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Chapter I.

§1. Differentials and derivations.

All rings are commutative, associative, with identity and
all modules are unitary unless stated otherwise. R denotes
the category of rings. Also all diagrams are understood to be
Ecommutative.

Let A be a ring and let C = A\R be the category of _.
A-algebras.' An object of C is a ring B togéther with a map
iB: A -B of rings, and amap f: B~ B' in C is a map of
rings such that fi, = 1 .

B
algebras so the general theory of [HA,$5,p.5.1%] applies to

B! C 1is a category of universal

define cohomology groups for an 6bject B of C with values
in a "B module," where "B module" in the general theory means
an abelian group object in Q/B . We show in this section that
this notion of B module coincides with the usual one. Also
we calculate the abelianization functor on C/B in terms of

differentials.

Let B denote a fixed A-algebra and let C/B be the cate-
gory of A-algebras over B . Here "over" is used as in cate-
gory theory, so that an object of C/B is an A-algebra X to-

gether with a map u,: X - B of A-algebras. If M 1is a B

| X
module, let B®HM be the A-algebra over B with



1.2

bb'e(bm'+b'm)

(vém) (b'®m' )
ipeul@) = ip(a)
UB$M(bem) =Db

If 6: Y~ B@M is amap in C/B, then Oy = Uy y®Dy where
D: Y - M satisfies
DiY(a) = 0
D(yy') = uy(y)Dy' + uy(y')Dy .
M

In other words D 1is an A-derivation of Y with values in

considered as a B module via Uy . Conversely given such a

D we obtain a 6 and therefore
(1.1) Homg/B(Y,BeM) =~ Der(Y/A,M)

This is an isqmbrphism of functors of Y . As Der(Y/A,M) 1is
an abelian group under addition we see that B&M is an abelian
group object of C/B . o

Recall that an H-object in a category is an object endowed
with an operation having a two-sided identity. An H-object of

C/B is therefore an object X together with maps

e: B-X

e XxX - X
B

such that
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(1.2) jLo _(euX,idX) = pe (idx, eux) = j_dx
For the abelian group object B®M one calculates that

e(b) = b®0

(1.3)
w(bem,bém') = bd(m+m')

Proposition 1.4: Any H-object of C/B is isomorphic to

B®M with multiplication (1.3) for some B module M . In

particular any H-object is an abelian group object.

Proof: Given an H-object X , let M= Ker(ux: X - B)
considered as a B module via ex: B-X. If x,y €M, then
by (1.2)

(x,0) = x  u(0,y) = y
SO as M 1is a homomorphism

Xy = u(x:o)u(O:Y) = u((x,o) (O.vy)) = u‘(®:0) =0

Thus M has the zero multiplication. It follows easily that
the map B&®M - X given by b%m - eXb+m is an isomorphism

in C/B . Abbreviating ey to e we have

w(eb+m, eb+m') = p(eb,eb) + p(m,0) + p(0,m')

i

eb + m + n!

which shows that the multiplication p on X is the same as
(1.3) on B®M. Q.E.D.
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Let (Q/B)ab be the category of abelian group objects in
C/B and let My be the abelian category of B modules. From

1.4 we obtain

Proposition 1.5: There is an equivalence of categories

BeM <— M

(-Q/B)ab = -MB
X —> Ker Uy
In particular (Q/B)ab is an abelian category.
If Y 1s an A-algebra, let DY/A be the Y module of /?é(
A-differentials of Y . There is a canohical ‘A-derivation

d: Y - DY/A. such that

Homb_ay(DY/A,N) = Der(Y/A,N)

6 = 804

for any Y module N . From 1.1 we have
(1.6)

Homg/B(Y,B@M) ~ Der(Y/A,M) ~ Hom-MY(DY/A,M) ~ HomMB(DY /A®YB’M) .
Thus

Proposition 1.7: With respect to the equivalences of cate-

gories of 1.5 we have

Dy/p®yP ¢ ¥
< ab
Mg = (-g/B)ab —_— c/B
i

M +————-> B&M
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where i 1is the natural faithful functor and ab 1is the

abelianization functor, the left adjoint of 1 .

From now on we will identify (C/B),, and M by the
equivalence of Prop. 1.5. 1.7 shows that Y » DY/A®Y‘B is
identified with the abelianization functor on C/B .



§2. Homology and cohomology

The gqth cohomology group of the A-algebra B with values
in the abelian group object B®&M of C/B [HA,IT,p.5.1%] will
be denoted D%(B/A,M) and called simply the qth cohomology
group of the A-algebra B with values in the B module M.
According to Theorem 5 (loc.cit.) this may be defined in two
different but equivalent ways--as sheaf cohomology from a
Grothendieck topoloéy and by (semi-) simplicial resolutions.
Both definitions for DU(B/A,M) will be given in this section.
The former will be used in globalizing the definition to pre-
schemes and the latter leads to a notion of homology for the

A-algebra B .

2.1. ILet T be the Grothendieck topology [G T] whose under-
lying category is C/B and where a covering of Y is a family
consisting of a single map Z - Y which is set-theoretically
surjective. Representable functors are sheaves for T hence
by 1.1 Y b Der(Y/A,M) is a sheaf of B modules on T . 'The
first definition for the cohomology of B with values in M
is

(2.2) DY(B/A,M) =~ H%(B,Der(-/A,M))

where the right side denotes sheaf cohomology for the topology
T .

We will give the other definition for D% in 214 It is first

necessary to state some facts about simplicial objects.
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2.3. If X 1is a simplicial object in an abelian category,
its homology in dimension q , denoted Hq(x)', is defined to be
the homology in dimension q of the chain complex constructed
from X with differential d = )::(--l)id:.L . By the normalization
theorem this is the same'asl Hq(NX) where NX is the normalized
subcomplex of X . Hence when X 1is a simplicial abelian group

Hq(x) is the qth homotopy group of X 1in the sense of Moore.

2.4, If f: X~-Y and i: U~V are maps in a category,
we say that £ has the right lifting property (RLP) with respect

to 1 and that 1 has the left lifting property (LLP) with

respect to f 1if given any commutative square of solid arrows

Y

N

a dotted arrow exists such that the whole diagram is commutative.
Let A(n) be the "standard n simplex" simplicial set and let
i, Akn) -+ A{n) be the inclusion of its n-1 skeleton. The
following proposition characterizes those maps of simplicial

abelian groups which are trivial fibrations in the sense of [HA].

Proposition 2.5: The followlng assertions are equivalent

for amap f: X =Y of simplicial abelian groups.
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(1) £ 1is surjective (in each dimension) and H,(f): H,(X) =
Hy (Y) . | |

(11) As a map of simplicial sets f has the RLP with re-
spect to ‘in: AZn) - A(n) for all n> 0.

(1ii) As a map of simplicial sets f has the RLP with re-
spect to any injective (in each dimension) map of simplicial sets.

This results from [HA], II, §3, Prop. 2.

(2.6). A map of simplicial rings is said to be a trivial
fibration if as a map of simplicial abelian groups it satisfies
the equivalent conditions of 2.5. A map of simpiicial rings is

called a cofibration if it has the LLP with respect to all triv-

lal fibrations of simplicial rings. Cofibrations may be described
in the following alternative way. Call amap i: R - S of sim-
plicial rings free if there are subsets Cq c Sq q > 0 such

that (i) q*cq c cp whenever n: [p] - [q] is a surjective mono-

tone map and (ii) Sq is a free Rq algebra (polynomial ring)

with generators Cq . Then Theorem 6.1 of [ ] implies:

Proposition 2.7: Any free map of simplicial rings is a co-

fibration.

The proof of Proposition 3, §%, [HA], II, yields

Proposition 2.8: Any map f of simplicial rings may be

factored f = pi where 1 1is free and p is a trivial fibration.

Corollary 2.9: A map i: R~ S of simplicial rings is a

cofibration if and only if there is a free map j: R - T and
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maps u: TS, v:i S - T of simplicial rings under R such

that uv = ids .

Proof: The sufficiency is clear. If i is a cofibraticn
let 1 =uj be a factorization as in 2.8. Then v is obtained

as the dottéd arrow in

2.10. If K 1is a simplicial set and Y is a simplicial
ring, then the function complex YK has a natural structure as

a simplicial ring. Let I = A(1) and let Jet YI

-Y e=20C,1

(resp. og: Y = YI) be the map induced by the inclusion of the

eth vertex A(0) - A(1) (resp. the unique.map a(1) -~ a(o)) .

If f,g: X3 Y are two maps of simplicial rings then a (simpiicial}

homotopy from £ to g may be.identified with a map of simpii-

cail rings h: X = YI such that joh = f and jlh =g .

ot Y =~ Y' is of course the "constant" homotopy from idy to

idy .
Proposition 2.11: Iet i: R+ S be a cofibration and

-
)

f: X - Y a trivial fibration of simplicial rings. Let h: 8 - X

I

and k: S » Y' be homotopies such that ki = f'h , and let

0,,87: S * X Dbe maps with .1 = jh and £o, = Jk e= 1.

I

Then there is a homotopy H: S - X* with Hi = h , f1H = k » 2nd



TR AT P

2.5

Proof: Consider the square

s
N

i (et 33g2d7)
/

S s~ (k: .991)

> X .X

YI

where XI = XxX . The map (fI,jo,jl) is seen to be a trivial
fibration using 2.5(iii), hence the dotted arrow exists and gives

the desired homotopy. Q.E.D.

2.12. Let u: R-+ S be a map of simplicial rings. By a

cofibrant factorization of u we mean a factorization R i T B S

of u where 1 1s a cofibration and p 1is a trivial fibration.
If R- T-S8 1is another cofibrant factorization of u , then by
the definition of cofibration there are maps o: T - T' and

¥: T' - T in the category R\sR/S . By 2.11 oy and o are
homotopic to idT, and idT respectively in this category.
Therefore a cofibrant factorization of a map is unique up tb sim-

plicial homotopy under the source and over the target of the map.

2.13. If X is an object of a category we let <X denote
the "constant" simplicial object with (cX)q =X, o* = 1dy for
all q,o .

2.14. Iet A,B,M, and C be as in §1. A simplicial
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A-algebra over B (i.e. simplicial object of C/B) P 1is the
same as a factorization cA - P - cB of the map cA - cB . We

shall call P a projective A-algebra resolution of B if this

factorization is a cofibrant factorization. By 2.8 projective

A-algebra resolutions of B exist. Choose one P and let

;DB/A be the simplicial B module DP/AQPB obtained by applying
1] n :

the "abelianization™ functor Y » DY/Ag&B dimension-wise to P .

The simplicial homotopy type of QDB/A is independent of the

choice of P by 2.12. The underlying chain complex of ;DB/A

is called the cotangent complex of the A-algebra B and is unique

up to chain homotopy equivalence of the choice of P . The follow-

ing groups are then well-defined:

o~

(2.15) Dy (B/A,M) = H, (LDg/p@gh)

Hq(HomB (r—];'DB/A’M) )

(2.16) B De(B/A,M)

We call these the qth homology and cohocmology groups of the
A-algebra B with values in M . When M= B we write simply
Dq(B/A) and D%(B/A) .

Proposition 2.17: The definitions 2.2 and 2.16 are consistent.

Proof: We have
DY(B/A,M) = Hq{HomB(DP /a®pB, M)} = He{Der(P/A,M)}

so the result follows from [HA], II, §5, th.5. Alternatively it
follows from a general theorem of Verdier (SGA, 1963-€4%, Expose 5,

Appendix) once one notes that a T-hypercovering of B is the
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same as a simplicial A-algebra resolution. and that' a projéctvive
resolution is by (2.1%) a cofinal object in the category o‘f“

_’J;‘-hyp'er‘coveri_ngs of B .’
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§3. Elementary properties

In this section we establish properties of the homology and
cohomology groups which are elementary in the sense that they do
not use special properties of commutative rings and hence are
true without essential modification for all kinds of universal

algebras,

Proposition 3.1: If B 1is a free A-algebra, then LDB/A"

cDB/A and hence

DY(B/A,M) = Dq(B/A,M) =0 g> o0

Der(B/A,M)

D /4®pM

D°(B/A,M)

1

DO(B/A,M)

Proof: The identity map c¢B - ¢cB makes ¢B a free simpli-
cial A-algebra resolution of B , hence LDB/A':‘CDB/A and the

proposition follows.

3.2. 1In analogy with 2.6 we say that a simplicial module
X over a simplicial ring R 1is free if there are subsets

C.c X_ such that (i) n*Cq ccC. if 7n: [p} » [q] is a sur-

q a p
jective monotone map and (ii) Xq is a free Rq module with
base Cq . X will be called progective if it is a direct sum-

mand of a free simplicial R module.
If P 1is a free A-algebra resolution of B with generators'

Cq < Pq as in 2.6, then {dx®1|x € Cq} c DPq/AQPqB is a set of
generators as in 3.2. Hence DP/AQPB is a free simplicial B
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module. If Q 1s a projective A-algebra resolution, then by
2.9 Q 1is a retract of a free one P and so DQ/A®QB is a
projective simplicial B module. In particular as a chain com-

plex DQ/A®QB is projective in each dimension. Thus

Proposition 3.3: JZEDB/A is a projective simplicial B

module,

Corollary: If O - M - M- M' -0 is an exact sequence

of B modules then there are long exact seguences.

(3.4)

0 - D°(B/A,M') - D°(B/A,M) ~ D°(B/A,M') - DY (B/A,M) - ...
(3.5)

- Dl(B/A,M“) ~ D°(B/A,M') - D°(B/A,M) - D°(B/A,M") - O

Corollary: There are universal coefficient spectral sequences

(3.6) qu - Torg(Dq(B/A),M) ==> D_, (B/A,H)
(3.7) el = Extg(nq(B/A),M) ==> pP*(p/a,NM)
Proposition 3.8: D%(B/A,M) = Der(B/A,M)

DO(B/A,M) = D(B/A)@BM

Proof: As Y » DY/A@&B is a left adjoint functor by 1.6,
it is right exact. Hence DO(B/A) - DB/A and the proposition
follows from 3.6 and 3.7.

Remark 3.9: The spectral sequence 3.7 shows that M ~

DY(B/A,M) 1is the qth derived functor of M - Der(B/A,M) if
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and only if Dq(B/A) =0 for q> 0. This can fail to be so
even if A 1is a field, and in this respect commitative ring
cohomology is quite distinct from group, Lie algebra, and associa-

tive algebra cohomology.

3.10. By an extension of the A-algebra B by M we mean

an exact sequence

(3.11) o-Mi3xY%B-o

where u is a map of A algebras such that (Kef u)2 = 0 and
where 1 induces an isomorphism of B modules M S Ker u ,

Ker u being endowed with the B module structure u(x)y =x.y
X €X, y € Keru. Let Exalcomm(B/A,M) be the set of isomor-

phism classes of extensions of the A-algebra B by M.

Proposition 3.12: There is a canonical bijection
D1(B/A,M) ~ Exalcomm(B/A,M) .

Proof: Given a free A-algebra resolution P of B and an
extension 3.11, choose a map 0: Po - X of A algebras over
B . Then i"l[edo—edl}: P, - M is a normalized l-cocycle of
Der(P/A,M) whose cohomology class is independent of the choice
of & . This gives a map ‘5: Exalcomm(B/A,M) - Dl(B/A,M) which
one may show is independent of the choice of P . Conversely

given an A-derivation D: P, = M 1let

1



A
D 3

(a,,9)
1 ' ; POQM}

X = Coker{P

the cokernel being in the category of A modules, and let

p: Pd$M-4 X be the canonical projection. Then X 1is a quotient
A-algebra of P ®M and if D is a cocycle of Der(P/A,M) we
obtain an extension 3.11 with u(p(yem)) = ey , i(m) = p(Ogm) .
It is straightforward to verify that this procedure gives an in-

verse to & . Q.E.D.

Remark 3.13: It is also possible to prove 3.12 using the

interpretation of the sheaf cohomology in terms of "torsors."

By [ ] one also gets a general interpretation of D°

this way,
however for rings the methods of the second chapter seem better

for handling the higher cohomology.

Corollary 3.14: Suppose that A/I % B where I 1is an
ideal in A . Then D_(B/A) = O and D, (B/A) =~ I/1° .

Proof: D _(B/A) = 0 by 3.8. From 3.7 and 3.12 we have
 Homg(Dy (B/A),M) ~ DY(B/A,M) ~ Exalccmm(B/A,M) .

| Let X € Exalcomm(B/A,I/Ig) be the isomorphism class of the ex-
tension 0O = I/I2 - A/I2 -B -0 . By functorality X defines

a natural transformation X,: HomB(I/Ig,M) - Exalcomm(B/A,M) .
Conversely given an extension 3.11, choose a mép 9: A - X with
ue = iB 5 the restriction of ¢ to I gives rise a hbmomorphism
of B modules I/I2 -~ M . This procedure is easily seen to
define an inverse to X, , hence HomB(Dl(B/A),M).:rHomB(I/IE,M)

and so D, (B/A) ~ I/1% . Q.E.D. |
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In this section we establish properties of the cohomology
theory which are peculiar to cdmmutative rings, since they de-
pend on the fact that direct sum in the category of A-algebras
is given by tensor product. We begin by recalling facts about.

simplicial modules which are proved in [HA], II, §6.

4.1 Let R be a simplicial ring and let Mp Dbe the abe-
lian category of simplicial R modules. The homotopy category
Ho (M ) is obtained from Mp by formally adjoining the inverses
of the weak equivalences (maps which induce isomorphisms on ho-
mology). Ho(yh) is equivalent to the category whose objects
are the projective simplicial R modules (3.2) with homotopy
classes of maps for morphisms. When R = cA , Ho(yR) is equi-
valent to the full subcategory of the derived category of A

modules consisting of the chain complexes.

b2, If X,Y are two simplicial R modules, let Tor?(X,Y)
be the simplicial R module obtained by applying the tri-functor
Tori(-,~) dimension-wise. ILet X%RY denote the derived tensor
product of X and Y. X%RY is isomorphic in Ho(M ) to P3.Q ,
where P and Q are projective resolutions of X and Y res-
pectively. There is a spectral sequence ([HA), II, §6, th. 6)

_ 2 . R e
(%.3) ES = Hp(Torq(X,Y)) ==

pq (X®RY)

P+q
one of whose edge homomorphisms is the map on homology induced by

L
the canonical map X@ o~ P®RQ - X@RY Consequently we have
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Proposition 4.3: If Torg(X,Y) =0 for q> 0, then
X8 ¥ KoY .

4,4, Let u: R- S be a map of simplicial rings. Deiine
IDg g to be the projective simplicial S module Dp/p®pS Where
R~-P~3S is a cofibrant factorization of u (2.). As an ob-
ject of Ho(ys) it is independent up to isomorphism of the
choice of the factorization. If X 1is a simplicial S module

ﬁe define
(4.5) Dq(S/R,X) = Hq(;Ds/R%RX) ::Hq(;DS/R®RX)

where the last isomérphism is from 4.3. It is clear that this
definition specializes to 2.15 in the case where 'u 1is the map
cA—-cB and X = cM . Moreover the obvious generalization of
2.5 holds and 3.6 generalizes by ([HA], II, Th. 6(c)) to a

spectral sequence

(.6) | 2 - Hp(Dq(s/R)%Rx) ===> D_, (S/R,X)

_ Ehq pt+q
where Dq(S/R) = DQ(S/R,R) .

Proposition: Suppose u: R- R' and v: R-+ S are maps

of simplicial rings such that Torg(R',S) =0 for q> 0. If

S' = S®gR' , then there are canonical iscmorphisms in Ho(ys,)
)
(+.7) Dg/r®R%" = LDg1 /g
(+.8) IDgi /g = IDg/g®R' ® LDp: /g@RS
_ -

Proof: First observe that if R - P 1is a cofibration (reép.

free map) of simplicial rings, then P is a projective (resp.
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fa

free) R module. Using 2.9, one reduces to the case where P
is free, whence if C, is an R-algebra basis for P as in 2.6,
then the monomials in the elements of C;, form an R module
basis for P as in 3.2.

Now let R - P - S be a cofibrant factorization of R - S .
As P - S 1is a weak equivalence of R modules, so is B%RR'~~
S&RR' » Since %R is a functor on HO(MR) . By hypothesis, the
fact that P is a projective R module by the above remarks, and
4.3, this map is isomorphic to the map P@gR' - S' . Hence this
last map is a weak equivalence; as it is clearly surjec¢tive it is
a trivial:fibration. As cobase extension preserves cofibrations,
it follows that R' = PQEB' -~ S' is a cofibrant factorization

of R' - S' and hence setting P' = P®RR'

IDg1 /g1 = Dp1/g1®geS' = (Dp/p®:S)@pR' = IDg /p@pR!
?' ()

which proves 4.7. To prove 4.8, let R - Q = R' be a cofibrant
factorization of R - R' . By the same argument as above we
find that R - P®RQ - S' is a cofibrant factorization of R - S!

and so
Dsyr = Preya/rBre e’ = (Pp/r2R%Do/R®RF)3pg oS
=~ (Dp/g®pS)@pR' & (D /p® R )@pS
=~ Dg/g®gR' & LD /g®gS -

The resulting isomorphisms in Ho(ys,) are canonical since they
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I.h

are independent of the choices of P,Q by 2.11. Q.E.D.

Corollary 4.9: TLet B and C be A-algebras and let N be

a B@AC module. If Torg(B,C) =0 for q > 0, then there are

isomorphisms

D%(B®,0/C,) = DY(8/A,N)

p%(B/A,N) & D%(C/A,M)

i

p%(B®,C/A,N)
and similarly for homology.

4.10. If O0-X' - X X" >0 is an exact sequence in M,
then in Ho(Mp) there is a cofibration sequence ([HA], II, $6)

(4.11) X' - X - X" S sx

where 3 denotes the suspension functor on AHO(MR) . When R = ¢3B
and we identify Ho(yR) with the subcategory of the derived cate-
gory of B modules consisting of chain complexes, then the sus-
pension functor shifts a complex to the left and the sequence 4.11

1s the distinguished triangle associated to the exact sequence.

Theorem: Let R3S % T be maps of simplicial rings. Then

there is a canonical cofibration sequence in Ho(Mg)

(#.12) IDs/g®sT = /g ~ LDy g = Z2(IDg /p®sT)

Proof: Form a diagran
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, |12
(4.13) P ,

| ’
p S®-Q
N
v
S .

R—2%__» > P

Ey choosing cofibrant factorizations u = pi and vp = qj, aﬁd
then filling in the rest of the diagram in the obvious way.

As j 1s a cofibration Q@ is a projective P module, hence
by 4.3 the map i, 1is isomorphic to pgpidqz Pé%Q ~ Sé%Q » Which
is a weak equivalence since p is . As i2 and g are weak
equivalences so is r 5 r 1s also surjective since q is and
therefore r is a trivial fibration of simplicial S-algebras.

As j 1is a cofibration so is il ;5 therefore v = ril is a
cofibrant factorization.

Suppose for the moment that 4.13 is a diagram of rings where
Q@ 1s a free P-algebra. If N is a T module, then there is an

exact sequence

2 %
0 - Der(Q/P,N) - Der(/R,N) % Der(p/R,N) - 0

where j 1is onto because Q 1is a free P-algebra and hence there
is an R-algebra map from Q to P which is left inverse to J .
As this sequence is functorial in N it comes from an exact

sequence of T modules
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7 DyppB 1 7% +:6

(%.1%) 0 - (DP/RQPS)®ST = Do /r®T - DS®PQ/S®S®PQT -0

This last sequence is seen to be functorial in the diagram of
rings 4.13, hence applying this functorial exact sequence
dimension-wise to 4.13 now considered as a diagram of simplicial
rings we obtain an exact sequence 4.14 of simplicial T modules.

Now using that S®PQ is a projective S-algebra resolution
of T, that Q is a projective R-algebra resolution of T and
thatA P is a projective R-algebra resolution of S , we see that
the cofibration sequence in Ho(M;) associated to 4.1% is the
desired cofibration sequence 4.12.

It remains to show this cofibration sequence is independent
of the choice of the diagram %.13. Suppose given a diagram of

simplicial rings

R > sI > T

(4.15) ' | |
v \ \’
R! > S > ™

and suppose given a diagram (4.13)' similar to 4.13 but with

primes. By lifting successively in the diagrams

R ——————> P! P—oon > Q
A A

(4.16) . .

P —mm ———> S! Q —m > T
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we obtain a map from 4.13 to (4.13)', hence a map from the exact
sequence 4.14 to the corresponding exact sequence (4.14)', and
finally a map of cofibration sequences. The resulting map is’
independent of the choices of the liftings in 4.16 because by
2.11 two liftings in the first square are joined by a homotopy
which may then be extended to a homotopy between the liftings

in the second square. It follows that the map of exact sequences
f4.14 to (4.14)! ié unique up to homotopy and hence the map of

cofibration sequences is well-defined. Q.E.D.

Specializing to constant simplicial rings, we have

Corollary %.17: If A -B o C are maps of rings, then there

is a canonical exact triangle in the derived category of C

modules

IDp/n®5C > o/n

iDs/p

Hence if N is a C module, there are canonical exact sequences

0 - p°(c/B,M) - D°(c/A,M) - p°(B/A,M) - D (c/B,M) - ... -

- Dl(C/B,M) ~ D (B/A,M) ~ DO(C/A,M) - DO(C/B,M) - 0



§5. Some applications

In this section we extend to all q certain vanishing
results for .Dq(B/A,M) which were proved in [ ] for g =1 and
in [ ] for q= 1,2 . We shall state these results only for

the cotangent complex ID leaving the translation for the

B/A
functors DY and Dq to the reader.

Proposition 5.1: If S is a multiplicative system in A ,

then ID . =0 .
T 87A/A .
Proof: (after André [ ], 20.1) Iet C = S™TA . As
C®,C = C we have an isomorphism ;DC/Aghp ::;DC/A of projective
simplicial C modules. As C 1is flat over A the former com-

plex by %.7 is isomorphic to ;'DC@;AC/C ~ L'DC/C ~0 .

Corollary 5.2: Suppose T 1is a multiplicative system in

B and that S 1is a multiplicative system in A which is

carried inta T by the homomorphism A - B . Then

1
= I0p/)®T B -

r1lp/s-1a

1l

" Proof: Applying ¥.17 to A - B - T B and A - S 1A - 7718

and using 5.1 we have

ID 718 = 1o Y .
="B/A%B =g/ T rplp/s-ia

Proposition 5.3: Suppose that A 1is noetherian and B is

of finite type as an A algebra. Then
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B 1is etale over A <{==> L‘DB/A ~0
B 1is smooth over A <==> -—T:'DB/A o~ CDB/A an@ DB/A is a pro-

jective B module.

- Proof': (==>) Suppcse § etale over A, i.e. B is flat
over A ard A: Spec B - Sp=c Bp,B 1is an open immersion. Let

p be a prime ideal of E and let g = A(p) so that (B<2>AB)q o

—

Bp . Then there is an iscmorphism of projective BE modules

(;“DB/A)E = (LD5/,84B)

- QE{"&AB/B)i by 4.9 since B is
flat over A .
~ ID by 5.2
(B®AB)_9_/B_I_J_
=0

Thus H*((-—I-DB/A)_E_) = H*(-l-'DB/A)_E =0 and as p 1s an arbitrary
prime ideal of B , we have __L.DB/A ~0 .

Now suppose B smooth over A . As HO(LDB/A) = Dp/p (3.8)
there is a canonical map of projective simplicial B modules
-I=DB/A - CDB/A . To prove this is an isomorphism we reduce by
localizing on B to the case where A - B may be factored
A—-P~-B where P 1s a polynomial ring over A and P - B
is etale. Then by 4.17, the etale case of 5.3, and 3.1 we have
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v N v
DP/A®PD - e > CDB/A

wnich proves the assertion.

(<==) The spectral sequence 3.7 degenerates yielding
D (B/A,M) = 0 for all B modules M . By 3.12 all A-algebra
extensions of B by an ideal of square zefo split hence B is
smooth over A Dby SGA, 1660-61, III, 2-3. If also DB/A =0,
then B 1is etale over A . Q.E.D.

We now wish to give a reasonably "geometric" example where

D,(B/A) # O . The following results from 4.17 and 3.14.

Proposition 5.%: Suppose that A - P - B is a factorization

of A-B vwhere P 1is a polynomial ring over A and P - B is

surjective with kernel I . Then
Dq(B/A,M) '.::Dq(B/P,M) S gq>2
and there 1ls an exact sequence
0 - D, (B/A,M) - I/12®BI4 ~ Dp /@M ~ Dy /@M ~ 0
and simialr assertions hold for cohomology.

Example 5.5: Suppose that k is an algebraically closed

]
field and that R 1is the coordinate ring of the curve x = t° ,

i

y=t' , z=1t>. Then R is an integral domain finitely
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generated over k . We show that Dl(R/k) #0 . R = P/I where
P = k[X,Y,2] and I = (Y°-X2Z,YZ-X3,2°-XY) . The element u =
XY(Y2-X2Z) - X(¥2-X3) + 2(z2-x27) is in I but not in I2 . In

2 _ 4 y

effect if m= (X,Y,2) , I m and u f€m' . But by 5.4 we

have the exact sequence
0 = Dy (R/k) = I/T° 8 D, @R = D, = 0
1 P/k°P R/k

and a short calculation shows that 6(u+12) = 0 . Hence Dl(R/k) A

0 as asserted. It may be worth remarking that I is a prime

2 is not primary; in fact Ims = I/I(z)

where 1(2) is the I primary component of 12 .

ideal in P such that I
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Chapter II. The fundamental spectral sequence

In order to calculate D, (B/A,M) one is reduced by 4.17
to the case where B = A/I , I an ideal in A . In this case
there is a spectral sequence which relates these groups to
Tori(B,M) » Which is more easily computable. In this chapter

we derive thils spectral sequence and give some of its applications.



§6. Construction of the spectral sequence

We retain the notations of the precedingAchapter except that
certain rings will not bevcommutative, but skew-commutative with
respect to a canonical grading.

Let P be a frée simplicial A-algebra resolution of B .
Then Q = P®AB is a simplicial augmented B~algebra. If J =
Ker P@,B - B 1is the augmentation ideal, then

- (6.1) : Qo Jd>o J2 2 ...

is a filtration of Q by simplicial ideals. By means of tﬂe”
shuffle operation ® ([HA], II, p.6.5, (6)), Q wlth dif-
ferential d = Z(—l)idi becomes a skew-commtative differential
graded ring and 6.1‘is a filtration of Q by differential graded
ideals. Consequently we obtain a spectral sequence of algebras

where

(3%/39tLy | q¥: g¥ - B ,

2
6.2 E
(0 ) joe] p-r,qg+r-1

= H
bq p+q

and ignoring for the moment questions of convergence, whose
abutment is H*(Q),:-Tbrﬁ(B,B) . As P is free over A , Q
is free over B hence there is an isomorphism of graded simpli-

cial algebras

: B 2 +1
6. SP(3/3°) = @ JY/ 39
(6.3) :eqq(./ ) q /

where the left side is the symmetric algebra functor over B

applied dimension-wise to the simplicial B module J/J2 .

Applying 5.4 dimension-wise to the maps cA - P - ¢cB we obtain
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isomorphisms of simplicial B modules
122
We now turn to the convergence of this spectral sequence.

Lemma 6.5: Suppose that Q 1is a projective augmented sim-
plicial B algebra with augmentation ideal J . If HO(J) =0,
then Hk(Jn) =0 for k<n.

A more general form of this lemma will be proved in 8.8. An
alternative proof of 6.5 in outline is as follows. The arguments
of [ ], ¥ are very general and show that it is sufficient to.
prove 6.5 when Q = SPX and X = K(B,1)¥ where K(B,1) =
BA(1)/BA(1) is the simplicial B module whose normalization is
the complex with B in dimension 1 and O elsewhere. In this
case one may apply known results on the connectivity of the sym-
metric algebra functor [ ], in particular the following which will

be proved in 7.32.

Lemma: Suppose that X 1is a flat simplicial B module with

HO(X) = 0 . Then

(6.6) H (sBX) =0 q<n
and there is a graded algebra isomorphism
(5.7) "o ADH, (X) ¥ @ H_(S2X)

B

where N\~ 1s the exterior algebra functor on B modules.
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p—

In virtue of the augmentation, HO(J) = 0 1is equivalent to
HO(Q,) = B, vhich wvhen Q = P®,B means BB 3 B . In this case
the spectral sequence 6.2 constructed from the J adic filtration

on Q converges by 5.5, that is, ,E;q = E;q for r > p+tq and

moreover E§q=0 if p or @< 0 by 6.5. Combining 6.2-6.4

we therefore have

Theorem 6.8: I B@AB = B , then there is a firsf quadrant

b

spectral sequence

E2 = | B . )] == A B.B
pg = Hpiq(SLPp/a) ==> Tory, (B,B)

of bigraded algebras, skew-commutative for the total degree.

Picture of spectral sequence:

a
D,
oD,
Dl D2 D3
B 0 0
|




(o)
=

Edge homomorphisms

(6.9) Tor’(8,B) - D, (B/A) n>o0
(6.10) ABp, (8/A) - Tory(8,B)

Low dimensional isomorphisms

DO(B/A) =0
(6.11) T
A
Dl(B/A) ~ Torl(B,B)
5 term exact sequence
(6.12)
d
A 2 A
Tor§(B,B) - D5(B/A) —=> A5D (B/A) ~ Tory(B,B) - Dy(B/A) = O
6,10 is the unique graded B-algebra morphism extending the
isomorphism 5.11.
When B = A/I where I is an ideal in A the hypothesis of

6.8 holds and in this case we may avail ourselves of the isomor-

phism

(6.13) D, (B/A) = Tory(B,B) = 1/1°
to rewrite the edge homomorphism 6.10 in the form
(6.14) | /\ﬁ(I/IQ) ~ Tor} (B/B)

Proposition 6.15: The edge homomorphism (6.9) annihilates

the decomposable elements of Torﬁ(B,B) .
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o A o~
Proof: For n > 0O Torn(B,B) = Hn(Q) ™ Hn(J) . If ac¢€ Tbrp

p > 0 1is represented by x € J_ and B € 'I'orq q> 0 1is repre-

b
sented by y € Jq s then a.8 € To

| 2
J
b(x@y) € I, 4

the edge homomorphism 6.9 is induced by J - J/J2 s hence the

is represented b
Tptq T8 TCP v

> where p: QgQ - Q is the multiplication. But

image of a-+B in D

p+q(B/A) is zero. Q.E.D.

If M is a B module then as J% and J/J2 are projéctive
éimplicial B modules

Q@BM - J®BM o ...

is a filtered simplicial module over the filtered simplicial ring

Q@ with
gr Q@M ~ SB(J/J2)®BM .
Hence

Theorem 6.16: If B®,B ~ B , then there is a spectral sequence

2 B A
B = ==
pq = Hpiq(S5oPp/a%M) => Tory,,(B,M)

which is a spectral sequence of modules over the spectral sequence
5.8.

It is easy to verify that this spectral sequence has the

following properties:

edge homomorphisms:

Torh(B,M) = D_(B/A,M) n > 0

DD, (B/A)agh ~ Torh(B,H)
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low-dimensional isomorphisms:

DO(B/A,M) =0 Dl(B/A,M) = Torﬁ(B,M) :.\." Dl(B/A)®BM

5-term exact sequence:

Tor%(B,M) ~ D3(B/A,M) -»/\EDl(B/A)@Br«i - Torg‘(B,M) = D, (B/A,M) ~ 0

end that Tor(B,B)Tor:(B,M) < Tor}(B,M) is annihilsted by the

edge homomorphism. |

Remark 6.17: The condition B®AB = B 1is necessary as is

shown by the example 5.5 where B is flat over A and Dl(B/A) £ 0.

Remark 6.18: The spectral sequences 5.8 and 6.16 are functor-

ial in the triple A,B,M since the only choice made in their con-
struction was the free A-algebra'resolution P of B vhich is

seen to be unique and functorial in A,B using 2.11.



§7. Homology of the symmetric algebra

In order to use the spectral sequence 5.8 it is necessary
to have results relating the homology of the symmetric algebra of
a simplicial module with the homology of the module. 1In this
rather long section we collect the results that we need. They
include a connectivity assertion (7.3), calculation of the first
non-vanishing homology groups (7.27), and a calculation in the
case where the ground ring is of characteristic zero (7.43). The
éymmetric algebra functor is closely connected with Eilenberg-
MacLane spaces in topology and at the end of this section werw

outline this connection.

7.1. Let F be a functor defined on the cétegory of ring-
modules (B,M) consisting of a ring B and a B module M
and having values in an abelian category A . The functors we
have in mind are the symmetric algebra S , the exterior algebra

/\, the divided power algebra I' as well as any of tensor pro-
ducts built up from homogeneous components of these functors.

If R is a simplicial ring and X is a simplicial R module,
then applying F aimension~wise to X we obtaln a simplicial
object F(R,X) . For the most part R will be fixed and we
will write simply F(X) when there is no possibility of con-
fusion.

The left-derived functor LF of F is defined by LF(X) =
F(P) where P - X is a projective resolution of X . fThe
homotopy type of the simplicial object ;F(X) is independent
of the choice of P and LF is a functor from Ho(Mp) to
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7.2

the category Wosé whose objects are the same as sA but with
homotopy classes of maps for morphisms. The map P - X gives

rise to a natural transformation LF(X) - F(X) .

7.2, Amap P: X -Y of simplicial objects in an abelian
category will be called a k-equivalence if f,: Hq(X) - Hq(Y)

is an isomorphism for q < k. X is said to be k-connected if

,Hq(X) =0 for g< k.

Proposition 7.3: If f: X - Y is a k-equivalence s0 1s

F(s) .

Proof: We may assume X and Y are free simplicial R
modules and drop the L . By "attaching cells" to X we will
now construct a free map X - X' which is an isomorphism in
dimensions < k + 1 such that Hq(X') =0 for g>k. If X
is a simplicial set, let RK be the free simplicial R module
generated by K (Kb RK is left adjoint to the forgetfui
functor Mp ~ s (sets)). Let a, € Hk+1(x) be elements which
generate Hk+1(x) as an HO(X) module and choose a representative
x; € Nk+l(x) for o; . Here N(X) is the normalized chain com-
plex of X . Let u ¢ RAZK+2) - X Dbe the unique simplicial R
module map sending djid[k+2] to Xy for j=0 and 0 for

J=1,...,k+2 . Define X - X 1) by a co-cartesian diagram

;RA (k42) — ®; RA (k+2)

lZui
v

X > x(1)
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The map X - X(l)_ is an iéomorphism in dimension < k + 1 .
The cokernel of both horizontal maps of this square are
@iRA(k+2)/RAkk+2) whose homology is a free HyR module on
generators of dimension k + 2 corresponding to the elements of
I (see [HA], II, p.5.11, assertion.A); The long exact sequence

in homology for the exact sequence containing X - X(l) is thus
~oH R) &H (%) -8 . x1)) 04
te Io k+1 k+1 :

By construction 5 is surjective hence H (X(l)) = 0 . Repeat-

k+1
ing this construction we obtain free maps X(n) - X(n+l) which

are isomorphisms in dimension < k +n + 1 such that H (X(n+l)) =
O for k<gq<k+n+1. Then g:X-*X’=lr:i1.m{X—>Xn)} is
a free map with Hq(X') = 0 for q > k which is an isomorphism

in dimensions £ k .

Form a co-cartesian diagram

| x —f 5y
(7.4) g . l/g'
x—3I 5 oy

and note that g' is an isomorphism in dimension Lk+1,
since g is:

Constructing a map Y' - Y' which is an isomorphism in
dimension < k + 1 and has Hq(Y“) =0 for q> k , and re-

placing Y' by Y' we obtain a diagram (7.%) where the vertical



