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FRONTISPIECE The topological expression of
the main axiom of a Frobenius algebra. This
figure illustrates the content of the main theorem,
and captures the whole spirit of the book.
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Preface

The text centres around notions of Frobenius structure which in recent years
have drawn some attention in topology, physics, algebra, and computer sci-
ence. In topology the structure arises in the category of 2-dimensional oriented
cobordisms (and their linear representations, which are 2-dimensional topolog-
ical quantum field theories) – this is the subject of the first chapter. The main
result here (due to Abrams [1]) is a description in terms of generators and
relations of the monoidal category 2Cob . In algebra, the structure manifests
itself simply as Frobenius algebras, which are treated carefully in Chapter 2.
The main result here is a characterisation of Frobenius algebras in terms of
comultiplication which goes back to Lawvere [32] and was rediscovered by
Quinn [43] and Abrams [1]. The main result of these notes is that these two
categories are equivalent: the category of 2-dimensional topological quantum
field theories and the category of commutative Frobenius algebras. This result
is due to Dijkgraaf [16], further details of the proof having been provided by
Quinn [43], Dubrovin [19], and Abrams [1]. The notions from category theory
needed in order to express this rigorously (monoidal categories and their linear
representations) are developed from an elementary level in Chapter 3. The cat-
egorical viewpoint allows us to extract the essence of what is going on in the
first two chapters, and prove a natural generalisation of the theorem. To arrive
at this insight, we carefully review the classical fact that the simplex category
� is the free monoidal category on a monoid. (This means in particular that
there is an equivalence of categories between the category of algebras and the
category of ‘linear representations’ of �.) Now the notion of a Frobenius ob-
ject in a monoidal category is introduced, and the promised generalisation of
the theorem (main result of Chapter 3) states that 2Cob is the free symmetric
monoidal category on a commutative Frobenius object.

For more details on the mathematical content, see the Introduction.

vii



viii Preface

The target. The book is based on notes prepared for an intensive two-week
mini-course for advanced undergraduate students, given in the UFPE Summer
School, Recife, Brazil, in January 2002. The prerequisites are modest: the stu-
dents of the mini-course were expected to have followed these three standard
courses taught at Brazilian universities: one on differential topology, one on
algebraic structures (groups and rings) and one second course in linear al-
gebra. From topology we need just some familiarity with the basic notions
of differentiable manifolds; from algebra we need basic notions of rings and
ideals, groups and algebras; and first and foremost the reader is expected to
be familiar with tensor products and hom sets. Usually the course algebraic
structures contains an introduction to categories and functors, but not enough
to get acquainted with the categorical way of thinking and appreciate it; the
exposition in this text is meant to take this into account. The basic definitions
are given in an appendix, and the more specialised notions are introduced with
patience and details, and with many examples – and hopefully the interplay
between topology and algebra will provide the appreciation of the categorical
viewpoint.

In a wider context these notes are targeted at undergraduate students with a
similar background, as well as graduate students of all areas of mathematics.
Experienced mathematicians and experts in the field will sometimes be bored
by the amount of detail presented, but it is my hope the drawings will keep
them awake.

The aim. At an immediate level, the aim of these notes is simply to expose
some delightful and not very well known mathematics where a lot of figures
can be drawn: a quite elementary and very nice interaction between topology
and algebra – and rather different in flavour from what one learns in a course
in algebraic topology. On a deeper level, the aim is to convey an impression of
unity in mathematics, an aspect which is often hidden from students until later
in their mathematical apprenticeship. Finally, perhaps the most important aim
is to use this as motivation for category theory, and specifically to serve as an
introduction to monoidal categories.

Admittedly, the main theorem is not a particularly useful tool that the
students will draw upon again and again throughout their mathematical ca-
reer, and one could argue that the time would be better spent on a course on
group representations or distributions, for instance. But after all, this is a sum-
mer school (and this is Brazil!): maximising the throughput is not our main
concern – the wonderful relaxed atmosphere I know from previous summer
schools in Recife is much more important – I hope the students when they go
to the beach in the weekend will make drawings of 2-dimensional cobordisms
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in the sand! (I think they would not take orthogonality relations or Fourier
transforms with them to the beach. . . )

What the lectures are meant to give the students are rather some techniques
and viewpoints, and in the end this categorical perspective reduces the main
theorem to a special case of general principles. A lot of emphasis is placed
on universal properties, symmetry, distinction between structure and property,
distinction between identity and natural isomorphism, the interplay between
graphical and algebraic approaches to mathematics – as well as reflection on
the nature of the most basic operations of mathematics: multiplication and ad-
dition. Getting acquainted with such categorical viewpoints in mathematics is
certainly a good investment.

Finally, to be more concrete, the techniques learned in this course should
constitute a good primer for going into quantum groups or knot theory.

The source – acknowledgements. The idea of these notes originated in a
workshop I led at KTH, Stockholm, in 2000, whose first part was devoted
to understanding the paper of Abrams [1] (corresponding more or less to
Chapters 1 and 2 of this text). I am thankful for the contributions of the core
participants of the workshop: Carel Faber, Helge Måkestad, Mats Boij, and
Michael Shapiro, and in particular to Dan Laksov, for many fruitful discus-
sions about Frobenius algebras.

The more categorical viewpoint of Chapter 3 was influenced by the people
I work with here in Nice; I am indebted in particular to André Hirschowitz
and Bertrand Toën. I have also benefited from discussions and email cor-
respondence with Arnfinn Laudal, Göran Fors, Jan Gorski, Jean-Louis
Cathélineau, John Baez, and Pedro Ontaneda, all of whom are thanked. I
am particularly indebted to Anders Kock, Peter Johnson, and Tom Leinster
for many discussions and helpful emails, and for carefully reading preliminary
versions of the manuscript, pointing out grim errors, annoying inaccuracies,
and misprints.

Israel Vainsencher, Joaquim Roé, Ramón Mendoza, and Sérgio Santa
Cruz also picked up some misprints – thanks. My big sorrow about these notes
is that I do not understand the physics behind it all, in spite of a great effort by
José Mourão to explain it to me – I am grateful to him for his patience.

During the redaction of these notes I have reminisced about maths classes
in primary school, and some of the figures are copied from my very first maths
books. Let me take the opportunity to thank Marion Kuhlmann and Jørgen
Skaftved for the mathematics they taught me when I was a child.

During my work with this subject and specifically with these notes, I have
been supported by The National Science Research Council of Denmark,
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The Nordic Science Research Training Academy NorFA, and (currently) a
Marie Curie Fellowship from The European Commission. In neither case
was I supposed to spend so much time with Frobenius algebras and topological
quantum field theories – it is my hope that these notes, as a concrete outcome
of the time spent, do it justice to some extent.

I am indebted to my wife Andrea for her patience and support.

Last but not least, I wish to thank the organisers of the Summer School
in Recife – in particular Letterio Gatto – for inviting me to give this mini-
course, which in addition to being a very dear opportunity to come back to
Recife – Voltei, Recife! foi a saudade que me trouxe pelo braço – has also been
a welcome incentive to work out the details of this material and learn a lot of
mathematics.

Feedback is most welcome. Please point out mathematical errors or mis-
understandings, misleading viewpoints, unnecessary pedantry, or things that
should be better explained; typos, mispellings, bad English, TEX-related
issues. I intend to keep a list of errata on my web site.

The original LATEX source files were prepared in alpha. The figures were coded with the texdraw
package, written by Peter Kabal. The diagrams were set using the diagrams package of Paul Taylor,
except for the curved arrows which were coded by hand.
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General conventions

We consistently write composition of functions (or arrows) from the left to the
right: given functions (or arrows)

X
f−→Y

g−→Z

we denote the composite fg. Similarly, we put the symbol of a function to the
right of its argument, writing for example

f : X −→ Y

x �−→ xf.

xiv



Introduction

In this introduction we briefly explain the words of the title of these notes,
give a sketch of what we are going to do with these notions, and outline the
viewpoint we will take in order to understand the structures. In the course of
this introduction a lot of other words will be used which are probably no more
familiar than those they are meant to explain – but don’t worry: in the main
text, all these words are properly defined and carefully explained . . .

Frobenius algebras. A Frobenius algebra is a finite-dimensional algebra
equipped with a nondegenerate bilinear form compatible with multiplication.
(Chapter 2 is all about Frobenius algebras.) Examples are matrix rings, group
rings, the ring of characters of a representation, and Artinian Gorenstein rings
(which in turn include cohomology rings, local rings of isolated hypersurface
singularities . . . )

In algebra and representation theory such algebras have been studied for a
century, along with various related notions – see Curtis and Reiner [15].

Frobenius structures. During the past decade, Frobenius algebras have shown
up in a variety of topological contexts, in theoretical physics and in computer
science. In physics, the main scenery for Frobenius algebras is that of topo-
logical quantum field theory (TQFT), which in its axiomatisation amounts to a
precise mathematical theory. In computer science, Frobenius algebras arise in
the study of flowcharts, proof nets, circuit diagrams . . .

In any case, the reason Frobenius algebras show up is that this is essentially
a topological structure: it turns out that the axioms for a Frobenius algebra
can be given completely in terms of graphs – or as we shall do, in terms of
topological surfaces.

Frobenius algebras are just algebraic representations of this structure – the
goal of these notes is to make all this precise. We will focus on topological

1



2 Introduction

quantum field theories – and in particular on dimension 2. This is by far the
best picture of Frobenius structures since the topology is explicit, and since
there is no additional structure to complicate things. In fact, the main theorem
of these notes states that there is an equivalence of categories between that of
2-dimensional TQFTs and that of commutative Frobenius algebras.

(There will be no further mention of computer science in these notes.)

Topological quantum field theories. In the axiomatic formulation (due to
Atiyah [5]), an n-dimensional topological quantum field theory is a rule A

which to each closed oriented manifold � (of dimension n− 1) associates a
vector space �A , and to each oriented n-manifold whose boundary is � as-
sociates a vector in �A . This rule is subject to a collection of axioms which
express that topologically equivalent manifolds have isomorphic associated
vector spaces, and that disjoint unions of manifolds go to tensor products of
vector spaces, etc.

Cobordisms. The clearest formulation is in categorical terms. First one de-
fines a category of cobordisms nCob : the objects are closed oriented (n− 1)-
manifolds, and an arrow from � to �′ is an oriented n-manifold M whose
‘in-boundary’ is � and whose ‘out-boundary’ is �′. (The cobordism M is
defined up to diffeomorphism rel the boundary.) The simplest example of a
cobordism is the cylinder � × I over a closed manifold �, say a circle. It is a
cobordism from one copy of � to another.

Here is a drawing of a cobordism from the union of two circles to one circle:

Composition of cobordisms is defined by gluing together the underlying man-
ifolds along common boundary components; the cylinder � × I is the identity
arrow on �. The operation of taking disjoint union of manifolds and cobor-
disms gives this category monoidal structure – more about monoidal categories
later. On the other hand, the category Vectk of vector spaces is monoidal under
tensor products.

Now the axioms amount to saying that a TQFT is a (symmetric) monoidal
functor from nCob to Vectk. This is also called a linear representation of
nCob .

So what does this have to do with Frobenius algebras? Before we come
to the relation between Frobenius algebras and 2-dimensional TQFTs, let us
make a couple of remarks on the motivation for TQFTs.
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Physical interest in TQFTs comes mainly from the observation that TQFTs
possess certain features one expects from a theory of quantum gravity. It serves
as a baby model in which one can do calculations and gain experience before
embarking on the quest for the full-fledged theory, which is expected to be
much more complicated. Roughly, the closed manifolds represent space, while
the cobordisms represent space-time. The associated vector spaces are then
the state spaces, and an operator associated to a space-time is the time-
evolution operator (also called transition amplitude, or Feynman path integral).
That the theory is topological means that the transition amplitudes do not de-
pend on any additional structure on space-time (like Riemannian metric or
curvature), but only on the topology. In particular there is no time-evolution
along cylindrical space-time. That disjoint union goes to tensor product ex-
presses the common principle in quantum mechanics that the state space of
two independent systems is the tensor product of the two state spaces.

(No further explanation of the relation to physics will be given – the author
of these notes recognises he knows nearly nothing of this aspect. The reader is
referred to Dijkgraaf [17] or Barrett [11], for example.)

Mathematical interest in TQFTs stems from the observation that they pro-
duce invariants of closed manifolds: an n-manifold without boundary is a
cobordism from the empty (n− 1)-manifold to itself, and its image under
A is therefore a linear map k → k, i.e. a scalar. It was shown by Witten
how TQFT in dimension 3 is related to invariants of knots and the
Jones polynomial – see Atiyah [6].

The viewpoint of these notes is different however: instead of developing
TQFTs in order to describe and classify manifolds, we work in dimension 2
where a complete classification of surfaces already exists; we then use this
classification to describe TQFTs!

Cobordisms in dimension 2. In dimension 2, ‘everything is known’: since
surfaces are completely classified, one can also describe the cobordism cat-
egory completely. Every cobordism is obtained by composing the following
basic building blocks (each with the in-boundary drawn to the left):

Two connected cobordisms are equivalent if they have the same genus and the
same number of in- and out-boundaries. This gives a bunch of relations, and
a complete description of the monoidal category 2Cob in terms of generators
and relations. Here are two examples of relations that hold in 2Cob :
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= = =

(1)

These equations express that certain surfaces are topologically equivalent rel
the boundary.

Topology of some basic algebraic operations. Some very basic principles are
in play here: ‘creation’, ‘coming together’, ‘splitting up’, ‘annihilation’. These
principles have explicit mathematical manifestations as algebraic operations:

Principle Feynman diagram 2D cobordism Algebraic operation (in a k-algebra A)

merging multiplication A⊗ A → A

creation unit k → A

splitting comultiplication A → A⊗ A

annihilation counit A → k

Note that in the intuitive description there is a notion of time involved which
accounts for the distinction between coming-together and splitting-up – or per-
haps ‘time’ is too fancy a word, but at least there is a notion of start and finish.
Correspondingly, in the algebraic or categorical description the notion of mor-
phism involves a direction: morphisms are arrows, and they have well defined
source and target.

It is an important observation from category theory that many algebraic
structures admit descriptions purely in terms of arrows (instead of referring to
elements) and commutative diagrams (instead of equations among elements).
In particular, this is true for the notion of an algebra: an algebra is a vector
space A equipped with two maps A⊗ A → A and k → A, satisfying the as-
sociativity axiom and the unit axiom. Now according to the above dictionary,
the left-hand relation of Equation (1) is just the topological expression of asso-
ciativity! Put in other words, the associativity equation has topological content:
it expresses the topological equivalence of two surfaces (or two graphs).



Introduction 5

It gives sense to other operations, like merging (or splitting) three particles:
it makes no difference whether we first merge two of them and then merge the
result with the third, or whether we merge the last two with the first. From the
viewpoint of graphs, the basic axiom (equivalent to Equation (1)) is that two
vertices can move past each other:

=

Frobenius algebras. In order to relate this to Frobenius algebras the defini-
tion given in the beginning of this introduction is not the most convenient. It
turns out one can characterise a Frobenius algebra as follows: it is an algebra

(multiplication denoted ) which is simultaneously a coalgebra (comulti-

plication denoted ) with a certain compatibility condition between and

. This compatibility condition is exactly the right-hand relation drawn in
Equation (1). (Note that by the dictionary, this is just a graphical expression
of a precise algebraic requirement.) In fact, the relations that hold in 2Cob
correspond precisely to the axioms of a commutative Frobenius algebra. This
comparison leads to the main theorem:

Theorem. There is an equivalence of categories

2TQFT � cFA,

given by sending a TQFT to its value on the circle (the unique closed connected
1-manifold).

So in this sense, we can say, if we want, that Frobenius algebras are the same
thing as linear representations of 2Cob .

The idea of the proof is this: let A be the image of the circle, under a TQFT
A . Now A sends each of the generators of 2Cob to a linear map between
tensor powers of A, just as tabulated above. The relations which hold in 2Cob
are preserved by A (since A by definition is a monoidal functor) and in its
target category Vect they translate into the axioms for a commutative Frobe-
nius algebra! (Conversely, every commutative Frobenius algebra can be used
to define a 2-dimensional TQFT.)

Monoidal categories. As mentioned, just in order to define the category
TQFT we need the notion of monoidal categories. In fact, monoidal cate-
gories is the best framework to understand all the concepts described above.
The notion of associative multiplication with unit is precisely what the abstract
concept of monoid encodes – and monoids live in monoidal categories.
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The prime example of a monoidal category is the category Vectk of vector
spaces and tensor products, with the ground field as neutral object. In general a
monoidal category is a category equipped with some sort of ‘product’ like⊗ or∐

, satisfying certain properties. This ‘product’ serves as background for defin-
ing the multiplication maps, i.e. defining monoids: a monoid in (Vectk,⊗, k)

is precisely a k-algebra A, since the multiplication map is described as a
k-linear map A⊗ A → A, etc. Another example of a monoid is the circle in
2Cob . . .

The simplex category � and what it means to monoids and algebras.
There is a little monoidal category which bears some similarity with 2Cob :
the simplex category � is roughly the category of finite ordered sets and
order-preserving maps. It is a monoidal category under disjoint union. To
be more precise, the objects of � are n = {0, 1, 2, . . . , n− 1}, one for each
n ∈ N, and the arrows are the maps f : m → n such that i ≤ j ⇒ if ≤ jf .
There are several other descriptions of this important category – one is in
graphical terms, and reveals it as a subcategory of 2Cob . The object 1 is a
monoid in �, and in a sense � is the smallest possible monoidal category
which contains a nontrivial monoid. In fact the following universal property
is shown to hold: every monoid in any monoidal category V is the image
of 1 under a unique monoidal functor � → V. This is to say that � is the
free monoidal category containing a monoid. In particular, k-algebras can be
interpreted as ‘linear representations’ of �.

Observing that � can be described graphically, we see that this result is of
exactly the same type as our main Theorem.

Frobenius objects. Once we have taken the step of abstraction from k-algebras
to monoids in an arbitrary monoidal category, it is straightforward to define the
notion of Frobenius object in a monoidal category: it is an object equipped with
four maps as those listed in the table, and with the compatibility condition ex-
pressed in Equation (1). In certain monoidal categories, called symmetric, it
makes sense to ask whether a monoid or a Frobenius object is commutative,
and of course these notions are defined in such a way that commutative Frobe-
nius objects in Vectk are precisely commutative Frobenius algebras.

Universal Frobenius structure. With these general notions, generalisation of
the Theorem is immediate: all the arguments of the proof do in fact carry
over to the setting of an arbitrary (symmetric) monoidal category, and we find
that 2Cob is the free symmetric monoidal category containing a commuta-
tive Frobenius object. This means that every commutative Frobenius object in
any symmetric monoidal category V is the image of the circle under a unique
symmetric monoidal functor from 2Cob.
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Since the proof of this result is the same as the proof of the original theorem,
this is the natural generality of the statement. The interest in this generality is
that it actually includes many natural examples of TQFTs which could not fit
into the original definition. For example, in our treatment of Frobenius algebras
in Chapter 2 we will see that cohomology rings are Frobenius algebras in a nat-
ural way, but typically they are not commutative but only graded-commutative.
For this reason they cannot support a TQFT in the strict sense. But if instead of
the usual symmetric monoidal category Vect we take for example the category
of graded vector spaces with ‘super-symmetry’ structure, then all cohomology
rings can support a TQFT (of this slightly generalised sort).

It is the good generalised version of the main theorem that makes this clear.
In many sources on TQFTs, the questions of symmetry are swept under the
carpet and the point about ‘super-symmetric’ TQFTs is missed.

In these notes, the whole question of symmetry is given a rather privileged
rôle. The difficult thing about symmetry is to avoid mistaking it for identity!
For example, for the cartesian product × (which is an important example of
a monoidal structure), it is not true that X × Y = Y ×X. What is true is that
there is a natural isomorphism between the two sets (or spaces). Similar obser-
vations are due for disjoint union

∐
, and tensor product⊗. . . While it requires

some pedantry to treat symmetry properly, it is necessary in order to under-
stand the super-symmetric examples just mentioned.

Organisation of these notes. The notes are divided into three chapters each of
which should be read before the others! The first chapter is about topology –
cobordisms and TQFTs; Chapter 2 is about algebra – Frobenius algebras; and
Chapter 3 is mostly category theory. The reader is referred to the Contents for
more details on where to find what.

Although the logical order of the material is not completely linear, hopefully
the order is justified pedagogically: we start with geometry! – the concrete and
palpable – and then we gradually proceed to more abstract subjects (or should
we say: more abstract aspects of our subject), helped by drawings and intuition
provided by the geometry. With the experience gained with these investigations
we get ready to try to understand the abstract structures behind. The ending
is about very abstract concepts and objects with universal properties, but we
can cope with that because we know the underlying geometry – in fact we
show that this very abstract thing with that universal property is precisely the
cobordism category we described so carefully in Chapter 1.

Exercises. Each section ends with a collection of exercises of varying level and
interest. Most of them are really easy, and the reader is encouraged to do them
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all. A few of them are considered less straightforward and have been marked
with a star.

Further reading. My great sorrow about these notes is that I do not understand
the physical background or interpretation of TQFTs. The physically inclined
reader must resort to the existing literature, for example Atiyah’s book [6] or
the notes of Dijkgraaf [17]. I would also like to recommend John Baez’s web
site [8], where a lot of references can be found.

Within the categorical viewpoint, an important approach to Frobenius struc-
tures which has not been touched upon is the 2-categorical viewpoint, in terms
of monads and adjunctions. This has recently been exploited to great depth by
Müger [39]. Again, a pleasant introductory account is given by Baez [8], TWF
174 (and 173).

Last but not least, I warmly recommend the lecture notes of Quinn [43],
which are detailed and go in depth with concrete topological quantum field
theories.



1

Cobordisms and topological quantum
field theories

Summary

In the first section we recall some basic notions of manifolds with boundary
and orientations, and Morse functions. We introduce the slightly nonstandard
notion of in-boundary and out-boundary, which is particularly convenient for
the treatment of cobordisms.

Section 1.2 is devoted to the basic theory of oriented cobordisms. Roughly
a cobordism between two closed (n− 1)-manifolds is an n-manifold whose
boundary is made up of the two (n− 1)-manifolds. We describe what it means
for two cobordisms to be equivalent. Next we introduce the decomposition of
a cobordism, which amounts to cutting up along a closed codimension-1 sub-
manifold, obtaining two cobordisms. Finally we state the axioms for a topo-
logical quantum field theory (TQFT) in the style of Atiyah [5]: it is a way
of associating vector spaces and linear maps to (n− 1)-manifolds and cobor-
disms, respecting decompositions and disjoint union. A special decomposition
of the cylinder shows that a vector space which is image of a TQFT comes
equipped with a nondegenerate bilinear pairing, in a strong sense, which in
particular forces the vector space to be finite dimensional.

In Section 1.3 we assemble the manifolds and cobordisms into a category
nCob . In order to have a well defined composition we must pass to a quotient,
identifying equivalent cobordisms. The identity arrows are the cylinder classes.
Then we start discussing the monoidal structure: disjoint union of cobordisms.
With this terminology we can define a TQFT as a (symmetric) monoidal func-
tor from nCob to Vectk. (The definition and basic properties of monoidal
categories are given in Chapter 3.)

Finally in Section 1.4 we specialise to dimension 2. Here we can give a com-
plete description of 2Cob in terms of generators and relations for a monoidal
category. These results depend on the classification theorem for topological
surfaces.

9
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The notion of cobordism goes back to Pontryagin and Thom [47] in the
1950s. Topological quantum field theories were introduced by Witten [50],
and the mathematical axiomatisation was soon after proposed by Atiyah [5]
(1989). The description of 2Cob in terms of generators and relations was first
given explicitly by Abrams [1] (1995), but the proof is already sketched in
Quinn [43], and most likely it goes further back.

1.1 Geometric preliminaries

The reader is expected to be familiar with the most basic notions of differ-
entiable manifolds, their tangent bundles, smooth maps, and their differentials.
Our main reference will be Hirsch [27]. A more elementary introduction which
emphasises the concepts used here is Wallace [48]. In this section we just col-
lect some crucial notions, establish terminology and notation, and give some
basic examples which we will need later on.

Our manifolds are not assumed to be embedded in Euclidean space; an n-
manifold is merely a topological space M covered by open sets homeomorphic
to R

n. These maps are called coordinate charts, and the collection of all of them
is called an atlas. Smooth means differentiable of class C∞; that is, on overlaps
between two such charts, the coordinate change functions are differentiable
maps of class C∞ (between subsets of R

n). A smooth structure on M is a
maximal smooth atlas. Throughout, manifold will mean smooth manifold, i.e. a
manifold equipped with a smooth structure. All our manifolds will be compact,
but we do not assume them to be connected.

Let us note that we regard the empty set as an n-manifold! – we denote it
∅n. This is justified by the observation that every point of ∅n has a neighbour-
hood homeomorphic to R

n.

Manifolds with boundary

In a usual n-manifold M , every point x has a neighbourhood homeomorphic
to Rn. This means that from x you can move a little bit in any direction. This
is possible either because M ‘curves back and closes up itself’ like a circle,
a sphere, or a torus, or because M is open, like for example the open disc
{x ∈ R2 | |x| < 1}: here the points are not allowed to sit on the boundary, so
no matter how close you are to it you can always come a little bit closer.

In a manifold with boundary the ‘boundary points’ are included, like for ex-
ample the points on the circumference in {x ∈ R

2 | |x| ≤ 1}. For such a point,
there are directions in which it is impossible to move: there is no neighbour-
hood homeomorphic to R

n, so we need a new sort of chart. It is practical
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to require the boundary itself to be a manifold (of dimension n− 1); this is
achieved by allowing half-space charts in the sense of the next paragraph.

Throughout this book there are hundreds of pictures of manifolds with
boundary. Most of them look like tubes – the boundary consists of the ends
of the tubes.

1.1.1 Half-spaces. A half-space is a set of the form

Hn = {x ∈ R
n | x� ≥ 0}

where � : R
n → R is a nonzero linear map. (Recall our general convention

(page xiv): x� means the value of � at x.) (Half-spaces do not exist in dimen-
sion 0, since there are no nonzero linear maps on R

0.)
The topology of Hn is induced from that of R

n. The tangent space of a point
on ∂Hn is a full vector space R

n (not something half!), so it makes sense to
speak of differentiability of functions on Hn.

The boundary of Hn is the nullspace of �:

∂Hn := Null(�) = {x ∈ R
n | x� = 0} � R

n−1.

Note that a point on ∂Hn has no neighbourhood in Hn homeomorphic to an
open set in R

n.

1.1.2 Manifolds with boundary. An n-manifold with boundary is a topologi-
cal space M covered by open sets each of which is homeomorphic to an open
set in Hn. A point x ∈ M is a boundary point if in some coordinate chart it
corresponds to a point on the boundary ∂Hn. Then it will also correspond to
boundary points in every other chart – these points are characterised as having
no neighbourhood homeomorphic to an open set in R

n. The set of all boundary
points is covered by open sets of R

n−1 � ∂Hn ⊂ Hn, and becomes in this way
an (n− 1)-manifold (without boundary), denoted ∂M .

We require smoothness: all coordinate changes must be smooth maps
(between open sets in Hn).

We do not exclude the possibility that the boundary is empty, and in this
way every manifold can be considered a manifold with boundary (except in
dimension 0 where the notion of manifold with boundary is not defined). Note
that every open set in R

n is homeomorphic to an open set in Hn.
By definition, a closed manifold is a compact manifold without boundary.

(Warning: the adjective ‘closed’ has another meaning for intervals. A closed
interval is one which includes its end-points. In particular, a closed interval is
not a closed manifold. Hopefully this will not lead to confusion.)
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In most situations, when we talk about a smooth map f : M → N between
manifolds with boundary we will require it to take the boundary of M to the
boundary of N . However in some cases this is too restrictive: for example, the
inclusion of an interval into a bigger one does not have this property.

1.1.3 Notational convention. For convenience, we consistently denote mani-
folds with boundary by capital Roman letters (typically M), while manifolds
without boundary (and typically in dimension one less) are denoted by capital
Greek letters, like �.

1.1.4 Examples. A point is a closed 0-manifold. More generally, a finite set of
points is a closed 0-manifold.

The unit interval I = [0, 1] ⊂ R1 is a 1-manifold with boundary; the
boundary has two connected components, namely the points 0 and 1. The circle
is a 1-manifold with empty boundary.

The disc {x ∈ R2 | |x| ≤ 1} is a manifold with boundary; the boundary is
the circumference.

A common way to obtain manifolds with boundary is to start with a
manifold (e.g. a sphere), and remove an open subset bounded by a closed
codimension-1 submanifold (e.g. cut away an open disc from the sphere). You
could also cut the manifold in two pieces along a closed codimension-1 sub-
manifold � (e.g. cut the sphere along equator), then the two pieces become
manifolds with boundary – provided � is included in each piece, precisely to
form its boundary.

1.1.5 Example: cylinders. Let � be a manifold without boundary and let I

be a manifold with boundary. Then the product manifold � × I is a manifold
with boundary; the boundary is � × ∂I . If I is a closed interval [a, b] then we
call the product � × I a cylinder over �. The boundary consists of two copies
of � namely �a := � × {a} and �b := � × {b}. The projection � × I → I

is a smooth map of manifolds with boundary (it sends the boundary of � × I

to the boundary of I ):

�a � × I �b

a
I

b

Orientations

We will need to be able to say that some of the boundary components of a
manifold are ‘in’ and some are ‘out’. This notion is defined in 1.1.11, and to
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this end we need the notion of orientation. The technical aspects of orientations
presented in the next couple of paragraphs will not really be needed elsewhere
in the text.

1.1.6 Orientation of a vector space. Let V be a real vector space of finite
dimension. An orientation of V is given by associating a sign to each ordered
basis, in such a way that two ordered bases have the same sign if and only if the
linear transformation taking one to the other has positive determinant. Thus an
orientation is specified completely as soon as one ordered basis has been given
a sign. So there exist precisely two possible orientations of V .

As an example, the standard orientation of R
2 is the one that declares the

standard basis
[(1

0

)
,
(0

1

)]
to be positive – here and on the next couple of pages

we use square brackets to denote ordered bases; after that we will not need the
notion again.

In the special case where V is the trivial vector space {0}, there exists only
one basis, namely the empty set, so an orientation in this case is given simply
by assigning a plus or a minus to this basis – or as we shall put it abusively: an
orientation of V = {0} is given by a sign attributed to V .

A linear map between oriented vector spaces preserves orientation if it takes
every positive basis to a positive basis (and thus automatically takes negative
bases to negative bases). Note that there are no orientation-preserving maps
between ({0},+) and ({0},−).

1.1.7 Oriented manifolds. An orientation of a manifold is a smooth choice
of orientations of each of its tangent spaces. The smoothness condition is to
be understood like this: the differentials of the transition functions (coordinate
changes) should all preserve the orientations.

Not every manifold admits an orientation, the most well known examples
being the Möbius strip and the real projective plane. If a manifold admits an
orientation it is called orientable.

If M is orientable and connected there are exactly two possible orientations.
If an orientable M is disconnected and has k components, then there are 2k

different orientations. In any case, if M is an oriented manifold, we denote by
M the same manifold with the opposite orientation.

1.1.8 Special cases. If M is 0-dimensional, an orientation is given by attribut-
ing a sign to each point. Indeed, if M is a single point, then the tangent space
at this point is the trivial vector space {0}, which has a unique basis (the empty
set): we must give this basis a sign.
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The empty manifold M = ∅ has precisely one orientation. There are no
tangent spaces to orient, and for each of them we must associate a sign to
each of their bases. So altogether we are counting maps from ∅ to {−,+}, and
there is just one such map. (This is in agreement with the count 2k performed
above.)

1.1.9 Orientation of a product. If X and Y are oriented manifolds (one of
them without boundary), then the product X × Y acquires an orientation ac-
cording to the following natural convention: if (x, y) is a point on X × Y and
[v1, . . . , vn] (respectively [w1, . . . , wm]) is a positive basis for TxX (respec-
tively TyY ), then [v1, . . . , vn, w1, . . . , wm] is declared to be a positive basis
for T(x,y)(X × Y ).

Hey, if you invert the order of the factors, you get another orientation!?,
the reader may object. Well, yes and no: you get ‘another’ orientation because
X × Y is not the same manifold as Y ×X. Of course they are isomorphic, and
the natural isomorphism is the twist map X × Y ∼→ Y ×X, (x, y) �→ (y, x).
Now if you compare the two orientations carefully along this isomorphism you
will note that they agree!

1.1.10 Example. Let � be an closed oriented manifold (with positive basis
[v1, . . . , vm] in the tangent space at some point x ∈ �). Let I denote the unit
interval (with standard orientation: [e1] is a positive basis). Then the product
orientation of the cylinder � × I has positive basis [v1, . . . , vm, e1].

1.1.11 In-boundaries and out-boundaries. Let � be a closed submanifold
of M of codimension 1. Assume both are oriented. At a point x ∈ �, let
[v1, . . . , vn−1] be a positive basis for Tx�. A vector w ∈ TxM is called a pos-
itive normal if [v1, . . . , vn−1, w] is a positive basis for TxM .

Now suppose � is a connected component of the boundary of M; then it
makes sense to ask whether the positive normal w points inwards or outwards
compared to M – locally the situation is that of a vector in Rn for which we
ask whether it points in or out from the half-space Hn. If a positive normal
points inwards we call � an in-boundary, and if it points outwards we call it
an out-boundary. To see that this makes sense we have to check that this does
not depend on the choice of positive normal (or on the choice of point x ∈ �).
If some positive normal points inwards, it is a fact that every other positive
normal at any other point y ∈ � points inwards as well. This follows from the
fact that the normal bundle T M |� /T � is a trivial vector bundle on �. This
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in turn is a consequence of the assumption that both M and � are orientable
(see Hirsch [27], 4.4.2.)

Thus the boundary of a manifold M is the union of various in-boundaries
and out-boundaries. The in-boundary of M may be empty, and the out-
boundary may also be empty. Note that if we reverse the orientation of both M

and its boundary �, then the notion of what is in-boundary or out-boundary is
still the same.

1.1.12 Example. Consider the unit interval with its standard orientation (in-
duced from R

1), and let also the boundary points 0 and 1 be equipped with their
standard orientation +. Then 0 is an in-boundary and 1 is an out-boundary.

More generally, if � is a closed oriented manifold then the cylinder � × I

(given the product orientation as in 1.1.9) has boundary �0
∐

�1. Now �0 is an
in-boundary and �1 is an out-boundary. (The symbol

∐
denotes the disjoint

union; it will be discussed in detail in 1.3.24 and 1.3.25.)

If � ⊂ M is a submanifold of codimension 1 which divides M into two
parts, then � is an out-boundary for one of the parts and an in-boundary for
the other.

1.1.13 Example. Consider the unit sphere S2 ⊂ R
3, oriented by declaring pos-

itive the basis [E,N ] (East, North) of the tangent space of S2 at some point on
the Equator � (with positive basis [E]). Then N is a positive normal of �. So
� is an out-boundary for the southern hemisphere and it is an in-boundary for
the northern hemisphere.

Some vocabulary from Morse theory

The closed interval, say I = [0, 1], is the simplest example of a manifold with
boundary. In higher dimension we have seen the cylinders � × I as a closely
related analogue, and we noted that there is a smooth map � × I → I com-
patible with the boundaries.

In general, if M is a manifold with boundary it is very useful to have a map
like this:
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x

M

0 t 1

(1.1.14)

A lot of topological properties of M can be detected with such maps. This is
what Morse theory is about – a very powerful tool in differentiable topology.
In this book we will only need the two or three most basic notions. The next
couple of paragraphs just put some technical constraints on those maps, which
are necessary for the differentiable machinery to work, but the essential thing
to record is just the picture above. . .

1.1.15 Critical points. Let M be a compact manifold, and consider a smooth
map f : M → I from M to a closed interval I ⊂ R. A point x ∈ M is called
a critical point if the differential dfx is zero. In that case, the image of x under
f is called a critical value of f . If x is not a critical point we call it a regular
point for f . If a value is not a critical value we call it a regular value; this
means that every point in the preimage is a regular point.

In the previous picture, x is a critical point of f , and t is a critical value. All
other points of M are regular points (and hence all other points in I are regular
values).

1.1.16 Nondegenerate critical points. A critical point x is called nondegen-
erate if dfx vanishes only to order 1 (i.e. x is a simple zero). More precisely a
critical point is nondegenerate if in some coordinate system the Hessian matrix

∂2f

∂xi∂xj

is nonsingular (this notion does not depend on the coordinate system chosen).
Since the Hessian is a real symmetric matrix, all its eigenvalues are real; the
index of f at x is the number of negative eigenvalues of the Hessian (counted
with multiplicity). This number can also be described as the dimension of the
largest subspace of TxM on which the corresponding bilinear form is negative
definite.

1.1.17 Examples. If M is a surface and f : M → I is a smooth function, then
a nondegenerate critical point has index 0 if and only if it is a local minimum;
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it has index 2 if and only if it is a local maximum; and it has index 1 if and
only if it is a saddle point.

1.1.18 Morse functions. Let M be a manifold and let I be an interval. A
Morse function is a smooth map f : M → I all of whose critical points are
nondegenerate. We will mostly be concerned with manifolds with boundary;
then we will always require that

f−1(∂I ) = ∂M.

Finally we will require that the two boundary points of the interval I are regular
values. In other words, there are no critical points on ∂M .

If M is compact (which will always be our case), a Morse function has only
finitely many critical points. It is possible to arrange a Morse function such
that these critical points all have distinct images in I . We will always assume
this is the case.

1.1.19 Theorem. (See Hirsch [27], 6.1.2.) Morse functions always exist. (In
fact most functions are Morse functions, in the sense that in the space of all
smooth maps M → I the Morse functions form a dense subset.)

Exercises

1. Show that the unit interval I = [0, 1] is indeed a manifold with boundary,
by covering it with two half-lines H 1.

2. Make sense of the definition of in-boundary and out-boundary in the case
of a manifold M without boundary, i.e. ∂M = ∅.

3. Discuss the validity of the arguments given on page 14, starting with Hey,
if you invert the order of the factors,. . . The difficult case to understand is
X = Y .

4. Let W be a complex vector space (of finite dimension over C). Every vec-
tor w �= 0 spans a vector space which is 2-dimensional over R, with basis
[w, iw]. Similarly, a complex ordered basis [w1, . . . , wn] for W defines a
real ordered basis [w1, iw1, . . . , wn, iwn]. Show that every C-linear map
V → W is orientation preserving over R.

5. Let M be a closed manifold and consider smooth maps f : M → R. Put
H := {x ∈ R | x ≥ 0}. One could expect that f−1(H) would be a manifold
with boundary (the boundary being f−1(0)). Give an example to show that
this is not true in general, even if f−1(0) is nonempty. Under what condi-
tions on f is it true?
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6. Let B denote the interval [−1, 1], and consider functions B → B. Show
that x �→ x2 is a Morse function, while x �→ x3 is not.

1.2 Cobordisms

Our real interest is in oriented cobordisms, but let us first have a look at the
unoriented case.

Unoriented cobordisms

1.2.1 Unoriented cobordisms. Let there be given two closed manifolds (i.e.
compact, without boundary) �0 and �1 of dimension n− 1. A cobordism be-
tween �0 and �1 is a compact n-manifold M whose boundary is �0

∐
�1.

When a cobordism exists, �0 and �1 are said to be cobordant.
(In order to admit cobordisms from a given manifold to itself, more pre-

cisely we need to define a cobordism as a certain map from �0
∐

�1 onto the
boundary of M . We will explain this technicality in a minute, when we come
to oriented cobordisms.)

The prefix ‘co-’ in cobordism has nothing to do with duality as it is used in
categorical language (as in the words ‘coalgebra’ and ‘coproduct’). It simply
means ‘together’, like in ‘cooperation’ or ‘coproduction’. Originally, a single
manifold � was called bordant if it formed the boundary of some manifold M;
then two manifolds were called cobordant if together they formed the boundary
of some manifold M .

1.2.2 Examples. Here are two examples (n = 2):

�0
M

�1

M

�0 �1

In these two examples, �0 and �1 are both connected. But we have not ex-
cluded the possibility that they be disconnected – in fact, disconnected mani-
folds are crucial for the theory – so here is an example of a cobordism between
a single circle �0 on one side and a pair of circles �1 on the other side:

�0 M �1
(1.2.3)
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and here is a cobordism between the union of three circles on one side and the
empty 1-manifold on the other side!

�0

M

�1 = ∅1

1.2.4 Movies and histories. A cobordism can be thought of as an interpola-
tion between the two manifolds. Other analogies you can have in mind are
the notion of morphing in computer graphics, or simply a history or a movie.
Example 1.2.3 is the history of a single circle breaking up into two circles.
Here are some frames of the movie:

If you are a string theorist you can think of this as a string (elementary particle)
which propagates in time, and degenerates into two strings, so this is a sort of
thickening of the Feynman diagram

We think of the cobordism as describing an evolution in time, say from time
t = 0 to time t = 1. So what is going on is that we consider a smooth map from
M to the unit interval I = [0, 1] (the time line) such that �0 maps to 0 and �1

maps to 1. This is the Morse theory viewpoint – the figure was drawn in 1.1.14.
In all these examples we get the impression that we are just projecting down
on the interval, but in general we regard our manifolds as abstract without em-
bedding into any ambient pre-existing space-time, and without any canonical
‘time line’ interval to project down onto. There is no absolute time, and any
function M → I (mapping �0 to 0 and �1 to 1) will do to define a sort of
movie, a new viewpoint of the circle splitting up into two.
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Because of the history analogy (which is quite relevant in view of the phys-
ical origin), the following two cobordisms are called the birth of a circle and
the death of a circle, respectively:

(but here we are already anticipating the notion of oriented cobordism).

1.2.5 Example: a higher-dimensional cobordism. While these constructions
are valid in any dimension, it is difficult to make illustrations in dimensions
higher than 2. Just to stress that we are not talking only about circles and
tubes, let us imagine a cobordism in dimension 3, from a torus to a sphere.
Take a torus and start to pinch a certain circle on it, until this circle is just
a point – this is the critical frame of the film – and continue: the two sides
of the pinching circle break apart, and the whole surface becomes the skin of
a sausage, which is then gradually contracted until it is a sphere. The movie
viewpoint is convenient then, since each frame is of dimension 2, so we still
have a fair chance of drawing pictures:

In this film, just as in the one in 1.2.4 there is a frame with a singular mani-
fold – is that a problem? No, this is normal, and in fact necessary in order to
make a transition between two manifolds which are not diffeomorphic (cf. the
regular interval theorem quoted below in 1.3.8). The manifold M realising the
cobordism can still be smooth.

1.2.6 Caution. It is important to note that our manifolds are not embedded in
any ambient space – they are just abstract manifolds. Thus it has no meaning
to talk about crossing over or under, or being entangled. For example, this
drawing of a cobordism from a circle to a circle:

is merely a product of the artist’s perversion. A more honest and less confusing
drawing of the same cobordism would be this:
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because as abstract manifolds they are the same. (What puzzles us when we
see the conjurer perform this trick in the circus is that the whole circus is
embedded in R3, where it ought to be impossible to separate the two connected
components.)

1.2.7 Example: some 1-dimensional cobordisms. In this drawing,

you can either think of three different cobordisms which are drawn close to
each other (the first one between two points, the second and third go between
a pair-of-points and the empty set), or you can think of it as one cobordism
between a three-point manifold and another three-point manifold.

1.2.8 When are two (n− 1)-manifolds cobordant? That is, given two closed
manifolds �0 and �1, when does there exist a cobordism M between them?
In general this question is difficult; we will take it up briefly in 1.2.19. In
dimensions 0 and 1 it is not difficult to tell:

1.2.9 Lemma. Two closed 0-manifolds are cobordant if and only if they have
the same number of points modulo 2.

Proof. Any pair of points can be joined by a curve (like in the previous figure
above). On the other hand every 1-manifold with boundary has an even number
of boundary components. So a cobordism between �0 and �1 exists if and only
if there is an even number of points all together in �0

∐
�1. �

1.2.10 Lemma. Any two closed 1-manifolds are cobordant.

Proof. A closed 1-manifold is a disjoint union of circles. So an easy way to con-
struct a cobordism between a manifold m consisting of m circles and another
manifold n consisting of n circles is to take m copies of ‘death-of-a-circle’ and
n copies of ‘birth-of-a-circle’:
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...

m

...

n
�

Oriented cobordisms

Now since we regard �0 and �1 as initial and final configurations and think
of the cobordism M as describing a time evolution, it is natural we should
want a clearer notion of direction – an arrow of time. Another reason is that
we want to construct a category of cobordisms, so we need arrows, not just
interpolations. To get a clear notion of the direction of the cobordism it is
natural to use orientations.

1.2.11 Oriented cobordisms. Let �0 and �1 now be closed oriented (n− 1)-
manifolds. Intuitively, an oriented cobordism from �0 to �1 is an oriented
n-manifold M whose in-boundary is �0 and whose out-boundary is �1. We
will write it

�0
M

�1.

(Note that in order to specify an oriented cobordism it is not enough to give an
oriented manifold with boundary: we need also an orientation of the boundary,
in order to be able to tell which boundary components are in-boundaries and
which are out-boundaries.)

Now the above definition is still not good enough, because we would like
very much to have cobordisms from a given � to itself, and this is not possi-
ble with the above definition, since a manifold cannot at the same time be an
in-boundary and an out-boundary for a manifold M . What we need is a more
relative description: instead of considering the source and target of the cobor-
dism as submanifolds, we will just require them to be embedded in M . So here
comes the final, official definition of a cobordism:

Let �0 and �1 be closed oriented (n− 1)-manifolds. An oriented cobor-
dism from �0 to �1 is an compact oriented manifold M together with smooth
maps

�0 → M ← �1
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such that �0 maps diffeomorphically (preserving orientation) onto the in-
boundary of M , and �1 maps diffeomorphically (preserving orientation) onto
the out-boundary of M .

Note that this is practically the same as the first definition we gave, but it
gives more flexibility. We can now have a a cobordism from � to �, provided
we can find two diffeomorphisms: one from � to the in-boundary, and another
from � to the out-boundary. (We will construct such maps in a minute.)

To begin with, we will often picture a cobordism by drawing small arrows
on the boundary to represent a positive normal. Whenever possible, we will
draw a cobordism with the in-boundary on the left and the out-boundary on
the right, and in many cases this will allow us to dispense with drawing the
small arrows . . .

�0 M

�1

1.2.12 Cobordisms are not functions! An oriented cobordism is something
that goes from one manifold �0 to another manifold �1. But it is worth stress-
ing that it is not a function! It makes no sense to ask what it does to a particu-
lar point of �0. (The most remarkable example is perhaps that we can have a
cobordism from a nonempty manifold to ∅. This is not possible with functions
of any kind . . . )

1.2.13 The closed interval. The most fundamental of all cobordisms is the
closed interval. To be concrete, take the unit interval I = [0, 1] with its stan-
dard orientation, and with the boundary points 0 and 1 given standard orienta-
tion + as well. We already noted in 1.1.12 that 0 is an in-boundary and 1 is an
out-boundary, so I defines a cobordism from 0 to 1.

There are obvious generalisations of this construction. Given any two (posi-
tively oriented) one-point manifolds p0 and p1, we can simply map p0 to 0 and
p1 to 1; these two maps are clearly orientation-preserving diffeomorphisms
onto the boundary of I :

p0 → I ← p1.

In this way I provides a cobordism from p0 to p1. This illustrates the flex-
ibility provided by the definition of cobordisms in terms of maps instead of
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submanifolds – one and the same manifold I can serve to construct cobor-
disms between various distinct objects, by using different embeddings onto its
boundary.

In the same vein, we can replace the unit interval by any other simple
oriented path M . Precisely, taking an orientation-preserving diffeomorphism
I ∼→ M we get a new cobordism by composing with it:

M

↗ ↑ ↖
p0 → I ← p1

Here is a drawing summarising these constructions:

I+ +

p0

+
p1

+

M +

+

1.2.14 Example: other cobordisms between points. The example of the unit
interval admits eight variations, by taking different orientations of the three
manifolds involved. If we keep I with its standard orientation there are four
possibilities. If 0 and 1 are both positively oriented we have

+ +

If we take 0 with orientation +, and 1 with orientation −, then both are in-
boundaries! So we have produced a cobordism from a two-point manifold
(with total sign zero) to the empty 0-manifold:

−
+ ∅

If both boundary points are oriented by a minus, then we get a cobordism from
1 to 0. Forgetting about the names of the manifolds we picture it like this:
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− −
And if 0 is oriented − and 1 is oriented + we get a cobordism from the empty
manifold to a two-point manifold like this:

∅
+
−

(Taking reverse orientation of I we would get four other configurations but
they would differ from the above four cases only by the names, which in any
case is immaterial.)

1.2.15 Lemma. Two oriented 0-manifolds �0 and �1 are cobordant if and
only if the ‘sum of the signs of �0’ equals the ‘sum of the signs of �1’.

Here the ‘sum of the signs’ means this: suppose �0 has n points with positive
orientation and m points with negative, then the sum of its signs is n−m.

Proof. Exercise. (Use the drawings above.) �

1.2.16 Cylinders. The interval construction can be used to construct easy and
important examples of cobordisms in higher dimensions: the cylinders. They
are cobordisms from any given manifold to itself. To construct one, take a
closed oriented manifold � and cross it with the unit interval I , with its stan-
dard orientation (and with standard orientation on the boundary points). The
boundary of � × I consists of two copies of �: one which is an in-boundary,
� × {0}, and another which is an out-boundary, � × {1}. So we get a cobor-
dism from � to � by taking the obvious maps

� ∼→ � × {0} ⊂ � × I

� ∼→ � × {1} ⊂ � × I.

As in the interval example, the same construction serves to give a cobor-
dism between any pair of (n− 1)-manifolds �0 and �1 both of which are
diffeomorphic to �; just take

�0
∼→ � ∼→ � × {0} ⊂ � × I

�1
∼→ � ∼→ � × {1} ⊂ � × I.

And again, any orientation-preserving diffeomorphism � × I ∼→ M will
also define a cobordism M : � �, or if we combine the two variations, a
cobordism M : �0 �1:
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� × I

� ��0 �1

M

So in conclusion: for any two diffeomorphic manifolds �0 and �1 there exists
a cobordism from �0 to �1, and in fact there are MANY! Those produced in
this way are all equivalent cobordisms in the sense we now make precise.

1.2.17 Equivalent cobordisms. Given two oriented cobordisms from �0 to
�1,

M ′

�0

�

�1

�

M
��

we say they are equivalent if there is an orientation-preserving diffeomorphism
ψ : M ∼→ M ′ making this diagram commute:

M ′

�0

�

�1

�

M

ψ �
�

��

(Note that the two triangles truly commute – not just up to diffeomorphism.
Thinking of �0 and �1 as submanifolds in M (and in M ′) this means that ψ

induces the identity on the boundaries.) In the next subsection we will divide
out by these equivalences, and consider equivalence classes of cobordisms,
called cobordism classes.

1.2.18 ‘U-tubes’. In analogy with Example 1.2.14, we can consider cylinders
with one of the boundaries reversed. Precisely, given a closed manifold �,



1.2 Cobordisms 27

map it onto one end of the cylinder � × I , and map � onto the other end.
(Recall that � means the same manifold but with opposite orientation.) Now
both boundaries are in-boundaries (and the out-boundary is empty):

� �

We will often draw such a cylinder like this:

�

�

just to keep the convention of having in-boundaries on the left, and out-
boundaries on the right, but the reader should be warned not to take the draw-
ings too literally: the two figures are meant to represent the same cobordism,
while our embedded-in-R3 intuition would rather suggest that the two cobor-
disms are distinct (but equivalent in the sense of 1.2.17).

Similarly we can form a cylinder with two out-boundaries

� �

which we could draw like this:

�

�

1.2.19 Digression on Thom’s theory of cobordism groups. Cobordisms
were introduced in the 1950s by L. S. Pontryagin and by R. Thom [47]. The
relation that two closed oriented n-manifolds be (oriented) cobordant is an
equivalence relation. The set of such equivalence classes of closed oriented
n-manifolds is an abelian group �n under disjoint union. (These equivalence
classes of closed oriented manifolds must not be confused with the equivalence
classes of cobordisms mentioned in 1.2.17.) We saw in 1.2.15 that the oriented
cobordism group in dimension 0 is Z, and the argument given in 1.2.10 shows
that for n = 1 the group is 0: any two closed oriented 1-manifolds are cobor-
dant. A famous result of Thom [47] states that

If the dimension n is not divisible by 4 then the oriented cobordism group
�n is finite abelian. For n = 4k, the oriented cobordism group �n is a finite
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abelian group times π(k) copies of Z, where π(k) denotes the number of par-
titions of k. For low n the results are

�0 = Z, �1 = �2 = �3 = 0, �4 = Z, �5 = Z/2Z, �6 = �7 = 0.

The first nontrivial closed manifold which is not the boundary of any manifold
is the complex projective plane CP

2 (which generates �4).

Decomposition of cobordisms

We have been led by the previous examples to think of cobordism as a sort
of generalisation of intervals. Pursuing this analogy, we will now decompose
cobordisms, cutting them in halves, just as one can subdivide an interval and
get two shorter intervals.

1.2.20 Decomposition of cobordisms. An important feature of cobordisms is
that you can decompose them. In the movie analogy, this means that we take
some intermediate frame (corresponding to time t) and regard it as a submani-
fold in M which splits M into two parts (not necessarily connected). Precisely,
take a smooth submanifold �t which divides M into two parts, with all the
in-boundaries in one part and all the out-boundaries in the other part. Give �t

orientation such that its positive normal points towards the out-part. The nicest
way of arranging such a cut is to take a smooth map f : M → [0, 1] such that
f−1(0) = �0 and f−1(1) = �1, and make the cut along the inverse image of
a regular value t , oriented such that the positive normal points towards the out-
boundaries, just as the positive normal of t ∈ [0, 1] points towards 1. Then we
have a picture like this:

�0 �t

M

�1

0 t 1

The result is two new cobordisms: one from �0 to �t given by the piece
M[0,t] := f−1([0, t]), and another from �t to �1 given by the piece M[t,1] :=
f−1([t, 1]).

(Note that this operation is something that has no analogue for functions or
arrows in a concrete category: you cannot just take an arbitrary function and
look at its value halfway to the target!)
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In the next section we will reverse this process and show how to compose
two cobordisms, provided they have compatible boundaries.

1.2.21 ‘Snake decomposition’ of a cylinder. Starting with a cylinder C =
� × I over some closed manifold � we could of course decompose it by cut-
ting it in the middle like this:

� � �

getting a decomposition of the cylinder into two cylinders.
But we could also reverse the orientation of the middle copy of �:

� � �

This is not a decomposition in the sense we have just described because the
positive normal of the middle � does not point towards the out-boundary of
the original cobordism. But if we cut a little bit more we can repair that defect:

C0 U1 U0 C1

� � � � �

This is a true decomposition, provided we interpret the three pieces in
the correct way. The in-part of the decomposition is M0 := C0

∐
U0 :

� �
∐

�
∐

�. The out-part of the decomposition is M1 := U1
∐

C1 :
�

∐
�

∐
� �.

If we draw the pieces U0 and U1 as U-tubes as in 1.2.18 it is easier to grasp
the decomposition:

=

C0

U0

U1

C1

C

︸ ︷︷ ︸ ︸ ︷︷ ︸
M0 M1

In conclusion we have found a decomposition of a cylinder into two cobor-
disms which are not cylinders. This particular example will have important
consequences for TQFTs. . .
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1.2.22 Disconnectedness and disjoint union. We have already seen many ex-
amples of disconnected cobordisms. The example above illustrates the true
importance of allowing disconnected objects (manifolds and cobordisms):
namely that even if we start with a connected cobordism, when we chop it
up we easily get disconnected ones! This is good, because if we have a discon-
nected cobordism we can study its connected components separately – and the
more we can split up the problem into simpler parts the more easily we can
understand it. In general, a disconnected manifold can always be written as the
disjoint union of its connected components. With a little care with the bound-
aries, it is almost as easy for cobordisms: in the example above we chopped
up a cobordism, and without really worrying about it we arranged the resulting
pieces in such a way that we could interpret them as disjoint unions of simpler
pieces. . .

Topological quantum field theories

Roughly, a quantum field theory takes as input spaces and space-times and as-
sociates to them state spaces and time evolution operators. The space is mod-
elled as a closed oriented (n− 1)-manifold, while space-time is an oriented
n-manifold whose boundary represents time 0 and time 1. The state space is
a vector space (over some ground field k), and the time evolution operator
is simply a linear map from the state space of time 0 to the state space of
time 1. The theory is called topological if it only depends on the topology
of the space-time. This means that ‘nothing happens’ as long as time evolves
cylindrically. . .

Mathematical axioms for TQFTs were put forth in the late 1980s: first
Segal [45] proposed a set of axioms for the related notion of conformal quan-
tum field theories, and shortly after, Atiyah [5] gave a set of axioms for
a topological quantum field theory. The following is a slight rewrite of his
axioms.

1.2.23 Topological quantum field theories. An n-dimensional topological
quantum field theory (TQFT) is a rule A which to each closed oriented
(n− 1)-manifold � associates a vector space �A , and to each oriented cobor-
dism M : �0 �1 associates a linear map MA from �0A to �1A .

This rule A must satisfy the following five axioms.

A1: Two equivalent cobordisms must have the same image:

M ∼= M ′ ⇒ MA = M ′A .
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A2: The cylinder � × I , thought of as a cobordism from � to itself, must
be sent to the identity map of �A .

A3: Given a decomposition M = M ′M ′′ then

MA = (M ′A )(M ′′A ) (composition of linear maps).

A4: Disjoint union goes to tensor product: if � = �′∐�′′ then �A =
�′A ⊗�′′A . This must also hold for cobordisms: if M : �0 �1

is the disjoint union of M ′ : �′
0 �′

1 and M ′′ : �′′
0 �′′

1 then
MA = M ′A ⊗M ′′A .

A5: The empty manifold � = ∅ must be sent to the ground field k. (It
follows that the empty cobordism (which is the cylinder over � = ∅) is
sent to the identity map of k.)

The first two axioms express that the theory is topological: the evolution
depends only on the diffeomorphism class of space-time, not on any additional
structure like metric or curvature. . .

Axiom A4 reflects a standard principle of quantum mechanics: that the state
space of two independent systems is the tensor product of the two state spaces.
(Axiom A5 also reflects this principle.)

1.2.24 Towards a categorical interpretation of the axioms. The first three
axioms will amount to saying that the rule A is a functor – for this to make
sense we must of course specify in which sense manifolds and cobordisms
form a category. This is the subject of the next section.

Axioms A4 and A5 in turn amount to saying that this functor is furthermore
monoidal. Monoidal categories and functors are what Chapter 3 is about, but
we will anticipate the definition: roughly a monoidal category is one equipped
with a ‘multiplication’ with neutral object. In our case, for manifolds and
cobordisms the ‘multiplication’ is disjoint union, and the neutral object for
that operation is the empty manifold. For vector spaces, the ‘multiplication’
is the tensor product, and the neutral object is the ground field. A monoidal
functor is one that preserves such monoidal structure.

We will have a lot more to say about disjoint union in 1.3.24.

Let us see how the axioms work, and extract some important consequences
of them. The next couple of arguments depend on some linear algebra (pairings
and copairings) which is carefully explained in Section 2.1.

1.2.25 Nondegenerate pairings and finite-dimensionality. Take any closed
manifold �, let V := �A be its image under a TQFT A , and let W denote

the image of �. The image of the U-tube of Example 1.2.18 is then a
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pairing β : V ⊗W → k. Similarly, the other U-tube is sent to a copairing
γ : k → W ⊗ V (see 2.1.10). Now consider the snake decomposition of the
cylinder � × I described in 1.2.21. The axioms imply that the composition of
linear maps

V
idV ⊗γ� V ⊗W ⊗ V

β⊗idV� V (1.2.26)

is the identity map. Indeed, A4 says that the two parts of the snake decompo-
sition have these images under A :

�−→ idV ⊗γ �−→ β ⊗ idV .

Axiom A3 implies that the composition of these two maps is the image of the
original cylinder, which by A2 is the identity map of V .

Now the fact that the map 1.2.26 is the identity map (together with the
equation obtained from a snake going the other way), is precisely to say that
the pairing β is nondegenerate (cf. Definition 2.1.10). So we have shown this:

1.2.27 Proposition. Let A be a TQFT. The image vector space V of a closed
manifold � comes equipped with a nondegenerate pairing with W := �A .

Given such a nondegenerate pairing there is a canonical identification of W

with V ∗ the dual space of V . In Atiyah’s original formulation, this is an axiom:

� �→ V ⇒ � �→ V ∗.
The notion of nondegeneracy is a strong one, which in fact implies

(cf. 2.1.12)

1.2.28 Corollary. The image vector spaces in a TQFT are necessarily of finite
dimension.

The proposition illustrates how topological properties on the manifold side
of a TQFT translate into algebraic structure on the vector space side. This
particular result does not depend on the dimension n of the theory. In the case
n = 2, there is even more structure on the vector spaces: they turn out to be
Frobenius algebras (cf. Theorem 3.3.2).

1.2.29 Example. From a mathematical point of view, the importance of
TQFTs is that they produce invariants of manifolds: suppose M is an
n-manifold without boundary, then it can be considered as a cobordism
∅n−1 ∅n−1, so A associates to it a linear map k → k, i.e. a constant,
which is a topological invariant of the manifold. Furthermore, this invariant
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can be computed by cutting up M (in many ways). It is beyond the scope of
these notes to give any significant examples of this (the reader is referred to
Atiyah [6]), but let us briefly mention a very simple example.

Let A be a TQFT. Take a closed manifold �, and let V be the image vector
space �A . Consider the manifold M = � × S1 (which is without boundary)
and decompose it like this:

The cut is the disjoint union �
∐

�, and the two U-tubes are a sent to a copair-
ing γ and a pairing β on V , as we just explained in 1.2.25. So the invariant
MA is the composite γβ : k → k. Now a little linear algebra (Exercise 10
below) shows that this is nothing but the trace of the identity map of V , so the
invariant associated to M is dim V .

Exercises

1. Let M denote a long-playing record oriented such that the in-boundary is
the circumference �0, and the out-boundary is the hole in the middle, �1.
Then the 2-manifold M realises a cobordism from �0 to �1. The exercise
is to turn this static picture into a movie in the spirit of 1.2.4. (Hint: play
the record. . . )

2. Let �1 denote the surface of a solid doughnut M made of wood. Inside
M there is a ball-shaped cavity whose wall we denote �0. Arrange orien-
tations such that �0 is the in-boundary of M and �1 is the out-boundary.
So the 3-manifold M realises a cobordism from the sphere �0 to the torus
�1. The exercise consists in turning this static picture into a movie in the
style of 1.2.5.

3. Write down the proof of Lemma 1.2.15.
4. Draw examples of cobordisms from the empty 1-manifold ∅1 to itself.

Classify them all up to equivalence.
5. Show that the cobordism group described in 1.2.19 is indeed a group.

(Hint: use 1.2.18.)
�6. Use Thom’s theorem (1.2.19) and the statement made there about CP

2

to prove that there is no orientation-preserving diffeomorphism from CP
2

to CP
2
. In other words, there is no orientation-reversing diffeomorphism

from CP
2 to itself. (Hint: use 1.2.18.)

7. Consider a TQFT in dimension 2 with the following properties. The circle
is sent to the vector space V of all n-by-n matrices over k. For simplicity
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take n = 2, but this has nothing to do with the dimension of the TQFT. By
the axioms, �

∐
� �→ V ⊗ V , etc., and ∅1 �→ k. Assume that is sent

to the trace map

ε : V −→ k(
a b
c d

) �−→ a + d,

and that is sent to the multiplication map µ : V ⊗ V → V (matrix
multiplication). Use the decomposition axiom A3 to determine the image

of . (It must be a pairing β : V ⊗ V → k.)

�8. Continuing the previous exercise, assume that is sent to the map

γ : k −→ V ⊗ V

1 �−→ (
1 0
0 0

)⊗(
1 0
0 0

)+ (
0 0
1 0

)⊗(
0 1
0 0

)+ (
0 1
0 0

)⊗(
0 0
1 0

)
+ (

0 0
0 1

)⊗(
0 0
0 1

)
.

Show that this is not in contradiction with the snake decomposition of
the cylinder, cf. 1.2.21 and 1.2.26. Precisely, show that γ is a copairing
corresponding to the pairing β. Copairings (cf. 2.1.10) are always harder
to understand than pairings, and messier to write down – there is usually
no way to avoid long sums of tensors like this.

9. Continuing the previous two exercises, compute explicitly the composite
γβ : k → k. (According to Example 1.2.29 this should be multiplication
by 4 = dim V .)

10. Verify this statement made in 1.2.29: if (βij ) is an invertible symmetric
n-by-n matrix and (γ ij ) is its inverse, then we have∑

i,j

γ ij βij = n.

(Hint: sum over one index at a time.)

1.3 The category of cobordism classes

We will now assemble cobordisms into a category: the objects should be closed
oriented (n− 1)-manifolds, and the arrows ought to be oriented cobordisms
(but it turns out we need to consider cobordism classes instead). So we need
to show how to compose two cobordisms (and check associativity), and we
need to find an identity arrow for each object. Clearly we want the following
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property: if M is a cobordism and we decompose it into two parts M0 and M1

as in 1.2.20, then the composition of M0 and M1 should be M .
Intuitively, given one cobordism M0 : �0 �1 and another M1 :

�1 �2 then the composite M0M1 : �0 �2 should be obtained by glu-
ing together the manifolds M0 and M1 along �1. This is a manifold with in-
boundary �0 and out-boundary �2, and �1 sits inside it as a submanifold

�0

M0

�1

�2

M1

If you ask a differential topologist, he will typically tell you that this oper-
ation is well defined. But if you question him more closely, he will admit that
the operation is only well defined up to diffeomorphism – but after all that is
what matters in differential topology. If you press him really hard, it will come
to light that M0M1 is well defined up to diffeomorphism, but not up to unique
diffeomorphism – in other words, there is no universal property. . . In order to
appreciate these subtleties – and in any case to understand the statements – we
will spend some time working out a simple example. From the viewpoint of
everyday differential topology, this section is rather pedantic, but seen from
a broader perspective it is interesting to be aware of such well-defined-up-to-
something business.

Concerning identity arrows, the identity ought to be a cylinder of height
zero, but such a ‘cylinder’ is not an n-manifold!

Both problems are solved by passing to diffeomorphism classes of cobor-
disms. Precisely, we identify cobordisms which are equivalent in the sense of
1.2.17 and let the arrows of our category be these equivalence classes, called
cobordism classes.

Once we have specified the category structure we can also make more
precise the notion of paralleling, which we have already touched upon
(e.g. 1.2.22). It amounts to saying that our category is a monoidal category.
At this point we will not need the precise definition; we just need to observe
that there is a way to ‘compose’ cobordisms in parallel. . .

Gluing and composition

1.3.1 Gluing topological spaces. Let f0 : � → M0 and f1 : � → M1 be
continuous maps between topological spaces. For simplicity we assume that
M0 and M1 are disjoint (the problems related to the general case will be dis-
cussed in 1.3.24), and that the maps are injective. Now M0

∐
�M1 is defined
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by taking the (disjoint) union of M0 and M1 and quotienting by this equiva-
lence relation: two points m0 ∈ M0 and m1 ∈ M1 are equivalent if there exists
a point x ∈ � such that xf0 = m0 and xf1 = m1. There are two natural maps
M0 → M0

∐
�M1 ← M1. The topology of M0

∐
�M1 is defined by declaring

a subset open if its inverse images in M0 and M1 are both open. Intuitively
M0

∐
�M1 is obtained by gluing M0 and M1 along their ‘common’ locus �.

We have this commutative diagram of continuous maps:

M0
∐

�M1

M0
�

M1

�

�
�

�

The crucial observation is that M0
∐

�M1, together with the diagram, is uni-
versal among all such commutative diagrams. For every commutative diagram

X

M0

f0 �

M1

f1

�

�

�

�

there exists a unique continuous map f : M0
∐

�M1 → X extending f0 and
f1:

X

f0

�

f1

�

M0
∐

�M1

∃!

�

M0

�

M1

�

�

�

�
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You can say loosely that the diagram of M0
∐

�M1 is the square nearest
M0 ← � → M1. The precise categorical statement is that M0

∐
�M1 is the

pushout, or the colimit of M0 ← � → M1 (cf. A.3.7 in the Appendix).
In the situation of the arbitrary diagram, the unique map f : M0

∐
�M1 →

X can be thought of as the gluing of the two maps f0 and f1. So the statement
can also be formulated like this: continuous maps glue if they agree on the
border between their domains.

In the next paragraph, we use this to glue C0 transition functions, and see
that the pushout is also well defined for topological manifolds (i.e. topological
spaces equipped with atlases).

1.3.2 Gluing topological manifolds. Suppose now M0 and M1 are topological
manifolds with a common boundary component �. (As usual, what we really
mean is that we have maps M0 ← � → M1, from � onto the boundary com-
ponents in question.) The question is whether the topological space M0

∐
�M1

is again a manifold in any canonical way. In other words, given the (maxi-
mal) C0 atlases on M0 and M1, can we construct a C0 atlas on M0

∐
�M1?

Each point of M0
∐

�M1 which is not on the gluing locus � is already covered
by a chart. Let us construct a chart U → R

n around a point on �. By defini-
tion of the topology, the two restrictions U0 := U ∩M0 and U1 := U ∩M1

are open in M0 and M1, respectively. Observe that U = U0
∐

�U1 (where
� now means � ∩ U ). By shrinking U if necessary, we can assume U0

and U1 are each domains for a chart, and since the atlases are maximal, we
may as well assume that these charts are f0 : U0 → R

n− := {x ∈ Rn | xn ≤ 0}
and f1 : U1 → R

n+ := {x ∈ R
n | xn ≥ 0}. Now we already have the gluing

(pushout) of these two half-spaces: together they form R
n. So we have the

solid diagram

�

U0 �
�

U � U1

�

R
n−

f0 �
� R

n

f
�

� R
n+

f1�

We need to construct the dashed map f : U → R
n, and show it is a homeomor-

phism. But this is all guaranteed by the universal property. First, the universal
property of U = U0

∐
�U1 (with R

n in the place of X) implies there is a unique
continuous map U → R

n making the diagram commute. Second, the universal
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property of R
n provides a continuous map in the other direction, and clearly

they are inverses to each other, so f is indeed a homeomorphism.

So we have constructed a coordinate chart with domain U . Now there were
choices involved: for each choice of f0 and f1, the construction gives a chart
f on U . We claim that all these charts have C0 transition, so they belong to
the same maximal atlas. Indeed, any other chart on U1, say g1 : U1 → R

n+, is
related to f1 by a continuous transition function α1 : R

n+ ∼→ R
n+ (or possibly

just open subsets of R
n+), and similarly for charts on U0:

�

U0 �
�

U � U1

�

R
n−

f0 �
� R

n

f
�

� R
n+

f1�

R
n−

α0 �
� R

n

α
�

� R
n+

α1�

(1.3.3)

As for the f , the two charts g0 and g1 glue together to give a chart g : U → R
n.

Now the coordinate change function for the two charts f and g on U is induced
exactly by the coordinate changes on the half-charts. That is, α : R

n → R
n is

obtained by gluing α0 and α1. By the universal property, α is continuous.
So in conclusion, all the charts we construct belong to the same maximal

atlas. So this defines a C0 structure on M0
∐

�M1.
The reason for spending time with the continuous case is that we see exactly

what will go wrong in the smooth case: smooth functions do not glue just
because they take the same value on the border between their domains. As an
easy concrete example:

1.3.4 Two distinct gluings of 1-manifolds. . . Given two smooth 1-manifolds
M0 and M1, with a common boundary point p, we want to glue them. (You
can think of the two intervals [0, 1] and [1, 2] which glue to give [0, 2], if you
wish.) We place ourselves in the situation of Diagram 1.3.3. Fix a chart on
M0 near p, say f0 : U0 → R−. Now let us take two charts around p in M1

and analyse their compatibility. We assume both charts have the same open set
U1 as domain. Start with f1 : U1 → R+, and let g1 : U1 → R+ be defined by
composing with the coordinate change function
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α1 : R+ −→ R+
x �−→ x2

(with inverse y �→ √
y, both are smooth maps). So we have g1 = f1α1, and α1

is the coordinate change function. So now we have two charts U1
�� R+,

neither of which can be said to be better or more canonical than the other.
Each of these charts glues with the chart on U0 to give an R-chart around p.

We get one chart f : U → R by gluing f0 and f1, and another chart g : U →
R by gluing g0 = f0 and g1. Now it is easy to see that the transition between
f and g is not smooth: the transition function α between these two charts of U

is obtained by gluing α0 = idR− with α1, which gives

α : R −→ R

x �−→
{

x for x ≤ 0

x2 for x ≥ 0.

So our example shows that there are at least two distinct maximal atlases
on U which agree with the atlases on U0 and U1. In other words, we have two
smooth structures on U , denoted (U, f ) and (U, g).

1.3.5 . . . which are diffeomorphic. Now, while these two structures are not
identical, they may well be isomorphic – in fact we know they must be, since
they are both connected 1-manifolds. To see it explicitly in this example, define
(U, f ) → (U, g) by taking

U
f−→ R

g−1

−→ U.

We must check that this map is smooth and has a smooth inverse. Both these
claims follow from the description of the map in terms of the local coordi-
nates: it is simply the identity map R → R! Caution: the description in local
coordinates happens to be the identity map, but if you write out what hap-
pens to the points in U you see that the map itself is not the identity map. For
the same reason, this diffeomorphism is not compatible with the inclusions
U0 → U ← U1, so there is no universal property.

Now we claim, furthermore, that every possible chart on U compatible with
the charts on the half-parts is obtained from the above example via some co-
ordinate change on the half-parts, and whichever be the obstruction for the
resulting charts to belong to the same maximal atlas, it is clear that the above
construction works also to establish a diffeomorphism between the two struc-
tures.
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1.3.6 Smooth manifolds. Since we cannot get unique gluing (or even unique
up to unique diffeomorphism), we should now head for showing that some
gluing at least exists.

To find one smooth structure, we can replace our manifolds with diffeomor-
phic ones and try to glue them instead. If we succeed we can use the diffeomor-
phism to produce a smooth structure on the original manifold. In other words,
finding a smooth structure on a topological manifold M = M0M1 is equiva-
lent to finding a smooth manifold S and a homeomorphism M ∼→ S which is a
diffeomorphism on the two pieces M0 and M1. Given such a map, we can pull
back the maximal atlas from S to get one on M .

1.3.7 Gluing of cylinders. As an example of this principle, we will now glue
cylinders, and more generally cobordisms equivalent to cylinders. To glue two
cylinders, say � × [0, 1] and � × [1, 2], we essentially do as in 1.3.4: take
� × [0, 2]. The smooth structure on [0, 2] is any one constructed as in the
example above – obviously we get a smooth structure on � × [0, 2] compatible
with what we had on the two parts.

The next case to consider is how to compose two cobordisms M0 :
�0 �1 and M1 : �1 �2 which are both equivalent to cylinders (in
the sense of 1.2.17), say

φ0 : M0
∼→ �1 × [0, 1]

φ1 : M1
∼→ �1 × [1, 2].

We need to find a smooth manifold S and a homeomorphism φ :
M0

∐
�1

M1 → S whose restrictions to M0 and M1 are diffeomorphisms. But
this is easy: just take

φ := φ0
∐

�1
φ1 : M0

∐
�1

M1 −→ S := �1 × [0, 2]
defined by gluing φ0 and φ1; it is the map given by the universal property of
the gluing in the category of continuous maps

�0

M0

�1

�2

M1

φ0

φ
φ1

�1 × [0, 2]

0 1 2
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So φ is defined just as a homeomorphism. Now S has smooth structure which
agrees with �1 × [0, 1] and �1 × [1, 2], and thus we get smooth structure on
M via pullback along φ.

All this fiddling around with cylinders becomes important in view of the
following result.

1.3.8 Regular interval theorem. (See Hirsch [27], 6.2.2.) Let M : �0 �1

be a cobordism and let f : M → [0, 1] be a smooth map without any critical
points at all, and such that �0 = f−1(0) and �1 = f−1(1). Then there is a
diffeomorphism from the cylinder �0 × [0, 1] to M compatible with the pro-
jection to [0, 1] like this:

�0 × [0, 1] ∼→ M

[0, 1]
f
��

(And similarly, there is another diffeomorphism �1 × [0, 1] ∼→ M compatible
with the projection.) �

1.3.9 Remark. In particular, this diffeomorphism induces a diffeomorphism
ψ : �0

∼→ �1; this is the restriction to the out-boundary of �0 × I ∼→ M . This
diffeomorphism ψ in turn induces a cobordism Cψ as in 1.2.16. This cobor-
dism is equivalent to M .

1.3.10 Corollary. Let M : �0 �1 be a cobordism. Then there is a decom-
position M = M[0,ε]M[ε,1] such that M[0,ε] is diffeomorphic to a cylinder over
�0. (And similarly there is another decomposition such that the part near �1

is diffeomorphic to a cylinder over �1.)

Indeed, take a Morse function f : M → [0, 1], and let t be the first criti-
cal value. Then for ε < t the interval [0, ε] is regular, so if we cut M along
the inverse image f−1(ε), by the regular interval theorem we get the required
decomposition

�0

M

�1

0 ε t 1
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1.3.11 Gluing of general cobordisms. Given cobordisms M0 : �0 �1

and M1 : �1 �2, take Morse functions f0 : M0 → [0, 1] and f1 : M1 →
[1, 2], and consider the topological manifold M0

∐
�1

M1, with the induced
continuous map M0

∐
�1

M1 → [0, 2]. Choose ε > 0 so small that the two in-
tervals [1− ε, 1] and [1, 1+ ε] are regular for f0 and f1 respectively; then the
inverse images of these two intervals are diffeomorphic to cylinders. So within
the interval [1− ε, 1+ ε] we are in the situation of 1.3.7, and we can take the
smooth structure to be the one coming from the cylinder. The result is a gluing
M0M1 of the two cobordisms M0 : �0 �1 and M1 : �1 �2.

We have shown there is always a smooth manifold M0M1 which is homeo-
morphic to M0

∐
�1

M1 and whose smooth structure agrees with each part. But
the construction was not canonical. It is not clear a priori that we could not
make other choices and end up with a smooth structure on M0

∐
�1

M1, not
isomorphic to the first one.

The arguments given in 1.3.5 can be formalised to prove the following gen-
eral result. (See Milnor [36], Theorem 1.4, and compare also Theorem 8.2.1 in
Hirsch [27].)

1.3.12 Theorem. Let � be an out-boundary of M0 and an in-boundary of M1,
and consider the topological manifold M0M1 := M0

∐
�M1. Let α and β be

two smooth structures on M0M1 which both induce the original structure on
M0 and M1 (via pullback along the inclusion maps). Then there is a diffeomor-
phism φ : (M0M1, α) ∼→ (M0M1, β) such that φ |�= id� .

In other words, the smooth structure on M0M1 is unique up to diffeomorphism.
(More details on these questions can be found in Munkres [40], Chapter 6.)

1.3.13 Digression: homeomorphism versus diffeomorphism. These con-
structions relate to two very profound questions in differentiable topology.
The first question is: given a topological manifold, does it admit a smooth
structure? Second: if it admits a smooth structure, is it then unique up to dif-
feomorphism? The second question was answered negatively by Milnor [35]
(1957) who found an example of a smooth 7-manifold (called an exotic sphere)
which is homeomorphic to the usual 7-sphere but not diffeomorphic to it. Work
of Freedman (1982) and Donaldson (same year) on 4-manifolds implies that
there are also exotic R

4s, and that there exist 4-manifolds which do not admit
any smooth structure (see Lawson [31]).

In these notes we are concerned mostly with 2-dimensional cobordisms –
in that case the above subtleties vanish: every topological surface admits a
smooth structure, and two smooth surfaces are diffeomorphic if and only if they
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are homeomorphic. (This result goes back to the 1920s (Rado, Kerékjartó, . . . ),
see Moise [37].)

1.3.14 The composition of two cobordism classes. So far we have shown that
given specific cobordisms M0 : �0 �1 and M1 : �1 �2 then there is
a well defined diffeomorphism class M0M1 : �0 �2.

We must now check that the result does not depend on the actual cobordisms
chosen, but only on their class, so that it makes sense to compose cobordism
classes. But in a indirect way we have already shown that. Suppose we have
diffeomorphisms (rel the boundary) ψ0 : M0

∼→ M ′
0 and ψ1 : M1

∼→ M ′
1,

M ′
0 M ′

1

�0

�
�1

��

�2

�

M0

ψ0 ��

��
M1

ψ1 ��

��

then there is a gluing M0M1 and a gluing M ′
0M

′
1, and also the two diffeo-

morphisms ψ0 and ψ1 glue in the category of continuous maps, so we get
a homeomorphism ψ : M0M1

∼→ M ′
0M

′
1 which is a diffeomorphism on each

piece

M ′
0M

′
1

�0

�

�2

�

M0M1

ψ homeo.
�

��

Now we can simply use this homeomorphism to define smooth structure on
M ′

0M
′
1 – with this smooth structure, by construction, ψ is a diffeomorphism.

Now this smooth structure on M ′
0M

′
1 might not be the one we started with, but

according to the theorem, the two are diffeomorphic rel the boundary.

1.3.15 Associativity of the composition. We must show that given three
cobordism classes, represented by

�0
M0

�1
M1

�2
M2

�3,

then we have the following equality of cobordism classes:

(M0M1)M2 = M0(M1M2).
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This follows from the construction. First notice that the pushout enjoy that
property:

(M0
∐

�1
M1)

∐
�2

M2 = M0
∐

�1
(M1

∐
�2

M2)

(modulo canonical identifications which we will treat as identities). Now the
smooth structure consists in replacing the coordinate charts with charts coming
from cylinders, within two narrow strips near �1 and �2. Since these two strips
are disjoint, clearly it makes no difference if first we make the replacement near
�1 and then the replacement near �2, or if we do it the other way around.

Identity cobordisms and invertible cobordisms

We have already seen that the composition of two cylinders is again a cylinder
(and more generally with cobordisms diffeomorphic to cylinders). Now we
show that the class of cylinders is in fact the identity for the composition.

1.3.16 Cylinders as identity cobordisms. Intuitively, if you attach a cylinder
to a boundary you do not change the topology, but in view of the subtleties
sketched in 1.3.13, it is not at all obvious that the attachment does not provide
new possible smooth structures. The proof is of course a variation of 1.3.12.
Recall that every cobordism already decomposes into a cylinder followed by
something else. Precisely, let M be our cobordism from �0 to �1, and let C

denote a cylinder over �0. We want to show that up to diffeomorphism rel the
boundary, CM = M . Decompose M as M = M[0,ε]M[ε,1] where the first part
is diffeomorphic to a cylinder over �0. Now we can finish the proof by writing
(modulo diffeomorphism):

CM = C(M[0,ε]M[ε,1]) = (CM[0,ε])M[ε,1] = M[0,ε]M[ε,1] = M.

Here we used the associativity of composition, and the fact that the compo-
sition of two cylinders is again a cylinder – we can find a diffeomorphism
contracting CM[0,ε] back to M[0,ε].

Now we should also prove that the cylinder is an identity on the right, but
this is completely analogous to what we just did.

1.3.17 Example. Let � be the disjoint union of two circles �′ and �′′. Then
the identity cobordism on �, the cylinder � × I , is the disjoint union of two
cylinders (over �′ and �′′ respectively). Here is a picture:
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Obviously for an arbitrary �, the cylinder � × I has the same number of
connected components as �.

1.3.18 Invertible cobordisms. It might seem perhaps that given a cobordism
M : �0 �1 we could always just take the manifold with reverse orienta-
tion M : �1 �0 to get an inverse to M . This reasoning is wrong, because
that is not the definition of being an inverse. The definition is: M ′ : �1 �0

is an inverse to M : �0 �1 if MM ′ is the identity on �0 and M ′M is the
identity on �1. It is easy to write down an example where M is not the inverse
of M:

M M�0

�1

�0

This 2-manifold is not diffeomorphic to the cylinder over �0, which was drawn

in Example 1.3.17 above! (The lemma below will also tell us that cannot
be invertible.) For 2-dimensional cobordisms there are not so many possibili-
ties, and in fact it is true that the only connected invertible cobordisms are the
cylinders themselves, cf. 1.4.9.

It also is worth stressing that inverses must be two-sided! The snake de-
composition of the cylinder (1.2.21) provides an example where the composite
M0M1 is the identity cobordism while the composite in the other order M1M0

is not.

1.3.19 Lemma. Let M : �0 �1 be an invertible cobordism. If M is con-
nected (as n-manifold) then �0 is connected too, and so is �1.

Proof. By assumption, the composite MM−1 is the cylinder C�0 = �0 × I .
Being a cylinder this manifold is ‘horizontally connected’ in the sense that
every point is connected to some point on the in-boundary. But this in-
boundary is also the in-boundary of M , and M is assumed to be connected,
so all these points are on the same connected component. In other words, C�0

is connected. But then by the concluding remark of 1.3.17, the base �0 is also
connected. (Repeating the arguments on the composite M−1M shows also that
�1 is connected.) �

1.3.20 The category nCob. The objects of nCob are (n− 1)-dimensional
closed oriented manifolds. Given two such objects �0 and �1, then an arrow
from �0 to �1 is by definition a diffeomorphism class of oriented cobordisms
M : �0 �1. (In other words, the arrows are cobordism classes in the sense
of 1.2.17.)
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(Usually, categories are named after their objects, but this would be incon-
venient here since the objects are just (n− 1)-manifolds – we would not cap-
ture the personality of the category. . . )

Henceforth, the term ‘cobordism’ will be used to mean ‘cobordism class’.

1.3.21 Some categorical digressions. So we had two problems in this section:
first, composition was not well defined, and second, there was no identity, no
matter how we chose the composition. Both problems were solved by passing
to a quotient by an equivalence relation. In this way a lot of information was
thrown away. Many people nowadays (e.g. Baez and Dolan [9]) believe that
instead of throwing away this information, it would be better to invent a looser
notion of category – one where these problems are part of the theory: we do
not require composition of arrows to be strictly well defined, we only require it
to be well defined up to some sort of equivalence. So instead of speaking about
the composition, one could speak only of a composition. Such considerations
lead to the notions of higher-dimensional categories where we have usual
arrows (in dimension 1), arrows between arrows (dimension 2), and so on. The
need for such notions comes from many different areas of mathematics, first
and foremost homotopy theory. This is a very abstract subject and also very
fascinating; a good place to start is John Baez’s web site [8] which is a gold
mine of nontechnical introductions for the nonexpert – about higher categories,
and mathematical physics in general – and it is replete with precise references
to the literature.

1.3.22 Diffeomorphisms and their induced cobordism classes. It was men-
tioned in 1.2.16 how a diffeomorphism φ : �0

∼→ �1 induces a cobordism
Cφ : �0 �1, via the cylinder construction. Take the cylinder �1 × I , and
map �0 onto the in-boundary via φ and map �1 onto the out-boundary via
the identity map. Alternatively, take the cylinder �0 × I , and map �0 onto the
in-boundary via the identity map, and map �1 onto the out-boundary via φ−1.
It is easy to see that these two constructions give equivalent cobordisms:

�1 × I

�0

φ �

�1

id�

�0 × I

φ×idI

�

φ−1�id
�

Here and elsewhere, whenever we write maps into a cylinder like this it is
understood that the map on the left maps onto the in-boundary and the map on
the right maps onto the out-boundary.
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Using this remark, it is not difficult to prove (cf. Exercise 1 below) that if

given two diffeomorphisms �0

φ0∼→ �1

φ1∼→ �2, then we have

Cφ0Cφ1 = Cφ0φ1 .

It also follows that the identity diffeomorphism � ∼→ � induces the identity
cobordism. In other words, we have a functor from the category of (n− 1)-
manifolds and diffeomorphisms to the category nCob .

In particular, a cobordism induced from a diffeomorphism is invertible.
Two questions are natural at this point. When do two diffeomorphisms give

the same cobordism class? Does every invertible cobordism class arise from
a diffeomorphism? The first question is settled by the next proposition. The
second question we will answer (affirmatively) only in the 2-dimensional case,
in the next section.

1.3.23 Proposition. Two diffeomorphisms �0
�� �1 induce the same

cobordism class �0 �1 if and only if they are (smoothly) homotopic.

Proof. Recall that two maps ψ0 : �0 → �1 and ψ1 : �0 → �1 are (smoothly)
homotopic if one map can be deformed smoothly into the other, i.e. when there
exists a smooth map � : �0 × I → �1 which agrees with ψ0 in one end of
the cylinder and with ψ1 in the other:

�0 � �0 × I � �0

�1

�
� ψ1�ψ0

�

Now to have such a diagram is equivalent to having this diagram (requiring
the map to be compatible with the projection to I ):

�0 × I

�0

�

�0

�

�1 × I

�

�
ψ1

�ψ0

�

Now we claim that this diagram in turn amounts to having an equivalence of
cobordisms. To see this, compose the diagram with

�0 �ψ−1
1

�1
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on the right, getting

�0 × I

�0

id �

�1

ψ−1
1

�

�1 × I

�

�
id�ψ0

�

The upper part of this diagram is the cobordism class induced by ψ1 (in the
‘backward’ convention); the lower part is the cobordism induced by ψ0, and �

expresses that they are equivalent.
This shows that homotopic maps induce equivalent cobordisms. The other

implication follows by composing �0 × I → �1 × I with the projection
�1 × I → �1. �

So in particular, a cobordism � � induced by a diffeomorphism ψ :
� ∼→ � is the identity if and only if ψ is homotopic to the identity. As an
example of a diffeomorphism which is not homotopic to the identity, take
the twist diffeomorphism �

∐
� → �

∐
� which interchanges the two copies

of �.

Monoidal structure

The category structure describes how to connect cobordisms in serial, in other
words, how to connect the output of one cobordism to the input of another,
and so on, to make chains of cobordisms, building up larger ones from simpler
ones like this

But we should be careful here: this drawing is not really a composition in the
categorical sense, because the output of one cobordism does not match the
input of the following! To make sense of it we need to add cylinders like this

(Cylinder means: equivalent to a cylinder – they are drawn curved for graphical
convenience.) Now we can truly affirm that this is the composition of these
three cobordisms:
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The lesson to be learned from this is that it is also important to consider
parallel couplings, that is, disjoint union of cobordisms! On the next few pages
we collect some basic properties of this parallel coupling, and mention that it
amounts to giving symmetric monoidal structure to the category nCob .

First there are some basic questions about disjoint union we need to settle –
so let us digress into set theory. Let Set denote the category of sets and set
mappings.

1.3.24 Discussion of disjoint unions of sets. Our main concern is, first, to
define what exactly the disjoint union of two sets is, and second, to explain that
given two sets A and B, in general it is not true that A

∐
B = B

∐
A, but that

there is a canonical isomorphism between them, called the twist map, which is
so natural that it is easily mistaken for an equality.

What exactly is the disjoint union of two sets? Let us start with a couple of
remarks on the usual union of two sets which is easy to understand concretely –
we will call it the plain union, just to avoid confusion. Given two sets A =
{v,w, x, y} and B = {x, y, z} as in this drawing

A B

v

w

x

y

z

the plain union A ∪ B = {v,w, x, y, z} is obtained by removing the separat-
ing dashed lines to get one big set containing the original two sets as subsets.
Clearly A ∪ B = B ∪ A. The plain union A ∪ B enjoys the following univer-
sal property: whenever we have inclusions A ⊂ S and B ⊂ S then there is
induced an inclusion A ∪ B ⊂ S (unique, since set-theoretic inclusions are al-
ways unique). In fact this property characterises A ∪ B completely: it is the
smallest set containing both A and B. In this sense, the plain union is more or
less nature given – it is not a construction.

The notion of disjoint union is designed to do for general maps what the
plain union does for set-theoretic inclusions – inclusions form a very restricted
class of maps. In return, the notion is more abstract and somewhat more artifi-
cial.
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The universal property we require is the coproduct property (cf. A.3.4 in
the Appendix): A

∐
B should be a set equipped with two structure maps A →

A
∐

B ← B such that for every set S and every pair of maps A → S ← B,
there is a unique map A

∐
B → S such that this diagram commutes:

S

A �

�
A

∐
B

∃!
�

� B

�

Now, A and B may have some subset in common, but nothing forces the
maps to S to agree on the overlap. So in our construction of A

∐
B we have

to take two copies of each of the elements in the overlap and keep track of
which copy belonged to which set. In other words, we need to label those
twice-appearing elements – or label all the elements, as we shall do for the
sake of uniformity. An obvious idea for doing this is to use the names of
the two sets as labels, and declare the disjoint union A

∐
B to be the set

{vA,wA, xA, yA, xB, yB, zB}. However, the names of the sets are inappropriate
as labels – think of the degenerate (but important) case where we take disjoint
union of two identical sets, say A

∐
A. What is needed is some external distinc-

tion of the two copies of A. For example we could use a positional approach,
like distinguishing the two sets by calling one the left-hand set and the other
the right-hand set. Otherwise we could exploit the fact that we write text in
a linear way, so that one set comes before the other, and use the labels ‘sub-
script 1’ and ‘subscript 2’. This has the advantage that we immediately get a
notion of disjoint union of any n-tuple of sets. A side effect of this is that we
introduce an ordering on the collection of sets involved.

Let us define A
∐

B to be the set {v1, w1, x1, y1, x2, y2, z2}. No matter how
we choose to label, the important remark is that A and B are not subsets of
this set! The point is that to consider A as a subset we would need x = x1

(and y = y1) , and to consider B a subset we would need x = x2 (and y = y2),
which together would imply x1 = x2 (and y1 = y2) (by transitivity of =), and
thus we would have the plain union instead of the disjoint union!

What we do have in our construction are injective maps A ↪→ A
∐

B and
B ↪→ A

∐
B. These maps simply put the relevant index on each element, e.g.

v �→ v1. (Note that these two maps do not agree on the overlap: on A we have
x �→ x1, and on B we have x �→ x2.) These injections are a crucial part of the
structure since they provide the relation between the original sets and the new
one we constructed. Using this relation it is an easy exercise to see that our
construction does indeed have the universal property.
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The universal property has important consequences: first of all, if we choose
another labelling scheme (for example, declaring the disjoint union of A and B

above to be {vleft, wleft, xleft, yleft, xright, yright, zright}) then the universal prop-
erty gives a canonical comparison bijection between these two sets. In this way
it is immaterial what we choose to call the elements of the disjoint union. The
important thing is that we know how to relate to the original two sets, and this
information is provided by the structure injections.

Let us stick to the definition we made above, using natural numbers as
labels.

We already mentioned that this labelling scheme in an obvious way gener-
alises to a notion of disjoint union of any n-tuple of sets. We should note that
this works also for n = 0: the disjoint union of no sets. The universal property
in this case is this: the disjoint union of these 0 sets is a set P0 equipped with
maps from each of the given sets (there are none), such that for every other
such set S, there is a unique map P0 → S. In other words, P0 is the initial
object in Set , the empty set (cf. A.3.1).

A category with such n-ary products for all n, and satisfying certain axioms,
is called a monoidal category – in Chapter 3 we will be more precise. The
category (Set ,

∐
, ∅) is a monoidal category.

Now we come finally to the promised remark: that A
∐

B �= B
∐

A. This
just means that these two sets are not identical. But what is the difference?
Just that the labels 1 and 2 are interchanged. So this difference is just a special
case of the freedom of choosing labels, and thus there is a bijection τA,B :
A

∐
B ∼→ B

∐
A, called the twist map. The twist map does nearly nothing –

if you compose with the structure injections you get the identity maps! – it
only interchanges label, or, if we think of the labels as indicating position, it
changes the order of the two ‘factors’. Actually we get a whole family of maps:
one for each pair of sets. This family is natural, in the specific categorical
sense: it means that given two pairs of sets with arrows between them like this
f : X → Y and f ′ : X′ → Y ′, then it makes no difference whether we apply
the twist on X

∐
X′ and then apply the function f ′

∐
f or whether we first

apply the function f
∐

f ′ and then the twist on Y
∐

Y ′.
The twist map has some other obvious properties (e.g. τA,BτB,A = id

A
∐

B
).

With these properties it is the prototype of what is called a symmetric struc-
ture on a monoidal category: (Set ,

∐
, ∅, τ ) is an example of a symmet-

ric monoidal category. We will study this notion and be more precise in
Chapter 3.

1.3.25 Disjoint unions of manifolds. Given two manifolds � and �′, we can
form their disjoint union �

∐
�′, which is again a manifold. If � and �′ are
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oriented, then there is a unique orientation on �
∐

�′ such that the inclusion
maps are orientation preserving. Just as in the category of sets,

∐
is the co-

product in the category of (oriented) manifolds. Again the empty manifold is
initial object. What we want to say (and we will say it with more authority in
3.2.25) is that the category of (oriented) manifolds, disjoint union and empty
set is a monoidal category.

Just as for sets, there is a twist map τ�,�′ : �∐
�′ ∼→ �′∐�. It just in-

terchanges the two ‘factors’ – it is clearly a diffeomorphism. All told, these
structures turn the category of (oriented) manifolds into a symmetric monoidal
category.

1.3.26 Disjoint union of cobordisms. Given two cobordisms M : �0 �1

and M ′ : �′
0 �′

1, then likewise we can form their disjoint union M
∐

M ′
which is naturally a cobordism from �0

∐
�′

0 to �1
∐

�′
1.

Again we have the empty cobordism ∅n : ∅n−1 ∅n−1.
The notion of disjoint union of two cobordism classes is obvious: take a

representative for each cobordism and form their disjoint union. Taking other
representatives clearly yields disjoint unions which are diffeomorphic (and
the identity on the boundary), so the disjoint union of cobordism classes is
well defined. This is to say, the triple (nCob ,

∐
, ∅) is a monoidal category,

(cf. 3.2.44).

1.3.27 Twist cobordisms and symmetric structure. We saw in 1.2.16 that ev-
ery diffeomorphism �0 → �1 induces a cobordism �0 �1, via the cylin-
der construction. Now the cobordism corresponding to the twist diffeomor-
phism �

∐
�′ ∼→ �′∐� will be called the twist cobordism (for � and �′),

denoted T�,�′ : �∐
�′ �′∐�. We draw it like this

�

�′

�′

�

(The drawing is not meant to indicate that the two components intersect: the

reason for drawing it like this instead of something like or is to
avoid any idea of crossing over or under. Since we are talking about abstract
manifolds, not embedded anywhere, it has no meaning to talk about crossing
over or under.)

Now just as for sets and for manifolds, the twist cobordism satisfies the
properties necessary to classify as a symmetric structure on the monoidal
category (nCob ,

∐
, ∅). These properties are treated in detail in Chapter 3
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(page 161). The property which will be important to us here is the naturality
property:

1.3.28 Lemma. Consider two cobordisms M : �0 �1 and M ′ : �′
0

�′
1. Then the following square commutes

�0
∐

�′
0

M
∐

M ′
�1

∐
�′

1

�′
0

∐
�0

M ′ ∐ M
�′

1

∐
�1

T�0,�′0
T�1,�′1

Proof. Start by changing the diagram a bit by reversing the direction of the
right-hand twist map – so here we depend on another crucial property of the
twist map which is easy to see holds: T�1,�

′
1

is invertible and its inverse is
T�′

1,�1
. Now the statement amounts to comparison between the cobordism

M
∐

M ′ itself and the composite T
�0

∐
�′

0
(M ′∐M) T

�′
1

∐
�1

. Writing out the

underlying smooth maps, the diagram we want to establish is this:

M
∐

M ′

�0
∐

�′
0

�

�1
∐

�′
1

�

�′
0
∐

�0

�

�′
1
∐

�1

�

M ′∐M
��

To prove that these two cobordisms are equivalent in the sense of 1.2.17,we
need to exhibit a diffeomorphism from M

∐
M ′ to M ′∐M making the diagram

commute. But this is easy: the twist diffeomorphism does the job! �

As an exercise in disjoint union, let us prove this

1.3.29 Lemma. Let M ′ : �′
0 �′

1 and M ′′ : �′′
0 �′′

1 be two cobor-
disms (of the same dimension). If the disjoint union cobordism M :=
M ′∐M ′′ : �′

0

∐
�′′

0 �′
1

∐
�′′

1 is invertible then M ′ and M ′′ are also in-
vertible cobordisms.

Proof. (For simplicity we will make the extra assumption that the four sigma
manifolds are nonempty.) That M is invertible means there exists a cobordism
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N : �′
1

∐
�′′

1 �′
0

∐
�′′

0 such that MN = C
�′

0

∐
�′′

0
= C�′

0

∐
C�′′

0
, the cylin-

der over �′
0

∐
�′′

0 . Now this cobordism is nonconnected so it follows also that
N is nonconnected: it can then be written as a disjoint union N = N ′∐N ′′ with
N ′ : �′

1 �′
0 and N ′′ : �′′

1 �′′
0 . Now we can look at the connected com-

ponents separately. For the one-primed part we see M ′N ′ : �′
0 �′

1 �′
0

is the cylinder C�′
0
, and similarly the two-primed part M ′′N ′′ is the cylinder

C�′′
0
. Repeating the arguments with M and N in the converse order shows that

N ′ is indeed an inverse to M ′ and that N ′′ is an inverse to M ′′. �

Using this we can prove the following generalisation of Lemma 1.3.19.

1.3.30 Lemma. If M : �0 �1 is invertible then �0 and �1 have the same
number of connected components.

Proof. The case where M is connected is Lemma 1.3.19. If M has more than
one connected component, then by composing with a twist map (a permutation
of the boundaries) if necessary, we can assume that M is the disjoint union of
cobordisms with fewer connected components. Each of these is invertible by
the previous lemma, and so the result follows by induction on the number of
components. �

Topological quantum field theories

1.3.31 Vector spaces. Consider the category Vectk of vector spaces over a
field k and k-linear maps. Equipped with tensor product as ‘paralleling’, with
the ground field as neutral space, and with the canonical twist map σ which
interchanges the two factors of a tensor product, (Vectk,⊗, k, σ ) is also a
symmetric monoidal category. (For the definition of vector spaces and tensor
product, see 2.1.1; for the definition of monoidal categories (and symmetric
monoidal categories) see Chapter 3 (notably 3.2.4, 3.2.34, and 3.2.28).)

A monoidal functor (between two monoidal categories) is one that preserves
the monoidal structure. A symmetric monoidal functor between two symmetric
monoidal categories is one that sends the symmetry of one monoidal category
to the symmetry of the other. The precise definitions are given in Chapter 3.

As already mentioned, this terminology allows for an elegant restatement
of the definition of topological quantum field theory.

1.3.32 Functorial definition of topological quantum field theories. An
n-dimensional topological quantum field theory is a symmetric monoidal func-
tor from (nCob ,

∐
, ∅, T ) to (Vectk,⊗, k, σ ).
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Let us compare this definition with the first one (1.2.23). Suppose we have
a TQFT in the sense of 1.2.23. Then axiom A1 implies that we have a well
defined map A from nCob to Vectk (i.e. that it only depends on the class of
M). Axioms A2 and A3 say that this is really a functor: it respects identities
and composition.

Axioms A4 and A5 state that the functor is monoidal, namely it takes dis-
joint union to tensor products, and takes the neutral object ∅ to the neutral
object k.

Finally we should require A to take the symmetry to the symmetry, in
order for A to be a symmetric monoidal functor. This was not stated as a
requirement in the first definition of a TQFT, because it is quite difficult to
imagine how it could be otherwise. . . but it should have been included. We
will come back to this discussion in 3.3.3.

1.3.33 Historical remarks. The concept of topological quantum field theory
is due to Witten [50] (1988) – see also the reference list in Atiyah’s paper [5].
Mathematical axioms for TQFTs were given by Atiyah [5]. In Quinn’s 1991
lectures [43], the categorical viewpoint is well developed. Quinn also takes the
opportunity to generalise the whole setting: in his definition a TQFT does not
only talk about cobordisms, but more generally about a domain category for
TQFT which is a pair of categories related by certain functors and operations
which play the rôle of space and space-time categories in the usual cobordism
setting. In this more general setting the domain category can also be of combi-
natorial or algebraic nature instead of geometric or topological.

The observation 1.2.25 that the TQFT axioms actually imply finite dimen-
sionality was probably first made by Quinn [43]. It seems that this fact has
largely been overlooked in the literature on TQFTs: most texts require explic-
itly the vector spaces to be of finite dimension, with excuses like ‘otherwise
we get convergence problems with infinite sums’ (cf. Example 1.2.29).

Exercises

1. Given two diffeomorphisms �0

φ0∼→ �1

φ1∼→ �2 between closed (n− 1)-
manifolds, show that the cylinder construction (1.3.22) gives this equality
of cobordism classes: Cφ0Cφ1 = Cφ0φ1 .

2. In the situation of 1.3.26, use the universal property of
∐

in the category
of (oriented) manifolds to make explicit in which sense M

∐
M ′ is naturally

a cobordism from �0
∐

�1 to �′
0

∐
�′

1, as claimed in 1.3.26. (Construct
natural maps �0

∐
�1 → M

∐
M ′ and �′

0

∐
�′

1 → M
∐

M ′.)
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3. In the category 2Cob of all 2-dimensional cobordisms, consider a circle �.
Consider the set E := Hom2Cob (�,�) of all cobordism classes from � to
itself, and the subset H of all cobordism classes whose underlying manifold
is connected. Show that E is a monoid, and that H is a submonoid.

4. (Durhuus and Jónsson [20].) Show that the following notion of direct sum
of TQFTs is again a TQFT. The direct sum A of two n-dimensional
TQFTs A ′ and A ′′ associates to each connected (n− 1)-manifold �

the direct sum vector space: �A := �A ′ ⊕�A ′′, and to each non-
connected (n− 1)-manifold it associates the tensor product of the vec-
tor spaces associated to its connected components. To each connected n-
cobordism M : �0 �1 it associates the direct sum linear map MA :=
MA ′ ⊕MA ′′ : �0A → �1A , and to each nonconnected M , it asso-
ciates the tensor product of the maps associated to its connected compo-
nents.

1.4 Generators and relations for 2Cob

The categories nCob are very difficult to describe for n ≥ 3. But the category
2Cob can be described explicitly, and that is the goal of this section. (The rea-
son for this difference is of course that while there is a complete classification
theorem for surfaces, no such result is known in higher dimensions.)

So 2Cob is the category whose objects are the closed oriented 1-manifolds,
and whose arrows are the diffeomorphism classes of oriented cobordisms be-
tween them. The aim of this section is to describe a set of generators and rela-
tions for this category. What does this mean?

Preliminary observations

We will come to categories in a short moment, but first, to warm up, let us
consider an example of generators and relations for a group, the symmetric
group. We will need this result anyway.

1.4.1 Generators and relations of a group. Let G be a finite group. A gener-
ating set for G is a subset S ⊂ G such that every element in G can be written
as a product of elements in S (and their inverses). A relation (or a rewriting
rule) is the equality of two ways of writing a given element in terms of the
generators. A set of relations R is complete if every other relation that holds in
G can be established by combining the relations of R.
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1.4.2 Moore’s theorem. (Cf. Moore [38] (1897). See Coxeter and Moser [13]
for a more accessible reference.) Let Sk denote the symmetric group on k ≥ 4
letters {x1, . . . , xk}. Then Sk is generated by the transpositions that inter-
change two adjacent letters,

τi := (xi xi+1) i = 1, . . . , k − 1,

subject to the following relations:

τiτi = id

τiτj τi = τj τiτj for j = i + 1

τiτj = τj τi for j > i + 1.

(It is also possible to present Sk by only two generators, e.g. (x1 x2) and
(x1 x2 · · · xk), but then the relations are more complicated (cf. [13], 6.2), and
that presentation is not well suited for our purposes.)

Now we can think of the symmetric group Sk as the category of invertible
maps from the set {x1, . . . , xk} to itself. If we draw the set {x1, . . . , xk} as a
column of dots, then we get the following sort of pictures for a bijective set
mapping (i.e. element in Sk). Here we draw the three generators for S4:

And here are all the relations:

= = =

=
=

=

1.4.3 Paralleling as generating concept. We notice that the generators in turn
are just variations of this transposition (element in S2):



58 Cobordisms and TQFTs

combined in parallel with identity permutations. If we allow paralleling as a
generating concept, then there is only need for one single generator, namely
that one. Similarly, using parallel coupling, all the relations can be obtained
from these two:

=

=

(Arranging things in parallel is really like taking their disjoint union. In
this way, what we are seeing here is actually part of a monoidal structure.
However, if we take two elements of S2 and couple them in parallel, what
we get is not a new element in S2 but rather an element in S4. So in order
to really get something monoidal we should take not only Sk , the category
of invertible maps from {x1, . . . , xk} to itself, but rather the category of all
the invertible maps on any of the sets {x1, . . . , xk}, with k running from 0
to infinity. . . Compare 3.4.23, and don’t miss Exercise 2 at the end of this
section.)

1.4.4 From groups to categories. We mentioned that the symmetric group
Sk can be interpreted as the category of all invertible maps from a certain set
S = {x1, . . . , xk} to itself. In other words, it is a subcategory of Set , which
comprises exactly one object (namely S) and all of whose arrows are invert-
ible. This observation exploited the idea that the elements in the group Sk

are already maps of a sort. But in fact (cf. 3.1.11 and 3.1.19), any group can
be interpreted as a category (a category with only one object, and such that
all arrows are invertible – the group elements correspond to the arrows in the
category). Via this observation we are led to the concept of

1.4.5 Generators and relations for a category. A generating set for a cat-
egory C is a set S of arrows such that every arrow in C can be obtained by
composing the arrows of S. A relation is the equality of two ways of writing a
given arrow in terms of the generators. A set R of relations is complete if every
relation can be obtained by combining the relations in R.

For large categories, like the category of vector spaces or the category of
cobordisms, there are too many objects to get hold of a generating set. (In
fact, the word ‘large’ has a precise technical meaning: these categories have
so many objects that they do not even form a set. A generating ‘set’ of arrows
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will always have at least as many elements as there are objects, so it will not be
a set either. While these questions are interesting enough we will not go into
them in these notes. . . )

Before looking for generators of a large category like this, it is necessary to
cut it down to a more manageable size – this is common sense, independent of
the more philosophical considerations of the parenthesis above. The way to do
that is the standard construction of taking a skeleton of a category.

1.4.6 Skeletons of a category. A skeleton of a category C is a full subcategory
comprising exactly one object from each isomorphism class.

A skeleton Z ⊂ C captures the essential structure of C in the sense that
it is equivalent to C (cf. A.2.8): the embedding Z ↪→ C is full, faithful, and
essentially surjective by construction. The reason why it is called a skeleton
is that it is a minimal category with this property: if we took a subcategory of
a skeleton with fewer objects we would lose essential surjectivity, and if in-
stead we took fewer arrows we would lose fullness. The skeleton construction
is not canonical however: in general, there is no canonical way of choosing
a representative from each isomorphism class, but the various possible skele-
tons are always isomorphic. (An isomorphism between two skeletons can be
constructed by means of the isomorphisms between the representatives.)

1.4.7 Example from linear algebra. While all this may sound very abstract,
it is actually something that we do every day without thinking so much about
it. As a brief example, consider the category of real vector spaces (of finite
dimension) and linear maps. We know that every vector space of dimension n

is isomorphic to R
n, so as skeleton we take the subcategory consisting of the

vector spaces R
n, n ≥ 0. The linear maps between these spaces are given by

the m-by-n matrices. What are the generators now? Well, we know that every
matrix (of size m-by-n and of rank r , say) can be written as a matrix product
(= composition of linear maps) of form ADB where A and B are invertible
square matrices (of size m and n respectively) and D is a matrix consisting of
zeros, except for an r-by-r minor identity matrix. The invertible matrices in
turn can be written as a product of elementary matrices. So a set of generators
for the category of vector spaces R

n are the elementary matrices together with
those nonsquare matrices of form D as described. . .

So instead of finding generators for the large category 2Cob we will content
ourselves with finding generators for a skeleton.

1.4.8 The objects of 2Cob. The first observation is that every closed oriented
1-manifold is diffeomorphic to a finite disjoint union of circles – remember
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that closed implies compact. More concretely, we can fix one specific circle �

and affirm that every connected closed 1-manifold is diffeomorphic to �, and
that every closed 1-manifold with n connected components is diffeomorphic
to the disjoint union of n copies of �.

Note that even if we have a given circle and a copy of it with reverse ori-
entation, there is an orientation-preserving diffeomorphism between them: to
be concrete, take the two copies and place them in the plane at each side of a
line, and at equal distance; now reflection in the line provides an orientation-
preserving diffeomorphism between them:

The second observation is trickier:

1.4.9 Proposition. Two closed oriented 1-manifolds �0 and �1 are diffeomor-
phic if and only if there is an invertible cobordism between them.

Proof. We have seen that given a diffeomorphism we can use the cylinder con-
struction 1.2.16 to get an invertible cobordism. For the converse statement,
notice first that by the first observation, it is enough to show that if there is an
invertible cobordism M : �0 �1 then �0 and �1 have the same number
of connected components. But this was proved in 1.3.30. �

In conclusion, two objects of 2Cob (i.e. two closed 1-manifolds) are in
the same isomorphism class of 2Cob (i.e. there exists an invertible cobordism
between them) if and only if they have the same number of connected compo-
nents. In fact more is true: the only invertible 2-cobordisms are those induced
from diffeomorphisms.

Recall that two diffeomorphisms induce the same cobordism class if and
only if they are homotopic. Now in dimension 1, it is easy to classify all dif-
feomorphisms up to homotopy: every orientation-preserving diffeomorphism
from the circle to itself is homotopic to the identity. (This can be seen for exam-
ple by noting that the winding number classifies the homotopy classes of maps
S1 → S1, and only winding number 1 can be an (orientation-preserving) dif-
feomorphism.) So in general, for a closed 1-manifold, up to homotopy the only
diffeomorphisms are the permutations of its connected components. Hence the
only invertible 2-cobordisms are the permutation cobordisms (with the identity
permutation corresponding to the identity cobordism).

(Anticipating the themes of the next section, here is another argument why
the only invertible cobordism from a circle to a circle is the cylinder: the genus
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of a composite is at least the sum of the genera, so only cobordisms of genus 0
can be invertible. . . )

1.4.10 Skeleton of 2Cob. So we get a skeleton of 2Cob as follows. Let 0
denote the empty 1-manifold; let 1 denote a given circle �, and let n denote
the disjoint union of n copies of �. Then the full subcategory {0, 1, 2, . . . } is a
skeleton of 2Cob . (The arrows are all the possible cobordisms between these
objects.)

By abuse of notation we will denote this category 2Cob , or otherwise we
make the abusive convention that when we speak of generators and relations
for 2Cob we really mean generators and relations of this skeleton.

1.4.11 Generators for a monoidal category. Notice that the chosen skeleton
is closed under the operation of taking disjoint union, and that in fact dis-
joint union is the main principle of its construction. Since now we have this
monoidal structure we should use it, so instead of allowing only composition
as the engine for generating new cobordisms from old ones, we will also al-
low disjoint union. This means we are really talking about an ampler notion of
generating set.

A generating set for a monoidal category C is a set S of arrows such that
every arrow in C can be obtained from the arrows in S by combining composi-
tion and ‘monoidal paralleling’. (This last term is nothing official: in our case
it means disjoint union.) In figurative terms, a generating set is a set of simple
building blocks from which every cobordism can be obtained by parallel and
serial connection.

For example, the cylinder over a disjoint union of two circles is itself
the disjoint union of two cylinders (over a circle) so if is in the set of
generators we do not need .

1.4.12 The twist. Since we have included disjoint union as one of the allowed
operations by which we generate, we can largely concentrate on cobordisms
which are connected. But not completely: for each object n, (n ≥ 2), there are
cobordisms n n which are not the identity. For example, for 2 (the disjoint
union of two circles), we have the twist (cf. 1.3.27):

It is important to notice that the twist is not the disjoint union of two identity
cobordisms: precisely, it is not equivalent to the disjoint union of two cylinders,
since the diffeomorphisms realising an equivalence are required to respect the
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boundary. The point is that the two copies of � can be distinguished, as ex-
plained in 1.3.24 (otherwise there would be no meaning in saying they are
disjoint!) Usually we make this distinction by calling one copy ‘the first copy’
and the other ‘the second copy’. But we could also choose a point in �

∐
� and

distinguish the two copies by telling which one contains the point and which
one does not. In this viewpoint, the true identity (the cylinder over �

∐
�)

has the property that this point stays on the same connected component of
the cobordism, while in the twist it changes component, so therefore the two
cannot be diffeomorphic.

Generators

Let us state right away the results about generators.

1.4.13 Proposition. The monoidal category 2Cob is generated under compo-
sition (serial connection) and disjoint union (parallel connection) by the fol-
lowing six cobordisms:

and

It should be noted that usually one does not include identity arrows when
listing generators for a category, because identity arrows are automatically
in every category, by definition. This is similar to the usage for groups or
monoids: one says (N,+, 0) is generated by 1, without listing 0: the element 0
can be written as a sum of 1s, namely the empty sum, so in this sense 0 is even
generated by the empty set! Here we include as generator just because it
makes it easier to think of cutting up surfaces in pieces. Since we include this
superfluous generator, we will also get some corresponding extra relations,
cf. 1.4.24.

We give two proofs of Proposition 1.4.13, since they both provide some
insight. In any case some nontrivial result about surfaces is needed. The first
proof relies directly on the classification of surfaces (quoted below): the con-
nected surfaces are classified by some topological invariants, and we simply
build a surface with given invariants! To get the nonconnected cobordisms we
use disjoint union and permutation of the factors of the disjoint union. Since
every permutation can be written as a composition of transpositions, the sixth
generator suffices to do this. The drawback of this first proof is that it does
not say so much about how a given surface relates to this ‘normal form’ – this
information is hidden in the quoted classification theorem.
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The second proof relies on a result from Morse theory (which is an ingredi-
ent in one of the possible proofs of the classification theorem (cf. Hirsch [27])),
and here we do exactly what we missed in the first proof: start with a concrete
surface and cut it up in pieces; now identify each piece as one of the gener-
ators. (Philosophy: If you have something complicated it is easier to split it
apart than to assemble it from its parts. . . )

1.4.14 Genus and Euler characteristic of surfaces. Let us first give a couple
of reminders on surfaces. The genus of a compact, connected, oriented surface
is intuitively the number of holes. So a sphere has genus 0, and a torus genus 1.
For a surface with boundary, the genus is defined to be the genus of the closed
surface obtained by sewing in discs along each boundary component. So a
disc also has genus 0, because if you sew in a disc along its boundary you get a
sphere. With this definition it is obvious that the genus does not detect anything
related to the boundary. To this end the Euler characteristic is better.

One way to define the Euler characteristic is in terms of triangulations: if
V,E, F are the numbers of vertices, edges and faces of a triangulation of a
surface M then the Euler characteristic is

χ(M) = V − E + F.

So the Euler characteristic of a disc is 1, and the Euler characteristic of a sphere
is 2. Notice that removing a disc from a surface amounts to decrementing F , so
the Euler characteristic drops: the cylinder has Euler characteristic 0; the pair-
of-pants has −1. The relation between the Euler characteristic and the genus g

of a surface is

χ(M)+ k = 2− 2g

where k is the number of missing discs (i.e. the number of boundary compo-
nents).

The Euler characteristic enjoys a cutting property: if M = A ∪ B then
χ(M) = χ(A)+ χ(B)− χ(A ∩ B). This is particularly convenient if M is a
2-dimensional cobordism. Then decomposing it M = M0M1 amounts to cut-
ting along circles S1, and we have χ(S1) = 0 (as you can easily compute via
a triangulation), so the outcome is this formula:

χ(M) = χ(M0)+ χ(M1).

Finally, we should mention that the Euler characteristic of a surface M can
be computed by taking a Morse function f : M → I and summing over all the
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critical points. The formula is

χ(M) =
∑

x critical

(−1)indexf (x).

1.4.15 Topological classification of surfaces. The classical result classifying
surfaces without boundary is (cf. Hirsch [27], Theorem 9.3.5.):

Two connected, compact oriented surfaces without boundary are diffeomor-
phic if and only if they have the same genus (or equivalently: the same Euler
characteristic).

(Note that the reflection argument of 1.4.8 shows, also for surfaces, that
there is always an orientation-reversing diffeomorphism from any surface to
itself, so reversing the orientation does not provide anything new.)

If a compact surface has boundary then this boundary is the disjoint union
of finitely many circles, each bounding a ‘missing disc’. The following result
shows that these missing discs can move around freely without changing the
topology:

Two connected, compact oriented surfaces with oriented boundary are dif-
feomorphic if and only if they have the same genus and the same number of
in-boundaries and the same number of out-boundaries.

The Euler characteristic can detect boundary components, but not their ori-
entation, so to classify surfaces via the Euler characteristic we still need to
specify how many of the boundaries are in and how many are out.

1.4.16 ‘Normal form’ of a connected surface. It is convenient to intro-
duce the normal form of a connected surface with m in-boundaries, n out-
boundaries, and genus g. It is actually a decomposition of the surface into a
number of basic cobordisms. The normal form has three parts: the first part
(called the in-part) is a cobordism m 1; the middle part (referred to as the
topological part) is a cobordism 1 1; and the third part (the out-part) goes
1 n.

Before giving the precise description, let us draw a figure of the normal
form in the case m = 5, g = 4, and n = 4.

Let us describe the in-part. Suppose first that m > 0. Take m− 1 copies

of and compose them, together with the appropriate number of cylinders,
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in such a way that the output of one connects to the lower input hole of

the following . In other words, the involved cylinders always come on top
of the pair-of-pants, in the disjoint union sense. In the case m = 0, instead of
having any pair-of-pants, the whole in-part just consists of a single .

The out-part is described similarly: for n > 0 we have the composition of

n− 1 copies of composed in such a way that the lower output hole of each
piece connects to the input hole of its sequel. (So again, the cylinders needed to

complete the picture appear on top of the .) In the case n = 0, the out-part
consists of a single copy of .

Finally, the topological part consists of g pieces of type ; this gives
a piece with one in-boundary, one out-boundary, and genus g. (Here you can
either think of g as the number of holes, or you can measure it in a more
formal way by computing the Euler characteristic – exploiting the fact that
χ(M) = χ(M0)+ χ(M1), as we will do in 1.4.36.)

The normal form is at the same time a recipe for constructing any connected
cobordism from the generators. Thus we have:

1.4.17 Lemma. Every connected 2-cobordism can be obtained by composi-

tion and disjoint union of the generators , , , , . �

1.4.18 Nonconnected cobordisms. If a cobordism M is not a connected man-
ifold it is the disjoint union of connected manifolds. But this is not enough
to prove Proposition 1.4.13, because that result refers to the specific notion of
disjoint union of cobordisms, which implies compatibility with disjoint union
of the boundaries. The easiest example of this distinction is the twist: we ex-
plained in 1.4.12 that although the twist (as a manifold) is the disjoint union of
two cylinders, it is not the disjoint union (as cobordism) of two identity cobor-
disms. But by permuting the boundaries we can fix that, as we now explain in
more detail.

Let M : m n be a cobordism. So it is a manifold whose in-boundary is
�1

∐
�2

∐ · · ·∐�m and whose out-boundary is �′
1

∐ · · ·∐�′
n. All the sigmas

are just copies of one and the same circle �, but we have given them different
names just to record their position in the disjoint unions – according to our
discussion in 1.3.24.

For simplicity, assume M has two connected components, M0 and M1. The
in-boundary on M0 is a subset p of �1

∐
�2

∐ · · ·∐�m, and the in-boundary
of M1 is the complement q of this subset, but there is no reason why these
subsets should consist of the p first circles and the q last ones. But we can just
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permute the components of m: take a diffeomorphism m ∼→ m which places
the subset p before the subset q. This diffeomorphism induces a cobordism S,
and we can now look at the cobordism SM : m n instead. Let (SM)0 and
(SM)1 denote the two connected components of this manifold. Now SM has
the property that its in-boundary is the disjoint union of the in-boundaries of
(SM)0 and (SM)1.

Applying the same arguments to the out-boundary of M (= the out-
boundary of SM) we can also find a permutation cobordism T : n n such
that altogether SMT : m n is a cobordism which is the disjoint union of
its connected components – as a cobordism.

Consider this example:

M0M1
M

M is not the disjoint union cobordism of its connected components. But we
can permute the boundaries by composing with two cobordisms S and T :

S M T

and this cobordism SMT is the disjoint union of its connected components
(SMT )0 and (SMT )1:

(SMT )0

(SMT )1

We have shown:

1.4.19 Lemma. Every 2-cobordism factors as a permutation cobordism, fol-
lowed by a disjoint union of connected cobordisms, followed by a permutation
cobordism. �
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(These permutation cobordisms are the inverses of those used in the arguments
above. . . )

Combining these results we get a

1.4.20 First proof of Proposition 1.4.13. By Lemma 1.4.19, every 2-
cobordism factors into permutation cobordisms and a disjoint union of con-
nected cobordisms. By Lemma 1.4.17, the connected pieces can be written in
terms of the listed generators. Finally, since the symmetric groups are gener-
ated by transpositions (cf. 1.4.2 and 1.4.3), the permutation cobordisms can be
obtained by composition and disjoint union of the twist cobordism (together
with cylinders). �

To be specific with our example above:

=

(Of course one can often find more direct decompositions – for example,

=

is another way of writing the example above.)

The Morse theoretic proof of Proposition 1.4.13 is different in spirit. The
key is to characterise the generators in terms of their critical points. Part of
this task was done in the regular interval theorem (1.3.8), where we saw that a
cobordism admitting a Morse function without critical points is diffeomorphic
to a cylinder. Now this was a diffeomorphism rel only one of the boundaries,
so it is not enough to conclude that the cobordism is equivalent to the iden-
tity cobordism. But in any case we noted that such a cobordism �0 �1

is induced by a diffeomorphism ψ : �0
∼→ �1, and 2-cobordisms induced by

diffeomorphisms are equivalent to permutation cobordisms. So we have the
following:

1.4.21 Corollary to the regular interval theorem (1.3.8). If a cobordism
admits a Morse function without critical points then it is equivalent to a
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permutation cobordism. And thus it can be built from the twist cobordism (and
the identity).

The next ingredient is this lemma, which we state without proof.

1.4.22 Lemma. (See Hirsch [27], 4.4.2.) Let M be a compact connected ori-
entable surface with a Morse function M → [0, 1]. If there is a unique critical
point x, and x has index 1 (i.e. is a saddle point) then M is diffeomorphic to a
disc with two discs missing (these three boundaries are over 0 and 1). In other
words we have

x

0 1t

or

x

0 1t

1.4.23 Morse theoretic proof of Proposition 1.4.13. Consider a cobordism
M : �0 �1, and take a Morse function f : M → [0, 1]with f−1(0) = �0

and f−1(1) = �1. Take a sequence of regular values a0, a1, . . . , ak in such a
way that there is (at most) one critical value in each interval [ai, ai+1]; consider
one of these intervals, [a, b]. We can assume there is at most one critical point x
in the inverse image M[a,b]. The piece M[a,b] may consist of several connected
components: (at most) one of them contains x; the others are equivalent to
permutation cobordisms, according to Corollary 1.4.21. These pieces can be
chopped up further into twist cobordisms and identities (cf. once again the
observation that transpositions generate the symmetric groups).

So we can assume M[a,b] is connected and has a unique critical point x.
Now if x has index 0 then we have a local minimum, and then M[a,b] is a disc
like this:

x

If the index is 2 then we have a local maximum, and M[a,b] is a disc like this:

x

And finally if the index is 1 then we have a saddle point, and by Lemma 1.4.22,
M[a,b] is then topologically a disc with two holes, so in our picture it looks like
one of these:

x x

�
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Relations

We will first list all the relations. Afterwards we prove that they hold, and
provide some more comments on each relation.

1.4.24 Identity relations. First of all, we have already shown that the cylinders
are identities. This gives a bunch of relations:

= = =

= = = =

= =

(Note that is the identity for 2.)

1.4.25 Sewing in discs. The following relations hold.

= = = =

(Basically, we are just sewing a disc in one of the holes of the pair-of-pants,
but while this operation is fairly easy to grasp, it is not a composition of cobor-

disms! Indeed, is a cobordism from 0 to 1, while goes from 2 to 1, so it
makes no sense to compose them. For this reason we need to put in a cylinder
as well.)

1.4.26 ‘Associativity’ and ‘coassociativity’. These relations hold:

= =

1.4.27 ‘Commutativity’ and ‘cocommutativity’. We have:

= =

And finally:



70 Cobordisms and TQFTs

1.4.28 ‘The Frobenius relation’ holds:

= =

1.4.29 Easy proof of all the above relations. Simply note that in each case
the surfaces have the same topological type, so according to the classification
theorem they are diffeomorphic: they all have genus 0 and they have the same
number of in-boundaries and out-boundaries. �

Here is another viewpoint which is perhaps more enlightening.

1.4.30 The viewpoint of nested discs. Let us here be concerned with the left-
hand versions of the relations 1.4.24–1.4.26, those involving and . They
are the surfaces having a single out-boundary. The cap has no other boundaries,
so it is a disc; the cylinder also has an in-boundary, so it is a disc with a missing
disc; and the pair-of-pants is a disc with a further two discs missing. With the
orientation of their boundaries they look like this:

With this graphical representation it is easier to realise the relations via de-
compositions. In the following three paragraphs we only prove the left-hand
version of the relations. Reversing the orientation gives the right-hand rela-
tions.

1.4.31 Proof of relation 1.4.25 via nested discs. This relation comes about
by decomposing the cylinder, cutting it along the disjoint union of two circles,
like this:

This we interpret as the composition ‘sewing in a cylinder and a disc in a pair-
of-pants’:
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composed with

1.4.32 Proof of 1.4.26. Similarly, the associativity relation 1.4.26 is obtained
by making two different decompositions of the disc with three missing discs:

65

4

3

2

1

=

65

4

3

2

1

The small numbers are just to facilitate comparison with our usual associativity
equation:

=6

5

4

3

2

1

6

5

4

3

2

1

1.4.33 Commutativity in terms of nested discs. The commutativity rela-
tion 1.4.27 is difficult to draw, but easy to understand: it amounts to the fact
that we can move the two in-boundaries around freely in

Hereby we have exhausted the possibilities for composing with itself

and with , and we have also exhausted the possibilities for composing
with itself and with . Now we must see whether there are any relations for

combinations of these, in particular combinations of and .

1.4.34 Decomposition proof of 1.4.28. To start with, let us notice that the
associativity relation 1.4.26 can be drawn like this:

6

5
3

4

2

1

=
6

4

3
5

2

1

where the small numbers serve for comparison with the pictures in 1.4.30.
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Reversing the orientation of the boundary with number 3 (and changing its
number to 7), we get a surface which can be cut in these three ways:

7

6

2

1
3

54 = =
7

6

2

1

5

34

to give a decomposition proof of 1.4.28, which is repeated here with number-
ing, for convenience:

= =
7

6

2

1

5

4

3

7

6

2

1

5

4

3

Relations involving the twist

The statement that the twist cobordism makes (2Cob ,
∐

, ∅) into a symmetric
monoidal category amounts to a set of relations involving the twist.

The basic relation is the fact that the twist is its own inverse

=

1.4.35 Relations expressing the naturality of the twist. The naturality of the
twist cobordism states that for any pair of cobordisms, it makes no difference
whether we apply the twist before their disjoint union or after. It is enough
to describe the relations that arise when the two cobordisms are taken among
the generators. Furthermore, since the disjoint union of two cobordisms can
be realised as a composition of disjoint union with identity cobordisms, it is
enough to state the relations for the case of a generator in disjoint union with
an identity. So the following relations express the naturality, cf. 1.3.28.

First the relations of moving a twist past a cap:

= =

Note that these two relations are dependent in the sense that one can be derived
from the other modulo the basic twist relation = .

And here are the corresponding relations, with the other cap:

= =

Now move the twist past the multiplication pair-of-pants:
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= =

(Again these two are in fact dependent modulo the basic twist relation.)
Of course we can equally well move the twist past the comultiplication pair-

of-pants:

= =

(Which are dependent modulo = .)

Finally there is the ‘symmetric group relation’, which expresses how the
twist moves past a twist:

=

(These moves are analogous to the famous Reidemeister moves in knot the-
ory (see Kassel [29], page 248), but they are much simpler because in our
context there is no distinction between passing over or under.)

Sufficiency of the relations

Now that we have established a lot of relations, it is natural to ask whether we
have enough, or whether there are other relations that we have not found yet. Of
course there are infinitely many relations we could write down, so the question
is whether those we have are sufficient to relate every possible decomposition
of a given cobordism.

In general, it can be difficult to show such completeness results. Often the
technique is to introduce some sort of normal form for the expressions as we
did in 1.4.16, and then check that the listed relations are sufficient to transform
any general expression into normal form.

The normal form is for connected surfaces, so we start with the case of
connected surfaces. Also, we see that there are no twist cobordisms in the
normal form, so this actually tells us that the twist is not needed as generator
if one only considers connected surfaces. In the arguments below, we start by
assuming there are no twists, and after we have settled this no-twists case we
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treat the general case by induction on the number of twists – in other words we
eliminate the twists one by one.

1.4.36 Counting the pieces. Let us start with an arbitrary decomposition of
a connected surface M with m in-boundaries, of genus g, and with n out-
boundaries. The Euler characteristic is χ(M) = 2− 2g −m− n.

Let a be the number of pieces in the decomposition; let b be the number

of ; let p be the number of ; and let q be the number of . By the
additive property of the Euler characteristic we can now also write χ(M) =
p + q − a − b. Thus we have the equation

2− 2g −m− n = p + q − a − b.

On the other hand we have the distinction between in- and out-boundaries.
Summing up what each piece contributes to the number of boundaries we get
the equation

a + q + n = b + p +m.

Combining the two equations we can solve for a and b to get

a = m+ g − 1+ p

b = n+ g − 1+ q,

and all the involved symbols are non-negative integers.

1.4.37 Moving pieces left. Our strategy is to take m− 1 pieces and

move them to the left, until they come before any , then we will have
formed the in-part of the normal form. So what do we meet on our way left? If
we meet a then by the unit relation 1.4.25 we get a cylinder which we can

ignore. This happens p times, so we have enough copies of to spend with
that. (Note that since the surface is connected, in fact every occurrence of

must be to the left of a . . . )

We can also meet a . This can happen in two ways:

In the first case we can use relation 1.4.28 to move to the left of . The
second case is trickier – we have no relations that pronounce themselves on
this situation, so we will have to leave it at that. We have produced a handle;
this will happen g times because each handle represents a ‘genus hole’.
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So among the initial m+ g − 1+ p copies of moving left, p of them

will meet a and vanish; g of them will get stuck against a , and the
remaining m− 1 will pass through all the way to form the in-part of the normal

form. Well, we still have to argue that a can pass through one of those inert
handles: use first associativity and then the Frobenius relation.

Now do the same thing moving right, until the out-part is in normal
form.

We are left with something in the middle which has one in-boundary and

one out-boundary. So in this part there must be the same number of and

. And the left-most must be a (or perhaps a cylinder – we do not care

about cylinders). So take a and move it left until it stops against this ,
forming a handle. Eventually we arrive at a chain of handles which is exactly
the normal form.

1.4.38 Example. To get the idea of how to eliminate twist maps, this example
is in a sense all we need to know:

= = = =

Note carefully how each move is one of the relations. The first one is cocom-
mutativity 1.4.27, the second move is naturality of the twist map (moving past

a ) cf. 1.4.35; next comes the Frobenius relation 1.4.28, and finally we use
cocommutativity again.

1.4.39 Eliminating twist maps. We continue considering only connected sur-
faces. Let there now be a decomposition also involving twist maps. Pick one
twist map T in the decomposition

C

A

D

B

Here A,B,C,D denote the rest of the surface. Parallel with T there are other
pieces, but we can always insert suitable identity maps according to the re-
lations listed in 1.4.24, in order to ensure that all the pieces (possibly zero)
parallel with T are just cylinders.

Since the surface is assumed to be connected, some of the regions
A,B,C,D must be connected with each other. Suppose A and C are con-
nected to each other. Then together they form a connected surface involving
strictly less twist than the original, so by induction we can assume it can be
brought on normal form using the relations. In particular only the out-part of
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the normal form of A-with-C touches T , and we can shuffle the pieces up
and down until there is a piece which matches exactly with T like this

and then we use the cocommutativity relation 1.4.27 to remove T and we are
done.

If B and D are interconnected the same argument applies.
So we can assume that A and B are connected to each other. Now each

region A and B comprises fewer twist maps than the whole, so we can assume
they are on normal form. Now in particular, the situation close to T is this:

This case was treated in Example 1.4.38, so we are done.

1.4.40 Nonconnected surfaces. To prove sufficiency of the relations for non-
connected surfaces we should first define a normal form for such surfaces.
It could be something factorised in three parts, for example: permutation
cobordism – disjoint union of connected surfaces on normal form – and permu-
tation cobordism again. It is easy to see that the normal form of each connected
component is well defined, so modulo the order of these components this gives
a sort of normal form for the middle piece. The problem of ordering the con-
nected components, as well as the question of organising the two permutation
parts concern only twist cobordisms, and we have already noted that the listed
relations are precisely the relations for the symmetric groups, and we know
these are sufficient.

So now the argument runs like this: starting with any 2-cobordism M built
up of the six generators, we know from the arguments preceding 1.4.19 that
there is a pair of permutation cobordisms S and T , such that SMT is a dis-
joint union of its connected components. Now the four cobordisms S−1, S, T ,
T −1 can each be built up from twist cobordisms, and the fact that S−1S = id
and T T −1 = id can be established using the relations of the symmetric group.
This means that inserting S−1S and T T −1 to get M = S−1SMT T −1 can be
achieved by using the two relations

= =
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Now each of the connected components in the middle piece SMT can be
brought on normal form by the arguments of 1.4.36–1.4.39, whence M has
been brought in ‘normal form’. As observed, this normal form is not unique,
but any two such normal forms differ only by permutations, and we know that
the two twist map relations above suffice to realise any permutation.

We should mention that, in fact the set of relations we have found is not
minimal (cf. Exercise 6 below – it will also follow from 2.3.24):

1.4.41 Proposition. The Frobenius relation 1.4.28 together with the unit
and counit relations 1.4.25 imply the associativity and coassociativity
relations 1.4.26. �

Exercises

1. Write down generators and relations for the alternating group on four let-
ters, in the style of 1.4.2, and also as in 1.4.3.

2. Let Sk denote the category of all bijective maps from the set {x1, . . . , xk}
to itself. Let � denote the disjoint union of all the categories Sk , k ∈ N.
Show that � is a skeleton for the category FinSet0 of all finite sets and
bijective maps.

�3. This is a continuation of Exercise 3 on page 56. There we defined H to
be the monoid of all connected cobordism (classes) from the circle 1 to
itself. Use the surface classification theorem to show that this monoid is
isomorphic to (N,+). (Hint: use the ‘handle operator’ .)

4. Prove the statements made in 1.4.35, that each of the right-hand equations
can be obtained from the corresponding left-hand equation together with
the basic twist relation.

5. Just from the topology it is clear that this relation holds:

=

Show how to obtain this relation from the relations listed in 1.4.24–1.4.28
and 1.4.35, in the style of Example 1.4.38.

6. Prove Proposition 1.4.41, that the Frobenius relations 1.4.28 together with
the ‘unit’/’counit’ relations 1.4.25 imply the ‘associativity’ relation 1.4.26
(and the ‘coassociativity’ too).
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Frobenius algebras

Summary

A first preliminary section reviews some basic notions of vector spaces, pair-
ings, algebras and modules, and establishes notation and terminology.

Section 2.2 is devoted to ‘classical’ theory of Frobenius algebras. A Frobe-
nius algebra can be characterised equivalently as: a finite-dimensional algebra
A equipped with an associative nondegenerate pairing, or equipped with a lin-
ear functional whose nullspace contains no nontrivial ideals, or equipped with
an A-linear isomorphism to the dual space A∗. Then we give a long list of
examples of Frobenius algebras. Some of these examples require more algebra
than presumed elsewhere in the text, but don’t panic! – these examples are not
really needed elsewhere in the text.

The main result of this chapter is established in Section 2.3. It is yet another
equivalent characterisation of Frobenius algebras: a Frobenius algebra is an al-
gebra which is also a coalgebra, with a compatibility between multiplication
and comultiplication. This compatibility condition is actually of topological
nature, and a second important goal of this chapter is to develop a graphical
language for the algebraic operations involved, which provides important in-
sight in the structures.

In Section 2.4 we collect some results on the category of Frobenius alge-
bras: we observe that Frobenius algebra homomorphisms are always invertible,
and that the tensor product of two Frobenius algebras is again a Frobenius al-
gebra in a canonical way. Finally we make a digression on Hopf algebras and
compare their axioms with those for Frobenius algebras.

So a Frobenius algebra is a vector space with a certain structure. In
Chapter 3 we are going to distil the structure and do away with the space –
only the pure essence will be left! In order to prepare for this, we will from the
outset describe some of the structures in a slightly more categorical manner
than would normally be considered necessary.

78
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Frobenius algebras were first studied by Frobenius [22] around 1900. The
material of Section 2.2 goes back at least to Nakayama [41] in the 1930s. The
characterisation of Frobenius algebras in terms of comultiplication goes back
at least to Lawvere [32] (1967), and it was rediscovered by Quinn [43] and
Abrams [1] in the 1990s.

2.1 Algebraic preliminaries

We assume the reader is familiar with vector spaces and tensor products, and
also with rings and modules. The brief review which follows is mostly included
in order to establish terminology and notation, and to introduce some slightly
unusual viewpoints which are convenient for our purposes.

Vector spaces, duals, and pairings

2.1.1 Vector spaces and linear maps. Throughout this chapter we fix a
ground field k. (The reader can safely think of k as being R or C or what-
ever she prefers.)

A vector space over k is an abelian group V (written additively) equipped
with a k-action

V × k → V.

This map is required to satisfy these axioms:

(v + v′)c = vc + v′c v, v′ ∈ V, c ∈ k

v(c + c′) = vc + vc′ v ∈ V, c, c′ ∈ k

v(cc′) = (vc)c′ v ∈ V, c, c′ ∈ k

v1 = v v ∈ V.

Note in particular that k itself is a vector space. The action is simply multi-
plication in k.

A linear map between two vector spaces V and W is a group homomor-
phism φ : V → W which commutes with the k-action:

V × k
φ×idk� W × k

V

�

φ
� W

�

Let Vectk denote the category of vector spaces and linear maps.
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2.1.2 Bilinear maps and tensor products. A bilinear map is a map V ×
W → T such that for each fixed v ∈ V the resulting map W → T is linear,
and for each fixed w ∈ W , the resulting map V → T is linear.

Given two vector spaces V,W , their tensor product V ⊗W is a vector
space which is universal for bilinear maps in the following sense: it comes
equipped with a bilinear map V ×W → V ⊗W such that every bilinear map
V ×W → T factors uniquely V ×W → V ⊗W → T , where V ⊗W → T

is linear. For an explicit construction of the tensor product, see Lang [30].
Similarly there are notions of multilinear maps, and the universal objects are

the tensor products V1 ⊗ . . .⊗ Vk . We could also build this up iteratively from
the tensor product in two variables: we always identify any ways of setting
parentheses

(V1 ⊗ . . .⊗ Vk)⊗ (W1 ⊗ . . .⊗Wl) � V1 ⊗ . . .⊗ Vk ⊗W1 ⊗ . . .⊗Wl.

There is also a special tensor product with zero factors. By definition this
is the universal linear function in no variables. This is k itself, so by the rules
above we get canonical identifications

k⊗ V � V � V ⊗ k.

2.1.3 Conventions. In this chapter, all tensor products are over k, and when we
write Hom(V ,W) we always mean Homk(V ,W), the space of k-linear maps
from V to W .

2.1.4 Linear functionals. A linear map from a vector space V to the ground
field k is called a linear functional (or a linear form).

2.1.5 Duals. The space of linear functionals on V is called the dual of V , and
is denoted

V ∗ := Hom(V , k).

Given a linear map ψ : V → W , the dual map is

ψ∗ : W∗ → V ∗
� �→ ψ �

where ψ � denotes the composite V
ψ→ W

�→ k.
In this way, taking the dual on vector spaces and linear maps is a contravari-

ant functor from the category Vectk to itself. The particular vector space k is
self-dual in the sense that there is a canonical identification Hom(k, k) � k:
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every linear functional � : k → k is multiplication by an element λ ∈ k. We
identify � with λ.

2.1.6 ‘Hahn–Banach’ Lemma. Given a nonzero vector v in a vector space V ,
then there exists a linear functional � such that v� �= 0.

2.1.7 Corollary. The following natural linear map is injective:

V → V ∗∗ = Hom(V ∗, k)

t �→ T := [� �→ t�].
Indeed, suppose T is the zero map, i.e. that t� = 0 for all � ∈ V ∗. Then by
the lemma, t = 0.

2.1.8 Reflexivity of finite-dimensional vector spaces. Suppose V is of finite
dimension n, and fix a basis {t1, . . . , tn}. Let �i be the linear functional which
takes value 1 on ti and zero on the other basis vectors. Then {�1, . . . , �n} is
a basis for V ∗ called the dual basis. In particular, V ∗ is of dimension n, and
therefore isomorphic to V . However, there is no canonical isomorphism.

Consider now the second dual V ∗∗. This space is again of dimension n, so
the canonical injective map of 2.1.7 is an isomorphism,

V ∼→ V ∗∗.
(And in the notation of the corollary, {T1, . . . , Tn} is the dual basis of
{�1, . . . , �n}.)

2.1.9 Pairings of vector spaces. A bilinear pairing – or just a pairing – of two
vector spaces V and W is by definition a linear map β : V ⊗W → k. When
we want to write what it does on elements it is convenient to write it

β : V ⊗W −→ k

v ⊗ w �−→ 〈 v |w 〉 .

2.1.10 Nondegenerate pairings. A pairing β : V ⊗W → k is called non-
degenerate in the variable V if there exists a linear map γ : k → W ⊗ V ,
called a copairing, such that the following composite is equal to the identity
map of V :

V (V ⊗W)⊗ V
β⊗idV � k⊗ V

V ⊗ k

�
idV ⊗γ � V ⊗ (W ⊗ V )

�
V

�
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Similarly, β is called nondegenerate in the variable W if there exists a co-
pairing γ : k → W ⊗ V , such that the following composite is equal to the
identity map of W :

k⊗W
γ⊗idW� (W ⊗ V )⊗W W

W

�
W ⊗ (V ⊗W)

�
idW ⊗β� W ⊗ k

�
These two notions are provisory (but convenient for Lemma 2.1.12 below);

the important notion is this: the pairing β : V ⊗W → k is simply called non-
degenerate if it is simultaneously nondegenerate in V and in W .

2.1.11 Lemma. In that case the two copairings (which were both denoted γ )
automatically agree.

Proof. Let γW denote the copairing which makes β nondegenerate in W , and let
γV denote the copairing which makes β nondegenerate in V . In other words,
we have (γW ⊗ idW)(idW ⊗β) = idW and (idV ⊗γV )(β ⊗ idV ) = idV . Now
consider the composite λ defined as

k
γW⊗γV� W ⊗ V ⊗W ⊗ V

idW ⊗β⊗idV� W ⊗ V.

Factoring λ like this:

k
γV � W ⊗ V

γW⊗idW ⊗ idV� W ⊗ V ⊗W ⊗ V
idW ⊗β⊗idV� W ⊗ V

and using the nondegeneracy in W we see that λ is equal to γV . Factoring λ

like this:

k
γW� W ⊗ V

idW ⊗ idV ⊗γW� W ⊗ V ⊗W ⊗ V
idW ⊗β⊗idV� W ⊗ V

and using the nondegeneracy in V we see that λ is also equal to γW . (A neat
graphical version of this proof is given in 2.3.23.) �

Let there be a pairing β : V ⊗W → k. For each fixed second argument
w ∈ W we get a linear functional

βw : V −→ k

v �−→ 〈 v |w 〉 .
Since we have linearity also in the first argument, this actually defines a linear
map (the adjoint)

βleft : W −→ V ∗
w �−→ βw = 〈 |w 〉 .
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Similarly we could fix v ∈ V to get a linear functional vβ : W → k (which
takes w �→ 〈 v |w 〉 ), and this defines another linear map

βright : V −→ W∗
v �−→ vβ = 〈 v | 〉 .

There is a weaker notion of nondegeneracy which is found in many books:
β : V ⊗W → k is nondegenerate if the two maps βright and βleft are injective.
We will spend a little while comparing the two definitions. They turn out to
agree for finite-dimensional spaces.

2.1.12 Lemma. The pairing β : V ⊗W → k is nondegenerate in W if and
only if W is finite-dimensional and the induced map βleft : W → V ∗ is injec-
tive. (Similarly, nondegeneracy in V is equivalent to finite dimensionality of V

plus injectivity of V → W∗.)

Proof. Suppose β is nondegenerate in W ; then the copairing γ : k → W ⊗ V

singles out a vector in W ⊗ V , say 1k �→
n∑

i=1
wi ⊗ vi , for some vectors wi ∈ W

and vi ∈ V . Now take an arbitrary x ∈ W and send it through the composite
W → W ⊗ V ⊗W → W :

x �→
n∑

i=1
wi ⊗ vi ⊗ x �→

n∑
i=1

wi 〈 vi |x 〉 .

Nondegeneracy in W means that this composite is the identity map, so we have

x =
n∑

i=1
wi 〈 vi |x 〉 for every x ∈ W . In particular, the vectors w1, . . . , wn span

W , which is therefore of finite dimension. Now for the injectivity of

βleft : W −→ V ∗
x �−→ 〈 |x 〉 :

Suppose 〈 |x 〉 is the zero functional. Then in particular for the vectors
v1, . . . , vn we have 〈 vi |x 〉 = 0. But these scalars are exactly the coordinates
of x in the ‘basis’ w1, . . . , wn, so in particular x is zero itself. This shows that
W → V ∗ is injective.

Conversely, suppose that W is of finite dimension (so we can choose a
basis w1, . . . , wn), and that W → V ∗ is injective. Since the wj are linearly
independent, injectivity implies that the functionals 〈 |wj 〉 are also linearly
independent. Then there exist vectors v1, . . . , vn such that 〈 vi |wi 〉 = 1 and
〈 vi |wj 〉 = 0 for i �= j .
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Define the copairing γ by setting 1k �→
∑

i wi ⊗ vi . Now send a general

vector
n∑

j=1
wjλj through the composite W → W ⊗ V ⊗W → W :

n∑
j=1

wjλj �→ ∑
i,j

wi ⊗ vi ⊗ wjλj �→ ∑
i,j

wiλj 〈 vi |wj 〉 =
n∑

i=1
wiλi,

so β is nondegenerate in W as claimed. �

2.1.13 Example. The obvious evaluation pairing

V ⊗ V ∗ −→ k

v ⊗� �−→ v�

is not always nondegenerate in our strong sense of the word. It is nondegener-
ate if and only if V is of finite dimension. This follows from 2.1.12 and 2.1.7.

2.1.14 Lemma. Let V and W be vector spaces of finite dimension, and con-
sider a pairing β : V ⊗W → k as above. Then βright is the dual map of βleft

(modulo the identification V ∼→ V ∗∗ of 2.1.8). Also, βleft is the dual map of
βright (modulo the identification W ∼→ W∗∗).

Proof. By definition the dual of βleft is

Hom(V ∗, k) −→ Hom(W, k)

T �−→ βleft T

sending the map V ∗ T−→ k to the composite W
βleft−→ V ∗ T−→ k. We already

explained the identification V ∼→ Hom(V ∗, k), t �→ T := [� �→ t�]. Let us
now write out the details of the composite

V → Hom(W, k)

t �→ βleft T

to see what the linear form βleft T does to an element z ∈ W . Well, zβleft is
the linear form βz, and applying T to it means evaluating it at t , which by
definition is 〈 t |z 〉 . So in conclusion, the dual of βleft is the map that takes t

to [z �→ 〈 t |z 〉 ]. This is exactly βright. �

For finite-dimensional vector spaces, the dualising functor is a (contravari-
ant) equivalence of categories, so in particular it preserves the property of being
invertible. So in this case βleft is injective if and only if βright is. Thus,
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2.1.15 Lemma. Given a pairing

β : V ⊗W −→ k

v ⊗ w �−→ 〈 v |w 〉 ,
between finite-dimensional vector spaces, the following are equivalent.

(i) β is nondegenerate.
(ii) The induced linear map βleft : W → V ∗ is an isomorphism.

(iii) The induced linear map βright : V → W∗ is an isomorphism.

In that case, clearly all the four involved vector spaces are of the same dimen-
sion. On the other hand, if we already know for other reasons that V and W are
of the same dimension, then ‘being an isomorphism’ in the lemma is equivalent
to just being injective, so in that case, nondegeneracy can also be characterised
by each of the following a priori weaker conditions:

(ii′) 〈 v |w 〉 = 0 ∀v ∈ V ⇒ w = 0
(iii′) 〈 v |w 〉 = 0 ∀w ∈ W ⇒ v = 0.

This is perhaps the most usual definition of nondegeneracy. . .

2.1.16 Remark. It should be noted that in terms of coordinates (in the finite-
dimensional situation), nondegeneracy just amounts to saying that the matrix
expressing β (and βleft and βright) is invertible, cf. 2.3.34. (Nondegeneracy in
one variable amounts to having a left inverse, and in the other variable means
existence of a right inverse; these two must of course agree – this proves
Lemma 2.1.11.) For more details on this viewpoint, see the subsection on
coordinates (page 123).

2.1.17 Duals of tensor products. Let V and W be k-vector spaces of finite
dimension. Then the canonical linear map

W∗ ⊗ V ∗ −→ (
V ⊗W

)∗
ψ ⊗ φ �−→ [

x ⊗ y �→ (xφ)(yψ)
]

is an isomorphism.

Note that there is a twist on the factors when we take the dual of a tensor
product. This may seem strange at first, but notice in the proof how it comes
about naturally. We will also see in 2.1.36 that the twist is necessary in order
to get natural properties for A-modules.

Proof. Set up a pairing

ρ : (V ⊗W)⊗ (W∗ ⊗ V ∗) −→ k
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defined by first coupling the two middle modules W ⊗W∗ → k, and then
coupling the two outer ones. In other words, it is the composite

V ⊗W ⊗W∗ ⊗ V ∗ → V ⊗ k⊗ V ∗ → V ⊗ V ∗ → k,

where the first and the last maps are the canonical evaluation pairings 2.1.13
(and the middle map is the canonical identification). The induced linear map
ρleft : W∗ ⊗ V ∗ → (

V ⊗W
)∗ is precisely the map of the statement. The two

evaluation pairings are nondegenerate since we are in the finite-dimensional
case, so there are corresponding copairings k → W∗ ⊗W and k → V ∗ ⊗ V

satisfying the identities of 2.1.10. Use these copairings to define

k → W∗ ⊗W → W∗ ⊗ k⊗W → W∗ ⊗ V ∗ ⊗ V ⊗W

which is easily seen to be a copairing for ρ satisfying the conditions 2.1.10, so
ρ is nondegenerate. Then by Lemma 2.1.15, the induced linear map ρleft is an
isomorphism. �

Algebras and modules

2.1.18 k-algebras. A k-algebra is a k-vector space A together with two
k-linear maps

µ : A⊗ A → A, η : k → A

(called multiplication and unit map) such that these three diagrams commute:

A⊗ A⊗ A

A⊗ A

µ⊗idA

�

A⊗ A

idA⊗µ

�

A

µ

�

µ �

k⊗ A
η⊗idA� A⊗ A

A

µ

��

A⊗ A �idA⊗η
A⊗ k

A

µ

��
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The symbols idA stand for the identity linear map A → A, and the diago-
nal maps without labels are scalar multiplication which are canonical isomor-
phisms.

In terms of elements, we will write the multiplication by plain juxtaposition:

A⊗ A −→ A

x ⊗ y �−→ xy

and we let 1A (or simply 1) denote the image of 1k under the map η : k → A.
Then we can write the axioms in terms of elements of A:

(xy)z = x(yz) and 1 x = x = x 1.

These conditions are associativity and unity requirements. (Note that we do
not require commutativity at this stage.)

2.1.19 Remarks. There are three structures involved in the definition of a
k-algebra: the k-structure (allowing multiplication with k-scalars) and two
composition laws (addition and multiplication). In the above definition, we
first bundled together the k-structure and the addition, stipulating that A be
first of all a vector space, and then we imposed the multiplication. By defin-
ing the multiplication in terms of tensor products of vector spaces instead of
just using the cartesian product we encoded distributivity: having a linear map
A⊗ A → A is equivalent to having a bilinear map A× A → A, and this in
turn is equivalent to saying that the multiplication defined by this map dis-
tributes over sums. In particular, A is a ring.

2.1.20 Example. The particular vector space k is canonically a k-algebra: let
µk : k⊗ k → k be multiplication in the field k (it is an isomorphism), and let
ηk : k → k be the identity map (also an isomorphism). Clearly the axioms are
satisfied. Also it follows that the map η : k → A is a ring homomorphism, i.e.
that this diagram commutes:

k⊗ k
η⊗η� A⊗ A

k

�

η
� A

µ
�

2.1.21 Alternative definition of k-algebras. One can also define k-algebras
by starting with the two composition laws and then imposing the k-structure,
saying: a k-algebra is a ring A equipped with a ring homomorphism k → A.
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(See 3.5.9 for more comments in this vein, using the language of monoids in
monoidal categories.)

2.1.22 k-algebra homomorphisms. Of course there is also a notion of
k-algebra homomorphism: maps that preserve the structure. The reader can
copy the exact definition from 3.1.6. Let Algk denote the category of
k-algebras and k-algebra homomorphisms. (We will mostly be concerned with
k-algebras isolatedly, so we will not need the notion of k-algebra homomor-
phisms very much.)

2.1.23 Right A-modules. A right A-module is a vector space M together with
a k-linear map (called a right action of A on M)

α : M ⊗ A → M

which satisfies the axioms expressed by the commutativity of the two diagrams

M ⊗ A⊗ A
α⊗idA � M ⊗ A

M ⊗ A

idM ⊗µ

�

α
� M

α

�

M ⊗ A �idM ⊗η
M ⊗ k

M

α

��

If we write the action like this:

M ⊗ A
α−→ M

x ⊗ a �−→ x.a

then we can write the axioms in terms of elements:

(x.a).b = x.(ab) and x.1 = x.

2.1.24 Note again that distributivity is encoded in the tensor product.

2.1.25 Example. Let A be a k-algebra. Then A is of course naturally a right
A-module itself, since we have the multiplication map µ : A⊗ A → A as a
special case of the action. The associativity and the unit axioms for µ can then
be regarded as special instances of the two axioms for the action.

2.1.26 Right A-homomorphisms. Let M and N be right A-modules. A
k-linear map φ : M → N is called a right A-homomorphism if this diagram
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commutes:

M ⊗ A
φ⊗idA� N ⊗ A

M

�

φ
� N

�

In other words, for all x ∈ M and all a ∈ A we have (x.a)φ = (xφ).a. We also
say that φ is right A-linear.

(It is clear that the identity map of a right A-module is right A-linear,
and that the composition of two right A-homomorphisms is again a right
A-homomorphism, so the right A-modules and the right A-homomorphisms
form a category denoted rModA.)

2.1.27 Left A-modules and left A-homomorphisms are defined similarly: a
left A-module is a vector space M with a k-linear map A⊗M → M (writ-
ten a ⊗ x �→ a.x), satisfying axioms similar to those of right A-modules,
a.(b.x) = (ab).x and 1.x = x. (If A is commutative, then the two no-
tions of A-modules coincide.) A k-linear map φ : M → N between two left
A-modules is called a left A-homomorphism if it satisfies (a.x)φ = a.(xφ)

for all x ∈ M and all a ∈ A. (This looks neater than the formula for right
A-linearity 2.1.26, since there is no ‘changing place’ involved. The asym-
metry stems from the fact that we always write functions on the right-hand
side of their argument, independent of left or right structure – with traditional
‘functions-at-left’ notation we would get the opposite asymmetry: the right-
linearity condition would look better than the left-linearity condition.) In fact
there is complete symmetry between the two notions (as one sees clearly by
writing out the axioms in diagrams as on page 86), and everything that holds
for right A-modules will have a left A version as well. The reason why we have
to bother with both sorts of modules is duality:

2.1.28 The dual of a module. Suppose M is a right A-module. Then the dual
vector space M∗ := Hom(M, k) has a canonical left A-module structure given
by:

A⊗M∗ −→ M∗
a ⊗� �−→ a.� := [x �→ (x.a)�].

Similarly, if M is a left A-module, then M∗ becomes a right A-module via
the rule x(�.a) = (a.x)� (with � ∈ M∗, a ∈ A, x ∈ M).
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2.1.29 Dual maps. Let M and N be right A-modules, and let ψ : M → N be
a right A-homomorphism. Then the dual map

ψ∗ : N∗ → M∗
� �→ ψ �

is a left A-homomorphism.

Proof. Right A-linearity (cf. 2.1.26) of ψ means that for a ∈ A and x ∈ M we
have (x.a)ψ = (xψ).a. We must check the commutativity of the square

A⊗N∗ idA⊗ψ∗� A⊗M∗

N∗
�

ψ∗ � M∗
�

The upper way around, an a ⊗� is first sent to a ⊗ ψ� and then to a.(ψ�).
This is the linear form on M given by x �→ x.a �→ (x.a)ψ�. On the other
hand, taking the lower way around the diagram we find a ⊗� �→ a.� �→
ψ(a.�) (which is the composition of first ψ , then a.�). This form goes
x �→ xψ �→ (xψ)(a.�) = ((xψ).a)� = (x.a)ψ�, by the linearity of ψ . �

In this way, taking the dual on modules and maps is a contravariant functor
from the category of right A-modules to the category of left A-modules. As-
suming that all modules are of finite dimension over k, then this functor is a
contravariant equivalence of categories.

Similarly if M and N are left A-modules and ψ : M → N is left A-linear,
then precomposition with ψ provides a right A-module homomorphism N∗ →
M∗ (and a contravariant functor from left A-modules to right A-modules).

2.1.30 Reflexivity. If M is a right A-module of finite dimension over k, then
the vector space identification M ∼→ M∗∗ is a right A-isomorphism (and if M

is a left A-module then the identification is a left A-isomorphism).

Proof. As in 2.1.8, for fixed t ∈ M let T denote the element in M∗∗ which is
evaluation at t . So it is: � �→ t�. Since M∗ is a left A-module, M∗∗ is a right
A-module, so it makes sense to multiply an A-scalar a on T from the right. By
definition, T .a is the map � �→ (a.�)T = t (a.�) = (t.a)�, in other words,
it is simply evaluation at t.a. This shows that M → M∗∗ is right A-linear. �

2.1.31 Pairings of A-modules. Given a vector space pairing β : M ⊗N → k,
it has no meaning to ask whether it is A-linear (no matter which A-structures
M and N might have) because k is not an A-module. But suppose M is a right
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A-module and N is a left A-module. Then it is natural to ask whether βleft :
N → M∗ is left A-linear, and whether βright : M → N∗ is right A-linear.

2.1.32 Associative pairings. A pairing β : M ⊗N → k as above is said to be
associative if this diagram commutes:

M ⊗ A⊗N

M ⊗N

α⊗idN

�

M ⊗N

idM ⊗α

�

k

β
�

β �

In other words, the pairing x ⊗ y �→ 〈 x |y 〉 is associative when

〈 xa |y 〉 = 〈 x |ay 〉 for every x ∈ M,a ∈ A, y ∈ N.

2.1.33 Lemma. For a pairing M ⊗N → k as above, the following three
statements are equivalent:

(i) M ⊗N → k is associative,
(ii) N → M∗ is left A-linear,

(iii) M → N∗ is right A-linear.

Proof. Since associativity is a symmetric condition it is enough to show
(i)⇔(ii). Consider the diagram expressing left A-linearity of N → M∗:

A⊗N
idA⊗βleft� A⊗M∗

N

�

βleft

� M∗
�

Going the upper way around, a ⊗ y is sent to the linear form x �→ 〈 xa |y 〉 .
Going the lower way we arrive at the form x �→ 〈 x |ay 〉 . Commutativity of
the diagram means that these two expressions are equal for all values of x, a, y,
so it is equivalent to the associativity condition. �

2.1.34 Example. If M is a right A-module then the obvious evaluation pairing

M ⊗M∗ −→ k

x ⊗� �−→ x�
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is associative, by definition of the left A-structure on M∗.

2.1.35 A-module structure on tensor products. Let M and N be k-vector
spaces, and consider the tensor product M ⊗N . If M is also a left A-module,
then M ⊗N acquires left A-module structure by the obvious map (multiplica-
tion on M from the left)

A⊗M ⊗N → M ⊗N.

If N is a right A-module we similarly get a right A-structure on the tensor
product by

M ⊗N ⊗ A → M ⊗N.

2.1.36 Duals of tensor products. Let N be a right A-module, and let M be a
vector space. Then the canonical linear map (2.1.17)

N∗ ⊗M∗ −→ (
M ⊗N

)∗
ψ ⊗ φ �−→ [

x ⊗ y �→ (xφ)(yψ)
]

is left A-linear.

Proof. Consider the pairing

(M ⊗N)⊗ (N∗ ⊗M∗) −→ k

defined by first coupling the two middle modules N ⊗N∗ → k, and then
coupling the two outer ones. This pairing is associative because the pairing
N ⊗N∗ is so (cf. 2.1.34). But by Lemma 2.1.33 this is equivalent to left A-
linearity of the adjoint map N∗ ⊗M∗ → (

M ⊗N
)∗, which is precisely the

map of the assertion.
(Note that it does not matter whether M has any A-structure.) �

Exercises

1. Let S = {x1, . . . , xn} be a set, and consider the vector space kS =
{∑i aixi | ai ∈ k} of all formal linear combinations of the elements of S.
Show that S �→ kS defines a functor FinSet → Vectk. In the other direc-
tion there is the forgetful functor that to a vector space W associates the
underlying set, denoted |W |. Show that for any finite set S, and for any
vector space W there is a bijection

Vectk(kS,W) ↔ Set(S, |W |).
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2. Suppose S and T are finite sets, and there is an isomorphism of vector
spaces kS ∼→ kT . Show that S and T have the same cardinality.

3. Provide the details of the argument in Remark 2.1.16. Let V be a vec-
tor space of finite dimension equipped with a pairing 〈 | 〉 . Fix a basis
{T1, . . . , Tn} and consider the matrix whose ij th entry is 〈 Ti |Tj 〉 . Show
that the pairing is nondegenerate if and only if the matrix is invertible.

4. Show that the evaluation pairing V ⊗ V ∗ → k of a finite-dimensional
vector space has this universal property: for any nondegenerate pairing
β : V ⊗W → k there is a unique isomorphism W ∼→ V ∗ compatible with
the two pairings.

5. Let V ′ and V ′′ be vector spaces, equipped with linear functionals ε′ : V ′ →
k and ε′′ : V ′′ → k. Show that

V ′ ⊕ V ′′ −→ k

(v′, v′′) �−→ v′ε′ + v′′ε′′

defines a linear functional on the vector space V ′ ⊕ V ′′.
6. Show that if M → N is a right A-homomorphism which is invertible as

k-linear map, then the inverse is also a right A-homomorphism.
7. Let S = {x1, . . . , xn} be a finite set and consider the algebra of all polyno-

mials in the indeterminates x1, . . . , xn, with k-coefficients. Show that this
construction defines a functor FinSet → Algk. Under what condition on
the set S is the image a finite-dimensional algebra?

8. Direct product of algebras. Let A′ and A′′ be k-algebras. Show that the di-
rect sum vector space A := A′ ⊕ A′′ becomes a k-algebra under coordinate-
wise multiplication. Usually this algebra is denoted A′ × A′ and called the
direct product, but as long as we emphasise the vector space structure (e.g.
look at subspaces) we continue to write ⊕.
Show that e′ := 1⊕ 0 is a central idempotent in A, and that A′ ⊕ 0 is a two-
sided ideal in A (but not a subalgebra) – similarly of course for e′′ := 0⊕ 1
and 0⊕ A′′. (Idempotent means e′e′ = e′; central means e′a = ae′ for all
a ∈ A.)
Show that every left ideal in A′ × A′′ is of the form a′ ⊕ a′′, where a′ ⊂ A′
and a′′ ⊂ A′′ are left ideals.
Conversely, if A is any k-algebra, and e′ ∈ A is a central idempotent (then
so is e′′ := 1− e′); show that A decomposes into the direct product of two
algebras, i.e. is isomorphic to some A′ ⊕ A′′ in such a way that 1⊕ 0 cor-
responds to e′ and 0⊕ 1 corresponds to e′′.
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9. Recall that a ring A is Artinian if every descending chain of (left) ideals
a0 ⊃ a1 ⊃ . . . is stationary (i.e. there is a k0 such that for k ≥ k0 we have
ak = ak+1). Show that if A is a finite-dimensional k-algebra then it is
Artinian.

2.2 Definition and examples of Frobenius algebras

Definition and basic properties

Now we specialise all our constructions to the case where the A-modules in
question are simply the k-algebra A itself. Throughout this section we assume
A to be of finite dimension. Naturally A comes with both a left and a right
A-structure.

A linear functional � : A → k defines a hyperplane in A,

Null(�) := {x ∈ A | x� = 0}.
We call it the nullspace rather than the kernel, just to remind us that it is not an
ideal or subalgebra in A, but merely a linear subspace.

2.2.1 Definition of Frobenius algebra. A Frobenius algebra is a k-algebra
A of finite dimension, equipped with a linear functional ε : A → k whose
nullspace contains no nontrivial left ideals. The functional ε ∈ A∗ is called
a Frobenius form.

2.2.2 Remarks. The Frobenius form is part of the structure. We will see in
2.2.7 that a given algebra may allow various distinct Frobenius forms. Equiva-
lent characterisations of Frobenius algebras will be given shortly (in 2.2.5 and
2.2.6) – among other things we will see that we could equally well have stated
the definition in terms of right ideals.

Let us remark that having no nontrivial left ideals in Null(ε) is equivalent
to having no nontrivial principal left ideals in Null(ε), since every nonzero left
ideal contains a nonzero principal left ideal – simply take a nonzero element
of it and let that element generate a principal ideal. So the condition can be
phrased like this

(Ay)ε = 0 ⇒ y = 0.

2.2.3 Functionals and associative pairings on A. Every linear functional
ε :A→ k (Frobenius or not) determines canonically a pairing A⊗ A→ k,
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namely x ⊗ y �→ (xy)ε. Clearly this pairing is associative (cf. Defini-
tion 2.1.32). Conversely, given an associative pairing A⊗ A → k, denoted
x ⊗ y �→ 〈 x |y 〉 , a linear functional is canonically determined, namely

A −→ k

a �−→ 〈 1A |a 〉 = 〈 a |1A 〉 .
You can easily check that if you let one construction follow the other you get
back what you started with, so there is a one-to-one correspondence between
linear functionals on A and associative pairings.

Now the important remark is:

2.2.4 Lemma. Let ε : A → k be a linear functional and let 〈 | 〉 denote the
corresponding associative pairing A⊗ A → k. Then the following are equiv-
alent.

(i) The pairing is nondegenerate.
(ii) Null(ε) contains no nontrivial left ideals.

(iii) Null(ε) contains no nontrivial right ideals.

In particular this shows that in the definition of Frobenius algebra we could
have used right ideals instead of left ideals.

Proof. We have already done the work. Recall from 2.1.15 (ii′) that 〈 | 〉 is
nondegenerate if and only if

〈A |y 〉 = 0 ⇒ y = 0.

(Note that this condition (injectivity) is sufficient since the paired modules A

and A are of the same dimension!) On the other hand, by the way ε and 〈 | 〉
determine each other this just means

(Ay)ε = 0 ⇒ y = 0,

which in turn is equivalent to saying that Null(ε) contains no left ideals. This
proves (i)⇔(ii). The equivalence (i)⇔(iii) follows by using the ‘nondegener-
acy in the other variable’ instead (cf. 2.1.15 (iii′)). �

Since the data of an associative bilinear pairing and a linear functional com-
pletely determine each other as above, we can give the following.

2.2.5 Alternative definition of Frobenius algebra. A Frobenius algebra is a
k-algebra A of finite dimension, equipped with an associative nondegenerate
pairing β : A⊗ A → k. We call this pairing the Frobenius pairing.
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Lemma 2.2.4 shows that these two definitions are equivalent in the sense that
the structure of one definition canonically induces the structure of the other
definition.

This second definition of Frobenius algebras quickly leads to a couple of
other characterisations, since we have other ways to characterise nondegen-
eracy of a pairing. Recall from 2.1.15 that given a nondegenerate pairing
β : A⊗ A → k there are induced two k-linear isomorphisms

βleft : A ∼→ A∗, βright : A ∼→ A∗.
Furthermore, we showed in 2.1.33 that associativity of β is equivalent to the
left A-linearity of βleft, and also equivalent to the right A-linearity of βright.
Note that even though these two maps have the same source and target there
is no reason for them to be equal! (Precisely, they are dual. We will see in a
minute under what circumstances they agree.) This leads to

2.2.6 Third definition of Frobenius algebra. A Frobenius algebra is a finite-
dimensional k-algebra A equipped with a left A-isomorphism to its dual. Al-
ternatively (and equivalently) A is equipped with a right A-isomorphism to its
dual.

The preceding discussion shows how each of these two structures is nat-
urally induced from the Frobenius pairing. Conversely, given a left A-linear
isomorphism A ∼→ A∗, we can reconstruct the nondegenerate pairing (and it
will be associative because of the left A-linearity of the isomorphism). A right
A-linear isomorphism would do as well. . .

Alternatively we can relate these A-isomorphisms directly to the Frobenius
form of our first definition of Frobenius algebra. Given a left A-isomorphism
A ∼→ A∗ we get a linear functional which is simply the image of 1A in A∗. The
fact that this functional has no nontrivial left ideals in its nullspace follows
readily from the fact that A ∼→ A∗ is injective – and that it is left A-linear.
Similarly, a right A-isomorphism A ∼→ A∗ determines naturally a Frobenius
form (as the image of 1A).

Conversely, given the Frobenius form ε : A → k, we construct an isomor-
phism of left A-modules A ∼→ A∗ by putting 1A �→ ε and extending left
A-linearly. This left A-homomorphism is injective since there are no nontrivial
left ideals in Null(ε). Since furthermore the two spaces have the same dimen-
sion over k, it is also surjective.

2.2.7 About the choice of structure. To recapitulate, given a finite-
dimensional k-algebra A, we have four definitions of Frobenius structure.
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• A linear functional ε : A → k whose nullspace contains no nontrivial left
ideals.

• An associative nondegenerate pairing β : A⊗ A → k.
• A left A-isomorphism A ∼→ A∗.
• A right A-isomorphism A ∼→ A∗.

The four different versions of Frobenius structure are canonically deter-
mined by each other, and therefore we think of them as being one and the same
structure. But this structure is not uniquely given. For example, if ε : A → k

is a Frobenius form, and u ∈ A is invertible, then the functional x �→ (xu)ε is
also a Frobenius form. Indeed, although the nullspaces of these two functionals
are not the same, the ideals they contain must be the same, since u is invertible,
so if one is a Frobenius form then the other is as well. In fact, if ε : A → k is
a Frobenius form then every other Frobenius form ε′ on A is given in this way.
To see this, consider the two induced left A-isomorphisms

A ∼→ A∗ A ∼→ A∗
1 �→ ε 1 �→ ε′

then there is a unique left A-linear comparison homomorphism A∗ ↔ A∗ (one
in each direction); since everything is left A-linear, these two maps are given by
right multiplication by elements u and u′ in A, so that ε′ = u.ε and ε = u′.ε′;
clearly u and u′ are inverses of each other in A.

Let us record this in a lemma:

2.2.8 Lemma. If A is a k-algebra with Frobenius form ε, then every other
Frobenius form on A is given by precomposing ε with multiplication by
an invertible element of A. Equivalently, given a fixed left A-isomorphism
θ : A ∼→ A∗, then the elements in A∗ which are Frobenius forms are precisely
the images of the invertible elements in A. �

Before coming to the examples, we should mention an important class of
Frobenius algebras.

2.2.9 Symmetric Frobenius algebras. A Frobenius algebra A is called a sym-
metric Frobenius algebra if one (and hence all) of the following equivalent
conditions holds.

(i) The Frobenius form ε : A → k is central; this means that (ab)ε = (ba)ε

for all a, b ∈ A.
(ii) The pairing 〈 | 〉 is symmetric (i.e. 〈 a |b 〉 = 〈 b |a 〉 for all a, b ∈ A).

(iii) The left A-isomorphism A ∼→ A∗ is also right A-linear.
(iv) The right A-isomorphism A ∼→ A∗ is also left A-linear.
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In fact, in this case, since the two maps A ∼→ A∗ agree on 1A, they coincide.
(The proof is left as an exercise.)

Clearly a commutative Frobenius algebra is always symmetric. Symmetric
Frobenius algebras are often plainly called symmetric algebras (cf. Curtis and
Reiner [15]). In Quinn [43], they are called ambialgebras.

The condition (ab)ε = (ba)ε characterising central (Frobenius) forms is
often referred to as the trace condition – see 2.2.16.

2.2.10 Important remarks. In our setting, being a Frobenius algebra is a
structure, not a property. This means that given an algebra it does not make
sense to ask whether it is Frobenius or not; the Frobenius form must be spec-
ified. We often abuse language, saying ‘let A be a Frobenius algebra’, with-
out specifying the Frobenius structure (Frobenius form or Frobenius pairing);
when we do this we are tacitly assuming that a particular structure has been
chosen (or worse, we might just intend to say that a Frobenius form exists).
We ought to say: ‘let (A, ε) be a Frobenius algebra’.

Being symmetric is a property, not a structure: this means that given a
Frobenius algebra (that is, the algebra together with its Frobenius structure)
then it makes sense to ask whether it is symmetric or not; it is not something
you can choose.

As an illustration of these considerations, suppose A is a k-algebra, and
that ε : A → k and ε′ : A → k are two Frobenius structures (so we are talking
about two different Frobenius algebras, even though the underlying algebra A

is the same). Then it can easily happen that (A, ε) is symmetric while (A, ε′)
is not!

Precisely we have this lemma (whose proof is an exercise):

2.2.11 Lemma. Let (A, ε) be a symmetric Frobenius algebra (i.e. ε is cen-
tral); then every other central Frobenius form on A is given by multiplication
with a central invertible element of A.

Recall that an element of a ring is called central if it commutes with every other
element.

Examples

Here is a collection of examples of Frobenius algebras. Although some of them
are quite advanced compared to the level of prerequisites assumed elsewhere
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in this book, hopefully the reader will enjoy seeing the animals in their natural
habitat. . .

In each example, A is assumed to be a k-algebra of finite dimension over k.

2.2.12 The trivial Frobenius algebra. Let A = k, and let ε : A → k be the
identity map of k. Clearly there are no ideals in the kernel of this map, so we
have a Frobenius algebra.

2.2.13 Algebraic field extensions. Let A be a finite field extension of k. Since
fields have no nontrivial ideals, any nonzero k-linear map A → k will do
as Frobenius form. For the expert: if A is separable over k then the trace
map A → k is a natural choice of Frobenius form (see Lang [30] for these
notions).

2.2.14 Concrete example. The field of complex numbers C is a Frobenius
algebra over R: an obvious Frobenius form is ‘taking the real part’

C −→ R

a + ib �−→ a.

(But it could also be something more exotic, like 2+ 3i �→ 7, 1− i �→ 4 (then
by linear algebra, the line spanned by 1+ 19i maps to 0).)

2.2.15 Skew-fields. Let A be a skew-field (also called division algebra) of
finite dimension over k. Since just like a field, a skew-field has no nontrivial
left ideals (or right ideals), any nonzero linear form A → k will make A into
a Frobenius algebra over k, for example, the quaternions H form a Frobenius
algebra over R. (Recall that H = R1⊕ Ri ⊕ Rj ⊕ Rk with multiplication de-
fined by i2 = j2 = −1 and ij = −ji = k.)

2.2.16 Matrix algebras. The ring Matn(k) of all n-by-n matrices over k is a
Frobenius algebra with the usual trace map

Tr : Matn(k) −→ k

(aij ) �−→
∑

i

aii .

To see that the bilinear pairing resulting from Tr is nondegenerate, take the
linear basis of Matn(k) consisting of matrices Eij with only one nonzero entry
eij = 1; clearly Eji is the dual basis element to Eij under this pairing. Note
that this is a symmetric Frobenius algebra (2.2.9) since the two matrix products



100 Frobenius algebras

AB and BA have the same trace. If we twist the Frobenius form by multiplica-
tion with a noncentral invertible matrix we obtain a nonsymmetric Frobenius
algebra.

As a concrete example, consider Mat2(R) = {( a b
c d

) | a, b, c, d ∈ R} with
the usual trace map

Tr : Mat2(R) −→ R(
a b
c d

) �−→ a + d.

Now twist and take as Frobenius form the composition

Mat2(R) −→ Mat2(R)
Tr−→ R(

a b
c d

) �−→ (
a b
c d

) (
0 1
1 0

) �−→ b + c

and check that this is not a central functional (i.e. does not satisfy the trace
condition).

2.2.17 Semi-simple algebras of finite dimension. In fact all the above exam-
ples are special cases of semi-simple algebras. We will show in the Exercises
that every semi-simple algebra of finite dimension admits a Frobenius algebra
structure – in fact a symmetric one. To define semi-simplicity: the Jacobson
radical J (A) of a finite-dimensional k-algebra A is the intersection of all left
maximal ideals (or equivalently, the intersection of all right maximal ideals).
Now a finite-dimensional k-algebra A is semi-simple if its Jacobson radical is
zero. There are several other characterisations, also for more general algebras
and rings – see Curtis and Reiner [15] or Lang [30]. For example, the classi-
cal structure theorem of Wedderburn [49] states that every finite-dimensional
semi-simple algebra is isomorphic to a finite direct product of matrix algebras
over skew-fields.

2.2.18 Group algebras. (See for example Curtis and Reiner [15], Section 10.)
Let G = {t0, . . . , tn} be a finite group written multiplicatively, and with t0 =
1. The group algebra kG is defined as the set of formal linear combinations∑

ci ti (where ci ∈ k) with multiplication given by the multiplication in G. It
can be made into a Frobenius algebra by taking the Frobenius form to be the
functional

ε : kG −→ k

t0 �−→ 1

ti �−→ 0 for i �= 0.



2.2 Definition and examples of Frobenius algebras 101

Indeed, the corresponding pairing g ⊗ h �→ (gh)ε is nondegenerate since
g ⊗ h �→ 1 if and only if h = g−1. It is also easy to see that this Frobenius
algebra is symmetric. Again, we could get a nonsymmetric Frobenius algebra
by twisting with some noncentral element (if there are any).

Concrete commutative example: let G be the group of nth roots of unity.
Then the group algebra is isomorphic to k[x]/(xn − 1). The Frobenius form
defined as above takes 1 �→ 1 and xi �→ 0 for i �= 0 mod n.

Concrete noncommutative example: let G = S3 be the symmetric group
on three letters. It is generated by two transpositions, subject to three relations
which make the group algebra look like this: k〈x, y〉/(x2 − 1, y2 − 1, xyx −
yxy). (Here the notation k〈x, y〉, with angle brackets, means noncommuta-
tive polynomial ring.) The Frobenius form sends 1 �→ 1 and kills the subspace
spanned by {x, y, xy, yx, xyx}.

If the characteristic of k does not divide the order of G then in fact kG is
semi-simple (Maschke’s theorem, cf. [15]), so this example is a subexample
of the previous 2.2.17. In this case we can define a similar Frobenius form in
a slick way like this: take ε to be the character of the regular representation.
In detail, the (first) regular representation of G is just G acting on kG by
right multiplication; we can regard this as a k-algebra map kG → End(kG).
Its character is obtained by composition with the trace map (cf. 2.2.16). Since
multiplication by ti �= 1 permutes all the tj , we see that 1 �= ti �→ 0, while
clearly t0 = 1 maps to the trace of the identity matrix, which is n+ 1 (the order
of the group). So this Frobenius form is nearly the same as the first one we
constructed. We mention it here as a transition to:

2.2.19 Historical remarks. The second regular representation of a group G

is

(kG)∗ ×G −→ (kG)∗
(�“, g) �−→ [x �→ (gx)�],

(compare 2.1.28). It is not difficult to show that the first and second regular
representations of a finite group are isomorphic.

Now just as a representation of G can be viewed as a k-algebra homomor-
phism kG → End(V ), it makes good sense to speak about a representation
of an algebra, say a finite-dimensional algebra A: it is a k-algebra homomor-
phism A → End(V ). The first and second regular representations of A are
A → End(A) and A → End(A∗), and it is a natural question to ask whether
these two representations are isomorphic just as in the case of group alge-
bras. The Prussian mathematician Ferdinand Georg Frobenius (1849–1917),
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founder of the theory of group representations, was the first to study alge-
bras A with this property, which is equivalent to having A � A∗ as right
A-modules. This is the origin of the terminology ‘Frobenius algebra’. Accord-
ing to the Encyclopaedia of Mathematics [26], Frobenius’ first paper on the
subject was Theorie der hyperkomplexen Grössen [22] from 1903. (Hyperkom-
plexe Grössen, or hypercomplex numbers, were that time’s terminology for the
elements in a finite-dimensional algebra, cf. also Wedderburn [49].)

This sort of algebra was given Frobenius’ name in the late 1930s by
T. Nakayama and C. Nesbitt in a series of papers in Annals of Mathematics
about representations of algebras, e.g. Nakayama [41], On Frobeniusean al-
gebras I. (The three (actually four) equivalent characterisations of Frobenius
algebras listed in 2.2.7 date back to these papers, together with several others
we have not touched upon.) In his 1938 article [42], Nesbitt writes:

The writer, in collaboration with T. Nakayama, adopted the term Frobeniusean
algebra, but now, quailing before our critics, we return to simply Frobenius algebra.

But Nakayama continued to use the term ‘Frobeniusean’ until 1950.
Note that in the classical theory, ‘Frobenius algebra’ just meant an algebra

that admits a Frobenius structure, contrary to our usage where we require the
structure to be specified.

2.2.20 The ring of group characters. (See Curtis and Reiner [15], Sections
30–31.) Assume the ground field is k = C. Let G be a finite group of order n. A
class function on G is a function G → C which is constant on each conjugacy
class; the class functions form a ring denoted R(G). In particular, the char-
acters (traces of representations) are class functions, and in fact every class
function is a linear combination of characters. There is a bilinear pairing on
R(G) defined by

〈φ |ψ 〉 := 1

n

∑
t∈G

φ(t)ψ(t−1).

Now the orthogonality relations (see [15], (31.8)) state that the characters form
a orthonormal basis of R(G) with respect to this bilinear pairing, so in particu-
lar the pairing is nondegenerate and provides a Frobenius algebra structure on
R(G).

2.2.21 Artinian Gorenstein rings. (See Eisenbud [21], Chapter 21.) Let A be
a commutative Artinian local ring with maximal ideal m. The socle of A, de-
noted Soc(A), is the annihilator of m. The ring A is Gorenstein if Soc(A) is a
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simple A-module, meaning that there are no nontrivial submodules in Soc(A).
Since A is a local ring this just means Soc(A) � A/m. Now we claim that if A

is Gorenstein then Soc(A) is contained in every nonzero ideal of A. To estab-
lish this, we must show that Soc(A) lies inside the ideal (x) for every nonzero
x ∈ m. Since Soc(A) is a 1-dimensional vector space (over K := A/m), it is
enough to show that the two ideals intersect nontrivially. Now if x is already
in Soc(A), then we are done. Otherwise there exists an element y ∈ m such
that xy is nonzero. But then (xy) is an ideal strictly smaller than (x) (by
Nakayama’s lemma, see [30]). Now repeat the argument with xy in place of
x, and continue iteratively. Since A is Artinian, we cannot continue forever
like that: eventually we arrive at a nonzero element in Soc(A), and we are
done.

Now if A happens to be a finite-dimensional vector space over k, then it
follows that A can be made into a Frobenius algebra simply by taking any
linear form which is nonzero on the socle. Indeed, since the nullspace of such
a form does not contain the socle, it contains no nontrivial ideals at all.

In fact, conversely, every local Frobenius algebra is Gorenstein. We will not
prove that here.

Some easy Gorenstein/Frobenius algebra examples: in k[x, y]/(x2, y2) the
socle is generated by xy. In k[x]/(xn) the socle is generated by xn−1. (In gen-
eral there is a number n such that mn = 0 while mn−1 �= 0. If A is Gorenstein
then Soc(A) = mn−1.)

Here are two local rings which are not Gorenstein, and thus cannot support
a Frobenius structure. In A = k[x, y]/(x2, xy2, y3), the socle is (xy, y2). In
the ring A = k[x, y, z]/(x2, y2, z2, xy), the socle is (xz, yz). The reason why
there can be no Frobenius structure on these rings is the same in both cases
(and does in fact work whenever A/m � k). Since the socle is of dimension at
least 2, the nullspace of any linear form � will intersect Soc(A) nontriv-
ially, so there exists a nonzero s ∈ Soc(A) with s� = 0. But this implies the
whole ideal (s) is killed by �. Indeed, any element a ∈ A can be written
a = u+m where u ∈ k and m ∈ m. So as� = us�+ms�. But us� is zero
by k-linearity of �, and ms is zero since s is in the socle, so by definition it
annihilates m.

2.2.22 Jacobian algebras. (See Griffiths and Harris [25], Chapter 5.1.) Let f

be a polynomial in n variables, and suppose the zero locus Z(f ) ⊂ C
n has

an isolated singularity at 0 ∈ C
n. Put fi := ∂f

∂zi
and let I = (f1, . . . , fn) ⊂ O0

(the local ring at the origin). The local ring O0/I is called a Jacobian algebra.
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Since I is generated by n elements which is also its codimension, O0/I is a
complete intersection ring and in particular Gorenstein. But more interestingly,
there is a canonical Frobenius form on it, defined by integrating around the
singularity along a real n-ball. Precisely, let B = {z | fi(z) = ρ} (for some
small ρ > 0), and let the functional be the residue

resf : O0/I −→ C

g �−→ ( 1
2πi

)2n
∫

B

g(z) · dz1 ∧ · · · ∧ dzn

f1(z) · · · fn(z)
.

Now local duality (see Griffiths and Harris [25], page 659) states that the cor-
responding bilinear pairing is nondegenerate.

2.2.23 Cohomology rings. (See for example Bott and Tu [12], Chapter 1, or
Fulton [23], 24.32.) To be concrete, let X be a compact oriented manifold of
dimension n, and let H∗(X) = ⊕n

i=0H
i(X) denote the de Rham cohomology

(Hi(X) = closed differentiable i-forms modulo the exact ones). It is a ring
under the wedge product. Integration over X (with respect to a chosen volume
form) provides a linear map H∗(X) → R, and Poincaré duality states that
the corresponding bilinear pairing H∗(X)⊗H∗(X) → R is nondegenerate;
precisely, Hi(X) is dual to Hn−i (X). Thus, H∗(X) is a Frobenius algebra
over R.

In fact, if X is connected then H∗(X) is a (graded-commutative) Gorenstein
ring (2.2.21): the maximal ideal is

⊕
i>0H

i(X), and the socle is Hn(X) � R.
By graded-commutative we mean that classes of odd degree anti-commute:
given α ∈ Hp(X) and β ∈ Hq(X) then

α ∧ β = (−1)pqβ ∧ α.

As a concrete example, take the cohomology ring of a torus X: it is gener-
ated by two 1-forms α and β (Poincaré dual to the two nonhomologous circles
generating H1(X) (‘one around the hole and one through the hole’)). Then we
have

H∗(X) = R〈α, β〉/(α2 = β2 = 0, αβ = −βα).

Another basic example is the cohomology of X = CP
n. It is H∗(X) �

R[h]/hn+1, where h is the class of a hyperplane.
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Exercises

1. Prove that the four characterisations of symmetric Frobenius algebras
(2.2.9) are equivalent.

2. Prove Lemma 2.2.11.
3. Show that every group algebra admits a symmetric Frobenius algebra

structure.
4. Combine 2.2.16 and 2.2.13 to show that a matrix ring over C is also a

Frobenius algebra over R. Can you also prove that a matrix ring over H is
a Frobenius algebra over R?

�5. More generally, show that a matrix algebra over a Frobenius algebra is
again a Frobenius algebra. Precisely, let (A, ε) be a Frobenius algebra
over k, and let Mn(A) denote the algebra of n-by-n matrices over A,
with the usual trace map Tr : Mn(A) → A, (mij ) �→ ∑

i mii . Show that
the composite

Mn(A)
Tr� A

ε� k

is a Frobenius form. (Hint: assume the dimension of A over k is r , then
Mn(A) has dimension rn2. Pick a basis for A and consider the basis for
Mn(A) consisting in matrices with a single nonzero entry which belongs
to the basis of A.)
Since every finite-dimensional simple algebra is a matrix algebra over a
skew-field, we have shown that every finite-dimensional simple algebra
admits a Frobenius algebra structure.

6. Show that every finite-dimensional simple algebra admits a symmetric
Frobenius structure.

7. Given two Frobenius algebras (A′, ε′) and (A′′, ε′′), show that the linear
functional

A′ ⊕ A′′ −→ k

a′ ⊕ a′′ �−→ a′ε′ + a′′ε′′

is a Frobenius form on the direct product algebra A′ × A′′ = A′ ⊕ A′′
(cf. Exercise 8 on page 93).
Conversely, show that if A is a direct product algebra A = A′ × A′′, and
if ε : A → k is a Frobenius form on A, then the composites A′ → A → k

and A′′ → A → k are Frobenius forms on A′ and A′′ respectively. (Note
that A′ → A and A′′ → A are just k-linear maps, not ring homomor-
phisms.)
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8. The previous exercise shows that Frobenius structure is compatible with
direct products. Redo that exercise using the definition of Frobenius alge-
bra in terms of a Frobenius pairing.

9. Use Wedderburn’s structure theorem (cf. 2.2.17) and the previous exer-
cises to prove that every semi-simple algebra of finite dimension admits a
Frobenius structure.

10. Show that every finite-dimensional semi-simple algebra admits a symmet-
ric Frobenius structure.

11. (A noncommutative analogue of 2.2.21.) Let A be a finite-dimensional
k-algebra; let J denote its Jacobson radical, and let S be the right annihi-
lator of J :

S := {a ∈ A | xa = 0 ∀x ∈ J }.
This is a two-sided ideal. Assume that S is a simple left ideal, i.e. contains
no nontrivial left ideals. Show that S is contained in every left ideal, and
conclude that a Frobenius form on A can be taken to be any linear func-
tional which is nonzero on S. All the arguments are in 2.2.21 – you just
need to refine them to the noncommutative case. . .

12. (Nonexample.) Show that the algebra of upper-triangular 2-by-2 matrices
over k does not admit a Frobenius structure.

13. (Nakayama.) Let (A, ε) be a Frobenius algebra with pairing β given by
〈 x |y 〉 := (xy)ε. Consider the map σ : A → A defined as the composite

A
βright� A∗ β−1

left� A,

cf. 2.2.5 for notation.
(i) Show that σ is characterised by the formula 〈 x |y 〉 = 〈 y |xσ 〉 ,
∀x, y ∈ A. (In particular, (A, ε) is symmetric if and only if σ is the identity
map.)
(ii) Show that σ is a k-algebra homomorphism.

2.3 Frobenius algebras and comultiplication

2.3.1 Coalgebras. The notion of coalgebra over k is the opposite of the notion
of k-algebra, in the sense that the structure maps and the diagrams for their
axioms are all just reversed. So a coalgebra over k is a vector space A together
with two k-linear maps

δ : A → A⊗ A, ε : A → k



2.3 Frobenius algebras and comultiplication 107

such that these three diagrams commute:

A⊗ A⊗ A

A⊗ A

δ⊗idA

�

A⊗ A

idA⊗δ

�

A

δ

�

δ

�

k⊗ A �ε⊗idA
A⊗ A

A

δ

�
� A⊗ A

idA⊗ε� A⊗ k

A

δ

� �
(Compare 2.1.18.) The map δ is called comultiplication, and ε : A → k is
called the counit (or sometimes the augmentation). The axioms expressed in
the diagrams are called coassociativity and the counit condition.

Here we are happy to express things in terms of diagrams, because it is
very messy to write down anything explicitly about comultiplication. To do
that we would have to use coordinates. We will briefly take that viewpoint in
the subsection starting on page 123.

2.3.2 Example: the coalgebra on a set. Let S = {t0, . . . , tn} be a set. Then the
coalgebra on S is given by taking the vector space spanned by S, with comulti-
plication given by the diagonal map S → S × S. Precisely, let V := kS be the
set of formal linear combinations of the elements in S. The comultiplication
is given by letting ti �→ ti ⊗ ti ∈ V ⊗ V and extending linearly to the whole
of V . The counit is given by ti �→ 1 for each ti . (If S has group structure then
kS acquires algebra structure, and we recover the definition of group algebra,
cf. 2.2.18.)

A similar way of saying essentially the same: as soon as a basis has been
given for a vector space V it acquires a canonical coalgebra structure.

2.3.3 Example: the trigonometric coalgebra of Sweedler [46]. Let V be a
2-dimensional vector space with basis {S,C}. Define a comultiplication by
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C �→ C ⊗ C − S ⊗ S

S �→ C ⊗ S + S ⊗ C,

with counit given by

C �→ 1

S �→ 0,

and check that coassociativity and the counit condition hold. The reason for
the name is the analogy with the familiar formulae

cos(x + y) = cos(x) cos(y)− sin(x) sin(y),

sin(x + y) = cos(x) sin(y)+ sin(x) cos(y),

cos(0) = 1,

sin(0) = 0.

2.3.4 Towards coalgebra structure on a Frobenius algebra. It is not a coin-
cidence that we have denoted the counit by ε just like the Frobenius form. The
main result of this chapter states that every Frobenius algebra has a unique
coalgebra structure for which the Frobenius form is the counit, and which is
A-linear (see Proposition 2.3.22 for the exact statement). And conversely,
given a k-algebra, equipped with an A-linear coalgebra structure, then the
counit is a Frobenius form (cf. Proposition 2.3.24). So this gives yet another
characterisation of Frobenius algebras – the most important one for our pur-
poses. We will give a quite elementary proof, which does not even involve
coordinates. It is based on a graphical calculus which is common in knot the-
ory and quantum groups (see Kassel [29]). Usually the pictures are graphs of
various sorts. Here, inspired by the pictures in Chapter 1 we adopt a graphical
representation which looks like topological surfaces with boundary, and in the
end the notion of TQFT is going to give a precise interpretation to that analogy,
cf. 3.3.2.

Graphical calculus

2.3.5 The building blocks. The first observation is that we do not have many
pieces to move! If we want to construct a comultiplication on our Frobenius
algebra A, all we have to make do with are the following maps: the multiplica-
tion µ : A⊗ A → A, the unit η : k → A, and the Frobenius form ε : A → k

as well as the Frobenius pairing β : A⊗ A → k, not forgetting the identity
map idA : A → A. These maps come with certain properties which are ex-
pressed as commutative diagrams. Our task is to combine these arrows in a
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natural way to construct a comultiplication, and then combine all the diagrams
in order to establish the diagrams that express the properties we want from this
comultiplication.

2.3.6 Towards graphical representation of the structures. The second ob-
servation is that all of these building blocks are maps between tensor powers
of A; let An denote the tensor product of n copies of A. Of course the ground
field appears in the maps, but recall that it is natural to consider k as the zeroth
tensor power of A, the tensor product with zero factors.

In my very first mathematics book, in the first year of primary school, there
were a lot of drawings meant to make the learning of multiplication funnier and
more conceptual. Multiplication was introduced as a machine with two input
holes, where you could throw in two numbers, and then the machine would
process this input and produce a number which would drop out from a single
output hole. The machines looked like this:

×

3 8

24
We will basically adopt this picture, but we will turn it 90 degrees and draw
the multiplication map like this:

2.3.7 The dictionary (or pictionary). Let us first draw the maps that define a
k-algebra:

η µidA

unit multiplicationidentity

(The identity map is actually not a part of the algebra structure – it is something
even more fundamental, since it is already part of the vector space structure on
A (in fact it is automatically present on any object in any category. . . ).)
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We will now give precise meaning to each picture: throughout this chapter,
these symbols have the status of formal mathematical symbols, just like the
symbols → or ⊗. The symbol corresponding to each k-linear map φ : Am →
An has m boundaries on the left (input holes): one for each factor of A in the
source, and ordered such that the first factor in the tensor product corresponds
to the bottom input hole and the last factor corresponds to the top input hole.
If m = 0 we simply draw no in-boundary. Similarly there are n boundaries
on the right (output holes) which correspond to the target An, with the same
convention for the ordering.

The tensor product of two maps is drawn as the (disjoint) union of the two
symbols – one placed above the other, in accordance with our convention for
ordering. Indeed, the tensor product of two maps is defined by letting the two
maps operate independently on their respective arguments, so it is natural that
we draw this as two parallel tubes or, in the machine metaphor, as two parallel
processes – and similarly for multiple tensor products.

So for example the map idA⊗µ has symbol

which we will often
draw like this:

just for graphical convenience.
It is clear how the graphical language should capture compositions: just

join the output holes of the first figure with the input holes of the second. For
example, the composition

k⊗A
η⊗idA� A⊗A

µ � A

is represented by

Now we can write down the axioms for an algebra in graphical notation. The
‘algebra-book’ version of the axioms (like (ab)c = a(bc)) cannot easily be
expressed in graphical terms because we have no good way to treat elements,
but the way we have expressed the axioms in 2.1.18 in terms of diagrams, we
are talking about the equality of two different compositions of arrows. It is
easy to express 2.1.18 in graphical terms:

2.3.8 The k-algebra axioms.

=

associativity

= =

unit axiom
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It should be stressed that this is not just an analogy or a fancy illustration.
The symbols above have precise mathematical meaning and express exactly
the same conditions as the diagrams in 2.1.18.

2.3.9 Frobenius form and Frobenius pairing. We want to express Frobenius
structure in graphical language. We have three equivalent definitions, but the
last one (2.2.6), the A-isomorphisms A ∼→ A∗, does not fit into our graphical
notation because A∗ is not a tensor power of A.

The first definition (2.2.1) involves a linear form ε : A → k, and the second
a bilinear pairing β : A⊗ A → k. According to our principles we depict those
two maps as

ε β

Frobenius form Frobenius pairing

We can draw right away the relation between these two maps:

= = =

These are the relations 〈 x |y 〉 = (xy)ε and 〈 1A |x 〉 = xε = 〈 x |1A 〉 ex-
plained in 2.2.3. Here come the diagrams:

A

A⊗ A
β

�

µ

�

k

ε

�

A⊗ A

A
ε

�

η⊗idA

�

k

µ

�

A⊗ A

µ

�

idA⊗η
�

Note that we suppress the k-factors in tensor products, writing A
idA⊗η−→ A⊗ A

when we really mean A⊗ k
idA⊗η−→ A⊗ A.

It is trickier to express the axioms which ε and β must satisfy in order
to be a Frobenius form and a Frobenius pairing, respectively. The axiom for
a Frobenius form ε : A → k is that its nullspace contains no nonzero ideals.
We cannot express this condition in graphical language because we have no
way to represent an ideal. . . In contrast, the axiom for the Frobenius pairing
allows graphical expression. There are two conditions: associativity (2.1.32)
and nondegeneracy (2.1.10).
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2.3.10 Associativity of the Frobenius pairing. The graphical expression of
the associativity condition on β is

=

associativity
of the pairing β

In view of the relation = , the associativity equation for β follows from
the associativity equation for µ, simply by putting a cap on the output hole
of the drawing of 2.3.8.

2.3.11 Nondegeneracy – the snake relation. According to the definition
(2.1.10), nondegeneracy means the existence of a copairing γ : k → A⊗ A

such that these two diagrams commute:

A⊗ A⊗ A �idA⊗γ
A

A

β⊗idA

��

A
γ⊗idA� A⊗ A⊗ A

A

idA⊗β

��

Now we are in business, because these are diagrams of maps between tensor
powers of A. Here is the graphical expression:

There exists such that

= =

This is really the crucial property – we will henceforth refer to this as the snake
relation.

Our goal is to show that a Frobenius algebra (A, ε) has a natural coalgebra

structure for which ε is the counit. To construct a comultiplication on A,

the key element is exactly the copairing , since it serves to turn around an
input hole so that it becomes an output hole. We will simply put

:= =
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Our first task is to show that these two definitions coincide (which is the con-
tent of Lemma 2.3.15). To this end, it is practical to introduce the three-point
function (it is usually called this in field theory).

2.3.12 The three-point function φ : A⊗ A⊗ A → k is defined by

φ := (µ⊗ idA)β = (idA⊗µ)β,

which in graphical language reads

:= =

Associativity of β says that the two expressions coincide. (In other words,
φ(a, b, c) = 〈 ab |c 〉 = 〈 a |bc 〉 .) More figuratively, we can say that the pair-

ing is used to turn around the output hole of ; then associativity states
that it does not matter which way we turn around.

Conversely, using the snake relation we can express in terms of the
three-point function:

2.3.13 Lemma. We have

= =

Proof. This is our first graphical proof, so let us walk through it slowly. We
concentrate on the left-hand equation – the right-hand equation is completely
analogous. First of all we should explain what is meant by the drawing. As it
stands it does not really represent a composition – the input and output holes
do not match! We have omitted some identity maps. What we mean is really

=

This omission is harmless, so for simplicity we will most often write like this.
Here in this proof however, we will write out everything – in order to illustrate
the harmlessness of the omission.
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First let us write down the statement in terms of a diagram:

A⊗ A⊗ A⊗ A

A⊗ A
µ

�

idA⊗ idA⊗γ

�

A

φ⊗idA

�

Note that we omit the k-factors.
Now for the proof. First use the definition of the three-point function:

=

Now remove four identity maps, and insert a new one just after the multiplica-
tion (in order to line up things to our advantage):

= =

Now use the snake relation – this is the crucial step – and finally remove an
identity map:

= =

�

To stress that each single step in the graphical proof is in fact a commutative
diagram, let us rephrase the whole proof!

2.3.14 Diagram proof of 2.3.13. We started with this composition

A⊗ A⊗ A⊗ A

A⊗ A

idA⊗ idA⊗γ

�

A

φ⊗idA

�
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and the first step was to use the diagram expressing the definition of φ, to fill
in this triangle:

A⊗ A⊗ A⊗ A

A⊗ A⊗ A

µ⊗idA⊗ idA

�

A⊗ A

idA⊗ idA⊗γ

�

A

φ⊗idA

�β⊗idA

�

The second step was to notice that those identity maps in the first two arrows
were superfluous – that amounts to filling in another triangle:

A⊗ A⊗ A⊗ A

A⊗ A⊗ A

µ⊗idA⊗ idA

�

A⊗ A

idA⊗ idA⊗γ

�

µ⊗γ

�

A

φ⊗idA

�β⊗idA

�

Next, we inserted a new identity map like this:

A⊗ A⊗ A⊗ A

A⊗ A⊗ A

µ⊗idA⊗ idA

�

A⊗ A
µ

�

idA⊗ idA⊗γ

�

µ⊗γ

�

A

idA⊗γ

�

A

φ⊗idA

�β⊗idA

�
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Finally, we used the fact that β is nondegenerate (diagram 2.1.10), to fill in the
last triangle with an identity map idA, and noticed that the composite µ idA is
just µ itself (the curved arrow):

A⊗ A⊗ A⊗ A

A⊗ A⊗ A

µ⊗idA⊗ idA

�

A⊗ A
µ

�

idA⊗ idA⊗γ

�

µ⊗γ

�

A

idA⊗γ

�

idA

� A

φ⊗idA

�β⊗idA

�

µ

�

which is what we wanted to prove. �

2.3.15 Lemma. We have

=

Proof. Follows immediately using the expressions for given in 2.3.13 �

2.3.16 Comultiplication. Now we define a comultiplication δ

:= = =

This makes sense, due to 2.3.13

2.3.17 Multiplication in terms of comultiplication. Conversely, turning
some holes back again, using β, and then using the snake relation, we also
get the relations dual to 2.3.16:
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= =

2.3.18 Lemma. The Frobenius form ε is counit for δ:

= =

Proof. Suppressing the identity maps, write

= = =
Here the first step was to use the expression 2.3.9 for . The next step was to
use relation 2.3.17. Finally we used that is neutral element for the multipli-
cation (cf. 2.3.8). (The right-hand equation is analogous.) �

2.3.19 Lemma. The comultiplication δ defined above satisfies the following
relation, called the Frobenius condition.

= =

The right-hand equation amounts to the commutativity of this diagram:

A⊗ A
δ⊗idA� A⊗ A⊗ A

A

µ

�

δ
� A⊗ A

idA⊗µ

�

which in turn expresses right A-linearity of δ. (The underlined copies of A

are those that act by scalar multiplication.) Similarly the left-hand equation
expresses left A-linearity.

Proof. For the left-hand equation, use = ; then use associativity, and
finally use the relation back again:

= = =



118 Frobenius algebras

The right-hand equation is obtained using = . �

2.3.20 Lemma. The comultiplication is coassociative:

=

Proof. Use the definition of δ (2.3.16), then the associativity, and finally the
definition again:

= = =
�

The next lemma shows that the relation between the copairing and the unit is
analogous (dual) to the relation between the Frobenius form and the Frobenius
pairing (relation 2.3.9). (Its proof is left as an exercise.)

2.3.21 Lemma. These relations hold:

= = =
�

2.3.22 Proposition. Given a Frobenius algebra (A, ε), there exists a unique

comultiplication whose counit is ε and which satisfies the Frobenius rela-
tion, and this comultiplication is coassociative.

Proof. We have already constructed such a comultiplication (2.3.16, 2.3.18,
2.3.19), and established its coassociativity (2.3.20). It remains to show that it
is unique. This is a consequence of the fact that the copairing corresponding
to a nondegenerate pairing is unique, as we proved in 2.1.11. Let us repeat
that proof in graphical language – anyway we will need this version later on.

Let β = be a pairing and suppose that ξ and γ are two corresponding
copairings:

= =ξ

γ
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Then we get

γ
=

γ

ξ

= ξ
(2.3.23)

which is to say that ξ and γ coincide.
Now for the uniqueness of the comultiplication: suppose that ω is another

comultiplication with counit ε and which satisfies the Frobenius relation. In the
following couple of arguments we work with the left-hand side of the Frobe-
nius relation for ω, establishing half of the relations we need. The other rela-
tions follow by applying similar arguments to the right-hand side. Putting caps
on the upper input hole and the lower output hole of the Frobenius relation we
see that ηω satisfies the snake equation:

ω = ω =

by the unit and counit axioms. So by the uniqueness of copairing we have
ηω = γ . Using this, if instead we put only the cap η on, then we get

= ω = ω = ω

That is, ω is nothing but µ with an input hole turned around, just like δ was
defined. �

The reason why the relation of 2.3.19 is called the Frobenius condition is
that it characterises Frobenius algebras, as the next result shows. In fact, it
characterises Frobenius algebras not only among the associative algebras of
finite dimension, but also among general vector spaces equipped with unitary
multiplication. Precisely,

2.3.24 Proposition. Let A denote a vector space equipped with a multiplica-
tion map µ : A⊗ A → A denoted , with unit η : k → A denoted , a

comultiplication δ : A → A⊗ A denoted , with counit ε : A → k denoted
, and suppose the Frobenius relation holds:
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= =

Then

(i) the vector space A is of finite dimension,
(ii) the multiplication µ is associative, and thus A is a finite-dimensional

k-algebra (also, the comultiplication is coassociative),
(iii) the counit ε is a Frobenius form, and thus (A, ε) is a Frobenius algebra.

Proof. Set β := µε, that is: = . We will show that β is nondegenerate,
i.e. establish the snake relation, with γ = ηδ. The proof of this goes just like
the previous proof. Put caps on the left-hand part of the Frobenius relation like
this:

= = =

using the unit and counit axioms. This is the left-hand part of the snake relation;
similarly, the right-hand side of the Frobenius relation gives the right-hand side
of the snake relation, so β is nondegenerate. This in particular implies that A

is of finite dimension (cf. 2.1.12).
To get associativity, put only one cap on the Frobenius relation (left-hand

relation), getting these two identities:

=
and =

Now we can write

= = =

So is associative. (Coassociativity follows similarly.)

Finally, since is associative, clearly the pairing = is associa-
tive as well, so (A, β) is a Frobenius algebra. �

2.3.25 Historical remarks. The characterisation of Frobenius algebras in
terms of comultiplication (2.3.24) goes back (at least) to Lawvere [32] (1967),
where it is a parenthetical remark at the end of the paper. In a very general
categorical context (which we will take up in Chapter 3, notably 3.6.8) he
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describes a Frobenius standard construction (standard construction meaning
monad) as being a combined monoid/comonoid object with this compatibility
requirement (which we reproduce in graphical language):

= =

= =

These are 2.3.16 and 2.3.17 above. The Frobenius relation is an immediate
consequence, cf. 2.3.19. The nondegenerate pairing = is mentioned
explicitly, but the Frobenius relation is not.

The first explicit mention of the Frobenius relation, and a proof of 2.3.24,
were given in 1991 by Quinn [43], unaware of [32]. However, Quinn required
the symmetry axiom

=

and called the algebras ambialgebras (although he was aware of the exist-
ing terminology symmetric (Frobenius) algebra (as employed in Curtis and
Reiner [15])). Independently, Abrams gave the commutative case of the new
characterisation in [1] (1995), and the noncommutative case appeared in [2]
(1998).

Commutativity and cocommutativity

2.3.26 The twist map. For every pair of vector spaces V, V ′ there is a canon-
ical twist map

σV,V ′ : V ⊗ V ′ → V ′ ⊗ V

which simply changes the order of the factors. We picture the twist map like
this:

V

V ′

V ′
V

Note that now we have more than one vector space in play, so it is better to
label the circles that represent these spaces.

The twist map satisfies some obvious axioms, among which the requirement
σV,V ′σV ′,V = idV⊗V ′ :
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=

Taken together, the properties amount to saying that Vectk is a symmetric
monoidal category, cf. 3.2.28.

Of course, we are particularly interested in the case where V = V ′ = A is

an algebra, so that we have the multiplication map . Then naturality of the
twist map with respect to this amounts to this relation:

=

2.3.27 Commutative algebras. Let A be an algebra, with multiplication .
Then we can picture the axiom of being a commutative algebra:

=

2.3.28 Cocommutative coalgebras. A coalgebra A with comultiplication

is said to be cocommutative if this relation holds:

=

2.3.29 Proposition. The comultiplication of a Frobenius algebra is cocommu-
tative if and only if the multiplication is commutative.

Proof. Suppose the multiplication is commutative. We will show that the map

has ε as counit and satisfies the Frobenius relation. Then we can invoke the
result (2.3.22) that such a comultiplication is unique in a Frobenius algebra,
and thus conclude that δσ = δ. The converse implication follows from duality.

So let us establish the left-hand side of the Frobenius relation, with the map
δσ as ‘comultiplication’, i.e. this equation:

=

Here is the proof of that statement:
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(1)=

(2)=

(3)=

(4)=

(5)=
The first step was to insert three new twist maps: the two maps just give

the identity, and the third map, inserted just before , is justified by commu-
tativity. In step (2) we changed the order of the three rightmost twist maps,
according to the ‘symmetric-group-relation’ – it is an instance of the naturality
of the twist map. Equation (3) expressed another two instances of naturality,
this time with respect to comultiplication and multiplication – the twist maps
in the middle move outwards past comult and mult. Step (4) is the Frobenius
relation, and finally in (5) we used commutativity of the multiplication map
back again. �

2.3.30 Symmetric Frobenius algebras. If (A, β) is a Frobenius algebra then
we can also picture the condition of being a symmetric one (that β satisfies the
trace condition):

=

Tensor calculus (linear algebra in coordinates)

Until now we have carefully avoided coordinates. In this subsection we will
write out everything in coordinates – not because we need to do so, but just for
the fun of it. (This subsection will be used only in the exercises.) We adopt the
elegant tensor element notation common in Riemannian geometry and physics,
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suppressing summation signs, and carefully distinguishing upper and lower in-
dices. As it turns out, this tensor notation goes hand in hand with the graphical
calculus.

Let A be as above. Fix a basis {T0, . . . , Tr } for the vector space A, in such
a way that T0 = 1A.

2.3.31 The multiplication tensor. Since the multiplication µ : A⊗ A → A is
linear we can describe it completely by specifying what it does to the elements
of the basis. Recall that a canonical basis for A⊗ A is Ti ⊗ Tj where i and
j run from 0 to r . The result of multiplying two such basis element is then a
linear combination of T0, . . . , Tr :

Ti ⊗ Tj �→ Tkµ
k
ij .

Here and throughout the section we suppress sum signs, adopting the Einstein
summation convention: all repeated indices (which appear as one lower and
one upper) are assumed to be summed. In this case the symbol k is repeated,
so the meaning is

∑r
k=0 Tkµ

k
ij .

We always write the indices corresponding to input as lower indices and the
indices corresponding to output as upper indices. This is the usual convention
from Riemannian geometry where we would call this a (2, 1)-tensor. We draw
it like this

µk
ij
:

j

i

k

Note that the input holes correspond to lower indices and that the output cor-
responds to upper indices.

The associativity of µ can now be written explicitly. In the product TiTjTk

we can either start by multiplying Ti and Tj , and then multiply the result with
Tk:

Ti ⊗ Tj ⊗ Tk �→ Teµ
e
ij ⊗ Tk �→ Tl µ

e
ijµ

l
ek

Or we can do it the other way around, which gives Tl µ
e
jkµ

l
ie. Now by linear al-

gebra, two such linear combinations are equal if and only if all the coefficients
are equal. So altogether the associativity equation is

µe
ijµ

l
ek = µe

jkµ
l
ie.

It is interesting to compare with the graphical representation:
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k

j

i

k

e

l =

k

j

i

e

i

l

If you know the coordinate expression we just found, you can draw the pic-
ture just by putting together the pieces according to the matching indices. Or
conversely, if we know the abstract associativity relation from 2.3.8 we can
quickly find the tensor expression, by putting labels (indices) on all the holes,
and then write down the tensor element of each piece.

2.3.32 The metric tensor. Since the bilinear pairing β : A⊗ A → k is non-
degenerate we will call it a metric, but of course, since we are over a general
field k, it makes no sense to talk about positive definiteness, as one usually
requires in Riemannian geometry. . . We regard β as a (2, 0)-tensor. Its tensor
elements are the constants βij ∈ k defined by

βij = 〈 Ti |Tj 〉 .
We will draw this like this

βij :
j

i

2.3.33 Associativity of the metric tensor, and the three-point functions.
The requirement that β be associative (cf. 2.1.32) is now easy to write down
explicitly:

µe
ijβek = µ

f
jkβif .

Now the coordinate expression for the three-point function (see 2.3.12) is

φijk := µe
ijβek = µ

f
jkβif

k

j

i

:=

k

j

i

k

e

=

k

j

i

f

i

See how the metric βij serves to lower indices. The important fact is that β is
nondegenerate so we can take the inverse matrix and use it to raise indices.

2.3.34 Nondegeneracy. Let us write out in coordinates what it means to say
that the pairing β : A⊗ A → k is nondegenerate. To this end, let (ι

j
i ) denote
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the identity matrix – in other words, ι
j
i is the ‘Kronecker delta’: equal to 1 for

i = j and equal to 0 otherwise. (The usual symbol δ for the Kronecker delta is
currently assigned to the comultiplication. . . )

Now nondegeneracy of β (cf. 2.1.10 and the snake relation 2.3.11) has the
following coordinate expression: there exists a (0, 2)-tensor γ : k → A⊗ A

such that

βij γ
jk = ιki and γ ijβjk = ιik.

In other words, it amounts to the statement that the matrix (βij ) is invertible
and that (γ ij ) is its inverse. We draw γ like this:

γ ij :
j

i

2.3.35 Multiplication in terms of the three-point function – coordinate
expression of 2.3.13. Now that we have the matrix (γ ij ), we can use it to raise
indices, and express the multiplication in terms of the three-point function.

φijeγ
ek = µk

ij = γ kf φf ij

k

e

j

i

=
j

i

k =
j

i

f

k

Proof (in coordinates): let us prove the left-hand equation. By definition,
φije = µs

ijβse; now multiply this equation from the right with the matrix (γ ek).

2.3.36 Comultiplication (cf. 2.3.16). Define the comultiplication to be

A −→ A⊗ A

Tk �−→ Ti ⊗ Tj δ
ij
k ,

where the tensor elements are given by

δ
ij
k

:= γ ieµ
j
ek = µi

kf γ fj .
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For this to make sense we must prove that these two expressions agree. This
follows from 2.3.35: both sides are equal to

γ ieφekf γ fj .

Conversely, we can express the multiplication tensor in terms of the comul-
tiplication, by lowering indices:

µk
ij = βieδ

ek
j = δ

kf
i βfj .

2.3.37 The Frobenius condition. The coordinate expression of 2.3.19 is

δem
j µl

ie = µe
ij δ

lm
e = δle

i µm
ej .

Let us prove the left-hand equation; the corresponding picture is

j

i

e

l

m

=
j

i e l

m

The coordinate proof is the same as the graphical proof we gave for 2.3.19:

δem
j µl

ie = γ kmµe
jkµ

l
ie = γ kmµe

ijµ
l
ek = µe

ij δ
lm
e .

Here the first step was to use the definition of the comultiplication (cf. 2.3.36);
then use the associativity equation 2.3.31, then 2.3.36 backwards.

2.3.38 Example. Now that we are comfortable with coordinates, let us write
out the comultiplication in the Frobenius algebra C of Example 2.2.14. So take
this basis:

T0 := 1 T1 := √−1.

Then the tensor elements for the multiplication are

µ0
00 = 1, µ1

01 = µ1
10 = 1, µ0

11 = −1

(those not listed are equal to zero). Our Frobenius form is by definition

T0 �→ 1

T1 �→ 0,

so the Frobenius pairing is given by

β00 = 1, β01 = β10 = 0, β11 = −1.
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The inverse of this matrix β = (
1 0
0 −1

)
is γ := (

1 0
0 −1

)
. Using the definition of

the comultiplication, δ
ij
k = γ ieµ

j
ek , we find

δ00
0 = 1, δ11

0 = −1, δ01
1 = δ10

1 = 1;
(the others are zero). So the comultiplication is given by

T0 �→ T0 ⊗ T0 − T1 ⊗ T1

T1 �→ T0 ⊗ T1 + T1 ⊗ T0,

just like in Example 2.3.3. In conclusion, Sweedler’s trigonometric coalgebra
2.3.3 over the real numbers is nothing but the Frobenius algebra structure
on C.

Exercises

1. Complete the proof of 2.3.17.
2. Prove Lemma 2.3.21.
3. Decorate the snake relation with indices in accordance with the coordi-

nate expression of 2.3.34.

The remaining exercises centre around the handle operator . If you
look back at the classification of surfaces done in 1.4.15–1.4.16 you see that
this is really the most interesting piece topologically – it is ‘where the genus
is’! Algebraically it also has some important properties – and anyway is a
good excuse to do some computations. . .
4. The handle operator is the k-linear map ω : A → A defined as the com-

posite δµ – so what you actually want to know is this picture: .
Show that if A is a Frobenius algebra then ω : A → A is a right (and left)
A-module homomorphism, i.e.

A⊗ A
ω⊗idA� A⊗ A

A

µ
�

ω
� A

µ
�

=

of course you are expected to do the proof graphically!
5. Show that the handle operator is given by multiplication by a central el-

ement w. This element is called the handle element. In the coordinate
notation of 2.3.34, w = Tiγ

ij Tj . (While it is very easy to see that w is
central from a graphical argument, it can be messy to prove this with
coordinates!)
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�6. Show that if the handle element belongs to Null(ε) then it is zero.
7. Show that if (A, ε) is a symmetric Frobenius algebra over a field of char-

acteristic zero, then the handle element w is nonzero. (Hint: it may actu-
ally be easier to prove the stronger result that wε = dim A, using Exer-
cise 10 on page 34.)

8. Use coordinates to compute the handle operator in the Frobenius R-
algebra C � R[t]/(t2+1) with Frobenius form ‘taking the real part’.
Most of this computation was already performed in Example 2.3.38,
and the answer is already known from the previous exercise, so this one
mainly serves as model for the next couple of exercises.

9. Consider the group algebra of G = Z/2Z. It is k[t]/(t2−1), and as
Frobenius form we take 1 �→ 1, t �→ 0. Compute the coordinate expres-
sions of pairing, multiplication, copairing, comultiplication, and handle
operator, with respect to this basis. (Observe that if the characteristic of
k is 2, then the handle operator is zero. Otherwise it is invertible.)

10. Consider yet a third Frobenius algebra of dimension 2: the algebra A =
k[t]/t2 (in algebraic geometry it is called the ring of dual numbers; it is
also the cohomology ring of CP

1). This is a Frobenius algebra by 2.2.21
(and 2.2.23), ε : A → k, t �→ 1, 1 �→ 0. Take a basis T0 = 1, T1 = t , and
work out the coordinate expression of multiplication, pairing, copairing,
comultiplication, and handle operator, just as it was done in 2.3.38 to
show that the comultiplication is given by

T0 �→ T0 ⊗ T1 + T1 ⊗ T0

T1 �→ T1 ⊗ T1.

Show that the handle operator δµ : A → A has square zero.
11. It was a coincidence that the exponent 2 in the previous exercise matched

the ‘square-zero’ conclusion. To be sure, work out the exercise again with
A = k[t]/tn, for general n > 1. The conclusion is still that the handle
operator has square zero.

12. Noncommutative example. Consider the algebra k〈x, y〉/(x2, y2, xy +
yx), with basis {1, x, y, xy}. Show this is a Frobenius form:

xy �→ 1

others �→ 0.

(The best way is probably to write down the whole multiplication table
and check that the induced pairing is nondegenerate – you will need this
information anyway.) Use coordinates as in the exercises above to show
that the handle element is zero.
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13. Yet another little algebra to play with: k〈x, y〉/(x2 + 1, y2 − 1, xy +
yx). At first, this looks a lot like the previous example. . . Show that there
are no nilpotent elements in this ring (in particular it is semi-simple). Find
a Frobenius form with respect to which the handle element is nonzero,
and find another Frobenius form with respect to which the handle ele-
ment is zero.

14. Work out the group algebra of the symmetric group on three letters,
k〈x, y〉(x2 − 1, y2 − 1, xyx − yxy), in the basis {1, x, y, xy, yx, xyx}.
First take as Frobenius form the one described in 2.2.18, (1 �→ 1, others
mapping to zero), and show that the handle element is 6. Next take as
Frobenius form xyx �→ 1, others mapping to zero. Show that the handle
element is 2(xyx + x + y).

�15. Let A be a commutative local Frobenius algebra, i.e. an artinian Goren-
stein ring, cf. 2.2.21. Show that the handle element generates the socle
(as ideal, and also as k-vector space).

16. Consider a direct product algebra A = A′ × A′′ with Frobenius form
ε = ε′ + ε′′ (where ε′ and ε′′ are Frobenius forms on A′ and A′′, as in
Exercise 7 on page 105). Show that the handle operator of A is the direct
product of the handle operators of A′ and A′′.

�17. Let (A, ε) be a Frobenius algebra. Show that the handle element anni-
hilates the Jacobson radical. (This is a bit technical, but the next two
exercises give easy corollaries to this result.)
Here is the strategy (cf. Sawin [44] for the commutative case). Let a1

denote the right annihilator of the Jacobson radical J (A). Define induc-
tively a chain of 2-sided ideals a1 ⊂ a2 ⊂ · · · ⊂ ar = A, letting ak+1

be the right annihilator of the right A-module J (A/ak) (Jacobson rad-
ical of the quotient A/ak). Pick a basis for a1, expand to a basis for
a2 and so on, getting a basis {t1, . . . , tn} for A. Consider the right-
dual basis {ť1, . . . , ťn}, where ťi := γ iete; this means that 〈 ti | ťj 〉 = ι

j
i ,

in the notation of 2.3.34. Now suppose ti ∈ ak+1 � ak , and let x ∈
J (A). Then xti ∈ ak , so by our choice of basis and dual basis we have
0 = 〈 xti | ťi 〉 = (xti ťi )ε. Hence by the Frobenius condition the left ideal
J (A)ti ťi is zero, and hence ti ťi ∈ a1. This argument holds for each i, so
in conclusion the handle element w = ∑

i ti ťi annihilates J (A).
18. Let (A, ε) be a Frobenius algebra. Show that if the handle element

w is nilpotent then w2 = 0. (Hint: J (A) contains every nilpotent left
ideal.)

19. (Cf. Abrams [3] for the commutative case.) Show that if the handle ele-
ment is invertible then A is semi-simple.
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20. Let A be a commutative and semi-simple Frobenius algebra. (Then it is a
direct product of fields, by Wedderburn’s theorem (see 2.2.17), and since
every simple commutative ring is a field.) Show that the handle element
is invertible.

21. Construct an example of a four-dimensional Frobenius algebra whose
handle element is neither invertible nor of square zero. (Hint: use some
of the 2-dimensional examples above together with Exercise 16.)

�22. (Cf. Abrams [3].) If you are acquainted with cohomology rings
(cf. 2.2.23). Let X be a compact connected orientable manifold of di-
mension r , and put A = H∗(X). Show that the Euler class (top Chern
class of the tangent bundle, cr (TX)) is the handle element of A.

2.4 The category of Frobenius algebras

Frobenius algebra homomorphisms

2.4.1 Duality. It is particularly clear from the pictures that there is a complete
symmetry between µ and η on one side and δ and ε on the other side. As a
consequence, if (A, η, µ, δ, ε) is a Frobenius algebra then the dual vector space
A∗, becomes a Frobenius algebra again, by taking the ‘duals’ of η,µ, δ, ε as
structure maps. There is a subtlety, however: the dual of δ : A → A⊗ A is
actually a map (A⊗ A)∗ → A∗, so in order to get a true multiplication map
on A∗ we need to compose with the canonical isomorphism ψ : A∗ ⊗ A∗ ∼→
(A⊗ A)∗ described in 2.1.17. For this reason it is not a completely trivial
fact that this new multiplication map is associative. It must be checked that
the isomorphisms ψ are compatible with iterated tensor products. (When you
check this, remember that (δ ⊗ id)∗ = id⊗δ∗, cf. 2.1.17. . . )

Similarly the dual of µ : A⊗ A → A is actually a map A∗ → (A⊗ A)∗
which we must compose with the inverse of ψ in order to get a true comulti-
plication map.

2.4.2 Lemma. If a k-algebra homomorphism φ between two Frobenius al-
gebras (A, ε) and (A′, ε′) is compatible with the forms in the sense that the
diagram

A
φ � A′

k

ε′

�

ε �

commutes, then φ is injective.
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(Being a k-algebra homomorphism means that it is multiplicative: abφ =
aφ bφ and respects the units: 1 φ = 1′.)

Proof. The kernel of φ is an ideal and it is clearly contained in Null(ε). But
Null(ε) contains no nontrivial ideals, so Null(φ) = 0 and thus φ is injective.

�

2.4.3 Example. Let R be the trivial Frobenius algebra over R, and let C be the
Frobenius algebra of Example 2.2.13: the Frobenius form C → R is ‘taking the
real part’. The canonical injection R ↪→ C is compatible with the Frobenius
forms, but not with the comultiplication (cf. the coordinate description given
in 2.3.38).

2.4.4 The category of Frobenius algebras. A Frobenius algebra homomor-
phism φ : (A, ε) → (A′, ε′) between two Frobenius algebras is an algebra
homomorphism which is at the same time a coalgebra homomorphism. In
particular it preserves the Frobenius form, in the sense that ε = φε′. Let
FAk denote the category of Frobenius algebras over k and Frobenius algebra
homomorphisms, and let cFAk denote the full subcategory of all commutative
Frobenius algebras.

2.4.5 Lemma. A Frobenius algebra homomorphism φ : A → A′ is always in-
vertible. (In other words, the category FAk is a groupoid (and so is cFAk).)

Proof. Since φ is comultiplicative and respects the counits ε and ε′ (as well
as the units η and η′), the ‘dual’ map φ∗ : A′∗ → A∗ is multiplicative and
respects units and counits. But then the preceding lemma applies and shows
that φ∗ is injective. Since A is a finite-dimensional vector space this implies
that φ is surjective. We already know it is injective, hence it is invertible. �

Tensor products of Frobenius algebras

2.4.6 Tensor products of algebras. Given two algebras A and A′, consider
their tensor product A⊗ A′ as vector spaces. Now component-wise multipli-
cation makes A⊗ A′ into an algebra:

(A⊗ A′)⊗ (A⊗ A′) −→ A⊗ A′

(x ⊗ x′)⊗ (y ⊗ y′) �−→ xy ⊗ x′y′.

Note that A only interacts with A, and A′ only with A′, and that the twist map
is crucial in order to construct the new multiplication map from the existing
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maps. This is particularly clear from the graphical version of the multiplication
map on A⊗ A′.

A′

A

A′

A

A′

A

Now let us check that this new multiplication map is associative (knowing
that the two multiplication maps on A and A′ are so). It is quite easy to do that
just by writing down the equations in terms of elements, but for the fun of it we
will do the graphical proof (which is also easy, although it displays the rôle of
the twist map which is hidden in the element-equation version). The graphical
version of this claim is

=

And here is the proof: on the left-hand side of the equation, begin by moving
the second twist map over to the left of the adjacent multiplication map, and
also move the lower multiplication a bit to the right

=

Now apply the associativity equation 2.3.8 twice (once for A and once for A′)
to arrive at
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=

Finally use the naturality of the twist to move the two lower twist maps to the
right of the multiplication map they precede. This move leads to the right-hand
side of the asserted equation.

In order for A⊗ A′ to be an algebra, of course we should also specify the
unit map. It is simply

k −→ A⊗ A′

1 �−→ 1A ⊗ 1A′

which is pictured

A′

A

It is easy to check the unit axioms.

2.4.7 Tensor products of coalgebras. Now it is an easy exercise to show that
the tensor product of two coalgebras is again a coalgebra in a natural way. The
figures are just the mirror images of those above.

Finally,

2.4.8 The tensor product of two Frobenius algebras is in a natural way again
a Frobenius algebra. Here of course we use the characterisation of Frobenius
algebras in terms of comultiplication and the Frobenius condition (2.3.24). We
already know that the tensor product is again an algebra and a coalgebra. It
remains to show that the Frobenius condition holds:

=
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(This is only the right-hand part of the equation. . . )
Here is the proof: on the left-hand side of the equation, begin by using the

Frobenius relation (right-hand part) on the two occurrences of (one for
A and one for A′), to get

= =

Now use the naturality of the twist map to move the two twist maps towards
the centre of the picture (they become four instead of two, but two of them
cancel out each other):

= =

which is what we claimed (modulo a last move where the upper twist moves
right and the lower one moves left).

(In fact, since the Frobenius condition (together with unit and counit con-
ditions) implies associativity and coassociativity, there was no need to check
associativity and coassociativity separately. . . )

So FAk is closed under tensor products, and we also noted in 2.2.12 that
(k, idk) is a Frobenius algebra. In fact, (FAk,⊗, k) is a monoidal category,
cf. 3.2.

Digression on bialgebras

(This subsection is not really needed elsewhere in these notes.)

2.4.9 Bialgebras. There is another very common sort of algebra which is sim-
ultaneously an algebra and coalgebra, usually called a bialgebra (see Kassel
[29], Chapter III). Observe that bialgebras can be of infinite dimension.
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Bialgebras are also characterised by a compatibility condition, but this time
instead of requiring that δ be A-linear, we require it to be an A-algebra homo-
morphism. This makes sense since we have now explained what the canonical
algebra structure on A⊗ A is. In fact we also require ε to be an algebra homo-
morphism.

Precisely, there are four conditions. Two conditions amount to the statement
that δ is a k-algebra homomorphism:

A⊗A
µ � A

δ � A

A⊗A⊗A⊗A

δ⊗δ �

idA⊗σ⊗idA

� A⊗A⊗A⊗A

µ⊗µ
� =

A

k
η⊗η

�

η

�

A⊗ A

δ
� =

And two conditions amount to the statement that ε is a k-algebra homomor-
phism:

A

A⊗ A
ε⊗ε

�

µ

�

k

ε
� =

A

k
idk

�

η

�

k

ε
� = ∅

We see that these compatibility conditions are very different from those that
define a Frobenius algebra. In fact,

2.4.10 Proposition. Let A be a bialgebra over k of finite dimension, with
structure maps η,µ, δ, ε as above. If ε is a Frobenius form then A � k.

Proof. The conditions µε = ε ⊗ ε and ηε = idk express that ε is a ring homo-
morphism, so in particular Null(ε) is an ideal in A. If ε is furthermore a
Frobenius form then this ideal must be the zero ideal, so A � k. �

2.4.11 Hopf algebras. A particularly important class of bialgebras is the Hopf
algebras. A Hopf algebra is a bialgebra equipped with a k-linear map S : A →
A called an antipode (pictured ) with the following properties:
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= =

The symbol is meant to indicate reversal or reflection. It is not meant to
indicate that there is a topological surface of any kind that can realise it – in fact
we have already seen that the axioms for a bialgebra are not at all topological.

2.4.12 Group algebras as Hopf algebras or Frobenius algebras. Group al-
gebras are naturally Hopf algebras, and thus bialgebras. As just stated in the
Proposition, the counit of a bialgebra can never be a Frobenius form, so here
we are apparently at odds with Example 2.2.18 where we showed that group
algebras are Frobenius algebras. This is not a contradiction – the point is that
we are talking about different linear functionals. The counit of a group alge-
bra considered as a bialgebra is the one that sends each generator to 1. The
Frobenius form of Example 2.2.18 was 1 �→ 1, other generators map to 0. In
particular, the coalgebra structure determined by a Frobenius form on a group
algebra is not the coalgebra structure coming from the diagonal map (cf. 2.3.2).

On the other hand, one can show that every finite-dimensional Hopf algebra
admits a Frobenius algebra structure – see Sweedler [46], Chapter V. (So this
generalises 2.2.18.)

Exercises

1. 1-dimensional Frobenius algebras. We saw in 2.2.12 that the k-algebra k

with linear functional id : k → k is a Frobenius algebra. We also noted that
any nonzero linear map k → k will do as Frobenius form. Show that all
these Frobenius structures are nonisomorphic.

That was the only exercise in this section. Make sure you did all the exercises
in the previous section, where there were quite a few. . .
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Monoids and monoidal categories

Summary

After having flirted with categorical viewpoints throughout the first two chap-
ters, we now go the whole length. (The reader can consult the short appendix
for the notions of categories, functors, and natural transformations, if neces-
sary.)

The chapter starts with a warm-up section on monoids. Here we take an
‘advanced viewpoint’ on some very simple things, and prepare ourselves for
some less trivial mathematics.

In Section 3.2, monoidal categories are introduced – always considered to
be strict. (A short interlude takes a look at the nonstrict case and states Mac
Lane’s coherence theorem.) A monoidal category is a category with a ‘multipli-
cation’ and a ‘neutral object’, satisfying certain natural axioms. Crucial exam-
ples are: (Vectk,⊗, k), (Set ,

∐
, ∅), and also (2Cob ,

∐
, ∅). The notions of

symmetric monoidal category and symmetric monoidal functor are introduced.
In Chapter 1 we defined a 2-dimensional TQFT to be a symmetric monoidal

functor from 2Cob to Vectk. Such functors form a category, the arrows being
monoidal natural transformations. Now we prove the Main Theorem (3.3.2):
the category of 2D TQFTs is equivalent to the category of commutative Frobe-
nius algebras.

The second half of this chapter aims at placing this result in its proper con-
text. To prepare for this, Section 3.4 is devoted to the study of two important
monoidal categories: the category of finite ordinals � = {0, 1, 2, . . . } (simplex
category), and the category � of finite cardinals (symmetric version of �).
Several different descriptions of these categories are given, notably a graphical
interpretation, and presentation in terms of generators and relations.

Section 3.5 studies monoids in monoidal categories. (For instance, a monoid
in Vectk is precisely a k-algebra.) The object 1 is a monoid in �, and it is

138
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shown to have the following universal property: every monoid in any monoidal
category V is the image of 1 under a unique monoidal functor � → V.

Finally in Section 3.6 we copy over these constructions and arguments,
introducing the concept of Frobenius object in a monoidal category (such
that Frobenius objects in Vectk are precisely Frobenius algebras). The proof
of the Main Theorem now carries over to establish the more general result
(generalised main theorem (3.6.19)): every commutative Frobenius object in a
symmetric monoidal category V is the image of 1 under a unique symmetric
monoidal functor 2Cob → V.

Monoidal categories were introduced in the 1960s by Bénabou, Mac Lane,
and others (see the references and historical notes in Mac Lane’s book [34]).
The equivalence of categories between 2D TQFTs and commutative Frobenius
algebras was discovered by Dijkgraaf [16] (1989), and more detailed proofs
were provided by Quinn [43] and Abrams [1]. (Their treatments are sloppy
with respect to the question of symmetry, however.) The characterisation of
� as free monoidal category on a monoid seems to be due to Lawvere [32]
(1967). The fact that 2Cob is the free symmetric monoidal category on a com-
mutative Frobenius object has been known for some years, but I do not know
of a reference for this.

3.1 Monoids (in Set)

Some notions from set theory

3.1.1 Cartesian products. Given two sets X and Y , the cartesian product X ×
Y is the set of (ordered) pairs (x, y), where x ∈ X and y ∈ Y . Similarly, for
three sets X, Y,Z we have the notion of the cartesian product X × Y × Z,
which is the set of (ordered) triples (x, y, z) where x ∈ X, y ∈ Y , and z ∈ Z.
We identify X × Y × Z with (X × Y )× Z and also with X × (Y × Z).

In general if we have n sets X1, . . . , Xn then we have the n-fold cartesian
product X1 × · · · ×Xn consisting of n-tuples (x1, . . . , xn) such that xi ∈ Xi

for i = 1, . . . , n. Again we identify it with any cartesian product obtained from
setting parentheses.

An important case is when all the factors are identical: we write

Xn := X × · · · ×X︸ ︷︷ ︸
n factors

.

The parentheses-deletion convention then amounts to

Xm ×Xn = Xm+n.
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The 1-fold product (X) = X1 we identify with X itself. (We may note also that
× is in fact a functor, so given two maps f : X → Y and f ′ : X′ → Y ′ there
is a product map f × g : X × Y → X′ × Y ′. . . )

3.1.2 The singleton set. Important is the product () = X0 without any fac-
tors! (Here the set X is arbitrary since anyway there are none of them in
the product. . . ) By the above axioms, we have ()× (X1 × · · · ×Xn) = X1 ×
· · · ×Xn, and in particular

()×X = X = X × ().

Since () is necessarily a singleton set, we will always denote it 1.
The singleton set 1 plays an important rôle as a device for singling out

elements of a set. Precisely, given a set S there is an obvious canonical bijection

S ↔ Set(1, S).

(Here Set(1, S) denotes the set of set maps from 1 to S.) Thus, instead of
looking at elements we can look at arrows. Several variations will be made
on this innocent looking theme (cf. 3.1.15, 3.5.18), and we will see that the
principle is important.

3.1.3 Symmetry or twist. For each pair of sets (X, Y ) there is a twist map

twistX,Y : X × Y −→ Y ×X

(x, y) �−→ (y, x).

Clearly, the composite twistX,Y twistY,X is equal to the identity. In general,
given n sets X1, . . . , Xn there is a permutation map for each element of the
symmetric group Sn. These maps compose just like the permutations compose
in Sn. Note that all these permutations can be obtained by composing twist
maps, according to 1.4.2.

The most important twist map for us will be the case

twistX,X : X ×X −→ X ×X

(x, x′) �−→ (x′, x).

Clearly this is not the identity map of X ×X – unless X = 1 or X = ∅.

Definition of monoid

3.1.4 Monoids. A monoid is a set M with a binary operation (composition
law) which is associative and has a neutral element. (Exercise 3 shows the
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neutral element is unique if it exists.) If we employ infix notation for the com-
position (with a dot as infix), writing (a, b) �→ a.b, then the associativity ax-
iom states that for every three elements a, b, c in M we have (a.b).c = a.(b.c).
The neutral element is an element e ∈ M such that for all a ∈ M we have
e.a = a = a.e.

It is useful to express this in terms of commutative diagrams: A monoid is
a set M together with two functions

µ : M ×M → M, η : 1 → M

such that these three diagrams commute:

M ×M ×M

M ×M

µ×idM

�

M ×M

idM ×µ

�

M

µ

�

µ �

1×M
η×idM� M ×M

M

µ

��

M ×M �idM ×η
M × 1

M

µ

��

The symbols idM stand for the identity function M → M , and 1 stands for
the singleton set. The diagonal maps without label are the canonical identifica-
tions.

We will refer to such a monoid by writing the triple (M,µ, η) or (M, . , e).

3.1.5 n-ary products. Associativity implies that we can write and erase paren-
theses as we please, also in products involving more than three factors. In par-
ticular there are induced multiplication maps with more factors

µ(n) : Mn → M, n ≥ 2.

Just for completeness, let us furthermore define µ(1) : M1 → M to be the iden-
tity map idM : M → M , and define µ(0) : M0 → M to be the neutral element
map η : 1 → M .
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3.1.6 Monoid homomorphisms. A monoid homomorphism φ : M → M ′ is a
function that commutes with all the structure. Precisely,

M ×M
φ×φ� M ′ ×M ′

M

µ
�

φ
� M ′

µ′
�

M
φ � M ′

1

η
�

= 1

η′
�

So in terms of compositions we have

(aφ).(bφ) = (a.b)φ and also eφ = e′.

We could also write this in a more uniform way, stating that a monoid
homomorphism is a function that commutes with all µ(n):

Mn φn
� Mn

M

µ(n)

�

φ
� M

µ(n)

�
for all n ≥ 0.

3.1.7 The category of monoids. One easily checks that the composition of
two monoid homomorphisms is again a monoid homomorphism, and that the
identity map is a monoid homomorphism, so altogether: there is a category de-
noted Mon whose objects are the monoids and whose arrows are the monoid
homomorphisms. We write Mon(X, Y ) for the set of monoid homomorphisms
from X to Y . A monoid homomorphism is called an isomorphism of monoids
if there exists a two-sided inverse in Mon . (Exercise 2 shows that the isomor-
phisms are precisely the bijective monoid homomorphisms.)

3.1.8 The product of two monoids. If M and M ′ are two monoids, then the
product set M ×M ′ has a canonical monoid structure, namely the one given
by component-wise multiplication. That is, the multiplication on M ×M ′ is
given by

(M ×M ′)× (M ×M ′) −→ M ×M ′(
(x, x′), (y, y′)

) �−→ (x.y, x′.y′).

The unit map 1 → M ×M ′ is simply the product of the two unit maps 1 → M

and 1 → M ′.
Similarly, one could define for n monoids M1, . . . ,Mn a canonical monoid

structure on the n-fold product M1 × · · · ×Mn. (The empty product (n = 0)
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would be the trivial monoid structure on 1 where both structure maps are the
identity map.)

3.1.9 Commutative monoids. A monoid (M, . , 1) is called commutative if
for all elements a, b we have a.b = b.a. In terms of arrows and diagrams: a
monoid is commutative if the multiplication µ : M ×M → M is compatible
with the twist map like this:

M ×M
twist� M ×M

M

µ�µ �

Examples

3.1.10 The natural numbers N with composition + and neutral element 0 is
the most important example of a monoid. We know well that this addition is
associative and that 0 is neutral element for it. Note that N is commutative.

3.1.11 Groups are a special kind of monoid, characterised by the property that
every element has an inverse.

3.1.12 Free monoids. Let S be a set (finite, say) whose elements we call let-
ters. Consider the set of all words we can make out of these letters, including
the empty word, i.e. the set of finite ordered sequences of elements of S. This
set is a monoid when equipped with the operation of concatenation of words –
clearly this is an associative operation. The neutral element is the empty word.
This monoid is called the free monoid on S. (‘Free’ in this context means ‘no
relations’, as opposed to ‘free’ in free software.) We consider S as a subset of
the free monoid it generates, identifying the letters with 1-letter words. . .

Note that this monoid is not commutative (unless S is a singleton set),
because the two words ab and ba are not equal.

As a variation we could just declare them to be equal, quotienting by the
relations ab = ba, a, b ∈ S; this gives the notion of free commutative monoid.
(So ‘free commutative’ means ‘no relations other than the commutativity
relations’.)

3.1.13 The natural numbers N is the free monoid on a single generator. To
be concrete, take a single-element set S = {x}, then the free monoid generated
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by S is the set {x0, x1, x2, x3, . . . } where we used the notation x0 to denote
the empty word. Note that this monoid is automatically commutative. Now we
have a monoid homomorphism

(N,+, 0) −→ {x0, x1, . . . }
n �−→ xn

which is clearly an isomorphism of monoids. So every free monoid on a single
generator is isomorphic to N, and we will allow ourselves to say that N is the
free monoid on one generator – its generator is 1, and every element can be
written in a unique way as a finite sum of 1s.

3.1.14 The integers Z (under addition) is a monoid which is not free. Indeed,
you need as least two generators, a positive and a negative number, say+1 and
−1. But then there will always be a relation, in this case (+1)+ (−1) = 0. So
(Z,+, 0) is not free.

3.1.15 A universal property of N. Every element x in a monoid (M, · , 1)

generates a submonoid {x0, x1, x2, . . . }, which in turn is the image of a unique
monoid homomorphism

N −→ M

1 �−→ x,

as in the preceding paragraph. In this way we get a canonical bijection

{elements of M} ↔ Mon(N,M).

(Compare 3.1.2.)
In the paragraphs above, ‘free’ meant ‘no relations’. But the deeper meaning

of the word is to possess a universal property like this.

3.1.16 The trivial monoid. What is the free monoid on the empty set? It is
the set of words you can make out of no letters. There is only one such word
namely the empty word. So we get the singleton monoid ({∅}, · , ∅), called
the trivial monoid. This notation is a bit confusing – it is better to stick to mul-
tiplicative notation and call the empty word 1. Also, since this monoid has only
a single element 1, we will denote the monoid 1, just as we do for the singleton
in the category of sets. The trivial monoid enjoys two universal properties. It is
an initial object in Mon: this means that given any monoid M there is a unique
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monoid homomorphism 1 → M; indeed, a monoid homomorphism must
respect the identity. And second, it is a terminal object: given any monoid M

there is a unique monoid homomorphism M → 1. (Note that in the category
of sets, the singleton set 1 is terminal, but not initial!)

3.1.17 The multiplicative monoid of N should be mentioned here, although
we will not really use it: clearly, (N, · , 1) is a monoid. Here is an example of
a monoid homomorphism:

(N,+, 0) −→ (N, · , 1)

n �−→ 7n

(by the familiar rules 7a · 7b = 7a+b, and 70 = 1). Of course the number 7 was
chosen arbitrarily – we might as well have chosen any other natural number.

3.1.18 Endomorphism monoids. Let X ∈ Top be your favourite topological
space and consider the set EndTop(X) of all continuous maps from X to itself.
Since we can compose such maps

End(X)× End(X) −→ End(X)

(f, g) �−→ fg,

composition is associative, and we have the identity map id : X → X, we see
that End(X) is a monoid. (Note that this is usually not commutative.)

More generally, let C be any category and let X be an arbitrary object in C :
then the set C (X,X) is a monoid. This follows immediately from the definition
of a category, namely associativity of composition of arrows and existence of
identity arrows.

3.1.19 Monoids as categories with a single object. We can make a small
variation on this theme and state that a monoid is essentially the same as a
category with only one object. Precisely, given a category C with only one
object X, we have seen that C (X,X) is a monoid, and this monoid encodes
all the data of the category. Conversely, given a monoid M , construct a cate-
gory C by taking a single object (an arbitrary symbol X) and define the arrows
to be C (X,X) := M , such that composition of arrows is given by multipli-
cation of elements in M (then necessarily the neutral element of the monoid
must become the identity arrow of X). There was a choice of object, but if we
compare two one-object categories coming from the same monoid, but with
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different single object, we immediately see they are isomorphic. Here is the
dictionary:

monoid M ↔ category C with only one object X

M ↔ C (X,X)

element m ∈ M ↔ arrow m : X → X

neutral element e ↔ identity arrow id : X → X

multiplication of elements ↔ composition of arrows

monoid homomorphism ↔ functor between one-object categories

3.1.20 Construction of multiplication in N. Suppose we did not know there
was a multiplication on N. Then we could construct it, exploiting the universal
property of (N,+, 0). First note that since (N,+, 0) is an object in the cate-
gory of monoids, we can consider the endomorphism monoid EndMon(N) =
Mon(N, N), as in 3.1.18.

Now the crucial observation is that we have a canonical bijection (cf. 3.1.15)

N ↔ EndMon(N)

n ↔ ϕn := [1 �→ n].

Since ϕn : N → N is a monoid homomorphism, it then maps 2 �→ n+ n,
3 �→ n+ n+ n, and so on. (To restate the argument: a monoid homomor-
phism on N is completely determined by its value on 1 since N is freely
generated by 1.) Now EndMon(N) is itself a monoid (via composition of endo-
morphisms), so we can just copy that monoid structure back to N via the bijec-
tion, and there we have it, the new composition law on N, called multiplication!
To see that it works let us compute what 3 times 7 is. By definition we must
compose 1 �→ 3 with 1 �→ 7. So what does the second do to the result of the
first? well, since it is a monoid homomorphism, it takes 3 = 1+ 1+ 1 to 7+
7+ 7. So the composition takes 1 to 7+ 7+ 7, and by definition this is then 3
times 7.

Monoid actions and representations

3.1.21 Actions. . . A right action of a monoid M on a set S is a map (of sets)

α : S ×M → S
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such that these two diagrams commute:

S ×M ×M
α×idM � S ×M

S ×M

idS ×µ

�

α
� S

α

�

S ×M �idS ×η
S × 1

S

α

��

If we write the action like this:

S ×M
α−→ S

(x,m) �−→ x.m

then we can write the axioms in terms of elements:

(x.m).m′ = x.(m.m′) and x.e = x.

3.1.22 . . . in terms of endomorphisms cf. 3.1.18. Alternatively, this all
amounts to giving a monoid homomorphism

M → EndSet (S).

(Note that according to our left-to-right convention for composition, we must
use right actions (not left actions) for this to work.)

3.1.23 Categorical viewpoint. Recall from 3.1.19 how the monoid M is inter-
preted as a category M with one single object. Similarly EndSet (S) is regarded
as the full subcategory of Set consisting of the single object S. In this setting
we can now say that a monoid action of M is a functor M → Set . The set on
which M acts is then the image of the unique object of the category M .

3.1.24 Linear representations. If we replace the category of sets with the
category Vectk of vector spaces over k and k-linear maps, then we obtain
the notion of a linear representation of a monoid M on a vector space V : it is a
monoid homomorphism M → EndVectk

(V ). Again we can say more generally
(varying V ) that a linear representation of a monoid M is a functor M →
Vectk.

Exercises

1. Put N+ = N � {0}. Show that (N+, · , 1) is the free commutative monoid
generated by the set of all prime numbers. (Hint: unique factorisation.) If
you want to include 0, you also need 0 among the generators, and then there
are also relations, namely the relations 0 · p = 0 for each prime p.
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2. Show that a bijective monoid homomorphism is an isomorphism (and vice
versa).

3. Define a semi-monoid to be a set equipped with an associative composition
law. (So it is like a monoid, but without the neutral element requirement.)
Show that if a semi-monoid happens to have an element that satisfies the
unit axiom, then this element is uniquely determined (i.e. a semi-monoid
can have at most one neutral element). (Thus it makes sense to take a semi-
monoid and ask whether it happens to be a monoid, and in this sense, ‘hav-
ing neutral element’ is rather a property than a structure: one can regard the
set of all monoids as a subset of the set of all semi-monoids.)

4. A semi-monoid homomorphism between two semi-monoids is a map com-
patible with the composition law, just like in the definition of monoid homo-
morphism. (i) Show that a semi-monoid homomorphism sends idempotents
to idempotents. (Recall that an element x is an idempotent if xx = x.) Sup-
pose two semi-monoids M and N happen to posses a neutral element (so
they are actually monoids, cf. the previous exercise). Then every monoid
homomorphism between them is clearly also a semi-monoid homomor-
phism. (ii) Give an example to show that the converse is not true: construct
a semi-monoid homomorphism M → N that does not preserve the neutral
elements, and thus is not a monoid homomorphism. (Hint: you need to take
N to be a monoid with a nontrivial idempotent, cf. (i).)
(The existence of such homomorphisms shows that while Mon can be con-
sidered a subcategory in the category of semi-monoids, it is not a full sub-
category, cf. A.2.8.)

5. Let (M ′, . , e′) and (M, . , e) be monoids, but consider them only to be
semi-monoids by forgetting that they happen to posses a neutral element.
Let φ : M → N be a semi-monoid homomorphism (i.e. not required to pre-
serve the neutral element). Show that if e is in the image of φ then φ is a
monoid homomorphism (i.e. e′φ = e).

6. Consider the special case of 3.1.22 where S is the underlying set of M (i.e.
M acts on itself). Show that M → EndSet (M) is injective.

3.2 Monoidal categories

3.2.1 Note. Monoidal categories are also called tensor categories by many
authors (e.g. Kassel [29]), because the category of vector spaces and tensor
products is in many respects the key example (see 3.2.28).

3.2.2 Motivation. The diagrammatic definition of monoid given on page 140
relied on the following notions: set, set map, and cartesian product of sets.



3.2 Monoidal categories 149

Now instead of sets we can use any category where the notion of cartesian
product makes sense. For example we can use topological spaces, continuous
maps, and cartesian products of topological spaces, and then simply repeat
the definitions of 3.1 in this setting. This leads to the notion of topological
monoid: precisely, a topological monoid is a topological space X equipped
with two continuous maps µ : X ×X → X and η : 1 → X, satisfying the ax-
ioms expressed by the commutative diagrams in 3.1.4. (So what is 1 here? it is
the singleton topological space – or if you want: the empty cartesian product
of topological spaces.)

Now a place where we would really like to do this is in the category of vec-
tor spaces. Clearly we could just repeat the constructions using vector spaces,
linear maps, and products of vector spaces; the crucial structure would then be
a linear map V × V → V . However, experience tells us that such linear maps
are not nearly as interesting and useful as bilinear maps – maps which are
linear in each variable – see Chapter 2. To capture this we should use the ten-
sor product ⊗ instead of the cartesian product.

In other contexts we would like to use disjoint sums
∐

instead – for exam-
ple, disjoint sums played an important rôle in Chapter 1.

So we would like to extend the notion of monoid to refer to other ‘binary’
structures than just cartesian products. Such a structure should of course have
properties similar to those properties of cartesian products that we used in the
definition of monoid (listed in the beginning of this chapter). The important
property is that in fact there is nothing too special about ‘products’ with two
factors – it is mostly a generating concept: there are induced n-ary ‘products’
for all n, and then the nullary ‘product’ defines a ‘neutral object’ for the other
‘products’. Structures of this sort are called monoidal structures, and categories
equipped with such a structure are called monoidal categories.

So our first task is to define what it means to have this monoidal structure for
a category – this will then serve as background for defining monoid structure
on the objects of the category.

3.2.3 Cartesian products of categories. The important thing to note for this
to make sense is that we have the notion of cartesian product of categories. For
each pair of categories C and D , there is a category C × D defined as follows:
its objects are pairs (X, Y ), where X is an object in C and Y is an object in D
(in other words, the object set of C × D is the cartesian product of the object
sets of C and D ). The set of arrows from (X, Y ) to (X′, Y ′) is the cartesian
product C (X,X′)× D(Y, Y ′). The empty product category (product of zero
factors) is denoted 1. It is the category with only a single object, and only a
single arrow (the identity arrow of the object).
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Just as for sets, we have natural identifications (C × D )× E = C × (D ×
E ), and 1× C = C = C × 1, and thus we do in fact have n-ary products of
categories for all n ∈ N. In particular, let Cn denote the n-fold product of C
with itself.

From now on we take for granted (and in fact rely completely on) the no-
tions of functors and natural transformations. The reader unfamiliar with these
notions should consult the Appendix.

Definition of monoidal categories

Our notion of monoidal categories will be the notion of strict monoidal cate-
gories, and the adjective will appear in the definition for the sake of precision.
There is a weaker notion of monoidal category which is actually the ‘correct’
one, but which is somewhat more complicated. Below (on page 154), we will
explain the difference and justify the abuse we commit when pretending that
all monoidal categories are strict.

3.2.4 Monoidal categories. A (strict) monoidal category is a category V
together with two functors

µ : V × V → V , η : 1 → V

satisfying the associativity axiom and the neutral object axiom. Precisely we
require that these three diagrams commute:

V × V × V

V × V

µ×idV

�

V × V

idV ×µ

�

V

µ

�

µ �

1× V
η×idV� V × V

V

µ

��

V × V �idV ×η
V × 1

V

µ

��
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The symbols idV stand for the identity functor V → V , and the diagonal func-
tors without label are the projections, which are canonical identifications.

Let us stress that the µ and η are functors. This means that they operate on
both objects and arrows, as we now spell out in detail.

3.2.5 Details concerning the functor µ : V × V → V. Since we are going
to use monoidal categories as background for working with monoids (with µ

as replacement of cartesian product), it is practical to adopt infix notation for
µ, so we write

V × V
µ−→ V

(X, Y ) �−→ X�Y

(f, g) �−→ f �g.

(In the applications, � will be ×, ⊗,
∐

, or the like.) So to each pair of objects

X, Y , a new object X�Y is associated, and to each pair of arrows X
f→ X′ ,

Y
g→ Y ′ a new arrow X�Y

f�g−→ X′�Y ′. The fact that � is a functor means that
compositions and identity arrows are respected. In detail, given compositions

X
f→ X′ f ′→ X′′ , Y

g→ Y ′ g′→ Y ′′ then we have

ff ′�gg′ = (f �g)(f ′�g′)

this is an equality of arrows X�Y → X′′�Y ′′. Concerning identity arrows:
given idX : X → X and idY : Y → Y we have

idX � idY = idX�Y .

3.2.6 The monoidal operator as paralleling. We draw an arrow f : X → X′
like this:

X

f

X′

and a composition X
f→ X′ f ′→ X′′ like this:

X

f

X′

f ′

X′′

If we think of arrows in a category as processes then composition of two arrows
means: let the first process terminate, and then apply the second process to the
result. The identity arrow means ‘do nothing’!

Now the monoidal operator expresses the concept of parallel processes. We
draw X�Y like this:
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X

Y

with the second ‘factor’ on top of the first, and draw the arrow f �g like this:

X

Y

X′
Y ′

f

g

this means that we run the two processes in parallel. And finally the functor
condition states that it makes no difference whether we take the serial con-
nection of two parallel connections or the parallel connection of the two serial
connections; in any case the result is this process:

X

Y

X′′
Y ′′

f

g

f ′

g′

In particular this gives a useful possibility of performing a ‘complicated
parallel processing situation’ f �g (the middle picture), by letting g wait for f

(left-hand picture) or letting f wait for g (right-hand picture):

X

Y

X′
Y ′

f

idY

idX′

g

=
X

Y

X′
Y ′

f

g

=
X

Y

X′
Y ′

idX

g

f

idY ′

In these pictures, the arrow head was omitted on the identity arrows (waiting
processes), to emphasise that nothing happens in this thread. . . And henceforth
we will suppress the small arrow heads altogether, just to avoid clutter, and
recognise the direction of the arrow by the convention that arrows go from the
left to the right unless otherwise specified.

3.2.7 Details concerning η : 1 → V. Let I denote the object which is the
image of η : 1 → V . Then the statement of the two triangular diagrams can be
formulated like this:

I�X = X = X�I, idI �f = f = f � idI (3.2.8)

for every object X, and for every arrow f .

We refer to a monoidal category by specifying the triple (V ,�, I ).

3.2.9 n-ary products. In view of associativity, the functor µ : V × V → V
induces functors µ(n) : Vn → V for all n ≥ 2. For completeness we also let
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µ(1) : V 1 → V be the identity functor idV : V → V , and let µ(0) : V 0 → V
be the neutral object functor η : 1 → V . (Compare 3.1.5.)

3.2.10 Monoidal functors. A (strict) monoidal functor between two (strict)
monoidal categories (V ,�, I ) and (V ′,�′, I ′) is a functor F : V → V ′ that
commutes with all the structure. Precisely, these two diagrams are required to
commute:

V × V
F×F� V ′ × V ′

V

µ
�

F
� V ′

µ′
�

V
F � V ′

1

η
�

= 1

η′
�

So in terms of objects we have

(XF)�′(YF ) = (X�Y )F and IF = I ′,

and in terms of arrows we have

(f F )�′(gF ) = (f �g)F.

In terms of n-ary products we can write the requirements uniformly as

Vn Fn
� Vn

V

µ(n)

�

F
� V

µ(n)

�
for all n ≥ 0.

3.2.11 The category of monoidal categories. One easily checks that the com-
position of two monoidal functors is again monoidal, and that identity functors
are monoidal, so all together there is a category denoted MonCat whose ob-
jects are the monoidal categories and whose arrows are the monoidal functors.
A monoidal functor is called an isomorphism of monoidal categories if there
exists a two-sided inverse in MonCat .

3.2.12 Examples of monoidal categories will be given in the subsection
starting on page 157. Unfortunately, the most important ones (including
(Set ,×, 1), (Set ,

∐
, ∅), (Vectk,⊗, k), (2Cob ,

∐
, ∅)) are not really strict

monoidal categories, so in order not to cheat the reader (and to save her from
an unpleasant surprise when she picks up a random book on monoidal cat-
egories) we should spend a short while with not-necessarily-strict monoidal
categories.
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Nonstrict monoidal categories

See Mac Lane [34] or Kassel [29] for more details.

There is a weaker notion of monoidal categories, usually simply called
monoidal categories, where the axioms only hold up to coherent isomorphisms
instead of holding strictly. In this subsection we briefly give the definition, and
explain why there is no harm in pretending that all monoidal categories are
strict. (If the reader finds this confusing he should rather skip this subsection –
it will not really be used elsewhere in the text.)

The axioms for a strict monoidal category state that certain diagrams of
functors commute (cf. 3.2.4); each of the three diagrams expresses the equality
of two functors. Now instead of having equality we just require an invertible
natural transformation between the two functors; this natural transformation
is part of the structure and must be specified. These natural transformations
must satisfy certain coherence constraints which guarantee that treating the
corresponding isomorphisms (the components of the natural transformations)
as if they were equalities will not lead to contradictions.

3.2.13 Weak associativity. The associativity axiom for a strict monoidal cat-
egory (V , µ, η) states the equality of the two functors

V × V × V
(µ×idV )µ�
(idV ×µ)µ

� V .

Now instead of equality we require just an invertible natural transformation

α : (µ× idV )µ ⇒ (idV ×µ)µ,

called the associator. It is suggestive to draw a natural transformation as a
2-cell like this:

V × V × V

V × V

µ×idV

�

⇒ V × V

idV ×µ

�

α

V

µ

�

µ �

This means that the diagram is not commutative, but rather that the natu-
ral transformation α compares the two possible ways of going through the
diagram. In concrete terms: for every triple of objects X, Y,Z there is an
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isomorphism αX,Y,Z : (X�Y )�Z ∼→ X�(Y�Z). Naturality means that these
isomorphisms are compatible with all arrows (see Appendix).

Here comes the coherence constraint. For every quadruple of objects
A,B,C,D, if we start with the ‘product’ ((A�B)�C)�D then there are two
ways we can use the associator to shuffle all the parentheses over to the right,
and the coherence constraint on α states that it does not matter which way we
choose, the result is not the same. Precisely we require the following commu-
tative pentagon diagram:

(A�B)�(C�D)

((A�B)�C)�D

α

�

A�(B�(C�D))

α

�

(A�(B�C))�D
α

�

α� idD

�

A�((B�C)�D)

idA �α
�

(The α here are really the components of α corresponding to the object in
question. That is, they ought to be indexed (like αA�B,C,D for the upper left-
hand arrow).)

3.2.14 Weak unit axioms. Instead of having strict triangles (as in 3.2.4), we
only have invertible 2-cells (denoted λ and ρ)

V × V

λ ⇓
1× V �

η×idV

�

V

µ

�

V × V

⇓ ρ

V �

µ

�

V × 1

idV ×η

�

These natural equivalences amount to having for each object A natural isomor-
phisms

λA : I�A ∼→ A, ρA : A�I ∼→ A.
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These natural equivalences are also subject to a coherence constraint, namely
the commutativity of this diagram (for all A,B):

(A�I )�B
α � A�(I�B)

A�B

idA �λB

�

ρA� idB �

3.2.15 The definition. A monoidal category is a sextuple (V , µ, η, α, λ, ρ)

where V is a category, µ : V × V → V and η : 1 → V are functors, and
α, λ, ρ are invertible natural transformation as above satisfying the coherence
constraints.

3.2.16 Strict monoidal categories. A monoidal category in the sense of this
definition is called strict if α, λ, ρ are all the identity natural transformations.

Note that this weakening principle has no analogue for monoids (in Set )
since there is no such thing as a ‘natural transformation’ between arrows in
Set (functions).

3.2.17 Monoidal functors come in different flavours, depending on the level
of strictness: strict monoidal functors are functors that respect all the struc-
ture (V , µ, η, α, λ, ρ). (The functors we use are always considered strict.)
Strong monoidal functors are not required to preserve the structure on the nose:
instead of the identity maps which express the structure preservation there
should be invertible comparison morphisms (e.g. XF�′YF ∼→ (X�Y )F ).
These should then be specified and are part of the data of a monoidal functor.
For the precise definition, see Mac Lane [34], Chapter XI, Section 2. Finally,
for lax monoidal functors (sometimes simply called monoidal functors), these
comparison morphisms are no longer required to be invertible. (In any case
the comparison morphisms must satisfy certain coherence constraints.) Note
that in the strict context ‘being monoidal’ is a property of a functor: it makes
sense to take a functor (between monoidal categories) and ask whether it is
monoidal. In the nonstrict context ‘being monoidal’ is a structure which must
be specified.

Next, there is a notion of a strong monoidal functor being a monoidal equiv-
alence; it means that there exists a strong monoidal functor in the other direc-
tion such that their two compositions are isomorphic to the identity functors
(under a monoidal natural transformation – a notion which must also be de-
fined properly – see 3.2.49 for the strict version of this). We mention these
notions only to be able to state the
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3.2.18 Strictification Theorem. (See Mac Lane [34], Chapter XI, Section 3.)
Every monoidal category is monoidally equivalent to a strict monoidal cate-
gory. �

This theorem is essentially equivalent to

3.2.19 Mac Lane’s Coherence Theorem. (See Mac Lane [34], Chapter VII,
Section 2.) Let (V,�, I, α, λ, ρ) be a monoidal category. Every diagram that
can be built out of the components of α, λ, ρ, and identity maps, using compo-
sition and monoidal operations, commutes. �

In other words, the coherence constraints expressed by the commutativity of
the pentagon diagrams and the triangle diagrams imply general coherence (ex-
pressed by the commutativity of all other diagrams which represent different
ways of shuffling parentheses (or deleting copies of I )).

In practice this means that there is no harm done in pretending that all
the comparison isomorphisms are actually identity maps, and thus that the
monoidal category is strict. This is what we do throughout.

Examples of monoidal categories and functors

3.2.20 Discrete monoidal categories. From the definition we see that
monoidal categories are to categories as monoids are to sets. Let us make that
remark functorial. A category whose only arrows are the identity arrows is
called discrete. Thus a discrete category is specified completely by specifying
its objects. Conversely, every set S can be considered a discrete category S :
just take the objects of S to be the elements of S, and take no arrows other
than the identity arrows. Under this correspondence, functions between sets
translate into functors between (discrete) categories. All told, there is a functor

Set ↪→ Cat

whose image consists of (the) discrete categories.
If now S is a monoid then the structure maps µ : S × S → S and η :

1 → S translate into structure functors µ : S × S → S and η : 1 → S , and
the monoid axioms that hold for these maps translate into the axioms for a
monoidal category: so S is a (discrete) monoidal category.

3.2.21 The category of sets, equipped with cartesian product and singleton
set is a monoidal category. To each pair of sets (S, S′) we can associate the set
S × S′:

Set × Set −→ Set

(S, S′) �−→ S × S′.
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So � is simply the cartesian product × itself! Note however that the two ×
symbols that occur in the definition are not the same: Set × Set denotes the
cartesian product of two categories, while S × S′ denotes the cartesian product
of two sets.

The singleton set 1 serves as neutral element for this operation. It is the
image of the functor

1 −→ Set

∗ �−→ 1.

More generally, this works for

3.2.22 Any category that admits products. Let C be a category that admits
products – in particular let 1 denote the empty product in C, which is ‘the’
terminal object. Then (C,×, 1) is a monoidal category.

Let us have a short look at how the universal property guarantees that the
axioms are satisfied – we concentrate on the associativity axiom. We want to
show that for each triple of objects A,B,C we have

(A× B)× C � A× (B × C).

First let us recall that (A× B)× C is characterised (up to unique isomor-
phism) by the universal property

X

A× B �
�

(A× B)× C

∃!
�

� C

�

We want to put A× (B × C) in the place of X. Note that we have projection
maps

A× (B × C)

A
�

B × C

�

B
�

C.

�

Since we have maps from A× (B × C) to both A and B, the universal property
of A× B gives us a canonical map A× (B × C) → A× B. Now we already
had a map to C, so that is all we need to put A× (B × C) in the place of X in
the diagram. Now the universal property of (A× B)× C gives us a map from
A× (B × C). Repeating all the arguments with the parentheses moved to the
other side gives a map in the other direction, and it is not difficult to see that
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these two maps are in fact inverses to each other, so we have an isomorphism.
Now the fact that these isomorphisms (one pair for each triple of objects) are
all constructed by universal properties guarantees that they are coherent, so we
have a monoidal category. To be precise it is not a strict monoidal category, but
we will nevertheless regard it as such.

So (Set ,×, 1) is a special case of this. Two other special cases are worth
mentioning explicitly at this point.

3.2.23 The category of all (small) categories, (Cat ,×, 1), is a monoidal cat-
egory. As an example of a monoidal functor we have the inclusion

(Set ,×, 1) ↪→ (Cat ,×, 1)

described in 3.2.20.

3.2.24 The category of monoids (Mon,×, 1) is a monoidal category. (The
product of two monoids was defined in 3.1.8 – its multiplication is just
component-wise multiplication.) This example will be subsumed by Exam-
ple 3.5.5 where more details can be found.

3.2.25 Any category that admits coproducts
∐

is a monoidal category. The
neutral object is then of course the initial object. This follows from the same
reasoning as with products; the arrows constructed by the universal property
go the other way around, but since anyway they are isomorphisms it makes no
difference. Alternatively, this result can be obtained from 3.2.22 by considering
the opposite category.

Concrete examples of coproduct monoidal structure:

3.2.26 The category of sets and disjoint union. For each pair of sets X, Y we
can form their disjoint union X

∐
Y . We noted in 1.3.24 that this composition

is associative (modulo natural identifications). Clearly the empty set ∅ is the
neutral object. The variation ‘finite sets and disjoint union’ will be studied in
more detail in Section 3.4.

3.2.27 The category of topological spaces, and disjoint union. As we saw
in 1.3.25.

3.2.28 The category of vector spaces, and tensor product. Given two k-
vector spaces U,V , then we can form their tensor product U ⊗ V . For three
vector spaces U,V,W we have (U ⊗ V )⊗W = U ⊗ (V ⊗W). The ground
field k itself is the neutral object.
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Note that in reality, we only have isomorphisms (U ⊗ V )⊗W � U ⊗
(V ⊗W), but these isomorphisms are natural and unique (when required to
be compatible with the structure maps of the tensor products).

(There is no point in merely observing that the spaces are isomorphic (as-
suming that the spaces U,V,W are finite dimensional, clearly the two versions
of the triple tensor product have the same dimension and are therefore iso-
morphic). The crux is really that we make the identification along the correct
isomorphisms. Choosing other isomorphisms would lead to contradictions. . . )

3.2.29 R-modules and groups. For the same reason, if R is a commuta-
tive ring, the category (ModR,⊗R,R) of R-modules with the tensor prod-
uct is monoidal. In particular, the category of abelian groups (Ab ,⊗Z, Z) is a
monoidal category.

3.2.30 Another monoidal structure on Vectk. The triple (Vectk,⊕, 0) is a
monoidal category. (This is a special case of 3.2.22 and also 3.2.25.)

3.2.31 The category of Frobenius algebras (with tensor products). We saw
in 2.4.8 that the tensor product of two Frobenius algebras is again a Frobenius
algebra, and that the trivial Frobenius algebra (k, idk) is the neutral object for
this operation. So (FAk,⊗, k) is a monoidal category.

3.2.32 The category of commutative Frobenius algebras (with tensor
products). The tensor product of two commutative Frobenius algebras is again
commutative, and clearly the trivial Frobenius algebra (k, idk) is commutative.
So (cFAk,⊗, k) is a monoidal category (with a canonical monoidal embed-
ding into (FAk,⊗, k)).

3.2.33 The category of n-dimensional cobordisms (nCob ,
∐

, ∅) is a
monoidal category. This was explained in Chapter 1, page 48.

Symmetric monoidal categories

We are going to use monoidal categories as the context for defining monoids
(cf. the introductory discussion on page 148). Now in order to be able to talk
about commutative monoids, we need a notion of twist map in the category,
generalising the twist map we know in the category of sets. Intuitively this new
twist map will be ‘interchange of factors’. When such a twist map is specified
with properties similar to those of the twist map in Set then we have a symmet-
ric monoidal category. (Specifying twist maps with slightly weaker properties
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leads to the notion of braided monoidal categories, which is not really used in
this text (except for a brief mention in the exercises), but which is important in
knot theory (see Kassel [29]).)

3.2.34 Definition. A (strict) monoidal category (V ,�, I ) is called a symmetric
monoidal category if for each pair of objects X, Y there is given a twist map

τX,Y : X�Y → Y�X

subject to the following three axioms (to be explained below).

(i) The maps are natural.
(ii) For every triple of objects X, Y,Z, these two diagrams commute:

X�Y�Z
τX,Y�Z� Y�Z�X

Y�X�Z

idY �τX,Z

�

τX,Y � idZ
�

X�Y�Z
τX�Y,Z� Z�X�Y

X�Z�Y

τX,Z� idY

�

idX �τY,Z
�

(iii) We have τX,Y τY,X = idX�Y .

3.2.35 The twist map is pictured like this:
Y

X

X

Y

Axiom (iii) should be compared to the first relation for the symmetric group
(1.4.2). Its graphical representation is

Y

X

Y

X
= Y

X

Y

X

The collection of twist maps (one for each pair of objects) is a structure that
must be specified (not a property of a given monoidal category), so a symmetric
monoidal category is a quadruple (V ,�, I, τ ). (However, in many important
cases there is no choice: when the monoidal structure is given by product or
coproduct, the axioms are so strong that there is only one possible symmetric
structure, cf. 3.2.42. We will see in Example 3.2.46 that the category of graded
vector spaces admits more than one symmetry. . . )

3.2.36 The naturality condition (i) means that for every arrow in V × V (i.e.
for every pair of arrows f : X → X′ and g : Y → Y ′), the diagram

X�Y
τX,Y � Y�X

X′�Y ′

f�g
�

τX′,Y ′
� Y ′�X′

g�f
�
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commutes. This is precisely to say that the collection of twist maps assemble
into a natural transformation τ ; it goes from

V × V
µ→ V to V × V

twist−→ V × V
µ→ V .

It is a 2-cell like this:

V × V
twist� V × V

⇒
V

µ

�
========== V

µ

�

(In particular, one may note that the notion of twist map in a monoidal category
depends on the existence of the canonical twist functor for categories (the twist
map in Cat ).)

Let us look at an interesting case: f is the identity map on X and g is the
twist map Y�Z → Z�Y . That gives the commutative diagram

X�Y�Z
τX,Y�Z� Y�Z�X

X�Z�Y

idX �τY,Z

�

τX,Z�Y

� Z�Y�X

τY,Z� idX

�

It is useful to draw pictures – here is the graphical version of the commutative
diagram:

Z

Y

X

X

Y

Z

=
Z

Y

X

X

Y

Z

(3.2.37)

3.2.38 Symmetry. Condition (ii) says that the twist maps compose like per-
mutations. In graphical guise the left-hand condition reads:

Z

ZY

YX

X

=
Z

Y

X

X

Z

Y

(That is, moving X past Y�Z can be achieved by the two-step operation: first

moving X past Y and then past Z.) Now take this expression for and plug
it into each side of Equation 3.2.37 to get:

Z

Y

X

X

Y

Z

=
Z

Y

X

X

Y

Z

(3.2.39)
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in analogy with the relation for the symmetric groups, cf. 1.4.2: every element
in a symmetric group can be written as a product of transpositions and the
possible products satisfy this relation.

If we think of monoidal structure as ‘n-ary products for all n ∈ N’ (which
we can do in view of associativity), then a symmetry can be interpreted as a
rule which to every n-tuple and to every permutation of its entries associates
a ‘higher twist map’. Now axiom (ii) says that composition of such maps be-
haves just like composition of permutations: the big collection of all these twist
maps is generated by binary twist maps, just like the symmetric groups are gen-
erated by transpositions, and satisfy relation 3.2.39 which is analogous to the
symmetric group relation.

(Note that Equation 3.2.39 could also be obtained from the right-hand part
of condition (ii), and this also shows that that the two diagrams of condition
(ii) in fact imply each other (modulo naturality).)

The axioms also imply a strong compatibility with the unit structure: twist-
ing with the neutral object I has no effect, according to this lemma:

3.2.40 Lemma. For every object X, these two diagrams commute:

X�I
τX,I � I�X

X

�

�

I�X
τI,X � X�I

X

�

�

Proof. We will treat the left-hand triangle (the right-hand is analogous).
Consider this tetrahedron (where we have suppressed the symbol � between
objects to save space):

IIX

XII

τX,II

�

τX,I � idI� IXI

idI �τX,I

�

XI

��

�

The base triangle is the triangle of the lemma (just with an extra factor
� idI ). We will show the base triangle is commutative, by establishing the
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commutativity of the other triangles. The back triangle,

IIX

XII
τX,I � idI

�

τX,II

�

IXI

idI �τX,I

�

is just the left-hand triangle of axiom (ii), with Y = Z = I .
The front edge of the tetrahedron is actually the composite

IIX � IX
(τX,I )−1

� XI.

Hence, the commutativity of the two front faces is equivalent to the two squares

XII
τX,II� IIX

XI

�

τX,I

� IX

�

IXI
idI �τX,I� IIX

XI

�

τX,I

� IX

�

The left-hand square is just the naturality of τ with respect to idX and II → I .
The right-hand square commutes since idI acts neutrally on arrows. �

3.2.41 Example. Let (M ,�, I ) be a discrete monoidal category (i.e. a
monoid) cf. 3.2.20. Since the only arrows are the identity arrows, the only
possible symmetry structure there might exist on M is the one where each
τX,Y : X�Y → Y�X is the identity. Now the statement X�Y = Y�X,∀X, Y

is something which is either true or false (it is a property not a structure), and if
it is false then of course there can be no symmetry structure on M . If it is true
it amounts to saying that the corresponding monoid is commutative (cf. 3.1.9).
So symmetric structure (in a monoidal category) generalises commutativity of
monoids. But while it is a structure in monoidal categories, in monoids there
is no choice for the symmetry: either it exists (commutative case) or it does not
(noncommutative case), so it is a property.

3.2.42 Canonical symmetries. We saw in 3.2.22 that if V is a category with
products, then (V ,×, 1) is a monoidal category (where 1 denotes the terminal
object, the empty product). There is a canonical symmetric structure on V
namely the one interchanging the two factors. (Exercise: write out the details
of checking the axioms.) Now we claim that this is the only possible symmetry.
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Indeed, given two objects A,B, consider the two naturality diagrams

A× 1
τA,1� 1× A

A× B

�

τA,B

� B × A

�

1× B

�

τ1,B

� B × 1
�

where the vertical maps are the projection maps (or more precisely perhaps: the
unique map to 1 times the identity map). Now axiom (iii) for being a symmetry
says that that twist on the neutral object is the identity (the upper and lower
horizontal maps). So in conclusion the twist map A× B → B × A must also
be a sort of identity map on each factor – but twisted, as in the definition of the
canonical twist map described initially.

Clearly the same argument works to show that in a category whose
monoidal structure comes from the coproduct, there is a unique symmetry
structure.

3.2.43 Examples. All the monoidal categories we have encountered so far
carry a canonical symmetry, even if the monoidal operation is neither prod-
uct nor coproduct. In each case the twist map is the obvious interchange of
‘factors’. Nonsymmetric monoidal categories will appear in Section 3.4: the
monoidal category of finite ordered sets does not admit any symmetry. (It is
precisely the ordering that prevents us from permuting anything. . . )

To be explicit with a couple of our favourite examples:

3.2.44 The category of n-cobordisms (nCob ,
∐

, ∅, T ), where the twist
cobordism T�,�′ : �∐

�′ �′∐� is the cobordism induced from the twist
diffeomorphism τ�,�′ : �∐

�′ → �′∐� in the category of smooth mani-
folds.

3.2.45 The category of vector spaces (Vectk,⊗, k) carries a canonical sym-
metry σ which goes like this:

V ⊗W −→ W ⊗ V

v ⊗ w �−→ w ⊗ v.

An important example of a monoidal category that admits more than one
symmetry is
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3.2.46 The category of graded vector spaces. A graded vector space is a
direct sum of vector spaces V = ⊕

n∈Z
Vn, and a graded linear map is one that

respects the grading. The tensor product of two graded vector spaces V and
W is again a graded vector space, with grading (V ⊗W)n = ⊕

p+q=n(Vp ⊗
Wq). The ground field k is a graded vector space concentrated in degree 0. So
we have a monoidal category (grVectk,⊗, k) of graded vector spaces. Now
of course we have the canonical symmetry σ just as above: v ⊗ w �→ w ⊗ v.
But there is also another important possibility for defining a twist map, namely
via Koszul’s sign change:

v ⊗ w �→ (−1)pq w ⊗ v

where deg(v) = p and deg(w) = q. One checks that this symmetry κ does in-
deed satisfy the axioms, making (grVectk,⊗, k, κ) into a symmetric monoidal
category.

3.2.47 Strictification of symmetry? Why not forget about the symmetry 2-
cell and plainly regard it as an identity, just as we do for the 2-cells in the
definition of nonstrict monoidal categories? This is tempting, and sometimes
you can get away with it (for example Quinn takes this viewpoint in [43], and
writes V ⊗W = W ⊗ V , for any two vector spaces V,W ). However this is a
delicate question, and in general this simplification will not work: there is no
strictification result like ‘every symmetric monoidal category is equivalent to a
strictly commutative one’. (But there is a coherence result, cf. Mac Lane [34],
new edition, Chapter XI.)

A more prosaic reason for not pretending that symmetries are identities is
the above example, the category of graded vector spaces: we would confuse
ourselves completely if we regarded the symmetry κ as the identity!

3.2.48 Symmetric monoidal functors. Given two symmetric monoidal cat-
egories (V ,�, I, τ ) and (V ′,�′, I ′, τ ′), an obvious property to require from
a monoidal functor F : V → V ′ is that it preserve the symmetric structure,
namely that for every pair of objects X, Y in V we have

τX,Y F = τ ′XF,YF .

In other words, the image of the twist map is the twist map of the images. Such
monoidal functors are called symmetric monoidal functors. The composition of
two symmetric monoidal functors is clearly symmetric again, and the identity
monoidal functor is symmetric. All told, there is a category SymMonCat of
symmetric monoidal categories and symmetric monoidal functors.
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Monoidal functor categories

3.2.49 Monoidal natural transformations. Let (V ,�, I ) and (V ′,�′, I ′) be
two monoidal categories, and let

V
G��
F

V ′

be two monoidal functors. A natural transformation u : F ⇒ G is called a
monoidal natural transformation if for every two objects X, Y in V we have

uX�′uY = uX�Y ,

and also uI = idI ′ . The first requirement makes sense because (X�Y )F =
XF�′YF and (X�Y )G = XG�′YG, so we can write

(X�Y )F
uX�Y � (X�Y )G

XF�′YF

����
uX�′uY

� XG�′YG

����

The second requirement makes sense because IF = IG = I ′.

3.2.50 Monoidal functor categories. For two fixed monoidal categories
(V ,�, I ) and (V ′,�′, I ′), there is a category MonCat(V , V ′) whose objects
are the monoidal functors from V to V ′, and whose arrows are the monoidal
natural transformations between such functors.

3.2.51 Symmetric monoidal functor categories. Similarly, given two sym-
metric monoidal categories (V ,�, I, τ ) and (V ′,�′, I ′, τ ′), there is a cate-
gory SymMonCat(V , V ′) whose objects are the symmetric monoidal func-
tors from V to V ′, and whose arrows are the monoidal natural transformations
between such functors.

For our purposes, a particularly important class of monoidal functors are the

3.2.52 Linear representations. By definition, a linear representation of a
symmetric monoidal category (V ,�, I, τ ) is a symmetric monoidal functor
(V ,�, I, τ ) → (Vectk,⊗, k, σ ), where σ is the usual symmetry (cf. 3.2.45).
So the set of all linear representations of V is the objects of a category which
we denote

Reprk(V) := SymMonCat(V , Vectk).
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3.2.53 Note. We consider strict functors. In fact our Vect is a strictification of
the true monoidal category of vector spaces. . . Otherwise we should consider
strong monoidal functors, cf. 3.2.17. . .

3.2.54 TQFTs. By definition 1.3.32, a topological quantum field theory is a
symmetric monoidal functor from (nCob ,

∐
, ∅, T ) to (Vectk,⊗, k, σ ). Such

functors form the objects of a category

nTQFTk = Reprk(nCob ) = SymMonCat(nCob , Vectk),

the arrows being the monoidal natural transformations.

Exercises

1. Let Matk denote the category whose object set is N, and whose arrows
are matrices over k, an m-by-n matrix being regarded as an arrow from
m to n. Composition of arrows is matrix multiplication. Show that Matk

becomes a monoidal category under the operation of addition in N, and
forming block matrices like this: A�B := (

A 0
0 B

)
. (For this to work you

have to invent 0-by-n matrices and m-by-0 matrices. . . )
2. Show that if φ and φ′ are invertible arrows in a monoidal category

(V ,�, I ), then φ�φ′ is also invertible.
3. Let (V ,�, I ) be a monoidal category. The goal of the exercise is to show

that the endomorphism monoid EndV (I ) is commutative.
Independently of the monoidal structure, the set EndV (I ) is naturally a
monoid under composition of arrows (cf. 3.1.18); the unit is idI : I → I .
Show that there is a second monoid structure on EndV (I ) obtained from �

via the identification I�I = I . Namely, given f : I → I and g : I → I

we can consider f �g : I�I → I�I as an arrow I → I . Show that idI is
the unit for this monoid structure. Next, decompose f �g with the help of
the identity arrow as in 3.2.6 and use these decompositions to show that
f �g can be identified with fg as well as with gf . (This is one form of the
Eckmann–Hilton argument. A more general version is given in Exercise 2
on page 211.)

4. Let C be any category and consider the category EndCat (C ) (also denoted
Cat(C , C )) whose objects are functors C → C and whose arrows are nat-
ural transformations. Show that composition of functors (and the identity
functor) make EndCat (C ) into a monoidal category. (This is a categorifi-
cation of 3.1.18.)

5. Let Boole denote ‘the category of Boolean logic’ in this sense: the objects
are propositions (say p, q, . . . ), and there is an arrow from p to q whenever



3.2 Monoidal categories 169

p implies q. (So between two objects there is either one or zero arrows.)
Show that ∧ = AND is a categorical product and that $ = TRUE is a ter-
minal object. (Hence (by 3.2.22 and 3.2.42), (Boole,∧,$) is a symmetric
monoidal category.) Analogously, show that ∨ = OR is a categorical co-
product and that ⊥ = FALSE is an initial object. (Hence (Boole,∨,⊥) is
a symmetric monoidal category.)
Let 2 ⊂ Boole denote the full subcategory consisting of$ and⊥ (so there
is a single nonidentity arrow ⊥→ $). Show that the two monoidal struc-
tures on Boole induce monoidal structures on 2. (See also A.1.4 and Exer-
cise 1 on page 233.)

6. Consider the two monoidal categories (Set ,
∐

, ∅) and (Vectk,⊕, 0).
Show that the free functor Set → Vectk studied in Exercise 1 on page 92
is a monoidal functor with respect to these two monoidal structures.
Consider now instead the two monoidal categories (Set ,×, 1) and
(Vectk,⊗, k). Show that the free functor is monoidal with respect to these
two monoidal structures.

7. Consider now the monoidal categories (Set ,
∐

, ∅) and (Algk,⊗, k).
Show that the free-algebra functor Set → Algk defined in Exercise 7 on
page 93 is a monoidal functor with respect to these two monoidal struc-
tures.

8. (Joyal and Street [28].) A braiding on a monoidal category (V ,�, I ) is
a family of maps τX,Y : X�Y → Y�X subject to axioms (i) and (ii) on
page 161 – but not axiom (iii). A braided monoidal category is a monoidal
category equipped with a braiding. We picture (the components of) a braid-
ing like this

X

Y X

Y

Copy over the arguments in 3.2.36–3.2.39 to show that this equation holds
for any three objects in a braided monoidal category:

X

Y

Z X

Y

Z

=
X

Y

Z X

Y

Z

Prove also the analogue of Lemma 3.2.40.
9. Let G be a group. A G-set is a set X together with a right G-action

(cf. 3.1.21)

X ×G −→ X

(x, g) �−→ x.g.
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A homomorphism of G-sets (also called a G-map) is a set map φ : X → Y

compatible with the actions, i.e. (x.g)φ = (xφ).g. Let SetG denote the
category of G-sets and G-maps. Show that this category is monoidal under
the operation that sends a pair of G-sets X and Y to the product set X × Y

with coordinate-wise G-action

X × Y ×G −→ X × Y

(x, y, g) �−→ (x.g, y.g).

10. (Freyd and Yetter.) Continuing the previous exercise, a particular G-set is
the set underlying G itself, with action given by conjugation:

G×G −→ G

(x, g) �−→ g−1xg.

A crossed G-set is a G-set X equipped with a G-map X → G, which we
denote x �→ |x|. So it means that this square commutes:

X ×G � X

G×G

�
� G

�

which in turn is expressed in terms of elements

|x.g| = g−1 |x| g.

A crossed G-map φ : X → Y between two crossed G-sets is a G-map
compatible with the maps to G. That is, |xφ| = |x|, for all x ∈ X. Let us
denote by SetG/G the category of crossed G-sets and crossed G-maps.
Show that the map

X × Y −→ G

(x, y) �−→ |x| |y|

defines monoidal structure on SetG/G.
11. For each pair X, Y of crossed G-sets, put

τX,Y : X × Y −→ Y ×X

(x, y) �−→ (y, x. |y|),

and show that this defines a braiding on SetG/G.



3.3 Frobenius algebras and 2-dimensional TQFTs 171

3.3 Frobenius algebras and 2-dimensional topological
quantum field theories

3.3.1 2-Dimensional TQFTs and Frobenius algebras. So a 2-dimensional
TQFT is a linear representation of the symmetric monoidal category
(2Cob ,

∐
, ∅, T ). This is a category we fully control, because we are given

a presentation of it in terms of generators and relations. Recall that the objects
of 2Cob are {0, 1, 2, . . . } where n is the disjoint union of n circles, and that
the generating arrows are

and

(The precise meaning of these symbols was given in 1.4.) Recall furthermore
that we found a bunch of relations, the most important ones being

= = = =

= =

= =

= =

(There was furthermore a jungle of relations involving the twist map
(1.4.35) which just amount to saying that 2Cob is a symmetric monoidal cat-
egory. Since we require our monoidal functor to be symmetric, all these rela-
tions are automatically taken care of, so we do not have to bother with them.)

In general, a monoidal functor is determined completely by its values on the
generators of the source category. In our case we want to specify a symmetric
monoidal functor A : 2Cob → Vectk, so we must specify a vector space A

as image of 1, and a linear map for each of the generators. The fact that the
functor is monoidal implies in particular that the image of 2 is A⊗ A, and so
on. To ease the notation, put An := A⊗ . . .⊗ A (with n factors). The fact that
A is a symmetric monoidal functor means that the image of must be the
usual twist for the tensor product, so the following is automatic once we have
fixed the vector spaceA:
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2Cob −→ Vectk

1 �−→ A

n �−→ An

�−→ [idA : A → A]
�−→ [σ : A2 → A2].

Let the images of the generators be denoted like this:

2Cob −→ Vectk

�−→ [η : k → A]
�−→ [µ : A2 → A]
�−→ [ε : A → k]
�−→ [δ : A → A2].

So A is a vector space equipped with certain linear maps among its tensor
powers; now the relations that hold in 2Cob translate into relations among
these linear maps. With the graphical notation we used in Chapter 2 we antic-
ipated this comparison: it is easy to see that the relations translate exactly into
the axioms for a commutative Frobenius algebra.

So in conclusion, given a 2-dimensional TQFT A , then the image vector
space A = 1A is a commutative Frobenius algebra.

Conversely, starting with a commutative Frobenius algebra (A, ε) (whose
multiplication is denoted µ, etc.) then we can construct a TQFT A by using
the above description as definition. In other words, A is defined by sending

1 �→ A (the underlying vector space), �→ µ, etc. Here we must check that
this makes sense of course – that the relations are respected. For example we
must check that for the cobordism

=

it makes no difference whether we let the image be µδ or (δ ⊗ idA)(idA⊗µ).
But again, since the relations in 2Cob correspond precisely to the axioms for a
commutative Frobenius algebra, this is automatic, so the symmetric monoidal
functor A is indeed well defined.

Also it is clear that these two constructions are inverse to each other: e.g., if
we start with A and construct a commutative Frobenius algebra A := 1A ,
and then define a symmetric monoidal functor such that 1 �→ A, then we
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recover A . So we have established a one-to-one correspondence between
2-dimensional TQFTs and commutative Frobenius algebras.

(Beware: we have certain symmetric monoidal functors on one side, and
commutative Frobenius algebras on the other side, but the adjectives ‘symmet-
ric’ and ‘commutative’ do not correspond precisely to each other here. See
3.3.3 for further discussion.)

This correspondence also works for arrows. The arrows in 2TQFTk are
the monoidal natural transformations. Given two TQFTs A , B , i.e. two sym-
metric monoidal functors 2Cob → Vectk, then a natural transformation u be-
tween them consists of linear maps An → Bn for each n ∈ N. That u is a
monoidal natural transformation means that the map An → Bn is just the nth
tensor power of the map A1 → B1, so u is determined completely by speci-
fying this linear map. The naturality of u means that all these maps are com-
patible with arrows in 2Cob . Now every arrow in 2Cob is built up from the
generators, so naturality boils down to four commutative diagrams (one for

each generator). For example the diagrams corresponding to and are

A2 � B2

A

µA
�

� B

µB
�

A � B

k

ηA

�

======= k

ηB

�

which amounts precisely to the statement that A → B is a k-algebra homo-

morphism. Similarly, the conditions corresponding to and express that
A → B is a coalgebra homomorphism. So all together it is then a Frobenius al-
gebra homomorphism (cf. the definition 2.4.4). (The ‘generator’ is in fact
not a generator at all, and the diagram one could draw involving it commutes
automatically. Finally, is a true generator, but since the two monoidal func-
tors are required to be symmetric they preserve twist maps, so there is no in-
teresting diagram to draw for this one either.)

Conversely, given a Frobenius algebra homomorphism between two com-
mutative Frobenius algebras, we can use the above arguments in the reverse
direction to construct a monoidal natural transformation between the TQFTs
corresponding to A and B.

All together we have proved our main theorem:

3.3.2 Theorem. There is a canonical equivalence of categories

2TQFTk � cFAk.
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If we regard 2TQFTk as the category of representations of the skeletal
version of 2Cob , then in fact we have an isomorphism of categories. (See
Remark 3.5.19 for further discussion of such issues.)

3.3.3 What about the symmetry requirement? It is natural to ask whether
our requirement that the monoidal functor defining a TQFT be symmetric is
desirable or necessary – it might turn out to be symmetric automatically?!

Here is an example which illuminates this question, and in particular shows
that the symmetry of the functor is not automatic. For a moment, let us drop
the requirement that a TQFT be symmetric. Consider a graded-commutative
Frobenius algebra H , for example the cohomology ring of a compact manifold
(cf. 2.2.23). Now define a nonsymmetric TQFT by sending 1 �→ H : Concern-
ing the generators for 2Cob , send them to multiplication and unit, comulti-
plication and counit, just as usual, but send the twist cobordism to Koszul’s
sign-changed twist (cf. 3.2.46)

a ⊗ b �→ (−1)pq b ⊗ a,

where deg(a) = p and deg(b) = q. This works! Even though H is not a com-
mutative Frobenius algebra in the usual sense, there is no contradiction because
the twist cobordism is not sent to the usual twist!

So here we have a natural example of a good monoidal functor 2Cob →
Vectk which is not symmetric, but unfortunately our current definition of
TQFT (with the symmetry requirement) is too narrow to include it. What
should we do with this example? If we drop the symmetry requirement, The-
orem 3.3.2 would simply be wrong! – we get noncommutative Frobenius
algebras as well. Then you might try to formulate the theorem without sym-
metry requirement using more generally graded-commutative Frobenius alge-
bras. But how can you be sure there is not yet another ‘exotic-commutative
algebra’ notion defying your theorem, just as the graded-commutative exam-
ple defies the version of the theorem without symmetry requirement? To be
sure, the formulation of the theorem would be something like: ‘(not neces-
sarily symmetric) TQFTs correspond to such Frobenius algebras which are
exotic-commutative in some sense (relating to some symmetric structure on
some Vect -like monoidal category in which they can be considered to live)’.

In any case, it is clear that symmetry exists on both sides of the functor A ,
and morally of course it is wrong to deny it or ignore it. The ugliness of the
last statement is convincing evidence that we are doing something wrong.

The point is that commutativity is actually a relative notion: it depends on
a symmetry structure on the ambient monoidal category (cf. 3.5.6). If instead
of the usual Vectk we place ourselves in the symmetric monoidal category
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(grVectk,⊗, k, κ), then the algebra H is commutative, and the monoidal func-
tor 1 �→ H is symmetric. So the good way for the theorem to handle this tricky
example is not to give up symmetry – on the contrary: symmetric monoidal
is the crucial notion here, so we need to consider more general symmetric
monoidal categories – (Vectk,⊗, k, σ ) should not have a monopoly of receiv-
ing the functors defining TQFTs! Also, from the viewpoint of quantum theory,
there is no reason for favouring precisely the category (Vectk,⊗, k, σ ) – in
fact, in the list of examples that Atiyah gives in [5], half of the examples re-
ally use mod-2 graded vector spaces instead of plainly vector spaces – such
creatures abound in quantum physics. . .

So this whole discussion is one motivation for the step of abstraction we will
take in the remainder of these notes, allowing arbitrary (symmetric monoidal)
target categories. Another motivation is that in fact it is no more difficult to
treat this general case.

3.3.4 Historical remarks. The observation that 2-dimensional TQFTs are es-
sentially the same thing as commutative Frobenius algebras was first made by
R. Dijkgraaf in his Ph.D. thesis [16]. More precise proofs have been given
by Dubrovin [19], Quinn [43], Sawin [44], and Abrams [1] – this is at the
same time the chronological order and the order according to the amount
of detail presented. However, all these sources are silent on the questions of
symmetry. . .

3.3.5 What’s next? With Theorem 3.3.2 we have finished: we understand the
relation between 2-dimensional TQFTs and Frobenius algebras! and in the ex-
ercises we work out a couple of simple examples. The rest of these notes is
devoted to placing the above theorem in its proper context. We will show that
it is just a variation of a more basic result: there is a monoidal category � (the
simplex category) which is quite similar to 2Cob (in fact it is a subcategory)
such that giving a monoidal functor from � to Vectk is the same as giving an
algebra:

MonCat(�, Vectk) � Algk.

This in turn is just a special case of a general principle (another exam-
ple being that monoidal functors � → Ab are just rings). The general result
states that monoidal functors from � to any monoidal category V correspond
to monoids in V . This amounts to saying that � is the free monoidal category
on a monoid.

This result also has a variant for Frobenius algebras: we will define a no-
tion of Frobenius object in a general monoidal category (such that a Frobenius
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object in Vectk is precisely a Frobenius algebra). Similarly, a commutative
Frobenius object in a symmetric monoidal category is the notion such that a
commutative Frobenius object in (Vectk,⊗, k, σ ) is precisely a commutative
Frobenius algebra. We will see that 2Cob does for commutative Frobenius
objects what � does for monoids: every commutative Frobenius object (in
any symmetric monoidal category) arises as the image of a unique symmet-
ric monoidal functor from 2Cob . In other words, 2Cob is the free symmetric
monoidal category on a commutative Frobenius object (Theorem 3.6.19).

Our main motivation for striving for this generality is to place
Theorem 3.3.2 in its natural context, isolating those properties of Vectk that
we used. Example 3.3.3 hints at the importance of this generality: although the
category of vector spaces (with its canonical symmetry) is important, it is not
the only interesting symmetric monoidal category, and it is worth looking at
TQFTs with values in other monoidal categories.

Exercises

1. (Sawin [44].) Show that for 2-dimensional TQFTs, the direct sum notion of
Durhuus and Jónsson (Exercise 4 on page 56) corresponds exactly to the
notion of direct product of Frobenius algebras (cf. Exercise 7 on page 105).

2-Dimensional TQFTs (i.e. commutative Frobenius algebras) fall in two major
groups: nilpotent and semi-simple – and then by taking direct sum you can
mix the two types. These behave quite differently. In the next couple of exer-
cises we just work out what sorts of invariants of surfaces they produce. Recall
from 1.2.29 that each closed surface is considered as a cobordism ∅ ∅,
so its image under a TQFT is a linear map k → k, i.e. a constant, which is a
topological invariant of the surface.

2. (Typical nilpotent example.) Let A be the 2-dimensional TQFT correspond-
ing to the Frobenius algebra A = k[t]/tn, with Frobenius form tn−1 �→ 1,
other generators t i mapping to zero (see 2.2.21). Show that the invariants
of the closed connected surfaces are as follows: the sphere has invariant 0,
the torus has invariant n, and all surfaces of higher genus have invariant 0.
(Hint: use Exercise 11 on page 129.) So in conclusion this TQFT does not
produce very fine invariants!
Compute also the invariants of all nonconnected surfaces.

3. (Typical semi-simple example.) Let A be the 2-dimensional TQFT corre-
sponding to the group algebra of the cyclic group of order n (cf. 2.2.18).
That is, A = k[t]/(tn − 1), and as Frobenius form we take 1 �→ 1, other
generators t i mapping to zero. Show that this TQFT associates invariant ng
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to the closed connected surface of genus g. So this TQFT can detect genus
(assuming the characteristic of k does not divide n).
What is the invariant of the disjoint union of two genus-g surfaces?

4. As a variation of the preceding example, take n = 2: then our algebra is
A = k[t]/(t2 − 1), but let now the Frobenius form be t �→ 1, 1 �→ 0. Show
that the handle element is 2t , and conclude that the corresponding TQFT
associates invariant 0 to any closed connected surface of even genus!
What about the disjoint union of two tori?

5. Compute the invariants produced by the TQFT obtained from the direct sum
of k[t]/t2 and k[t]/(t2 − 1), with Frobenius forms as in Exercise 2 and
Exercise 3.

6. Consider the trivial Frobenius algebra k (with Frobenius form k → k, 1 �→
1), cf. 2.2.12. Show that the corresponding TQFT gives invariant 1 to every
surface.

7. Consider now the 1-dimensional Frobenius algebra k over k, with Frobenius
form 1 �→ 2. Show that the corresponding TQFT sends the disjoint union
of k spheres to the invariant 2k , and does not detect any surfaces of positive
genus. (So it is a sphere-counting TQFT.)

8. Use the cyclic group of order 31 and a field of characteristic 31 to construct
a TQFT that can distinguish between any number of spheres up to 30, but
gives zero if any surface of higher genus appears.

3.4 The simplex categories � and �

Finite ordinals

3.4.1 The category of finite (totally) ordered sets. An ordering on a finite set
S is a relation ≤ which is transitive, reflexive, and anti-symmetric. Transitivity
means that a ≤ b ≤ c implies a ≤ c; reflexivity means a ≤ a for all a ∈ S;
and anti-symmetry means that a ≤ b ≤ a implies a = b. The ordering is total
if furthermore for each a, b we have a ≤ b or b ≤ a. The empty set is a special
example of a finite set, and it is automatically totally ordered since there are no
elements in it!

All our orderings will be total so we will suppress the adjective ‘total’: from
now on, ‘ordered’ means ‘totally ordered’.

An order-preserving map between finite ordered sets is a map f : S → S′
such that a ≤ b in S implies af ≤ bf in S′. Clearly the composition of two
order-preserving maps is again order preserving, and clearly the identity map
on any finite ordered set is order preserving, so there is a category FinOrd of
finite (totally) ordered sets and order-preserving maps.
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3.4.2 Alternative categorical description. Consider a category S with finitely
many objects, and such that given two objects there is precisely one arrow be-
tween them – either in one direction or in the other direction. Such a category
is essentially the same as a finite (totally) ordered set: starting from the finite
ordered set S construct a category S by taking the elements of S as objects,
and introducing an arrow from a to b if and only if a ≤ b in S. Then transi-
tivity defines composition in the category S ; reflexivity means that we have an
identity arrow for each object, and anti-symmetry says that there cannot be ar-
rows in both directions between two distinct objects in S . Conversely, the same
arguments show that such a category defines a finite ordered set. Concerning
maps: the order-preserving maps between finite ordered sets correspond ex-
actly to the functors between the categories.

We will be more explicit about this viewpoint in 3.4.5.

3.4.3 Monoidal structure on FinOrd. The category of finite ordered sets be-
comes a monoidal category under disjoint union, which we will denote as +.
Clearly the disjoint union of two finite ordered sets S, S′ is again a finite set,
but we have to specify an order on the resulting finite set S + S′. We do that by
declaring that the elements of S ‘come before’ the elements of S′. Precisely:
for any x ∈ S and x′ ∈ S′ we declare x ≤ x′. The neutral element for + is
clearly the empty set ∅. We should note that this monoidal category is not sym-
metric (i.e. there does not exist a symmetric structure on it). We will see that
in 3.4.9.

There are two slightly annoying things with the category of finite ordered
sets. First, this is a very big category. Second, the notion of disjoint union
is only well defined up to canonical isomorphism. We can get a more man-
ageable category by taking a skeleton. Recall that a skeleton of a category
is a full subcategory comprising exactly one object from each isomorphism
class.

3.4.4 The category � of finite ordinals (also called the simplex category).
Since two finite ordered sets are isomorphic if and only if they have the same
number of elements, to construct a skeleton for FinOrd we need to choose
one ordered set for each n ∈ N. A representative is called a finite ordinal. To
be specific, for each n ∈ N, let n denote the ordered set {0, . . . , n− 1}. So in
particular, 0 is the empty set and 1 is the one-element set {0}. Now our skeleton
of FinOrd will be given by

� = {0, 1, 2, . . . }.
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The arrows of � are the order-preserving maps between those sets. In other
words, they are functions f : m→ n such that i ≤ j in m implies if ≤ jf

in n.
Now we argue that the ordinal sum makes � into a (strict) monoidal cat-

egory. The ordinal sum m+ n of two ordinals m and n is simply the ordinal
corresponding to the natural numbers sum. The set m+ n already comes with
an order, but we must specify how the two original sets inject into it: these
(order-preserving) injections are given by

m −→ m+ n

i �−→ i

n −→ m+ n

j �−→ m+ j.

We also have to specify what the composition+ does to arrows. If f : m →
n and f ′ : m′ → n′ are two order-preserving maps, then the function f + f ′
from m+m′ to n+ n′ is defined as

m+m′ −→ n+ n′

i �−→
{

if for i = 0, . . . , m− 1

n+ (i −m)f ′ for i = m, . . . , m+m′ − 1.

3.4.5 � as subcategory of Cat . We can give a categorical version of the def-
inition, by interpreting the order as arrows in a category: let n denote the cat-
egory whose objects are {0, 1, . . . , n− 1} and whose arrows are the order re-
lation, so there is exactly one arrow i → j whenever i ≤ j . In particular 0 is
the category which has no objects and no arrows! 1 is the category with only
one object and its identity arrow, in accordance with the notation used else-
where in these notes. 2 is the category which we could picture as • → •: there
are two objects and one arrow (in addition to the identity arrows which we
have not drawn). Next, 3 is the category generated by • → • → •. In addition
to these two arrows there is a third arrow which we have not drawn, namely
their composition, and of course the three identity arrows. Next, 4 is generated
by a chain of three arrows; with the possible compositions you arrive at the
graph of a tetrahedron. In general, n is the oriented graph of an n-simplex!

Now we can characterise � as the full subcategory of Cat whose objects are
0, 1, 2, . . . Indeed, since the arrows in these categories are just the orderings,
a functor between two such categories is just what before we called an order-
preserving map.
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Graphical description of �

3.4.6 Objects and arrows. Define a category as follows. The objects are finite
sets of dots arranged in a column like this

We also allow the empty column, so there is an object for each n ∈ N.
An arrow from one column to another is a collection of strands starting at

the dots in the source column and ending at dots in the target column, subject
to the following two rules:

(i) for each dot in the source column there is exactly one strand coming out
(and going to the target column);

(ii) the strands are not allowed to cross each other, but they are allowed to
merge – in other words, two or more strands may share a single dot in
the target.

Here is an example:

Actually some fine print is needed to avoid misinterpretation of these rules.
First of all, we should require the strands to leave the input column rightwards
and arrive at the output column from the left. Otherwise we could imagine
figures like these

which would defy the intention of rule (ii). Also, in order for rule (ii) to have
any effect at all, we should require the entire drawing to be in the plane –
not in 3-space or on a torus or anything wild like that. To be concrete, we
could require each arrow to take place inside a rectangle; then the input column
should sit on the left-hand side of the rectangle and the output column on the
right-hand side – like this:
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Finally, we should specify when we consider two collections of strands to de-
fine the same arrow – the criterion is this: it only matters where a dot goes, not
how it gets there. So the actual shape of the strand is immaterial: we could say
that two strands are equivalent if one can be continuously deformed into the
other (inside the rectangle and without touching the other strands), and then
say that equivalent strands define the same arrow. (In fancier terminology we
are talking about their isotopy classes.)

3.4.7 Composition and neutral arrows. The composition of two arrows is
given by joining the input ends of the second collection of strands to the output
ends of the first collection of strands – provided the columns match, of course.
Like this:

(Observe that composition does not lead to any crossing-over, thanks to the
fine print condition. Also, since each of the arrows takes place in a rectangle,
the composition can be viewed as taking place in the rectangle obtained by
gluing together the two original rectangles along the output side of the first
and the input side of the second.)

For each object there is an identity arrow given by taking a strand from each
dot to itself. It is easy to check that these definitions satisfy the axioms for a
category. In fact we can see this quite easily in the following way. The first rule
amounts to saying that f is a function from the set of dots in the source column
to the set of dots in the target column. This picture is in all books on sets and
functions. Then composition of arrows is just composition of functions, and
the identity arrows are simply the identity functions.
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3.4.8 Comparison with the other descriptions of �, and monoidal
structure. The fact that the dots are arranged in columns is just to say that
the sets are ordered, and rule (ii) says exactly that the functions are order
preserving. So we are really just talking about �; our new description is

� = {∅, , , , . . . }
The reason we introduced it in terms of strands and elaborate rules is

to stress that the category can be defined without mention of functions. (In
Section 3.6.20 we will drop condition (i) and then we can no longer think in
terms of functions.) Also, if the reader thinks this looks a little bit like some
sort of cobordism category then one goal of the drawings is achieved – other-
wise perhaps this sentence can help. . .

There is another reason why this graphical version is purer than the alge-
braic. We are still talking about finite sets but now the elements have not been
given names explicitly! We only distinguish them by their position in the order-
ing. Of course the ordering is secretly a numbering – a bijection to one of the
sets {0, 1, 2, . . . , n} – but in a sense the notion of relative position is more fun-
damental and in any case more flexible than the viewpoint where all elements
have a fixed name.

In particular, when it comes to describing the monoidal structure, no explicit
renaming is required – the principle of position takes care automatically: given
two columns of dots we can simply arrange them one on top of the other:

+ =

this is really stone-age mathematics!
The disjoint union of arrows is just as simple – simply place the strands side

by side (i.e. on top of each other), in parallel

+ =



3.4 The simplex categories � and � 183

This description is simpler than the description in terms of sets and elements
with names (recall the formula for the disjoint union of two order-preserving
functions!).

(The above arguments are not meant to say that there is anything bad about
the algebraic version – in fact, whenever you want to write anything down
explicitly you need the names. But conceptually, the graphical viewpoint is
rewarding.)

3.4.9 � is not symmetric. Symmetry would mean that for every pair of objects
m, n we should have an order-preserving map m+ n → n+m, and these
maps should be natural with respect to other order-preserving maps, in the pre-
cise sense of 3.2.34. Now these two ordered sets are equal, so the only order-
preserving isomorphism is the identity. But the identities are not natural in this
sense. Here is an easy example to see what goes wrong: consider the identity
map on 3, the unique candidate for being the symmetry 2+ 1 → 1+ 2. Let
us check naturality with respect to the maps µ : 2 → 1 and id1 : 1 → 1. The
diagram does not commute:

2+ 1
id3� 1+ 2

1+ 1

µ+id1
�

id2

� 1+ 1

id1 +µ
�

Check out the drawing:

Generators and relations for �

The notion of generators and relations for a monoidal category was given
in 1.4.

The first observation is that 1 is terminal object in �. This is clear from the
description in terms of functions: for every n ∈ N there is exactly one function
n → 1 which we denote

µ(n) : n → 1.
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3.4.10 Generators for �. The monoidal category (�,+, 0) is generated
(monoidally) by µ(0) : 0 → 1 and µ(2) : 2 → 1. We draw these maps (and the
identity map on 1) like this:

µ(0) µ(1) = id1 µ(2)

Note that we draw a little line sticking into the dot to indicate that there is a
function coming in from the empty set. . . this is just for typographical reasons
since otherwise the empty set has a natural tendency to disappear in drawings!

Proof. The first observation is that every arrow m → n in � is the sum of
n arrows to 1. Indeed, we can look at the graphical representation: each dot
in the target column has an inverse image, so this splits up the graph into its
connected components. Since the strands are not allowed to cross over, this par-
tition is in fact a disjoint union of arrows, in the precise sense of the monoidal
operation + in the category �. For example, for the map f : 7 → 6:

we have

f = µ(1) + µ(0) + µ(2) + µ(0) + µ(1) + µ(3).

So some of these maps are just µ(0) : 0 → 1, the inclusion of the empty set
in the one-element set; some are just identities µ(1) : 1 → 1, and the rest are
maps µ(n) : n → 1 that take n ≥ 2 elements to the same image.

Now we claim that for every n ≥ 2 the map µ(n) : n → 1 can be obtained as
a composition of maps obtained from µ(1) = id : 1 → 1 and µ(2) = µ : 2 → 1
under ordinal sum. Indeed, each such map is a collection of strands that join at
the target. But we might as well let some of them join halfway to the target –
this does not change the function it defines:

=

You can easily formalise this argument to prove the claim. Alternatively we
could just start writing compositions involving µ and id. We easily see that we
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can produce maps n → 1 for every n ≥ 2, and we have already observed that
there is exactly one such map for each n ∈ N. �

3.4.11 Relations. First we have the identity relations:

= = =

These are not really relations for �: they just express the property of the iden-
tity arrow, which holds in any category.

Then there are relations between the nullary operation and the binary one:

= =

And finally the associativity relation

=

(You will be asked in Exercise 1 to prove that these relations suffice.)

3.4.12 Example. Here are the four possible maps 3 → 2.

The first two are surjective; the last two factor through 1 like this:

Concerning the map 3 → 1, it factors in two ways, namely the two ways given
in the associativity equation above.

3.4.13 Face and degeneracy maps. It is easy to see that every arrow in �

factors (in �) as a surjection followed by an injection. The surjections and
injections in turn can be described quite explicitly in terms of degeneracy maps
and face maps.

For each n ∈ N, there are exactly n+ 1 surjective maps called degeneracy
maps σn

k (k = 0, . . . , n):

σn
k : n+ 2 −→ n+ 1

i �−→
{

i i ≤ k

i − 1 i > k.
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In other words, the element k ∈ n+ 1 is hit twice by σn
k . Here is a picture of

σ 3
2 :

Clearly we have

σn
k = idk+µ+ idn−k,

and in particular σ 0
0 = µ. (The indexation choice – superscript n for a map

n+ 2 → n+ 1 – was made to obtain a neat formula.) Now it is not difficult to
prove that every (nonidentity) surjection in � can be written as a composition
of face maps.

In the other direction, for fixed n ∈ N there are n+ 1 injective maps δn
k

(k = 0, . . . , n) called face maps,

δn
k : n −→ n+ 1

i �−→
{

i i < k

i + 1 i ≥ k.

In other words, δn
k is the injection that fails to hit k ∈ n+ 1. Here is a picture

of δ3
2:

Clearly we have

δn
k = idk+η + idn−k,

and in particular δ0
0 = η. Every (nonidentity) injection can be written as a com-

position of face maps.
So, in conclusion, the collection of all face and degeneracy maps generates

� as a category.

The relations we found above then translate into the (co)simplicial identities
(where we suppress the upper indices):

δj δi = δiδj+1 i ≤ j,

σiσj = σj+1σi i ≤ j, (3.4.14)

δiσj =




σj−1δi

id

σj δi−1

i < j,

i = j, i = j + 1,

i > j + 1.
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The relations involving only face maps are more or less trivial: they essentially
amount to shuffling around identity maps. The relations involving only degen-
eracy maps follow from the associativity relation (the relation σ 1

0 σ 0
0 = σ 1

1 σ 0
0

is precisely the associativity relation; the others are variations) and the identity
argument again. Finally, the mixed relations are essentially the unit relations.

This is a presentation of � in terms of generators and relations – not as a
monoidal category but plainly as a category. Note that there are infinitely many
generators and infinitely many relations, but that they come in series: for this
reason we can grasp them even though they are so many. The reason why they
come in series is of course the monoidal structure, which in some sense gives
a much clearer picture.

3.4.15 Aside: the topologist’s delta. The simplex category has another variant
which is important in topology, and which is also usually denoted �. Here we
denote it' just to be able to distinguish it from our �. It is the full subcategory
of our � consisting of the positive ordinals. Traditionally these ordinals are
then denoted by one less than we have done here, and often they are written
with square brackets, i.e. one puts

[0] = {0}, [1] = {0, 1}, [2] = {0, 1, 2}, . . .
This convention is practical because the naming number refers to the dimen-
sion of the corresponding simplex: [0] is the category • (dimension 0), [1] is
the category • → • (dimension 1), and so on.

A simplicial set is a functor 'op → Set . It amounts to having a sequence
of sets and set maps

X0
� �� X1

� �� ��
X2 . . .

which satisfy identities dual to 3.4.14. The elements of Xk are called k-
simplices. To every simplicial set one can associate a topological space called
the geometric realisation, roughly by gluing together simplices along faces
they have in common according to the combinatorics of the diagram. Con-
versely, to a topological space one can associate a simplicial set (the singular
complex). These correspondences constitute a very close relation between sim-
plicial sets and spaces, and most of homotopy theory can be carried out in the
context of simplicial sets (see for example Goerss and Jardine [24]).

Simplicial sets are also very important in category theory. Every (small)
category gives rise to a simplicial set called its nerve, denoted N : 'op → Set .
Namely, the value of N on [0] is the set of objects; [1] is sent to the set of all
arrows; [n] is sent to the set of n-tuples of composable arrows. Composing
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two consecutive arrows in such a chain defines the face maps, while inserting
an identity arrow somewhere in the chain defines the degeneracy maps. These
maps satisfy the simplicial identities, so N is a simplicial set.

In this way, the topologist’s delta is a sort of bridge between category theory
and topology. In these contexts the empty ordinal (empty simplex) is not used,
but in our context it is important to keep it, because without it we could not
have a monoidal structure.

The symmetric equivalent: finite cardinals

We now come to the symmetric case. From the graphical viewpoint what we
do (compared to the construction of �) is simply to allow ‘crossing-over’. In
terms of finite sets it means there is no longer any order relation in play; there
is no hierarchy among the elements in the set, so everything is symmetric or
homogeneous. . .

The exposition follows closely the nonsymmetric case – in fact we have
already done a lot of the work.

3.4.16 The category of finite sets. Let FinSet denote the category whose ob-
jects are the finite sets, and whose arrows are all maps between finite sets (so it
is a full subcategory of Set .) Sometimes a set can happen to possess an order,
but regarded as an object in FinSet we simply ignore that order; in particular,
given two such sets which happen to have an order, the maps between them
are not required to respect the order. For the record, let us draw this diagram
of categories and functors:

OrdSet � Set
∪ ∪

FinOrd � FinSet

The upwards arrows ∪ are full embeddings/inclusions, the rightwards arrows
are the forgetful functors.

Consider now the monoidal structure on Set given by disjoint union and
empty set (cf. 1.3.24). The disjoint union of two finite sets is again finite, and
also the empty set is finite, so there is induced a monoidal structure on FinSet .
The two categories on the left in the diagrams are also monoidal under disjoint
union, and clearly the four arrows in the diagram are monoidal functors. We
are mostly interested in the forgetful monoidal functor

(FinOrd ,
∐

, ∅) −→ (FinSet ,
∐

, ∅).
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3.4.17 Symmetry. An important property of FinSet (which is not shared by
FinOrd ) is that disjoint union is the coproduct in FinSet, just as it is in Set ,
cf. 1.3.24.

Hence (cf. 3.2.42) there is a unique symmetric structure τ on
(FinSet ,

∐
, ∅), which is just the one induced from the symmetry on Set –

mere interchange of ‘factors’. So (FinSet,
∐

, ∅, τ ) is a symmetric monoidal
category.

3.4.18 Finite cardinals. The category � of finite cardinals is defined as a
skeleton of FinSet . Since two finite sets are isomorphic if and only if they
have the same number of elements, there will be one object in � for each
n ∈ N. Let n denote the set {0, 1, 2, . . . , n− 1}, then � is the full subcategory
of FinSet given by

� = {0, 1, 2, . . . }.
The objects of � are called finite cardinals. In 3.4.4 we used the symbol n to
denote the ordered set {0, 1, 2, . . . , n− 1}, which we called an ordinal (object
in �). As sets they are the same (i.e. forgetting the ordering), so we allow
ourselves to say that � and � have the same objects. A more precise way
of saying this is that the forgetful functor FinOrd → FinSet restricts to an
embedding of � into �:

FinOrd � FinSet
∪ ∪
� ⊂ � �

which is furthermore a bijection on objects. However, � clearly has many more
arrows than �, since they are not required to respect any order.

Cardinal sum (which to two cardinals m and n associates the cardinal
corresponding to the natural number sum m+ n) makes � into a monoidal
category – clearly 0 is the neutral object. It coincides with ordinal sum, and
the formulae for inclusion of the sets m, n into their disjoint union m+ n (as
well as the formulae for the cardinal sum of two functions) are the same as the
formulae in �. (This amounts to saying that the embedding

(�,+, 0) ↪→ (�,+, 0)

is monoidal.)

It is easy to adapt the arguments for FinSet to show that

3.4.19 Lemma. + is the coproduct in �.

And consequently, there is a unique symmetric structure on (�,+, 0).
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3.4.20 Remark. The category � also has products: the cardinal product which
to two cardinals m and n associates the cardinal corresponding to the natural
number product mn, is the categorical product. In particular, the object 1 is
terminal object – clearly for each n ∈ N there is exactly one map n → 1.

The category � is is the categorification of N, in the sense that all important
set-theoretic properties of N are in fact reflections of category-theoretic prop-
erties of �. We have already seen how cardinal sum and product correspond to
the usual sum and product in N. For a pleasant introduction to the philosophy
of categorification, see Baez and Dolan [10].

3.4.21 Categorical viewpoint. In 3.4.5 we characterised the ordinal n as the
category

{0 → 1 → 2 → · · · → n− 1}
(the category contains also all the compositions of these arrows, so its graph is
an oriented simplex). Then we characterised � as the full subcategory of Cat
given by

{0, 1, 2, . . . }.
We might ask for a similar category interpretation of cardinals, such that �

could be characterised as the full subcategory of Cat consisting of those cate-
gories. This is easy: each set {0, 1, . . . , n− 1} determines a discrete category
(see 3.2.20), which we denote by n0. It looks like this:

{0 1 2 · · · n− 1}
(there are no arrows other than the identities). Now � is the full subcategory
of Cat determined by these discrete categories. Indeed, a functor on a discrete
category is determined completely by what it does on objects, because the only
arrows are the identity arrows, and they are bound to go to the identity arrows
of the image object. This is just to say that a functor between discrete categories
amounts to a function on the underlying sets. So every functor m → n induces
a functor m0 → n0, and this describes the embedding � ↪→ �.

Curiously there is another way of describing � as a subcategory of Cat ,
which is opposite in spirit. Let n be the category with n objects and a unique
(invertible) arrow between any two objects – it looks like this:

{0 ↔ 1 ↔ 2 ↔ · · · ↔ n− 1}
(the category contains also all the compositions of these arrows). This de-
fines an equivalence relation on n namely the one usually called the chaotic
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equivalence relation, where everybody is related to everybody. In terms of
graphs we have the complete graph on {0, 1, . . . , n− 1}, or an unoriented
n-simplex.

Now what are the functors between such categories? They are determined
completely as soon as their values on the objects are specified, because once
the images of two objects are fixed then the unique arrow between those two
objects must map to the unique arrow between the images.

So now we might as well characterise � as the full subcategory of Cat
given by

{0, 1, 2, . . . }.
Every functor m → n induces a functor m → n, and this describes the embed-
ding � ↪→ �.

(The moral is that an equivalence relation in which everybody is related
contains exactly the same information as if nobody were related, cf. also the
fairy tale The Tinder-Box [4] by H. C. Andersen.)

This last description of � as subcategory in Cat is given only in order to
justify calling � a sort of simplex category. The first description is actually bet-
ter. For example the embedding (�,+, 0) ↪→ (Cat ,

∐
, ∅) defined in terms of

the discrete description is monoidal, while the embedding given by the second
description is not. (To see this, note first that the coproduct of two categories is
given by taking disjoint union on the set of objects and disjoint union on the set
of arrows. So the coproduct of the discrete categories m0 and n0 is precisely
(m+ n)0, which shows that the first embedding is monoidal. In contrast, m

∐
n

is a nonconnected category (unless one of the summands is 0), while m+ n is
connected, so the second embedding is not monoidal.)

3.4.22 Graphical description of �. Since we are now talking about sets with-
out any order, we ought to picture the elements without any order, something
like this:

but then we would have to name the elements explicitly to keep track of which
are which. Instead, since anyway the cardinals coincide with the ordinals, and



192 Monoids and monoidal categories

since the latter come with internal order, we might as well use this order to line
up their elements in a column. But we do not require the maps to preserve that
order, so our maps will rather look like this:

Here is the definition in graphical terms: the objects are finite sets of dots
arranged in a column like this

An arrow from one column to another is a collection of strands starting at the
dots in the source column and ending at dots in the target column, subject to
the following single rule:

(i) for each dot in the source column there is exactly one strand coming out
(and going to the target column)

Compared to the graphical definition of �, the difference is that we now
allow the strands to cross over each other. For this reason there is no need of
fine print conditions that complicated the description of �: now the strands
may emanate in any direction they want, and the picture does not necessarily
have to be plane.

The pictures of composition and disjoint union of maps are described just
as for �.

Generators and relations for �

3.4.23 The category of finite sets and bijections. Let FinSet0 denote the
category whose objects are the finite sets, and whose arrows are the bijections
between finite sets. So this category has the same objects as FinSet but less
arrows.

Let � be the skeleton of FinSet0 defined by

{0, 1, 2, . . . }.
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It is the subcategory of � consisting of all the objects but only the invert-
ible arrows. Since there are no bijections between sets of different cardinality,
the graph of the category � is disconnected, with a connected component for
each object n. In other words � is the disjoint union of the monoids (actually
groups) End�(n) – recall from 3.1.19 the correspondence between monoids
and 1-object categories. Which are the arrows from n to n? Well, they are pre-
cisely the permutations of the elements in the set n = {0, 1, . . . , n− 1}. So
End�(n) = Sn, the symmetric group on n letters. So � is the disjoint union
of all those 1-object categories:

� =
∞∐

k=0

Sk

(where we define S0 to be the trivial group).
Now (�,+, 0) is a monoidal category (subcategory of �), since the sum of

two bijections is again a bijection. It is generated monoidally by the transposi-
tion

(recall that each symmetric group Sk (k ≥ 2) is generated by transpositions,
cf. 1.4.2).

So now we have two subcategories in �: � and �. . .

3.4.24 Lemma. Every arrow in � can be factored as a permutation followed
by an order-preserving map. In other words,

� = ��.

Proof. From the graphical viewpoint this is clear: take any arrow and factor it
by taking a vertical cut so far to the right that all the cross-overs occur on the
left-hand side of it:

=

�
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Note that it is not true that we could factor every map as first an order-
preserving map and then a permutation of the target! The problem is that a dot
in the target might be hit by various strands, and clearly this cannot happen with
a permutation which by definition is one-to-one. Here is a simple example:

Observe also that the factorisation is not unique. The order-preserving part
f is unique, but for the permutation part, we have the freedom to permute those
elements which have the same image under f .

3.4.25 Generators for �. It follows immediately from the lemma that this is
a complete set of generators:

µ(0) µ(2) τ

3.4.26 Relations. Of course there are those relations coming from �

(cf. 3.4.11):

= = =

and those relations coming from � (the symmetric group relations, see 1.4.2)

= =

Next, since � is a symmetric monoidal category we have the relations ex-
pressing the naturality of the twist map (cf. 3.2.36). By the arguments given in
1.4.35 it is enough to consider naturality with respect to the ‘generators parallel
with identities’. These relations are:

= =

Finally there is one more relation, namely the commutativity relation

=

valid since 1 is a terminal object. More generally, in combination with the
associativity relation, this implies that it has no effect to permute the input dots
within a ‘connected component’, i.e. dots which have the same image.
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To see that these relations suffice, we must show that every composition of
the generators can be brought on the form of the previous lemma. (This form
is not unique, but it differs only by some permutation on the input side, within
the connected components (inverse images of points) and our last relation
(the commutativity relation) accounts for that.) So given an expression in
the generators we need to move the twist maps to the left, until they come
before any of the order-preserving maps. But the naturality relations allow us
precisely to do that.

Exercises

1. Show that the relations listed in 3.4.11 suffice. (Hint: define a ‘normal form’
as in the end of 1.4.)

2. Show that there are
(
m+n−1

n−1

)
different arrows from m to n in �. (Hint: giving

such an arrow amounts to dividing the m input dots into n parts, according
to their image.)

3. Show that the injective maps in � are precisely its monomorphisms.
Let �mono denote the subcategory of � having the same objects but only
the monomorphisms as arrows. Describe �mono in terms of generators and
relations.

4. Show that the surjective maps in � are precisely its epimorphisms.
Let �epi denote the subcategory of � having the same objects but only the
epimorphisms as arrows. Describe �epi in terms of generators and relations.

5. Draw pictures of the symmetry map σ : 2+ 5 → 5+ 2 in �. Then draw
pictures of the symmetry map 3+ 4 → 4+ 3. Write the maps in terms of
the generator . Write down a general formula for the symmetry maps in
terms of generators.

6. Artin’s braid group on k letters, denoted Bk , is a lot like the symmetric
group Sk , but instead of merely recording which letters change place we
now keep track of how: instead of just displaying two columns of dots and
matching the dots by drawing a connecting strand, the important data now
is the topology of the strands themselves, how they wrap around each other
and who goes under and who goes over – for this to make sense, the whole
picture must be embedded in 3-space. It is not difficult to grasp this group
geometrically by looking at a couple of pictures. Here is an arbitrary snap-
shot from B4:

=
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And here is an important picture from B3:

=

The easiest description is in terms of generators and relations (compare
1.4.2). The generators for Bk are the symbols τ1. . . , τk−1, and the relations
are

τiτj τi = τj τiτj for j = i + 1

τiτj = τj τi for j > i + 1.

(Note that according to our convention for listing generators and relations
for a group (1.4.1) we have not listed the inverses τ−1

1 , . . . , τ−1
k−1; they are

assumed to exist too, as soon as we are speaking about generating a group,
not just a monoid.)

(i) The first point in this exercise is to describe carefully the connection
between the abstract description in terms of generators and relations, and the
graphical description – in fact, you have to provide the graphical description
yourself, based on the few drawings and the abstract description!

(ii) Recognise B1 and B2 as well known groups.

(iii) Define a natural group homomorphism Bk → Sk .

Now denote by B the disjoint union of all the groups Bk , k ≥ 0, in the
same way as � was defined in terms of the symmetric groups in 3.4.23. It is
called the braid category. Still mimicking 3.4.23, give B monoidal structure,
denoted (B,+, 0), in such a way that B → � becomes a monoidal functor.
Describe (B,+, 0) in terms of generators and relations as a monoidal cate-
gory. (The B is meant as a capital beta, in analogy with �, �, and �.)

(iv) The notions of braiding and braided monoidal category were given on
page 169. Consider the maps m+ n → n+m consisting in crossing the n

upper strands over the m lower strands. Here is a drawing of 2+ 3 → 3+ 2:

Show that this family of maps defines a braiding on B.

(v) Define a notion of braided monoidal functor (do not be too creative!)
and show that B → � is such a functor.
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3.5 Monoids in monoidal categories, and monoidal
functors from �

Monoids in monoidal categories

Monoidal categories are our context for defining monoids! Then expressions
of type X�Y play the rôle of A× B in the category of sets. So while formally
� is a map that to a pair of objects (X, Y ) associates a single object denoted
X�Y , what will happen in the following is that we abusively think of X�Y

as a sort of product, as if it were made up of pairs. This abuse is common
for example with vector spaces, where one often thinks about an element of
V ⊗W as a pair consisting of one element from V and another from W , even
when we know that in reality a vector in the tensor product space is not in
general of this form, but only a linear combination of such vectors.

3.5.1 Definition of monoid (in an arbitrary monoidal category). Let
(V ,�, I ) be a monoidal category. A monoid in V is an object M together
with two arrows

µ : M�M → M, η : I → M

such that these three diagrams commute:

M�M�M

M�M

µ� idM

�

M�M

idM �µ

�

M

µ

�

µ �

I�M
η� idM� M�M

M

µ

��

M�M �idM �η
M�I

M

µ

��

The diagonal maps without labels are the identifications of 3.2.8.
It is often convenient to picture M itself as single dot, and let the two struc-

ture maps be pictured like this:
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µ η

Then the axioms read

= = =

3.5.2 Monoid homomorphisms. A monoid homomorphism in V between two
monoids (M,µ, η) and (M ′, µ′, η′) is an arrow φ : M → M ′ that commutes
with all the monoid structure. Precisely,

M�M
φ�φ� M ′�M ′

M

µ
�

φ
� M ′

µ′
�

M
φ � M ′

I

η
�

= I

η′
�

3.5.3 The category of monoids. One easily checks that the composition of
two monoid homomorphisms is again a monoid homomorphism, and that the
identity arrow is a monoid homomorphism, so altogether: there is a category
denoted Mon(V) whose objects are the monoids in V and whose arrows are
the monoid homomorphisms in V . A monoid homomorphism is called an iso-
morphism of monoids if there exists a two-sided inverse which is also a monoid
homomorphism.

3.5.4 Remarks on the ‘neutral arrow’. Since in these notes we put a lot of
effort in distinguishing structures from properties, we should mention that the
neutral arrow of a monoid, which we have introduced as a structure, can also
be seen as a property: if a neutral element exists then it is uniquely deter-
mined. This remark was made in the context of set monoids in Exercise 3 on
page 148.

In the general context of monoids in a monoidal category the same remark
holds: two arrows I → M which satisfy the neutral axiom must necessarily
coincide. The idea of the proof is the same as in the case of set monoids, but
since we do not have elements at our disposal, we are forced to write it out
in terms of arrows and beautiful diagrams like this: suppose η : I → M and
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η′ : I → M both satisfy the neutral axiom, then

I

I�I

������

M ===

η
�

I�M
�

id I
�
η

M�I ===

η ′�
id
I�

M

η′

�

M�M

η′�η

�� idM
�
ηη ′�

id
M

�

M

µ

�===
===
===
===
===
===
===
=======================

All the inner cells of this diagram commute by the unit axioms (of η and η′),
so we conclude that also the outer square commutes. Thus η = η′.

One reason for preferring to regard the neutral as a structure appears when
we consider arrows. As a general principle, in a category whose objects are
sets with structure, the arrows should be the set maps that preserve the struc-
ture. In the case of monoids it is desirable that neutral elements are preserved,
so we had better stipulate that neutral element be a structure. (Note that there
exist semi-monoid homomorphisms between monoids that are not monoid ho-
momorphisms, cf. Exercise 4 on page 148.)

3.5.5 Lemma. If (V ,⊗, I, τ ) is a symmetric monoidal category, then
Mon(V ) is canonically a monoidal category.

Proof. Let (M,µ, η) and (M ′, µ′, η′) be two monoids in V . Define a new
monoid (M�M ′, µ�µ′, η�η′) by setting M�M ′ := M ⊗M ′ and η�η′ :=
η ⊗ η′, and define the new multiplication µ�µ′ by

(M�M ′)⊗ (M�M ′) µ�µ′ � M�M ′

M ⊗M ′ ⊗M ⊗M ′

��
M ⊗M ′

��

M ⊗M ⊗M ′ ⊗M ′

idM ⊗τ⊗idM′
� µ⊗µ′

�



200 Monoids and monoidal categories

Note that the twist map is involved, so it is crucial that we are in a symmetric
monoidal category. Here is the drawing for the new multiplication:

M ′

M

M ′

M

M ′

M

It is easy to check that the unit axioms hold. The associativity equation reads

=

We already proved this equation in another setting. That was in 2.4.6 when
we proved that the tensor product of two algebras is again an algebra. For the
time being we can just copy over the proof and be happy that it works. In
3.5.11 we will see the explanation, namely that k-algebras are just monoids in
(Vectk,⊗, k, σ ).

(Working out what the definition of � should be on arrows is left as an
exercise.) �

3.5.6 Commutative monoids. Now suppose (V ,�, I, τ ) is a symmetric
monoidal category. Intuitively, a monoid (M, ., 1) in V is called commuta-
tive if for all elements a, b ∈ M we have a.b = b.a (cf. 3.1.9). However, this
might not make sense at all, because the objects of V might not be sets, and
therefore it would be nonsense to talk about elements! But we can just express
what we want in terms of arrows and commutative diagrams: a monoid M in
V is called commutative if the multiplication µ : M�M → M is compatible
with the twist map. That is, we have a commutative diagram

M�M
τ � M�M

M

µ�µ �

Graphically,

=
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Examples

3.5.7 Monoids in Set . We have seen in Example 3.2.21 that (Set ,×, 1) is
a monoidal category. A monoid herein is just a monoid in the sense of Sec-
tion 3.1. So Mon = Mon((Set ,×, 1)). The two notions of commutativity co-
incide.

3.5.8 Monoids in Cat . We noticed in 3.2.23 that (Cat ,×, 1) is a monoidal
category. A monoid in (Cat ,×, 1) is nothing but a (strict) monoidal category.

Note that a symmetric monoidal category is not necessarily a commutative
monoid in Cat . Indeed, being symmetric does not mean that the multiplica-
tion is completely compatible with the background symmetry (given by the
interchange of factors in the cartesian product), but merely that there is an
isomorphism between them. . .

3.5.9 Rings. The category of abelian groups is a monoidal category under
tensor product, denoted (Ab ,⊗Z, Z).

Now we claim that a monoid in (Ab,⊗Z, Z) is exactly a ring.
Let us be detailed here: a ring is usually defined as a set R equipped with

two binary operations denoted+ and ·, and two special elements denoted 0 and
1, subject to a long list of axioms. The axioms which pronounce themselves
on the operation + amount precisely to saying that (R,+, 0) is an abelian
group. The axioms concerning the other operation amount to the statement
that (R, ·, 1) is a monoid (in (Set ,×, 1)), in other words we have maps µ :
R × R → R and η : 1 → R as in Section 3.1. Finally there are a couple of
axioms concerning the compatibility of the two structures + and ·, namely the
distributivity axioms. These axioms amount to saying that the multiplication
map

R × R −→ R

(x, y) �−→ x · y
is a group homomorphism in each variable, i.e. a bilinear map.

Now here comes the whole point: by the universal property of the tensor
product, giving a bilinear map R × R → R is the same as giving a linear
map R ⊗Z R → R, and in fact, in view of some of the axioms, this pro-
vides a monoid structure on R in the monoidal category (Ab ,⊗Z, Z). In
detail, given the bilinear map R × R → R, the universal property gives a
linear map R ⊗Z R → R and a factorisation of the original multiplication
map through this tensor product. And conversely, given R ⊗Z R → R, we
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recover the bilinear map R × R → R by composing with the structure map
R × R → R ⊗Z R.

To be pedantic, there is another universal property in play here: in the orig-
inal definition of a ring we had a set map η : 1 → R as part of the monoid
structure (R, ·, 1). Now since (R,+, 0) is in fact a group, and since Z is the
free group on 1, giving a set map 1 → R is the same as giving a group homo-
morphism Z → R (which we also denote η). (We can regard this as the zeroth
tensor power part of the universal property of the tensor product.)

So in conclusion, the long list of data and axioms that define a ring in terms
of sets (i.e. as a structure on an object in (Set ,×, 1)) can be expressed equiv-
alently by giving a single structure on an object in (Ab ,⊗Z, Z), namely the
monoid structure in this monoidal category.

In fact the correspondence between monoids-in-Ab and rings is functo-
rial. There is also a correspondence between monoid homomorphisms in Ab
and ring homomorphisms: a monoid homomorphism A → B between two
monoids in Ab is a map of abelian groups which is compatible with the monoid
structure maps. Altogether it is a map of sets compatible with all the structure:
group structure and monoid structure on top of that. In short, it is a ring homo-
morphism. Altogether

Mon(Ab ) = Ring.

(Here Ring denotes the category of rings.)
Similarly, commutative monoids in (Ab ,⊗Z, Z, τ ) (τ is the canonical twist

map) are just commutative rings:

cMon(Ab ) = cRing

(the category of commutative rings).

3.5.10 Modules and algebras over a ring. Let R be a commutative ring (i.e. a
commutative monoid in (Ab ,⊗Z, Z, τ )). An R-module is an abelian group M

with an R-action (see 3.1.21). If we make everything internal to the monoidal
category (Ab ,⊗Z, Z) we can say that it is an object equipped with an ac-
tion of the commutative monoid R. The R-modules form a monoidal category
(ModR,⊗R,R).

Now we know that abelian groups can be regarded as Z-modules, and that
rings are Z-algebras in this viewpoint. Replacing Z by a general commuta-
tive ring R, the arguments in the example above show that an R-algebra is a
monoid in (ModR,⊗R,R).



3.5 Monoids in monoidal categories 203

3.5.11 k-algebras! In particular, if R is our fixed field k, then its modules are
precisely the k-vector spaces (cf. 2.1.1). Thus a monoid in (Vectk,⊗k, k) is
precisely a k-algebra. (In fact we defined k-algebras just like this in 2.1.18.)
This example is crucial for our further discussion:

Mon(Vectk) = Algk.

Also, with the canonical symmetry τ on Vectk, we have

cMon(Vectk) = cAlgk,

the category of commutative k-algebras.

3.5.12 Graded algebras. The notion of commutativity depends on the sym-
metric structure. Consider the monoidal category (grVectk,⊗, k) of graded
vector spaces (cf. 3.2.46). A monoid in grVectk is precisely a graded algebra
(i.e. a vector space with a multiplication which respects the grading and whose
neutral element is of degree 0).

We saw that there are two distinct interesting symmetries on grVectk: the
canonical one σ (induced from Vect ) and the Koszul sign change κ . Let H be
a graded-commutative algebra (i.e. ab = (−1)pq ba, where deg(a) = p and
deg(b) = q). Then H is not commutative as monoid in (grVectk,⊗, k, σ ),
but it is commutative as monoid in (grVectk,⊗, k, κ). In fact, we can easily
see that

cMon(grVectk, κ) = gr-cAlgk

the category of graded-commutative algebras.

3.5.13 Trivial monoids. In any monoidal category (V ,�, I ) there is the trivial
monoid I , where η : I → I and µ : I�I = I → I are both the identity arrow
of I .

3.5.14 Lemma. Let (V,�, I ) and (V′,�′, I ′) be monoidal categories, and let
F : V → V′ be a monoidal functor. If (M,µ, η) is a monoid in V then the
image (MF,µF, ηF) is a monoid in V′.

Proof. That F is monoidal means in particular that (M�M)F = MF�′MF

and IF = I ′. Using these identities we get maps

MF�′MF = (M�M)F
µF−→ MF and I ′ = IF

ηF−→ MF.

Now we must verify that the monoid axioms are satisfied. Consider the dia-
gram which expresses the associativity axiom for (M,µ, η) in (V ,�, I ) and
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apply F to it to get a diagram in V ′:
(M�M�M)F � (M�M)F

(M�M)F

�
� MF

�

The fact that F is monoidal means that this diagram can be identified with

MF�′MF�′MF � MF�′MF

MF�′MF

�
� MF

�

which is the diagram for the associativity axiom for (MF,µF, ηF). The unit
axiom is verified similarly. �

Monoidal functors from the simplex category

3.5.15 The monoidal category generated by a monoid. Whenever we have
a monoid (M,µ, η) in a monoidal category (V ,�, I ) we can talk about the
monoidal subcategory of V generated by M . Let us denote it 〈M 〉 . The ob-
jects of 〈M 〉 are by definition I,M,M�M,M�M�M, . . .; for short let us
put (for n ∈ N)

Mn := M� . . . �M︸ ︷︷ ︸
n factors

,

with M0 = I . The arrows are all the arrows one can obtain by composition and
monoidal operation on the structure maps of M ,

η : I → M idM : M → M µ : M�M → M.

If we draw Mn as n dots in a column then the pictures of these basic maps are

µ(0) µ(1) = id µ(2)

and composition and monoidal operation then amount to serial and parallel
connection, just as in our drawings of maps in �.

So all this looks a lot like �, and in a sense it is! We will soon make that
statement precise.

3.5.16 Monoids in �. What are the monoids in (�,+, 0)? Well, to describe
one we have to choose an object n, a neutral element map η : 0 → n, and a
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multiplication map µ : n+ n → n, and verify the axioms of 3.5.1. We already
know from Example 3.5.13 that this is possible for n = 0 (that gives the trivial
monoid).

For n = 1 things are fine as well. We know from 3.4.10 that there are unique
maps 0 → 1 ← 2 = 1+ 1, and the relations we found for these maps in 3.4.11
are then exactly the monoid axioms for 1, so there is a monoid (1, µ, η). For
convenience let us repeat the unit axiom:

= =

Now we claim there are no further monoids in (�,+, 0). Indeed let us try
to construct one and see where the impossibility lies. For simplicity take 2 –
the argument applies to any n ≥ 2.

The two maps η and id for 2 certainly are
0 → 2

and

2 → 2

Now the ‘multiplication’ µ for 2 would be a map 2+ 2 = 4 → 2, and there is
only one map that could satisfy the unit axioms:

= =

and this map does not exist in � since crossing-over is not allowed! – it is not
an order-preserving map. (In the bigger category �, the above map does exist,
so 2 will be a monoid in �, as we shall see in 3.5.22.) In conclusion

(�,+, 0) contains a single nontrivial monoid, namely (1, µ, η).

Now what is the monoidal subcategory of (�,+, 0) generated by 1? It is
easy to see that that is (�,+, 0) itself. Also, there are no relations other than
exactly those required for having the monoid. Informally this is to say that

(�,+, 0) is the free monoidal category on a single monoid.

3.5.17 Monoidal functors out of (�,+, 0). A more precise meaning of the
word ‘free’ is to have a certain universal property – in the present case this: any
monoid in any monoidal category V is the image of 1 under a unique monoidal
functor � → V.

Just like the statement that (N,+, 0) is the free monoid generated by 1
means that any element in any monoid M is the image of 1 under a unique
monoid homomorphism N → M , cf. 3.1.15. (Another example: the statement
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that k is the free vector space generated by 1 means that any vector in any
vector space V is the image of 1 under a unique linear map k → V .)

In general, a monoidal functor is determined completely by its values on
generators of the source category. In the case of � the generators are just the
structure maps of the monoid 1, so a monoidal functor out of � is determined
completely by its value on the monoid 1.

Now we claim that given a monoidal category (V,�, I ) there is a
one-to-one correspondence between monoids in V and monoidal functors
(�,+, 0) → (V,�, I ). In one direction the correspondence goes like this:

MonCat(�, V ) ↔ Mon(V)

[M : � → V ] �→ (1M , µM , ηM )

sending a monoidal functor M to its value on the monoid 1. (The image of
a monoid is again a monoid, cf. 3.5.14.) The functor ‘points to’ a specified
monoid just like a monoid homomorphism N → M points to an element of
the monoid M .

In the other direction the correspondence goes like this: given a monoid M

in (V ,�, I ), define a monoidal functor

M : � −→ V

[0→1←2] �−→ [I→M←M�M].
This makes sense because the relations that hold among the generators in �

correspond exactly to the monoid axioms for M .

Since the sets involved in this correspondence are actually categories, we
will strengthen the result a bit, to have it pronounce itself also on arrows:

3.5.18 Theorem. There is a canonical equivalence of categories

MonCat(�, V) � Mon(V),

where Mon(V) is the category of monoids in V and monoid homomorphisms,
and MonCat(�, V ) is the category of monoidal functors from � to V , and
monoidal natural transformations.

3.5.19 Remark on equivalence versus isomorphism. The way we have set
things up, with everything strict, the equivalence is in fact an isomorphism of
categories. The reason for stating it as just an equivalence is to get a more
robust statement, which remains true if the involved notions are weakened.
If we relax the notion of monoidal categories to include nonstrict monoidal
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categories (cf. 3.2.15), then we must also relax the notion of monoidal func-
tors (cf. 3.2.17) – otherwise MonCat(�, V ) might be empty! – and then the
statement is an equivalence, not an isomorphism. This is a fundamental insight
in category theory: that the good generalisation of ‘bijection of sets’ to the
context of categories is ‘equivalence of categories’ (not ‘isomorphism of cate-
gories’).

Proof. Let us construct a functor � : MonCat(�, V) → Mon(V). We have
already explained what it does on objects: it takes a monoidal functor F : � →
V to the monoid 1F .

Now we have to say what it does on arrows. Given two such monoidal
functors, F and G, then a monoidal natural transformation u : F ⇒ G is given
by specifying its components un : nF → nG. That u is monoidal means
(cf. 3.2.49) that the component u1 : 1F → 1G determines all the others (for
instance, u2 : 2F → 2G must be the map u1�u1.) The naturality of u means
that the maps un are compatible with all arrows in �. But the arrows in � are
all generated by the structure maps for the monoid 1 in �, so the requirement
amounts to saying that u1 : 1F → 1G is a homomorphism of monoids in V .
So � takes u to the monoid homomorphism u1.

Now we must check that the function � we have defined is in fact a func-
tor: we must check that it is compatible with composition of arrows, and
also that it preserves identity. The composition of two natural transforma-
tions F

u⇒ G
v⇒ H is just given by composing all the components un and

vn. Since these in turn are determined completely by the first components u1

and v1, we see that composition of such natural transformations corresponds

exactly to composition of monoid maps 1F
u1→ 1G

v1→ 1H , so � is indeed a
functor.

We leave it as an exercise to define the functor in the other direction, and to
show that they are really inverses to each other. �

Algebras

In 3.5.11 we noted that

Mon(Vectk) = Algk,

a monoid in (Vectk,⊗, k) is nothing but an algebra. Combining this with
Theorem 3.5.18, we find

3.5.20 Corollary. There is a canonical equivalence of categories

MonCat(�, Vectk) � Mon(Vectk) = Algk.
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If we recall that � could be characterised as a certain category of noncross-
ing strands, just like 2Cob is described in terms of certain tubes, we see that
this result is analogous to 3.3.2.

A more precise analogy arises when we pass to the symmetric case:

Symmetric monoidal functors on �

Copying over the analysis we did in 3.5.16 it is easy to find all the monoids in
(�,+, 0), but the conclusion turns out to be radically different. The reason is
that + is the coproduct in �, cf. 3.4.19.

It is just as easy to prove this general result:

3.5.21 Lemma. In a monoidal category given by coproduct, every object car-
ries a unique monoid structure, and this monoid structure is commutative.

Proof. Let V be a category with coproduct � and initial object I . Then (V ,�,

I ) is a monoidal category with a unique symmetry τ (cf. 3.2.42). Let M be
an object in V . Since I is initial object there is a unique arrow η : I → M .
The question is whether there is an arrow µ : M�M → M which has η as
neutral from both sides, and which is associative. Now by the universal prop-
erty of the coproduct, giving an arrow µ : M�M → M is equivalent to giv-
ing two arrows µ1, µ2 : M → M . But the left neutral requirement says that
I�M → M�M → M is the identity, so µ2 must be the identity, and sim-
ilarly the right neutral axiom implies that µ1 is the identity, so the arrow
µ : M�M → M is the identity on each ‘factor’. It is easy to see that µ is
associative and commutative. �

3.5.22 Monoids in �. By the lemma, every object n in � admits a unique
monoid structure and this structure is commutative. Comparing with the situ-
ation in (�,+, 0), the trivial monoid 0 looks of course the same; the pictures
for 1 are also very much as in �, but now it is commutative:

=

The monoid 2 has no analogue in �: the multiplication map is

and the commutativity of this monoid is expressed by the drawing
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=

3.5.23 The symmetric monoidal category generated by a commutative
monoid S is the category whose objects are all the powers of S, and whose
arrows are all the maps you can get from the structure maps of S together with
the twist maps of those objects.

Each of the monoids in � generates a symmetric monoidal category. The
symmetric monoidal category generated by 1 is the whole of (�,+, 0). The
symmetric monoidal category generated by 2 contains all the objects 2n and
all the arrows between such objects which consist of ‘closely parallel strands’.
(Exercise: explain what this is supposed to mean!) For example it contains the
twist map 2+ 2 → 2+ 2:

but not

(The only arrow 2 → 2 is the identity.)
We see that each object generates a monoidal subcategory in (�,+, 0) iso-

morphic to (�,+, 0). This is the categorification of the fact that each element
n in the monoid (N,+, 0) generates a monoid 〈 n 〉 isomorphic to (N,+, 0).
(Note that when a symmetric monoidal category contains a monoid then it au-
tomatically contains many: all the tensor powers are also monoids. This is a
variation of 3.5.5.)

3.5.24 Theorem. (�,+, 0) is the free symmetric monoidal category on a com-
mutative monoid, in the sense that for each symmetric monoidal category V =
(V,�, I, τ ) there is a canonical equivalence of categories

SymMonCat(�, V) � cMon(V).

This is just a variation of 3.5.18 – the remark given after that theorem ap-
plies equally here in the symmetric context.

The proof is also basically the same. Given a symmetric monoidal functor
� → V then the image of 1 is a commutative monoid in V (this is an easy
symmetric analogue of Lemma 3.5.14). On the other hand, its values on ob-
jects are determined completely by its value on 1, since it is a monoidal func-
tor. Concerning arrows: given a monoidal natural transformation between two



210 Monoids and monoidal categories

such functors u : M → N , then u1 : 1M → 1N is a homomorphism of
monoids, (this follows from naturality of u with respect to the generators of �).
Conversely, a homomorphism of commutative monoids determines uniquely a
natural transformation between the corresponding functors: the point is that the
relations in � correspond precisely to the axioms for a commutative monoid.

In particular, with V = (Vectk,⊗, k, σ ) we have

3.5.25 Corollary. There is a canonical equivalence of categories

Reprk(�) = SymMonCat(�, Vectk) � cMon(Vectk) = cAlgk.

3.5.26 Example. In the symmetric monoidal category (2Cob ,
∐

, ∅, T ), the
circle is a commutative monoid. It is the image of the symmetric monoidal
functor (�,+, 0, τ ) → (2Cob ,

∐
, ∅, T ) defined in the obvious way: 1 is sent

to the circle (which we have already been denoting by 1 for a while!) – and the
remaining data are completely determined by the requirement that the functor
be monoidal and symmetric.

Consider now the forgetful functor cFAk → cAlgk (forgetting the Frobe-
nius structure). By Theorem 3.3.2, a given commutative Frobenius algebra
(A, ε) corresponds to a symmetric monoidal functor 2Cob → Vectk, and we
can compose with the symmetric monoidal functor � → 2Cob to get one
� → Vectk. By Theorem 3.5.24, this corresponds to a commutative monoid
in Vectk (i.e. a commutative algebra), and it is easy to verify that this algebra
is just A.

3.5.27 Example. In the same vein, a commutative monoid M in some sym-
metric monoidal category (V ,�, I, τ ) is given by a symmetric monoidal func-
tor M : � → V . Since M is a monoid, by Theorem 3.5.18 it corresponds to
a monoidal functor � → V . This functor is just the composite

� −→ �
M−→ V .

Exercises

1. Let (V ,�, I ) be a monoidal category, and let φ : M → M ′ be a homomor-
phism of monoids in V . Show that if φ is invertible as an arrow in V , then it
is also invertible as a monoid homomorphism (and conversely). (This gen-
eralises Exercise 2 on page 148.) (Hint: use Exercise 2 on page 168.)
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2. The Eckmann–Hilton argument. Since the monoids in Set form a monoidal
category Mon = Mon(Set) under cartesian product (cf. 3.2.24, 3.5.5), it
makes sense to speak about monoids in here.

(i) Show that a monoid in (Mon,×, 1) is the same as a set M with two
compatible monoid structures ∗h and ∗v (referred to as horizontal and verti-
cal). The compatibility requirements are these: the unit should be the same
for ∗h and ∗v, and furthermore, for all a, b, c, d ∈ M:

(a ∗h b) ∗v (c ∗h d) = (a ∗v c) ∗h (b ∗v d).

This is called the interchange law or Godement relation. Remark: the inter-
change law actually implies that the two units coincide, and in fact it implies
associativity for each of the multiplication laws too! – write down the proof
of these two statements.

Here is an illustration you can try to interpret:

1 � 1 � 1 × 1 �� · · ·

1

�
� M

�
� M ×M

�
�� · · ·

1
×
1

�

�
M

×
M

�

�
M ×M

× ×
M ×M

�

�� · · ·

...

��

...

��

...

��

and here is a drawing meant to illustrate the interchange law:

a b

c d
= a b

c d

(ii) Show that these two monoid structures ∗h and ∗v coincide, and that this
monoid is commutative. Here is an illustration for your proof:
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1 y

x 1
= y 1

1 x

= =

1 y

x 1
y 1
1 x

= =
x 1
1 y

1 x

y 1

= =
x 1
1 y

= 1 x

y 1

The
Eckmann–Hilton

argument

(iii) Go through all the arguments above and explain where the canoni-
cal symmetry on (Set ,×, 1) was used, and where the twist map was
hidden.

3.6 Frobenius structures

Comonoids and coalgebras

3.6.1 Comonoids. A comonoid in a monoidal category (V ,�, I ) is an object
M equipped with a comultiplication δ : M → M�M and a counit ε : M → I ,

δ ε

satisfying the axioms dual to the monoid axioms of 3.5.1:

= = =

A comonoid homomorphism between two comonoids in V is one which pre-
serves the comonoid structure. There is a category Comon(V) of comonoids
and comonoid homomorphisms in V .

Since the arrows defining a comonoid are just reversed compared to the
arrows defining a monoid, to give a comonoid in V amounts to giving a monoid
in V op. To give a comonoid homomorphism between comonoids in V is to give
a monoid homomorphism in the other direction between the corresponding
monoids in V op. So we have Comon(V) � Mon(V op)op.
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If V is a symmetric monoidal category then Comon(V) is a monoidal cat-
egory. This follows from the arguments of 3.5.5.

3.6.2 Cocommutative comonoids. A comonoid in a symmetric monoidal cat-
egory (V ,�, I, τ ) is called cocommutative if it satisfies the axiom dual to the
commutativity axiom 3.5.6:

=

The category of cocommutative comonoids in V is denoted cComon(V).

3.6.3 Lemma. In a monoidal category whose monoidal structure is given by
product, each object admits a unique comonoid structure (which is cocommu-
tative).

This statement is just dual to 3.5.21.

3.6.4 Example: comonoids in Set . In the monoidal category (Set ,×, 1),
every set S has a unique comonoid structure, namely the one whose comul-
tiplication map is the diagonal map S → S × S. (The counit map is the unique
S → 1.)

3.6.5 Coalgebras. A comonoid in (Vectk,⊗, k) is precisely a coalgebra
(see 2.3.1):

Comon(Vectk) = Coalgk.

(The proof is completely analogous (in fact dual) to the proof of 3.5.11.)
Also,

cComon(Vectk) = cCoalgk.

3.6.6 The universal comonoid. The monoidal category �op contains a unique
nontrivial comonoid, namely 1. (This statement is just dual to 3.5.16.) In fact,
�op is the free monoidal category on a comonoid, in the sense that having
a comonoid in a monoidal category V is just like having a monoidal functor
�op → V . Similarly, �op is the free symmetric monoidal category containing
a cocommutative comonoid. We can write

MonCat(�op, V ) � Comon(V)

SymMonCat(�op, V ) � cComon(V).
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In particular,

MonCat(�op, Vectk) � Coalgk

Reprk(�op) = SymMonCat(�op, Vectk) � cCoalgk.

3.6.7 Digression on bimonoids and bialgebras. A bimonoid in a symmet-
ric monoidal category (V ,�, I, τ ) is an object B which is simultaneously a
monoid and a comonoid, and such that the following compatibility conditions
hold:

= =

= = ∅

This definition is made in order for bimonoids in (Vectk,⊗, k, σ ) to be exactly
bialgebras (cf. 2.4.9) – this is easy to see comparing with the figures drawn
there. For algebras we observed that these axioms amount to saying that the
comultiplication and counit maps are algebra homomorphisms (or equiva-
lently, that multiplication and unit are coalgebra homomorphisms). Similarly
in this general setting, a bimonoid is a monoid equipped with a comulti-
plication and a counit which are monoid homomorphisms (or equivalently,
a comonoid equipped with a multiplication and a unit which are comonoid
homomorphisms). In other words

Bimon(V ) � Comon(Mon(V))

� Mon(Comon(V)).

Note that since V is a symmetric monoidal category, Mon(V) is a monoidal
category, cf. 3.5.5. A similar observation holds of course for Comon(V) by
duality, so the two statements make sense.

Frobenius objects, Frobenius algebras, and 2-dimensional
cobordisms

The bimonoids of the previous paragraph were only mentioned as a contrast:
what we really want is another compatibility between multiplication and co-
multiplication, namely the Frobenius condition. So we introduce the notion of
Frobenius object in a general monoidal category, in such a way that Frobenius
objects in Vect be precisely Frobenius algebras:
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3.6.8 Frobenius objects. A Frobenius object in a monoidal category (V ,�, I )

is an object A equipped with four maps:

η : I → A µ : A�A → A δ : A → A�A ε : A → I

satisfying the unit and counit axioms:

= = = =

as well as the Frobenius relation:

= =

3.6.9 Frobenius algebras. A Frobenius object in (Vectk,⊗, k) is precisely a
Frobenius algebra. This is the content of 2.3.24. Note that a priori we did not
require vector spaces to be of finite dimension, but we have shown in 2.1.12
that the Frobenius condition on a vector space implies finite dimension.

3.6.10 Lemma. The multiplication µ of a Frobenius object A is associative,
and the comultiplication δ is coassociative. In other words, A is at the same
time a monoid and a comonoid.

Proof. This was proved for Frobenius algebras in 2.3.24. Since the proof was
completely graphical, it is valid for Frobenius objects in any monoidal
category. �

3.6.11 Frobenius homomorphisms. A Frobenius homomorphism between
two Frobenius objects in V is a map that preserves all the structure, that is,
a map which is at the same time a monoid homomorphism and a comonoid
homomorphism. There is a category Frob (V) of Frobenius objects and Frobe-
nius homomorphisms in V . So 3.6.9 can more precisely be stated as

Frob (Vectk) = FAk.

3.6.12 Question. We saw in 2.4.5 that a homomorphism of Frobenius alge-
bras is always invertible. Is the same true for a Frobenius homomorphism in a
general monoidal category? (This seems difficult because the argument given
there used kernels and dimensions and other vector space specific features. . . )

3.6.13 Commutative Frobenius objects. It is obvious what commutativity
should mean for a Frobenius object – provided it lives in a symmetric monoidal
category! A Frobenius object in a symmetric monoidal category (V ,�, I, τ )
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is said to be commutative if it is commutative as a monoid. So the defining
condition is

=

(Clearly there is a category cFrob (V) of commutative Frobenius objects and
Frobenius homomorphisms in V .) Hence the commutative Frobenius objects
in (Vectk,⊗, k, σ ) are precisely the commutative Frobenius algebras.

Similarly we can define what it means to be cocommutative. The condition
is:

=

3.6.14 Lemma. A Frobenius object in a symmetric monoidal category is
cocommutative if and only if it is commutative.

Proof. We saw in 2.3.29 that this result is true when the symmetric monoidal
category is (Vectk,⊗, k, σ ). Since the proof was graphical it carries over to
the case of an arbitrary symmetric monoidal category. �

3.6.15 Example. In the symmetric monoidal category (2Cob ,
∐

, ∅, T ),
every object has a canonical structure of a commutative Frobenius object. In
particular, 1 is a commutative Frobenius object – this is more or less the content
of the description in terms of generators and relations given in Chapter 1.

(More generally, the (n− 1)-sphere is a commutative Frobenius object in
nCob , and so is any disjoint union of (n− 1)-spheres.)

Now just as we found that � is the free monoidal category on a monoid,
and � is the free symmetric monoidal category on a commutative monoid, it is
now natural to look for similar universal Frobenius structures: what is the free
monoidal category containing a Frobenius object? – and what about the free
symmetric monoidal category on a commutative Frobenius object?

3.6.16 The free monoidal category on a Frobenius object. The obvious way
of describing this universal Frobenius structure – the free monoidal category
on a Frobenius object – is in terms of generators and relations: simply take as
little as possible. Let (X ,�, 0) be the monoidal category whose objects are
the powers n := 1� . . . �1 of a given object 1 which we picture as a dot, and
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whose set of arrows is generated by these four:

η : 0 → 1 µ : 2 → 1 δ : 1 → 2 ε : 1 → 0

and subject to the three relations (unit, counit, and Frobenius):

= = = =

= =

Then clearly 1 is a Frobenius object in X . With this definition, the proof of
3.3.2 carries over directly to establish

3.6.17 Theorem. For every monoidal category (V,�, I ) there is a canonical
equivalence of categories

MonCat(X, V) � Frob(V).

3.6.18 The category of 2-cobordisms. Next we apply the same arguments to
the symmetric case. Define a symmetric monoidal category by taking its gener-
ators to be the four maps above, together with the twist map, and subject to unit,
counit, and Frobenius relations, imposing furthermore all the relations involv-
ing the twist map (i.e. the axioms for being a symmetry structure, cf. 3.2.34;
see also 3.4.26), and impose finally the commutativity relation (cf. 3.6.13).
(Then 1 is clearly a commutative Frobenius object.)

But this category was amply described in Chapter 1: it is precisely (the
skeleton of) 2Cob ! The only difference is notational: in Chapter 1 we used
thicker tube-like symbols instead of the skinny pictures used in this chapter.
(Also, in Chapter 1 we listed more relations, for example the associativity and
coassociativity relations, but we know from 3.6.10 that these relations are re-
dundant once we have the Frobenius relation.) Now the arguments of the proof
of Theorem 3.3.2 carry over word for word to prove more generally:

3.6.19 Theorem. The skeletal cobordism category (2Cob,
∐

, ∅, T ) is the free
symmetric monoidal category containing a (co)commutative Frobenius object.
In other words, given a (co)commutative Frobenius object A in a symmetric
monoidal category (V,�, I, τ ) then there is a unique symmetric monoidal
functor 2Cob → V such that 1 �→ A. This gives a canonical equivalence of
categories

SymMonCat(2Cob, V) � cFrob(V).
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This is the happy ending of our movie – the well deserved and definitive
reunion of the commutative Frobenius with the princess 2Cob . The remaining
few paragraphs just tell the curious story about what happened to the hero’s
best friend, the noncommutative Frobenius, and how he also got married. (This
will only be a brief outline – there is actually some work to do here. . . )

3.6.20 Towards a geometrical description of X. What makes Theorem
3.6.19 interesting compared to 3.6.17 is that 2Cob was originally defined in
purely geometrical terms. It is natural to ask for a similar geometric description
of X – to see whether we can give flesh and bones to the abstract description
given in terms of generators and relations.

The first approach to this problem is simply to take literally the drawings
of the generators, and see what sort of geometric figures we can build out of
them. The objects are columns of dots – lining up the dots in columns reflects
the monoidal operation �. We allow the empty column (the object 0), so there
is an object for each natural number.

The arrows should be certain collections of strands between these dots, and
since the two main operations (µ and δ) are not (co)commutative, we impose
the rule that the strands are not allowed to cross over each other.

So far the description is just copied over from that of �. Just as for �, to
be pedantic about the interpretation of the no-crossing rule we should require
the whole picture to take place inside a rectangle, with the input dots on the
left-hand side of the rectangle and the output column on the right.

From here on, the description diverges from that of � and things become
more complicated. Since we dispose of the comultiplication δ

it is no longer true that exactly one strand emanates from each input dot – in
fact, by composing several copies of δ we can have any number of strands em-
anating from a single input dot. Another way of saying this is that the strands
are not only allowed to merge, they are also allowed to split. A notable con-
sequence of this observation is that it will not be possible to interpret the
strands as functions of any kind, as we did for �. . . We can even have an
input dot from which no strands come out – this is the interpretation of the
counit ε. We may choose to draw it instead as a little line sticking out and go-
ing nowhere, in accordance with our graphical convention of this chapter; in
that case we should rather say that there is a always at least one strand coming
out of each input dot, but that it does not have to go anywhere. . .
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Next, consider the composite µε : 2 → 0

which in terms of Frobenius algebras is the pairing β. We are only interested in
the combinatorics of these strands, not their particular shape, so we will rather
picture this map as

(In a moment we will be more precise about the equivalence relation we are
tacitly imposing. . . ) So the strands are allowed to double back. Dually the
composite ηδ : 0 → 2 provides the possibility of a strand like this

Next consider the composite ηε : 0 → 0. This is not the identity map on 0.
For this reason it seems safer to write the small lines sticking in and out – then
the drawing of this strand becomes

(3.6.21)
So it is a strand coming from nowhere and going nowhere, but it is nevertheless
there, and it is not equivalent to the drawing where it is not there. (Perhaps you
will enjoy imaging this as some exotic particle which appears and disappears
again. . . )

More complicated examples of this kind can be built up by inserting com-
posites δµ in the middle. We get this example of an arrow from the empty
column to itself

Or even this:

(Here we see a phenomenon which does not have any analogue in the symmet-
ric case: nesting. Two nested circles do not represent the same arrow as two
non-nested ones. . . )

So in conclusion, an arrow is nearly about any possible drawing you can
imagine in the space between the two columns of dots!

3.6.22 Combinatorics of these drawings. We need to be precise about when
we consider two such drawings to define the same arrow. For � that was easy:
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we just invoked the interpretation of the strands as functions, the shape of the
strands did not matter, only which dots they connected. In the present context,
we cannot argue in terms of functions, but it is nevertheless clear that we are
not interested in the precise shape of a strand, but only in its combinatorics.
The combinatorics in this case is not only a question of which input dots are
connected to which output dots, but concerns also what happens in between,
namely the incidence relations between edges and inner vertices. Here inner
vertex means any point where three or more curve segments meet, and edge
means the curve segments, so for example in this drawing there are two inner
vertices and five edges:

In other words, we are interested (at most) in the graph represented by the
drawing. (The no-crossings axiom then says that we are dealing with planar
graphs.)

This observation is somewhat unrelated to the relations that characterise X ;
it is merely a question of killing the arbitrariness of the graphical representation
of a structure which from the beginning was combinatorial. Now we come to

3.6.23 Interpretation of the relations. The unit and counit relations tell us
that whenever we have an edge which connects to only one vertex, then we
can contract it back to the vertex (whose valence is then decremented by 1,
and it may even cease to be a vertex). For example in the previous drawing, the
little vertical line segment can be removed, whereafter there is only one vertex
left, and three edges. We already used this operation when drawing µε

=
Note that a dead-end edge like this can be contracted (deleted) only if it is
connected to a vertex (since this is the situation the unit and counit relations
pronounce themselves about). The case of an edge without any vertices (num-
ber 3.6.21 above) is not covered by this rule and cannot be deleted.

Next we should notice that the Frobenius relation together with the unit and
counit relations imply the snake relation

=

This was actually used when we stated that the shape of the edges is
immaterial. . .
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Finally, with the Frobenius relation we can really do some drastic operations
on these graphs: we can move around with the vertices along the edges, and
even move them past each other. For example in this animation

x

y y

y

x

we see the vertex x move downwards and leftwards along the edge, coincide
with the vertex y, and separate from it again, continuing past it on the other
side.

Thus in particular we find this relation

=

Another way of describing the operations expressed by the Frobenius rela-
tion is to say that we can contract any edge between two distinct (inner) ver-
tices. The two vertices then become one vertex (with total valence m+ n− 2,
if the original vertices had valences m and n). As a consequence, any con-
nected graph with more than one inner vertex can be transformed into a graph
with only one inner vertex. For example

=

3.6.24 The category of isotopy classes of planar graphs. The precise de-
scription of when we consider two graphs equivalent is given by the notion
of isotopy of planar graphs. We say two planar graphs G0,G1 are isotopic if
one can be deformed continuously into the other – without leaving the plane,
i.e. there is a continuously varying family of graphs parametrised by the unit
interval such that the graph over 0 is G0 and the graph over 1 is G1, and such
that all the intermediate graphs are also planar. So the rules are: no breaking,
no joining, no crossing over.

Now, the relations defining a Frobenius object express exactly isotopy in-
variance of certain modifications of planar graphs. So we can say that in the
geometric description of X the arrows are isotopy classes of planar graphs.

The isotopy classes of connected graphs are classified by the number of
input dots and output dots and the genus of the graphs (i.e. the number of
loops). For nonconnected graphs, some invariant which takes care of nesting
is required. . .

3.6.25 Thickening: ‘planar cobordisms’. If we thicken all the pictures a little
bit we get tubes. That leads to the plumber’s description of the category X . It
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is more or less like 2Cob , but we must prohibit the twist cobordism. So we are
talking about a notion of ‘planar cobordisms’: systems of tubes which lie flat
on the floor. . .

3.6.26 Comparison. With the above heuristic discussions, the reader is hope-
fully convinced that the geometrical description of X agrees with the one given
in terms of generators and relations. Establishing a formal proof involves first
of all more precise formulation of some of the concepts introduced above,
and then imitation of the analysis we carried out for the category 2Cob in
Section 1.4 – chopping up any such graph in pieces isotopic to the four gen-
erators, defining a ‘normal form’, and so on. Some new concepts are needed:
e.g. some sort of Morse theory for graphs, and a way of treating nonconnected
graphs. . . This is left as a challenge to the reader.

3.6.27 A project. . . We have seen that the commutative Frobenius structure
is topologically something not-embedded-anywhere, while the corresponding
noncommutative structure is something embedded in the plane.

There is an interesting intermediate possibility, namely embedding in R
3!

We would still require the objects to be dots arranged along line segments in
R

3, and the strands should be in a specified box. But now they could cross over
and under, and that would not be the same thing – we would have braids! So
this construction should lead to something like the universal braided Frobenius
structure, and there would arise some sort of notion of braided Frobenius alge-
bra. In terms of generators and relations, in addition to the four basic maps η,
µ, δ, and ε (cf. 3.6.8), there should be a braid map corresponding to crossing
over (and its inverse: crossing under), satisfying the axioms for being a braid-
ing in a braided monoidal category. The definition of braiding was given on
page 169, and for all further information we refer to Kassel’s book [29]. To
work this out is beyond the scope of these notes, but the reader is encouraged
to have a look at this problem on her own. . .



Appendix: vocabulary from category theory

A.1 Categories

A.1.1 Categories. A category C consists of

• a class of objects C 0,
• for every pair of objects X, Y , a set C (X, Y ) of arrows from X to Y ,
• for every triple of objects X, Y,Z, an associative composition law

C (X, Y )× C (Y, Z) → C (X,Z),

• and for every object X, a specified identity arrow IdX ∈ C (X,X) which
acts as neutral element for the composition (from both sides).

We write f : X → Y for an element in C (X, Y ). (The set C (X, Y ) is
often denoted HomC (X, Y ).) Given two arrows f : X → Y and g : Y → Z

we write fg for their composite X → Y → Z. The associativity of the com-

position law means that given three arrows W
e� X

f� Y
g� Z

then

(ef )g = e(fg).

Saying that IdX : X → X is neutral for the composition law from both sides
means that for every arrow f : X → Y we have IdX f = f and for every arrow
e : W → X we have e IdX = e.

As short-hand notation in the next couple of diagrams and figures, let us
write C (X, Y,Z) := C (X, Y )× C (Y, Z) – this notation is not standard and is
not used elsewhere in the text.

223



224 Appendix

The associativity and neutral arrow axioms can be expressed by the follow-
ing commutative diagrams:

C (W,X, Y,Z)

C (W, Y,Z)
�

C (W,X,Z)

�

C (W,Z)
�

�

1× C (X, Y ) � C (X,X, Y )

C (X, Y )

��

C (W,X,X) � C (W,X)× 1

C (W,X)

��

where 1 denotes a set with only one element, and 1 → C (X,X) is the map
that sends this element to IdX.

If you have already read some portions of the main text, perhaps you can
have fun interpreting the following drawing – otherwise you should just ignore
it:

=C(W, Z)

C(Y, Z)

C(W, Y )

C(Y, Z)

C(X, Y )

C(W, X)

C(W, Z)

C(X, Z)

C(W, X)

C(Y, Z)

C(X, Y )

C(W, X)

A.1.2 Large examples. The category Set whose objects are all sets and whose
arrows are the set mappings. Composition is the obvious composition of map-
pings. Or the category FinSet of finite sets and set mappings between finite
sets. This is a subcategory in Set .

The category Vectk of vector spaces over a field k, and k-linear maps.
The category Top of topological spaces and continuous maps.
The category Grp of groups and group homomorphisms.
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The category Ring of rings and ring homomorphisms.
The category FinOrd of finite ordered sets and order-preserving maps (see

3.4.1).

All the above examples are of this type: the objects are sets with some addi-
tional structure, and the arrows are maps which preserve this structure – such
categories are called concrete. Here is an example which does not fit into this
picture:

A.1.3 Groups as categories. Let G be a group. Define a category G with a
single object x, by setting G (x, x) := G. So the arrows are the elements of the
group G, and composition is given by the composition law of the group. The
neutral element of the group gives the identity arrow of the unique object x.

A.1.4 Smaller examples. Let 1 denote the category with just one object, and
just one arrow (the identity arrow of that object).

Consider the category 2 with two objects, and a single arrow in addition to
the two required identity arrows. It looks like this: • → •. (The identity arrows
have been omitted in the drawing.)

Consider the category 3 with three objects, and arrows

• � •

•

��

More generally there is a category n whose arrows are the edges of an ori-
ented n-simplex – see 3.4.5.

Consider the category • ← • → •. Let us call this category P since we will
use it again in A.3.3. There are no nontrivial compositions in this category.

Exercises

1. Show that identity arrows are unique for each object, i.e. if a : X → X and
b : X → X both satisfy the identity arrow axiom then they are equal.

2. An arrow i : X → Y in a category C is called an monomorphism if it is
cancellable from the right: this means that given a diagram

A
a�
b
� X

i� Y

such that ai = bi then already a = b.
Show that in the category of sets, the monomorphisms are precisely the
injective maps.
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3. An arrow p : A → B in a category C is called an epimorphism if it is can-
cellable from the left: this means that given a diagram

A
p� B

f�
g
� Z

such that pf = pg then already f = g.
Show that in the category of sets, the epimorphisms are precisely the sur-
jective maps.

The notions of monomorphism and epimorphism are more general and more
widely applicable than injections and surjections, which only make sense in
categories whose objects have elements.

A.2 Functors

The feature of categories as opposed to sets, is the emphasis on arrows: e.g. the
study of groups is really the study of group homomorphisms, etc. By the same
principle, in order to study categories we should study their ‘maps’.

A.2.1 Functors. A functor F between two categories C and D consists of

• a map F from C 0 to D 0,
• for each pair of objects X, Y in D , a map FX,Y : C (X, Y ) → D (XF, YF),

preserving composition law and identity arrows.

To preserve the composition means that given arrows X
f� Y

g� Z in
C we have (f F )(gF ) = (fg)F in D . And for every object X in C , the map
FX,X sends IdX to the identity arrow of XF in D .

A.2.2 Examples of functors. Subcategories provide examples of functors: for
example FinSet → Set is the functor that to a finite set assigns the same set,
ignoring that it happens to be finite.

Forgetful functors discard structure: for example there is a forgetful functor
Vectk → Set which to each vector space V associates the underlying set (the
set of vectors in V ), and to each linear map associates the underlying set map.
It is clear that this assignment respects composition and identity arrows.

Similarly there are forgetful functors Top → Set , Grp → Set , FinOrd →
FinSet , etc. In this last example, note that although every finite ordered set is a
finite set, we cannot say that FinOrd is a subcategory in FinSet , because each
particular set admits many orderings.
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As an example of a functor ‘in the other direction’, consider the functor
Set → Vectk which to each set associates the vector space spanned by the
elements (i.e. the vector space of all formal linear combinations of the elements
in S). On arrows: given a set map S → T , the associated linear map is the one
given by extending by linearity.

A.2.3 The opposite category, and contravariant functors. Given a category
C , the opposite category C op is given by taking the same objects but reversing
the direction of all arrows, that is, C op(X, Y ) = C (Y,X).

A functor C op → D is called a contravariant functor. Compared to a usual
(covariant) functor C → D it reverses the direction of all arrows. For example,
there is a functor Topop → Ring which to a topological space X associates
the ring C(X) of all continuous functions X → R. The contravariance comes
about because given a continuous map X → Y , there is a ring homomorphism
C(Y ) → C(X) given by sending Y → R to the composite X → Y → R.

For any category there is always the identity functor IdC : C → C which
is the identity map on objects and the identity map on arrows.

Also we can compose two functors F : C → D and G : D → E , to get a
functor FG : C → E . This is defined by composing F0 with G0, and for each
X, Y ∈ C 0 compose FX,Y with GXF,YF . It is easy to check that this compo-
sition law satisfies associativity, and also that the identity functors are neutral
for this composition law, from both sides.

The notions of categories and functors fit together to give

A.2.4 The category of all categories. The category Cat is the category whose
objects are the categories, and whose arrows are the functors.

(Here we ignore some set-theoretical subtleties: just as there is no such thing
as the set of all sets (which would lead to Russell’s paradox), there is really no
such thing as the category of all categories. . . There are several ways to deal
with this problem, and there is no point in bothering about this in our context.)

A functor is called an isomorphism of categories if there is a functor in
the other direction such that the two composites are both equal to the identity
functors.

Next, the gadget which allows for comparison of functors is

A.2.5 Natural transformations. Given two categories C and D , and two
functors

C
G�
F
� D
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a natural transformation u : F ⇒ G is the data of

• For each object X ∈ C 0 an arrow uX : XF → XG in D (called the com-
ponents of u).

These maps must be natural, i.e. compatible with all arrows in C : for every
arrow α : X → Y in C , this diagram must commute:

XF
uX� XG

YF

αF
�

uY

� YG

αG
�

There is always the notion of identity natural transformation between a
given functor and itself. It is simply the one given by taking all the components
to be the identity arrows. Also one can compose natural transformations: this
is just a matter of composing its components. It is not difficult to see that this
composition law is associative, and that the identity natural transformations are
neutral for this composition.

A natural isomorphism of functors is a natural transformation which admits
a natural transformation in the other direction such that the two compositions
are equal to the identity natural transformations.

Now, functors and natural transformations together lead to the notion of

A.2.6 Functor categories. For two fixed categories C and D we can consider
the set of all functors C → D . These constitute the object set of a category
denoted Cat(C , D ). The arrows are all natural transformations between such
functors.

A.2.7 Example. Consider the category Cat(2, Set), where 2 denotes the cat-
egory {0 → 1} mentioned in A.1.4. A functor 2 → Set is given by specifying
two sets S0 and S1 (the images of the objects 0 and 1 in 2), and an arrow
S0 → S1 (the image of the unique arrow in 2) (and then by definition the iden-
tity arrows are required to be sent to identity arrows, so there is no choice to
be made for them). Let there now be given two functors, i.e. two objects in
Cat(2, Set): one given by S0 → S1, and another given by T0 → T1. To give a
natural transformation u : S ⇒ T between these two functors amounts to giv-
ing maps u0 : S0 → T0 and u1 : S1 → T1, and the naturality requirement is
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that this square commutes:

S0
u0 � T0

S1

�

u1

� T1

�

Altogether we have described the functor category Cat(2, Set) as the category
whose objects are set maps, and whose arrows are commutative squares.

Many more examples of natural transformations and functor categories are
given in the main text.

A.2.8 Faithfulness, fullness, equivalences. A functor F : C → D is called
faithful if for each pair of objects X, Y ∈ C 0 the map FX,Y : C (X, Y ) →
D(XF, YF) is injective. F is called full if the maps FX,Y : C (X, Y ) →
D(XF, YF) are all surjective. If C is a subcategory of D then the inclusion
functor is always faithful. If it is full, C is called a full subcategory.

A functor is called essentially surjective if every object in D is isomorphic
to an image under F of an object of C .

A functor is called an equivalence if it is faithful, full, and essentially sur-
jective. An equivalent characterisation is that there exists a functor in the other
direction which is almost an inverse. The precise formulation of this last con-
dition is that the composite (of functors) FG : C → C is naturally isomorphic
to the identity functor IdC , and that GF : D → D is naturally isomorphic to
the identity functor IdD .

Exercises

1. In Example A.1.3 we assigned a one-object category G to every group G.
Show how to assign a functor G → H to every group homomorphism G →
H . Show that all this together defines a functor from Grp to Cat , and that
this functor is faithful and full.

2. Show that the forgetful functors listed in A.2.2 are all faithful but not full.
3. Let F : C → D be a faithful functor, and let a be an arrow in C . Show that

if aF is a monomorphism (respectively an epimorphism) then already a is
a monomorphism (respectively an epimorphism).

4. Show that a natural transformation u : F ⇒ G between functors as above
is a natural isomorphism if and only if all of its components are invertible
arrows in D .
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A.3 Universal objects

A.3.1 Initial and terminal objects. An object I in a category C is called an
initial object if for every object X ∈ C 0 there is precisely one arrow I → X.
In particular, if I is an initial object, then there is only one arrow I → I (and
this arrow is then of course the identity arrow).

If I and J are both initial objects, then there is a unique arrow i : I → J

and a unique arrow j : J → I . The composite ij is an arrow from I to I , so it
must be the identity, and for the same reason ji must be the identity of J . So
in conclusion, between any two initial objects there is a unique isomorphism.

Dually, an object T is called a terminal object if for every object X there
is precisely one arrow X → T . Arguing the same way, we see that between
any two terminal objects there is a unique isomorphism. (You can say that the
terminal objects of C are just the initial objects in C op.)

A.3.2 Examples. In the categories Set , Vectk, Top and Cat , any object with
just one element is a terminal object. In Set , Top , and Cat , the empty object
is initial. In Vectk, the trivial vector space {0} is initial (as well as terminal). In
the category G associated to a nontrivial group, there is only one object, but it
is neither initial nor terminal, because there is more than one arrow from this
object to itself.

A.3.3 Products. Let C be a category and let X and Y be two objects. A
(categorical) product of X and Y is an object P equipped with two arrows
X � P � Y called projections, with the following universal prop-
erty: for every other object Q equipped with arrows X � Q � Y

there is a unique arrow Q → P which makes this diagram commute:

Q

X �

�

P

∃!
�

� Y

�

You can formulate this by defining a category whose objects are diagrams
A of type X � A � Y , and whose arrows A → B are diagrams like
this:

A

X
�

Y

�

B

� ��
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Now the product can be characterised as the terminal object in this category.
(This category is nothing but the functor category Cat(P , C ) where P de-
notes the category • ← • → •, cf. Definition A.2.6, in analogy with Exam-
ple A.2.7.)

If a product of X and Y exists then it is unique up to unique isomorphism.
This means that if two objects P and P ′ are both products of X and Y , then
there is a unique isomorphism between them compatible with the projections.
(This follows easily from the universal property of P and P ′.)

In many categories products exist for any two objects. For example, in each
of the categories Set , Vectk, Top , Cat , the usual cartesian product is a cate-
gorical product. (Note that in nCob there is no categorical product.)

A.3.4 Coproducts. Dually, a coproduct of X and Y is an object C with two
arrows X � C � Y which is universal among all such diagrams. It can
also be described as the objects which are products in the opposite category, or
as the initial objects in the category of such diagrams.

In each of the categories Set , Top , Cat , the operation of disjoint union is a
coproduct – this operation is described in great detail in 1.3.24. In the category
Vectk, the direct sum is a coproduct (as well as a product).

A.3.5 n-ary products. More generally, given n objects X1, . . . , Xn, their
product is an object P with maps to each Xi , universal among such diagrams.
If the (binary) products exist, denoted X × Y , then it is not difficult to show
that (X × Y )× Z and X × (Y × Z) are both categorical triple products (hence
canonically isomorphic).

You can also consider the empty product! It is an object T equipped with
arrows to each of the zero objects, such that for every other object equipped
with such maps (none at all) there is a unique arrow to T (compatible with
those zero structure arrows). In other words, it is precisely a terminal object!

A.3.6 Limits and fibre products. One can consider more complicated dia-
grams than just those which consist of an object and a collection of arrows to
several other objects. This leads to the more general notion of limits. We will
need a particular case: the fibre product. Suppose we are given two objects X

and Y , each with a specified arrow to Z, i.e. a diagram

Y

X � Z

�
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A fibre product F is an object with arrows to each of those objects, i.e. a com-
mutative diagram

F � Y

X

�
� Z

�

such that for every other such diagram

G � Y

X

�
� Z

�

there is a unique arrow G → F which makes this diagram commute:

G

F �

�

Y

�

X

�
�

�

Z

�

A.3.7 Pushouts. Finally there is of course the dual notion. Given two objects
X and Y , each with a specified arrow from Z, i.e. a diagram

Y

X � Z

�

A pushout P is an object with arrows from each of those objects, i.e. a com-
mutative diagram

P � Y

X

�

� Z

�

which is universal among such diagrams, i.e. for any other such diagram

Q � Y

X

�

� Z

�
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there is a unique arrow Q ← P which makes this diagram commute:

Q

P �

�

Y

�

X

�

�

�

Z

�

Exercises

1. Show that the category 2 = {0 → 1} has an initial and a terminal object,
and that it has products and coproducts.

2. Let G denote the category associated to a nontrivial group. Show that prod-
ucts do not exist in G . (There is only one object in this category, say x, so
the only case to check is whether the product of x with itself exists. The
only candidate for being a product is the object x. But there are many can-
didates for being the projection maps, and the exercise consists in showing
that none of them gives the universal property.)

3. Given set maps X
f� Z �g

Y , show that the set

X ×Z Y := {(x, y) ∈ X × Y | xf = yg}
(with its two projections induced from X × Y ) is a fibre product in Set .

4. Let Incl denote the category whose objects are sets and whose arrows are
inclusions of sets. Given a diagram A ⊃ Z ⊂ B, show that the plain union
A ∪ B (with the natural inclusions of A and B) is a pushout in Incl .
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[39] MICHAEL MÜGER. From subfactors to categories and topology I. Frobenius alge-
bras in and Morita equivalence of tensor categories. J. Pure Appl. Alg. 180 (2003),
81–157 (math.CT/0111204).

[40] JAMES MUNKRES. Elementary Differential Topology. No. 54 in Annals of Math-
ematics Study. Princeton University Press, Princeton, NJ, 1963.

[41] TADASI NAKAYAMA. On Frobeniusean algebras I. Ann. Math. 40 (1939), 611–
633.

[42] CECIL NESBITT. On the regular representations of algebras. Ann. Math. 39
(1938), 634–658.

[43] FRANK QUINN. Lectures on axiomatic topological quantum field theory. In Ge-
ometry and Quantum Field Theory (Park City, UT, 1991), pp. 323–453. Amer.
Math. Soc., Providence, RI, 1995.

[44] STEPHEN SAWIN. Direct sum decompositions and indecomposable TQFTs.
J. Math. Phys. 36 (1995), 6673–6680 (q-alg/9505026).

[45] GRAEME SEGAL. Two-dimensional conformal field theories and modular func-
tors. In IXth International Congress on Mathematical Physics (Swansea, 1988),
pp. 22–37. Hilger, Bristol, 1989.

[46] MOSS E. SWEEDLER. Hopf algebras. W. A. Benjamin, New York, 1969.
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critical point, 16
crossed G-set, 170
crossing-over, 192
cylinder, 12, 25, 29

as identity cobordism, 44

decomposition of a cobordism, 28
degeneracy map, 185
�, category of finite ordinals, 178

generators and relations, 183
graphical description, 180

δ, , comultiplication, 116
direct sum, 56, 93, 130, 176
disjoint union, 49–52
division algebras, 99
dual

of a vector space, 80
of an A-module, 89

duality in a Frobenius algebra, 131

Eckmann–Hilton argument, 211
endomorphism monoid, 145
ε, , Frobenius form, 94, 111
equivalence of categories, 229
equivalence of cobordisms, 26
essentially surjective, 229
η, , unit, 109
Euler characteristic, 63

FAk, category of Frobenius algebras, 132
face map, 185
faithful, 229
fibre product, 231
field extensions, 99
finite cardinal, 189
finite ordered set, 177
finite ordinal, 178
FinOrd , category of finite ordered sets,

177
FinSet , category of finite sets, 188
FinSet0, category of finite sets and bijections,

192
free monoid, 143
Frobenius, 101
Frobenius algebra, 94, 215

commutative, 122, 173
examples, 98–104
symmetric, 97
trivial, 99

Frobenius algebras and 2-dimensional TQFTs,
171–175

Frobenius form, 94
in graphical terms, 111

Frobenius object (in a monoidal category), 215
Frobenius pairing, 95

in graphical terms, 111
Frobenius relation, 117, 215

in 2Cob , 70
in coordinates, 127

Frob (V ), category of Frobenius objects in V ,
215

full, 229
functor, 226
functor category, 228

generators and relations
for 2Cob , 62
for �, 183–187
for �, 194
for a category, 58
for a monoidal category, 61
for the braid group Bk , 196
for the symmetric group Sk , 57

genus, 63
gluing, 35–43

cobordisms, 42
cylinders, 40
intervals, 38
topological spaces, 35

Gorenstein rings, 102
graded algebra, 203

graded vector space, 166
graded-commutative algebra, 203

graphical calculus, 108
gr-cAlgk, category of graded-commutative

k-algebras, 203
group, 143, 225
group algebras, 100, 137
group characters, 102
grVectk, category of graded vector spaces,

166
G-set, 169

half-space, 11
handle operator, 77, 128
historical remarks, 55, 101, 120, 175
Hopf algebras (digression), 136

identity cobordism, 44
in-boundary, 14
initial object, 230
interchange law, 211
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interval, 12, 15
as cobordism, 23

Jacobian algebras, 103
Jacobson radical, 100

k-algebra, 86
in graphical terms, 110

Koszul symmetry, 166

linear functional (linear form), 80
linear representation

of a symmetrical monoidal category, 167

‘main theorem’, 173
generalised, 217

manifold with boundary, 11
matrix algebras, 99
metric, 125
ModR , category of R-modules, 160
Mon , category of monoids (in Set ), 142
MonCat , category of monoidal categories,

153
monoid, 141

commutative, 143, 200
in �, 204
in �, 208
in a monoidal category, 197
trivial, 144, 203

monoid action, 146
monoidal category, 150

braided, 169
nonstrict, 154–157
symmetric, 160

monoidal functor, 153
nonstrict, 156
on �, 205
symmetric, 166

monoidal natural transformation, 167
Mon(V ), category of monoids in V , 198
Moore’s theorem, 57
Morse function, 17
movies, 19

µ, , multiplication map, 109
multiplication

in a k-algebra, 86

N, natural numbers, 143–145
n, nth ordinal, 179
natural transformation, 227

monoidal, 167

nCob , category of n-cobordisms, 45
nondegenerate pairing, 81
normal form (for a connected surface), 64
nTQFTk, category of n-dimensional TQFTs,

168

ordered set, order-preserving map, 177
ordinal sum, 179
orientation, 13
out-boundary, 14

pairing, 81
associative, 91
nondegenerate, 81

paralleling, 57, 151
�, category of finite cardinals, 189

generators and relations, 194
graphical description, 191

positive normal, 14
product (categorical), 230
pushout, 232

regular interval theorem, 41
regular representation, 101
Reprk(V ), category of linear representations

of a symmetric monoidal category V , 167
Ring , category of rings, 201
rModA, category of right A-modules, 89

semi-monoid, 148
semi-simple algebra, 100, 106
�, category of finite cardinals and bijections,

192
simplicial identities, 186
simplicial set, 187
singleton category, 149
singleton set, 140
Sk , the symmetric group, 57, 193
skeleton, 59
skew-fields, 99
snake decomposition, 29
snake relation (nondegeneracy of a pairing),

112
strictification theorem, 157
sufficiency of the relations (in 2Cob ), 73
Sweedler’s trigonometric coalgebra, 107, 128
symmetric Frobenius algebra, 97

graphical, 123
symmetric monoidal category, 160
symmetric monoidal functor, 166

on nCob , 168
on �, 209
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symmetry, 160–166, 174
SymMonCat , category of symmetric

monoidal categories, 166

tensor calculus, 123
tensor product, 80

of (co)algebras, 132
of Frobenius algebras, 134

terminal object, 230
three-point function, 113, 125
topological quantum field theory (TQFT), 30,

54
topologist’s delta, 187
trigonometric coalgebra of Sweedler, 107, 128

trivial Frobenius algebra, 99
twist cobordism, 52, 61, 72–77
twist map, 121, 140, 161

unit
in a k-algebra, 86
in a monoid, 141, 197

U-tube, 26

Vectk, category of k-vector spaces, 79
vector space, 79

graded, 166

X , category of ‘planar 2-cobordisms’, 216
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