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Abstract

In the world of chain complexes En-algebras are the analogues of based
n-fold loop spaces in the category of topological spaces. Fresse showed
that operadic En-homology of an En-algebra computes the homology of
an n-fold algebraic delooping. The aim of this paper is to construct two
spectral sequences for calculating these homology groups and to treat some
concrete classes of examples such as Hochschild cochains, graded polynomial
algebras and chains on iterated loop spaces. In characteristic zero we gain an
identification of the summands in Pirashvili’s Hodge decomposition of higher
order Hochschild homology in terms of derived functors of indecomposables
of Gerstenhaber algebras and as the homology of exterior and symmetric
powers of derived Kähler differentials.
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1. Introduction

The little n-cubes operad acts on and detects based n-fold loop spaces [Ma72]. Its
algebraic counterpart, the operad that is given by (a cofibrant replacement of) its
reduced chains, is the so-called En-operad and its algebras are En-algebras. In this
sense, En-algebras are algebraic analogues of based n-fold loop spaces. Benoit
Fresse constructed an n-fold bar construction for any En-algebra A�, BnA� [F11a]
and showed that the En-homology of A�, H

En
� .A�/ is the homology of the n-fold

desuspension of BnA�, thus En-homology calculates the homology of an algebraic
n-fold delooping.

In characteristic zero the operad EnC1 is quasi-isomorphic to its homology,
H�.EnC1/. The homology of EnC1 codifies n-Gerstenhaber algebras. As one
consequence the operations on the homology of any EnC1-algebra are given by
the n-Gerstenhaber algebra structure. However, in finite characteristic this does not
hold any longer: If A� is an algebra over the operad EnC1, then H�A� has more
structure than an n-Gerstenhaber algebra. The homology of a free EnC1-algebra
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564 B. RICHTER & S. ZIEGENHAGEN

on a chain complex C� carries a restricted n-Gerstenhaber structure and in addition
there are Dyer-Lashof operations to consider. Thus in these cases it is not enough
to study the operad H�.EnC1/ in order to understand all homology operations, but
we have to understand the monad A� 7!H�.EnC1.A�//.

We start in Part 1 by developing a standard resolution spectral sequence in the
cases of fields of characteristic two and zero. We identify its E2-term as the derived
functor of indecomposables with respect to a shifted (restricted) Gerstenhaber
algebra structure (Theorem 3.9 and Theorem 4.3). The chain complex of an n-fold
loop space carries an En-algebra structure. If the loop space is of the form �n†nX

for n > 2 and connected X , then our spectral sequence gives an easy argument for
the fact that En-homology of the chain algebra hands back the reduced homology
of †nX .

As we can express the indecomposables with respect to a Gerstenhaber structure
as a composite of two functors we get a Grothendieck-type spectral sequence in
the non-additive context by the work of Blanc and Stover [BS92]. This spectral
sequence converges to the input of the E2-page of the resolution spectral sequence.

In Part 2 we apply these spectral sequences for calculations of En-homology.
By forgetting structure every commutative algebra can be viewed as an En-

algebra. In some cases classical work of Cartan [C54] can be used to identify En-
homology groups of commutative algebras. We extend these classes of examples by
calculating En-homology for free graded commutative algebras on one generator.

A different class of interesting examples of E2-algebras is the class of reduced
Hochschild cochain algebras of associative algebras: For any vector space V , the
tensor algebra T V is the free associative algebra generated by V . Taking the
composition with the reduced Hochschild cochains, NC �.�;�/, we assign to any
vector space V the E2-algebra NC �.T V;T V /. One can ask, how free this E2-algebra
is. For a free E2-algebra on a vector space V , E2-homology gives V back. Is the
homology of the 2-fold delooping, i.e., HE2

� . NC �.T V;T V //, close to V ? We give
a positive answer for a one-dimensional vector space over the rationals (Theorem
8.3) and describe some partial results for the case when V is of dimension two.

In characteristic zero the resolution spectral sequence for calculating En-
homology of commutative algebras has trivial differentials from the E2-term
onwards and we get a decomposition of En-homology. We identify the summands
of the Hodge decomposition of higher order Hochschild homology in the sense of
[P00] with derived functors of indecomposables of Gerstenhaber algebras. This
recovers the identification of the Hodge summands of Hochschild homology of odd
order as

HH.`/
mC1.AIQ/ŠHm�`C1.ƒ

`.�1P�jQ˝P� Q//

for a free simplicial resolution P� of the commutative algebra A but we extend this
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A spectral sequence for the homology of a finite algebraic delooping 565

result (see Theorem 9.5) to the Hodge summands of Hochschild homology of even
order:

Tor�mC1�`.�
`;L.AIQ//Š .LmQ.2k�1/ NA/.2k�1/.`�1/

ŠHm�`C1.Sym`.�1P�jQ˝P� Q//:

Outline of the paper: In section 2 we construct a resolution spectral sequence
and relate its E1-term to Cohen’s expression for the homology of free CnC1-spaces.
We explain the corresponding algebraic notions in section 3 (case of F2) and section
4 (rational case) and use these to identify the E2-term of the resolution spectral
sequence. Section 5 contains a reduction result for certain n-Gerstenhaber algebras
that have an underlying free graded commutative algebra structure and we apply
this to the example of the EnC1-algebra of rational chains on a based .nC 1/-fold
iterated loop space. We set up a Blanc-Stover spectral sequence that converges to
the E2-term of our resolution spectral sequence in section 6.

As a first class of examples we present a calculation of En-homology of free
graded commutative algebras in section 7. We discuss some calculations of E2-
homology of reduced Hochschild cochains for tensor algebras and group algebras
in section 8. Section 9 contains our results about Pirashvili’s Hodge decomposition
for higher order Hochschild homology where we relate his description of the
decomposition summands in terms of functor homology to homology groups of
Gerstenhaber algebras and to the homology of symmetric (exterior) powers of
derived Kähler differentials.

Notation: In the following we work relative to a field k, which is most of the
time specified to be Q or F2. We denote by kx the k-vector space with basis element
x.

Acknowledgments: The first author thanks the Isaac Newton Institute for Math-
ematical Sciences in Cambridge for its hospitality. The second author gratefully
acknowledges support by the DFG. We thank Haynes Miller for several helpful
emails and conversations and Ib Madsen for mentioning Anderson’s spectral
sequence.

Part I. Spectral sequences for En-homology

2. A spectral sequence

We choose a †-cofibrant model of the operad EnC1 and as n will be fixed in the
following, we call this model E D .E.r//. Usually EnC1.0/ is used to keep track
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566 B. RICHTER & S. ZIEGENHAGEN

of base-points, but we use the reduced version with E.0/ D 0. In the following we
work with augmented E-algebras " W A� ! k and EnC1-homology is an invariant
of non-unital E-algebras, so we will consider the augmentation ideal NA� D ker."/.
However we will frequently switch to working with A� when considering invariants
of unital objects, e.g. André-Quillen homology.

We use a free simplicial resolution to establish a standard spectral sequence
converging to the EnC1-homology of any E-algebra.

Lemma 2.1 For any E-algebra NA� there is a spectral sequence

E1s;t ŠHt .E
ıs. NA�//)H

EnC1
sCt . NA�/:

Proof: As NA� is an E-algebra, there is a simplicial resolution of NA� with
augmentation � W E. NA�/! NA�,

���Eı3. NA�/ Eı2. NA�/ E. NA�/
� NA�:

The spectral sequence associated to the filtration by simplicial degree has

E1s;t DH
EnC1
t .EsC1. NA�//)H

EnC1
� . NA�/:

But EnC1-homology of a free EnC1-algebra E.B�/ is isomorphic to H�.B�/ [F09,
13.1.3, 4.4.2] and therefore the above E1-term reduces to Ht .Eıs. NA�//.

For topological spaces Cohen identified the homology of CnC1X for any space
X . Here CnC1 denotes the operad of little .nC 1/-cubes. He showed [CLM76, III,
Theorem 3.1] that with Fp-coefficients one gets

H�.CnC1X IFp/ŠWn.H�.X IFp//:

Here Wn is a free construction that takes the free restricted Lie algebra structure,
the partial Dyer-Lashof structure and the commutativity of H�.CnC1X IFp/ into
account.

A similar description holds for the monad of homology operations in our
algebraic setting. In [F11b] Fresse describes the homology of E.C�/ for any chain
complex C�. Note that

H�.E.C�//DH�.
M
r>1

E.r/˝kŒ†r � C
˝r
� /Š

M
r>1

H�.E.r/˝kŒ†r � C
˝r
� /:

We can view the termH�.E.r/˝kŒ†r �C
˝r
� / as the homology of a bicomplex and as

we assumed that E is †-cofibrant, the associated spectral sequence has as vertical
homology

E.r/˝kŒ†r �H�.C
˝r
� /:

As we are working over a field, there is a quasi-isomorphism from H�.C�/ to C�.
Therefore there are no higher differentials and we obtain the following result.
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A spectral sequence for the homology of a finite algebraic delooping 567

Lemma 2.2
H�.E.C�//Š

M
r>1

H�.E.r/˝kŒ†r � .H�C�/
˝r/:

For any space X we denote by C�.X;Fp/ the normalized chain complex of the
simplicial Fp-vector space of simplices in X . The following result is well-known;
it is for instance used in [F11b], but for the reader’s convenience we record it with
a proof. Let NWn denote the nonunital variant of Wn determined by

NWn. NH�.X IFp//D NH�.CnC1X IFp/:

Proposition 2.3 There is an isomorphism of monads on the category of nonnega-
tively graded chain complexes

QWn.H�.�//ŠH�.E.�//:

Proof: For any non-negatively graded chain complex C� there exists a (non-
unique) based space XC such that the reduced homology of XC is isomorphic to
the homology of C�. Let EC denote the unreduced version of E with EC.0/D Fp.
By Lemma 2.2 we know that H�.E.C�// is isomorphic to H�.

L
r>1E.r/˝Fp†r

QH�.X
C IFp/

˝r/, which coincides with

H�.
M
r>0

EC.r/˝Fp†r
QH�.X

C IFp/
˝r=EC.0/˝ QH�.X

C IFp/
˝0/:

Switching to unreduced homology can be done by introducing the quotient by base
point identification, so

H�.
M
r>0

EC.r/˝Fp†r H�.X
C IFp/

˝r=�/

where � reduces occurrences of the class Œpt � 2 H0.XC IFp/ of the base point
pt 2XC by contracting the elements in the operad by inserting the basis element of
EC.0/D Fp and divides out by EC.0/˝H�.XC IFp/˝0 Š Fp. As we are working
over a field we can again replace the homology of XC by its chain complex by
picking representatives for cycles. Since †r acts freely on CnC1.r/, the normalized
singular chains C�.CnC1.r/;Fp/ are free as an Fp†r -module. As EC is quasi-
isomorphic to C�.CnC1;Fp/ as an operad, we can identify the term above with

H�.
M
r>0

C�.CnC1.r/;Fp/˝Fp†r C�.X
C ;Fp/

˝r=�/
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568 B. RICHTER & S. ZIEGENHAGEN

via the Künneth spectral sequence. The fact that the shuffle transformation is lax
symmetric monoidal yields that the latter is isomorphic to

H�.C�.
G
r>0

CnC1.r/�†r .X
C /r=�;Fp/=C�.C.0/� .X

C /0;Fp//

where � now denotes the usual reduction of base points, so we see that the above
coincides with NH�.CnC1XC IFp/.

Choosing a wedge of spheres for XC and XD and observing that every
morphism H�.C�IFp/! H�.D�IFp/ can be modelled via a map XC ! XD one
sees that this isomorphism is natural in C�.

To show that this is indeed an isomorphism of monads we first note that the
monad multiplication of H�.E.�// is induced by the composition in E, whereas
the monad multiplication of NWn stems from the fact that Wn is left adjoint to the
forgetful functor from what Cohen calls the category of allowable ARnƒn-Hopf
algebras to Fp-modules that are unstable modules over the Steenrod algebra.

Iterating the isomorphism above yields

H�.E.E.H�.C�////ŠH�.E. QH�.CnC1X
C=�IFp///

Š QH�.CnC1.CnC1X
C=�/=�IFp/:

Under this identification the multiplication of H�.E.�// corresponds to the map
induced by the composition of CnC1 and hence to the monad multiplication of
NWnC1.

Remark 2.4 In the following we also need to cover the case where we consider chain
complexes that are concentrated in non-positive degrees, thus we have to modify
the proof of Proposition 2.3. If C�� is a chain complex concentrated in non-positive
degrees, then the associated cochain complex, C � with C n D C�n, is concentrated
in non-negative degrees and it is quasi-isomorphic to its cohomology, H�.C �/. We
choose a space XC as above with H�.XC IFp/ Š H�.C �/. As above we get an
isomorphism of monads between

C�� 7!H�.E.H
�.C �/// and C�� 7! NWn.H

�.C�//: (1)

3. The case nD 1;p D 2

Cohen showed in [CLM76, Theorem 3.1] that over a prime field the homology of
a free CnC1-algebra in spaces, CnC1X , can be described as a free gadget on the
homology of the underlying space. He also gave a description that allows to deduce
the answer in characteristic zero.
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A spectral sequence for the homology of a finite algebraic delooping 569

For odd primes or for higher iterated loop spaces, the answer is pretty involved,
but for p D 2 and nD 1 one is left with a 1-restricted Gerstenhaber structure.

Haynes Miller worked out the case p D 2;n D 1 in [Mi1]: For any space, the
homology of C2X with coefficients in F2 is given by

S.1rL/. QH�.X IF2//

where 1rL.�/ denotes the free 1-restricted Lie algebra and S.�/ is the free graded
commutative algebra with the induced unique restricted Lie structure. We will recall
the definitions and fix some notation.

Definition 3.1 A 1-restricted Lie algebra over F2 is a non-negatively graded (or
non-positively graded) F2-vector space, g�, together with two operations, a Lie
bracket of degree one, Œ�;�� and a restriction, �:

Œ�;�� W gi � gj ! giCjC1; i;j > 0;
� W gi ! g2iC1 i > 0:

These satisfy the relations

(a) The bracket is bilinear, symmetric and satisfies the Jacobi relation

Œa;Œb;c��C Œb;Œc;a��C Œc;Œa;b��D 0 for all a;b;c 2 g�:

(b) The restriction interacts with the bracket as follows: Œ�.a/;b�D Œa;Œa;b�� and
�.aC b/D �.a/C �.b/C Œa;b� for all homogeneous a;b 2 g�.

A morphism of 1-restricted Lie-algebras is a map of graded vector spaces of degree
zero preserving the bracket and the restriction. We denote the category of 1-
restricted Lie-algebras by 1rL.

Remark 3.2 Note that these relations imply that Œa;a�D 0 and �.0/D 0.

Definition 3.3 A 1-restricted Gerstenhaber algebra over F2 is a 1-restricted Lie
algebra G� together with an augmentation " W G� ! F2 and a graded commutative
F2-algebra structure on G� such that the multiplication in G� interacts with the
restricted Lie-structure as follows:

� (Poisson relation)

Œa;bc�D Œa;b�cC bŒa;c� for all a;b;c 2G�:
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570 B. RICHTER & S. ZIEGENHAGEN

� (multiplicativity of the restriction)

�.ab/D a2�.b/C �.a/b2C abŒa;b� for all homogeneous a;b 2G�:

The augmentation is required to be multiplicative and to satisfy "Œa;b� D 0 for all
a;b 2G� and "�.a/D 0.

A morphism of 1-restricted Gerstenhaber algebras is a map of graded vector
spaces of degree zero preserving the product, the augmentation, the bracket and the
restriction. We denote the category of 1-restricted Gerstenhaber algebras by 1rG.

In particular, the bracket and the restriction annihilate squares: Œa;b2� D

2bŒa;b� D 0 and �.a2/ D 2a2�.a/C a2Œa;a� D 0. Thus if 1 denotes the unit of
the algebra structure in G�, then Œa;1�D 0 for all a and �.1/D 0.

Usually an augmentation is not part of the definition, but since we consider
augmented E-algebras all 1-restricted Gerstenhaber algebras that we will encounter
are naturally augmented. The requirements on " are equivalent to " being a
morphism of 1-restricted Gerstenhaber algebras " W G� ! F2 where F2 is viewed
as a commutative algebra with trivial 1-restricted Lie structure.

We denote by IG� the augmentation ideal of G�. This ideal carries a structure
of a non-unital 1-restricted Gerstenhaber algebra and we will call both G� and IG�
1-restricted Gerstenhaber algebras.

For a 1-restricted Lie-algebra g, the free graded commutative algebra generated
by g, S.g/, carries a unique 1-restricted Gerstenhaber structure that is induced by
the 1-restricted Lie algebra structure on g and the relations in Definition 3.3.

Remark 3.4 The functor S W 1rL ! 1rG is left adjoint to the augmentation ideal
functor I W 1rG! 1rL and the forgetful functor U W 1rL! grF2 from the category
of 1-restricted Lie-algebras to the category of graded F2-vector spaces has the free
1-restricted Lie algebra functor 1rL W grF2! 1rL as a left adjoint.

For p D 2;nD 1 the structure on H�.C2X IF2/ looks so nice because

R1.q/D F2hQ
I jI D .s1;:::;sk/ admissible, e.I /> q;sk 6 qi

reduces to
R1.q/D F2hQ

.2k�1q;:::;2q;q/jk > 1i:
Therefore, in Cohen’s identification of H�.C2X IF2/ the contribution of the Dyer-
Lashof terms is absorbed into the free commutative algebra part: a term like

Q.2k�1q;:::;2q;q/˝ xq

with xq in 1rL.H�X IF2/ of degree q is identified (in what Cohen calls V1) with
x2

k

q . Thus H�.C2X IF2/Š S.1rL/. QH�.X IF2//.
As a corollary to Proposition 2.3 we get
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A spectral sequence for the homology of a finite algebraic delooping 571

Corollary 3.5 For any non-negatively graded (or non-positively graded) chain
complex over F2, C�, we have

H�.E2C�IF2/Š IS.1rL/.H�C/:

Definition 3.6 For an augmented 1-restricted Gerstenhaber algebra over F2 we
denote by Q1rG the F2-vector space of indecomposable elements with respect to
the three operations, the product, the bracket and the restriction, i.e., the quotient of
IG� by the ideal generated by these operations:

Q1rG.G�/D IG�=h�.a/;Œa;b�;ab;a;b 2 IG�i:

We extend this notion to IG�, so Q1rG.IG�/D IG�=h�.a/;Œa;b�;ab;a;b 2 IG�i.

Similarly, we denote byQa.�/ the indecomposables with respect to the algebra
structure and by Q1rL.�/ the indecomposables with respect to the 1-restricted Lie
algebra structure.

Lemma 3.7 For any augmented 1-restricted Gerstenhaber algebra G� over F2 the
vector space of indecomposables Q1rG of G� can be computed as the composite

Q1rG.G�/DQ1rL.Qa.G�//:

Proof: As we demand that " annihilates Lie brackets and restrictions, there is a
well-defined 1-restricted Lie-structure on IG� and the algebra indecomposables,
Qa.G�/ D IG�=J , inherit a 1-restricted Lie algebra structure from G�: For
homogeneous a;b 2 NG� we set

ŒaCJ;bCJ � WD Œa;b�CJ and �.aCJ / WD �.a/CJ:

The relations from Definition 3.3 tell us that this gives a well-defined bracket
and a well-defined restriction on Qa.G�/. Taking the 1-restricted Lie algebra
indecomposables of Qa.G�/ kills expressions in Qa.G�/ that are of the form �.a/

with a 2 IG� and Œa;b� with a;b 2 G�, so we kill everything in IG� that is a
product, a bracket or a restricted element.

The algebraic indecomposables of a free commutative algebra on a (graded)
vector space hand back the vector space and the indecomposables with respect to
the 1-restricted Lie algebra structure of 1rL.V�/ have V� as output, so we get:

Lemma 3.8

Q1rG.S.1rL/.V�//D V� and Q1rG.IS.1rL/.V�//D V�:
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572 B. RICHTER & S. ZIEGENHAGEN

We want to identify the E2-term of the spectral sequence

E1p;q DHq.E
p
2 .
NA�//Š ..IS.1rL//

p.H�. NA�///q)H
E2
pCq.

NA�/:

The homology of NA� is a non-unital 1-restricted Gerstenhaber algebra over F2,
so the free-forgetful adjunction identifies

:::! .IS.1rL//pC1.H�. NA�//! .IS.1rL//p.H�. NA�//! :::! IS.1rL/.H�. NA�//

as a resolution coming from a simplicial resolution of H�. NA�/. The term
.IS.1rL//pC1.H�. NA�// is in resolution degree p. Applying the functor Q1rG to
this simplicial resolution gives

:::! .IS.1rL//p.H�. NA�//! .IS.1rL//p�1.H�. NA�//! :::!H�. NA�/:

This shows:

Theorem 3.9 The above E1-term is isomorphic to

E1p;q Š .Q1rG..IS.1rL//
pC1.H�. NA�///q

and the d1-differential takes homology with respect to the resolution degree.
Therefore the E2-term calculates derived functors of indecomposables of the
homology of NA�,

E2p;q Š .LpQ1rG.H�.
NA�///q:

4. The rational case

Most things are similar for the rational case with the difference that we consider
n-Gerstenhaber algebras for all n > 1. In this section the ground field will always
be Q.

Definition 4.1 An n-Lie algebra over Q is a non-negatively graded (or non-
positively graded) Q-vector space, L�, together with a Lie bracket of degree n:

Œ�;�� W Li �Lj ! LiCjCn; i;j > 0;

such that the bracket is bilinear and satisfies a graded Jacobi relation

.�1/pr Œx;Œy;z��C .�1/qpŒy;Œz;x��C .�1/rqŒz;Œx;y��D 0;

and a graded antisymmetry relation

Œx;y�D�.�1/pqŒy;x�:
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A spectral sequence for the homology of a finite algebraic delooping 573

Here, x;y;z are homogenous elements in L and p D jxj C n, q D jyj C n and
r D jzj C n. A morphism of n-Lie algebras is a map of graded vector spaces of
degree zero preserving the bracket. We denote the category of n-Lie algebras by
nL.

Note that there is an operadic notion of n-Lie algebras involving n-ary Lie
brackets. That is something different.

Definition 4.2 An n-Gerstenhaber algebra over Q is an n-Lie algebra G� together
with a unital commutative Q-algebra structure onG� and an augmentation " W G�!
Q such that the Poisson relation holds:

Œa;bc�D Œa;b�cC.�1/pjbjbŒa;c�; for all homogeneous a;b;c 2G� with p D jajCn;

and such that "Œa;b�D 0.
A morphism of n-Gerstenhaber algebras is a map of graded vector spaces of

degree zero preserving the product, the augmentation and the bracket. We denote the
category of (augmented) n-Gerstenhaber algebras by nG. As in the characteristic
two case, we also consider IG� as a non-unital n-Gerstenhaber algebra.

Let nG denote the free n-Gerstenhaber algebra functor from the category
grVctQ of graded rational vector spaces to the category of augmented n-Gerstenhaber
algebras. Then this can be factored as S ı nL where nL denotes the free n-Lie
algebra functor.

Similarly, we can factor the functor of n-Gerstenhaber indecomposables, QnG ,
as the algebraic indecomposables followed by the n-Lie indecomposables:

QnG DQnL ıQa:

Theorem 4.3 There is a spectral sequence with

E2p;q Š .LpQnG.H�.
NA�///q)H

EnC1
� . NA�/

for every EnC1-algebra NA� over the rationals.

Example 4.4 Let X be a connected and well-behaved topological space and let n be
greater or equal to one. In characteristic zero, H�.CnC1X IQ/ is isomorphic to the
free n-Gerstenhaber algebra generated by the reduced homology of X [CLM76].
Thus the above E2-term for A� D C�.CnC1X IQ/ is isomorphic to

E2p;q Š .LpQnG.nG.
NH�.X IQ///q

which is concentrated in bidegrees .0;q/ and thus the spectral sequence collapses
and gives

H
EnC1
q .C�.CnC1X IQ//Š NHq.X IQ/:
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574 B. RICHTER & S. ZIEGENHAGEN

Note that H�.CnC1X IQ/ Š H�.�nC1†nC1X;Q/ if X is path-connected, thus
in this case the algebraic delooping induced by EnC1-homology corresponds to a
geometric delooping.

Similar considerations hold for H�.C2X IF2/.

5. Some applications of the resolution spectral sequence

Let U be the forgetful functor from the category of n-Lie algebras to graded Q-
vector spaces.

Lemma 5.1 Let V be an n-Lie algebra and letC be S.V /where the n-Gerstenhaber
algebra structure on C is induced by the n-Lie structure of V . Then a free resolution
in the category of simplicial n-Gerstenhaber algebras of C is given by Y� with

Y` D S.nL ıU /
`C1.V /;`> 0:

Proof: We use the adjunction .nL;U / to obtain the simplicial structure on Y�. The
usual simplicial contraction for .nL ıU /�C1 shows that Y� is a resolution of S.V /.
Note that the augmentation

Y0 D S.nL ıU /.V /! S.V /

is a morphism of n-Gerstenhaber algebras.
The degeneracy maps send nG.U.nL ıU /`.V // to nG.U.nL ıU /`C1.V // via

maps of the form nG.f / with f W U.nL ıU /`.V /! U.nL ıU /`C1.V /, thus Y� is
a free simplicial resolution of S.V /.

Corollary 5.2 For S.V / as in Lemma 5.1 there is an isomorphism

.LpQnG.S.V ///q Š .LpQnL.V //q

for all p > 0 and all q. In particular, for any EnC1-algebra A� with H�.A�/ Š
S.V / with S.V / as in Lemma 5.1, the E2-term of Theorem 4.3 is isomorphic to

E2p;q Š .LpQnL.V //q:

Proof: Using the resolution S.nL ıU /�C1.V / of S.V / we get that

QnG.S.nL ıU /
sC1.V //Š U..nL ıU /s/.V /DQnL..nL ıU /

sC1.V //:

As .nLıU /�C1.V / is a simplicial resolution of V by free n-Lie algebras, the claim
follows.
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Remark 5.3 There is an equivalence of categories between the category nL and
the category of graded Lie algebras, L, where the latter category is nothing but the
category of 0-Lie algebras [KM95, Proposition I.6.3]. The equivalence is given by
the n-fold suspension, †n, and desuspension, †�n:

nL
†n

L:
†�n

An analogous result holds in characteristic two [CLM76, III §15].

We can use the resolution exhibited in 5.2 to exploit the equivalences between
the different n-Lie structures.

Corollary 5.4 Suppose thatH�.A/D S.V / as in 5.1. Then for every ` 2 Z the E2-
term of the spectral sequence calculating EnC1-homology of A can be computed
as

E2p;q D .LpQ`L.†
n�`V //qCn�`:

Proof: Using the natural isomorphism nLŠ†`�n`L†n�` and the fact that this is
an isomorphism of monads we find

E2p;q D .�pU.nLU /
�.V //q Š .�pU.†

`�n`L†n�`U /�.V //q

Š .�pU.†
`�n`LU†n�`/�.V //q Š .�p†

`�nU.`LU /�.†n�`V //q

Š .�pU.`LU /
�.†n�`V //qCn�`;

which proves the claim.

Remark 5.5 Similar results hold in characteristic two, i.e., if V is a 1-restricted
Lie algebra over F2 and if C D S.V / carries the induced 1-restricted Gerstenhaber
algebra structure, then S.1rL ıU /�C1 is a resolution of C by free 1-restricted Ger-
stenhaber algebras and the E2-term of the resolution spectral sequence simplifies
to

E2p;q Š .LpQ1rL.V //q

and the suspension isomorphism yields that this in turn can be expressed as derived
functors of indecomposables of restricted Lie algebras.

In the following we want to use the Tor interpretation of Lie-homology in our
setting:

Remark 5.6 Let g be a graded Lie-algebra, restricted if k D F2 and unrestricted
over the rationals. The usual Tor interpretation (see for instance [Q70]) of LsQL.g/

holds in the graded case. Indeed one easily identifies the indecomposables of the
standard cofibrant replacement X D L�C1.g/ (or X D rL�C1.g/ in the restricted
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576 B. RICHTER & S. ZIEGENHAGEN

case) with U.X/˝U.X/ k. Here U.g/ denotes the (restricted) universal enveloping
algebra of the bigraded Lie algebra g while U.g/ denotes its augmentation ideal. The
Künneth spectral sequence constructed by Quillen [Q67, II.6] can be generalized to
the graded setting, and since X consists of free graded (restricted) Lie algebras,
U.X/ is a cofibrant U.X/-module. Hence we get a spectral sequence of internally
bigraded vector spaces

E2p;q D Tor��.U.X//p .��.U.X//;k/q) �pCq.U.X/˝U.X/ k/;

where q is the degree originating from taking homotopy groups. Filtering U.X/

and U.g/ by the standard filtration for enveloping algebras and considering the
associated spectral sequences, a bigraded version of the Poincaré-Birkhoff-Witt
theorem shows that the augmentation U.X/ ! U.g/ induces an isomorphism on
E1 (see [Pr70] for the case of characteristic two). Hence the above E2-term equals
TorU.g/p .U.g/;k/ concentrated in degree q D 0. Finally the short exact sequence

0 U.g/ U.g/ k 0

yields
LsQL.g/Š TorU.g/sC1 .k;k/:

An example of how this simplifies our spectral sequence is given by the
chains on an iterated loop space on a highly connected space. For an .n C 1/-
connected spaceX the space�nC1X is path-connected. A classical result expresses
H�.�

nC1X IQ/ as a free graded commutative algebra: The connectivity assump-
tions ensure that due to the Milnor-Moore result [MM65, p.263] the Hurewicz map

��.�
nC1X/˝Q!H�.�

nC1X IQ/

induces an isomorphism of Hopf algebras between the enveloping algebra of the
Lie-algebra ��.�nC1X/˝Q and H�.�nC1X IQ/. Here, the Lie-structure on the
source is given by the Samelson product. For n > 1, this Lie-structure is trivial and
thus the enveloping algebra is isomorphic to the free graded commutative algebra
generated by ��.�nC1X/˝Q:

S.��.�
nC1X/˝Q/ŠH�.�

nC1X IQ/:

Cohen showed [CLM76, p. 215] that the Whitehead product on †�n�1��.X/˝Q

corresponds to the Browder-bracket �n on H�.�nC1X IQ/. Gaudens and Menichi
observed [GM07, Theorem 4.1] that this leads to an isomorphism of nG-algebras

S.†�n��.�X/˝Q/ŠH�.�
nC1X IQ/ (2)

where the n-Lie structure on the left-hand side is induced by the Samelson bracket
on ��.�X/.
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Proposition 5.7 For every .nC 1/-connected space X

Ls.QnG/.H�.�
nC1X IQ//q Š TorH�.�X IQ/sC1;qCn .Q;Q/:

Proof: Corollary 5.2 implies that the E2-term of the resolution spectral sequence
in this case is isomorphic to

.LsQnL/t .†
�n.��.�X/˝Q///:

Corollary 5.4 together with the Tor-description of Lie-homology and the Milnor-
Moore Theorem show the claim.

Remark 5.8 Up to a shift in degrees the aboveE2-term is isomorphic to theE2-term
of the Rothenberg-Steenrod spectral sequence [RS65]. The latter converges to the
homology of the space X . We conjecture that there is an isomorphism of spectral
sequences between our resolution spectral sequence and the (shifted) Rothenberg-
Steenrod spectral sequence.

Remark 5.9 Anderson constructed a spectral sequence [An71] whose E2-page is

E2p;q Š HHŒnC1�
p .H�.�

nC1X IQ//q

and which converges to HpCq.X IQ/. Here HHŒnC1�
� denotes Hochschild homology

of order nC 1 in the sense of [P00].
However, in his setting H�.�nC1X IQ/ is considered as a graded commutative

algebra, whereas the n-Lie structure is ignored. In this situation Hochschild
homology of order nC 1 is isomorphic to EnC1-homology,

HHŒnC1�
p .H�.�

nC1X IQ//q ŠH
EnC1
p�n�1.

NH�.�
nC1X IQ//q:

Thus his spectral sequence starts off with EnC1-homology of the underlying graded
commutative algebra of H�.�nC1X IQ/ and converges to H�.X IQ/.

6. The Blanc-Stover composite functor spectral sequence

We know that working relative to F2 we can factorQ1rG asQ1rLıQa and similarly
in the rational setting we have QnG D QnL ıQa. Therefore we want to use the
composite functor spectral sequence of Blanc and Stover in order to approximate the
E2-term of our resolution spectral sequence (as in Theorem 3.9 and Theorem 4.3).
Let C and B denote categories of universal graded algebras such as the category
of graded commutative algebras (over Q or F2), the category of (restricted) n-
Lie algebras or of (restricted) n-Gerstenhaber algebras. Let A denote a concrete
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578 B. RICHTER & S. ZIEGENHAGEN

category such as the category of graded vector spaces over a field. Moreover let
T W C ! B and Z W B ! A be functors, then Blanc and Stover prove the existence
of the following spectral sequence.

Theorem 6.1 [BS92, Theorem 4.4] Suppose that TF is Z-acyclic for every free F
in C. Then for every C in C there is a Grothendieck spectral sequence with

E2s;t D .Ls
NZt /.L�T /C ) .LsCt .Z ıT //C:

The condition that TF is Z-acyclic means that the left derived functors L�Z

applied to TF are trivial but in degree zero where they are isomorphic toZTF . The
terms L� NZ are a certain extension of the derived functors of Z to the category of
…-B-algebras, i.e., NZ takes the homotopy operations into account that live on the
homotopy groups of every simpicial B-algebra.

If we unravel the notation in [BS92, Theorem 4.4] then the E2-term gives

E2s;t D �s�
i
tZ.B�;�/

where the notation is as follows: Let Y� ! C be a cofibrant resolution of C in the
Quillen model category of simplicial objects in C. Then B�;� is a free resolution of
T Y� in the E2-model category structure on the category of bisimplicial objects in B
[DKS93, 5.10], [BS92, 4.1]. As we have various E2-terms floating around, we will
call this model structure the DKS-model structure. If B�;� in bidegree .t;s/ is Bt;s
then � it is the t th homotopy group with respect to the first simplicial direction and
then � itB�;� is a free simplicial resolution of �tT Y� by …-B-algebras.

Proposition 6.2

� If the ground field is F2 and if we consider the sequence of functors

1rG
Qa

1rL
Q1rL grF2 ;

then for any C 2 1rG theE2-term of the composite functor spectral sequence
simplifies to

E2s;t D .Ls.
NQ1rL/t /.AQ�.C jF2;F2//:

� For the sequence

nG
Qa

nL
QnL grVctQ

over the rationals and for C 2 nG, the spectral sequence has E2-term
isomorphic to

E2s;t D .Ls.
NQnL/t /.AQ�.C jQ;Q//:
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Proof: There are two adjoint pairs, .1rG;V / and .nG;V /, where V denotes the
forgetful functor to the underlying category of graded vector spaces. Associated to
these are standard simplicial resolutions for calculating L�Qa.C /, namely .1rG ı
V /�C1.C / for characteristic two and .nG ı V /�C1.C / for characteristic zero. The
free 1-restricted Gerstenhaber algebra generated by a graded vector space W� is
S.1rL.W�//, the free graded commutative algebra generated by the free 1-restricted
Lie algebra on W�. In particular the above mentioned resolutions consist of free
graded commutative algebras and Qa.S.1rL.W�/// is 1rL.W�/, which is Q1rL-
acyclic. Since the derived functors ofQa compute André-Quillen homology we get
a spectral sequence of the form above. Similar arguments hold for n-Gerstenhaber
algebras.

Remark 6.3 How can one calculate these E2-terms? First one resolves C

simplicially by free Gerstenhaber algebras, P� ! C , and takes indecomposables,
Qa.P�/. This is now a simplicial object in some category of Lie algebras (n-Lie or
restricted 1-Lie), thus one has to find a free resolution of this object in the DKS-
model structure as explained in [BS92, 4.1.1].

Over the rationals we want to compare En-homology of a commutative algebra
with Em-homology for n ¤ m. To this end, we first compare the model category
structures on the corresponding categories of simplicial shifted Lie algebras.

Let us briefly recall the model category structure on simplicial n-Lie algebras,
snL [Q67, II, §4]:

� A map f W g� ! g0� is a weak equivalence if U.f / is a weak equivalence of
simplicial Q-vector spaces.

� Such a map is a fibration, if the induced map Nf

g�
Nf

f

�0.g�/��0.g0�/ g
0
� g0�

�0.g�/
�0.f /

�0.g
0
�/

is surjective.

� A map is a cofibration if it has the left lifting property with respect to acyclic
fibrations.

Proposition 6.4 The model categories of simplicial n-Lie algebras and of simplicial
graded Lie algebras are Quillen equivalent.
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580 B. RICHTER & S. ZIEGENHAGEN

Proof: The equivalence .†n;†�n/ between n-Lie algebras and graded Lie algebras
that we mention in Remark 5.3 preserves and detects weak equivalences as these
are given by reference to the underlying simplicial graded vector spaces, hence a
morphism f W g ! †�ng0 of n-Lie algebras is a weak equivalence if and only if
†n.f / W †ng! g0 is one. Similarly, suspension does not affect surjectivity of maps.

What we actually need is to extend this Quillen equivalence to the corresponding
model categories of simplicial Lie …-algebras.

Theorem 6.5 The model categories of simplicial n-Lie-… algebras and of simpli-
cial graded Lie …-algebras are Quillen equivalent.

Proof: We first show that the n-fold suspension and desuspension functors pass to
functors between (shifted)-…-Lie algebras. Let g� be an n-Lie algebra with n-Lie
homotopy operations. These operations are parametrized by elements in

ŒnL.QSm.`/�/;nL.

NM
iD1

QSmi .`i /�/�snL

where Sm.`/ is the graded simplicial set that has the simplicial m-sphere in degree
`. If we consider †ng�, then this inherits operations parametrized by

Œ†nnL.QSm.`/�/;†
nnL.

NM
iD1

QSmi .`i /�/�sL

DŒL.†nQSm.`/�/;L.

NM
iD1

†nQSmi .`i /�/�sL

DŒL.QSm.`�n/�/;L.

NM
iD1

QSmi .`i �n/�/�sL:

Vice versa the n-fold desuspension of a graded Lie…-algebra inherits Lie homotopy
operations.

Weak equivalences and fibrations are again determined by the underlying
simplicial vector spaces and on this level (de)suspensions just shift the internal
grading.

Lemma 6.6 Let A be an augmented E-algebra and ` 2 Z. Then there is a natural
isomorphism

†n�`.Ls NQnL/t .AQ�.H�AjQIQ//Š .Ls NQ`L/t .†
n�`AQ�.H�AjQIQ//:
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Proof: Let Y� be a resolution of H�A as a simplicial augmented Gerstenhaber
algebra such that Y� is cofibrant as a simplicial commutative algebra. As we
explained above, we have

.Ls NQnL/t .AQ�.H�AjQIQ//Š �s�
i
tQnL.B�;�/

where B�;� is a cofibrant replacement of QaY� in the category of bisimplicial n-Lie
algebras with respect to the DKS-model structure. According to [BS92, 4.1] the
following conditions are sufficient for B�;� to be cofibrant:

� For fixed external degree s each B�;s is homotopy equivalent to nL.XŒs��/
as a simplicial n-Lie algebra, where XŒs�� is weakly equivalent to a sum of
spheres

L
iQS

mi .ri /�.

� The external degeneracies are induced by maps XŒs�! XŒs C 1� which are
inclusions of summands up to homotopy.

Blanc and Stover show as well that such a B�;� can always be constructed.
Suppose that B�;� is a cofibrant replacement fulfilling these conditions. Now

consider †n�`B�;�. Regrading the internal nonsimplicial degree does not affect the
homotopy groups, so

�s�
i
t†

n�`B�;� D ıs;0†
n�`�tQaY� D ıs;0�t†

n�`QaY�

and we find that †n�`B�;� is a resolution of †n�`QaY�. It is easy to see that
†n�`B�;� is cofibrant as well: We know that †n�`B�;s D `L.†n�`XŒs��/ and
that suspending a simplicial sphere QSmi .ri / internally just shifts ri . Hence
we can compute .Ls NQ`L/t .†

n�`AQ�.H�AjQIQ// as the homotopy groups of
Q`L†

n�`B�;�. Exploiting the adjunction between Q`L and the functor which
endows a graded Q-vector space with a trivial `-Lie algebra structure we obtain

Q`L ı†
n�` Š†n�`QnL:

Therefore the homotopy groups in question are the homotopy groups of

†n�`QnLB�;�

and the result follows.
Since the composite functor spectral sequence is the spectral sequence associ-

ated to the bisimplicial object given by applying the indecomposables functor to a
resolution with respect to the DKS model structure it is clear that an isomorphism
of resolutions yields a morphism of spectral sequences. Note that deriving a functor
followed by a suspension equals suspending the derived functor.
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582 B. RICHTER & S. ZIEGENHAGEN

Corollary 6.7 The above isomorphism is part of a morphism between the suspen-
sion of the Grothendieck spectral sequence

†n�`.Ls NQnL/t .AQ�.H�AjQIQ//)†n�`LsCtQnGH�. NA/

associated to QnL ıQa and the Grothendieck spectral sequence

.Ls NQ`L/t .†
n�`AQ�.H�AjQIQ//) LsCt .Q`L ı†

n�` ıQa/H�. NA/:

Remark 6.8 We could deduce that the E2-term of the spectral sequence calculating
EnC1-homology is

LpQnG.H�. NA//Š†
`�nLp.Q`L ı†

n�` ıQa/.H�. NA//;

but this is clear since
Q`L ı†

n�` Š†n�`QnL:

Identifying n-Lie-… algebra structures is hard. Sometimes we can reduce the
complexity of that task. In characteristic zero, the Blanc-Stover spectral sequence
simplifies due to the following well-known result.

Lemma 6.9 Let k DQ. A Lie-… algebra ��.g�/ is a bigraded Lie algebra.

Proof: The Lie-… structure on the homotopy groups of a simplicial graded Lie
algebra is the structure induced by elements in

ŒL.QSn.k//;L.

NM
iD1

QSni .ki //�sL D �n.L.

NM
iD1

QSni .ki ///k:

Set X D
LN
iD1QSni .ki /. Interpreting the Lie operad as a constant simplicial op-

erad in graded vector spaces we find that we need to calculate �n.
L
j>0Lie.j /˝†j

.X/˝j /k .
Since over Q every †j -module is projective we see that this is isomorphic toM

j>0

M
aCbDk

Lie.j /a˝†j
M

n1C:::CnjDn

b1C:::CbjDb

�n1.X/b1 ˝ :::˝�nj .X/bj ;

i.e., the free bigraded Lie algebra on N generators of degree .ki ;ni /, where we now
consider the Lie operad as an operad in bigraded modules concentrated in bidegree
.0;0/. This yields that all homotopy operations on ��.g�/ are the ones induced by
the Lie structure of g� via the Eilenberg-Zilber map.

We obtain an analogous result in finite characteristic.

Lemma 6.10 Let k be Fp. If g D ��X� is a restricted …-Lie-algebra that is
concentrated in �0X�, then the…-Lie-algebra structure on g reduces to a restricted
Lie-algebra structure.
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Proof: According to [BS92, §3] the operations on �0X� are parametrized by
elements in the set of homotopy classes of simplicial restricted Lie algebras

ŒrL.S0.k//;rL.

NM
iD1

S0.ki /�srL:

Here, S0.r/ is the simplicial graded Fp-vector space that is FpŒr� in every simplicial
degree and FpŒr� is the graded Fp-vector space that is Fp concentrated in degree r .
As the simplicial direction is constant in this case, the above set of homotopy classes
reduces to the set of homomorphisms of restricted Lie-algebras

rL.rL.FpŒk�/;rL.

NM
iD1

FpŒki �//Š rL.

NM
iD1

FpŒki �/k:

Thus we get the free restricted Lie-algebra on N generators in degree k and the
operations reduce to a restricted Lie-structure on g.

Part II. Examples

7. EnC1-homology of free graded commutative algebras

In the following, we will consider free graded commutative algebras on one gener-
ator. For the general case note that working over a field ensures that En-homology
of a tensor product of graded commutative algebras can be computed from the En-
homology of the tensor factors: ifA�;B� are two graded commutative algebras, then
En-homology of A�˝B� can be identified with Hochschild homology of order n
with coefficients in the ground field k:

HEn
� .A�˝B�/Š HHŒn�

�Cn.A�˝B�Ik/

which is defined as the homotopy groups of some simplicial set arising as the
evaluation of a certain 	-module L.A�˝B�Ik/ on the simplicial n-sphere,

HHŒn�
�Cn.A�˝B�Ik/Š ��CnL.A�˝B�Ik/.Sn/:

The latter is isomorphic to

��Cn.L.A�Ik/.Sn/˝L.B�Ik/.Sn//

and hence the Künneth theorem expresses this in terms of tensor products of
Hochschild homology groups of order n. For more background on Hochschild
homology of order n see [P00] or [LR11, p. 207].
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584 B. RICHTER & S. ZIEGENHAGEN

7.1. Characteristic zero, n> 1

Let ADQŒx� with the generator x being of degree zero, thus H�AD A.
We know that EnC1-homology of the non-unital algebra QŒx� is isomorphic to

the shifted Q-homology of K.Z;nC 1/ (see [C54] or [LR11]):

H
EnC1
� .QŒx�/ŠH�CnC1.K.Z;nC 1/;Q/:

We know that rationally the cohomology of K.Z;n C 1/ is an exterior algebra
on a generator in degree nC 1 if nC 1 is odd and is a polynomial algebra on a
generator of degree nC 1 for even nC 1 and thus by dualizing we get the answer
for H�CnC1.K.Z;nC 1/;Q/.

For odd nC 1 the polynomial algebra QŒx� is actually a free n-Gerstenhaber
algebra because the bracket Œx;x� has to be trivial. Therefore the derived functors of
n-Gerstenhaber indecomposables are trivial but in degree zero where we obtain the
Q-span of x and thus

H
EnC1
� .QŒx�/Š

(
Q; � D 0;

0; �> 0;

and this agrees with the above result.
For arbitrary degrees the result is essentially the same:

Proposition 7.1 The free graded commutative algebra S.xj / on a generator xj of
degree j 2 Z has as EnC1-homology:

H
EnC1
� .S.xj //Š†

�.nC1/S.xjCnC1/:

In particular we can identify EnC1-homology of S.xj / with the shifted homology of
the Eilenberg-MacLane space K.Z;j CnC 1/ if j CnC 1 > 0.

Proof: The E2-term of the resolution spectral sequence can be identified with

E2s;q Š TorS.xnCj /sC1 .Q;Q/qCn Š S
sC1.xnCj Œ1�/qCn:

The internal degree of xnCj Œ1� is still n C j but for forming the free graded
commutative algebra, S.xnCj Œ1�/, xnCj Œ1� is viewed as a generator in degree
nC j C 1. By S sC1 we denote the monomials of length sC 1. Powers of xnCj Œ1�
are trivial if nC j is even thus we get a single contribution from s D 0 of internal
degree nC j D qCn.

In the odd case, we obtain the condition that the internal degree of xnCj Œ1�sC1

has to be qC n, thus .sC 1/.nC j /D qC n. Therefore we get that sC q has to be
snC sj C sC j as claimed.
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Remark 7.2 The isomorphism

H
EnC1
� .S.xj //Š†

�.nC1/S.xjCnC1/

is not only an additive isomorphism but an isomorphism of algebras if we consider
H
EnC1
� .S.xj // equipped with the multiplicative structure arising for example from

computing HEnC1
� .S.xj // via the iterated bar construction BnC1 as in [F11a]: If

j C nC 1 is even and we denote the suspension of an element x by sx, generating
cycles in BnC1.S.xj // are of the form

s.snxj /˝ :::˝ s.s
nxj / 2 .†B

n.S.xj ///
˝r

with snxj 2†nS.xj /� Bn.S.xj //. One easily calculates that

.s.snxj //
˝r � .s.snxj //

˝s D

 
r C s

r

!
.s.snxj //

˝sCr

with respect to the shuffle product on BnC1.S.xj //, hence HEnC1
� .S.xj // is, up to

suspension, isomorphic to a polynomial algebra over Q.

7.2. Characteristic two

For a generator, x0, in degree zero, we have that E2-homology of the non-unital
polynomial algebra on x0 over a field k is (up to a 2-shift in degree) the homology
with k-coefficients of K.Z;2/ D CP1. It turns out that shifting the degree of the
polynomial generator down to degree minus one, trades the complex numbers for
the reals. More generally, we compute E2-homology for every polynomial algebra
F2Œxn� with a generator of degree n 2 Z. We always assume that the 1-restricted
Lie structure on the polynomial algebra is trivial. Note that the suspension of a
1-restricted Lie algebra is a restricted Lie algebra, similar to 5.3.

Proposition 7.3 Up to a shift, E2-homology of a polynomial algebra F2Œx�1� is
isomorphic to the homology of RP1:

HE2
s .F2Œx�1�/ŠHsC1.K.Z=2Z;1/IF2/:

Proof: According to 5.5 our E2-term is given by

E2p;q D ..LpQ1rL/.F2x�1//q:

Using the suspension, we obtain from the F2-analogue of 5.4 that

†.LpQ1rL/.F2x�1/Š .LpQrL/.†F2x�1/Š .LpQrL/.F2x0/
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586 B. RICHTER & S. ZIEGENHAGEN

where x0 is a generator in degree zero.
As the restricted Lie-structure on F2x0 is trivial, its restricted enveloping algebra

is
Ur.F2x0/Š F2Œx0�=x

2
0 Š F2ŒC2�:

Therefore

.LsQrL/.F2x0/Š TorF2ŒC2�
sC1 .F2;F2/ŠHsC1.C2IF2/DHsC1.RP

1IF2/:

Hence theE2-term is concentrated in bidegrees .sC1;�1/, thusHsC1.RP1IF2/
is isomorphic to HE2

s .F2Œx�1�/.
In broader generality we can determine E2-homology of F Œxj � for arbitrary

degree j 2 Z. Again varying the degree j of xj results in a shift.

Proposition 7.4 With respect to the multiplicative structure induced by the shuffle
product on the twofold bar construction we have

HE2
� .F2Œxj �/D†

�2	F2.xjC2/:

where 	F2.xjC2/ is a divided power algebra on a generator xjC2 in degree j C 2.

Proof: As above we get that

†.LsQ1rL/.F2xj /Š .LsQrL/.F2xjC1/D TorU.F2xjC1/sC1 .F2;F2/:

As the Lie-structure on F2xjC1 is trivial, the enveloping algebra is again a truncated
polynomial algebra. We take the periodic free resolution of F2 over F2ŒxjC1�=x

2
jC1

:::!†`.jC1/F2ŒxjC1�=x
2
jC1! :::!†jC1F2ŒxnC1�=x

2
jC1! F2ŒxjC1�=x

2
jC1

where the maps are given by multiplication by xjC1. Tensoring this with F2
over F2ŒxjC1�=x

2
jC1 gives a chain complex with †`.jC1/F2 in degree ` and trivial

differential, and therefore

TorU.F2xjC1/sC1 .F2;F2/Š†
.sC1/.jC1/F2:

Note that this is concentrated in bidegree .p;q/ D .s;.s C 1/.j C 1/ � 1/ and
contributes to total degree pC q D .sC 1/.j C 2/� 2.

In order to determine the multiplicative structure on

HE2
� .F2Œxj �/ŠH�.†

�2B2.F2Œxj �//;

we note that just as in 7.2 generating cycles in B2.F2Œxj �/ are of the form

s.sxj /˝ :::˝ s.sxj /:
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Again we see that

.s.sxj //
˝r � .s.sxj //

˝s D

 
r C s

r

!
.s.sxj //

˝sCr ;

hence †2HE2
� .F2Œxj �/ is a divided power algebra with 
r.s.sxj // D .s.sxj //

˝r .

8. Reduced Hochschild cochains

Normalized Hochschild cochains C �.A;A/ of an associative k-algebra A constitute
an algebra over an unreduced E2-operad [MS02]. The induced 1-Gerstenhaber
structure on Hochschild cohomology was already described in [Ge63]. Unfortu-
nately the augmentation inherited from C 0.A;A/ Š A! k is not compatible with
theE2-structure: Applying the brace operations as described by McClure and Smith
to cochains in the augmentation kernel might yield the unit element in C 0.A;A/.
Hence we are led to consider the following variant: Denote by NC �.A;A/ the cochain
complex with

NC k.A;A/D

(
C �. NA; NA/;k > 0;

C 0. NA;A/;k D 0;

and set the braces to be zero whenever one of the arguments is in k � NC 0.A;A/.
One easily checks that this is an E2-algebra and that the augmentation respects the
E2-structure.

The augmentation ideal of these reduced Hochschild cochains is C �. NA; NA/. i.e.,
the normalized cochain complex computing Hochschild cohomology of A with
coefficients in NA.

Note that we consider Hochschild cochains, so with respect to cohomological
grading the Lie bracket on cohomology is of degree �1. In the following we
consider Hochschild cochains as a non-positively graded chain complex, so that
we get an ordinary 1-restricted Gerstenhaber structure on the homology.

8.1. Hochschild cochains for kŒx�

The following is a standard result.

Lemma 8.1 For AD kŒx� reduced Hochschild cohomology is

HH0.kŒx�;kŒx�/D HH1.kŒx�;kŒx�/Š kŒx�:
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588 B. RICHTER & S. ZIEGENHAGEN

In order to exploit our spectral sequence, we have to understand the induced
structure on Hochschild cohomology. Hochschild cohomology is concentrated in
degrees zero and one, so the multiplication (cup-product) gives rise to a square-zero
extension.

A derivation f 2 Der.kŒx�;kŒx�/ can be identified with f .x/. We denote by p0

the formal derivative of a polynomial p 2 kŒx�.

Lemma 8.2 The Lie bracket

HH1.kŒx�;kŒx�/˝HH1.kŒx�;kŒx�/! HH1.kŒx�;kŒx�/

is given by the usual Lie bracket of derivations, i.e.,

Œf;g�D g ıf � f ıg D g0f � f 0g;

whereas for ˛ 2 kŒx� Š HH0.kŒx�;kŒx�/ and f 2 HH1.kŒx�;kŒx�/ the bracket is
given by

Œf;˛� WD f .˛/D ˛0f:

For k D F2 the restriction � W HH1.F2Œx�;F2Œx�/ ! HH1.F2Œx�;F2Œx�/ sends f to
f 0f .

Proof: The first facts can be found in [Ge63]. A direct calculation shows that
� satisfies the properties of a restriction. To this end note that second derivatives
of polynomials in characteristic two vanish. We also know that we actually have
a (1-restricted) Gerstenhaber structure on HH�.F2Œx�;F2Œx�/, so the restriction is
determined by �.x/. Then

�.x/0gC �.x/g0 D Œ�.x/;g�D Œx;Œx;g��D gC xg0; for all g

implies that �.x/D x, so our choice of � is a unique restriction on HH�.F2Œx�;F2Œx�/.

Note that the Lie-bracket is trivial on HH0 � HH0 and so is the restriction on
HH0. In particular, HH� is far from being a free (restricted) 1-Gerstenhaber algebra.

Let k DQ. The Hochschild cohomology groups in question are

HH�.QŒx�;QŒx�/C DQŒx0�˝ƒŒy�1�;

where x0 is identified with x 2 HH0.QŒx�;QŒx�/ and y�1 with x 2 HH1.QŒx�;QŒx�/.
The 1-Lie structure described in Lemma 8.2 corresponds to setting Œy�1;x0� D x0,
all other brackets can then be determined by using the Poisson relation. Hence
applying 5.1 yields the following.

Theorem 8.3 For QŒx� the E2-homology of the reduced Hochschild cochains on
QŒx� is concentrated in degree �1 with

H
E2
�1 .
NC �.QŒx�;QŒx�//ŠQ:
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Proof: According to 5.1 the E2-page of the spectral sequence we consider is given
by

E2p;q Š .LpQ1L.W //q

with 1-Lie structure on W D Qhx0;y�1i given by Œy�1;x0� D x0. Using the
equivalence between the category of 1-Lie algebras and the category of Lie algebras
this yields

E2p;q Š .†
�1TorU.†W /pC1 .Q;Q//q;

where now †W D Qhx1;y0i. We use the resolution for graded Lie algebras given
by May in [Ma66]: Set

Pi WD

(
U.†W /; i D 0;

Qha
.i/
i�1;b

.i/
i i˝U.†W /; i > 0;

with lower indices indicating the internal degree of the elements. Define P1! P0
by a.1/0 ˝ 1 7! y0 and b.1/1 ˝ 1 7! x1. Define Pi ! Pi�1 by a.i/i�1˝ 1 7! b

.i�1/
i�1 ˝

y0 C .i � 1/b
.i�1/
i�1 ˝ 1 � a

.i�1/
i�2 ˝ x1 and b.i/i ˝ 1 7! b

.i�1/
i�1 ˝ x1 for i > 1. This

is a U.†W /-free resolution of Q, and hence E2p;q vanishes expect for p D 0 and
q D�1.

8.2. NC �.T V;T V / for V a Q-vector space of dimension at least two.

Let V be a fixed Q-vector space of dimension at least 2. After adding a unit element,
Hochschild cohomology of T V with coefficients in NT V can be identified as the
square-zero extension

HH�.T V; NT V /C ŠQÌM.�1/

where M.�1/ D HH1.T V; NT V / D Der. NT V /=finner derivationsg is concentrated
in degree minus one and Q is in degree zero. The first summand in the Hodge
decomposition of Hochschild homology is isomorphic to Harrison homology which
is André-Quillen homology up to a shift in degree. This allows us to compute the
input for the Blanc-Stover spectral sequence:

Proposition 8.4

AQ�.HH�.T V; NT V /CjQIQ/Š HH.1/
�C1.QÌM.�1/IQ/

and HH.1/
� .QÌM.�1/IQ/ is additively isomorphic to the free graded Lie-algebra

generated by the graded vector space M.�1/.
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590 B. RICHTER & S. ZIEGENHAGEN

Proof: The first statement is a general fact about the relationship between André-
Quillen homology, Harrison homology and Hochschild homology in characteristic
zero (see for instance [Lo97, 4.5.13]). Hochschild homology of the graded square
zero extension QÌM.�1/ with coefficients in Q is the homology of the complex

:::
b

Q˝Q .QÌM.�1//˝n b
Q˝Q .QÌM.�1//˝.n�1/ b

:::

where Q˝Q.QÌM.�1//˝n is in degree n and the boundary map b is an alternating
sum of multiplication and augmentation maps. This chain complex is the associated
chain complex of a simplicial graded Q-vector space and its non-degenerate part in
degree n is isomorphic to M.�1/˝n. On that part, the boundary is trivial and thus
we get that

HH�.QÌM.�1/IQ/Š T .M.�1//

where the nth homology group corresponds to tensors of length n.
The Hodge decomposition is given by an action of Eulerian idempotents on the

Hochschild chains and homology groups. The first idempotent, e.1/n W HHn.Q Ì
M.�1/IQ/ ! HHn.Q Ì M.�1/IQ/ splits off Harrison homology. Reutenauer
showed in [Re86, (2.2),(2.4)] that the image of this idempotent applied to a tensor
algebra, T W , is precisely the free Lie algebra, LW .

Note that in addition to the free graded Lie structure on André-Quillen
homology we have the internal non-trivial (and non-free) 1-Lie structure coming
from the first Hochschild cohomology group M.�1/.

With respect to this 1-Lie structure AQ�.HH�.T V; NT V /CjQIQ/ consists of
the Lie subalgebra AQ0.HH�.T V; NT V /CjQIQ/ D HH�.T V; NT V / and the ideal
AQ�>1.HH�.T V; NT V /CjQIQ/. In particular

LsQ1LHH�.T V; NT V /D .LsQ1L/0AQ�.HH�.T V; NT V /CjQIQ/:

Hence we can identify certain elements in the Blanc-Stover spectral sequence in the
case V DQfx;yg.

Lemma 8.5 The Lie homology of HH�.TQfx;yg; NTQfx;yg/ is

LsQ1LHH�.TQfx;yg; NTQfx;yg/D

(
Q; s D 0;1;3;

0 else:

Proof: We know that

HH�.TQfx;yg; NTQfx;yg/Š Der. NTQfx;yg//=finner derivationsg
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as a 1-Lie algebra concentrated in internal degree �1. Consider the derivationsDx;v
and Dy;w defined by

Dx;v.x/D v;Dx;v.y/D 0; Dy;w.x/D 0;Dy;w.y/D w:

for v;w 2 NTQfx;yg. These form a basis of Der. NTQfx;yg/ as a vector space and
are eigenvectors with respect to Œ�;Dx;x� as well as Œ�;Dy;y �. Observe also that a
typical inner derivation is of the form Dx;vx �Dx;xv CDy;vy �Dy;yv and hence
an eigenvector as well. In particular Der. NTQfx;yg//=finner derivationsg splits into
eigenspaces with respect to Œ�;Dx;x� and Œ�;Dy;y �. Hence we can apply [Fu86,
1.5.2]. Since possible eigenvalues are limited we see that the Lie homology of
Der. NTQfx;yg//=finner derivationsg is the homology of the complex

0 QfDx;x ^Dy;y ^Dx;y ^Dy;xg QfDx;x ^Dx;y ^Dy;x ;Dy;y ^Dx;y ^Dy;xg

QfDx;x ^Dy;y ;Dx;y ^Dy;xg QfDx;x;Dy;yg

QfDx;x;Dy;yg 0

endowed with the usual differential of the Chevalley-Eilenberg complex. Hence the
claim follows.

Proposition 8.6 The E2-page of the Blanc-Stover spectral sequence has

E2s;0 D

†
Q in internal degree �1 for s=0;
Q in internal degree �2 for s=1;
Q in internal degree �4 for s=3;
0; else.

Remark 8.7 The generators for s D 0 and s D 1 in the Blanc-Stover spectral
sequence are permanent cycles and they cannot be boundaries for degree reasons.
Therefore they give rise to permanent cycles x0;�1 and x1;�2 in the resolution
spectral sequence. If the reduced Hochschild cochains on TQfx;yg were free as
an E2-algebra, then we would get something of rank 2 as E2-homology and this
could correspond to these two survivors, but a priori x0;�1 and x1;�2 could be hit by
differentials starting on elements in bidegree .r;�r/ for some r > 2.

8.3. Group algebras

Let G be a discrete group and k be a field. There is an identification of Hochschild
cohomology of the group algebra kŒG� with group cohomology

HH�.kŒG�;kŒG�/ŠH�.GIkŒG�
c
/;
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592 B. RICHTER & S. ZIEGENHAGEN

where kŒG�
c

denotes kŒG� with the kŒG�-action being induced by the conjugation
action of G on G. We will consider cases where Hochschild cohomology results in
an étale algebra, so we need the following result.

Lemma 8.8 Let k be a field of characteristic zero or two and let A be an
augmented étale k-algebra. Then NA has trivial derived 1-(restricted) Gerstenhaber
indecomposables and trivial E2-homology.

Proof: As explained in 6.3, let P� ! A be a simplicial resolution of A by free
1-(restricted) Gerstenhaber algebras. As A is étale, it has trivial indecomposables
and Qa.P�/ has trivial homotopy groups in all degrees. Therefore the constant
bisimplicial 1-(restricted) Lie algebra which is zero in all bidegrees is a valid
resolution ofQa.P�/. Application of the composite functor spectral sequence yields
the result.

Hochschild cochains on some group algebras have trivial 2-fold algebraic
delooping:

Proposition 8.9 Let G be a finite group. If

(a) either G is abelian, the order of G is odd and k D F2,

(b) or if k is algebraically closed and of characteristic two and the order of G is
odd,

(c) or if k is algebraically closed and of characteristic zero,

then
HE2
� . NC �.kŒG�;kŒG�//D 0; for all �> 0:

Proof: IfG is finite and if the characteristic of k is prime to jGj or the characteristic
is zero, then H�.G;kŒG�

c
/ Š H 0.G;kŒG�

c
/ D .kŒG�

c
/G Š Z.kŒG�/. The

multiplication induced by the E2-action is the usual one. In the first case this center
is F2ŒG�. As G is finite abelian, it suffices to consider the case Cpr for an odd prime
p. But F2ŒCpr � is étale over F2.

In the last two cases kŒG� is isomorphic to a product of matrix rings (Wedder-
burn) and hence the center is Z.kŒG�/Š

Q
r k, where r is the number of conjugacy

classes of G. This is again an étale k-algebra.

9. On the Hodge decomposition for higher order Hochschild homology

Over the rationals the operad En is formal, i.e., there is a quasi-isomorphism
between En and the operad of .n� 1/-Gerstenhaber algebras (see [LV1] for a nice
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overview on formality). As every QŒ†r �-module Gn�1.r/ is projective, this quasi-
isomorphism induces an isomorphism of operadic homology theories between En-
homology andGn�1-homology. As a consequence, our resolution spectral sequence
has to collapse at the E2-term and we obtainM

pCqD`

.LpQ.n�1/G. NA//q ŠH
En
`
. NA/:

For an augmented commutative Q-algebra A, we can identify En-homology
with Hochschild homology of order n:

HEn
� . NA/Š HHŒn�

�Cn.A;Q/:

The latter groups possess a Hodge decomposition [P00, Proposition 5.2]. For odd n
the Hodge summands of Hochschild homology of order n are a re-indexed version
of the Hodge summands for ordinary Hochschild homology:

HHŒn�

`Cn
.AIQ/D

M
iCnjD`Cn

HH.j /
iCj .AIQ/:

However, for even n the summands are only described in terms of functor homology:

HHŒn�

`Cn
.AIQ/D

M
iCnjD`Cn

Tor�i .�
j ;L.A;Q//:

For j D 1 the terms consist of André-Quillen homology:

Tor�i .�
1;L.A;Q//Š AQi .AjQIQ/:

For i D 0 one obtains �j ˝� L.A;Q/ Š Q˝A Symj
A.�

1
AjQ/, the j -th symmetric

power generated by the module of Kähler differentials.

Theorem 9.1 Let A be a commutative augmented Q-algebra. For all `;k > 1 and
m> 0:

�

HH.`/
mC1.AIQ/Š .LmQ2kG

NA/.`�1/2k:

�

Tor�m�`C1.�
`;L.AIQ//Š .LmQ.2k�1/G NA/.`�1/.2k�1/:

Thus the Hodge summands of higher order Hochschild homology can be identified
with Gerstenhaber homology groups.
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Of course, the convention is that negatively indexed Tor-groups vanish.
Note, that the case ` D 1 comes for free: The first Hodge summand is André-

Quillen homology,

HH.1/
mC1.AIQ/Š AQm.AjQIQ/Š Tor�m.�

1;L.AIQ//

and this in turn is LmQkG. NA/0 for all m> 0, k > 1.
For alternative approaches to the Hodge decomposition of higher order Hoch-

schild homology see [B1, Gi08].
In order to prove Theorem 9.1 we need a stability result. For the remainder of

this section A!Q is an augmented commutative Q-algebra.

Lemma 9.2 The derived functors of Gerstenhaber indecomposables are stable in
the following sense:

.LmQnG NA/qn Š .LmQ.nC2/G NA/q.nC2/:

Proof: We consider the standard resolution that calculates .LmQnG NA/. In
simplicial degree ` and internal degree r this is .nG/`C1. NA/r . This resolution is
concentrated in degrees of the form r D qn because iterated n-Lie brackets on
degree zero elements are concentrated in these degrees. We can identify the terms
.nG/`C1. NA/qn with the terms ..nC 2/G/`C1. NA/q.nC2/ where we just exchange n-
Lie brackets by .nC 2/-Lie brackets and adjust the internal degrees.

This yields an isomorphism of resolutions and hence an isomorphism on the
corresponding homology groups.

Remark 9.3 Note that there is no stability result when one passes from n to nC 1:
Take for instance ADQŒx�. For even n this is a free n-Gerstenhaber algebra but for
odd n it is not.

Proof of Theorem 9.1: As the claim is clear for ` D 1, we do an induction on
the label of the Hodge summands. We start with the 2k-Gerstenhaber case. Thus
assume that we know the claim for all Hodge summands HH.j /

p for all 1 6 j 6 `
and all p > 1. Lemma 9.2 allows us to choose k such that 1 6 m < 2k and to
consider HE2kC1

mC2k`
. NA/:M

pCqDmC2k`

LpQ2kG. NA/q ŠH
E2kC1
mC2k`

. NA/Š
M

iCj.2kC1/DmC2k.`C1/C1

HH.j /
iCj .AIQ/:

The summands LmC2k.`�r/Q2kG. NA/2kr for r < ` are already identified with Hodge
summands. The remaining non-trivial summand in HE2kC1

mC2k`
. NA/ is LmQ2kG. NA/2k`

and in the Hodge decomposition we still have the summand for j D `C 1. In this
case

i C .`C 1/.2kC 1/DmC 2k.`C 1/C 1:
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Hence i DmC 1� .`C 1/ and i C j DmC 1.
For the .2k�1/-Gerstenhaber case the argument is similar, but the degree count

is different: For j D `C 1 we get

i C .`C 1/2.k � 2/Dm� `C 2.k � 2/.`C 1/

and thus i Dm� `.

Remark 9.4 A posteriori Theorem 9.1 yields a description of derived functors
of 2k-Gerstenhaber algebras in terms of (higher) André-Quillen homology: A
classical spectral sequence argument allows an identification of HH.`/

mC1.A;Q/ with
D
.`/

mC1�`
.AIQ/ [Lo97, 3.5.8,4.5.13] which in turn is HmC1�`..ƒ`P��

1
P�jQ

/ ˝P�

Q// Š HmC1�`.ƒ
`.�1

P�jQ
˝P� Q//. Here P� is a free simplicial resolution of

A in commutative Q-algebras, for instance Pt D .SI /ı.tC1/.A/. Thus we obtain

HmC1�`.ƒ
`.�1P�jQ˝P� Q//Š .LmQ2kG NA/.`�1/2k:

We show in the following that the identification of the Hodge summands follows
independently from an easy spectral sequence argument. We are also able to prove
an analogous result for the even case:

Theorem 9.5 For every augmented commutative Q-algebra A we can identify the
Hodge summands of Hochschild homology of order 2k for k > 1 as

Tor�mC1�`.�
`;L.AIQ//Š .LmQ.2k�1/ NA/.2k�1/.`�1/

ŠHm�`C1.Sym`.�1P�jQ˝P� Q//:

We also recover the identification for Hodge summands of Hochschild homology of
odd order:

HH.`/
mC1.AIQ/Š LmQ2kG. NA/2k.`�1/ ŠHm�`C1.ƒ

`.�1P�jQ˝P� Q//:

Remark 9.6 The functor homology terms Tor�.�`;L.AIQ// also describe the
homology of the `th homogeneous layer in the Taylor tower of the 	-module
L.AIQ/, D`.L.AIQ//Œ1�, [Ri01, Proposition 4.7]:

H�.D`.L.AIQ//Œ1�/Š Tor�.�`;L.AIQ//:

Thus our results identifies these homology groups with derived functors of n-
Gerstenhaber indecomposables for odd n and with the homology of the `th
symmetric power of the module of derived Kähler differentials.
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596 B. RICHTER & S. ZIEGENHAGEN

Proof of Theorem 9.5: Let D�;� be the bicomplex with Dr;s D

.nG/ı.rC1/..SI /ı.sC1/.A//. Taking n-Gerstenhaber indecomposables yields an-
other bicomplex C�;� with Cr;s DQnG.Dr;s/Š .nG/ı.r/..SI /ı.sC1/.A//:

:::
:::

:::

.SI /ı.3/.A/ .nG/..SI /ı.3/.A// .nG/ı.2/..SI /ı.3/.A// :::

.SI /ı.2/.A/ .nG/..SI /ı.2/.A// .nG/ı.2/..SI /ı.2/.A// :::

.SI /.A/ .nG/..SI /.A// .nG/ı.2/..SI /.A// :::

Taking vertical homology, H v
� , first and then horizontal homology, Hh

� , gives

Hh
r .H

v
s .C�;�//Š LrQnG. NA/

concentrated in the .s D 0/-line: the vertical homology groups are trivial but for
s D 0 because .SI /ı.�C1/.A/ is a resolution of A.

Switching the roles of vertical and horizontal homology gives

H v
r .H

h
s .C�;�//ŠHrLsQnG.SI /

ı.�C1/.A/:

We know by Corollary 5.2 that LsQnG.SI /
ı.�C1/.A/ is isomorphic to

LsQnL.SI /
ı.�/.A/ and using the suspension correspondence between n-Lie alge-

bras and graded Lie algebras we get

LsQnG.SI /
ı.�C1/.A/Š†�nLsQL†

n.SI /ı.�/.A/:

Since †n.SI /ı.�/.A/ carries a trivial Lie structure we can identify these groups as

†�nTorU.†
n.SI/ı.�/.A//

sC1 .Q;Q/Š†�nS sC1.†n.SI /ı.�/AŒ1�/:

Recall that †n.SI /ı.�/AŒ1� is still concentrated in internal degree n, but for the
free graded commutative algebra generated by it, S.†n.SI /ı.�/AŒ1�/, we consider
its elements as being of degree nC 1, thus the total internal degree of elements in
†�nS sC1.†n.SI /ı.�/AŒ1�/ is sn.

For nD 2k we therefore obtain

HH.`/
mC1.AIQ/Š LmQ2kG. NA/2k.`�1/ ŠHm�`C1.ƒ

`.�1P�jQ˝P� Q//
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because
.SI /ı.t/.A/ŠQa..SI /

ı.tC1/.A//Š�1Pt jQ˝Pt Q

with Pt D .SI /ı.tC1/.A/.
For n D 2k � 1 however, we get symmetric powers of the Kähler differentials

and have

Tor�mC1�`.�
`;L.AIQ//Š .LmQ.2k�1/G NA/.2k�1/.`�1/

ŠHm�`C1.Sym`.�1P�jQ˝P� Q//

again with Pt D .SI /ı.tC1/.A/.

REFERENCES

An71. Donald W. Anderson, Chain functors and homology theories, Symposium on
Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971), Lecture
Notes in Math. 249, Springer, Berlin, (1971), 1–12.

B1. Kristine Bauer, Higher Order Hochschild Homology and Its Decompositions,
preprint available at http://hopf.math.purdue.edu//BauerK/bauer1.pdf

BS92. David Blanc, Christopher Stover A generalized Grothendieck spectral sequence,
Adams Memorial Symposium on Algebraic Topology, 1 (Manchester, 1990),
London Math. Soc. Lecture Note Ser. 175, Cambridge Univ. Press (1992), 145–
161.

C54. Henri Cartan, Séminaire Henri Cartan 1954/55. Algèbre d’Eilenberg MacLane
et homotopie, Secrétariat de Mathématique (1956); electronically available at
numdam http://www.numdam.org/?lang=en .

CLM76. Frederick R. Cohen; Thomas J. Lada; J. Peter May, The homology of iterated
loop spaces, Lecture Notes in Mathematics 533, Springer-Verlag, Berlin-New
York (1976), vii+490 pp.

DKS93. William G. Dwyer, Daniel M. Kan, Christopher R. Stover, AnE2-model category
structure for pointed simplicial spaces, Journal of Pure and Applied Algebra 90
(1993), 137–152.

F09. Benoit Fresse, Modules over operads and functors, Lecture Notes in Mathemat-
ics 1967, Springer-Verlag, Berlin (2009), x+308 pp

F11a. Benoit Fresse, Iterated bar complexes of E-infinity algebras and homology
theories, Alg. Geom. Topol. 11 (2011), 747–838.

F11b. Benoit Fresse, Koszul duality of En-operads, Selecta Math. (N.S.) 17(2) (2011),
363–434.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/is014004016jkt264
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 25 Oct 2017 at 01:28:26, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/is014004016jkt264
https://www.cambridge.org/core


598 B. RICHTER & S. ZIEGENHAGEN

Fu86. D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary
Soviet Mathematics, Consultants Bureau, New York (1986) xii+339

GM07. Gerald Gaudens, Luc Menichi, Batalin-Vilkovisky algebras and the J-
homomorphism, Topology Appl. 156(2) (2008), 365–374.

Ge63. Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of
Math. 78(2) (1963), 267–288.

Gi08. Grégory Ginot, Higher order Hochschild cohomology, C. R. Math. Acad. Sci.
Paris 346(1-2) (2008), 5–10.

Go90. Paul G. Goerss, On the André-Quillen cohomology of commutative F2-algebras,
Astérisque 186 (1990), 169 pp.

KM95. Igor Kriz, J. Peter May, Operads, algebras, modules and motives, Astérisque 233
(1995), iv+145pp.
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