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Abstract We show that methods of functor homology can be applied to monoids.
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The aim of this work is to clarify the relationship between homology theory of
commutative monoids constructed 4 la Quillen [16, 17] and technology of I"-modules
as it was developed in [12-15]. It should be pointed out that the cohomology the-
ory of commutative monoids was first constructed by P.-A. Grillet in the series of
papers [2-7] (see also the recent work [1]). So our results shed light on Grillet theory.
For instance, we relate the commutative monoid (co)homology with André—Quillen
(co)homology of corresponding monoid algebra. For another application we men-
tion the Hodge decomposition for commutative monoid (co)homology which is an
immediate consequence of our main result.

In Sect. 1 we recall the basics of I"-modules and their relation with commutative
algebra (co)homology. In Sect. 2 we construct an analogue of Kéhler differentials for
commutative monoids. In Sect. 3 we construct the homology theory for commuta-
tive monoids and we prove our main result, which states that commutative monoid
homology is a particular case of the functor homology developed in [13].
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1 I'-modules and commutative algebra (co)homology
1.1 Notations

Let K be a field which is fixed in the whole paper. In what follows all vector spaces are
defined over K. Moreover, ® ¢ and Homg are denoted by ® and Hom respectively.
Let Vect be the category of vector spaces. For any set S, we let K[S] be the free vector
space spanned by S. For a vector space V, its dual vector space is denoted by V.

1.2 Generalities on functor categories

Let C be a small category. A left C-module is a covariant functor C — Vect , while
a right C-module is a contravariant functor C°’ — Vect. The category of all left C-
modules is denoted by C-mod, while the category of all right modules is denoted by
mod-C. It is well-known that the categories C-mod and mod-C are abelian categories
with sufficiently many projective and injective objects. For any object ¢ of the category
C one defines the left C-module C¢ and the right C-module C. by

C‘(x) = K[Homc¢(c, x)], and C.(x) = K[Hom¢(x, ¢)].

It follows from the Yoneda lemma that the collection C¢ (resp. Cg), where ¢ € Ob(C)
form a system of projective (resp. injective) (co)generators of the category of left
C-modules.

Our main example is the case when C = I". Where I is the category of finite pointed
sets and pointed maps. For any integer n > 0, we let [r] be the set {0, 1, ..., n} with
basepoint 0. We can and we will assume that objects of I" are sets [n], n > 0. The
category of all left I"-modules is denoted by I'-mod, while the category of all right
modules is denoted by mod-T". Projective generators of the category of left I'-modules
are objects I', n > 0, where

"(X) = K[X"].

1.3 Hochschild and Harrison (co)homology of I"-modules

The definition of these objects are based on the following pointed maps (see [9] and
[10]). For any 0 <i < n + 1, one defines a map

e:n+11—1[n], 0<i<n+1,
by
j j =i
€(y=1j-1 j>i=<n,
0 j=i=n+1.

For a left I'-module F the Hochschild homology H H, (F) is defined as the homol-
ogy of the chain complex
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F(0]) < F([1) < F([2]) <= -+ < F([n]) < ---

where the boundary map 8 : F([n + 11) — F([n]) is given by 3" (=)' F(¢").
Quite similarly for a right I'-module T one defines the Hochschild cohomology
H H*(T) as the cohomology of the following cochain complex

ronp —-71d1D - -—>T{nh) > T(n+1) - ---
where the coboundary map § : T([n]) — T([n + 1]) is given by § =
S (=1 (ED.

We have the following obvious fact.

Lemma 1.1 Let F be a left T-module, then H Hy(F) = F([0]) and
HH;(F) = Coker(d : F([2]) — F([1])).
Similraly, if T is a right T'-module, then HH®(T) = T ([0]) and
HH'(T) =ker(5 : T([1]) - T([2]).

Let X,, be the symmetric group on n letters, it acts as a group of automorphisms on
[n]. For integers p1,---, px > 1, withk > 2andn = p; + - - - + pi, we set

Shp, ...pp = ngn(a)o € 7Z[%,]

where o € X, is running over all (p1, - - -, px)-shuffles. Each sh, ... ;, induces a
map T ([n]) — T ([n]), called the shuffle map. Let us denote by Tn the intersection
of the kernels of all shuffle maps. These groups form a subcomplex of the Hochschild
cochain complex, called Harrison cochain complex [9]. The groups Harr"(T),n > 0
are defined as the cohomology of the Harrison cochain complex.

By duality we have also Harrison homology of left I"-module.

The following is a theorem due to Loday [9]. For alternative approach see [12].

Theorem 1.2 If K is a field of characteristic zero, then for any left I'-module F and
right T'-module T there exist the so called Hodge decompositions:

n
HH,(F) = EDHH,E“F), n>o0,
i=1

n
HH"(T) = @ HH}\(T), n>0,
i=1

for suitable defined HH,Ei)(F) and HH('l’.)(T). Moreover, fori = 1 one has

Harr,(F) = HH" (F), Harr"(T) = HH}(T), n > 0.
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1.4 André—Quillen (co)homology of I"-modules

We recall some material from [13].

A partition A = (A1, - - - , Ar) is a sequence of natural numbers A1 > - -+ > A > 1.
The sum of the partition A is given by s(X) := A1 + - - - 4+ Ak, while the group X (})
is a product of the corresponding symmetric groups

YA) =, X X Xy,

which is identified with the Young subgroup of X). Let us observe that X, =
Autr([n]) and therefore ¥, acts on F'([n]) and T ([n]) for any left ["-module F and
right I'-module 7.

Let

00— F—>F—F—>0

be an exact sequence of left I'-modules. It is called a YV-exact sequence if for any
partition A with s(A) = n the induced map

F(n)** — By (n)*?

is surjective. The class of )-exact sequences is proper in the sense of MacLane [11].

A left I'-module F is Y-projective, if the functor Homp (F, —) takes )-exact
sequences to exact sequences. For example S"T"! is a )-projective [13]. Here S”
denotes the n-th symmetric power. According to [13] for any left I"-module F' there
is a YV-exact sequence

0> F —Fp—>F—>0

with )-projective Fy. Hence one can take relative left derived functors of the functor
HH; :T" —mod — K-mod. The values of these derived functors on a left I'-module
F is denoted by 7Y (F). So by the definition the functors Y, are uniquely defined
(up to isomorphism) by the following properties

Lemma 1.3 There exist a unique family of functors 7Y, :T—mod — K —mod,n >
0, such that

(i) 7Yo(F) = HH(F).
(ii) For any Y-exact sequence

0—->F —>F—>F,—>0
there is a long exact sequence

NN j'[yn+](F2) — ﬂyn(Fl) — > JTyO(Fl)
N JTy()(F) — JTy()(Fz) — 0.

(iii) The functor 7Y, vanishes on Y-projective objects, n > 1.
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By a dual argument for any right I'-module 7 one obtains K-modules 7y,*(7T'). In
more detail, let

0O—-T —-T—->T—0

be an exact sequence of right I'-modules. It is called a V-exact sequence if for any
partition A with s(A) = n the induced map

Ti([nDsoy — Ta(InDxspy

is injective. The class of Y-exact sequences of right I'-modules is also proper. A right
I'-module T is Y-injective if the functor Homp(—, T) takes )-exact sequences to
exact sequences. By an argument dual to one given in [13] for any right I"-module T
there is a Y-exact sequence

0O0—->T—>Ty—>T —0

with V-injective Tp. Hence one can take relative left derived functors of the functor
HH':mod—T — K-mod. The values of these derived functors on a right I'-module
T are denoted by 7y,*(T).

Lemma 1.4 [f K is a field of characteristic zero, then for any left I' module F and
right T'-module T one has isomorphisms

ny*(F) = Harre—1(F), ny*(T) = Harr*(T).
Proof In characteristic zero, any short exact sequence of I'-modules is also a )-exact
sequences. Thus, 7Y (F) = Tor*F (t, F) and my*(T) = Extji(t, T), where 1 is the

same right I'-module as in [12,13, 15]. Now, the result follows from [12, Proposition
2.2] and [12, Corollary 2.9]. O

1.5 I'-modules and commutative algebras

The classical Hochschild cohomology (as well as the Harrison or Andre—Quillen
(co)homology) of commutative algebras is a particular case of the cohomology of
I'-modules [9,12,13]. We recall the corresponding results. Let R be a commutative

K -algebra and A be an R-module. We have a left and right I'-modules £, (R, A) and
L*(R, A) defined on objects by

L*(R, A)([n]) := Hom(R®", A), Li(R, A)([n]) := R®" ® A.
For a pointed map f : [n] — [m], the action of L*(R, A) on f is given by

W) a1 ® - ®an) =boy (b1 ® -~ @ by)
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while for the functor L (R, A) one has:
f*(ao®~--®an)=b0®-~-®bm,

where b; = Hf(i):j ai, j=0,...,n.
Then one has [9]:

HH.(L.(R,A) = HH.(R,A), HH*(L*(R,A)) = HH*(R, A)
Harr,(Ls«(R, A)) = Harr, (R, A), Harr(L*(R, A)) = Harr™ (R, A),

where HH,(R, A) and Harry(R, A) (resp. HH*(R, A), Harr*(R, A) ) are the
Hochschild and Harrison (co)homology of R with coefficients in A.

By [13] asimilar resultis also true for André—Quillen (co)homology of commutative
rings. In order to state this result, let us first recall the definition of André—Quillen
(co)homology [17].

Let SCA be category of simplicial commutative K-algebras and let SS be the
category of simplicial sets and let U : SCA — SS be a forgetful functor. According
to [16] there is a unique closed model category structure on the category SCA such
that a morphism f : X, — Y, of SCA is weak equivalence (resp. fibration) if U (f)
is a weak equivalence (resp. fibration) of simplicial sets. A simplicial commutative
K -algebra X is called free if each X, is a free commutative K -algebra with a base S,,,
such that degeneracy operators s; : X, — X;+1 maps Sy, to S,+1,0 < i < n. Thanks
to [16] any free simplicial commutative K -algebra is cofibrant and any cofibrant object
is a retract of a free simplicial commutative K -algebra.

We let C*(V*) be the cochain complex associated to a cosimplicial K -module V*.
Let R be acommutative K -algebra and let A be an R-module. Then the André—Quillen
cohomology of R with coefficients in A is defined by (see [17]):

D*(R, A) := H*(C*(Der (P, A))),

where P, — R is a cofibrant replacement of the K -algebra R considered as a constant
simplicial K -algebra and Der denotes the K-module of all K-derivations.
The André—Quillen homology of R with coefficients in A is defined by

D.(R, A) := Hy(C+(A ®p, p)).

where Q}Q is the Kihler differentials of a commutative K -algebra R.
The main result of [13] claims that there are natural isomorphisms

7Y (Li(R, A)) = Dy(R, A), my*(L*(R, A)) = D*(R, A).
2 The category H(C) associated to a commutative monoid C

2.1 Definition

Let C be a commutative monoid. Define the category H(C) as follows. Objects of
‘H(C) are elements of C. A morphism from an element @ € C to an element b is a pair
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(c, a) of elements of C such that b = ca. To simplify notations we write a 5 ac for
a morphism (a,c) :a - b=ac.Ifa 5 acand ac i) acd are morphisms in H(C),

then the composite of these morphisms in H(C) is a <, acd.

It is clear that 1 € C is an initial object of H(C).

According to Sect. 1.2 a left H(C)-module is a covariant functor H(C) — Vect,
similarly a right H(C)-module is a contravariant functor H(C)°”? — Vect. We let
H(C)-mod be the category of left H(C)-modules, while mod-H(C) denotes the cat-
egory of right H(C)-modules. If M is a left H(C)-module, then the value of M on
the element a € C (considered as object of H(C)) is denoted by M (a). Moreover if
a,b,c € C and b = ca, then we have an induced map ¢, : M(a) — M (b), with
obvious properties 1, = Id and (c1¢2)« = c14C24.

Quite similarly, if N is a right H(C)-module, then the value of N on the element
a € C is denoted by N(a). Moreover if a,b,c € C and b = ca, then we have an
induced map c* : N(b) — N(a), withobvious properties 1* = Idand (c;c2)* = ¢;cj.

The categories H(C)-mod and mod-H(C) are abelian categories with enough pro-
jective and injective objects. For any element a of C we let C* and C, be respectively
the left and right H(C)-modules defined by

C'0)=K[(x:a)l= €P K. and Cu(x)=Kl@:x)]= P K.

ce(x:a) ce(a:x)

Here for elements a,b € C we let (b : a) be the set of all elements ¢ € C such
that b = ac. By Sect. 1.2 left H(C)-modules C%, a € C form a family of projective
generators of the category H(C)-mod. Similarly C,,a € C form a family of projective
generators of the category mod-H(C) and the modules c§, a € C form a family of
injective cogenerators of H(C)-mod.

Let N be aright H(C)-module and M be a left H(C)-module. We let N ®7¢(c) M be
the vector space generated by elements of the form x ® y, where x € N(a),y € M(a),
a € C. These elements are subject to the following relations

1 +x)®@y=x1®y+x2Qy,
X@1+y2)=x®y1+x®y,
kx®y =xQ®ky,
@) ®y =2®cx(y).

Herek € K,c € C, x,x1,x2 € N(a), y, y1, y2 € M(a), z € Ncq. Then one has

N ®7—[(C) Ca = N(Cl), Ca ®H(C) M = M(a)
If f: C — C’is a homomorphism of monoids, then f induces a functor H(f) :
H(C) — H(C") in an obvious way. Thus for any left H(C’)-module M one has a left
H(C)-module f*(M), which is given by

M) @) = M(f (@)
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In this way one obtains a functor f* from the category of (left or right) modules over
H(C') to the category of modules over H(C).

2.2 K[C]-modules and H(C)-modules

We let K[C] be the monoid algebra of the monoid C. Any K[C]-module A gives rise
to the left H(C)-module j*(A) which is defined by

JF(A)a)=A
and for b = ca, the induced morphisms
A=j*(A)a) > j*(A)b) = A
is simply the multiplication by c.

If M is a left H(C)-module, we let j.(M) be the following K[C] module. As a
K-module one has

Js(M) = P M),

xeC

The action of C is defined as follows: for x € C,a € M(x) and ¢ € C one has

cix(a) = icx(cx(a)).

Here i, is the canonical inclusion M (x) — j.(M),x € C.
Lemma 2.1 The functor j, is a left adjoint functor to j*.

Proof For a left H(C)-module M and a left K[C]-module A, an element
& € Homyyc)(M, j*(A))

is given by the family of K-module homomorphisms &, : M(a) — A, a € A such
that for any ¢ € C the following

M(a) > A

M (ac) g—> A

is a commutative diagram. The homomorphisms &,, a € C, defines a homomorphism
of K-modules

E:jM) =P M@ — A

aeC
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which clearly is a K[M]-homomorphism. So, & > é gives rise to a homomorphism
Homgyc) (M, j*(A)) — Homgc)(j.(M), A)

which is obviously an isomorphism. O

2.3 Derivations, differentials and (co)homology in the theory of commutative
algebras

Let C be a commutative monoid and let M be a left H(C)-module. A derivation
8 : C — M of C with values in M is a function which assigns to each elementa € C
an element 8(a) € M (a), such that

§(ab) = a«(3(b)) + b«(8(a)).
The abelian group of all derivations of C with values in M is denoted by Der(C, M).

We claim that there exist a universal derivation. In fact we construct a left H(C)-

module ¢, called differentials of a monoid C. It is a left H(C)-module generated by
symbols da € Q¢ (a) one for every element a € C, subject to relations

d(ab) = ax(d(b)) + bx(d(a))
for every a and b € C. It follows from the construction that a > da is a derivation,
which is clearly universal one, in the sense that for any derivation § : C —, M there is
a unique homomorphism of H(C)-modules §* : Q¢ — M such that §(a) = §*(da).
Thus for any left H(C)-module M one has a canonical isomorphism

Der(C, M) = HOI’I’l'H(C) (e, M).

Lemma 2.2 One has an isomorphism of K [C]-modules

J«(Qc) = Qe

Here j, : H(C) — mod — K|[C]-mod is the functor constructed in Sect. 2.2 and
Q}([C] is the Kdhler differentials of the K -algebra K[C].

Proof Let A be a K[C]-module. Then we have
Der(C, j*(A)) = Homyc)(Rc. j*(A)) = Homk(c)(j+(), A).
On the other hand
Der(C, j*(A)) = Der(K[C], A) = Homg(c)(Q ). A)

and the result follows from the Yoneda lemma. O

@ Springer



R. Kurdiani, T. Pirashvili

2.4 Thecase C = N

If C is the free abelian monoid with a generator ¢, then a left H(C)-module is nothing
but a diagram of vector spaces

M=MyS> M5 MmS M)
In particular the projective object C" corresponds to the diagram
050> --505K5KS. ..

where the first nontrivial term appears at the place n.
Quite similarly a right H(C)-module is nothing but a diagram of vector spaces

N=(--5 N5 N5 NS Ny
In particular the projective object C,, corresponds to the diagram
1 1 1
o >0->0->K—>K—>---—>K

where the first nontrivial term appears at the place n.
One easily observes that for any left H(C)-module M one has an isomorphism

Der(C, M) = M,

which is given by § — 8(¢). This follows from the fact that §(¢") = nt"~'8(r). Thus
Q=C=(0>KS>KSKS..

2.5 Product of two monoids
Let C be a product of two monoids: C = Cy x Cz. Then H(C) = H(Cy) x H(C»).
Assume M| and M, are (say left) H(C1) and H(C>)-modules respectively. Then one
can form a H(C)-module M| X M, as follows:
My X M (xq, x2) = Mi(x1) @ Ma(x2).
Lemma 2.3 For any elements ¢y € C and co € Cy, one has
clee) — ooy ce

and

Cierne) = Cey X Ce,.
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Proof By definition one has

CIRCe () =CaNRCm) [ @ k|| @

a1€Cr;aic1=x1 areCoriarcr=x2

= D «
(ar,az)(cr,c2)=(x1,x2)

= 1 (x1, xp).

Similarly for the second isomorphism. O

We have homomorphisms
11:C1 = C, tlcy)) =(c1, 1), 10:Cr— C, t(ca) =(,2).
For any left H(C)-module M we set
MY =), MP =5(M).
Lemma 2.4 For any left H(C)-module M one has
Der(C, M) = Der(C;, MV) @ Der(C;, M?).

Proof This easily follows from the fact (c1, ¢2) = (c1, 1)(1, ¢2). O

We also have projections 71 : C — Cj and mp : C — C», given respectively by
mi(cr, ) = ¢, i =1.2.

Lemma 2.5 For any left H(C;)-module X;, i = 1,2 and any left H(C)-module M,
one has isomorphisms

HomH(c)(nl*Xl, M) = HomH(Cl)(Xl, M(l))
and
HomH(C)(T[;XL M) = HomH(Cz)(XZ, M(z)),

Proof Let n € Homyyc)(mw{ X1, M). Thus 7 is a collection of homomorphisms of
K-modules

Nar,a) * Xay = May,a)

@ Springer



R. Kurdiani, T. Pirashvili

such that for any elements c; € Cq, ca € C; the following diagram commutes

May.ap)
Xay > May,a3)

Cl*l \L(CI’CZ)*

My ,aze2)

77(a|c1,0202)

it follows that (4, a = (1, az)« 0o n(ay,1y. It is clear that the family of homomorphisms
Na,1, a1 € Ci defines the morphism 71 € Homyy ¢, (X1, MDY and the previous
equality shows that n > 7 is really a bijection. O

Corollary 2.6 If C = C| x C», then

Qc =77 Qc, ® 75,
where w; : C — Cy, i = 1,2 is the canonical projection.
Proof For any H(C)-module M one has

Homsc)(Rc, M) = Der(C, M)
= Der(Ci, MV) @ Der(C,, M?)
= Homyc) (¢, MYy @ Homyy(c,)(Rc,, M)
= Homy ) (r{ Qc, . M) & Homyy oy (5 Qc,, M)
= HomH(C)(nf‘ch D JT;QCT M)

and the result follows from the Yoneda lemma. O

3 Commutative monoid (co)homology and I'-modules
3.1 I'-modules related to monoids

Let C be a commutative monoid and let N be a right H(C)-module. Define left I'-
module G, (C, N) as follows. On objects it is given by

G.(C.N)(n)= € N ...a.

(ai,--.an)eC"

In order, to extend the definition on morphism, we let
Yay,....a) + N(ay...ay) — G*(Ca N)([n])
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be the canonical inclusion. Let f : [n] — [m] be a pointed map. Then the homomor-
phism

fi : Gu(C, N)([n]) — Gi(C, N)(Im])
is defined by

Sel@ar,an) (X)) = Ly, b)) ((B0) £ (X)),

where x € N(a; ---ay) and

bj= Ha,’, j:O,...,n.
f=j

Here we used the convention that by = 1 provided f —1op = {0}.
Quite similarly, let M be a left H(C)-module. Define a right I'-module G*(C, M)
as follows. On objects it is given by

GC.mnn= [ Ma...an

(ar,-,an)eC"

Thus n € G(C, M)([n]) is a function which assigns to any n-tuple of elements
(ai,...,ay) of C an element n(ay,...,a,) € My, 4,  Let f : [n] — [m] be a
pointed map and & € G(C, M)([m]). Then the function f*(&) € G(C, M)([n]) is
given by

@) ar, ... an) = bou (b1, ..., by)).

Lemma 3.1 Let C = N be a free commutative monoid with a generator t, and let C,
be the standard projective right H(C)-module, n > 0, see Sect. 2.4. Then one has an
isomorphism of left I'-modules

n
G (C,Cy) = @ skor!
k=0

In particular, G (C, Cy) is Y-projective.

Proof Since I'' ([m]) is a free K-module spanned on xi, - - - , x,,, it follows that S¥ o
I''([m)) is a free K-module spanned by all monomials of degree k on the variables
X1, -+, Xm. On the other hand we have

G.C.Caimh=H P k.
k=0 ni+...4+n,=k

To see the expected isomorphism, it is enough to assign to a basis element of

: ni nm
®n1+~-+nm=k K the monomial x| ... x,". O
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Lemma 3.2 Let C = C; x Ca be product of two monoids and N; be right H(C;)
modules, i = 1, 2. Then one has

G*(Cs Nl IE N2) = G*(C17 Nl) ® G*(CL N2)

The proof is straightforward.

Corollary 3.3 Let C be a finitely generated free commutative monoid and let N be
a projective object in the category of right H(C)-modules. Then G,(C, N) is a Y-
projective left I'-module.

Proof Since, any projective object is a retract of a direct sum of standard projective
modules Cy, it is enough to restrict ourself with the case when N = C,.. Assume
C = NF. We will work by induction on k. If k = 1, then the result was already
established, see Lemma 3.1. Rest follows from Lemma 2.4 and Lemma 3.2 and the
fact that tensor product of two )-projective objects is )-projective see [13]. O

3.2 Homology and cohomology of commutative monoids

Let CM be the category of all commutative monoids and let SCM be the category of
all simplicial commutative monoids. There is a forgetful functor U’ : SCM — SS. By
[16] there is a unique closed model category structure on the category SCM such that
a morphism f : X, — Y, of SCM is a weak equivalence (resp. fibration) if U’(f)
is a weak equivalence (resp. fibration) of simplicial sets. A simplicial commutative
monoid X is called free if each X, is a free commutative monoid with a base Y,,, such
that degeneracy operators s; : X, — Xpu+1 maps Yy, to Yy41, 0 < i < n. According
to [16] any free simplicial commutative monoid is cofibrant and any cofibrant object
is a retract of a free simplicial commutative monoid.

If C’ — C is a morphism of commutative monoids then it gives rise to a functor
H(C") — H(C), which allows us to consider any left or right H(C)-module as a
module over H(C’). In particular if P, — C is an augmented simplicial monoid and
M is aleft H(C)-module, one can considered M as a left H (P )-module, for all k > 0.
The same holds for right H(C)-modules.

Let M be a left H(C)-module. Then the Grillet cohomology of C with coefficients
in M is defined by

D*(C, M) := H*(C*(Der(Px, M))),
where P, — C is a cofibrant replacement of the monoid C considered as a constant
simplicial monoid.
Let N be a right H(C)-module. Then the Grillet homology of C with coefficients
in N is defined by
D.(C, N) := H.(Cx(Rp, ®n(p,) N))),

where P, — C is a cofibrant replacement of the monoid C considered as a constant
simplicial monoid.
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The definition of the cohomology essentially goes back to Grillet (see [2-5]), but
the definition of the Grillet homology is new.

By comparing the definition we obtain the following basic fact, which is missing
in (see [2-5]).

Lemma 3.4 Let C be a commutative monoid and A be a K[C|-module. Then one has
the isomorphisms:

D*(C, j*(A)) = D*(K[C], A),

D.«(C, j*(A)) = D«(K[C], A).
Proof The isomorphism in the dimension zero is the obvios one, compare with Lemma
2.2. Rest follows from the fact that if P, — C is a cofibrant replacement of C in the

category SCM, then K[P,] — K|[C] is a cofibration replacement of K[C] in the
category SCA. O

3.3 The main Theorem

Now we are in the situation to state our main theorem, which relates Grillet
(co)homology of the monoid M with the Andre—Quillen (co)homology of the I'-
modules G, (C, N) and G*(C, M).

Theorem 3.5 Let C be a commutative monoid, M be a left and N be a right H(C)-
modules. Then one has the following isomorphisms
D*(C, M) = my*(G*(C, M)),
D.(C, N) = ¥(Gw(C, N)).
The proof is based on several steps. The idea is to reduce the theorem to the case

when M is a free commutative monoid with one generator. In this case, the theorem
is proved using direct computation. We need some lemmas.

Lemma 3.6 Let C be a commutative monoid, N be a right H(C)-module. Then one
has a natural isomorphism

HH(G4«(C,N)) = N @) Qc-

Proof Thanks to Lemma 1.1 one has H H| (G, (C, N) is isomorphic to the cokernel
of the map

9: P N@b) -~ PN

a,beC aeC

Asusual, weleti, : N(a) — @aec N (a) be the canonical inclusion. For an element
x € N(a), the class of i, (x) in HH|(G4(C, N)) is denoted by cl(a; x). Then

cl(a; x) — x®da
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defines the isomorphism H H1(G(C, N)) = N ®7(c) Qc. O

Lemma 3.7 Let C be a commutative monoid and let
0> N —>N-—>N,—0
be a short exact sequence of right H(C)-modules, then
0 — G4(C,N)) - G4«(C,N) - G.(C,N>) - 0

is a YV-exact sequence of left I'-modules.

Proof Forapartition A of n and a set P we denote by P* the set of orbits of the cartesian
product P” under the action of the group X (1) C %,. In particular we have a set C*.
For any element p € C* we put N, := N(ay - - - a), where (ay, - - - , ap) € . Since

G.(C. M) ()™ = P N,
neC*
the result follows. O
By the same argument we have also the following.
Lemma 3.8 Ler f : D — C be a surjective homomorphism of commutative monoids,
then for any right H(C)-module N the induced morphism of left I'-modules
G«(D, N) - G«(C, N)

is a YV-epimorphism.
Proof In the notation of the proof of Lemma 3.7 the map D* — C” is surjective and
the result follows. O

Lemma 3.9 Lete : X, — C beasimplicial resolution in the category of commutative
monoids and N be a right H(C)-module. Then the associated chain complexes of the
simplicial left T-module G, (X4, N) — G4 (C, N) is a Y—resolution.

Proof Since X — C* is a weak equivalence the result follows. O
Lemma 3.10 Let C be a free commutative monoid, N be a projective right H(C)-
module and M be an injective left H(C)-module. Then for any i > 0 one has

7Y (G.(C, N)) =0, 75,(G*(C, M)) = 0.

Proof Tt suffices to consider the cases when N = C. and M = C,f , for an element ¢ €
C. This is because the family (C¢).cc (resp. (CEt )cec) 1s a family of projective (resp.
injective) (co)generators. Since nSJ(G*(C, N%) = (niy (G«(C, N)))4, it suffices to
consider only niy (G4 (C, N)). Since homology commutes with direct limits, one can
assume that C is finitely generated. Then by Lemma 3.2 we can reduce to the case
when C has one generator. In this case the result follows from Lemma 3.1. O
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3.4 Proof of Theorem 3.5

We give proof only for homology. A dual argument works for cohomology. Thanks
to Lemma 3.6, the theorem is true in dimension i = 0. Next, consider the case
when C is a free monoid. In this case D;(C, —) = 0, if i > 0. On the other hand,
niy(G*(C, F)) = 0 provided F is projective, thanks to Lemma 3.10. By Lemma 3.7,
the functor 713] (G4(C, —)) assigns the long exact sequence to a short exact sequence
of right H(C)-modules. Therefore, we can consider such an exact sequence associated
to a short exact sequence of right H(C)-modules

O—>N —>F—-N-—=>0

with projective F. Since the result is true if i = 0, one obtains, by induction on i, that
niy (G4(C, —)) = 0 provided i > 0 and C is a free commutative monoid. Thus the
theorem is true in this case.

Now consider the general case. Let P, — C be a free simplicial resolution in the
category of commutative monoids. Then we have

N ®np.) @ = mY0(Gi(C. N)).

Thanks to Lemma 3.9, C.(G4(Px, N)) — G, (C, N) is a Y-resolution consisting of
rrg} -acyclic objects and the result follows.

3.5 Applications

Let C be a commutative monoid, M be a left H(C)-module and N be a right H(C)-
module. For the '-modules G (C, N) and G*(C, M) one can apply the reach theory of
functor homology developed in [9,12,13]. For example, if one applies the Hochschild
cohomology theory to G*(C, M), one recovers Leech cohomology [8] H*(C, M).
On the other hand, D*-theory is nothing but Grillet cohomology [2-7]. Hence, by
Theorem 1.2 we have the following result.

Corollary 3.11 Let C be a commutative monoid and let M be a left H(C)-module.
If K is a field of characteristic zero, then the Grillet cohomology is a direct summand
of Leech cohomology. In more concrete terms, the Leech cohomology H*(C, M) has
a decompostion:

n
H™(C, M) =P H}\(C. M), n>0,

i=I
such that Hl\ (C, M) = D, M).

Of course we can also apply the Hochschild homology theory to G (C, N). The
corresponding theory should be considered as a dual of Leech cohomology and hence
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we will call them Leech homology and denote it by H,.(C, N). It should be made clear
that H,(C, —) and H*(C, —) have different domain categories.

If one applies Harrison theories to I'-modules G, (C, N) and G*(C, M), one obtains
the groups Harr,(C, N) and Harr*(C, M). For example, Harr*(C, M) is defined
using the following cochain complex C%,  (C, M), whose n-dimensional cochains are

Harr
functions f which assign to any n-tuple (cy, ..., ¢;) € C"anelement f(cq,...,cy) €
M(cq ...cy) such that f is zero on any shuffles. That is, for any integers py, ..., pk

such that k > 2 and n = p; + - - - + pi one has

> 89N(0) f (Co-1(1)s -+ Comigny) =0

where 0 € X, is running over all (p1, . .., px)-shuffles. The coboundary map is given
as in Leech theory:

df)(co,...,cn) =cosf(cly. . cn)
+Z(—1)if(co,...,cici+1,...,cn)

+ (_l)ncn*f(COv ce, Cp—1).
Now Lemma 1.4 tells us that if K is a field of characteristic zero, then we have
D.(C,N) = Harr41(C,N), D*(C,M)= Harr**'(C, M)

In particular, this solves the cocycle problem for Grillet cohomology [6, line-1, p.3425]
in the case of characteristic zero.

Remark In this paper we have restricted ourself to the case when K is a field. This
is because in our main references [12,13,15] there is such a restriction. However,
Theorem 3.5 is valid for an arbitrary commutative ring K. With the same argument: of
course now the role of the linear dual V* = Hom(V, K) is played by Homg (V, J),
where J is an injective cogenerator of the category of K-modules.
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