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Abstract We show that methods of functor homology can be applied to monoids.
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The aim of this work is to clarify the relationship between homology theory of
commutative monoids constructed á la Quillen [16,17] and technology of �-modules
as it was developed in [12–15]. It should be pointed out that the cohomology the-
ory of commutative monoids was first constructed by P.-A. Grillet in the series of
papers [2–7] (see also the recent work [1]). So our results shed light on Grillet theory.
For instance, we relate the commutative monoid (co)homology with André–Quillen
(co)homology of corresponding monoid algebra. For another application we men-
tion the Hodge decomposition for commutative monoid (co)homology which is an
immediate consequence of our main result.

In Sect. 1 we recall the basics of �-modules and their relation with commutative
algebra (co)homology. In Sect. 2 we construct an analogue of Kähler differentials for
commutative monoids. In Sect. 3 we construct the homology theory for commuta-
tive monoids and we prove our main result, which states that commutative monoid
homology is a particular case of the functor homology developed in [13].
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1 �-modules and commutative algebra (co)homology

1.1 Notations

Let K be a field which is fixed in the whole paper. In what follows all vector spaces are
defined over K . Moreover, ⊗K and HomK are denoted by ⊗ and Hom respectively.
Let Vect be the category of vector spaces. For any set S, we let K [S] be the free vector
space spanned by S. For a vector space V , its dual vector space is denoted by V �.

1.2 Generalities on functor categories

Let C be a small category. A left C-module is a covariant functor C→ Vect , while
a right C-module is a contravariant functor Cop → Vect. The category of all left C-
modules is denoted by C-mod, while the category of all right modules is denoted by
mod-C. It is well-known that the categories C-mod and mod-C are abelian categories
with sufficiently many projective and injective objects. For any object c of the category
C one defines the left C-module Cc and the right C-module Cc by

Cc(x) = K [HomC(c, x)], and Cc(x) = K [HomC(x, c)].

It follows from the Yoneda lemma that the collection Cc (resp. C�c), where c ∈ Ob(C)
form a system of projective (resp. injective) (co)generators of the category of left
C-modules.

Our main example is the case when C = �. Where� is the category of finite pointed
sets and pointed maps. For any integer n ≥ 0, we let [n] be the set {0, 1, . . . , n} with
basepoint 0. We can and we will assume that objects of � are sets [n], n ≥ 0. The
category of all left �-modules is denoted by �-mod, while the category of all right
modules is denoted by mod-�. Projective generators of the category of left�-modules
are objects �n , n ≥ 0, where

�n(X) = K [Xn].

1.3 Hochschild and Harrison (co)homology of �-modules

The definition of these objects are based on the following pointed maps (see [9] and
[10]). For any 0 ≤ i ≤ n + 1, one defines a map

εi : [n + 1] → [n], 0 ≤ i ≤ n + 1,

by

εi ( j) =

⎧
⎪⎨

⎪⎩

j j ≤ i,

j − 1 j > i ≤ n,

0 j = i = n + 1.

For a left �-module F the Hochschild homology H H∗(F) is defined as the homol-
ogy of the chain complex
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F([0])← F([1])← F([2])← · · · ← F([n])← · · ·

where the boundary map ∂ : F([n + 1])→ F([n]) is given by
∑n+1

i=0 (−1)i F(εi ).
Quite similarly for a right �-module T one defines the Hochschild cohomology

H H∗(T ) as the cohomology of the following cochain complex

T ([0])→ T ([1])→ · · · → T ([n])→ T ([n + 1])→ · · ·

where the coboundary map δ : T ([n]) → T ([n + 1]) is given by δ =∑n+1
i=0 (−1)i T (εi ).
We have the following obvious fact.

Lemma 1.1 Let F be a left �-module, then H H0(F) = F([0]) and

H H1(F) = Coker(∂ : F([2])→ F([1])).

Similraly, if T is a right �-module, then H H0(T ) = T ([0]) and

H H1(T ) = ker(δ : T ([1])→ T ([2])).

Let�n be the symmetric group on n letters, it acts as a group of automorphisms on
[n]. For integers p1, · · · , pk ≥ 1, with k ≥ 2 and n = p1 + · · · + pk , we set

sh p1,··· ,pk =
∑

sgn(σ )σ ∈ Z[�n]

where σ ∈ �n is running over all (p1, · · · , pk)-shuffles. Each sh p1,··· ,pk induces a
map T ([n]) → T ([n]), called the shuffle map. Let us denote by T̃n the intersection
of the kernels of all shuffle maps. These groups form a subcomplex of the Hochschild
cochain complex, called Harrison cochain complex [9]. The groups Harrn(T ), n ≥ 0
are defined as the cohomology of the Harrison cochain complex.

By duality we have also Harrison homology of left �-module.
The following is a theorem due to Loday [9]. For alternative approach see [12].

Theorem 1.2 If K is a field of characteristic zero, then for any left �-module F and
right �-module T there exist the so called Hodge decompositions:

H Hn(F) ∼=
n⊕

i=1

H H (i)
n F), n > 0,

H Hn(T ) ∼=
n⊕

i=1

H Hn
(i)(T ), n > 0,

for suitable defined H H (i)
n (F) and H Hn

(i)(T ). Moreover, for i = 1 one has

Harrn(F) = H H (1)
n (F), Harrn(T ) = H Hn

(1)(T ), n > 0.
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1.4 André–Quillen (co)homology of �-modules

We recall some material from [13].
A partition λ = (λ1, · · · , λk) is a sequence of natural numbers λ1 ≥ · · · ≥ λk ≥ 1.

The sum of the partition λ is given by s(λ) := λ1 + · · · + λk , while the group �(λ)
is a product of the corresponding symmetric groups

�(λ) := �λ1 × · · · ×�λk .

which is identified with the Young subgroup of �s(λ). Let us observe that �n =
Aut�([n]) and therefore �n acts on F([n]) and T ([n]) for any left �-module F and
right �-module T .

Let

0→ F1 → F → F2 → 0

be an exact sequence of left �-modules. It is called a Y-exact sequence if for any
partition λ with s(λ) = n the induced map

F([n])�(λ)→ F2([n])�(λ)

is surjective. The class of Y-exact sequences is proper in the sense of MacLane [11].
A left �-module F is Y-projective, if the functor Hom�(F,−) takes Y-exact

sequences to exact sequences. For example Sn�1 is a Y-projective [13]. Here Sn

denotes the n-th symmetric power. According to [13] for any left �-module F there
is a Y-exact sequence

0→ F1 → F0 → F → 0

with Y-projective F0. Hence one can take relative left derived functors of the functor
H H1 : �−mod → K -mod. The values of these derived functors on a left �-module
F is denoted by πY∗(F). So by the definition the functors πY∗ are uniquely defined
(up to isomorphism) by the following properties

Lemma 1.3 There exist a unique family of functorsπY
n : �−mod → K−mod, n ≥

0, such that

(i) πY
0(F) = H H1(F).

(ii) For any Y-exact sequence

0→ F1 → F → F2 → 0

there is a long exact sequence

· · · → πY
n+1(F2)→ πY

n(F1)→ · · · → πY
0(F1)

→ πY
0(F)→ πY

0(F2)→ 0.

(iii) The functor πY
n vanishes on Y-projective objects, n ≥ 1.
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By a dual argument for any right �-module T one obtains K -modules πY∗(T ). In
more detail, let

0→ T1 → T → T2 → 0

be an exact sequence of right �-modules. It is called a Y-exact sequence if for any
partition λ with s(λ) = n the induced map

T1([n])�(λ)→ T2([n])�(λ)

is injective. The class of Y-exact sequences of right �-modules is also proper. A right
�-module T is Y-injective if the functor Hom�(−, T ) takes Y-exact sequences to
exact sequences. By an argument dual to one given in [13] for any right �-module T
there is a Y-exact sequence

0→ T → T0 → T1 → 0

with Y-injective T0. Hence one can take relative left derived functors of the functor
H H1 : mod−�→ K -mod. The values of these derived functors on a right�-module
T are denoted by πY∗(T ).

Lemma 1.4 If K is a field of characteristic zero, then for any left � module F and
right �-module T one has isomorphisms

πY∗(F) ∼= Harr∗−1(F), πY∗(T ) = Harr∗−1(T ).

Proof In characteristic zero, any short exact sequence of �-modules is also a Y-exact
sequences. Thus, πY∗(F) = T or�∗ (t, F) and πY∗(T ) = Ext∗�(t, T ), where t is the
same right �-module as in [12,13,15]. Now, the result follows from [12, Proposition
2.2] and [12, Corollary 2.9]. 
�

1.5 �-modules and commutative algebras

The classical Hochschild cohomology (as well as the Harrison or Andre–Quillen
(co)homology) of commutative algebras is a particular case of the cohomology of
�-modules [9,12,13]. We recall the corresponding results. Let R be a commutative
K -algebra and A be an R-module. We have a left and right �-modules L∗(R, A) and
L∗(R, A) defined on objects by

L∗(R, A)([n]) := Hom(R⊗n, A), L∗(R, A)([n]) := R⊗n ⊗ A.

For a pointed map f : [n] → [m], the action of L∗(R, A) on f is given by

f ∗(ψ)(a1 ⊗ · · · ⊗ an) = b0ψ(b1 ⊗ · · · ⊗ bm)
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while for the functor L∗(R, A) one has:

f∗(a0 ⊗ · · · ⊗ an) = b0 ⊗ · · · ⊗ bm,

where b j =∏
f (i)= j ai , j = 0, . . . , n.

Then one has [9]:

H H∗(L∗(R, A)) = H H∗(R, A), H H∗(L∗(R, A)) = H H∗(R, A)

Harrn(L∗(R, A)) = Harrm(R, A), Harrn(L∗(R, A)) = Harrm(R, A),

where H H∗(R, A) and Harr∗(R, A) (resp. H H∗(R, A), Harr∗(R, A) ) are the
Hochschild and Harrison (co)homology of R with coefficients in A.

By [13] a similar result is also true for André–Quillen (co)homology of commutative
rings. In order to state this result, let us first recall the definition of André–Quillen
(co)homology [17].

Let SCA be category of simplicial commutative K -algebras and let SS be the
category of simplicial sets and let U : SCA→ SS be a forgetful functor. According
to [16] there is a unique closed model category structure on the category SCA such
that a morphism f : X∗ → Y∗ of SCA is weak equivalence (resp. fibration) if U ( f )
is a weak equivalence (resp. fibration) of simplicial sets. A simplicial commutative
K -algebra X∗ is called free if each Xn is a free commutative K -algebra with a base Sn ,
such that degeneracy operators si : Xn → Xn+1 maps Sn to Sn+1, 0 ≤ i ≤ n. Thanks
to [16] any free simplicial commutative K -algebra is cofibrant and any cofibrant object
is a retract of a free simplicial commutative K -algebra.

We let C∗(V ∗) be the cochain complex associated to a cosimplicial K -module V ∗.
Let R be a commutative K -algebra and let A be an R-module. Then the André–Quillen
cohomology of R with coefficients in A is defined by (see [17]):

D∗(R, A) := H∗(C∗(Der(P∗, A))),

where P∗ → R is a cofibrant replacement of the K -algebra R considered as a constant
simplicial K -algebra and Der denotes the K -module of all K -derivations.

The André–Quillen homology of R with coefficients in A is defined by

D∗(R, A) := H∗(C∗(A ⊗P∗ �
1
P∗)),

where �1
R is the Kähler differentials of a commutative K -algebra R.

The main result of [13] claims that there are natural isomorphisms

πY∗(L∗(R, A)) = D∗(R, A), πY∗(L∗(R, A)) = D∗(R, A).

2 The category H(C) associated to a commutative monoid C

2.1 Definition

Let C be a commutative monoid. Define the category H(C) as follows. Objects of
H(C) are elements of C . A morphism from an element a ∈ C to an element b is a pair
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(c, a) of elements of C such that b = ca. To simplify notations we write a
c−→ ac for

a morphism (a, c) : a→ b = ac. If a
c−→ ac and ac

d−→ acd are morphisms in H(C),
then the composite of these morphisms in H(C) is a

cd−→ acd.
It is clear that 1 ∈ C is an initial object of H(C).
According to Sect. 1.2 a left H(C)-module is a covariant functor H(C) → Vect,

similarly a right H(C)-module is a contravariant functor H(C)op → Vect. We let
H(C)-mod be the category of left H(C)-modules, while mod-H(C) denotes the cat-
egory of right H(C)-modules. If M is a left H(C)-module, then the value of M on
the element a ∈ C (considered as object of H(C)) is denoted by M(a). Moreover if
a, b, c ∈ C and b = ca, then we have an induced map c∗ : M(a) → M(b), with
obvious properties 1∗ = Id and (c1c2)∗ = c1∗c2∗.

Quite similarly, if N is a right H(C)-module, then the value of N on the element
a ∈ C is denoted by N (a). Moreover if a, b, c ∈ C and b = ca, then we have an
induced map c∗ : N (b)→ N (a), with obvious properties 1∗ = Id and (c1c2)

∗ = c∗2c∗1.
The categories H(C)-mod and mod-H(C) are abelian categories with enough pro-

jective and injective objects. For any element a of C we let Ca and Ca be respectively
the left and right H(C)-modules defined by

Ca(x) = K [(x : a)] =
⊕

c∈(x :a)
K , and Ca(x) = K [(a : x)] =

⊕

c∈(a:x)
K .

Here for elements a, b ∈ C we let (b : a) be the set of all elements c ∈ C such
that b = ac. By Sect. 1.2 left H(C)-modules Ca , a ∈ C form a family of projective
generators of the category H(C)-mod. Similarly Ca , a ∈ C form a family of projective
generators of the category mod-H(C) and the modules C�

a , a ∈ C form a family of
injective cogenerators of H(C)-mod.

Let N be a right H(C)-module and M be a left H(C)-module. We let N⊗H(C)M be
the vector space generated by elements of the form x⊗ y, where x ∈ N (a), y ∈ M(a),
a ∈ C . These elements are subject to the following relations

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y,

x ⊗ (y1 + y2) = x ⊗ y1 + x ⊗ y2,

kx ⊗ y = x ⊗ ky,

c∗(z)⊗ y = z ⊗ c∗(y).

Here k ∈ K , c ∈ C , x, x1, x2 ∈ N (a), y, y1, y2 ∈ M(a), z ∈ Nca . Then one has

N ⊗H(C) Ca ∼= N (a), Ca ⊗H(C) M ∼= M(a).

If f : C → C ′ is a homomorphism of monoids, then f induces a functor H( f ) :
H(C)→ H(C ′) in an obvious way. Thus for any left H(C ′)-module M one has a left
H(C)-module f ∗(M), which is given by

f ∗(M)(i) = M( f (i)).
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In this way one obtains a functor f ∗ from the category of (left or right) modules over
H(C ′) to the category of modules over H(C).

2.2 K [C]-modules and H(C)-modules

We let K [C] be the monoid algebra of the monoid C . Any K [C]-module A gives rise
to the left H(C)-module j∗(A) which is defined by

j∗(A)(a) = A

and for b = ca, the induced morphisms

A = j∗(A)(a) c∗−→ j∗(A)(b) = A

is simply the multiplication by c.
If M is a left H(C)-module, we let j∗(M) be the following K [C] module. As a

K -module one has

j∗(M) =
⊕

x∈C

M(x),

The action of C is defined as follows: for x ∈ C , a ∈ M(x) and c ∈ C one has

cix (a) = icx (c∗(a)).

Here ix is the canonical inclusion M(x)→ j∗(M), x ∈ C .

Lemma 2.1 The functor j∗ is a left adjoint functor to j∗.

Proof For a left H(C)-module M and a left K [C]-module A, an element

ξ ∈ HomH(C)(M, j∗(A))

is given by the family of K -module homomorphisms ξa : M(a) → A, a ∈ A such
that for any c ∈ C the following

M(a)
ξa ��

c∗
��

A

c

��
M(ac)

ξac

�� A

is a commutative diagram. The homomorphisms ξa , a ∈ C , defines a homomorphism
of K -modules

ξ̂ : j∗(M) =
⊕

a∈C

M(a)→ A
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which clearly is a K [M]-homomorphism. So, ξ → ξ̂ gives rise to a homomorphism

HomH(C)(M, j∗(A))→ HomK [C]( j∗(M), A)

which is obviously an isomorphism. 
�

2.3 Derivations, differentials and (co)homology in the theory of commutative
algebras

Let C be a commutative monoid and let M be a left H(C)-module. A derivation
δ : C → M of C with values in M is a function which assigns to each element a ∈ C
an element δ(a) ∈ M(a), such that

δ(ab) = a∗(δ(b))+ b∗(δ(a)).

The abelian group of all derivations of C with values in M is denoted by Der(C,M).
We claim that there exist a universal derivation. In fact we construct a left H(C)-

module�C , called differentials of a monoid C . It is a left H(C)-module generated by
symbols da ∈ �C (a) one for every element a ∈ C , subject to relations

d(ab) = a∗(d(b))+ b∗(d(a))

for every a and b ∈ C . It follows from the construction that a → da is a derivation,
which is clearly universal one, in the sense that for any derivation δ : C →,M there is
a unique homomorphism of H(C)-modules δ∗ : �C → M such that δ(a) = δ∗(da).
Thus for any left H(C)-module M one has a canonical isomorphism

Der(C,M) ∼= HomH(C)(�C ,M).

Lemma 2.2 One has an isomorphism of K [C]-modules

j∗(�C ) = �1
K [C]

Here j∗ : H(C) − mod → K [C]-mod is the functor constructed in Sect. 2.2 and
�1

K [C] is the Kähler differentials of the K -algebra K [C].
Proof Let A be a K [C]-module. Then we have

Der(C, j∗(A)) = HomH(C)(�C , j∗(A)) = HomK [C]( j∗(�), A).

On the other hand

Der(C, j∗(A)) = Der(K [C], A) = HomK [C](�1
K [A], A)

and the result follows from the Yoneda lemma. 
�
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2.4 The case C = N

If C is the free abelian monoid with a generator t , then a left H(C)-module is nothing
but a diagram of vector spaces

M = (M0
t−→ M1

t−→ M2
t−→ M3

t−→ · · · )

In particular the projective object Cn corresponds to the diagram

0→ 0→ · · · → 0→ K
1−→ K

1−→ · · ·

where the first nontrivial term appears at the place n.
Quite similarly a right H(C)-module is nothing but a diagram of vector spaces

N = ( · · · t−→ N3
t−→ N2

t−→ N1
t−→ N0).

In particular the projective object Cn corresponds to the diagram

· · · → 0→ 0→ K
1−→ K

1−→ · · · 1−→ K

where the first nontrivial term appears at the place n.
One easily observes that for any left H(C)-module M one has an isomorphism

Der(C,M) ∼= M1

which is given by δ → δ(t). This follows from the fact that δ(tn) = ntn−1δ(t). Thus

�C = C1 = (0→ K
1−→ K

1−→ K
1−→ · · · ).

2.5 Product of two monoids

Let C be a product of two monoids: C = C1 × C2. Then H(C) = H(C1)×H(C2).
Assume M1 and M2 are (say left) H(C1) and H(C2)-modules respectively. Then one
can form a H(C)-module M1 � M2 as follows:

M1 � M2(x1, x2) = M1(x1)⊗ M2(x2).

Lemma 2.3 For any elements c1 ∈ C and c2 ∈ C2, one has

C (c1,c2) = Cc1 � Cc2

and

C(c1,c2) = Cc1 � Cc2 .
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Proof By definition one has

Cc1 � Cc2(x1, x2) = Cc1(x1)⊗ Cc2(x2)

⎛

⎝
⊕

a1∈C1;a1c1=x1

K

⎞

⎠⊗
⎛

⎝
⊕

a2∈C2;a2c2=x2

K

⎞

⎠

=
⊕

(a1,a2)(c1,c2)=(x1,x2)

K

= C (c1,c2)(x1, x2).

Similarly for the second isomorphism. 
�

We have homomorphisms

ι1 : C1 → C, ι(c1) = (c1, 1), ι2 : C2 → C, ι(c2) = (1, c2).

For any left H(C)-module M we set

M (1) = ι∗1(M), M (2) = ι∗2(M).

Lemma 2.4 For any left H(C)-module M one has

Der(C,M) ∼= Der(C1,M (1))⊕ Der(C1,M (2)).

Proof This easily follows from the fact (c1, c2) = (c1, 1)(1, c2). 
�

We also have projections π1 : C → C1 and π2 : C → C2, given respectively by
πi (c1, c2) = ci , i = 1.2.

Lemma 2.5 For any left H(Ci )-module Xi , i = 1, 2 and any left H(C)-module M,
one has isomorphisms

HomH(C)(π∗1 X1,M) ∼= HomH(C1)(X1,M (1))

and

HomH(C)(π∗2 X2,M) ∼= HomH(C2)(X2,M (2)).

Proof Let η ∈ HomH(C)(π∗1 X1,M). Thus η is a collection of homomorphisms of
K -modules

η(a1,a2) : Xa1 → M(a1,a2)
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such that for any elements c1 ∈ C1, c2 ∈ C2 the following diagram commutes

Xa1

η(a1,a2) ��

c1∗
��

M(a1,a2)

(c1,c2)∗
��

Xa1c1 η(a1c1,a2c2)
�� M(a1c1,a2c2)

it follows that η(a1,a) = (1, a2)∗ ◦η(a1,1). It is clear that the family of homomorphisms
ηa1,1, a1 ∈ C1 defines the morphism η̂ ∈ HomH(C1)(X1,M (1)) and the previous
equality shows that η → η̂ is really a bijection. 
�

Corollary 2.6 If C = C1 × C2, then

�C = π∗1�C1 ⊕ π∗2�C1 ,

where πi : C → Ci , i = 1, 2 is the canonical projection.

Proof For any H(C)-module M one has

HomH(C)(�C ,M) = Der(C,M)

= Der(C1,M (1))⊕ Der(C2,M (2))

= HomH(C1)(�C1 ,M (1))⊕ HomH(C2)(�C2 ,M (2))

= HomH(C)(π∗1�C1 ,M)⊕ HomH(C)(π∗2�C2 ,M)

= HomH(C)(π∗1�C1 ⊕ π∗2�C2 ,M)

and the result follows from the Yoneda lemma. 
�

3 Commutative monoid (co)homology and �-modules

3.1 �-modules related to monoids

Let C be a commutative monoid and let N be a right H(C)-module. Define left �-
module G∗(C, N ) as follows. On objects it is given by

G∗(C, N )([n]) =
⊕

(a1,··· ,an)∈Cn

N (a1 . . . an).

In order, to extend the definition on morphism, we let

ι(a1,...,an) : N (a1 . . . an)→ G∗(C, N )([n])
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be the canonical inclusion. Let f : [n] → [m] be a pointed map. Then the homomor-
phism

f∗ : G∗(C, N )([n])→ G∗(C, N )([m])

is defined by

f∗ι(a1,...,an)(x) = ι(b1,...,bm )((b0)∗(x)),

where x ∈ N (a1 · · · an) and

b j =
∏

f (i)= j

ai , j = 0, . . . , n.

Here we used the convention that b0 = 1 provided f −1({0}) = {0}.
Quite similarly, let M be a left H(C)-module. Define a right �-module G∗(C,M)

as follows. On objects it is given by

G∗(C,M)([n]) =
∏

(a1,··· ,an)∈Cn

M(a1 . . . an).

Thus η ∈ G(C,M)([n]) is a function which assigns to any n-tuple of elements
(a1, . . . , an) of C an element η(a1, . . . , an) ∈ Ma1...an . Let f : [n] → [m] be a
pointed map and ξ ∈ G(C,M)([m]). Then the function f ∗(ξ) ∈ G(C,M)([n]) is
given by

f ∗(ξ)(a1, . . . , an) = b0∗(ξ(b1, . . . , bm)).

Lemma 3.1 Let C = N be a free commutative monoid with a generator t , and let Cn

be the standard projective right H(C)-module, n ≥ 0, see Sect. 2.4. Then one has an
isomorphism of left �-modules

G∗(C,Cn) =
n⊕

k=0

Sk ◦ �1

In particular, G∗(C,Cn) is Y-projective.

Proof Since �1([m]) is a free K -module spanned on x1, · · · , xm , it follows that Sk ◦
�1([m]) is a free K -module spanned by all monomials of degree k on the variables
x1, · · · , xm . On the other hand we have

G∗(C,Cn)([m]) =
n⊕

k=0

⊕

n1+...+nm=k

K .

To see the expected isomorphism, it is enough to assign to a basis element of⊕
n1+···+nm=k K the monomial xn1

1 . . . xnm
m . 
�
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Lemma 3.2 Let C = C1 × C2 be product of two monoids and Ni be right H(Ci )

modules, i = 1, 2. Then one has

G∗(C, N1 � N2) = G∗(C1, N1)⊗G∗(C2, N2).

The proof is straightforward.

Corollary 3.3 Let C be a finitely generated free commutative monoid and let N be
a projective object in the category of right H(C)-modules. Then G∗(C, N ) is a Y-
projective left �-module.

Proof Since, any projective object is a retract of a direct sum of standard projective
modules Cc, it is enough to restrict ourself with the case when N = Cc. Assume
C = N

k . We will work by induction on k. If k = 1, then the result was already
established, see Lemma 3.1. Rest follows from Lemma 2.4 and Lemma 3.2 and the
fact that tensor product of two Y-projective objects is Y-projective see [13]. 
�

3.2 Homology and cohomology of commutative monoids

Let CM be the category of all commutative monoids and let SCM be the category of
all simplicial commutative monoids. There is a forgetful functor U ′ : SCM→ SS. By
[16] there is a unique closed model category structure on the category SCM such that
a morphism f : X∗ → Y∗ of SCM is a weak equivalence (resp. fibration) if U ′( f )
is a weak equivalence (resp. fibration) of simplicial sets. A simplicial commutative
monoid X∗ is called free if each Xn is a free commutative monoid with a base Yn , such
that degeneracy operators si : Xn → Xn+1 maps Yn to Yn+1, 0 ≤ i ≤ n. According
to [16] any free simplicial commutative monoid is cofibrant and any cofibrant object
is a retract of a free simplicial commutative monoid.

If C ′ → C is a morphism of commutative monoids then it gives rise to a functor
H(C ′) → H(C), which allows us to consider any left or right H(C)-module as a
module over H(C ′). In particular if P∗ → C is an augmented simplicial monoid and
M is a left H(C)-module, one can considered M as a left H(Pk)-module, for all k ≥ 0.
The same holds for right H(C)-modules.

Let M be a left H(C)-module. Then the Grillet cohomology of C with coefficients
in M is defined by

D∗(C,M) := H∗(C∗(Der(P∗,M))),

where P∗ → C is a cofibrant replacement of the monoid C considered as a constant
simplicial monoid.

Let N be a right H(C)-module. Then the Grillet homology of C with coefficients
in N is defined by

D∗(C, N ) := H∗(C∗(�P∗ ⊗H(P∗) N ))),

where P∗ → C is a cofibrant replacement of the monoid C considered as a constant
simplicial monoid.
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The definition of the cohomology essentially goes back to Grillet (see [2–5]), but
the definition of the Grillet homology is new.

By comparing the definition we obtain the following basic fact, which is missing
in (see [2–5]).

Lemma 3.4 Let C be a commutative monoid and A be a K [C]-module. Then one has
the isomorphisms:

D∗(C, j∗(A)) ∼= D∗(K [C], A),

D∗(C, j∗(A)) ∼= D∗(K [C], A).

Proof The isomorphism in the dimension zero is the obvios one, compare with Lemma
2.2. Rest follows from the fact that if P∗ → C is a cofibrant replacement of C in the
category SCM, then K [P∗] → K [C] is a cofibration replacement of K [C] in the
category SCA. 
�

3.3 The main Theorem

Now we are in the situation to state our main theorem, which relates Grillet
(co)homology of the monoid M with the Andre–Quillen (co)homology of the �-
modules G∗(C, N ) and G∗(C,M).

Theorem 3.5 Let C be a commutative monoid, M be a left and N be a right H(C)-
modules. Then one has the following isomorphisms

D∗(C,M) = πY∗(G∗(C,M)),

D∗(C, N ) = πY∗(G∗(C, N )).

The proof is based on several steps. The idea is to reduce the theorem to the case
when M is a free commutative monoid with one generator. In this case, the theorem
is proved using direct computation. We need some lemmas.

Lemma 3.6 Let C be a commutative monoid, N be a right H(C)-module. Then one
has a natural isomorphism

H H1(G∗(C, N )) ∼= N ⊗H(C) �C .

Proof Thanks to Lemma 1.1 one has H H1(G∗(C, N ) is isomorphic to the cokernel
of the map

∂ :
⊕

a,b∈C

N (ab)→
⊕

a∈C

N (a)

As usual, we let ia : N (a)→⊕
a∈C N (a) be the canonical inclusion. For an element

x ∈ N (a), the class of ia(x) in H H1(G∗(C, N )) is denoted by cl(a; x). Then

cl(a; x) → x ⊗ da
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defines the isomorphism H H1(G∗(C, N )) ∼= N ⊗H(C) �C . 
�
Lemma 3.7 Let C be a commutative monoid and let

0→ N1 → N → N2 → 0

be a short exact sequence of right H(C)-modules, then

0→ G∗(C, N1)→ G∗(C, N )→ G∗(C, N2)→ 0

is a Y-exact sequence of left �-modules.

Proof For a partitionλ of n and a set P we denote by Pλ the set of orbits of the cartesian
product Pn under the action of the group �(λ) ⊂ �n . In particular we have a set Cλ.
For any element μ ∈ Cλ we put Nμ := N (a1 · · · an), where (a1, · · · , an) ∈ μ. Since

G∗(C, N )([n])�(λ) =
⊕

μ∈Cλ

Nμ

the result follows. 
�
By the same argument we have also the following.

Lemma 3.8 Let f : D→ C be a surjective homomorphism of commutative monoids,
then for any right H(C)-module N the induced morphism of left �-modules

G∗(D, N )→ G∗(C, N )

is a Y-epimorphism.

Proof In the notation of the proof of Lemma 3.7 the map Dλ→ Cλ is surjective and
the result follows. 
�
Lemma 3.9 Let ε : X∗ → C be a simplicial resolution in the category of commutative
monoids and N be a right H(C)-module. Then the associated chain complexes of the
simplicial left �-module G∗(X∗, N )→ G∗(C, N ) is a Y−resolution.

Proof Since Xλ∗ → Cλ is a weak equivalence the result follows. 
�
Lemma 3.10 Let C be a free commutative monoid, N be a projective right H(C)-
module and M be an injective left H(C)-module. Then for any i > 0 one has

πY
i (G∗(C, N )) = 0, π i

Y (G
∗(C,M)) = 0.

Proof It suffices to consider the cases when N = Cc and M = C�
c , for an element c ∈

C . This is because the family (Cc)c∈C (resp. (C�
c)c∈C ) is a family of projective (resp.

injective) (co)generators. Since π i
Y (G∗(C, N �)) = (πY

i (G∗(C, N )))�, it suffices to

consider only πY
i (G∗(C, N )). Since homology commutes with direct limits, one can

assume that C is finitely generated. Then by Lemma 3.2 we can reduce to the case
when C has one generator. In this case the result follows from Lemma 3.1. 
�
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3.4 Proof of Theorem 3.5

We give proof only for homology. A dual argument works for cohomology. Thanks
to Lemma 3.6, the theorem is true in dimension i = 0. Next, consider the case
when C is a free monoid. In this case Di (C,−) = 0, if i > 0. On the other hand,
πY

i (G∗(C, F)) = 0 provided F is projective, thanks to Lemma 3.10. By Lemma 3.7,
the functor πY∗ (G∗(C,−)) assigns the long exact sequence to a short exact sequence
of right H(C)-modules. Therefore, we can consider such an exact sequence associated
to a short exact sequence of right H(C)-modules

0→ N1 → F → N → 0

with projective F . Since the result is true if i = 0, one obtains, by induction on i , that
πY

i (G∗(C,−)) = 0 provided i > 0 and C is a free commutative monoid. Thus the
theorem is true in this case.

Now consider the general case. Let P∗ → C be a free simplicial resolution in the
category of commutative monoids. Then we have

N ⊗H(P∗) � ∼= πY
0(G∗(C, N )).

Thanks to Lemma 3.9, C∗(G∗(P∗, N ))→ G∗(C, N ) is a Y-resolution consisting of
πY∗ -acyclic objects and the result follows.

3.5 Applications

Let C be a commutative monoid, M be a left H(C)-module and N be a right H(C)-
module. For the�-modules G∗(C, N ) and G∗(C,M) one can apply the reach theory of
functor homology developed in [9,12,13]. For example, if one applies the Hochschild
cohomology theory to G∗(C,M), one recovers Leech cohomology [8] H∗(C,M).
On the other hand, D∗-theory is nothing but Grillet cohomology [2–7]. Hence, by
Theorem 1.2 we have the following result.

Corollary 3.11 Let C be a commutative monoid and let M be a left H(C)-module.
If K is a field of characteristic zero, then the Grillet cohomology is a direct summand
of Leech cohomology. In more concrete terms, the Leech cohomology H∗(C,M) has
a decompostion:

Hn(C,M) ∼=
n⊕

i=1

Hn
(i)(C,M), n > 0,

such that Hn
(1)(C,M) ∼= Dn−1(C,M).

Of course we can also apply the Hochschild homology theory to G∗(C, N ). The
corresponding theory should be considered as a dual of Leech cohomology and hence
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we will call them Leech homology and denote it by H∗(C, N ). It should be made clear
that H∗(C,−) and H∗(C,−) have different domain categories.

If one applies Harrison theories to�-modules G∗(C, N ) and G∗(C,M), one obtains
the groups Harr∗(C, N ) and Harr∗(C,M). For example, Harr∗(C,M) is defined
using the following cochain complex C∗Harr (C,M), whose n-dimensional cochains are
functions f which assign to any n-tuple (c1, . . . , cn) ∈ Cn an element f (c1, . . . , cn) ∈
M(c1 . . . cn) such that f is zero on any shuffles. That is, for any integers p1, . . . , pk

such that k ≥ 2 and n = p1 + · · · + pk one has

∑

σ

sgn(σ ) f (cσ−1(1), . . . , cσ−1(n)) = 0

where σ ∈ �n is running over all (p1, . . . , pk)-shuffles. The coboundary map is given
as in Leech theory:

(d f )(c0, . . . , cn) = c0∗ f (c1, . . . , cn)

+
∑

i

(−1)i f (c0, . . . , ci ci+1, . . . , cn)

+ (−1)ncn∗ f (c0, . . . , cn−1).

Now Lemma 1.4 tells us that if K is a field of characteristic zero, then we have

D∗(C, N ) = Harr∗+1(C, N ), D∗(C,M) = Harr∗+1(C,M)

In particular, this solves the cocycle problem for Grillet cohomology [6, line-1, p.3425]
in the case of characteristic zero.

Remark In this paper we have restricted ourself to the case when K is a field. This
is because in our main references [12,13,15] there is such a restriction. However,
Theorem 3.5 is valid for an arbitrary commutative ring K . With the same argument: of
course now the role of the linear dual V � = Hom(V, K ) is played by HomK (V, J ),
where J is an injective cogenerator of the category of K -modules.
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