a generalization of the first Whitehead lemma

for associative algebras [5, Theorem 2.2]. Our theorem is a corollary to the

analogous theorem for Jordan algebras  [7, Theorem 9.1].

Theorem 3. Let SI be a semisimple alternative algebra of characteristic 0

with representation (5, T) acting in 23. Let v be a i-cocycle o/SI, that is, a linear

mapping of 31 into 23 such that v(xy) = xv(y)-\-v(x)y = v(y)Tx-\-v(x)Sy holds for

all x, y in 31. Then, if 23 is the semidirect sum 23 = 31 + 23, there exist elements

Xi, x[ in 31, Zi, z'i in 23, such that

(28) g~Ti*Ui

in 23 is in the nucleus © of 23, and

(29) v(y) =  [y, g] + £ yDx^ = yD

for every y in 31, where D is the inner derivation (17) o/23.

For proof, we observe that 31+ is a semisimple Jordan algebra and that 5+

defined by (7) is a Jordan representation of 3l+ acting in 23+. Moreover,

v(x-y)=v(xy)-]rv(yx)=x-v(y)-\-v(x)-y, so that v is a mapping satisfying the

requirements of the first Whitehead lemma for Jordan algebras. Hence there

exist elements a,- in SI and v, in 23 such that

Áy) = Z y[Rt„ RtA = Z y[Rai + ¿«„ X.t + Ut\

= Eyk.,+ [Lai,Rn]]

= tZ y{Rici,v¡] — Llai,Vi] + 2Dai,Vi\
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by (12). That is, (29) holds for g in (28) where x< =(l/3)ait Xi = (2/3)ai}

z'i =Zi = Vi. Now the linear transformation D on 23 defined by vD =0 for v in

23 and yD =v(y) for y in SI is a derivation of 23. Also D has the form (17) ex-

cept that it has not yet been proved that g is in ®. However, D— ^DXi,Zi

= R0 — La is a derivation of 23 since D and ££>„,,„< are. It follows from Lemma

1 that g is in ©.

To see that Theorem 3 includes the first Whitehead lemma for associative

algebras, we observe that, if 31 is associative and if 23 is a two-sided Si-module,

then the semidirect sum 23=31+23 is associative, and DXi,Zi in (29) becomes

Rixi,zi]—L[Xi,zi] because the last term of (12) vanishes. Thus v(y) = [y, g']

where g'=g+ £[x¡, *,-] = Ek, vt] is in [31, 23] ̂ 23.
In the proof of the Malcev theorem in the next section, we shall require

a stronger form of the first Whitehead lemma for alternative algebras.

Theorem 4. Let the hypotheses be as in Theorem 3. Then we may take g = 0

in (29) so that

(30) v(y) = Z yD*t.«

for Xi in SI, Zi in 23.

Since (5, T) is completely reducible by Theorem 2, it may be expressed in

a natural way as a sum of irreducible representations acting in invariant sub-

spaces of 23. Also v may be expressed as the sum of corresponding mappings

into these subspaces. Therefore we may assume that the given representation

(5, T) is irreducible.

It is sufficient to show either that

(31) [y, g] = 0

for every y in SI, or that

(32) Z (*.'< y, z'i) = o

for every y in 31 (where x¡, z¡ are as in Theorem 3). The sufficiency of (31)

is obvious. On the other hand, (32) implies that £(3x,', y, zi ) = Z(ai< y, vf)

= XM-ka,. Rvi] =0 so v(y) = Zy{D°i.vi+ [Lai, RVi]} = ZyD«i.v¡ in the de-
sired form.

Let3I = @i© • • • ©©¡for simple ©y, and let e¡ be the unity element of ©y.

Consider the Peirce decomposition of 23 relative to the pairwise orthogonal

idempotents e¡, j — 1, • • • , t. We have 23 the direct sum

23 =  ¿ 23u
¿,fc=o

where vik is in 23,* if and only if

(33) vu, is in 23,       epik = 8«t>ít,        Vike¡ = Skflik,
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(Kronecker delta). The properties of a Peirce decomposition [12, §2; 13, §4]

readily imply that

(34) (e¡, x, z) = 0

for x in 31, 3 in 23, and

(35) (xj, Xi, z) = 0 if i fà j

for Xj in ©y, Xi in ©,-, z in 23. Using (33) and (34), it is easily verified that, since

232= {OJ, each of the subspaces 23,* is an ideal of 23. The irreducibility of the

representation (5, 7") is equivalent to the assumption that there are no non-

zero ideals of 23 properly contained in 23. Hence all but one of the 23,* are

zero, and

23= 23a

for some fixed pair of subscripts i, k (O^i, k^t).

In case i = 0 or k=0, we have (x, y, z) =0 trivially for x, y in 31, z in 23.

For example, if i = 0, then z = vok implies (x, y, z) = {(xy) ZeAv°k

— x{(yZei)vok} =0 by (34) and the fact that e^0* = 0 for ;'"1, •••,(.

Therefore, in case i = 0 or k =0, (32) is satisfied, and we may take 23 =23,* for

some fixed pair i, k (1 ;£•, k¿t).

We shall now show that, in case either ©< or ©* is associative, the intersec-

tion ®o = 23H® of 23 and the nucleus © of 23 is an ideal of 23. For elements g = gik

in ©o = 23 = 23,* and b=y+v in 23 (y in 31, v in 23), we have bg and gb in 23 and

shall show that (b', b", bg) =(b', b", gb) =0. Write y= Zví, Vi in ©/• Since
232={0},   (23)  and   (35)   imply  (b',  b",   bg) = (b',  b",  gb) = (y',  y",  gy)

= (/. y", y)gik= Ziyi!, yi", yy)g¿* = Ziyi, y/'. y¡)gik = Ziyi, yl', y^gik
= iyí, yí', yi)gik=0 in case ©< is associative, while similarly (b', b", bg)

= (b', b", gb)=gik(y', y",y)=gik(yi, y*",y*)=0 in case ©* is associative.

Hence, in either case, bg and gb are in ®o = 23n®, and ®o is an ideal of 23.

By the irreducibility of the representation, either ®0=23 or ®0= {o}. In the

first case (32) holds; in the second, g=0 implies (31).

There remains the case where neither ©,■ nor ©fc is associative; that is,

each is a Cayley subalgebra of 23. Compute [y, g] = [y, gik] =Z h h gik] =y,g>*

-gikyk- We have

r     ,      ibi, gik] + [yk, gik] Ui^k,
(36) [y, g] =  <. , .

i[yi, gui if î = k.

But [yu g] = [y*, g]=0 by Lemma 5. Then (36) gives (31), completing the

proof.

As in [5, Theorems 3.1, 3.2] it is readily seen that Theorem 4 is equivalent

to

Theorem 5. If 31 is a semisimple subalgebra of an alternative algebra 23 of
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characteristic 0, then any derivation o/3l into 23 can be extended to an inner deriva-

tion (13) 0/23.

5. The Malcev theorem. We have shown in [9] that the Wedderburn

principal theorem for associative algebras generalizes to alternative algebras

over an arbitrary field F. That is, if 31 is an alternative algebra with radical

9?, and if 3Í/9? is separable, then 31 may be expressed as the direct sum

(37) 21 = © + 9?,

where © is a separable subalgebra of 21 isomorphic to 2Í/9?.

The subalgebra © in the Wedderburn decomposition (37) need not be

unique but if 2l = ©i + 9? is another such decomposition, then Malcev has

shown that, in case 21 is associative, ©i can be mapped onto © by an inner

automorphism of 31 of a special type [8 .Theorem 2]. We shall generalize his

result to the case of alternative algebras, but only for those of characteristic

0. For, following the proofs of Harish-Chandra [4] and Jacobson [7] for Lie

and Jordan algebras, we base the proof of this theorem on the Whitehead

first lemma. The automorphism in question has the form (38) below(12).

If SI is a nonassociative algebra of characteristic 0, and if D is a nilpotent

derivation of Si, then

D2     D3
(38) G = expD = I + D-\-1-h • • ■

2!      3!

is an automorphism of 31. Two subalgebras of SI are called strictly conjugate

[7, §9] if one is mapped onto the other by an automorphism of the form

GiGi ■ ■ ■ Gk, G=exp Di, Di a nilpotent derivation.

Theorem 6. Let 31 be an alternative algebra of characteristic 0 with Wedder-

burn decomposition 31 = © + 9?, and let 90? be a semisimple subalgebra of 31.

Then 90? is strictly conjugate to a subalgebra of © under an automorphism G

= exp D of SI where D is a derivation of 31 and D is in the radical 3Î of the en-

veloping associative algebra of the right and left multiplications of 31.

The proof is essentially the same as those for Lie and Jordan algebras [4,

Theorem 2; 7, Theorem 9.3]. We prove by induction on k that there is an

automorphism G'=exp D' of 31 mapping 90? into © + 9Î* for D' in 3?. The

case k = \ is given by D'= 0. By (26) the case k=r establishes the theorem.

We assume that G = exp D, D in 9?, maps 90? onto 90?* á© + 9?*, and shall show

that there exists D in 9? such that G = exp D maps 90?* into © + 9?i+1. The

C2) Note that, in case 21 is associative and of characteristic 0, the automorphism G

= exp(Rz—Lz) for z in 9Î reduces to Malcev's inner automorphism a-^a — ax—x'a+x'ax gen-

erated by an element x in 9? (where x', the quasi-inverse of x, is the unique solution of xx'=x'x

= x+x'). For we may take x= -z-z"/2l-za/3\ — • • • in 91 and x'= -x-x2-x3- ■ ■ ■

=z-z2/2!-|-z73!- • • • .
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Campbell-Hausdorff formula

exp D exp D = exp (D + D + (1/2) [D, D] -\-)

implies that G'=GG=exp D' for D' in 9Î as required.

Every x in 90?* may be written uniquely in the form x=a(x)-\-v(x) where

cr(x) is in © and v(x) is in 9?*. The mappings x—><r(x) and x—>v(x) are linear.

Also xy =a(xy)+v(xy) =<r(x)<r(y) +<r(x)v(y) -r-v(x)<r(y) +v(x)v(y) so that

(39) a(xy) = a(x)a(y)

and

(40) v(xy) = a(x)v(y) + v(x)a(y) + y(x)i'(y).

Since (7 is a homomorphism of 90?* into © by (39) and the 9?! are ideals of 31,

the mappings x—>R<,(X), x—>La(X) induce a representation (5, 7") of 90?* acting

in 9?*/9?*:+1. Write d, â(x), v(y) for the residue classes modulo 9?*+1 of a, er(x),

v(y) respectively. Then (5, T) is defined by

zx = zSx = zâ(x),        xz = zTx = a(x)z

for i in 9?79?*+\ x in 90?*.
Since (9?*/9?i:+1)2= {o}, it follows from (40) that the mapping y—>v(y) is

a 1-cocycle of 90?*. By Theorem 4 there exist elements x,- in 90?*, z, in 9ÎV9?*"1"1

such that v(y) = ZyDx¡¿i so that

(41) v(y) - Z <r(y)D.(.(i„t (mod 9?*+1)

for Xi in 90?*, s< in 9?*. The mapping D = — ^T)«,^),^ is a nilpotent derivation

of 31 by Lemma 7; hence G = exp D is an automorphism. Actually D is in

9? by Theorem 1 (c). For y in 90?*, we have yG = a(y)G-\-v(y)G — o-(y)-\-a(y)D

+ • • • +v(y)-\- ■ ■ ■ , where the terms denoted by • • • belong to 9?*+1.

HenceyG=(r(y)+a(y)D+v(y) =ff(y) (mod 9?*+1) by (41), or 90?*G = © + 9?*+1

as desired.

Corollary 1 (The Malcev Theorem). If SI has Wedderburn decomposi-

tions 3I = ©+9? = ©i+9?, then ©i is strictly conjugate to © under an auto-

morphism G = exp D, D in 9Î.

Corollary 2. Any semisimple subalgebra of 31 can be imbedded in the semi-

simple component of some Wedderburn decomposition of SI.

We needed the strong form of the first Whitehead lemma because, if we

had taken v(y) = [y, g] + ZyD*i¿i< we would have v(y)=[cr(y), g]

+ X^CvOTJ.Kxi) ,*,- (mod 9?*+1) for a representative g of g, where g is in the

nucleus of 31. But there is no guarantee that g may be chosen in the nucleus

of 31. If we cannot do this, R0—Lg is not a derivation. On the other hand,

ZDvíxí) .zi is always a derivation of SI.

For example, consider the alternative algebra SI with basis e, 8i, z2, z$ and
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multiplication table

Zl

z2

Zl        z2        z3

e Zi z2 0

0 0 z3 0

0 -Z3 0 0

Z3 0 0 0

The radical of 31 is 9? = (z\, z2, zs) and 31 = e7"+9? is a Wedderburn decomposi-

tion of 31. The nucleus of SI is W = z%F. Now 31= SI/9?2 is associative. Hence

Zi in 9? = 9?/9?2 is in the nucleus of 3(, but there is no g in zi such that g is in

the nucleus of 31.

It is to circumvent this difficulty with the passage from the nucleus of SI

to the nucleus of 31 that we have established Theorem 4. This would be un-

necessary in case 9?2 = {0}, for then (29) suffices for the proof.

6. A theorem on derivation algebras. The set 3) of all derivations of a

nonassociative algebra 31 is a Lie algebra called the derivation algebra of SI,

multiplication in © being given by [Dlt D2] =DiZ?2 — DtDx. Hochschild has

shown that any associative algebra 31 of characteristic 0 is semisimple if and

only if its derivation algebra 3) is semisimple or {o} [5, Theorem 4.5]. We

generalize this theorem to alternative algebras SI. Corresponding theorems for

Lie and Jordan algebras are known [5, Theorem 4.4; 11 ].

Lemma 9. Let 3Í be an alternative algebra of characteristic 0 with radical 9?.

Then the identity,

(42) Dx,z = R(x,z] - Llx,z] - 3[Lx, Rz] = 0

for all x in SI and all z in 9?, implies that 9? is contained in the nucleus of 31.

In any alternative algebra 31 we have the identity [12, p. 126]

(43) [y, [x, z]] + [x, [z, y]] + [z, [y, x]] = 6(x, y, z).

Now (42) implies, for all x, y in 31 and z in 9?, the first equality in

(44) [y, [x, z]] = 3(x, y, z) =  [x, [z, y]].

The second equality follows by interchange of x and y. It follows from (43)

that, for all x, y in SI, z in 9?,

(45) [z,[y,x]]=0.

Let 31 = @+9? be a Wedderburn decomposition of 31, and write x = si+Zi,

y = s2+z2 for Si in ©, z,- in 9?. Then [y, [x, z]]= [s2, [si, z]]+[s2, [zu z]] by

(45). However, [s2, [zu z]]= [z, [s2, zi]] =0 by (44) and (45). Hence 3(x, y, z)

= [y, [x, z]]= [si, [si, z]]. Now Lemma 4 implies that s, = c,+ Z[^, tí] f°r

Ci in the center S of ©. Then [su z]= [cx, z]+ 2[f¿i> tí ]> z]= [ci> z] by (45),
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while [[fe, tí ], [a, z]]= [d, [z, [h, tí ]]] =0 by (44) and (45). Hence 3(x, y, z)

= [s2, [ii, z]] = [c2, [d, z]] =3(ci, c2, z).

Let 0 be the algebraic closure of the base field. Since 31 is of character-

istic O,- the radical of Sin is 9?¡¡. Thus, it is sufficient to prove that (ci, c2, z)

= 0 in case the base field is algebraically closed. But then any c in 3 is a

linear combination of pairwise orthogonal idempotents e¡, and  (x, y,  z)

= (ci, Ci, z) is a linear combination of associators (e¿, e¡, z) which are all zero

[12, §2]. Hence (x, y,z)=0 for all x, y in 31, z in 9?.

Theorem 7. Lei SI ¿>e an alternative algebra of characteristic 0, and 3) ¿>e ¿¿s

derivation algebra. Then SI îs semisimple if and only if 35 is semisimple or {0}.

If SI is semisimple, then 3) is the direct sum of the derivation algebras of

the simple components of SI. The associative components contribute a Sum-

mand which is either semisimple or {o}. Moreover, the derivation algebra of

each Cayley component is simple, being an exceptional simple Lie algebra of

type G over the center of the Cayley component. Hence 3) is either semisimple

0rí°}-

Conversely, suppose that 3) is either semisimple or {0 {. Let 35 9¡ be the

subspace of 3) spanned by all inner derivations of 31 of the form (12), x in 21,

z in 9?. It follows from the Jacobi identity that

[Dx,z, D]   =   DX..D  + T>xD.z

for any derivation D of 21. Since 9? is characteristic by Lemma 6, 35s? is an

ideal of 3). Moreover, since 9? is nilpotent, 3)9? is solvable. Then, 3) being

semisimple or {0}, we have 35?! = {0}, or (42) holds for all x in 31 and z in 9?.

By Lemma 9, the nucleus ® of 31 contains 9?. Therefore Rz — Lz is a derivation

of SI for every z in 9?. Let 35« now be the set of all Rz — Lz with z in 9?. As

before, SDsî is a solvable ideal of 35, and therefore is {o}. Hence

(46) Rz - Lz = 0 for all z in 9?.

But 9?i£® and (46) together express the fact that 9? is contained in the

center S of 21.

Let 21 = © + 9? be a Wedderburn decomposition of 21. Then (S is the direct

sum

e=5 + 9?

where 3 is the center of © and, by Lemma 4, 21 is the direct sum

2i = ©' + e

where ©' is the commutator subspace of ©. For z in 9?^ß, we have z[ai, a2]

= [zai, <z2] =0 for a, in 31, since z<Zi is in 9?. Hence

(47) 9?©' = {0},       g©' g ,3©' g ©'.
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Similarly,

(48) ©'9? = {0},       ©'6 g©'.

Let D<¡. be any derivation of the associative commutative algebra 6. The

linear transformation D on SI defined by

s'D = 0,        cD = cD®

for s' in ©', c in Ê, is a derivation of Si, as may be checked, using (47) and

(48), by the same computation as that given in the proof of the corresponding

theorem for Jordan algebras [ll, p. 294]. The remainder of the proof is

identical with the Jordan proof: since 6 is characteristic, any derivation D

of 31 induces a derivation D$. on 6. Thus D—yD<z is a homomorphism of 35

onto the derivation algebra 35(6) of <5. Therefore 35(6) is semisimple or {o}.

But then 6 is semisimple by Hochschild's theorem, and its radical 9? is {o}.

That is, 31 is semisimple.
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