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1. Introduction
Since Lie algebras play an important role in the theory of groups, it is not

surprising that simplicial Lie algebras have been successfully applied to the
homotopy theory of simplicial groups (which is equivalent to the ordinary
homotopy theory of CW-complexes [12]). The most notable such application
is the recent computation [2] of a new E term for the Adams spectral sequence.
The purpose of this paper is to study some of the cohomological aspects of

simplicial Lie algebras, in particular, the primary cohomology operations.
Briefly, we

A. compute all primary cohomology operations,
B. define the analogue of the Steenrod algebra and determine its Hopf algebra

structure,
C. compute the cohomology algebra of this Steenrod algebra.

As an application we show that the cohomology algebra of result C is just
the new E term (mentioned above) of the Adams spectral sequence for the
sphere spectrum.
Throughout the paper we work rood 2, i.e., with the category 2 of restricted

Lie algebras over Z..
We begin (2) by defining the cohomology groups, H*, of a simplicial

restricted Lie algebra and showing that these groups are (Lie) homotopy
invariants. We then show that H* has the structure of a commutative alge-
bra. In 3 we show that the cohomology groups are representable by means of
simplicial Eilenberg-MacLane Lie algebras K (Z, n). Thus, the elements of
the cohomology groups H*K (Z, n) are in one-to-one correspondence with the
primary cohomology operations. A similar discussion is given for stable opera-
tions. The Hopf algebra structure of H*K (Z, n) is then investigated in 4,
where we show that H*K (Z., n) is isomorphic, as a Hopf algebra, to the ordi-
nary cohomology algebra of K (Z., n). The "Steenrod operations", Sq’, are
introduced in 5 and shown to enjoy most of the properties of the Steenrod
operations for ordinary cohomology, the only exception being that Sq is
identically zero. In 6 we use these Steenrod operations to describe the poly-
nomial generators for the algebra structure of H*K (Z, n) and thus we obtain
result A.
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Section 7 is devoted to result B. We define the "Steenrod algebra" a (2)
for simplicial restricted Lie algebras. The Hopf algebra structure of ( () is
very different from that of the ordinary Steenrod algebra, in fact a (2) is bi-
graded. The dual algebra a* () Horn (a (2), Z) is not a polynomial
algebra and contains divisors of zero.
In 8 an explicit calculation of the algebra Exta()(Z, Z) is given. The

bigraded structure of a (2) induces a trigradation on Extant)(Z2, Z). Using
this extra gradation and the dual of the normalized bar construction we are
able to find a set of generators and relations for Extacz) (Z, Z), hence result
C.
Our application is given in 9 where we show that Exta(z) (Z2, Z.) is the new

E term of the Adams spectral sequence for the sphere spectrum. To do this
an Adams spectral sequence {E}, with products, is constructed for which

*’* Z) , LAS.E., Ext() (Z,

This spectral sequence is easily shown to be degenerate (E E) and our
result follows.

I would like to sincerely thank my thesis advisor Daniel M. Kan for his
constant encouragement and for his many valuable suggestions which have
materially improved the exposition and content of this paper. Also I wish to
thank Daniel G. Quillen, who first suggested to me the problem of investigating
the Steenrod algebra for simplicial Lie algebras, and who already knew several
of the results of this paper (notably Theorem 6.1) before I proved them. His
tract Homotopical algebra [17] has greatly influenced my point of view. Finally,
I thank Edward B. Curtis who served as my advisor until his leave of absence.

2. Cohomology groups
Our aim in this section is to define (co-)homology groups for simplicial re-

stricted Lie algebras (s2), show them to be homotopy invariant functors and
then introduce cup products. We also establish the long exact (co-)homology
sequence of an inclusion t c and define the suspension homomorphism.
First, we recall the following.

2.1. Cohomology groups for simplicial groups.
groups of a simplieial group G are given by

H, G . ’Z G

The (mod 2) homology

where t is the Eilenberg-MaeLane functor (defined below in 2.3) and Z. is
the prolongation (i.e., dimension-wise application) of the group algebra functor.
The (mod 2) cohomology groups of G are then given by

H*G Hom (H. G, Z)

We follow an analogous procedure for simplicial restricted Lie algebras fi in s..
2.2. The universal enveloping algebra. Let U be the prolongation of the
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universal enveloping algebra functor, i.e. (U) Tens ,,/i, where In is the
ideal of the tensor algebra generated by elements of the form

[g,g’]- (g@ g’- g’ @ g) and g-g@ g

for g, g’ e . The natural augmentation of the tensor algebra provides U
with an augmentation e U --* K (Z, 0).
Note that U is a simplicial primitively generated Hopf algebra [14; 6]. The

diagonal map f -- it X fl, given by g --* (g, g), induces a diagonal map

(R)

which is characterized by (i) A is a simplicial Z2-algebra homomorphism and
(ii) h(g) 1 @g+g@ lforge.

2.3. The Eilenberg-MacLane functor W. Recall [15; p. 12-05] that if R is
an augmented simplicial algebra over Z. then

(WR)o g, (WR)q+I Rq@ R_I @ @ Ro, q >_ O,

with face and degeneracy operators given by

00 (r0) e (r0) 01 (ro),

00(r(R)... (R)ro) =(r).r_(R) (R)to, q>0,

0+(r (R) (R)

0 r @ @ 01 r_+l @ (00 r_).rq__l @ @ r0 i _> 0, q > 0,

so(r (R) @ ro) 1+1 (R) r (R) (R) r0, q >_ 0,

s+l(rq (R) (R) to)

s r @ @ So r_ (R) lq_ (R) r__l @ @ ro, i, q :> 0.

If R is an augmented simplicial cocommutative Hopf algebra over Z (e.g.
R Ufi) then WR is a simplicial commutative coalgebra over Z. The diagonal
map of WR, h WR --. WR @ WR is induced by the diagonal map of R.

2.4. Cohomology groups for simplicial Lie algebras. If fi is a simplicial Lie
algebra in s. define the homology and cohomology groups of tl to be

Ho O, Hq rqWU, q> O, H*6 Horn (H. fI, Z).

Clearly a map f -- ) in s2 induces a map H’f" H* ---, H*6 and so H* is a
functor. A corresponding statement holds for H.. We use reduced (co-)ho-
mology groups (Ho fi Hfi 0) because (i) they are well behaved with re-
spect to the suspension homomorphism (2.12) and (ii) the functor H* is
representable (3.4).

2.5. Lie homotopy. The maps f, g --. ) of s are called L/e homotopic if
there is a map h fi @ 1 -- in s such that h o 0 f and h o el g for the
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canonical maps
0

of the standard complexes 40, A1 (see [12]).
To see that H*f (or H. f) depends only on the Lie homotopy class of f, it

suces to prove

2.6. If the maps f, g 6 -* of s are Lie homotopic then the maps
Uf, Ug U6 UO are homotopic as maps g simplicial commutative
coalgebras over Z.

Proof. The functor U is defined by prolongation and hence by a theorem of
Kan [10; Theorem 5.3] preserves homotopies. Thus it suces to show that

preserves homotopies. Suppose given a homotopy A 5 B of the
simplicial cocommutative Hopf algebra maps a, A B. Now for n 0,

tha is, a sum of copies of (WA). one for each simplex a (A).. Define a map. (a) on each summand (WA) (a) by

a,_ @ @ a0 a_(00 ) @ @ a0(Oa).

Clearly () is a homomorphism of commutative coalgebras. Let. V,,(a) . (a). It is easily verified that (i) is a simplicial map and
(ii) W is a homotopy of Wa and W.

2.7. Weak equivalence. A map f 6 of s2 is called a weak equivalence
if , f , , is an isomorphism.
The following proposition shows that the functors H* and H, are weak homot-

opy invariants.

2.8. Let f be a weak equivalence then

, WUf , WU , WUO
is an isomorphism.

Proof. First we show that Uf U$ U is a weak equivalence. Filter

U6 and UO by their Lie filtrations [14; Definition 6.9]. Since f preserves filtra-
tions it induces a map of the associated spectral sequences

EUf EEU U

, U , Uf , U..
According to the Poincar-Birkhoff-Witt theorem [14, Theorem 5.15],
EU Sym $ andEU Sym , where Sym is the prolongation of the mod 2
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restricted symmetric algebra functor. Now f is a homotopy equivalence of
simplicial Z2-modules, hence by a theorem of Dold, E1Uf is an isomorphism.
The Lie filtrations of Ufi and U) are complete and bounded below, hence the
spectral sequences converge and the induced map EUf at E is also an iso-
morphism. Thus Uf is a weak equivalence.
Now applying a theorem of Cartan, later corrected by Moore ([3; Theorem

2], then see [16; p. 13-01]) it follows that

r, WUf , WU -* , WU
is an isomorphism.

2.9. The algebra structure of H*6. The simplicial commutative coalgebra
structure of WU6 induces a natural commutative algebra structure on H*6. We
note that this algebra does not have a unit since our cohomology groups are re-
duced. The cohomology product (cup product) is given by

o’H6 (R) Hfi Hom (r ]U6, Z2) (R) Hom (r IVfi, Z)
--, Hom (+. (WU6 (R) WU6), Z)

Horn (r+.A, Z2) Hom (-+ #’U6, Z)
2.10. The Hopf algebra structure of H’a, a abelian. If a is a simplicial

abelian Lie algebra in s then Ua is a simplicial commutative, cocommutative
Hopf algebra and so therefore is WUa. Thus, for a abelian, H*a has the struc-
ture of a commutative, cocommutative Hopf algebra (without unit or counit over

Z.
2.11. The long exact (co-)homology sequence of an inclusion.

simplicial Lie algebras in s2 then UO c U and

o #vo #v $v/$uo o

if are

is exact. Hence there is a long exact sequence in homology (also cohomology)

WU 0+ rWU ,r WU
WUg

r_WU ---*

where 0. is the connecting homomorphism (boundary).

2.12. The suspension homomorphism. If

i .i

is a fibration in s2 and is contractible then the suspension homomorphism (for
cohomology) a Hq+I ---> H% for q >_ 0 is given by

, ((+#) --* + wu/
--* ( #v)*
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where
U

---> rq+ WUg7q-[-1
WUO

is induced by WUj and is the transpose of 0, which is an isomorphism since
c is contractible. There is a dual notion for homology but our concern in later
sections will be stable cohomology operations and so we shall only consider the
suspension homomorphisms for cohomology.

3. Representability and primary cohomology operations
In this section we introduce and classify primary cohomology operations for

s2. First, we show that the cohomology functor H* is representable by means
of Eilenberg-MacLane complexes K (Z2, n) for s; then, using this fact, show
that the primary cohomology operations are in one-to-one correspondence with
H*K (Z2 n ).
A similar discussion is given for stable primary cohomology operations.

3.1. Eilenberg-MacLane complexes for s2. Recall that for each n

_
0, the

simplicial abelian group K (Z2, n) 22 Sn (where 22 is the prolongation of the
free Z2-module functor with the basepoint set equal to zero) is an Eilenberg-
MacLane complex for the category of simplicial groups, s9. The Eilenberg-
MacLane complex K (Z2, n) of s2 is the simplicial abelian group K (Z2, n)
endowed with the structure of a simplicial abelian restricted Lie algebra (i.e.,
trivial Lie bracket and square operators).

In the next section (4.1) we show that H’+IK (Z2, n) Z2. The non-zero
class (or "fundamental" class) n+l is represented by

in@ In-l(R) (R) 10

where in is the the nondegenerate n-simplex of
In order to state our representability theorem we need the concept of

3.2. Free simplicial Lie algebras. A free simplicial Lie algebra of s is an
object of s such that

(i) For n >_ 0, there is a Z2-module Mn with 6n LM,, where L is the pro-
longation of the free restricted Lie algebra functor.

(ii) Forn

_
i_ 0, yeMnimpliesstyeMn+l.

If fi is a simplicial Lie algebra, then there is a free simplicial Lie algebra
and a weak equivalence f --, fi which is also a fibration, see [17; Chpt. II,
p. 4,11]. If is a free simplicial Lie algebra, then f induces a bijection
[) -- ]8 --* [) --* 618 ;see [17; Chpt. I, p. 1.10].
A free simplicial Lie algebra together with a weak equivalence --, which

is a fibration is called a free resolution of 9.

3.3. Representability.
sentable functor.

The following proposition shows that H* is a repre-
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3.4. Let be a simplicial Lie algebra in s2 and let be a free resolution of. Then there is a one-to-one correspondence

H’+ -* [ --, K (Z, n)],, n _> 0.

This correspondence is such that if 7 f then f* (n+l) ".

Proposition 3.4 is an immediate consequence of 2.8 and 3.5 and 3.6 below.

3.5. If is a free simplicial Lie algebra in s2 then there is a natural isomor-
phism

H, 6 ,-1 Ab 6, _> 1,

where Ab is the abelianization functor.
3.6. Let be a free simplicial Lie algebra in s2. Then there is a one-to-one

correspondence
Hom (n Ab , Z:) - lit --* K (Z2, n)]a, n >_ 0

such that if " f then (-, Ab f)* (i*) ,.
Proof of 3.5. The proof depends on the following spectral sequence of

Quillen [17; Chpt. II, Theorem 6 (a)]"

E.q r (Tor[ (K (Z2, 0), K (Z, 0) r+q (K (Z, 0) (R) K (Z, 0))

for p, q
We will need the following information about the E term"

Tor" (Z, Z.) Z if q 0

(,) Abit ifq= 1

=0 ifq> 1.

(See [4;p. 271].)
Using this we will derive the proposition. The term

K (Z, 0) (R) : K (Z, 0)

is by definition equal to P (R) v Q where P (resp. Q) is a projective resolution of
K (Z,, 0) as a right (resp. left) Uii-module. However,

r,(P @ Q) --,~ r,(K(Z, O) (R) Q)

and so we may dispense with P. Let Q WU the acyclic free left Ug-module
which is the total space of the Eilenberg-MacLane construction (U6, WUt,
SU) [15; p. 12-05].
By (,), the spectral sequence collupses and we huve for p _> 0,

r (Ab fi) r (Tor[ (K (Z, 0), K (Z2,0))_
+(K (Z, 0) (R) , WU) + WU
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The natur1ty o ths semorphsm ellews rom the natur1ty e the spectr1
sequence.

Proof of 3.6. Let sg be the category of simplicial Z-modules. Now

Hom (v. Ab fi, Z) *- [Ab g --. K (Z, n)],u

and this correspondence is such that if a (- f then ( Ab f)* (i*) a.

Since K (Z, n) is an abelian object of s2,

Hom, (, K (Z, n) ) Hom. (Ab it, K (Z., n)
and

Hom, (fi (R) , K(Z, n)) Hom. (Ab (fi (R) A), K (Z, n)

Hom (Ab g (R) 5, K (Z, n)).

Hence Hom ( Ab g, Z) [Ab fi --* K (Z2, n)].x [g --* K (Z2, n)].

3.7. Primary cohomology operations. A primary cohomology operation T of
type (n; q) is a natural transformation of functors

T" H --*H.
The standard argument using 3.4 yields

3.8. The primary cohomology operations for s2. of type (n; q) are in one-to-one
correspondence with HqK (Z2, n 1), n > O.

Denote this correspondence by T -. u.

3.9. Stable cohomology operations. A stable primary cohomology operation of
type i >_ 0 is a sequence {T}>0 of primary cohomology operations of type
(n, n -t- i).with the property that if ) -- --* g is a fibration in s and c is
contractible then

H+. T+ H++

H T H+
commutes, where a is the suspension homomorphism of 2.12.

Stable operations may be classified in the following manner.

3.10. The stable primary cohomology operations for s2 of type i >_ 0 are in
one-to-one correspondence with sequences {u0 0, u, u, of elements
u e H+K(Z, j 1) such that au+ u, where is the suspension homo-
morphism associated with the fibration

g (z j 1) --* WK(Z j 1) --* K (Z j ).

Proof. Given a stable primary operation {T} of type i >_ 0, consider the
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sequence
Uo O, u T(,) e HJ+K (Z j 1), j>O,

where ,. is the "fundamental class" of HK(Z, j 1). Since the Eilenberg-
MacLane Lie algebras K (Z, j) are connected by fibrations

K (Z, j) WK (Z, j) K (Z, j + 1

with WK (Z, j) contractible, the stability of T.} implies auk.+1 u..
this correspondence is clearly one-to-one.

By 3.4,

Now let {u0 0, ul, us, be a sequence as described in the hypothesis
and let ) -- c --, 6 be a fibration with c contractible (in which we may assume
), c, and g are free). Let fz it -- K (Z, j -{- 1 represent z e H+6. By a lift-
ing argument there exists a map g c WK(Z, j) such that

g (Z, j) WK(Z, j) -- K (Z, j -t- 1

commutes. Denote by f,z the map I) --* K (Z, j) which is the restriction of g.
Now by naturality the following diagram commutes

H*K(Z2, j) f’* *

H*K(Z j + 1). H*
Hence f,z represents az e H’+t) and so T a (z) aT, (z).

4. The Hopf algebra structure of H*K(Z., n)
We now relate the (mod 2) primary cohomology operations for s2 to the

more familiar (mod 2) primary cohomology operations for s9 (simplicial
groups). For convenience, in this section we shall adjoin a unit (in dimension
zero to the cohomology algebra of the Eilenberg-MacLane complex K (Z, n)
for s thus making it a Hopf algebra (see 2.10). We shall show that this
Hopf algebra is isomorphic to the cohomology algebra of the Eilenberg-
MacLane complex K (Z, n) of s.

Recall (2.1) that as a simplicial group the (mod 2) cohomology groups of
K (Z, n) are given by

H K(Z, n) Hom (,Z K(Z, n), Z)

while (2.4) as a simplicial abelian Lie algebra the (mod 2) cohomology groups
(with unit) of K (Z, n) are given by

H* K (Z, n) Hom 0r. IUK (Z., n), Z).
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Here we temporarily use the subscripts 9 and 3 to distinguish the group and Lie
algebra cases. The main result of this section is

There is an isomorphism of Hopf algebras over Z.

H* g (Z, n) - H g (Z, n).

This result is an immediate consequence of 4.3 and 4.4 below and the fact
that K (Z, n) S (see 3.1)

4.2. Proposition 4.1 is somewhat unexpected. The "algebraic" diagonal
(2.2, 2.3) Avr for WUK(Z, n) is fundamentally different from the "geo-
metric" diagonalz for WZ K(Z, n). The diagonal 5v is induced by
k - 1 @ k -t-/c @ 1 while zzr is induced by k --* k (R) k. Proposition 4.1
states that Av and Az induce the same cup product. In the next section
(5) we shall see that they do not yield the same Steenrod operations.

4.3. If X, is a simplicial set with basepoint then there is an isomorphism of
simplicial augmented Z-algebras

Z X U2. X

where is the prolongation of the free Z-module functor with the basepoint set
equal to zero.

4.4. If X, is a simplicial set with basepoint then the geometric and algebraic
diagonals for X induce the same cup product structure, i.e., the diagram

commutes, where N is the normalization functor [15; p. 12-01] and f is the Eilen-
berg-Zilber map [15; p. 12-02]. Moreover, all maps in the diagram are differen-
ial graded Z-algebra homomorphisms.

Proof of 4.3. It suffices to show that if X is a set with basepoint then there
tis a natural isomorphism

Z 2 X U2. X

of augmented Z.-algebras. Let X {,} {x.}. The underlying set of
Z X is a Z-basis for the group algebra Z 2 X. The enveloping algebra
U2 X is isomorphic to Z[x,]/(x, ), the truncated polynomial algebra in the
variables x,. Both algebras have natural augmentations"

ezx Z2 22 X Z.
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given by

and

given by

ez,.z,.x(l’z) 1 for ze2X

ev,x U2 X Z

evzx(1) 1, vz,.(x x,) 0 for x x, a monomial.

Define Z 22 X -- U2 X by

l" (x,, +"" + x.)- I’- ( + x).
This defines on the basis for Z2 2 X and hence on Z. 23 X. The map is
easily verified to be an isomorphism. It is clear from the definition of that

Proof of 4.4. To simplify the notation let Az fNAzz: and
A fNAvz. Recall that Az, is just the familiar Alexander-Whitney
diagonal map

((z_, ..., zo) ’-o (-%-, ..., ’-’z,_) (R) (z__, ..., zo)
where

(z-l, z0) (IZ 2 X) and n-z. 0._,++1 0 z..
Now it may be verified that hv is also given by the Alexander-Whitney for-

mula. The commutativity of the diagram is then a trivial verification using
the map of 4.3. With the exception of the map f all maps in the diagram are
obviously multiplicative. A proof of the multiplicativity of f may be found in
[8; Theorem 3.2].

5. She Steenrod operations for s
The purpose of this section is to define (mod 2) Steenrod cohomology opera-

tions for s2 and to describe their properties.

5.1. Dold’s construction. In [5] Dold defines a family of cohomology opera-
tions, Sq, i >_ O, called Steenrod operations, for the category of simplicial com-
mutative coalgebras over Z.. These operations are defined with respect to
the cohomology functor H* Horn (,, Z) and they generalize Steenrod’s
original construction in that they satisfy all the properties of the usual Steenrod
operations except Sq is not necessarily the identity.

5.2. The Steenrod operations for s2. Now consider the ctegory WUs2
with objects Uit for fi in s2 and maps

$u .-wuf:;$uo for f ;
in s2. For every object WU6 there is a diagonal
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induced by the natural diagonal of Ufi (see 2.2, 2.3). The commutativity of
z follows immediately from the commutativity of the diagonal for U6. Thus
WUs2 is a subcategory of the category of simplicial commutative coalgebras
over Z2 and hence inherits Steenrod operations. Since the cohomology
functor (2.4) for s2 is precisely H* Horn (r,, Z2) for lUs2, with H 0,
we shall call the resulting operations, Sq, the (mod 2) Steenrod operations for

5.3. The (mod 2) Steenrod operations, Sq, for s2 satisfy
(1) Sq H* H*+1 is a homomorphism and is natural (,, i >_ 0),
(2) Sq 0 H* ---, H*,
(3) Sq’u u if dim u n,
(4) Squ O if dimu <i,
(5) (Cartan formula) Sqk (u v) ffio Squ Sqk-v,

’[a/2] /b--l--3"(6) (Adem relations) qaSqb A,i"’O \a--2j )Sqa+b-SqJ (0 < a < 2b ),
(7) (Stability) Sq’a aSq.
Parts (1) and (3)- (6) of 5.3 follow from Dold. The proofs of (7) and (2)

are given in 5.4-6 and 5.7-11 respectively.

5.4. Steenrod operations for quotient objects. In certain circumstances Dold
shows that the definition of the Sq can be extended to include quotient ob-
jects" Suppose K, L are simplicial commutative coalgebras over Z2 and
L c K is a subcoalgebra; then At induces a diagonal for K/L"

A$:/L ElL---, (g (R) K)/(L.(R) L) ElL (R) ElL.
5.5 [5; p. 273, 5.8-9]. If L, K and A,: satisfy the conditions of the preceding

paragraph then the Sq are defined for K/L and satisfy

Sq Sq

where H*L ---, H*+K/L is the coboundary map.
If ) c 6 are simplicial Lie algebras in s2 then IU6 IUt) and

WU WU (R) WU WU (R) WU
hence

5.6. The Steenrod operations for s2 are stable, i.e.,

Sq Sq.
5.7. The operation Sq. Dold gives an example [5; p. 282] of a category for

which Sq is identically zero, namely the category of simplicial symmetric
algebras SM generated by simplicial modules over Z2, with diagonal given by

SMSM (R) SM, m--l (R) re+m(R) 1, meM.

This example is closely related to the present work and can be used to prove a
similar result about Sq for s2. However, a more elementary description of
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Sq is obtained by working directly from the definition. Before proceding
to this description we will need the following facts which are easily verified by
straightforward calculations.

5.8. Let be a free Lie algebra in J and let

n v--+ v (R) v
denote the diagonal of U. If u (Ug)* and u(1) O, then A* (u) 0 where
A* is the transpose of/.

5.9. Let and be free Lie algebras in J and let

X U (R) V--+ (V (R) V (R) (V (R) VO
be the diagonal map of U (R) U. if we (U (R) U)* andw(1) O then
*(w(R) w) 0.

5.10. Let be a free simplicial Lie algebra in s and let

wv --+ wv (R) wv
be the induced diagonal. If w e (IU)* is an n-simplex, n > O, and w (1) 0
thenA*(w (R) w) 0.

We now prove part 2) of 5.3.

5.11. If is a free simplicial Lie algebra in s then

Sq =- 0 Hq ---+ Hq,

Proof. We may assume q > 0 since HfI 0.
there corresponds a unique (up to homotopy) map

q>_0.

For each element z e HqfI

SV K(Z,, q).

The value of Sq on the class z is defined to be the image of e0 (R) (iq @ iq) under
the map (see [5;p. 264-7])

W (R) ;<,.)(ch (g(z2, q) (R) ch g(z., q))* +/$(2) ch ((K(Z, q)

(R) K(Z, q))*/$(2) Ch (a.....@ a),/$...(2)

ch($V@$V6)*/$(2) 5*/$(2)
h ($U)*

where $ (2) is the symmetric group acting on two letters and ch denotes the
functor which assigns to each simplicial module X the unique chain complex
ch X th (ch X), X, and d, -0 (-1 )’ d.
Now +/$(2) (e0 @ (iq i)) iq @ iq (see [9; 9. 217]). Hence

h ( + :)*/s (2) +/(2)(e0 + (i. + i.)) z + z.

By 5.10, A* (z @ z) 0, hence Sqz O.
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5.12. Elementary properties of the operations Sq for s. Several elementary
properties follow immediately from 5.3. We list them at this point in order
that the reader may contrast them with the corresponding properties for the
ordinary Steenrod operations (for topological spaces).

5.13. The operation Sq is indecomposable for all i O.

Proof. Parts (2) and (6) of 5.3.

5.14. If u is a one-dimensional class then

Squ u if i= > 0

0 otherwise.

Proof. Obvious for ] 1. The result follows by induction using (2) and
(5) of 5.3.

5.15. If u is a one-dimensional class then Sq (u) u+ if i 2 and zero
otherwise.

5.16. The Steenrod operaions do not act freely on H*K (Z,. 0)" in dimension
<_ n, contrary to the simplicial group case.

6. Polynomial generators for H*K(Z, n)
According to 4.1, HK(Z, n) is isomorphic as a Hopf algebra to
HK(Z, n). Serre’s computation [18] of the latter algebra shows it to be
a polynomial algebra with generators Sq ,+, for the fundamental class

H+K (Z. n) and admissible sequences I of non-negative integers of6n+l i

excess e (I) <_ n. The main result of this section gives a similar set of generators
for H*K(Z, n). The proof compares HK(Z., n) and HK* (Z., n)
and so we assume (6.1-6.8) that the cohomology algebras have units.

* H+(Z.. n)6.1. For n >_ O, HK(Z, n) Z[+, Sq,,+] where +
is the fundamental class and Sq are compositions of the Steenrod operations for
s2. defined in 5 with I any admissible sequence of positive integers of excess
e(I) <_ n.

It is possible to prove 6.1 by adapting Serre’s argument to the Moore spec-
tral sequence in cohomology of the construction

(UK(Z, n ), UIK(Z, n ), WUWK (Z. n)

(see [15]). However, one must show that cup products behave properly in
this spectral sequence and this involves a lengthy (although completely
straightforward) technical digression. An elementary proof is obtained by
considering the following definition and theorem of Borel [1; Theorem 6.1].

6.2. Let A be a commutative graded algebra with algebra generators
{x, x,., x,, such that 0 < dim x _< dim x+. If x is not a polynomial
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in the generators {xj}i then the set {xt, x, x3,
system of generators for A.

is called a minimal

6.3 (Borel). Let H be a connected commutative Hopf algebra of finite type
over Z in which no element is nilpotent. If xt x is a minimal system
of generators for H then H Z:[xt x ].

Proof of 6.1. In 6.7 and 6.8 we shall show that the set
defined in 6.1 is a minimal system of generators for HK(Z, n). Since by
4.1, HK(Z, n) is isomorphic as a Hopf algebra to a polynomial algebra, it
is certainly a connected commutative Hopf algebra of finite type over Z in
which no element is nilpotent. Hence by 6.3,

HK(Z n) Z[t+t, Sq t+l].

The remainder of this section is devoted to establishing 6.7 and 6.8.

Conventions. In the following lemmas, we shall always assume

SqX= Sqa... Sq,
is admissible with as > 0, k > 0. The notations Sq and eSq will be used
when necessary to distinguish the group and Lie algebra Steenrod operations.
Let

n(I)-= n(a, ...,at) aA- + al.

6.4. Suppose Sqa Sq has excess e (a, ..’, at) <_ m. If
q m-4- 1 e(a,...,

then there is a positive integer j such that

(1)

and

rq (Sq (Sqa’ m+t (r ( (Sqak Sqat
$m+t

(Sqa-... Sqatm_q+l)i

(2) e(a_1, ..., al) <_ m q.

Proof. Since a -I as-t- m q A- 1 we have

a
q (Sq Sq,,+) (Sq- Sq,,_q+).

Let j > 0 be the largest integer such that

O"
q (Sqa )$iSq + (Sq:-+ Sq:’:_q+

Now we claim

e(a_., ...,at) _< m-- q e(a, ...,at) 1.

To see this note that

e (a, at) (2a a_) -4- -1- (2a_.+t a_.) A- e (a_

(q a-factors)

,at).
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Hence
e(a, a) >_ e(a_., al).

If e(ak_j, al) e(ak, al) then

So

or

or

’k--y--12q_ 2-1a_ + + a_ + /_,,- a, + (m q + 1)

a_ z.,.- ai + (m q+ 1).
But this implies that

o’q (Sqak Sqal
,m+l (Sqak--I

contradicting the maximality of j. Hence
e(ak_i, ...,a)

_
m- q.

I6.5. If P P (,,+, Sq m+l; e (I) <_ m) is a homogeneous polynomial
with at least one linear term then P # 0 in HK (Z2 m ).

Proof. The proof is by induction on the maximum length of the linear
terms, where length (m+) 0, and length (SqI,+) ] for I (a, a).

HK(Z2, m). As-If the maximum length is zero then P ,+x # 0 in *
sume that for all m > 0 the lemma is true for homogeneous polynomials with
linear terms of maximum length <l.

Let P P (,+, Sq,,+ e (I)

_
m) be a homogeneous polynomial with

linear terms SqJ,,+ such that the maximum length of these terms is l.
Suppose P 0 in HK (Z2, m). Apply iterations of the suspension homo-
morphism a until the remaining terms are squares (Lemma 6.4), i.e.,

0 a (0) (P) a (P’ + SqJ,.,,+) ( Sqt,+)

5]
where e (J’) < m r. Since we are working over Z. we may remove the
largest common exponent of 2 from each term. Hence at least one of the
remaining terms has exponent 2 1, and the remaining terms form a homo-
geneous polynomial

Q Q (,_+, Sq,,,_+ e (I) <_ m r)

with a linear term such that Q 0 in H*K (Z, m r). However the length
of each linear term of Q is less than and hence by induction, Q 0
in HK(Z, m r). This contradiction shows that P 0 in
HK (Z2, m) and establishes the lemma.

6.6. If O ( n

_
m then x{Sq +1 n (I) n} forms a Z.-module basis for

H’++nK (Z. m)2
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Proof. Any I with n (I) n has excess e (I) _< m since e (I) _< n (I)
n_< m. Hence by 6.5,{Sq ,+1, n (I) n} is linearly independent. How-
ever

dimzH+l+K(Z2, m) dimzH+l+’*K(Z., m) Card {I, n(I) n}

and so Sq m+l; n (I) n} also generates.
I *6.7. The set {m+l, Sq +1 e(I) _< m} generates HK(Z2, m)as a graded

algebra over Z.
H*Proof. Suppose x K(Z, m) is a homogeneous element. By 4.1,

there is a Hopf algebra isomorphism

HK(Z m) HK(Z m)

hence there is a homogeneous polynomial

P P (t+, 9Sqtl e (I) m)

such that (P) x.
IThus to show that {+, Sq +1 e (I) E m} generates we re reduced to

shong that for ech Sq+l th e (J) E m there is polynol

Sq +1 e (I) m),

depenng on J, such that (gSq+) Q.
By naturality the following diagram commutes

where S is he cone on
phism we hae eommugagigy in ghe diagram

*+ HK(Z., i)Hs K(Z., i + 1)-

H*+IK Z * i).i- 1) ;HK(Z,

Let q be a positive integer such that q >_. n (J) m. By 6.6,

(} q {m-F-l-1 some sum Sq’,+q+l

with e (I) _< m -t- q. Hence
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commutes and we may choose Q (Sqx’m+l) since by 6.4, e (I)

_
m.

6.8. If e(I) <_ m then SqX,+ P (SqJ,+ J I, e(J) <_ m)that is,
SqX,+ is not equal to a homogeneous polynomial in the variables SqJ,+, e (J <_ m
excluding J I.

Proof. Apply 6.5.

7. The Steenrod algebra and its dual
In this section we define the analogue of the Steenrod algebra for s2" and

determine its structure as a Hopf algebra. In particular, we shall show that
this Steenrod algebra is generated by the stable operations, Sq, i >_ O, subject to
the Adem relations of 5.3 (6).

7.1. The Steenrod algebra ((2") for s2". As in the topological case we
define the Steenrod algebra a (2" ) for s2" to be the algebra of all stable primary
cohomology operations of s2" (3.9). The product of two operations is given
by composition. The unit is the identity operation, denoted by 1,

The following proposition gives generators and relations for a (2").

7.2. The Steenrod operations, Sq, i >_ O, generate a (2" as a Z-algebra and
the Adem relations generate the.ideal of relations in a (2,).

This result is an immediate corollary of

7.3. (1) As a Z-module, a (2"* --- lim,- H++*K(Z m)

(2) The admissible monomials, Sq, form a Z-basis for a (2").

Proof. To establish (1) recall (3.10) that each stable primary operation
of type i corresponds to a unique sequence {u0 0, ul, u, of elements
u e H+K(Z., j 1) such that au+l u.. However, using 6.3 we see that
such a sequence stabilizes for j >_ i -t- 1. Hence

( (2"*) lim. H’+I+*K (Z., m)
as a Z-module.

Part (2) is merely a restatement of 6.6 using part (1).
There is a natural augmentation ( (2") --, Z for ( (2") given by e (1) 1

and (Sq O.

7.4. The bigradation of a (2"). If I (i, ..., i) is a finite sequence of
positive integers then I will be called a label. The length of I or (I) is k and
the degree of I or deg (I) is i - -t- i. If two labels I (i, ..., i)
and J (j, j) are of the same length then their sum is (i W j,
i W j) and they are ordered, I <_ J, by the lexicographical ordering from
the left.

Observe that since SqSq 0, i >_ 0, the Adem relations show that a (2")
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is bigraded. More precisely a monomial Sq is bigraded by the bigradation
of its label, first by degree and second by length.

7.5. The Hopf algebra structure of a (2). We now show that the Steen-
rod algebra a (2) has a diagonal map. However there is no counit and hence
we say that a (2) is a Hopf algebra without counit.

7.6. There is a graded Z-algebra homomorphism

(R)

which is induced by the Cartan formula. Moreover, A is associative and com-
mutative and gives ( (2) the structure of a cocommutative Hopf algebra without
counit.

Proof. The proof of the existence of the homomorphism h is identical
with that given by Milnor [13] for the topological Steenrod algebra. Since h
is associative and commutative on the generators of a (2) it is associative
and commutative on a (2).

Note that the diagonal A does not preserve the second gradation or length of a
monomial Sq, i.e., if I is an admissible label then

(Sq) +,..,._(,_ Sq (R) Sq’
where J and J’ run over all pairs of admissible labels of length l(I) and sum I.
The dual a* (2) Horn (a (2), Z.) is a commutative Hopf algebra with-

out unit but, unlike the dual of the topological Steenrod algebra, it is not a
polynomial algebra.

Let {} be the basis dual to the basis {Sq} where I runs over the set of
admissible labels.

7.7. The dual algebra a* (2) is a commutative Hopf algebra without unit
generated by {1", , I an admissible label subject to the following relations"

(a) 1"-1" 1"
(b) 1". 0
(c) . + ill(I) l(J)

0 otherwise.

Proof. Commutativity follows from the commutativity of A. The first
two relations are clear. Now suppose I, J, K are admissible labels, then

if and only if K I -t- J and l(I) l(J).
Let be the submodule of (* (2) generated by r for l(I) > 0 and by
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l*forl 0. By 7.7 we have

7.8. The algebra (* (2) is the direct product of the ideals "
The diagonal map # for a* (2) is the dual of the multiplication map for

7.9. Let I be an admissible label. If (I) n > 0 then

I 1 (il,...,in)e,(i, ..., i,)(,,.....) @ (+,.....)
where the second sum is taken over all labels (i iy iy+ i,) ch that
(il, iy) and (i+1, i) are admissible labels. The function er is de-
fined all labels of length (I and has values in Z2 er (J) 1 if Sq has co-
ecient one in the admissible expansion of Sq and e (J 0 otherwise.

Proof. Let I (a, ..., a,) be an admissible label. Fix k, k e 1, ..., n}
and let

J (b,...,b) and J2 (b+l,...,b)

be admissible labels. Then

(, Sq’ @ Sq) (, Sq.Sq) e(b, ..., b).
Also

(1 (il,...i.) e(i, ..., i)(,,.....) @ ,+,.....,,), Sq @ Sq)

(,,....,,) ez(i,, ..., i)((,,,....,), Sq.).((+,,...,,,), Sq’)
e(b, ..., b,).

7.10. easy calculation using 7.9 shows that if (a, b) is an admissible
label, i.e., a 2b > 0, then

@ +
where a { (a + b)} is the greatest integer less than (a + b). This fact
ll be used in 8.

8. The cicol?ion of Ext a()(Z2, Z)
Using the dual of the normalized bar construction, we explicitly compute

the cohomology algebra, Exta() (Z, Z2) of the Steenrod algebra a (2) of
7. In the case of the ordinary Steenrod algebra, this method is too com-
plicated to be practical; however, since a() is a bigraded Mgebra,
Ext() (Z2, Z2) is a trigraded algebra with the Yoneda product and using
this extra structure we are able to carry out the calculation. We denote the

’’ (Z2, Z) wheretfigradation by xa)
m (co)homological degree
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n degree by which maps are lowered

length.

Ex*m’’ (Z., Z2) vanishesWe shall prove that off certain "diagonals" m l,
E ..i.1 (Z2, Z) beand so the trigradation reduces to a bigradation. Let e x()

the class of the dual of Sq, i > 0. The main result of this section is

8.1. The bigraded algebra Exte() (Z., Z) is generated by the elements ,
i > 0 subject to the following relations" if a >_ 2b > O,

where a (a b is the greatest integer less than (a - b ).

This result follows from 8.2-4 below.
Recall that the cohomology algebra of a graded Zs-algebra B., of finite

type, with unit 7" Z2 --. B. and augmentation t" B. --. Zs is given by the
cohomology of the following cochain complex (Y, ), (dual of the normalized
bar construction of B.)"

yO Z2 yn I (B* ) @ (R) I (B* (n-factors),

(bl (R) (R) b,) %b (R) (R) b_ (R) b (R) b+z @ @ b,

where B* Horn (B., Z2), I (B*) denotes the augmentation ideal ker *and 6 is the dual of the multiplication of B.. The cohomology product or
Yoneda product is easily shown to be induced by the tensor algebra product.

Ex*’.2 (Z2 Z2) for8.2. The following relations (and no more) hold in )
a>2b>O

Hence d 0 < C < 2 d} is a Z2-module basis for xa().2,$,2 (Z2 Z2).

Proof. Given any positive integers a, b, @ b is a cocycle since ( @ b)
f @ b + . @ b 0.

.2,*,2Now y,,.2 {,b) a 2b > 0), hence the only relations in xa) re
5,b) 0 or by 7.10,

Notice that in he rsnge 2b j { (a b)} we hve j < 2 (a + b j).
Hence, using he relsions (,), we cn express ny cocycle s u&que sum of
@ d, 0 < C < 2d.

8.3. The classes @ @ a., 0 < a < 2a+ form a Z2-module basis
for Ext’’*’’e() (Z2, Z2). These monomials will be called coadmissible.

Proof. It follows from 8.2 that the coadmissible monomials generate
x*’’*’’ (Z, Z). However, Y+’*" has a basis consisting of elements of

the form
b @ @ b_, @ i(b.b+,) @ b+ @ @ ib,
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and

(b @ @ bi_ @ (bi,bi/l) @ bi/ @ @ bn)

hence the only relations introduced are precisely those required to express any
monomial in coadmissible form.

.m.$.l (Z2, Z2) 0 if m # 1.8.4. xa()

The proof of 8.4 is given below. We will filter the complex Y and show that
off the diagonals, m l, the quotients of this filtration are cohomologous to
zero. The result then follows from a standard exact sequence argument.
The cochain complex Y is giv the following filtration" If I is a label of

length l(I) then define FY’*’ Z2-module generated by the tensors

(,...,> @ <+,...,> @ @ (_t+,...,>
where (a, ..., a,), ..., (a,_+, ..., a;) are admissible labels and
I (a, ..., a).

It is clear that the filtration is increasing, i.e., I J and (I) (J) implies
F Y*’*’ F Y*’*’.
Of course we must show that F Y*’*’ is a subcomplex of Y*’*’, that is,

closed under . This follows from 7.9 and the following lemma.

8.5. Any inadmissible momial Sq can be expressed as a sum of monomials
each of whose labels is strictly greater than I.

Proof. SupposeI (i, ...,i)withn i < 2i+ 2m. Then

Sq* SqSqSqSqM [/2] +--t
-I .- )SqSq’-SqSq

Nowm-j> 0son+m-j>nhence

(N,n+m-j,j,M) > (N,n,m,M).

Notati. If I is a label let F_t Y denote O<,(j)_( F Y. Note that
ifI (it, ...,i)andi > lthen

F_t Y F(it,....i_t._) Y

Again using 7.9 and 8.5,

8.6. The induced map Ft Y/F_t Y F Y/F_t Y is given by the follow-
ing formula" (write I for r for simplicity)

6(at... at @ at+.., a @ @ a._+t.., a)

at a_ @ ai’" ak a._t+t a

+ -kt+a ak akt+t a_ a... a @ @ a_t+t a



COHOMOLOGY OPERATIONS FOR SIIIPLICIAL LIE ALGEBRAS

-’’" " Zi-k._+2al a (R) @ a._+ a’-i (R) a’ a

(mod F_ Y)

Proof of 8.4. F > 0. If m > then there are no non-zero elements of
length in ’*’; this is because each tensor factor has length at least one.

For m < l, we will examine the quotients of the filtration and show that they
have tribal cohomology.
To each tensor

x al a @ a+ a @ @ a_+ a

of length we assign an integer ai (x), called the admissibility index, defined
as follows" Let ai (x) be the smallest integer i, 1 i 1 such that
a 2a+1. If no such i exists then set ai (x) 1.
We now define a contracting homotopy

" F Y’*’/F_I Y’*’ F Y-’*’/F_I Y"-’*’ for 1 u

given by

(x) al @ @ @ a_ @ aa+l a+ @ @ a_+ a

ifx al@ a2 @ @ a @ a+l a+ @ @ a_+l awhere
ai (x) iandk land

(x) 0 otheise.

Notice that a a+ a+ is admissible since a 2a+.
It is now a routine vedfication to show that if

x F Y’*’/F_I Y’*’
then (x) + (x) x. One considers the two cases k > i and k i.

9. The E term of the Adams spectral sequence

Recall from [2] that . LAS is the E term of the Adams spectral sequence,
derived from the lower 2-central series filtration, of the free group sphere
spectrum FS. As in [2; 5.2] let L AS denote the class i @ i. Then
we can state the main result of this section.

9.1. There is an isomorphism of bigraded algebras over Z
’* Z) . LASExt) (Z,

given by + i O. For bigradation (m, m + 1) m, i O,
’+ (Z Z) LAS.. Xa(

Proof. It follows from 9.3-11 below that there is a convergent Adams
spectral sequence.

E,. Ex**’’+() (Z Z) . LAS
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with a product structure induced by composition. On E this product agrees
with the Yoneda product and on E it is induced by the composition product
of r, LAS. Since r, LAS r>l r, Lr AS is a bigraded algebra with re-
spect to the composition product it suffices to show E E. Now,, 0 ,, L AS for all n >_ 0 (every 2n -t- 1 simplex ofL AS, is degenerate),
hence +1 persists to E and +1 h. Thus since the differentials d are
derivations (9.10 (ii)) and the .+, n >_ 0 generate E we have E E.

9.2 Remark. This result gives a cohomological determination of the al-
gebra structure of the E term. In effect it "explains" the origin of the rela-
tions among the ’s (compare [2, 2.4 (iii)] with 8.2).

9.3. The Adams spectral sequence for s2. We will derive the Adams spec-
tral sequence called for in the preceding proof.

Let
c Dr+6 c Dr fi D0fi

denote the 2-derived series filtration of 6 (where Dr 1 1, r factors).
Denote by {Er} the spectral sequence derived from the homotopy exact

couple of this filtration.

9.4. The E term. The following result describes the E term of

9.5. If is an m-connected (m >_ 1) free simplicial Lie algebra in s then

E2..i Ex*’"+a() (Hom (, Abe. Z2). Z2), < 2m +
Proof. It suffices to show that (in the stable range)

i, O" H,D+ -, H,D

for all r >_ 0. Applying the homology functor to the fibration

i j
Dr+l Dr tt Ab Dr it K(, Ab Dr 6,,)

we have (in the stable range) an exact triangle

i,H, D+ H,D r,- Ab D.
0,/ /

/ //J*
H,K(r,AbDr6,*) @ ,+-,_ r, Ab Dr if (R) a()

Thus i, 0 since j, is the injection given by [g] --, [g] @ 1.

9.6. Convergence.

9.7. Let be an m-connected free simplicial Lie algebra in s, Then
is convergent and E’6 is the graded group associated with the induced 2-derived
series filtration of r, , in the stable range < 2m.
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Proof. Inductively construct a sequence

of induced fibrations (a Postnikov tower for 6) with fibre

K, K(.F,6, i,- 1),

where ,F, 6 is the first non-zero homotopy group of F,

F,+ g WK,

F g WK.
Now ghe simplieial Lie algebra version of [6, Proposigion IB, p. 1848]

(esgablished using ghe represengabiligy of H*) shows hag since

here are maps

commutes. Hence there is an Aclusion D,. F,. relating the tra-
tion induced by {D,6} to the filtration induced by {F,}. Since {F, fl} is
Postnov tower it becomes increasingly highly co,coted, hence

This fact also established convergence since D 6 (and hence D) is free.

9.8. Products. The remainder of this section deals with the Lie algebra
sphere spectrum LAS. The spectral sequence {ELAS} for LAS has a natural
product . LAS E,,., LAS E,+,,.+, LAS

induced by compositi, i.e., the natural transformation LL
Z,-mode M is the uAque map of such that L LM LM. To establish
this paiAng we first prove a prelinary result.

9.9. Tre is a compositi pa#ing

.+(D.+/D.+.+)LAS, r 0
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(also denoted by a @ b a. b) such that
(i) Cr is natural with respect to the maps

7, r, (D,/Dn+q)LAS , (D,,,/D,,+q, )LAS

for all 0 <_ n’
(ii) 0,+ (a) ,.0 b + 0, a. b in the diagram

(,D,,+r LASrs--1 \Dn/r/l/
(R) LAS

Proof. The construction of the pairing is an easy generalization of the
construction used for the composition pairing of [2; 3.1-2]. Naturality (i)
also follows from this argument and (ii) follows from the argument [2; p. 334]
showing that the differential d is a derivation in the Adams spectral sequence
for FS.

Using 9.9 we have from [7; Theormg IIA, p. 19-06].

9.10. The composition pairing induces a product

E. LAS (R) E,,, LAS---, E8+8,.+, LAS

(also denoted by a (R) b ---, a. b) such that
(i) ,’ ClonE1,
(ii) d is a derivation, d (a. b) dra b - a. drb,

(fii ) r+l is induced by r and is induced by the ,
(iv) is also induced (upon passage to the associated graded group) by

0 98 LAS (R) r LAS ----> r,+ LAS.

9.11. The induced product

Es, LAS @ Es,., LAS---* Es+8,,+, LAS

of 9.10 agrees with the Yoneda product

Ext’’’’+’ x"’+’’’’+’’++’ (Z, Z.)Ex*’’’+’ (Z., Z) (R) (z, z) -under the isomorphism of 9.5.
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Proof. Let
e a e (D,/Da+.)LAS Ea. LAS,

k e b e ,, (D,,/D,,+I)LAS E,,.,, LAS.
Let e D,, LAS be such that proj e b. Write in the form B (Ai) where B is
a formula involng only degeneracy operators and the operatio tensor prod-
uct of sum. The composition product a. b is represented by B (a). Using the
element and composition LL .L construct natural maps

k (D/D+)LAS (D+,,/D+,,+)LAS.

The map has the property that k0 (Ai) proj . Now using the maps k
and the a (2)-resolution of H*LAS constructed from the short exact sequences

0 D+, LAS D LAS (D/D+)LAS O,

construct the following commutative ladder (rows exact)

Using this ladder we may define the Yoneda product of cls (*) and cls (k*).
In x;.+8,.a+e++, (Z Z),

o )*cls cls (x*) cls cls )
where

(X o nomaz (H* (D+,,/D,+,,+)LAS, Z)

In E,+,,.+, LAS,

where
o e r+, (D+,/D+,+)LAS.

This completes the proof since these classes correspond under the
isomorphism

E+,,,t+, LAS xaz
of 9.5

BIBLIOGRAPHY

1. A. BORL, Sur la cohomologie des espaces fibres principaux e$ des espaces homognes
groupes de Lie, compact, Ann. of Math., vol. 57 (1953), pp. 115-207.

2. A. K. BOUSFIELD, E. B. CURTIS, D. M. KAN, D. G. QUILLEN, D. L. RECTOR AND



612 STEWART B. PRIDDY

J. W. SCHLESINGER, The mod-p lower central series and the Adams spectral
sequence, Topology, vol. 5 (1966), pp. 331-342.

3. H. CARTAN, DGA-algbres et DGA-modules, Seminaire H. Cartan (1954/1955), expos
2.

4. H. CARTAN AND S. EILENBERG, Homological algebra, Princeton University Press,
Princeton, 1956.

5. A.. DOLD, Uber die Steenrodschen Kohomologie-operationen, Ann. of Math., vol. 73
(1961), pp. 258-294.

6. /. DOUADY, Le suite spectrale d’Adams, Seminaire H. Cartan (1958/59), expos 18.
7., Le suite spectrale d’Adams: structure multiplicative, Seminaire H. Cartan

(1958/59), expos 19.
8. S. EILENBER( AND S. MACLANE, On the groups H(r, n),//, Ann. of Math., vol. 60

(1954), pp. 49-139.
9. D. B. A. EPSTEIN, Semisimplicial objects and the Eilenberg-Zilber theorem, Invent.

Math., vol. 1 (1966), pp. 209-220.
10. D. M. KAN, On the homotopy relation for c.s.s, maps, Bol. Soc. Math. Mexicana, vol.

2 (1957), pp. 75-81.
11. ., On c.s.s, categories, Bol. Soc. Math. Mexicana, vol. 2 (1957), pp. 82-94.
12.,On homotopy theory and c.s.s, groups, Ann. of Math., vol. 68 (1958), pp. 38-53.
13. J. MLNOR, The Steenrod algebra and its dual, Ann. of’Math, vol. 67 (1958), pp. 150-

171.
14. J. MILNOR AND J. C. MOORE, On the structure of Hopf algebras, Ann. of Math., vol.

81 (1965), pp. 211-264.
15. J. C. MOORE, Constructions sur des complexes d’anneax, Seminaire H. Caftan (1954/

55, expos4 12.
16. , Comparison de la bar construction a la construction W et aux complexes K (-, n),

Seminaire H. Caftan (1954/55), expos 13.
17. D G. QUV.LEN, Homotopical algebra, Lecture Notes in Mathematics, vol. 43,

Springer, Berlin, 1967.
18. J. P. SERRE, Cohomologie modulo 2 des complexes d’Eilenbarg-MacLane, Comment.

Math. Helv., vol. 27 (1953), pp. 198-232.

MASSACHUSETTS INSTITUTE OF TECHNOIOGY
CAMBRIDGE MASSACHUSETTS

NORTHWESTERN UNIVERSITY
EVANSTON, IILINOIS


